hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7946eba0c1e55e4a1157a500dbd117640402cec4
3,256
py
Python
viewport_experimental.py
Euclideon/vaultsdkpython
cea55dead80fc32618e72158c2eab783833e16c1
[ "MIT" ]
2
2020-07-14T19:35:13.000Z
2020-08-13T08:18:42.000Z
viewport_experimental.py
Euclideon/vaultsdkpython
cea55dead80fc32618e72158c2eab783833e16c1
[ "MIT" ]
17
2020-05-13T04:56:44.000Z
2020-08-12T05:09:24.000Z
viewport_experimental.py
Euclideon/vaultsdkpython
cea55dead80fc32618e72158c2eab783833e16c1
[ "MIT" ]
null
null
null
""" module containing experimental features relating to extending viewports """ from pygletExample import * class VDKViewPort3D(VDKViewPort): """ Viewport quad with 3D faces, used for constructing ViewPrisms """ def __init__(self, width, height, centreX, centreY, parent, horizontalDirection = [1,0,0], verticalDirection = [0,1,0]): self._width = width self._height = height self._centre = [centreX, centreY, 0] self.parent = parent self.vec1 = horizontalDirection self.vec2 = verticalDirection #self.vec1 = [0.707, -0.707,0.01] #self.vec2 = [0.707, 0.707,0.01] super(VDKViewPort3D, self).__init__(width, height, centreX, centreY, parent) def orient(self, centre, vec1, vec2): #position the plane such that it is parallel to vectors 1 and 2 and centred at centre: # these are the vertices at the corners of the quad, each line is the pixel coordinates of the self._vertex_list.vertices = \ [ # bottom left centre[0] - vec1[0] * self._width / 2 - vec2[0] * self._height / 2, centre[1] - vec1[1] * self._width / 2 - vec2[1] * self._height / 2, centre[2] - vec1[2] * self._width / 2 - vec2[2] * self._height / 2, # bottom right centre[0] + vec1[0] * self._width / 2 - vec2[0] * self._height / 2, centre[1] + vec1[1] * self._width / 2 - vec2[1] * self._height / 2, centre[2] + vec1[2] * self._width / 2 - vec2[2] * self._height / 2, #top right centre[0] + vec1[0] * self._width/2 + vec2[0] * self._height/2, centre[1] + vec1[1] * self._width / 2 + vec2[1] * self._height / 2, centre[2] + vec1[2] * self._width / 2 + vec2[2] * self._height / 2, # top left centre[0] - vec1[0] * self._width / 2 + vec2[0] * self._height / 2, centre[1] - vec1[1] * self._width / 2 + vec2[1] * self._height / 2, centre[2] - vec1[2] * self._width / 2 + vec2[2] * self._height / 2, ] #position the camera such that it is a fixed distance from the import numpy as np v1 = np.array(vec1) v2 = np.array(vec2) normal = np.cross(v1, v2)/(np.linalg.norm(v1)*np.linalg.norm(v2)) normal = normal.dot(np.array([ [1, 0, 0], [0, 0, 1], [0, 1, 0], ])) self.camera.look_at([0, 0, 0], normal) #self._camera.set_view(normal[0], normal[1], normal[2]) def make_vertex_list(self): self._vertex_list = pyglet.graphics.vertex_list(4,'v3f/stream','t2f/static') self._vertex_list.tex_coords = \ [ 0, 1, 1, 1, 1, 0, 0, 0, ] self.orient(self._centre, self.vec1, self.vec2) class VDKViewPrism: """ Class representing a sectional view of a model it is a rectangular prism with a UD view for each face """ def __init__(self, width, height, depth): self.height = height self.width = width self.depth = depth self.viewPorts = []
40.7
124
0.541769
7946ec7361437e45e755b6b33241ab9f2084317a
1,330
py
Python
omoide_index/tests/infra/test_memory_calculator.py
IgorZyktin/omoide-index
b64cdc9e661b0b3d3b25a460f8bb0ef689ea81ad
[ "MIT" ]
null
null
null
omoide_index/tests/infra/test_memory_calculator.py
IgorZyktin/omoide-index
b64cdc9e661b0b3d3b25a460f8bb0ef689ea81ad
[ "MIT" ]
16
2021-12-22T02:27:24.000Z
2022-03-31T02:26:07.000Z
omoide_index/tests/infra/test_memory_calculator.py
IgorZyktin/omoide-index
b64cdc9e661b0b3d3b25a460f8bb0ef689ea81ad
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Tests. """ import pytest from omoide_index.infra import MemoryCalculator @pytest.fixture def infra_memory_calculator_instance(): return MemoryCalculator() def test_memory_calculator_consumption_str(infra_memory_calculator_instance): # arrange inst = infra_memory_calculator_instance # act res = inst.get_process_memory_consumption_str() # assert assert res.endswith('MiB') @pytest.mark.parametrize('size,string', [ (-1, '0 B'), (0, '0 B'), (5, '5 B'), (29, '29 B'), (60, '60 B'), (1_000, '1000 B'), (1_024, '1.0 KiB'), (1_120, '1.1 KiB'), (99_999, '97.7 KiB'), (98_962_693, '94.4 MiB'), (100_000_000_000, '93.1 GiB'), (100_000_000_000_000, '90.9 TiB'), ]) def test_memory_calculator_human_readable_size(size, string): # arrange inst = MemoryCalculator() # assert assert inst.format_human_readable_size(size) == string @pytest.mark.parametrize('target,string', [ (True, '32 B'), (False, '24 B'), (None, '16 B'), (1, '32 B'), ((1, 2, 3), '160 B'), ((1, 2, (3, 4, (5, 6))), '376 B'), ]) def test_memory_calculator_object_consumption(target, string): # arrange inst = MemoryCalculator() # assert assert inst.get_object_memory_consumption_str(target) == string
21.111111
77
0.627068
7946ecb5eb7e85f6a542f25548362b5f4424ac41
8,534
py
Python
telethon/events/inlinequery.py
bb010g/Telethon
278f0e9e983d938589b6d541e71135ad5b6857c5
[ "MIT" ]
null
null
null
telethon/events/inlinequery.py
bb010g/Telethon
278f0e9e983d938589b6d541e71135ad5b6857c5
[ "MIT" ]
null
null
null
telethon/events/inlinequery.py
bb010g/Telethon
278f0e9e983d938589b6d541e71135ad5b6857c5
[ "MIT" ]
null
null
null
import inspect import re import asyncio from .common import EventBuilder, EventCommon, name_inner_event from .. import utils from ..tl import types, functions, custom from ..tl.custom.sendergetter import SenderGetter @name_inner_event class InlineQuery(EventBuilder): """ Represents an inline query event (when someone writes ``'@my_bot query'``). Args: users (`entity`, optional): May be one or more entities (username/peer/etc.), preferably IDs. By default, only inline queries from these users will be handled. blacklist_users (`bool`, optional): Whether to treat the users as a blacklist instead of as a whitelist (default). This means that every chat will be handled *except* those specified in ``users`` which will be ignored if ``blacklist_users=True``. pattern (`str`, `callable`, `Pattern`, optional): If set, only queries matching this pattern will be handled. You can specify a regex-like string which will be matched against the message, a callable function that returns ``True`` if a message is acceptable, or a compiled regex pattern. """ def __init__( self, users=None, *, blacklist_users=False, func=None, pattern=None): super().__init__(users, blacklist_chats=blacklist_users, func=func) if isinstance(pattern, str): self.pattern = re.compile(pattern).match elif not pattern or callable(pattern): self.pattern = pattern elif hasattr(pattern, 'match') and callable(pattern.match): self.pattern = pattern.match else: raise TypeError('Invalid pattern type given') @classmethod def build(cls, update): if isinstance(update, types.UpdateBotInlineQuery): event = cls.Event(update) else: return event._entities = update._entities return event def filter(self, event): if self.pattern: match = self.pattern(event.text) if not match: return event.pattern_match = match return super().filter(event) class Event(EventCommon, SenderGetter): """ Represents the event of a new callback query. Members: query (:tl:`UpdateBotCallbackQuery`): The original :tl:`UpdateBotCallbackQuery`. Make sure to access the `text` of the query if that's what you want instead working with this. pattern_match (`obj`, optional): The resulting object from calling the passed ``pattern`` function, which is ``re.compile(...).match`` by default. """ def __init__(self, query): super().__init__(chat_peer=types.PeerUser(query.user_id)) self.query = query self.pattern_match = None self._answered = False self._sender_id = query.user_id self._input_sender = None self._sender = None def _set_client(self, client): super()._set_client(client) self._sender, self._input_sender = utils._get_entity_pair( self.sender_id, self._entities, client._entity_cache) @property def id(self): """ Returns the unique identifier for the query ID. """ return self.query.query_id @property def text(self): """ Returns the text the user used to make the inline query. """ return self.query.query @property def offset(self): """ The string the user's client used as an offset for the query. This will either be empty or equal to offsets passed to `answer`. """ return self.query.offset @property def geo(self): """ If the user location is requested when using inline mode and the user's device is able to send it, this will return the :tl:`GeoPoint` with the position of the user. """ return @property def builder(self): """ Returns a new `InlineBuilder <telethon.tl.custom.inlinebuilder.InlineBuilder>` instance. """ return custom.InlineBuilder(self._client) async def answer( self, results=None, cache_time=0, *, gallery=False, next_offset=None, private=False, switch_pm=None, switch_pm_param=''): """ Answers the inline query with the given results. Args: results (`list`, optional): A list of :tl:`InputBotInlineResult` to use. You should use `builder` to create these: .. code-block:: python builder = inline.builder r1 = builder.article('Be nice', text='Have a nice day') r2 = builder.article('Be bad', text="I don't like you") await inline.answer([r1, r2]) You can send up to 50 results as documented in https://core.telegram.org/bots/api#answerinlinequery. Sending more will raise ``ResultsTooMuchError``, and you should consider using `next_offset` to paginate them. cache_time (`int`, optional): For how long this result should be cached on the user's client. Defaults to 0 for no cache. gallery (`bool`, optional): Whether the results should show as a gallery (grid) or not. next_offset (`str`, optional): The offset the client will send when the user scrolls the results and it repeats the request. private (`bool`, optional): Whether the results should be cached by Telegram (not private) or by the user's client (private). switch_pm (`str`, optional): If set, this text will be shown in the results to allow the user to switch to private messages. switch_pm_param (`str`, optional): Optional parameter to start the bot with if `switch_pm` was used. Example: .. code-block:: python @bot.on(events.InlineQuery) async def handler(event): builder = event.builder rev_text = event.text[::-1] await event.answer([ builder.article('Reverse text', text=rev_text), builder.photo('/path/to/photo.jpg') ]) """ if self._answered: return if results: futures = [self._as_future(x, self._client.loop) for x in results] await asyncio.wait(futures, loop=self._client.loop) # All futures will be in the `done` *set* that `wait` returns. # # Precisely because it's a `set` and not a `list`, it # will not preserve the order, but since all futures # completed we can use our original, ordered `list`. results = [x.result() for x in futures] else: results = [] if switch_pm: switch_pm = types.InlineBotSwitchPM(switch_pm, switch_pm_param) return await self._client( functions.messages.SetInlineBotResultsRequest( query_id=self.query.query_id, results=results, cache_time=cache_time, gallery=gallery, next_offset=next_offset, private=private, switch_pm=switch_pm ) ) @staticmethod def _as_future(obj, loop): if inspect.isawaitable(obj): return asyncio.ensure_future(obj, loop=loop) f = loop.create_future() f.set_result(obj) return f
36.008439
81
0.537263
7946ed067052491e80c247db87a53b2dccc8de94
9,054
py
Python
electrum_mars/mnemonic.py
marscoin/electrum-mars
e95274b0ad959bdb02226c988303339a24acb8bf
[ "MIT" ]
3
2021-08-15T08:05:00.000Z
2021-11-21T21:35:10.000Z
electrum_mars/mnemonic.py
marscoin/electrum-mars
e95274b0ad959bdb02226c988303339a24acb8bf
[ "MIT" ]
1
2021-12-02T08:04:05.000Z
2021-12-02T08:04:05.000Z
electrum_mars/mnemonic.py
marscoin/electrum-mars
e95274b0ad959bdb02226c988303339a24acb8bf
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2014 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import math import hashlib import unicodedata import string from typing import Sequence, Dict from types import MappingProxyType from .util import resource_path, bfh, bh2u, randrange from .crypto import hmac_oneshot from . import version from .logging import Logger # http://www.asahi-net.or.jp/~ax2s-kmtn/ref/unicode/e_asia.html CJK_INTERVALS = [ (0x4E00, 0x9FFF, 'CJK Unified Ideographs'), (0x3400, 0x4DBF, 'CJK Unified Ideographs Extension A'), (0x20000, 0x2A6DF, 'CJK Unified Ideographs Extension B'), (0x2A700, 0x2B73F, 'CJK Unified Ideographs Extension C'), (0x2B740, 0x2B81F, 'CJK Unified Ideographs Extension D'), (0xF900, 0xFAFF, 'CJK Compatibility Ideographs'), (0x2F800, 0x2FA1D, 'CJK Compatibility Ideographs Supplement'), (0x3190, 0x319F, 'Kanbun'), (0x2E80, 0x2EFF, 'CJK Radicals Supplement'), (0x2F00, 0x2FDF, 'CJK Radicals'), (0x31C0, 0x31EF, 'CJK Strokes'), (0x2FF0, 0x2FFF, 'Ideographic Description Characters'), (0xE0100, 0xE01EF, 'Variation Selectors Supplement'), (0x3100, 0x312F, 'Bopomofo'), (0x31A0, 0x31BF, 'Bopomofo Extended'), (0xFF00, 0xFFEF, 'Halfwidth and Fullwidth Forms'), (0x3040, 0x309F, 'Hiragana'), (0x30A0, 0x30FF, 'Katakana'), (0x31F0, 0x31FF, 'Katakana Phonetic Extensions'), (0x1B000, 0x1B0FF, 'Kana Supplement'), (0xAC00, 0xD7AF, 'Hangul Syllables'), (0x1100, 0x11FF, 'Hangul Jamo'), (0xA960, 0xA97F, 'Hangul Jamo Extended A'), (0xD7B0, 0xD7FF, 'Hangul Jamo Extended B'), (0x3130, 0x318F, 'Hangul Compatibility Jamo'), (0xA4D0, 0xA4FF, 'Lisu'), (0x16F00, 0x16F9F, 'Miao'), (0xA000, 0xA48F, 'Yi Syllables'), (0xA490, 0xA4CF, 'Yi Radicals'), ] def is_CJK(c): n = ord(c) for imin,imax,name in CJK_INTERVALS: if n>=imin and n<=imax: return True return False def normalize_text(seed: str) -> str: # normalize seed = unicodedata.normalize('NFKD', seed) # lower seed = seed.lower() # remove accents seed = u''.join([c for c in seed if not unicodedata.combining(c)]) # normalize whitespaces seed = u' '.join(seed.split()) # remove whitespaces between CJK seed = u''.join([seed[i] for i in range(len(seed)) if not (seed[i] in string.whitespace and is_CJK(seed[i-1]) and is_CJK(seed[i+1]))]) return seed _WORDLIST_CACHE = {} # type: Dict[str, Wordlist] class Wordlist(tuple): def __init__(self, words: Sequence[str]): super().__init__() index_from_word = {w: i for i, w in enumerate(words)} self._index_from_word = MappingProxyType(index_from_word) # no mutation def index(self, word, start=None, stop=None) -> int: try: return self._index_from_word[word] except KeyError as e: raise ValueError from e def __contains__(self, word) -> bool: try: self.index(word) except ValueError: return False else: return True @classmethod def from_file(cls, filename) -> 'Wordlist': path = resource_path('wordlist', filename) if path not in _WORDLIST_CACHE: with open(path, 'r', encoding='utf-8') as f: s = f.read().strip() s = unicodedata.normalize('NFKD', s) lines = s.split('\n') words = [] for line in lines: line = line.split('#')[0] line = line.strip(' \r') assert ' ' not in line if line: words.append(line) _WORDLIST_CACHE[path] = Wordlist(words) return _WORDLIST_CACHE[path] filenames = { 'en':'english.txt', 'es':'spanish.txt', 'ja':'japanese.txt', 'pt':'portuguese.txt', 'zh':'chinese_simplified.txt' } class Mnemonic(Logger): # Seed derivation does not follow BIP39 # Mnemonic phrase uses a hash based checksum, instead of a wordlist-dependent checksum def __init__(self, lang=None): Logger.__init__(self) lang = lang or 'en' self.logger.info(f'language {lang}') filename = filenames.get(lang[0:2], 'english.txt') self.wordlist = Wordlist.from_file(filename) self.logger.info(f"wordlist has {len(self.wordlist)} words") @classmethod def mnemonic_to_seed(self, mnemonic, passphrase) -> bytes: PBKDF2_ROUNDS = 2048 mnemonic = normalize_text(mnemonic) passphrase = passphrase or '' passphrase = normalize_text(passphrase) return hashlib.pbkdf2_hmac('sha512', mnemonic.encode('utf-8'), b'electrum' + passphrase.encode('utf-8'), iterations = PBKDF2_ROUNDS) def mnemonic_encode(self, i): n = len(self.wordlist) words = [] while i: x = i%n i = i//n words.append(self.wordlist[x]) return ' '.join(words) def get_suggestions(self, prefix): for w in self.wordlist: if w.startswith(prefix): yield w def mnemonic_decode(self, seed): n = len(self.wordlist) words = seed.split() i = 0 while words: w = words.pop() k = self.wordlist.index(w) i = i*n + k return i def make_seed(self, *, seed_type=None, num_bits=None) -> str: from .keystore import bip39_is_checksum_valid if seed_type is None: seed_type = 'standard' if num_bits is None: num_bits = 132 prefix = version.seed_prefix(seed_type) # increase num_bits in order to obtain a uniform distribution for the last word bpw = math.log(len(self.wordlist), 2) num_bits = int(math.ceil(num_bits/bpw) * bpw) self.logger.info(f"make_seed. prefix: '{prefix}', entropy: {num_bits} bits") entropy = 1 while entropy < pow(2, num_bits - bpw): # try again if seed would not contain enough words entropy = randrange(pow(2, num_bits)) nonce = 0 while True: nonce += 1 i = entropy + nonce seed = self.mnemonic_encode(i) if i != self.mnemonic_decode(seed): raise Exception('Cannot extract same entropy from mnemonic!') if is_old_seed(seed): continue # Make sure the mnemonic we generate is not also a valid bip39 seed # by accident. Note that this test has not always been done historically, # so it cannot be relied upon. if bip39_is_checksum_valid(seed, wordlist=self.wordlist) == (True, True): continue if is_new_seed(seed, prefix): break self.logger.info(f'{len(seed.split())} words') return seed def is_new_seed(x: str, prefix=version.SEED_PREFIX) -> bool: x = normalize_text(x) s = bh2u(hmac_oneshot(b"Seed version", x.encode('utf8'), hashlib.sha512)) return s.startswith(prefix) def is_old_seed(seed: str) -> bool: from . import old_mnemonic seed = normalize_text(seed) words = seed.split() try: # checks here are deliberately left weak for legacy reasons, see #3149 old_mnemonic.mn_decode(words) uses_electrum_words = True except Exception: uses_electrum_words = False try: seed = bfh(seed) is_hex = (len(seed) == 16 or len(seed) == 32) except Exception: is_hex = False return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24)) def seed_type(x: str) -> str: num_words = len(x.split()) if is_old_seed(x): return 'old' elif is_new_seed(x, version.SEED_PREFIX): return 'standard' return '' def is_seed(x: str) -> bool: return bool(seed_type(x)) def is_any_2fa_seed_type(seed_type: str) -> bool: return seed_type in ['2fa', '2fa_segwit']
34.295455
140
0.631434
7946f05d249527a7e7b3a7d0478153fea321a0eb
295
py
Python
pyscf/pbc/df/__init__.py
nmardirossian/pyscf
57c8912dcfcc1157a822feede63df54ed1067115
[ "BSD-2-Clause" ]
1
2018-05-02T19:55:30.000Z
2018-05-02T19:55:30.000Z
pyscf/pbc/df/__init__.py
nmardirossian/pyscf
57c8912dcfcc1157a822feede63df54ed1067115
[ "BSD-2-Clause" ]
null
null
null
pyscf/pbc/df/__init__.py
nmardirossian/pyscf
57c8912dcfcc1157a822feede63df54ed1067115
[ "BSD-2-Clause" ]
1
2018-12-06T03:10:50.000Z
2018-12-06T03:10:50.000Z
from . import incore from . import outcore from . import fft from . import aft from . import df from . import mdf from .df import DF, GDF from .mdf import MDF from .aft import AFTDF from .fft import FFTDF from pyscf.df.addons import aug_etb # For backward compatibility pwdf = aft PWDF = AFTDF
18.4375
35
0.755932
7946f0b8e4c098dbe1e4ad5721b49aaa6ec77b3d
93
py
Python
build/lib/pyconfluent/kafka_streams/errors/kafka_streams_error.py
newellp2019/pyconfluent
b1de0b8255678c2e6a3a7d016df57b9f40cdc861
[ "MIT" ]
null
null
null
build/lib/pyconfluent/kafka_streams/errors/kafka_streams_error.py
newellp2019/pyconfluent
b1de0b8255678c2e6a3a7d016df57b9f40cdc861
[ "MIT" ]
null
null
null
build/lib/pyconfluent/kafka_streams/errors/kafka_streams_error.py
newellp2019/pyconfluent
b1de0b8255678c2e6a3a7d016df57b9f40cdc861
[ "MIT" ]
null
null
null
""" Run time exception thrown on error """ class KafkaStreamsError(RuntimeError): pass
11.625
38
0.72043
7946f1928208bba17eee8e65a266e0aa4268aa7e
4,582
py
Python
src/final_solution/param_search.py
federicoBetti/DataScienceCompetition_FutureSales
f78e38f39b5ecda2a67b4bfbf476cdc6a4a41460
[ "MIT" ]
null
null
null
src/final_solution/param_search.py
federicoBetti/DataScienceCompetition_FutureSales
f78e38f39b5ecda2a67b4bfbf476cdc6a4a41460
[ "MIT" ]
null
null
null
src/final_solution/param_search.py
federicoBetti/DataScienceCompetition_FutureSales
f78e38f39b5ecda2a67b4bfbf476cdc6a4a41460
[ "MIT" ]
null
null
null
import os import hyperopt import pandas as pd from hyperopt import fmin, tpe, STATUS_OK, Trials from hyperopt import hp from hyperopt.pyll import scope from sklearn.linear_model import LinearRegression from xgboost import XGBRegressor from src.utils.memory_managment import save_object def trainXGBoost(train_x, train_y, valid_x=None, valid_y=None, n_estimators=50): model = XGBRegressor( max_depth=10, n_estimators=n_estimators, min_child_weight=0.5, colsample_bytree=0.8, subsample=0.8, eta=0.1, # tree_method='gpu_hist', seed=42) if valid_x is None: eval_set = None early_stopping = None else: eval_set = [(train_x, train_y), (valid_x, valid_y)] early_stopping = 10 model.fit( train_x, train_y, eval_metric="rmse", eval_set=eval_set, verbose=True, early_stopping_rounds=early_stopping) return model def trainLR(train_x, train_y): lr = LinearRegression() lr.fit(train_x.fillna(0).values, train_y.fillna(0)) return lr from sklearn import svm def trainSVM(train_x, train_y): regr = svm.LinearSVR() regr.fit(train_x.values, train_y) return regr from sklearn.neural_network import MLPRegressor def trainNN(train_x, train_y): regr = MLPRegressor(hidden_layer_sizes=(16, 8), learning_rate="adaptive", verbose=True, max_iter=8) regr.fit(train_x.values, train_y) return regr from sklearn.metrics import mean_squared_error def getRMSE(y_actual, y_predicted): rms = mean_squared_error(y_actual.clip(upper=20), y_predicted.clip(max=20), squared=True) return rms # train_test_df.dropna(inplace=True) # all_train_x = train_test_df[train_test_df.date_block_num < 34].drop(['item_cnt_month'], axis=1) # all_train_y = train_test_df[train_test_df.date_block_num < 34]['item_cnt_month'].clip(lower=0, upper=20) def get_data(): CUSTOM_DATA_FOLDER = '../../data_custom/' train_test_df = pd.read_feather( os.path.join(os.getcwd(), CUSTOM_DATA_FOLDER, 'all_data_preprocessed.feather')).set_index("index") train_x = train_test_df[train_test_df.date_block_num < 33].drop(['item_cnt_month'], axis=1) train_y = train_test_df[train_test_df.date_block_num < 33]['item_cnt_month'].clip(lower=0, upper=20) valid_x = train_test_df[train_test_df.date_block_num == 33].drop(['item_cnt_month'], axis=1) valid_y = train_test_df[train_test_df.date_block_num == 33]['item_cnt_month'].clip(lower=0, upper=20) del train_test_df # test_x = train_test_df[train_test_df.date_block_num == 34].drop(['item_cnt_month'], axis=1) return train_x, train_y, valid_x, valid_y def get_validation_score(args): max_depth = args["max_depth"] min_child_weight = args["min_child_weight"] eta = args["eta"] subsample = args["subsample"] colsample_bytree = args["colsample_bytree"] train_x, train_y, valid_x, valid_y = get_data() model = XGBRegressor( max_depth=max_depth, n_estimators=100, min_child_weight=min_child_weight, colsample_bytree=colsample_bytree, subsample=subsample, eta=eta, # tree_method='gpu_hist', seed=42) eval_set = [(train_x, train_y), (valid_x, valid_y)] early_stopping = 15 model.fit( train_x, train_y, eval_metric="rmse", eval_set=eval_set, verbose=False, early_stopping_rounds=early_stopping) rmse = getRMSE(valid_y, model.predict(valid_x, ntree_limit=model.best_ntree_limit)) dict_to_ret = { "loss": -rmse, "status": STATUS_OK, "best_tree_number": model.best_ntree_limit } return dict_to_ret space = { "max_depth": scope.int(hp.quniform("max_depth", 5, 40, 2)), "min_child_weight": hp.uniform("min_child_weight", 0.3, 1), "eta": hp.choice("eta", [0.1, 0.01, 0.001]), "subsample": hp.uniform("subsample", 0.6, 1), "colsample_bytree": hp.uniform("colsample_bytree", 0.6, 1), } trials = Trials() best = fmin(get_validation_score, space, algo=tpe.suggest, max_evals=10, trials=trials) print(best) # -> {'a': 1, 'c2': 0.01420615366247227} print(hyperopt.space_eval(space, best)) print(trials) best_path = os.path.join(os.getcwd(), CUSTOM_DATA_FOLDER, 'best_opt.pkl') trials_path = os.path.join(os.getcwd(), CUSTOM_DATA_FOLDER, 'trials.pkl') space_path = os.path.join(os.getcwd(), CUSTOM_DATA_FOLDER, 'space.pkl') save_object(best, best_path) save_object(trials, trials_path) save_object(space, space_path)
29.371795
106
0.693147
7946f1be1d664cd8ee5a6ae2688f723c400d759b
7,155
py
Python
d3rlpy/algos/torch/awr_impl.py
YangRui2015/d3rlpy
da778b2a2b0afbafe25395296baecd0d4d0cd0d5
[ "MIT" ]
1
2021-05-08T06:21:05.000Z
2021-05-08T06:21:05.000Z
d3rlpy/algos/torch/awr_impl.py
YangRui2015/d3rlpy
da778b2a2b0afbafe25395296baecd0d4d0cd0d5
[ "MIT" ]
null
null
null
d3rlpy/algos/torch/awr_impl.py
YangRui2015/d3rlpy
da778b2a2b0afbafe25395296baecd0d4d0cd0d5
[ "MIT" ]
null
null
null
from abc import ABCMeta, abstractmethod from typing import Any, Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...augmentation import AugmentationPipeline from ...gpu import Device from ...models.builders import ( create_categorical_policy, create_squashed_normal_policy, create_value_function, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.torch import ( CategoricalPolicy, Policy, SquashedNormalPolicy, ValueFunction, squash_action, ) from ...preprocessing import ActionScaler, Scaler from ...torch_utility import augmentation_api, eval_api, torch_api, train_api from .base import TorchImplBase class AWRBaseImpl(TorchImplBase, metaclass=ABCMeta): _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _use_gpu: Optional[Device] _v_func: Optional[ValueFunction] _policy: Optional[Policy] _critic_optim: Optional[Optimizer] _actor_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], augmentation: AugmentationPipeline, ): super().__init__( observation_shape, action_size, scaler, action_scaler, augmentation ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = actor_encoder_factory self._critic_encoder_factory = critic_encoder_factory self._use_gpu = use_gpu # initialized in build self._v_func = None self._policy = None self._critic_optim = None self._actor_optim = None def build(self) -> None: # setup torch models self._build_critic() self._build_actor() if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_critic_optim() self._build_actor_optim() def _build_critic(self) -> None: self._v_func = create_value_function( self._observation_shape, self._critic_encoder_factory ) def _build_critic_optim(self) -> None: assert self._v_func is not None self._critic_optim = self._critic_optim_factory.create( self._v_func.parameters(), lr=self._critic_learning_rate ) @abstractmethod def _build_actor(self) -> None: pass def _build_actor_optim(self) -> None: assert self._policy is not None self._actor_optim = self._actor_optim_factory.create( self._policy.parameters(), lr=self._actor_learning_rate ) @train_api @torch_api(scaler_targets=["observation"]) def update_critic( self, observation: torch.Tensor, value: torch.Tensor ) -> np.ndarray: assert self._critic_optim is not None self._critic_optim.zero_grad() loss = self.compute_critic_loss(observation, value) loss.backward() self._critic_optim.step() return loss.cpu().detach().numpy() @augmentation_api(targets=["observation"]) def compute_critic_loss( self, observation: torch.Tensor, value: torch.Tensor ) -> torch.Tensor: assert self._v_func is not None return self._v_func.compute_error(observation, value) @train_api @torch_api(scaler_targets=["observation"], action_scaler_targets=["action"]) def update_actor( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> np.ndarray: assert self._actor_optim is not None self._actor_optim.zero_grad() loss = self.compute_actor_loss(observation, action, weight) loss.backward() self._actor_optim.step() return loss.cpu().detach().numpy() @augmentation_api(targets=["observation"]) def compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: return self._compute_actor_loss(observation, action, weight) @abstractmethod def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: pass def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.best_action(x) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.sample(x) @eval_api @torch_api(scaler_targets=["x"]) def predict_value( self, x: torch.Tensor, *args: Any, **kwargs: Any ) -> np.ndarray: assert self._v_func is not None with torch.no_grad(): return self._v_func(x).view(-1).cpu().detach().numpy() class AWRImpl(AWRBaseImpl): _policy: Optional[SquashedNormalPolicy] def _build_actor(self) -> None: self._policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(observation) # unnormalize action via inverse tanh function unnormalized_action = torch.atanh(action.clamp(-0.999999, 0.999999)) # compute log probability _, log_probs = squash_action(dist, unnormalized_action) return -(weight * log_probs).mean() class DiscreteAWRImpl(AWRBaseImpl): _policy: Optional[CategoricalPolicy] def _build_actor(self) -> None: self._policy = create_categorical_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(observation) log_probs = dist.log_prob(action).view(observation.shape[0], -1) return -(weight * log_probs.sum(dim=1, keepdim=True)).mean()
29.937238
80
0.667785
7946f1d56291481d29bb3c995f90d24a25290ffc
4,321
py
Python
libs/base/lblogs.py
wildscsi/ecopos
9922bb5160227777401eb33fa9a01cfba5730781
[ "MIT" ]
null
null
null
libs/base/lblogs.py
wildscsi/ecopos
9922bb5160227777401eb33fa9a01cfba5730781
[ "MIT" ]
1
2021-11-04T20:43:03.000Z
2021-11-04T20:43:03.000Z
libs/base/lblogs.py
wildscsi/ecopos
9922bb5160227777401eb33fa9a01cfba5730781
[ "MIT" ]
1
2021-11-04T19:43:53.000Z
2021-11-04T19:43:53.000Z
__author__ = 'BM' # -*- coding: utf-8 -*- import os from datetime import * class WrLog: def __init__(self): self.nolog = False self.logsize = 1024*1024 # 1Mb = 1024*1024 self.filename = 'app' self.path = '' self.errmsg = '' def writelog(self, cmsg='', ch='-'): # log не ведём self.errmsg = '' if self.nolog: return # проверяем наличие файла if os.path.exists(self.path + self.filename + '.log'): # если размер файла больше заданного - переименновываем в OLD if os.path.getsize(self.filename + '.log') > self.logsize: try: os.replace(self.path + self.filename + '.log', self.path + self.filename + '.old') except Exception as e: return self.errbox('Ошибка переименовывания файла\n%s' %e) # открываем файл на дозапись ctxt = datetime.today().strftime("%d-%m-%Y %H:%M") + '\n' + cmsg + '\n' + ch * 50 return self.datatofile(ctxt,self.filename + '.log','LOG') def datatofile(self,cmsg='',cfile='',atr='',cfld=None): self.errmsg = ''; atr = atr.upper() if 'NEW' in atr: self.delfile(cfile) if 'LOG' in atr: return self.fsave(cmsg,cfile) if len(cfile) == 0: return self.errbox('Имя файла не определено') tpv = type(cmsg) ctxt = '-' * 50 + '\n' + datetime.today().strftime("%d-%m-%Y %H:%M") + '\n' if tpv is str: if 'TXT' in atr: return self.fsave(cmsg,cfile) ctxt += 'ТИП STRING\n' + cmsg elif tpv is dict: ctxt += 'СЛОВАРЬ ДАННЫХ\n' if len(cmsg) == 0: return self.fsave('Словарь пуст',cfile) ctxt += self.getdict(cmsg,cfld) elif tpv is list: ipos = 0 ctxt += 'СПИСОК ДАННЫХ\n' if len(cmsg) == 0: return self.fsave('Список пуст',cfile) cmsg = list(cmsg) for c1 in cmsg: if type(c1) is dict: ipos += 1 ctxt += '< ' + str(ipos) + ' > ' + '-' * 10 + '\n' + self.getdict(c1,cfld) else: ctxt += str(c1) + '\n' else: ctxt += 'ТИП ' + str(tpv).upper() + '\n' + str(cmsg) return self.fsave(ctxt,cfile) @staticmethod def getdict(dic1,cfld): if len(dic1) == 0: return 'Словарь пуст' ctxt = '' if not cfld is None: cfld += ',' try: dic1 = dict(dic1) lst = dic1.keys() for ckey in lst: if not cfld is None: if not ckey + ',' in cfld: continue ctxt += ckey + '=' + str(dic1[ckey]) + '\n' except Exception as e: ctxt = 'ОШИБКА DATATOFILE: запись словаря\n%s' %e return ctxt def delfile(self,cfile=''): if len(cfile) == 0: return self.errbox('Имя файла не определено') try: os.remove(cfile) except Exception as e: return self.errbox('ОШИБКА DELFILE: удаления файла\n%s' %e) return True # Пишит информацию в файл def fsave(self,cmsg='',fname='',cp='utf-8'): fname = fname.strip(' ') if len(fname) == 0: return self.errbox('Имя файла неопределено') try: ofile = open(fname, 'a', encoding=cp) ofile.write(cmsg + '\n') ofile.close() except Exception as e: return self.errbox('Ошибка записи в файл\n%s' %e) return True # Читает информацию из файла def fload(self,fname='',cp='utf-8'): fname = fname.strip(' '); lret = True; han = None; cresult = '' if len(fname) == 0: return self.errbox('Имя файла неопределено'),'' if not os.path.isfile(fname): return self.errbox('Файл ' + fname.upper() + ' не найден'),'' try: han = open(fname,'r',encoding=cp) except Exception as e: lret = self.errbox('Ошибка чтения из файла\n' + fname.upper() + '\n%s' %e),'' if not lret: return False,'' for line in han: cresult += line han.close() return True, cresult def errbox(self,cmsg): self.errmsg = 'WRLOG: ' + cmsg return False
37.25
102
0.505439
7946f51e65f446569c19e6ee3d32b5ee4cbb9c07
2,570
py
Python
frameworks/kafka/tests/test_overlay.py
smush618/dcos-commons
3c69642c79f197f4b28deb8d4e2df9160e77906b
[ "Apache-2.0" ]
null
null
null
frameworks/kafka/tests/test_overlay.py
smush618/dcos-commons
3c69642c79f197f4b28deb8d4e2df9160e77906b
[ "Apache-2.0" ]
null
null
null
frameworks/kafka/tests/test_overlay.py
smush618/dcos-commons
3c69642c79f197f4b28deb8d4e2df9160e77906b
[ "Apache-2.0" ]
null
null
null
import pytest import sdk_install as install import sdk_networks import sdk_tasks import sdk_utils from tests import config, test_utils @pytest.fixture(scope="module", autouse=True) def configure_package(configure_security): try: install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) config.install( config.PACKAGE_NAME, config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT, additional_options=sdk_networks.ENABLE_VIRTUAL_NETWORKS_OPTIONS, ) yield # let the test session execute finally: install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) @pytest.mark.overlay @pytest.mark.smoke @pytest.mark.sanity @pytest.mark.dcos_min_version("1.9") def test_service_overlay_health(): """Installs SDK based Kafka on with virtual networks set to True. Tests that the deployment completes and the service is healthy, then checks that all of the service tasks (brokers) are on the overlay network """ tasks = sdk_tasks.check_task_count(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) for task in tasks: sdk_networks.check_task_network(task.name) @pytest.mark.smoke @pytest.mark.sanity @pytest.mark.overlay @pytest.mark.dcos_min_version("1.9") def test_overlay_network_deployment_and_endpoints(): endpoint_names = sdk_networks.get_endpoint_names(config.PACKAGE_NAME, config.SERVICE_NAME) assert set(["broker", "zookeeper"]) == set(endpoint_names) sdk_networks.check_endpoint_on_overlay(config.PACKAGE_NAME, config.SERVICE_NAME, "broker", config.DEFAULT_BROKER_COUNT) zookeeper = sdk_networks.get_endpoint_string( config.PACKAGE_NAME, config.SERVICE_NAME, "zookeeper" ) assert zookeeper == "master.mesos:2181/{}".format(sdk_utils.get_zk_path(config.SERVICE_NAME)) @pytest.mark.sanity @pytest.mark.overlay @pytest.mark.dcos_min_version("1.9") def test_pod_restart_on_overlay(): test_utils.restart_broker_pods() test_overlay_network_deployment_and_endpoints() @pytest.mark.sanity @pytest.mark.overlay @pytest.mark.dcos_min_version("1.9") def test_pod_replace_on_overlay(): test_utils.replace_broker_pod() test_overlay_network_deployment_and_endpoints() @pytest.mark.sanity @pytest.mark.overlay @pytest.mark.dcos_min_version("1.9") def test_topic_create_overlay(): test_utils.create_topic(config.EPHEMERAL_TOPIC_NAME) @pytest.mark.sanity @pytest.mark.overlay @pytest.mark.dcos_min_version("1.9") def test_topic_delete_overlay(): test_utils.delete_topic(config.EPHEMERAL_TOPIC_NAME)
31.341463
123
0.770428
7946f5382ff287a8d517671bf9e58f49f64afe21
26
py
Python
urlkeyword/__init__.py
jleeothon/urlkeyword
ef745e08a90cba56038d508667fb0f6acc3e41ce
[ "MIT" ]
3
2021-05-21T03:45:59.000Z
2022-01-23T18:26:45.000Z
urlkeyword/__init__.py
jleeothon/urlkeyword
ef745e08a90cba56038d508667fb0f6acc3e41ce
[ "MIT" ]
13
2021-04-03T19:56:35.000Z
2022-01-23T18:39:47.000Z
urlkeyword/__init__.py
jleeothon/urlkeyword
ef745e08a90cba56038d508667fb0f6acc3e41ce
[ "MIT" ]
2
2022-02-02T03:15:51.000Z
2022-03-07T10:00:41.000Z
from .validators import *
13
25
0.769231
7946f5ff3699e956e0f938fb9e77a062d3fe66d5
3,266
py
Python
structural_model/constants.py
zibneuro/udvary-et-al-2022
8b456c41e72958677cb6035028d9c23013cb7c7e
[ "MIT" ]
1
2022-03-11T13:43:50.000Z
2022-03-11T13:43:50.000Z
structural_model/constants.py
zibneuro/udvary-et-al-2022
8b456c41e72958677cb6035028d9c23013cb7c7e
[ "MIT" ]
null
null
null
structural_model/constants.py
zibneuro/udvary-et-al-2022
8b456c41e72958677cb6035028d9c23013cb7c7e
[ "MIT" ]
null
null
null
import numpy as np def getLayerDepths(): name_depthRange = {} name_depthRange["L1"] = [0, 157] name_depthRange["L2"] = [157, 367] name_depthRange["L23"] = [157, 576] name_depthRange["L3"] = [367, 576] name_depthRange["L4"] = [576, 855] name_depthRange["L5A"] = [855, 1102] name_depthRange["L5B"] = [1102, 1349] name_depthRange["L5"] = [855, 1349] name_depthRange["L6A"] = [1349, 1620] name_depthRange["L6"] = [1349, 1973] return name_depthRange def getLaminarLocations(): return ["L1", "L23", "L4", "L5", "L6"] def getColumns(): return ["A1", "A2", "A3", "A4", "B1", "B2", "B3", "B4", "C1", "C2", "C3", "C4", "D1", "D2", "D3", "D4", "E1", "E2", "E3", "E4", "Alpha", "Beta", "Gamma", "Delta"] def getRegionsForColumn(column, includeSurrounding = True): regions = [ column, "S1_Septum_{}".format(column), "{}_Barreloid".format(column) ] if(includeSurrounding): regions.append("S1_Surrounding_{}".format(column)) return regions def getCellTypes(includeVPM = True): if(includeVPM): return ["L2PY", "L3PY", "L4PY", "L4sp", "L4ss", "L5IT", "L5PT", "L6CC", "L6INV", "L6CT", "INH", "VPM"] else: return ["L2PY", "L3PY", "L4PY", "L4sp", "L4ss", "L5IT", "L5PT", "L6CC", "L6INV", "L6CT", "INH"] def getCellTypesExc(includeVPM = True): if(includeVPM): allCelltypes = getCellTypes(includeVPM=True) allCelltypes.remove("INH") return allCelltypes else: return getCellTypes()[0:10] def getNetworkIndex(network): if(network == "RBC" or "Truncated" in network): return getNetworks().index(network) else: network = network.replace("-", "RBCTruncated") return getNetworks().index(network) def getReferenceVolume(): boxMin = np.array([-200, 300, -1000]) boxMax = np.array([0, 500, 600]) return boxMin, boxMax def getL4Volume(): boxMin = np.array([-400, 100, -200]) boxMax = np.array([200, 700, 150]) return boxMin, boxMax def getC2Volume(): boxMin = np.array([-550, -50, -1400]) boxMax = np.array([400, 850, 700]) return boxMin, boxMax def getC2VolumeExt(): boxMin = np.array([-700, -200, -1600]) boxMax = np.array([600, 1100, 800]) return boxMin, boxMax def getD2Volume(): boxMin = np.array([-500, -500, -1600]) boxMax = np.array([500, 500, 700]) return boxMin, boxMax def getCellularConnectivityVolume(): boxMin = np.array([-700, -1200, -1600]) boxMax = np.array([600, 1900, 800]) return boxMin, boxMax def getModelVolume(): boxMin = np.array([-1600, -1200, -1600]) boxMax = np.array([1800, 1900, 800]) return boxMin, boxMax def getSelectedCubeVolume(): boxMin = np.array([-150, 250, 350]) boxMax = np.array([-50, 350, 400]) return boxMin, boxMax def getReferenceVolumeL5(): # grid size: 8 x 8 x 24 boxMin = np.array([-128, 400, -408]) boxMax = np.array([-48, 480, -360]) return boxMin, boxMax def getSelectedCellIds(): # L5PT: 301854 (ct 6) # L2PY: 748854 (ct 0) # L6CC: 199678 (ct 7) return [301854, 748854, 199678]
25.716535
70
0.578996
7946f6b1c8f826896cff47686312fe45dc991a35
52,772
py
Python
torch/quantization/observer.py
rodrigoberriel/pytorch
97e86cf3197823cc598e6380ed47bcc385e50077
[ "Intel" ]
null
null
null
torch/quantization/observer.py
rodrigoberriel/pytorch
97e86cf3197823cc598e6380ed47bcc385e50077
[ "Intel" ]
null
null
null
torch/quantization/observer.py
rodrigoberriel/pytorch
97e86cf3197823cc598e6380ed47bcc385e50077
[ "Intel" ]
null
null
null
import re import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict from functools import partial from typing import Any, List, Tuple, Optional, Dict, Union import torch import torch.nn as nn from .utils import check_min_max_valid, calculate_qmin_qmax class _PartialWrapper(object): def __init__(self, p): self.p = p self.callable_args = {} def __call__(self, *args, **keywords): # call each arg in callable_args and add them partial, then run with keywords # skip if arg_name in keywords so its possible to overwrite for arg_name in self.callable_args: if arg_name not in keywords: keywords = {**keywords, **{arg_name: self.callable_args[arg_name]()}} return self.p(*args, **keywords) def __repr__(self): return self.p.__repr__() + self.callable_args.__repr__() def with_args(self, **kwargs): return _with_args(self, **kwargs) def with_callable_args(self, **kwargs): result = _PartialWrapper(p=self.p) result.callable_args = {**self.callable_args, **kwargs} return result def _with_args(cls_or_self, **kwargs): r"""Wrapper that allows creation of class factories. This can be useful when there is a need to create classes with the same constructor arguments, but different instances. Can be used in conjunction with _callable_args Example:: >>> Foo.with_args = classmethod(_with_args) >>> foo_builder = Foo.with_args(a=3, b=4).with_args(answer=42) >>> foo_instance1 = foo_builder() >>> foo_instance2 = foo_builder() >>> id(foo_instance1) == id(foo_instance2) False """ r = _PartialWrapper(partial(cls_or_self, **kwargs)) return r def _with_callable_args(cls_or_self, **kwargs): r"""Wrapper that allows creation of class factories args that need to be called at construction time. This can be useful when there is a need to create classes with the same constructor arguments, but different instances and those arguments should only be calculated at construction time. Can be used in conjunction with _with_args Example:: >>> Foo.with_callable_args = classmethod(_with_callable_args) >>> Foo.with_args = classmethod(_with_args) >>> foo_builder = Foo.with_callable_args(cur_time=get_time_func).with_args(name="dan") >>> foo_instance1 = foo_builder() >>> wait 50 >>> foo_instance2 = foo_builder() >>> id(foo_instance1.creation_time) == id(foo_instance2.creation_time) False """ r = _PartialWrapper(partial(cls_or_self)) return r.with_callable_args(**kwargs) ABC: Any = ABCMeta(str("ABC"), (object,), {}) # compatible with Python 2 *and* 3: class ObserverBase(ABC, nn.Module): r"""Base observer Module. Any observer implementation should derive from this class. Concrete observers should follow the same API. In forward, they will update the statistics of the observed Tensor. And they should provide a `calculate_qparams` function that computes the quantization parameters given the collected statistics. Args: dtype: Quantized data type """ def __init__(self, dtype): super(ObserverBase, self).__init__() self.dtype = dtype @abstractmethod def forward(self, x): pass @abstractmethod def calculate_qparams(self, **kwargs): pass with_args = classmethod(_with_args) with_callable_args = classmethod(_with_callable_args) class _ObserverBase(ObserverBase): r"""Internal common base for all qint/quint8 observers. This base is for commonly used parameters used internally. Users should use `~torch.quantization.observer.ObserverBase` as a base class for custom observers. Args: dtype: Quantized data type. qscheme: Quantization scheme to be used. reduce_range: Reduces the range of the quantized data type by 1 bit. This is sometimes required to avoid instruction overflow. quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup. quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup. .. warning:: :attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``. .. warning:: :attr:`qscheme` can only take one of the following options: - ``torch.per_tensor_affine`` - ``torch.per_tensor_symmetric`` - ``torch.per_channel_affine`` - ``torch.per_channel_symmetric`` """ # Note: the version is shared by all observer types # # Version 1/None # self # # Version 2 (base class only, does not include child class buffers) # self # |--- eps : Tensor # # Version 3 # for HistogramObserver only, changed the shape of uninitialized # min_val and max_val buffers from torch.Size([0]) to torch.Size([]) # for PerChannelObservers, changed the name of the buffers from min_vals # to min_val and from max_vals to max_val. _version = 3 eps: torch.Tensor def __init__( self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, factory_kwargs=None, ) -> None: factory_kwargs = torch.nn.factory_kwargs(factory_kwargs) super(_ObserverBase, self).__init__(dtype=dtype) self.qscheme = qscheme if reduce_range: warnings.warn( "Please use quant_min and quant_max to specify the range for observers. \ reduce_range will be deprecated in a future release of PyTorch." ) self.reduce_range = reduce_range self.register_buffer( "eps", torch.tensor([torch.finfo(torch.float32).eps], **factory_kwargs) ) assert self.qscheme in ( torch.per_tensor_affine, torch.per_tensor_symmetric, torch.per_channel_affine, torch.per_channel_symmetric, torch.per_channel_affine_float_qparams, ), "Default Observer only works for per_tensor_affine, \ per_tensor_symmetric, per_channel_affine, \ per_channel_symmetric and per_channel_float_qparams quantization scheme" assert self.dtype in ( torch.qint8, torch.quint8, torch.quint4x2, ), "Default Observer only works for qint8, quint8 and quint4x2 data type" self.has_customized_qrange = (quant_min is not None) and (quant_max is not None) if self.has_customized_qrange: self._validate_qmin_qmax(quant_min, quant_max) self.quant_min, self.quant_max = \ calculate_qmin_qmax(quant_min, quant_max, self.has_customized_qrange, self.dtype, self.reduce_range) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version == 1: # eps was moved to a buffer in version 2 eps = torch.tensor([torch.finfo(torch.float32).eps]) state_dict[prefix + "eps"] = eps super(ObserverBase, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) @torch.jit.export def _validate_qmin_qmax(self, quant_min: int, quant_max: int) -> None: r"""Validates that the user-specified quantization range is properly initialized and within the given bound supported by the observer dtype. To accommodate lower-bit quantization with respect to the existing torch.qint8 and torch.quint8 datatypes, the user can choose to use dynamic quantization range by passing in a tuple of initial qmin and qmax values. One use case is these customized qmin and qmax values are used to calculate static estimates of the scale and zero point for aggressive lower-bit fake quantization. These estimates are compared against parameters learned through backpropagation. The related literatures for scale and zero point via backpropagation are as follows: Learned Step Size Quantization: https://openreview.net/pdf?id=rkgO66VKDS Trained Quantization Thresholds: https://arxiv.org/pdf/1903.08066.pdf """ # The variable names are prefixed with "initial" because their values (qmin and qmax) might be adjusted # based on whether quantization range is reduced and the datatype (signed/unsigned) used by the observer. assert ( quant_min <= 0 <= quant_max ), "Used-specified quantization range must include 0." assert ( quant_min < quant_max ), "qmin must be strictly less than qmax for user-specified quantization range." @torch.jit.export def _calculate_qparams( self, min_val: torch.Tensor, max_val: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Calculates the quantization parameters, given min and max value tensors. Works for both per tensor and per channel cases Args: min_val: Minimum values per channel max_val: Maximum values per channel Returns: scales: Scales tensor of shape (#channels,) zero_points: Zero points tensor of shape (#channels,) """ if not check_min_max_valid(min_val, max_val): return torch.tensor([1.0], device=min_val.device.type), torch.tensor([0], device=min_val.device.type) quant_min, quant_max = self.quant_min, self.quant_max min_val_neg = torch.min(min_val, torch.zeros_like(min_val)) max_val_pos = torch.max(max_val, torch.zeros_like(max_val)) device = min_val_neg.device scale = torch.ones(min_val_neg.size(), dtype=torch.float32, device=device) zero_point = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device) if ( self.qscheme == torch.per_tensor_symmetric or self.qscheme == torch.per_channel_symmetric ): max_val_pos = torch.max(-min_val_neg, max_val_pos) scale = max_val_pos / (float(quant_max - quant_min) / 2) scale = torch.max(scale, self.eps) if self.dtype == torch.quint8: if self.has_customized_qrange: # When customized quantization range is used, down-rounded midpoint of the range is chosen. zero_point = zero_point.new_full( zero_point.size(), (quant_min + quant_max) // 2 ) else: zero_point = zero_point.new_full(zero_point.size(), 128) elif self.qscheme == torch.per_channel_affine_float_qparams: scale = (max_val - min_val) / float(quant_max - quant_min) scale = torch.where(scale > self.eps, scale, torch.ones_like(scale)) # We use the quantize function # xq = Round(Xf * inv_scale + zero_point), # setting zero_point to (-1 * min *inv_scale) we get # Xq = Round((Xf - min) * inv_scale) zero_point = -1 * min_val / scale else: scale = (max_val_pos - min_val_neg) / float(quant_max - quant_min) scale = torch.max(scale, self.eps) zero_point = quant_min - torch.round(min_val_neg / scale).to(torch.int) zero_point = torch.clamp(zero_point, quant_min, quant_max) # For scalar values, cast them to Tensors of size 1 to keep the shape # consistent with default values in FakeQuantize. if len(scale.shape) == 0: # TODO: switch to scale.item() after adding JIT support scale = torch.tensor([float(scale)], dtype=scale.dtype, device=device) if len(zero_point.shape) == 0: # TODO: switch to zero_point.item() after adding JIT support zero_point = torch.tensor( [int(zero_point)], dtype=zero_point.dtype, device=device ) if self.qscheme == torch.per_channel_affine_float_qparams: zero_point = torch.tensor( [float(zero_point)], dtype=zero_point.dtype, device=device ) return scale, zero_point @torch.jit.export def reset_min_max_vals(self): raise NotImplementedError("Cannot reset min/max values in the given observer.") class MinMaxObserver(_ObserverBase): r"""Observer module for computing the quantization parameters based on the running min and max values. This observer uses the tensor min/max statistics to compute the quantization parameters. The module records the running minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters. Args: dtype: Quantized data type qscheme: Quantization scheme to be used reduce_range: Reduces the range of the quantized data type by 1 bit quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup. quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup. Given running min/max as :math:`x_\text{min}` and :math:`x_\text{max}`, scale :math:`s` and zero point :math:`z` are computed as: The running minimum/maximum :math:`x_\text{min/max}` is computed as: .. math:: \begin{array}{ll} x_\text{min} &= \begin{cases} \min(X) & \text{if~}x_\text{min} = \text{None} \\ \min\left(x_\text{min}, \min(X)\right) & \text{otherwise} \end{cases}\\ x_\text{max} &= \begin{cases} \max(X) & \text{if~}x_\text{max} = \text{None} \\ \max\left(x_\text{max}, \max(X)\right) & \text{otherwise} \end{cases}\\ \end{array} where :math:`X` is the observed tensor. The scale :math:`s` and zero point :math:`z` are then computed as: .. math:: \begin{aligned} \text{if Symmetric:}&\\ &s = 2 \max(|x_\text{min}|, x_\text{max}) / \left( Q_\text{max} - Q_\text{min} \right) \\ &z = \begin{cases} 0 & \text{if dtype is qint8} \\ 128 & \text{otherwise} \end{cases}\\ \text{Otherwise:}&\\ &s = \left( x_\text{max} - x_\text{min} \right ) / \left( Q_\text{max} - Q_\text{min} \right ) \\ &z = Q_\text{min} - \text{round}(x_\text{min} / s) \end{aligned} where :math:`Q_\text{min}` and :math:`Q_\text{max}` are the minimum and maximum of the quantized data type. .. warning:: Only works with ``torch.per_tensor_symmetric`` quantization scheme .. warning:: :attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``. .. note:: If the running minimum equals to the running maximum, the scale and zero_point are set to 1.0 and 0. """ min_val: torch.Tensor max_val: torch.Tensor def __init__( self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, factory_kwargs=None, ) -> None: # For x86 quantized kernels, we need to ensure that the vpmaddubsw # instruction does not overflow. We allow for a reduce_range argument to # observers that reduces the quantized range to (0,127) or (-64, 63). # For more details see aten/src/ATen/native/quantized/cpu/qconv.cpp # This is not an optimal choice for non x86 backends as it loses a bit # of precision for activations. super(MinMaxObserver, self).__init__( dtype=dtype, qscheme=qscheme, reduce_range=reduce_range, quant_min=quant_min, quant_max=quant_max, factory_kwargs=factory_kwargs, ) factory_kwargs = torch.nn.factory_kwargs(factory_kwargs) self.register_buffer("min_val", torch.tensor(float("inf"), **factory_kwargs)) self.register_buffer("max_val", torch.tensor(float("-inf"), **factory_kwargs)) if ( self.qscheme == torch.per_tensor_symmetric and self.reduce_range and self.dtype == torch.quint8 ): raise NotImplementedError( "Cannot reduce range for symmetric \ quantization for quint8" ) def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.detach() # avoid keeping autograd tape x = x.to(self.min_val.dtype) min_val_cur, max_val_cur = torch._aminmax(x) min_val = torch.min(min_val_cur, self.min_val) max_val = torch.max(max_val_cur, self.max_val) self.min_val.copy_(min_val) self.max_val.copy_(max_val) return x_orig @torch.jit.export def calculate_qparams(self): r"""Calculates the quantization parameters.""" return self._calculate_qparams(self.min_val, self.max_val) @torch.jit.export def extra_repr(self): return "min_val={}, max_val={}".format(self.min_val, self.max_val) @torch.jit.export def reset_min_max_vals(self): """Resets the min/max values.""" self.min_val = torch.tensor(float("inf")) self.max_val = torch.tensor(float("-inf")) class MovingAverageMinMaxObserver(MinMaxObserver): r"""Observer module for computing the quantization parameters based on the moving average of the min and max values. This observer computes the quantization parameters based on the moving averages of minimums and maximums of the incoming tensors. The module records the average minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters. Args: averaging_constant: Averaging constant for min/max. dtype: Quantized data type qscheme: Quantization scheme to be used reduce_range: Reduces the range of the quantized data type by 1 bit quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup. quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup. The moving average min/max is computed as follows .. math:: \begin{array}{ll} x_\text{min} = \begin{cases} \min(X) & \text{if~}x_\text{min} = \text{None} \\ (1 - c) x_\text{min} + c \min(X) & \text{otherwise} \end{cases}\\ x_\text{max} = \begin{cases} \max(X) & \text{if~}x_\text{max} = \text{None} \\ (1 - c) x_\text{max} + c \max(X) & \text{otherwise} \end{cases}\\ \end{array} where :math:`x_\text{min/max}` is the running average min/max, :math:`X` is is the incoming tensor, and :math:`c` is the ``averaging_constant``. The scale and zero point are then computed as in :class:`~torch.quantization.observer.MinMaxObserver`. .. note:: Only works with ``torch.per_tensor_affine`` quantization scheme. .. note:: If the running minimum equals to the running maximum, the scale and zero_point are set to 1.0 and 0. """ def __init__( self, averaging_constant=0.01, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, **kwargs ) -> None: self.averaging_constant = averaging_constant super(MovingAverageMinMaxObserver, self).__init__( dtype=dtype, qscheme=qscheme, reduce_range=reduce_range, quant_min=quant_min, quant_max=quant_max, **kwargs ) def forward(self, x_orig): if x_orig.numel() == 0: return x_orig x = x_orig.detach() # avoid keeping autograd tape x = x.to(self.min_val.dtype) min_val = self.min_val max_val = self.max_val if min_val == float("inf") and max_val == float("-inf"): min_val, max_val = torch._aminmax(x) else: min_val_cur, max_val_cur = torch._aminmax(x) min_val = min_val + self.averaging_constant * (min_val_cur - min_val) max_val = max_val + self.averaging_constant * (max_val_cur - max_val) self.min_val.copy_(min_val) self.max_val.copy_(max_val) return x_orig class PerChannelMinMaxObserver(_ObserverBase): r"""Observer module for computing the quantization parameters based on the running per channel min and max values. This observer uses the tensor min/max statistics to compute the per channel quantization parameters. The module records the running minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters. Args: ch_axis: Channel axis dtype: Quantized data type qscheme: Quantization scheme to be used reduce_range: Reduces the range of the quantized data type by 1 bit quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup. quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup. The quantization parameters are computed the same way as in :class:`~torch.quantization.observer.MinMaxObserver`, with the difference that the running min/max values are stored per channel. Scales and zero points are thus computed per channel as well. .. note:: If the running minimum equals to the running maximum, the scales and zero_points are set to 1.0 and 0. """ min_val: torch.Tensor max_val: torch.Tensor def __init__( self, ch_axis=0, dtype=torch.quint8, qscheme=torch.per_channel_affine, reduce_range=False, quant_min=None, quant_max=None, factory_kwargs=None, ) -> None: super(PerChannelMinMaxObserver, self).__init__( dtype=dtype, qscheme=qscheme, reduce_range=reduce_range, quant_min=quant_min, quant_max=quant_max, factory_kwargs=factory_kwargs, ) factory_kwargs = torch.nn.factory_kwargs(factory_kwargs) self.ch_axis = ch_axis self.register_buffer("min_val", torch.tensor([], **factory_kwargs)) self.register_buffer("max_val", torch.tensor([], **factory_kwargs)) if ( self.qscheme == torch.per_channel_symmetric and self.reduce_range and self.dtype == torch.quint8 ): raise NotImplementedError( "Cannot reduce range for symmetric quantization for quint8" ) def forward(self, x_orig): return self._forward(x_orig) def _forward(self, x_orig): if x_orig.numel() == 0: return x_orig x = x_orig.detach() # avoid keeping autograd tape min_val = self.min_val max_val = self.max_val x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] # noqa: C416 new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) # Need to match dtype of min/max because the updates to buffers # are done in place and types need to match for comparisons y = y.to(self.min_val.dtype) y = torch.flatten(y, start_dim=1) if min_val.numel() == 0 or max_val.numel() == 0: min_val, max_val = torch._aminmax(y, 1) else: min_val_cur, max_val_cur = torch._aminmax(y, 1) min_val = torch.min(min_val_cur, min_val) max_val = torch.max(max_val_cur, max_val) self.min_val.resize_(min_val.shape) self.max_val.resize_(max_val.shape) self.min_val.copy_(min_val) self.max_val.copy_(max_val) return x_orig @torch.jit.export def calculate_qparams(self): return self._calculate_qparams(self.min_val, self.max_val) def extra_repr(self): return "min_val={}, max_val={}".format(self.min_val, self.max_val) def _load_from_state_dict( self, state_dict: Union[Dict[str, torch.Tensor], Dict[str, torch.Tensor]], prefix: str, local_metadata: Dict[str, torch.Tensor], strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str], ): version = local_metadata.get("version", None) if version is None or version < 3: local_state = ["min_vals", "max_vals"] expected_min_name = "min_vals" expected_max_name = "max_vals" else: local_state = ["min_val", "max_val"] expected_min_name = "min_val" expected_max_name = "max_val" for name in local_state: key = prefix + name if key in state_dict: val = state_dict[key] # Custom handling to allow loading min_val or max_val # of size N into uninitialized buffers of size 0. The # buffers are resized here, and the values are copied in # the default state_dict loading code of the parent. if name == expected_min_name: self.min_val.resize_(val.shape) elif name == expected_max_name: self.max_val.resize_(val.shape) else: warnings.warn("Observer load_from_state_dict got unexpected name {}".format(name)) # For torchscript module we need to update the attributes here since we do not # call the `_load_from_state_dict` function defined module.py if torch.jit.is_scripting(): if name == expected_min_name: self.min_val.copy_(val) elif name == expected_max_name: self.max_val.copy_(val) else: warnings.warn("Observer load_from_state_dict got unexpected name {}".format(name)) elif strict: missing_keys.append(key) if not torch.jit.is_scripting(): super(PerChannelMinMaxObserver, self)._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs, ) def _load_from_state_dict_script( self, state_dict: Union[Dict[str, torch.Tensor], Dict[str, torch.Tensor]], prefix: str, local_metadata: Dict[str, torch.Tensor], strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str], ): self._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) @torch.jit.export def reset_min_max_vals(self): """Resets the min/max values.""" self.min_val = torch.tensor([]) self.max_val = torch.tensor([]) class MovingAveragePerChannelMinMaxObserver(PerChannelMinMaxObserver): r"""Observer module for computing the quantization parameters based on the running per channel min and max values. This observer uses the tensor min/max statistics to compute the per channel quantization parameters. The module records the running minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters. Args: averaging_constant: Averaging constant for min/max. ch_axis: Channel axis dtype: Quantized data type qscheme: Quantization scheme to be used reduce_range: Reduces the range of the quantized data type by 1 bit quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup. quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup. The quantization parameters are computed the same way as in :class:`~torch.quantization.observer.MovingAverageMinMaxObserver`, with the difference that the running min/max values are stored per channel. Scales and zero points are thus computed per channel as well. .. note:: If the running minimum equals to the running maximum, the scales and zero_points are set to 1.0 and 0. """ def __init__( self, averaging_constant=0.01, ch_axis=0, dtype=torch.quint8, qscheme=torch.per_channel_affine, reduce_range=False, quant_min=None, quant_max=None, **kwargs ) -> None: super(MovingAveragePerChannelMinMaxObserver, self).__init__( ch_axis=ch_axis, dtype=dtype, qscheme=qscheme, reduce_range=reduce_range, quant_min=quant_min, quant_max=quant_max, **kwargs ) self.averaging_constant = averaging_constant def forward(self, x_orig): if x_orig.numel() == 0: return x_orig x = x_orig.detach() # avoid keeping autograd tape x = x.to(self.min_val.dtype) min_val = self.min_val max_val = self.max_val x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] # noqa: C416 new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) y = torch.flatten(y, start_dim=1) if min_val.numel() == 0 or max_val.numel() == 0: min_val, max_val = torch._aminmax(y, 1) else: min_val_cur, max_val_cur = torch._aminmax(y, 1) min_val = min_val + self.averaging_constant * (min_val_cur - min_val) max_val = max_val + self.averaging_constant * (max_val_cur - max_val) self.min_val.resize_(min_val.shape) self.max_val.resize_(max_val.shape) self.min_val.copy_(min_val) self.max_val.copy_(max_val) return x_orig class HistogramObserver(_ObserverBase): r""" The module records the running histogram of tensor values along with min/max values. ``calculate_qparams`` will calculate scale and zero_point. Args: bins: Number of bins to use for the histogram upsample_rate: Factor by which the histograms are upsampled, this is used to interpolate histograms with varying ranges across observations dtype: Quantized data type qscheme: Quantization scheme to be used reduce_range: Reduces the range of the quantized data type by 1 bit The scale and zero point are computed as follows: 1. Create the histogram of the incoming inputs. The histogram is computed continuously, and the ranges per bin change with every new tensor observed. 2. Search the distribution in the histogram for optimal min/max values. The search for the min/max values ensures the minimization of the quantization error with respect to the floating point model. 3. Compute the scale and zero point the same way as in the :class:`~torch.quantization.MinMaxObserver` """ histogram: torch.Tensor min_val: torch.Tensor max_val: torch.Tensor def __init__( self, bins: int = 2048, upsample_rate: int = 128, dtype: torch.dtype = torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, factory_kwargs=None, ) -> None: # bins: The number of bins used for histogram calculation. super(HistogramObserver, self).__init__( dtype=dtype, qscheme=qscheme, reduce_range=reduce_range, factory_kwargs=factory_kwargs, ) factory_kwargs = torch.nn.factory_kwargs(factory_kwargs) self.bins = bins self.register_buffer("histogram", torch.zeros(self.bins, **factory_kwargs)) self.register_buffer("min_val", torch.tensor(float("inf"), **factory_kwargs)) self.register_buffer("max_val", torch.tensor(float("-inf"), **factory_kwargs)) self.dst_nbins = 2 ** torch.iinfo(self.dtype).bits self.upsample_rate = upsample_rate def _get_norm( self, delta_begin: torch.Tensor, delta_end: torch.Tensor, density: torch.Tensor ) -> torch.Tensor: r""" Compute the norm of the values uniformaly distributed between delta_begin and delta_end. Currently only L2 norm is supported. norm = density * (integral_{begin, end} x^2) = density * (end^3 - begin^3) / 3 """ norm = ( delta_end * delta_end * delta_end - delta_begin * delta_begin * delta_begin ) / 3 return density * norm def _compute_quantization_error(self, next_start_bin: int, next_end_bin: int): r""" Compute the quantization error if we use start_bin to end_bin as the min and max to do the quantization. """ bin_width = (self.max_val.item() - self.min_val.item()) / self.bins dst_bin_width = bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins if dst_bin_width == 0.0: return 0.0 src_bin = torch.arange(self.bins, device=self.histogram.device) # distances from the beginning of first dst_bin to the beginning and # end of src_bin src_bin_begin = (src_bin - next_start_bin) * bin_width src_bin_end = src_bin_begin + bin_width # which dst_bins the beginning and end of src_bin belong to? dst_bin_of_begin = torch.clamp( src_bin_begin // dst_bin_width, 0, self.dst_nbins - 1 ) dst_bin_of_begin_center = (dst_bin_of_begin + 0.5) * dst_bin_width dst_bin_of_end = torch.clamp( src_bin_end // dst_bin_width, 0, self.dst_nbins - 1 ) dst_bin_of_end_center = (dst_bin_of_end + 0.5) * dst_bin_width density = self.histogram / bin_width norm = torch.zeros(self.bins, device=self.histogram.device) delta_begin = src_bin_begin - dst_bin_of_begin_center delta_end = dst_bin_width / 2 norm += self._get_norm(delta_begin, torch.ones(self.bins, device=self.histogram.device) * delta_end, density) norm += (dst_bin_of_end - dst_bin_of_begin - 1) * self._get_norm( torch.tensor(-dst_bin_width / 2), torch.tensor(dst_bin_width / 2), density ) dst_bin_of_end_center = dst_bin_of_end * dst_bin_width + dst_bin_width / 2 delta_begin = -dst_bin_width / 2 delta_end = src_bin_end - dst_bin_of_end_center norm += self._get_norm(torch.tensor(delta_begin), delta_end, density) return norm.sum().item() def _non_linear_param_search(self) -> Tuple[torch.Tensor, torch.Tensor]: r"""Non-linear parameter search. An approximation for L2 error minimization for selecting min/max. By selecting new min/max, we filter out outliers in input distribution. This follows the implementation of NormMinimization::NonlinearQuantizationParamsSearch in caffe2/quantization/server/norm_minimization.cc """ assert self.histogram.size()[0] == self.bins, "bins mistmatch" bin_width = (self.max_val - self.min_val) / self.bins # cumulative sum total = torch.sum(self.histogram).item() cSum = torch.cumsum(self.histogram, dim=0) stepsize = 1e-5 # granularity alpha = 0.0 # lower bound beta = 1.0 # upper bound start_bin = 0 end_bin = self.bins - 1 norm_min = float("inf") while alpha < beta: # Find the next step next_alpha = alpha + stepsize next_beta = beta - stepsize # find the left and right bins between the quantile bounds l = start_bin r = end_bin while l < end_bin and cSum[l] < next_alpha * total: l = l + 1 while r > start_bin and cSum[r] > next_beta * total: r = r - 1 # decide the next move next_start_bin = start_bin next_end_bin = end_bin if (l - start_bin) > (end_bin - r): # move the start bin next_start_bin = l alpha = next_alpha else: # move the end bin next_end_bin = r beta = next_beta if next_start_bin == start_bin and next_end_bin == end_bin: continue # calculate the quantization error using next_start_bin and next_end_bin norm = self._compute_quantization_error(next_start_bin, next_end_bin) if norm > norm_min: break norm_min = norm start_bin = next_start_bin end_bin = next_end_bin new_min = self.min_val + bin_width * start_bin new_max = self.min_val + bin_width * (end_bin + 1) return new_min, new_max def _adjust_min_max( self, combined_min: torch.Tensor, combined_max: torch.Tensor, upsample_rate: int ) -> Tuple[torch.Tensor, torch.Tensor, int, int]: # We ensure that: # (combined_max - combined_min)/(downsample_rate*Nbins) = (max - min)/(upsample_rate*Nbins) # This allows us to have a common grid of resolution s, where we can align # the input histogram # start_idx maps min_val to the histogram bin index. hist_bin_width = (self.max_val - self.min_val) / (self.bins * upsample_rate) downsample_rate = int( torch.ceil( (combined_max - combined_min) / (self.bins * hist_bin_width) ).item() ) e = downsample_rate * (self.bins * hist_bin_width) - ( combined_max - combined_min ) # Relax only the max, not the min, so that for one sided distributions, min stays at zero combined_max = combined_max + e combined_min = combined_min start_idx = int( torch.round((self.min_val - combined_min) / hist_bin_width).item() ) return combined_min, combined_max, downsample_rate, start_idx def _combine_histograms( self, orig_hist: torch.Tensor, new_hist: torch.Tensor, upsample_rate: int, downsample_rate: int, start_idx: int, Nbins: int, ) -> torch.Tensor: # First up-sample the histogram with new data by a factor of L # This creates an approximate probability density thats piecwise constant upsampled_histogram = new_hist.repeat_interleave(upsample_rate) # Now insert the upsampled histogram into the output # histogram, which is initialized with zeros. # The offset at which the histogram is introduced is determined # by the start index as the output histogram can cover a wider range histogram_with_output_range = torch.zeros( (Nbins * downsample_rate), device=orig_hist.device ) histogram_with_output_range[ start_idx : Nbins * upsample_rate + start_idx ] = upsampled_histogram # Compute integral histogram, double precision is needed to ensure # that there are no overflows integral_histogram = torch.cumsum( histogram_with_output_range, 0, dtype=torch.double )[downsample_rate - 1 :: downsample_rate] # Finally perform interpolation shifted_integral_histogram = torch.zeros((Nbins), device=orig_hist.device) shifted_integral_histogram[1:Nbins] = integral_histogram[0:-1] interpolated_histogram = ( integral_histogram - shifted_integral_histogram ) / upsample_rate orig_hist = orig_hist + interpolated_histogram.to(torch.float) return orig_hist def forward(self, x_orig: torch.Tensor) -> torch.Tensor: if x_orig.numel() == 0: return x_orig x = x_orig.detach() min_val = self.min_val max_val = self.max_val same_values = min_val.item() == max_val.item() is_uninitialized = min_val == float("inf") and max_val == float("-inf") if is_uninitialized or same_values: min_val, max_val = torch._aminmax(x) self.min_val.resize_(min_val.shape) self.min_val.copy_(min_val) self.max_val.resize_(max_val.shape) self.max_val.copy_(max_val) assert ( min_val.numel() == 1 and max_val.numel() == 1 ), "histogram min/max values must be scalar." torch.histc( x, self.bins, min=int(min_val), max=int(max_val), out=self.histogram ) else: new_min, new_max = torch._aminmax(x) combined_min = torch.min(new_min, min_val) combined_max = torch.max(new_max, max_val) # combine the existing histogram and new histogram into 1 histogram # We do this by first upsampling the histogram to a dense grid # and then downsampling the histogram efficiently ( combined_min, combined_max, downsample_rate, start_idx, ) = self._adjust_min_max(combined_min, combined_max, self.upsample_rate) assert ( combined_min.numel() == 1 and combined_max.numel() == 1 ), "histogram min/max values must be scalar." combined_histogram = torch.histc( x, self.bins, min=int(combined_min), max=int(combined_max) ) if combined_min == min_val and combined_max == max_val: combined_histogram += self.histogram else: combined_histogram = self._combine_histograms( combined_histogram, self.histogram, self.upsample_rate, downsample_rate, start_idx, self.bins, ) self.histogram.detach_().resize_(combined_histogram.shape) self.histogram.copy_(combined_histogram) self.min_val.detach_().resize_(combined_min.shape) self.min_val.copy_(combined_min) self.max_val.detach_().resize_(combined_max.shape) self.max_val.copy_(combined_max) return x_orig @torch.jit.export def calculate_qparams(self): is_uninitialized = self.min_val == float("inf") and self.max_val == float( "-inf" ) if is_uninitialized: warnings.warn( "must run observer before calling calculate_qparams.\ Returning default scale and zero point " ) return torch.tensor([1.0], device=self.min_val.device.type), torch.tensor([0], device=self.min_val.device.type) assert self.bins == len(self.histogram), ( "The number of bins in histogram should be equal to the number of bins " "supplied while making this observer" ) new_min, new_max = self._non_linear_param_search() return self._calculate_qparams(new_min, new_max) def _save_to_state_dict(self, destination, prefix, keep_vars): super(HistogramObserver, self)._save_to_state_dict( destination, prefix, keep_vars ) destination[prefix + "min_val"] = self.min_val destination[prefix + "max_val"] = self.max_val def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 3: # if min_val and max_val are not initialized, update their shape # to account for the differences between v2 and v3 min_val_name, max_val_name = prefix + "min_val", prefix + "max_val" if min_val_name in state_dict: if state_dict[min_val_name].shape == torch.Size([0]): state_dict[min_val_name] = torch.tensor(float("inf")) if max_val_name in state_dict: if state_dict[max_val_name].shape == torch.Size([0]): state_dict[max_val_name] = torch.tensor(float("-inf")) local_state = ["min_val", "max_val"] for name in local_state: key = prefix + name if key in state_dict: val = state_dict[key] setattr(self, name, val) elif strict: missing_keys.append(key) super(HistogramObserver, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) class PlaceholderObserver(ObserverBase): r""" Observer that doesn't do anything and just passes its configuration to the quantized module's ``.from_float()``. Can be used for quantization to float16 which doesn't require determining ranges. Args: dtype: Quantized data type custom_op_name: (temporary) specify this observer for an operator that doesn't require any observation (Can be used in Graph Mode Passes for special case ops). """ def __init__( self, dtype=torch.float32, custom_op_name="", compute_dtype=None ) -> None: super(PlaceholderObserver, self).__init__(dtype=dtype) # dtype of input of the target operator, e.g. for dynamic quantization # ops, the dtype will be float32 self.dtype = dtype self.custom_op = custom_op_name # used for configuration of computation type for dynamic quantization if compute_dtype: self.compute_dtype = compute_dtype def forward(self, x): return x @torch.jit.export def calculate_qparams(self): raise Exception( "calculate_qparams should not be called for PlaceholderObserver" ) class RecordingObserver(_ObserverBase): r""" The module is mainly for debug and records the tensor values during runtime. Args: dtype: Quantized data type qscheme: Quantization scheme to be used reduce_range: Reduces the range of the quantized data type by 1 bit """ __annotations__ = {"tensor_val": List[Optional[torch.Tensor]]} def __init__(self, **kwargs): super(RecordingObserver, self).__init__(**kwargs) self.tensor_val = [] def forward(self, x): self.tensor_val.append(x.clone()) return x @torch.jit.export def calculate_qparams(self): raise Exception("calculate_qparams should not be called for RecordingObserver") @torch.jit.export def get_tensor_value(self): return self.tensor_val class NoopObserver(ObserverBase): r""" Observer that doesn't do anything and just passes its configuration to the quantized module's ``.from_float()``. Primarily used for quantization to float16 which doesn't require determining ranges. Args: dtype: Quantized data type custom_op_name: (temporary) specify this observer for an operator that doesn't require any observation (Can be used in Graph Mode Passes for special case ops). """ def __init__(self, dtype=torch.float16, custom_op_name="") -> None: super(NoopObserver, self).__init__(dtype=dtype) self.dtype = dtype self.custom_op = custom_op_name def forward(self, x): return x @torch.jit.export def calculate_qparams(self): raise Exception("calculate_qparams should not be called for NoopObserver") def _is_observer_script_module(mod, obs_type_name): """Returns true if given mod is an instance of Observer script module.""" if isinstance(mod, torch.jit.RecursiveScriptModule): # qualified name looks like '__torch__.torch.quantization.observer.___torch_mangle_2.MinMaxObserver' suffix = mod._c.qualified_name.split(".", 1)[1] name = re.sub(r"\.___torch_mangle_\d+", "", suffix) return obs_type_name in name return False def _is_activation_post_process(module): return ( isinstance(module, torch.quantization.ObserverBase) or isinstance(module, torch.quantization.FakeQuantize) or _is_observer_script_module(module, "quantization.observer") ) def _is_per_channel_script_obs_instance(module): if isinstance(module, torch.jit.RecursiveScriptModule): return _is_observer_script_module( module, "quantization.observer.PerChannelMinMaxObserver" ) or _is_observer_script_module( module, "quantization.observer.MovingAveragePerChannelMinMaxObserver" ) return False def get_observer_state_dict(mod): r""" Returns the state dict corresponding to the observer stats. Traverse the model state_dict and extract out the stats. """ od = OrderedDict() if isinstance(mod, torch.jit.RecursiveScriptModule): for k, v in mod.state_dict().items(): if "observer" in k: od[k] = v else: # path for GraphModule and nn.Module (eager mode) for k, v in mod.state_dict().items(): if "activation_post_process" in k: od[k] = v od._metadata = mod.state_dict()._metadata # type: ignore[attr-defined] return od def load_observer_state_dict(mod, obs_dict): r""" Given input model and a state_dict containing model observer stats, load the stats back into the model. The observer state_dict can be saved using torch.quantization.get_observer_state_dict """ missing_keys: List[str] = [] unexpected_keys: List[str] = [] for name, module in mod.named_modules(): prefix = name + "." if _is_activation_post_process(module): if _is_per_channel_script_obs_instance(module): # For per-channel observers we need to call a custom load_from_state_dict to resize the tensor. # However this is not called when the module is scripted and we end up calling the default one in module.py module._load_from_state_dict_script( obs_dict, prefix, {}, True, missing_keys, unexpected_keys, [] ) else: module._load_from_state_dict( obs_dict, prefix, {}, False, missing_keys, unexpected_keys, [] ) for k in missing_keys: if "observer" in k or "activation_post_process" in k: raise Exception("Missing keys for observer {} in state_dict".format(k)) for k in unexpected_keys: if "observer" in k or "activation_post_process" in k: raise Exception("Unexpected keys for observer {} in state_dict".format(k)) # Restrict activations to be in the range (0,127) default_observer = MinMaxObserver.with_args(reduce_range=True) default_placeholder_observer = PlaceholderObserver default_debug_observer = RecordingObserver default_weight_observer = MinMaxObserver.with_args( dtype=torch.qint8, qscheme=torch.per_tensor_symmetric ) default_histogram_observer = HistogramObserver.with_args(reduce_range=True) default_per_channel_weight_observer = PerChannelMinMaxObserver.with_args( dtype=torch.qint8, qscheme=torch.per_channel_symmetric ) default_dynamic_quant_observer = PlaceholderObserver.with_args( dtype=torch.float, compute_dtype=torch.quint8 ) default_float_qparams_observer = PerChannelMinMaxObserver.with_args( dtype=torch.quint8, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0 )
38.974889
123
0.62914
7946f9458a8f7140073a29465eb3912be5b48b1a
75
py
Python
demo.py
radroid/AI-in-Enterprise
e46d0af47823b9fedf9ae5788c8d742c0c191a57
[ "MIT" ]
null
null
null
demo.py
radroid/AI-in-Enterprise
e46d0af47823b9fedf9ae5788c8d742c0c191a57
[ "MIT" ]
null
null
null
demo.py
radroid/AI-in-Enterprise
e46d0af47823b9fedf9ae5788c8d742c0c191a57
[ "MIT" ]
null
null
null
# This is a simple program to be uplaoded to GitHub. print('Hello World')
18.75
52
0.733333
7946fa5cdd1268d423a8a01f7ff812ad95e292a0
241
py
Python
Aniyom Ebenezer/Phase 2/LIST/Day_40_Challenge_Solution/Question 4 Solution.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
6
2020-05-23T19:53:25.000Z
2021-05-08T20:21:30.000Z
Aniyom Ebenezer/Phase 2/LIST/Day_40_Challenge_Solution/Question 4 Solution.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
8
2020-05-14T18:53:12.000Z
2020-07-03T00:06:20.000Z
Aniyom Ebenezer/Phase 2/LIST/Day_40_Challenge_Solution/Question 4 Solution.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
39
2020-05-10T20:55:02.000Z
2020-09-12T17:40:59.000Z
""" Write a Python program to print the numbers of specified list after removing even numbers from it. """ numbers = [1, 2, 4, 3, 5, 4, 5, 7, 89, 32, 40] specified_list =[x for (i,x) in enumerate(numbers) if x % 2 != 0] print(specified_list)
40.166667
98
0.680498
7946fb38fa24260cdb59e40d66acccebed52e887
1,781
py
Python
models/networks/simple_nn.py
Piko-Piko-Pon-Taro/navict-recommender
7eeaf0f77e500c1c0ecb15f9613aa08c2ef5c83c
[ "MIT" ]
null
null
null
models/networks/simple_nn.py
Piko-Piko-Pon-Taro/navict-recommender
7eeaf0f77e500c1c0ecb15f9613aa08c2ef5c83c
[ "MIT" ]
9
2021-05-03T01:38:46.000Z
2021-07-14T13:13:25.000Z
models/networks/simple_nn.py
Piko-Piko-Pon-Taro/navict-recommender
7eeaf0f77e500c1c0ecb15f9613aa08c2ef5c83c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """CBOW Embedding""" import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models from models.base_model import BaseModel from models.networks.cbow_embedder import Net as CBOW class Net(nn.Module): """Network for CBOW""" """ CBOW """ def __init__(self, embedder): super().__init__() """ Args: vocab_size emb_size """ self.embedding = embedder.embedding self.embedding.weight.requires_grad = False self.emb_size = embedder.emb_size self.vocab_size = embedder.vocab_size self.net = nn.Sequential( nn.Linear(self.emb_size, 128, bias=False), nn.Dropout(p=0.2, inplace=False), nn.Linear(128, self.vocab_size, bias=False), nn.Softmax(dim=-1) ) def forward(self, x): x = self.embedding(x) x = torch.sum(x, dim=1) x = self.net(x) return x class SimpleNN(BaseModel): """SimpleNN""" def __init__(self, cfg: object) -> None: """Initialization Build model. Args: cfg: Config. """ super().__init__(cfg) self.embedder = CBOW(vocab_size=self.cfg.model.embedder.vocab_size, emb_size=self.cfg.model.embedder.emb_size) ckpt_path = self.cfg.model.embedder.initial_ckpt if torch.cuda.is_available(): ckpt = torch.load(ckpt_path) else: ckpt = torch.load(ckpt_path, torch.device('cpu')) self.embedder.load_state_dict(ckpt['model_state_dict']) self.num_class = self.cfg.data.dataset.num_class self.network = Net(embedder=self.embedder) self.build()
24.067568
118
0.588995
7946fbecb0ad2a597ac5afe18f58f64781f6dee3
3,004
py
Python
2.DataPrepare/split_c18.py
NIA-Adp-Healthcare/test-project
4ee172cdff14827b6946e672144ee381647d82ad
[ "MIT" ]
null
null
null
2.DataPrepare/split_c18.py
NIA-Adp-Healthcare/test-project
4ee172cdff14827b6946e672144ee381647d82ad
[ "MIT" ]
null
null
null
2.DataPrepare/split_c18.py
NIA-Adp-Healthcare/test-project
4ee172cdff14827b6946e672144ee381647d82ad
[ "MIT" ]
null
null
null
import sys import pandas as pd import os import glob from sklearn.model_selection import train_test_split # split_dataset(img_list, ALL_TEST, ALL_VALID, ALL_TRAIN) def split_dataset(file_list, test_rid_list, valid_rid_list, train_rid_list): print("FILES", len(file_list)) print("TEST LIST", len(test_rid_list)) print("VALID LIST", len(valid_rid_list)) print("TRAIN LIST", len(train_rid_list)) all = pd.DataFrame({"path": file_list}) #series 생성 all["rid"] = all["path"].apply(lambda x: x.split('/')[-1].split('_')[1].lstrip('txt')[1:].rstrip('.txt')) print(all["rid"][:10]) all["rid"] = all["rid"].apply(lambda x: x.lstrip("0")) # all["rid"] = all['path'] # print(all) print(all["rid"]) all["isTest"] = all["rid"].apply(lambda x: x in test_rid_list) all["isValid"] = all["rid"].apply(lambda x: x in valid_rid_list) all["isTrain"] = all["rid"].apply(lambda x: x in train_rid_list) print(all["isTest"]) forTest = all[all["isTest"] == True] forValid = all[all["isValid"] == True] forTrain = all[all["isTrain"] == True] #x_train , x_valid = train_test_split(forTrain, test_size=(1-train_ratio), random_state=1234) A = list(forTrain["path"]) B = list(forValid["path"]) C = list(forTest["path"]) return A, B, C #################### df = pd.read_csv('\\Users\\user\\Desktop\\modeling\\daejang_data\\full\\test_list.csv', dtype={'RID': str}) df_test = df[df["GUBUN"] == "TEST"] ALL_TEST = list(df_test["rid"].unique()) ALL_TEST.sort() print(ALL_TEST) print() df2 = pd.read_csv('\\Users\\user\\Desktop\\modeling\\daejang_data\\full\\valid_list.csv', dtype={'RID': str}) df_valid = df2[df2["GUBUN"] == "VALID"] df_train = df2[df2["GUBUN"] == "TRAIN"] ALL_VALID = list(df_valid["rid"].unique()) ALL_VALID.sort() print(ALL_VALID) print() ALL_TRAIN = list(df_train["rid"].unique()) ALL_TRAIN.sort() print(ALL_TRAIN) print() img_list = glob.glob('/Users/user/Desktop/modeling/daejang_data/full/label_txt/*.txt') img_list.sort() print(len(img_list)) print(img_list[:10]) train_img_list, val_img_list, test_list = split_dataset(img_list, ALL_TEST, ALL_VALID, ALL_TRAIN) print(len(train_img_list), len(val_img_list), len(test_list)) with open('\\Users\\user\\Desktop\\modeling\\daejang_data\\full\\anewtrainByRid18.txt', 'w') as f: f.write('\n'.join(train_img_list) + '\n') with open('\\Users\\user\\Desktop\\modeling\\daejang_data\\full\\anewvalByRid18.txt', 'w') as f: f.write('\n'.join(val_img_list) + '\n') with open('\\Users\\user\\Desktop\\modeling\\daejang_data\\full\\anewtestByRid18.txt', 'w') as f: f.write('\n'.join(test_list) + '\n') """ import yaml with open('./data.yaml', 'r') as f: data = yaml.load(f) print(data) data['train'] = '/home/joyhyuk/python/y2/train.txt' data['val'] = '/home/joyhyuk/python/y2/val.txt' with open('./data.yaml', 'w') as f: yaml.dump(data, f) print(data) """
31.291667
110
0.641811
7946fc2212cd78f528c0bff5184424dbd2cd4c88
1,777
py
Python
src/framat/_util.py
airinnova/FramAT
4177a95b4ed8d95a8330365e32ca13ac9ef24640
[ "Apache-2.0" ]
9
2019-08-13T18:49:22.000Z
2022-03-31T08:40:29.000Z
src/framat/_util.py
airinnova/FramAT
4177a95b4ed8d95a8330365e32ca13ac9ef24640
[ "Apache-2.0" ]
5
2020-01-08T08:38:25.000Z
2022-02-07T17:01:45.000Z
src/framat/_util.py
airinnova/FramAT
4177a95b4ed8d95a8330365e32ca13ac9ef24640
[ "Apache-2.0" ]
5
2019-09-20T18:47:20.000Z
2022-01-11T13:08:55.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ---------------------------------------------------------------------- # Copyright 2019-2020 Airinnova AB and the FramAT authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------- # Author: Aaron Dettmann """ Solving """ import itertools from numbers import Number def enumerate_with_step(iterable, start=0, step=1): """ TODO https://stackoverflow.com/questions/24290025/python-enumerate-downwards-or-with-a-custom-step """ for x in iterable: yield (start, x) start += step def pairwise(iterable): """ Return a new iterator which yields pairwise items s --> (s0,s1), (s1,s2), (s2, s3), ... See: https://docs.python.org/3/library/itertools.html#itertools-recipes """ a, b = itertools.tee(iterable) next(b, None) return zip(a, b) class Schemas: any_int = {'type': int} any_num = {'type': Number} pos_int = {'type': int, '>': 0} pos_number = {'type': Number, '>': 0} string = {'type': str, '>': 0} vector3x1 = {'type': list, 'min_len': 3, 'max_len': 3, 'item_types': Number} vector6x1 = {'type': list, 'min_len': 6, 'max_len': 6, 'item_types': Number}
27.765625
97
0.605515
7946fcfce808e38cd3ff96968412ed809d88663b
1,223
py
Python
smacha/test/smacha_test_examples/nesting_params.py
ReconCell/smacha
253215a35d2d091bf50c28c1ba876209b82d2400
[ "BSD-3-Clause" ]
16
2019-04-16T07:44:30.000Z
2022-03-10T08:04:45.000Z
smacha/test/smacha_test_examples/nesting_params.py
ReconCell/smacha
253215a35d2d091bf50c28c1ba876209b82d2400
[ "BSD-3-Clause" ]
2
2019-07-18T09:11:00.000Z
2019-09-26T10:21:26.000Z
smacha/test/smacha_test_examples/nesting_params.py
ReconCell/smacha
253215a35d2d091bf50c28c1ba876209b82d2400
[ "BSD-3-Clause" ]
2
2019-08-21T20:14:54.000Z
2019-09-19T13:26:34.000Z
#!/usr/bin/env python import smach # define state Foo class Foo(smach.State): def __init__(self, name, outcome): smach.State.__init__(self, outcomes=['outcome_a','outcome_b']) self._name = name self._outcome = outcome def execute(self, userdata): smach.loginfo('Executing state {}'.format(self._name)) smach.loginfo('Returning {}'.format(self._outcome)) return self._outcome def main(): sm = smach.StateMachine(outcomes=['final_outcome']) with sm: sm_sub = smach.StateMachine(outcomes=['outcome_c']) with sm_sub: smach.StateMachine.add('FOO_0', Foo('FOO_0', 'outcome_a'), transitions={'outcome_a':'FOO_1', 'outcome_b':'outcome_c'}) smach.StateMachine.add('FOO_1', Foo('FOO_1', 'outcome_b'), transitions={'outcome_a':'FOO_1', 'outcome_b':'outcome_c'}) smach.StateMachine.add('SUB', sm_sub, transitions={'outcome_c':'final_outcome'}) outcome = sm.execute() if __name__ == '__main__': main()
27.795455
73
0.537204
7946fd3dcc568389ee67d29cba0fd77e6dcfdea4
73,301
py
Python
libutil.py
dwlee08/dnfp-analyzer
4ae4ec4d32c08288b997c83655a0c97c7d347216
[ "Apache-2.0" ]
null
null
null
libutil.py
dwlee08/dnfp-analyzer
4ae4ec4d32c08288b997c83655a0c97c7d347216
[ "Apache-2.0" ]
null
null
null
libutil.py
dwlee08/dnfp-analyzer
4ae4ec4d32c08288b997c83655a0c97c7d347216
[ "Apache-2.0" ]
1
2020-12-10T06:24:34.000Z
2020-12-10T06:24:34.000Z
#!/usr/bin/python3 #-*- coding:utf-8 -*- import os from json import loads import json import urllib.request from urllib import parse as urlparse import time import numpy as np import random from io import BytesIO from parse import compile import sys import subprocess import math import re import datetime from time import sleep from time import ( process_time, perf_counter, sleep, ) #item_stat_type = ["이동속도", "공격속도", "물리크리티컬히트", "마법크리티컬히트", "모든속성강화", "모든속성저항", "캐스트속도"] class LibUtil(): parser = [ compile("물리공격력+{깡물공:g}("), compile("마법공격력+{깡마공:g}("), compile("독립공격력+{깡독공:g}("), compile("모든스탯+{깡스탯:g}("), compile("모든스탯+{깡스탯:g}증가("), compile("힘지능체력정신력{깡스탯:g}증가"), compile("모든직업{}Lv스킬공격력{}%증가"), compile("{}레벨액티브스킬공격력{}%증가"), compile("도적{}레벨모든스킬공격력{}%증가"), compile("물리크리티컬히트{물리크리티컬:g}%마법크리티컬히트{마법크리티컬:g}%증가"), compile("크리티컬공격시데미지{크증댐:g}%증가"), compile("크리티컬공격시데미지증가{}{크증추:g}%추가증가"), compile("크리티컬공격시데{}지{크증추:g}%추가증가"), compile("공격시데미지{증댐:g}%증가"), compile("공격시데미지증가{}{증추:g}%추가증가"), compile("공격시{추댐:g}%추가데미지"), compile("모든공격력{모공:g}%증가"), compile("모든직업{:d}~{:d}레벨모든스킬쿨타임{:d}%감소({}제외"), compile("모든직업{minLevel:d}~{maxLevel:d}레벨모든스킬쿨타임{스킬쿨감:g}%감소"), compile("모든직업{레벨:d}레벨모든스킬공격력{스킬증댐:g}%증가"), compile("모든직업{:d}~{:d}레벨모든스킬Lv+{:d}({}제외"), compile("모든직업{minLevel:d}~{maxLevel:d}레벨모든스킬Lv+{스킬레벨:d}"), compile("스킬공격력{스공:g}%{}가"), compile("스킬공격력+{스공:g}%"), compile("물리마법독립공격력{물마독공:g}%"), compile("물리마법독립공격력+{물마독깡:g}증가"), compile("물리마법독립공격력{물마독깡:g}증가"), compile("물리마법독립공격력증가량{물마독공:g}%"), compile("{속추댐:g}%속성추가데미지"), compile("{속추댐:g}%{속성종류}속성추가데미지"), compile("적에게입힌피해의{지속댐:g}%만큼{지속:g}초동안지속피해발생"), compile("공격시{지속:g}초동안적에게입힌피해의{지속댐:g}%만큼지속피해발생"), compile("피격시데미지감소{피격뎀감소:g}%"), compile("피격시데미지{피격뎀:g}%{증감}"), compile("피격데미지{피격뎀:g}%증가"), compile("물리마법크리티컬히트{물마크:g}증가"), compile("힘지능{힘지:g}%공격속도{공속:g}%증가"), compile("힘지능+{힘지:g}%증가"), compile("힘지능+{힘지깡:g}"), compile("힘지능{힘지깡:g}증가"), compile("힘지능{힘지:g}%"), compile("모든속도{공이캐속:g}%"), compile("공격속도이동속도캐스트속도{공이캐속:g}%증가"), compile("공격속도+{공속:g}%이동속도+{이속:g}%캐스트속도+{캐속:g}%"), compile("공격속도{공속:g}%이동속도{이속:g}%캐스트속도{캐속:g}%증가"), compile("공격속도{공속:g}%이동속도{이속:g}%캐스트속도{캐속:g}%{증감}"), compile("공격속도{공속:g}%이동속도{이속:g}%증가"), compile("공격속도{공속:g}%캐스트속도{캐속:g}%증가"), compile("공격속도{공속:g}%증가캐스트속도{캐속:g}%증가"), compile("공격속도{공속:g}%증가및캐스트속도{캐속:g}%증가"), compile("공격속도이동속도{공이속:g}%증가"), compile("공격속도{공속:g}%증가"), compile("공격속도+{공속:g}%"), compile("Y축이동속도{:g}%증가"), compile("이동속도{이속:g}%증가"), compile("이동속도+{이속:g}%"), compile("공격속도-{공속감소:g}%"), compile("적이동속도{:g}%감소"), compile("이동속도-{이속감소:g}%"), compile("캐스트속도{캐속:g}%증가"), compile("공격속도{:g}%감소"), compile("이동속도{:g}%감소"), compile("캐스트속도{캐속감소:g}%감소"), compile("캐스트속도+{캐속:g}%"), compile("캐스트속도-{캐속감소:g}%"), compile("물리크리티컬히트{물리크리티컬:g}%증가"), compile("마법크리티컬히트{마법크리티컬:g}%증가"), compile("모든속성강화{모속강:g}증가"), compile("모든속성저항{모속저:g}증가"), compile("모든속성저항{모속저감소:g}감소"), compile("모든속성저항{증감}{모속저:g}"), compile("힘지능증가량{힘지:g}%증가"), compile("{속성종류1}속성저항{속성종류2}속성저항{속성종류3}속성저항{속저감소:g}감소"), compile("{속성종류}속성저항{증감}{속저:g}"), compile("5초마다단일속성강화+{수문장}"), compile("{속성종류}속성강화+{속강:g}"), compile("마을적용옵션+{깡모속:g}") ] # 30Lv버프스킬힘지능증가량{}%증가 # 30Lv버프스킬물리마법독립공격력증가량{}%증가 # 30Lv버프스킬물리공격력증가량{}%증가 # 30Lv버프스킬마법공격력증가량{}%증가 # 30Lv버프스킬독립공격력증가량{}%증가 # 50Lv액티브스킬힘지능증가량{}증가 # 50Lv액티브스킬힘지능증가량{}%증가 #수호의 은총 체력, 정신력 250 증가 #계시 : 아리아, 퍼페티어 지능 173 증가 b_parser = [ compile("30Lv버프스킬힘지능증가량{축힘지:g}%증가"), compile("30Lv버프스킬물리마법독립공격력증가량{축물마독:g}%증가"), compile("30Lv버프스킬물리공격력증가량{축물공:g}%증가"), compile("30Lv버프스킬마법공격력증가량{축마공:g}%증가"), compile("30Lv버프스킬독립공격력증가량{축독공:g}%증가"), compile("50Lv액티브스킬힘지능증가량{포계수:g}증가"), compile("50Lv액티브스킬힘지{}{포힘지:g}%증가"), #compile("50Lv액티브스킬힘지능{포힘지:g}%증가"), compile("수호의은총체력정신력{체력:g}증가"), compile("계시:아리아퍼페티어지능{지능:g}증가"), compile("계시:아리아지능{라핌지능:g}증가"), compile("퍼페티어지능{카테지능:g}증가"), compile("수호의은총계시:아리아퍼페티어스킬Lv+{패시브레벨:g}"), compile("신념의오라체력정신력증가량{체력오라:g}증가"), compile("신실한열정소악마힘지능증가량{지능오라:g}증가"), compile("모든직업30레벨모든스킬Lv+{축레벨:g}"), compile("모든직업50레벨모든스킬Lv+{포레벨:g}"), compile("50Lv모든스킬+{포레벨:g}"), compile("30Lv모든스킬+{축레벨:g}"), compile("30Lv버프스킬레벨+{축레벨:g}"), compile("모든직업{min:g}~{max:g}레벨모든스킬Lv+{lv:g}({}제외"), compile("모든스탯+{모든스탯:g}(+") ] s_parser = {} s_parser['암속조건'] = [ compile("암속성저항{v:d}당{option}(최대{max}증가)"), compile("암속성저항{v:d}당{option}최대{max}중첩"), compile("암속성저항{v:d}이상일때{option:S}") ] s_parser['개조조건'] = compile("장비개조단계가{step:d}증가할때마다{option:S}(") s_parser['강화조건'] = compile("강화증폭수치가{v:d}증가할때마다{option}(최대{max}까지증가)") s_parser['착용조건'] = [ compile("{item}착용시"), compile("{item}장착시"), compile("{item1}과{item2}장착시") ] s_parser['주사위'] = compile("주사위눈이{v}일경우{option:S}") s_parser['중첩'] = compile("최대{v:d}중첩") s_parser['최대'] = compile("(최대{v:g}{}증가)") myth_db = {} weapon_tree = {} set_tree = {} item_tree = {} convert_list = {} @staticmethod def load_api(URL): apikey = 'apikey=NqzICVeo3FesBuq3Gw1CmYhiOiFdYcHr' #print('https://api.neople.co.kr/df/'+ URL + apikey) max_try = 5 while True: try: api_load=urllib.request.urlopen('https://api.neople.co.kr/df/'+ URL + apikey) api_dic=loads(api_load.read().decode("utf-8")) break except: max_try -= 1 if max_try == 0: raise sleep(0.5) continue return api_dic @classmethod def parse_buff(cls, explain, io, name, skill_db, step = 0): #print ("#################################################") #print (name) explain = explain.replace(' ', '').replace(',','').replace('\n\n', '\n') e_list = explain.split('\n') for exp in e_list: #print(exp) if len(exp) <= 0: continue opt = {} for p in cls.b_parser: try: result = p.search(exp) except: raise if result is not None: if step > 0: if step == 10: opt['per-step'] = 1 else: opt['step'] = step if len(result.fixed) > 0 and result[0] == '특성스킬': min_lv = int(result['min']) max_lv = int(result['max']) lvup = int(result['lv']) data = {'min':min_lv, 'max':max_lv, 'lvup':lvup} opt['스킬구간'] = data continue for key in result.named.keys(): #print(key, result[key]) opt[key] = result[key] break if len(opt) >= 1: io.append(opt) """ opt = {} if name == '운명을 가르는 함성 세트' and step == 3: data = {'min':30, 'max':50, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '운명의 주사위 세트' and step == 2: data = {'min':30, 'max':48, 'lvup':1} opt['스킬구간'] = data io.append(opt) elif name == '운명의 주사위 세트' and step == 3: data = {'min':30, 'max':50, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '영보 : 세상의 진리 세트' and step == 2: data = {'min':30, 'max':50, 'lvup':1} opt['스킬구간'] = data io.append(opt) elif name == '시간전쟁의 잔해 세트' and step == 2: data = {'min':1, 'max':30, 'lvup':1} opt['스킬구간'] = data io.append(opt) elif name == '전설의 대장장이 - 역작 세트' and step == 3: data = {'min':30, 'max':50, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '전설의 대장장이 - 역작 세트' and step == 5: data = {'min':30, 'max':48, 'lvup':2} opt['스킬구간'] = data io.append(opt) opt = {} opt['축힘지'] = 6 io.append(opt) opt = {} opt['포힘지'] = 7 io.append(opt) opt = {} opt['포계수'] = 20 io.append(opt) elif name == '메마른 사막의 유산 세트' and step == 2: data = {'min':1, 'max':30, 'lvup':1} opt['스킬구간'] = data io.append(opt) elif name == '메마른 사막의 유산 세트' and step == 3: data = {'min':30, 'max':48, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '메마른 사막의 유산 세트' and step == 5: data = {'min':30, 'max':50, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '열대의 트로피카 세트' and step == 3: data = {'min':1, 'max':48, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == 'A.D. P 슈트 세트' and step == 5: data = {'min':1, 'max':50, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '죽음을 자아내는 그림자 세트' and step == 5: data = {'min':1, 'max':48, 'lvup':2} opt['스킬구간'] = data io.append(opt) elif name == '천상의 무희 세트' and step == 5: data = {'min':1, 'max':48, 'lvup':2} opt['스킬구간'] = data io.append(opt) """ return io; @classmethod def parse_explain(cls, explain, io, name, skill_db, step = 0, iid = None): if explain is None: return explain = explain.replace('힘, 지능', '힘/지능') explain = explain.replace('물리, 마법, 독립', '물리/마법/독립') explain = explain.replace('물리, 마법', '물리/마법') explain = explain.replace('레벨,', '레벨/') explain = explain.replace('\n(', '(') explain = explain.replace('/','').replace(',','').replace(' ','') explain = explain.replace('캐스팅','캐스트').replace('피격시받는','피격시') explain = explain.replace('크리티컬데미지','크리티컬공격시데미지') explain = explain.replace('불카누스의힘으로','') e_list = explain.split('\n') condition = {} step_fixed = False for exp in e_list: e_matched = False if len(exp) <= 0: continue if exp.find("해당효과는화수암명순서로순환됩니다") >= 0: break if exp.find("던전입장시파티원이2명이") >= 0: break if exp[0] != '-': if step_fixed is False: condition = {} else: exp = exp[1:] if exp.find('주사위') >= 0: p = cls.s_parser['주사위'] result = p.search(exp) if result is not None: condition['조건'] = {'type':'주사위', 'cond':result['v']} exp = result['option'] if exp.find('암속성') >= 0: for p in cls.s_parser['암속조건']: result = p.search(exp) #print(exp, result) if result is not None: limit = result.named.get('max') condition['조건'] = {'type':'암속저', 'per-val':result['v'], 'max':limit} exp = result['option'] if exp.find('최대') >= 0: p = cls.s_parser['중첩'] result = p.search(exp) if result is not None: condition['중첩'] = result['v'] elif exp.find('강화증폭') >= 0: p = cls.s_parser['강화조건'] result = p.search(exp) if result is not None: condition['조건'] = {'type':'강화증폭', 'per-val':result['v'], 'max':result['max']} else: p = cls.s_parser['최대'] #print(exp) result = p.search(exp) if result is not None: condition['최대'] = result['v'] #print(condition) if exp.find('착용') >= 0 or exp.find('장착'): if exp.find('보조무기로') < 0: for p in cls.s_parser['착용조건']: result = p.search(exp) if result is not None: required = [] for r in result.named: required.append(result[r]) condition['조건'] = {'type':'착용', 'required':required} if exp.find('개조') >= 0: if exp == '[개조단계별옵션]': condition['조건'] = {'type':'개조', 'per-step':1} step_fixed = True else: p = cls.s_parser['개조조건'] result = p.search(exp) if result is not None: condition['조건'] = {'type':'개조', 'per-step':result['step']} exp = result['option'] if exp == '[검은마물의정원전용옵션]': break elif exp.find('캐릭터이동속도에따라다음효과') >= 0: break opt = {} for p in cls.parser: try: result = p.search(exp) except: raise if result is not None: for key in result.named.keys(): if '스킬증댐' in result.named.keys(): #print ('스킬증댐', name) v = result['스킬증댐'] lvl = result['레벨'] opt['스킬'] = [{'job': '공통', 'jid': None}, [{'minLevel':lvl, 'maxLevel':lvl,'damup':v}] ] break elif '스킬쿨감' in result.named.keys(): #print ('스킬쿨감', name) minlvl = result['minLevel'] maxlvl = result['maxLevel'] v = result['스킬쿨감'] opt['스킬'] = [{'job': '공통', 'jid': None}, [{'minLevel':minlvl, 'maxLevel':maxlvl,'cooldown':v}] ] break elif '스킬레벨' in result.named.keys(): #print ('스킬레벨', name) minlvl = result['minLevel'] maxlvl = result['maxLevel'] v = result['스킬레벨'] opt['스킬'] = [{'job': '공통', 'jid': None}, [{'minLevel':minlvl, 'maxLevel':maxlvl,'value':v}] ] break v = result[key] if '중첩' in condition: f = condition['중첩'] #중첩 횟수가 높을시 보정 """ if f > 10: df = f - 10 df = int(df*0.5) f = df + 10 """ v *= f elif '최대' in condition: f = condition['최대'] v = f #e = result.named.get('e') opt[key] = v break; #아이템별 커스텀 if len(opt) >= 1: if '조건' in condition: opt['condition'] = condition['조건'] io.append(opt) """ if step == -2: convert = cls.convert_list.get(name) if convert is not None: io.append({'변환': { 'opts': convert['options'], 'type': convert['type']}}) """ if step == -2: if name == '데파르망' and iid is not None: #print (io, iid, explain) try: io.pop(0) except: pass return io if step == -3: if name == '데파르망': #print (io, iid, explain) try: io.pop(1) except: pass if name.find('사도 강림 플래티넘') >= 0 or name.find('위대한 의지') >= 0 or name.find('강인한 사도') >= 0 or name.find('기사의 위대한 긍지') >= 0: p = compile("{}[{lv:d}Lv]") result = p.parse(name) if result is not None: lv = result['lv'] io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':lv, 'maxLevel':lv, 'damup':10}, ] )}) elif step == 0 and name == '퍼펙트 컨트롤': """ io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':85, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] )}) """ pass elif step == 4 and name == '선지자의 목걸이': for opts in io: if '속추댐' in opts: opts['속추댐'] *= 0.35 elif '스공' in opts: if opts['스공'] == 10: opts['스공'] = 10 * 0.35 + 15 * 0.3 else: #opts['스공'] *= 0.3 del opts['스공'] elif step == 1 and name == '청면수라의 가면': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':85, 'value':2}, {'minLevel':100, 'maxLevel':100, 'value':2}, ] )}) elif step == 1 and name == '무념의 의복': io.append({'스킬':({'job':'공통','jid':None}, [ {'minLevel':50, 'maxLevel':50, 'value':2}, {'minLevel':85, 'maxLevel':85, 'value':2}, {'minLevel':100, 'maxLevel':100, 'value':2}, ] )}) elif step == 1 and name == '무형의 절개': io.append({'스킬':({'job':'공통','jid':None}, [ {'minLevel':50, 'maxLevel':85, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] )}) elif step == 1 and name == '무의식의 꽃': io.append({'스킬':({'job':'공통','jid':None}, [ {'minLevel':50, 'maxLevel':50, 'damup':30}, {'minLevel':85, 'maxLevel':85, 'damup':25}, {'minLevel':100, 'maxLevel':100, 'damup':16}, ] )}) elif (name == '태극천제검'): for opts in io: if '모공' in opts: opts['모공'] *= 0 """ elif '스공' in opts: if opts['스공'] != 30: opts['스공'] *= 1 elif '공속' in opts: if '증감' in opts: opts['공속'] *= 1 opts['이속'] *= 1 opts['캐속'] *= 1 else: opts['공속'] *= 0 opts['이속'] *= 0 opts['캐속'] *= 0 """ elif (name == '천장군 : 전승의 빛'): io.append({'모공':18}) elif (name == '푸른 생명의 이면'): for opts in io: if '모공' in opts: opts['모공'] -= 3 #60초쿨 20초 지속 옵션 고려 elif '모속저' in opts: opts['모속저'] = int(opts['모속저'] * 0.66) elif '캐속' in opts: opts['캐속'] *= 0.4 elif (name == '프로젝트 : 오버코어'): io.append({'스킬':({'job':'총검사','jid':cls.get_jobid('총검사', skill_db)}, [{'skillId':cls.get_skillid('총검사', '코어 블레이드 마스터리', skill_db), 'name':'코어 블레이드 마스터리', 'damup':100, 'extra':'마법 공격력' }] )}) elif (name == '핏빛 무도회'): io.append({'스킬':({'job':'도적','jid':cls.get_jobid('도적', skill_db)}, [ {'skillId':cls.get_skillid('도적', '히트엔드', skill_db), 'name':'히트엔드', 'value':'연계 점수당 공격력 비율' }] )}) elif (name == '화려한 눈속임'): io.append({'스킬':({'job':'도적','jid':cls.get_jobid('도적', skill_db)}, [ {'minLevel':40, 'maxLevel':40, 'damup':32}, {'minLevel':45, 'maxLevel':45, 'damup':32}, {'minLevel':70, 'maxLevel':70, 'damup':32}, {'skillId':cls.get_skillid('도적', '인법 : 허물 벗기', skill_db), 'name':'인법 : 허물 벗기', 'cooldown':32, 'damdown':32, }, {'skillId':cls.get_skillid('도적', '샤이닝컷', skill_db), 'name':'샤이닝컷', 'cooldown':32, 'damdown':32, }, {'skillId':cls.get_skillid('도적', '브레이킹 러시', skill_db), 'name':'브레이킹 러시', 'cooldown':32, }, {'skillId':cls.get_skillid('도적', '사이드 스텝', skill_db), 'name':'사이드 스텝', 'cooldown':32, }, ] )}) elif (name == '도화선'): io.append({'스킬':({'job':'도적','jid':cls.get_jobid('도적', skill_db)}, [{'skillId':cls.get_skillid('도적', '흉멸인법진', skill_db), 'name':'흉멸인법진', 'value':2 }] )}) elif (name == '라스트 인파이팅'): io.append({'스킬':({'job':'프리스트(남)', 'jid':cls.get_jobid('프리스트(남)', skill_db)}, [{'skillId':cls.get_skillid('프리스트(남)', '드라이아웃', skill_db), 'name':'드라이아웃', 'cooldown':30 }] )}) elif (name == '레볼루션 차지'): io.append({'스킬':({'job':'거너(남)', 'jid':cls.get_jobid('거너(남)', skill_db)}, [{'skillId':cls.get_skillid('거너(남)', '레이저 라이플', skill_db), 'name':'레이저 라이플', 'cooldown':30, 'damup':20, }] )}) io.append({'스킬':({'job':'거너(여)', 'jid':cls.get_jobid('거너(여)', skill_db)}, [{'skillId':cls.get_skillid('거너(여)', '레이저 라이플', skill_db), 'name':'레이저 라이플', 'cooldown':30, 'damup':20, }] )}) """ elif (name == '루나 베네딕티오'): io.append({'스킬':({'job':'마법사(남)','jid':cls.get_jobid('마법사(남)', skill_db)}, [ {'minLevel':50, 'maxLevel':50, 'value':2}, {'minLevel':85, 'maxLevel':85, 'value':2}, {'minLevel':100, 'maxLevel':100, 'value':2}, ] )}) io.append({'스킬':({'job':'마법사(여)','jid':cls.get_jobid('마법사(여)', skill_db)}, [ {'minLevel':50, 'maxLevel':50, 'value':2}, {'minLevel':85, 'maxLevel':85, 'value':2}, {'minLevel':100, 'maxLevel':100, 'value':2}, ] )}) """ elif (name == '메가쇼크 런처'): io.append({'스킬':({'job':'거너(남)', 'jid':cls.get_jobid('거너(남)', skill_db)}, [{'skillId':cls.get_skillid('거너(남)', '솔라 모듈 시스템', skill_db), 'name':'솔라 모듈 시스템', 'damup':20, }] )}) io.append({'스킬':({'job':'거너(여)', 'jid':cls.get_jobid('거너(여)', skill_db)}, [{'skillId':cls.get_skillid('거너(여)', '솔라 모듈 시스템', skill_db), 'name':'솔라 모듈 시스템', 'damup':20, }] )}) elif (name == '백호의 울음소리'): io.append({'스킬':({'job':'격투가(남)', 'jid':cls.get_jobid('격투가(남)', skill_db)}, [{'skillId':cls.get_skillid('격투가(남)', '사자후', skill_db), 'name':'사자후', 'cooldown':30, 'damup':20, }] )}) io.append({'스킬':({'job':'격투가(여)', 'jid':cls.get_jobid('격투가(여)', skill_db)}, [{'skillId':cls.get_skillid('격투가(여)', '사자후', skill_db), 'name':'사자후', 'cooldown':30, 'damup':20, }] )}) elif (name == '불카누스의 두번째 흔적'): io.append({'스킬':({'job':'프리스트(남)', 'jid':cls.get_jobid('프리스트(남)', skill_db)}, [{'skillId':cls.get_skillid('프리스트(남)', '무쌍격', skill_db), 'name':'무쌍격', 'damup':40, }] )}) io.append({'스킬':({'job':'프리스트(여)', 'jid':cls.get_jobid('프리스트(여)', skill_db)}, [{'skillId':cls.get_skillid('프리스트(여)', '참수', skill_db), 'name':'참수', 'damup':40, }] )}) elif (name == '블러드 샷 부스터'): io.append({'스킬':({'job':'거너(여)', 'jid':cls.get_jobid('거너(여)', skill_db)}, [{'skillId':cls.get_skillid('거너(여)', '베일드 컷', skill_db), 'name':'베일드 컷', 'damup':50, 'extra':'출혈' }] )}) elif (name == '사암주극'): io.append({'스킬':({'job':'마창사', 'jid':cls.get_jobid('마창사', skill_db)}, [ {'minLevel':1, 'maxLevel':48, 'value':2, 'cooldown':20}, {'minLevel':60, 'maxLevel':80, 'value':2, 'cooldown':20}, {'minLevel':90, 'maxLevel':95, 'cooldown':20}, {'skillId':cls.get_skillid('마창사', '임팩트 스매쉬', skill_db), 'name':'임팩트 스매쉬', 'cooldown':15, 'extra':'스택'} ] )}) elif (name == '사일런트 베놈'): io.append({'스킬':({'job':'마창사', 'jid':cls.get_jobid('마창사', skill_db)}, [ {'skillId':cls.get_skillid('마창사', '멸광천투', skill_db), 'name':'멸광천투', 'damup':11.4, 'extra':'폭발' } ] )}) elif (name == '기가 드릴러'): io.append({'스킬':({'job':'마창사', 'jid':cls.get_jobid('마창사', skill_db)}, [ {'skillId':cls.get_skillid('마창사', '스파이럴 러쉬', skill_db), 'name':'스파이럴 러쉬', 'damup':31.5, 'extra':'다단히트' }, {'skillId':cls.get_skillid('마창사', '흑광폭살', skill_db), 'name':'흑광폭살', 'damup':14.4, 'extra':'꿰뚫는' }, {'skillId':cls.get_skillid('마창사', '광폭 : 흑화연창', skill_db), 'name':'광폭 : 흑화연창', 'damup':13.5, 'extra':'어둠의 창' } ] )}) elif (name == '끊임없는 환영'): io.append({'스킬':({'job':'마창사', 'jid':cls.get_jobid('마창사', skill_db)}, [ {'skillId':cls.get_skillid('마창사', '미라지 스탠스', skill_db), 'name':'미라지 스탠스', 'cooldown':50, } ] )}) elif (name == '세계수의 뿌리'): io.append({'스킬':({'job':'마법사(남)','jid':cls.get_jobid('마법사(남)', skill_db)}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':10}, ] )}) io.append({'스킬':({'job':'마법사(여)','jid':cls.get_jobid('마법사(여)', skill_db)}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':10}, ] )}) io.append({'스킬':({'job':'크리에이터','jid':cls.get_jobid('크리에이터', skill_db)}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':10}, ] )}) """ elif (name == '야천도'): io.append({'스킬':({'job':'총검사','jid':cls.get_jobid('총검사', skill_db)}, [ {'minLevel':50, 'maxLevel':50, 'value':2, 'extra':'히트맨'}, {'minLevel':85, 'maxLevel':85, 'value':2, 'extra':'히트맨'}, {'minLevel':100, 'maxLevel':100, 'value':2, 'extra':'히트맨'}, ] )}) """ elif (name == '어나이얼레이터'): io.append({'스킬':({'job':'마법사(여)', 'jid':cls.get_jobid('마법사(여)', skill_db)}, [ {'skillId':cls.get_skillid('마법사(여)', '쇄패', skill_db), 'name':'쇄패', 'damup':50, } ] )}) io.append({'스킬':({'job':'마법사(남)', 'jid':cls.get_jobid('마법사(남)', skill_db)}, [ {'skillId':cls.get_skillid('마법사(남)', '팽', skill_db), 'name':'팽', 'damup':50, } ] )}) elif (name == '윤회의 고리 : 환룡'): io.append({'스킬':({'job':'프리스트(남)', 'jid':cls.get_jobid('프리스트(남)', skill_db)}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':10}, {'minLevel':48, 'maxLevel':80, 'value':1}, ] )}) io.append({'스킬':({'job':'프리스트(여)', 'jid':cls.get_jobid('프리스트(여)', skill_db)}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':10}, {'minLevel':48, 'maxLevel':80, 'value':1}, ] )}) elif (name == '카심의 대검'): io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':48, 'cooldown':20}, {'minLevel':60, 'maxLevel':80, 'cooldown':20}, {'minLevel':90, 'maxLevel':95, 'cooldown':20}, ] )}) """ elif (name == '통곡의 수문장'): io.append({'스킬':({'job':'마창사','jid':cls.get_jobid('마창사', skill_db)}, [ {'minLevel':50, 'maxLevel':50, 'value':2, 'extra':'워로드'}, {'minLevel':85, 'maxLevel':85, 'value':2, 'extra':'워로드'}, {'minLevel':100, 'maxLevel':100, 'value':2, 'extra':'워로드'}, ] )}) elif (name == '대 마법사 [???]의 로브'): io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':45, 'value':1}, ] )}) elif (name == '마법사 [???]의 로브'): io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':45, 'value':1}, ] )}) """ elif step == 3 and name == '개악 : 지옥의 길 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':85, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] )}) elif step == 5 and name == '열대의 트로피카 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':15}, ] )}) io.append({'공속':5, 'condition':{'type':'착용', 'required':['트로피카:리치']}}) io.append({'공속':5, 'condition':{'type':'착용', 'required':['트로피카:드레이크']}}) elif step == 5 and name == '잊혀진 마법사의 유산 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':85, 'value':2}, {'minLevel':100, 'maxLevel':100, 'value':2}, ] )}) elif step == 5 and name == 'A.D. P 슈트 세트': for opts in io: if '스공' in opts: #opts['스공'] *= 0.5 pass elif '공속' in opts: opts['공속'] *= 0.5 opts['이속'] *= 0.5 opts['캐속'] *= 0.5 """ elif name == '낭만적인 선율의 왈츠' or name == '우아한 선율의 왈츠': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':45, 'cooldown':10}, ] )}) elif name == '격렬한 스텝의 자이브': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':30, 'cooldown':15}, ] )}) elif name == '즉흥적인 감각의 탱고': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':75, 'maxLevel':80, 'cooldown':15}, ] )}) elif name == '매혹적인 리듬의 룸바': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':35, 'maxLevel':45, 'cooldown':15}, ] )}) elif name == '정열적인 흐름의 삼바': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':60, 'maxLevel':70, 'cooldown':15}, ] )}) """ elif step == 5 and name == '베테랑 군인의 정복 세트': io.pop(1) io[1] = {'추댐': 29} elif step == 3 and name == '전설의 대장장이 - 역작 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':48, 'cooldown':20}, {'minLevel':60, 'maxLevel':80, 'cooldown':20}, ] )}) elif step == 5 and name == '전설의 대장장이 - 역작 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':50, 'maxLevel':50, 'cooldown':30}, {'minLevel':85, 'maxLevel':85, 'cooldown':30}, {'minLevel':100, 'maxLevel':100, 'cooldown':17}, ] )}) elif step == 3 and name == '구속의 가시덩굴 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':48, 'cooldown':15}, {'minLevel':60, 'maxLevel':80, 'cooldown':15}, {'minLevel':90, 'maxLevel':95, 'cooldown':15}, ] )}) elif step == 5 and name == '구속의 가시덩굴 세트': io.append({'이속':-2}) elif step == 3 and name == '선택의 기로 세트': for opts in io: if '공속' in opts.keys(): if '증감' in opts.keys(): opts['공속'] = opts['이속'] = opts['캐속'] = 0 else: opts['공속'] = opts['이속'] = 14 opts['캐속'] = 21 elif (name == '지체없는 흐름의 한뉘' or name == '영명한 세상의 순환') and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':45, 'maxLevel':45, 'damdown':30, 'coolrecover':100}, ] )}) io.append({'스킬':({'job':'크리에이터', 'jid':cls.get_jobid('크리에이터', skill_db)}, [ {'skillId':cls.get_skillid('크리에이터', '웜홀', skill_db), 'name':'웜홀', 'coolrecover':100, 'damdown':30 } ] )}) elif name == '지체없는 흐름의 미리내' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':25, 'maxLevel':25, 'damdown':30, 'coolrecover':100} ] )}) elif name == '지체없는 흐름의 마루' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':35, 'maxLevel':35, 'damdown':30, 'coolrecover':100} ] )}) elif name == '지체없는 흐름의 가람' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':40, 'maxLevel':40, 'damdown':30, 'coolrecover':100} ] )}) elif name == '지체없는 흐름의 바람' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':30, 'maxLevel':30, 'damdown':30, 'coolrecover':100} ] )}) """ elif step == 2 and name == '영원한 흐름의 길 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':60, 'maxLevel':60, 'damup':20, 'coolup':30} ] )}) elif step == 3 and name == '영원한 흐름의 길 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':70, 'maxLevel':70, 'damup':20, 'coolup':30} ] )}) """ elif name == '임의 선택' and step < 0: for opts in io: for key in opts: if key in ['증추', '크증추', '모공', '물마독공', '스공']: opts[key] *= 0.2 elif name == '합리적 선택' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':50, 'maxLevel':50, 'damup':25}, {'minLevel':85, 'maxLevel':85, 'damup':45}, {'minLevel':100, 'maxLevel':100, 'damup':13}, ] )}) elif step == 3 and name == '먼동 틀 무렵 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':100, 'maxLevel':100, 'value':1}, ] )}) elif step == 3 and name == '행운의 트라이앵글 세트': for opts in io: if '스공' in opts.keys(): if opts['스공'] == 27: opts['스공'] = 27*0.5 + 31*0.45 + 34*0.05 elif opts['스공'] == 31: #opts['스공'] = 0 del opts['스공'] else: #opts['스공'] = 0 del opts['스공'] elif step == 2 and name == '고대의 술식 세트': for opts in io: if '이속' in opts.keys(): opts['이속'] /= 12 elif (name == '새벽을 녹이는 따스함' or name == '새벽을 감싸는 따스함') and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ #{'minLevel':1, 'maxLevel':48, 'value':1}, {'minLevel':15, 'maxLevel':30, 'coolrecover':30}, ] )}) elif name == '달빛을 가두는 여명' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ #{'minLevel':50, 'maxLevel':70, 'value':1}, {'minLevel':35, 'maxLevel':45, 'coolrecover':30}, ] )}) elif name == '고요를 머금은 이슬' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ #{'minLevel':75, 'maxLevel':85, 'value':1}, {'minLevel':60, 'maxLevel':80, 'coolrecover':30}, ] )}) elif step == 3 and name == '정령사의 장신구 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':10}, ] )}) elif step == 3 and name == '영보 : 세상의 진리 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ #{'minLevel':1, 'maxLevel':85, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] )}) elif name == '종말의 시간' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':100, 'cooldown':12}, ] )}) elif name == '전자기 진공관' and step < 0: for opts in io: if '추댐' in opts.keys(): opts['condition'] = {'type':'착용', 'required':['제어회로모듈']} elif '모속강' in opts.keys(): opts['condition'] = {'type':'착용', 'required':['에너지분배제어기']} elif name == '플라즈마 초 진공관' and step < 0: for opts in io: if '추댐' in opts.keys(): opts['이속'] = 10 opts['condition'] = {'type':'착용', 'required':['제어회로모듈']} opts['모속저'] = 20 elif '모속강' in opts.keys(): opts['condition'] = {'type':'착용', 'required':['에너지분배제어기']} elif step == 2 and name == '심연을 엿보는 자 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':48, 'value':1}, ] ), 'condition':{'type':'암속저','per-val':28, 'max':2} }) elif step == 3 and name == '심연을 엿보는 자 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':60, 'maxLevel':80, 'value':1}, ] ), 'condition':{'type':'암속저','per-val':30, 'max':2} }) io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':50, 'maxLevel':50, 'value':1}, {'minLevel':85, 'maxLevel':85, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] ), 'condition':{'type':'암속저','per-val':61, 'max':None} }) elif name == '길 안내자의 계절' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':48, 'cooldown':10}, {'minLevel':60, 'maxLevel':80, 'cooldown':10}, {'minLevel':90, 'maxLevel':95, 'cooldown':10}, ] ), '이속':10, }) elif step == 3 and name == '황혼의 여행자 세트': io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':48, 'cooldown':10}, {'minLevel':60, 'maxLevel':80, 'cooldown':10}, {'minLevel':90, 'maxLevel':95, 'cooldown':10}, ] )}) elif name == '시간에 휩쓸린 물소 각반' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':60, 'maxLevel':80, 'cooldown':10}, ] )}) elif name == '시간을 거스르는 자침' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':50, 'maxLevel':50, 'cooldown':15}, {'minLevel':85, 'maxLevel':85, 'cooldown':15}, ] )}) elif name == '시간을 가리키는 지침' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':50, 'maxLevel':50, 'cooldown':10}, {'minLevel':85, 'maxLevel':85, 'cooldown':10}, ] )}) elif name == '시간에 갇혀버린 모래' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':45, 'cooldown':10}, ] )}) elif name == '나락으로 빠진 발' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':90, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] ), 'condition':{'type':'암속저','per-val':16, 'max':None} }) elif name == '차원을 걷는 물소 부츠' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':1, 'maxLevel':45, 'value':1}, ] )}) elif name == '차원을 지나는 자의 인장' and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':60, 'maxLevel':80, 'value':1}, ] )}) elif (name == '차원을 관통하는 초신성' or name == '차원을 맴도는 혜성') and step < 0: io.append({'스킬':({'job':'공통', 'jid':None}, [ {'minLevel':50, 'maxLevel':50, 'value':1}, {'minLevel':85, 'maxLevel':85, 'value':1}, {'minLevel':100, 'maxLevel':100, 'value':1}, ] )}) elif (name == '무너진 세상의 슬픔' or name == '광란을 품은 자의 종막' or name == '슬픔을 담은 운명') and step < 0: for opts in io: if '추댐' in opts.keys(): if opts['추댐'] == 8 or opts['추댐'] == 12: opts['추댐'] = 0 elif name == '아린 고통의 비극' and step < 0: for opts in io: if '추댐' in opts.keys(): opts['추댐'] = 5.5 elif name == '천상의 날개' and step < 0: io.append({'이속':25}) elif step == 3 and name == "열대의 트로피카 세트": io.append({'이속':5, 'condition':{'type':'착용', 'required':['트로피카:리치']}}) elif step == 5 and name == "메마른 사막의 유산 세트": for opts in io: if '스공' in opts.keys() and opts['스공'] == 4: opts['스공'] = 1 elif name in ['전쟁의 시작', '오퍼레이션 델타', '퀘이크 프론', '전장의 매', '데파르망'] and iid is not None: try: io.pop(0) except: #print (name, io, explain, iid) pass elif name == '종말의 역전' and step < 0: for opts in io: if '물마독공' in opts.keys(): opts['물마독공'] *= -1 return io @classmethod def get_jobid(self, name, skill_db): for jid in skill_db.keys(): if skill_db[jid]['name'] == name: return jid @classmethod def get_skillid(self, jobname, skillname, skill_db): for jid in skill_db.keys(): if skill_db[jid]['name'] == jobname: break for gid in skill_db[jid].keys(): if gid == 'name': continue for skill in skill_db[jid][gid]['skills']: if skill['name'] == skillname: return skill['skillId'] """ @classmethod def parse_stats(cls, stats, io): for stat in stats: s = stat['name'].replace(' ','').replace('캐스팅', '캐스트') if s in item_stat_type: v = stat['value'] print (s, ":", v, None) io.append({s:(v, None)}) #else: #io.append({'미분류s':s}) return io """ @classmethod def build_single_item(cls, ids, skill_db, item_db, runtime = True): item_ids = ','.join(ids) url = "multi/items?itemIds=" + item_ids + "&" item_dict = cls.load_api(url) #with open("item_dict.json", "w") as f: #json.dump(item_dict, f) for cur in item_dict['rows']: item_id = cur['itemId'] name = cur['itemName'] itype = cur['itemType'] ityped = cur['itemTypeDetail'] igrade = cur['itemRarity'] remodel = cur.get('remodelInfo') transform = cur.get('transformInfo') siroco = cur.get('sirocoInfo') status = cur.get('itemStatus') if runtime is False: if itype == '무기': if cls.weapon_tree.get(itype) is None: cls.weapon_tree[itype] = {} cls.weapon_tree[itype][ityped] = {} else: if cls.weapon_tree[itype].get(ityped) is None: cls.weapon_tree[itype][ityped] = {} cls.weapon_tree[itype][ityped][item_id] = {'name': name, 'rarity': igrade, 'status': status, 'type': ityped} if remodel is not None: cls.weapon_tree[itype][ityped][item_id]['remodel'] = True if transform is not None: cls.weapon_tree[itype][ityped][item_id]['upgrade'] = True else: cls.weapon_tree[itype][ityped][item_id]['upgrade'] = False else: cls.weapon_tree[itype][ityped][item_id]['remodel'] = False cls.weapon_tree[itype][ityped][item_id]['upgrade'] = False elif cur.get('setItemId') is None and remodel is not None: if ityped[0] == '천': if cls.item_tree.get(ityped) is None: cls.item_tree[ityped] = {} if transform is not None: upgr = True else: upgr = False cls.item_tree[ityped][item_id] = {'name': name, 'rarity': igrade, 'remodel': True, 'upgr': upgr} elif cur.get('setItemId') is None and siroco is not None: _name = name.replace(' ', '').split(':')[1] setName = _name.split('의')[0] if ityped.find(' ') >= 0: slot = ityped.split(' ')[1] else: slot = ityped if cls.set_tree.get(setName) is None: cls.set_tree[setName] = {'name': setName, 'itemList': {}} cls.set_tree[setName]['itemList'][slot] = {'name': name, 'rarity': igrade, 'id': item_id} elif ityped == '칭호': if cls.set_tree.get(ityped) is None: cls.set_tree[ityped] = {'name': ityped, 'itemList':[]} cls.set_tree[ityped]['itemList'].append({'name': name, 'rarity': igrade, 'id': item_id}) item = {} item['name'] = name item['options'] = [] item['buffopts'] = [] #print(name) explain = cur['itemExplainDetail'] #e_origin_list = explain.split('\n') #item['origin'] = e_origin_list """ if remodel is not None: step_mode = -1 else: step_mode = -2 """ cls.parse_explain(explain, item['options'], name, skill_db, step = -1, iid = item_id) if explain.find("파티원이 2명") >= 0: item['synergy'] = {'깡스탯': 10} buffopt = cur.get('itemBuff') if buffopt is not None: buffexplain = buffopt['explain'] cls.parse_buff(buffexplain, item['buffopts'], name, skill_db, step = -1) skills = buffopt.get('reinforceSkill') if skills is not None and len(skills) > 0: for skill in skills[0]['skills']: if skill['name'] in ['마리오네트', '아포칼립스', '크럭스 오브 빅토리아']: odata = {'포레벨':skill['value']} elif skill['name'] in ['영광의 축복', '용맹의 축복', '금단의 저주']: odata = {'축레벨':skill['value']} elif skill['name'] in ['소악마', '신실한 열정', '신념의 오라']: odata = {'오라레벨':skill['value']} else: print(skills) odata = None #raise Exception if odata is not None: item['buffopts'].append(odata) skills = cur.get('itemReinforceSkill') if skills is not None: for s in skills: e = [] try: v = {'job':s['jobName'], 'jid':s['jobId']} if 'levelRange' in s.keys(): for r in s['levelRange']: e.append(r) if 'skills' in s.keys(): for r in s['skills']: e.append(r) except: #print(item_id) #print(skills) raise item['options'].append({'스킬':(v, e)}) #remodel = cur.get('remodelInfo') if remodel is not None: _explain = remodel['explain'].split('버퍼 전용') explain = _explain[0] if len(_explain) == 2: buffExplain = _explain[1] else: buffExplain = None cls.parse_explain(explain, item['options'], name, skill_db) if buffExplain is not None: cls.parse_buff(buffExplain, item['buffopts'], name, skill_db, step = 10) explain = explain.replace('\n(', '(') #e_origin_list = explain.split('\n') #item['remodel_origin'] = e_origin_list if remodel['stepInfo'] is not None: for step in remodel['stepInfo']: _explain = step.get('explainDetail') if _explain is None: _explain = step.get('explain') _explain = _explain.split("버퍼 전용") explain = _explain[0] if len(_explain) == 2: buffExplain = _explain[1] else: buffExplain = None #print(explain) stepinfo = {} """ if step.get('transform') is True: #_explain = explain.replace('%', '') #print(explain, name, item_id) try: expRange = re.findall(r'\(.*?\)', explain)[0][1:-1] _explain_prefix = explain.split('(')[0] _explain_postfix = explain.split(')')[1] if expRange.find('~') < 0: raise Exception except: __explain_prefix = [] __explain_postfix = [] expRange_list = explain.split(' ') pre = True for expr in expRange_list: if expr.find('~') >= 0 and pre is True: expRange = expr pre = False elif pre is True: __explain_prefix.append(expr) else: __explain_postfix.append(expr) _explain_prefix = ' '.join(__explain_prefix) _explain_postfix = ' '.join(__explain_postfix) #print(expRange) expRange = expRange.split('~') #range_min = int(expRange[0]) #range_max = int(expRange[1]) range_max = expRange[1] explain = _explain_prefix + range_max + _explain_postfix stepinfo['transform'] = True """ if step.get('transform') is None: stepinfo['step'] = step['step'] stepinfo['options'] = [] cls.parse_explain(explain, stepinfo['options'], name, skill_db, step = step['step']) #e_origin_list = explain.split('\n') #stepinfo['origin'] = e_origin_list if buffExplain is not None: stepinfo['buffopts'] = [] cls.parse_buff(buffExplain, stepinfo['buffopts'], name, skill_db, step = step['step']) item['options'].append(stepinfo) """ transform = cur.get('transformInfo') if transform is not None: explain = transform['explain'] topt = [] if explain.find('모든 직업') >= 0: topt.append({'각성기':2}) else: if name == '데파르망': cls.parse_explain(transform['explainDetail'], topt, name, skill_db, step = -2, iid = item_id) else: cls.parse_explain(explain, topt, name, skill_db, step = -2, iid = item_id) item['options'].append({'transform': topt}) """ itemStatus = cur.get('itemStatus') if itemStatus is not None and len(itemStatus) > 0: item['status'] = itemStatus mythInfo = cur.get('mythologyInfo') if mythInfo is not None: cls.myth_db[item_id] = {'name':name, 'options':[], 'buffOptions':[]} mopt = mythInfo['options'] for o in mopt: mexp = o['explain'] fexp = re.sub('\d', '*', mexp) mexpd = o['explainDetail'] expRange = re.findall(r'\(.*?\)', mexpd)[0][1:-1] expRange = expRange.split('~') range_min = expRange[0] range_max = expRange[1] cls.myth_db[item_id]['options'].append({'explain':fexp, 'min':range_min, 'max':range_max}) mexp = o['buffExplain'] fexp = mexp[:2] + re.sub('\d', '*', mexp[2:]) mexpd = o['buffExplainDetail'] expRange = re.findall(r'\(.*?\)', mexpd)[0][1:-1] expRange = expRange.split('~') range_min = expRange[0] range_max = expRange[1] cls.myth_db[item_id]['buffOptions'].append({'explain':fexp, 'min':range_min, 'max':range_max}) item_db[item_id] = item @classmethod def build_set_option(cls, sid, sname, options, skill_db, set_db): sopt = {} sopt['name'] = sname #print(sname) for option in options: n = option['optionNo'] sopt[str(n)] = {} sopt[str(n)]['options'] = [] sopt[str(n)]['buffopts'] = [] if 'detailExplain' in option.keys(): explain = option['detailExplain'] else: explain = option.get('explain') #print(n, explain) if explain is not None: cls.parse_explain(explain, sopt[str(n)]['options'], sname, skill_db, step = n) if explain.find("2명 이상인 경우") >= 0: #explain = explain.split("2명 이상인 경우")[1] sopt[str(n)]['synergy'] = sname + '|' + str(n) itemStatus = option.get('status') if itemStatus is not None and len(itemStatus) > 0: sopt[str(n)]['status'] = itemStatus #for stat in itemStatus: # if stat['name'] in ['지능', '체력', '정신력', '암속성저항']: # sopt[str(n)]['status'].append(stat) skill = option.get('reinforceSkill') #if skill is not None: # print ('스킬옵션있음', skill) buffopt = option.get('itemBuff') if buffopt is not None or (sname == '전설의 대장장이 - 역작 세트' and n == 5): try: buffexplain = buffopt['explain'] isreturn = False except: buffexplain = "" isreturn = True cls.parse_buff(buffexplain, sopt[str(n)]['buffopts'], sname, skill_db, step = n) if isreturn is True: continue skills = buffopt.get('reinforceSkill') if skills is not None and len(skills) > 0: lv30 = False lv50 = False lv45 = False for skill in skills: if skill.get('skills') is not None: for skill in skill['skills']: if skill['name'] in ['마리오네트', '아포칼립스', '크럭스 오브 빅토리아']: if lv50 is False: sopt[str(n)]['buffopts'].append({'포레벨':skill['value']}) lv50 = True elif skill['name'] in ['영광의 축복', '용맹의 축복', '금단의 저주']: if lv30 is False: sopt[str(n)]['buffopts'].append({'축레벨':skill['value']}) lv30 = True elif skill['name'] in ['소악마', '신실한 열정', '신념의 오라']: if lv45 is False: sopt[str(n)]['buffopts'].append({'오라레벨':skill['value']}) lv45 = True else: print(skills) raise Exception elif skill.get('levelRange') is not None: for lvRange in skill['levelRange']: min_lv = int(lvRange['minLevel']) max_lv = int(lvRange['maxLevel']) lvup = int(lvRange['value']) data = {'min':min_lv, 'max':max_lv, 'lvup':lvup} sopt[str(n)]['buffopts'].append({'스킬구간': data}) else: pass #print(sname) #e_origin_list = explain.split('\n') #sopt[str(n)].append({'origin':e_origin_list}) #stats = option.get('status') #if stats is not None: # self.parse_stats(stats, sopt[str(n)]) #print("") set_db[sid] = sopt #수동 작업 목록 #아린 혈관파열 #시간자침(신화) 쿨초 #세계수의 뿌리 쿨초 #print(self.set_db) @classmethod def do_build_set_item(cls, setId, name, skill_db, item_db, set_db, runtime = True): url = "setitems/" + setId + "?" s_info = cls.load_api(url) sitems = s_info['setItems'] soptions = s_info['setItemOption'] if runtime is False: cls.set_tree[setId] = {'name': name, 'itemList': {}} ids = [] for cur in sitems: #print (item['itemName']) if runtime is False: iname = cur['itemName'] islot = cur['slotName'] url = "items?itemName="+urlparse.quote(iname)+"&" try: i_search = cls.load_api(url) except: raise try: if len(i_search['rows']) > 5: mat_count = {'천':0, '가죽':0, '중갑':0, '경갑':0, '판금':0} for ilist in i_search['rows']: _ityped = ilist['itemTypeDetail'] ityped = _ityped.split(' ')[0] mat_count[ityped] += 1 if max(mat_count.values()) == 2: oritype = '판' else: for k, v in mat_count.items(): if v == 3: oritype = k[0] else: oritype = None for ilist in i_search['rows']: itemId = ilist['itemId'] igrade = ilist['itemRarity'] ityped = ilist['itemTypeDetail'] if igrade == '신화': url = 'items/' + itemId + '?' itemDetail = cls.load_api(url) status = itemDetail.get('itemStatus') cls.set_tree[setId]['itemList']['신화'] = {'name': iname, 'rarity': igrade, 'id':itemId, 'slot':islot} else: if oritype is not None: if oritype == ityped[0]: url = 'items/' + itemId + '?' itemDetail = cls.load_api(url) remodel = itemDetail.get('remodelInfo') transform = itemDetail.get('transformInfo') status = itemDetail.get('itemStatus') if remodel is not None: if transform is not None: cls.set_tree[setId]['itemList']['업글산물-' + islot] = {'name': iname, 'rarity': igrade, 'id':itemId, 'status':status} else: cls.set_tree[setId]['itemList']['산물-' + islot] = {'name': iname, 'rarity': igrade, 'id':itemId, 'status':status} else: cls.set_tree[setId]['itemList'][islot] = {'name': iname, 'rarity': igrade, 'id':itemId, 'status':status} else: url = 'items/' + itemId + '?' itemDetail = cls.load_api(url) remodel = itemDetail.get('remodelInfo') transform = itemDetail.get('transformInfo') status = itemDetail.get('itemStatus') if remodel is not None: if transform is not None: cls.set_tree[setId]['itemList']['업글산물-' + islot] = {'name': iname, 'rarity': igrade, 'id':itemId, 'status':status} else: cls.set_tree[setId]['itemList']['산물-' + islot] = {'name': iname, 'rarity': igrade, 'id':itemId, 'status':status} else: cls.set_tree[setId]['itemList'][islot] = {'name': iname, 'rarity': igrade, 'id':itemId, 'status':status} #print(ilist['itemName'], itemId) ids.append(itemId) if len(ids) >= 15: cls.build_single_item(ids, skill_db, item_db, runtime = False) ids = [] except: print(ilist) raise if len(ids) > 0: cls.build_single_item(ids, skill_db, item_db, runtime = False) cls.build_set_option(setId, name, soptions, skill_db, set_db) retId = setId return retId @classmethod def build_set_item(cls, name, skill_db, item_db, set_db, runtime = True): url = "setitems?setItemName="+urlparse.quote(name)+"&" #print(url) retId = None try: s_search = cls.load_api(url) print(s_search) except: url = "setitems?setItemName="+urlparse.quote(name)+"&wordType=full&" s_search = cls.load_api(url) #print(s_search) raise try: for slist in s_search['rows']: setId = slist['setItemId'] retId = cls.do_build_set_item(setId, name, skill_db, item_db, set_db, runtime) except: #print(slist) raise return retId
40.927415
158
0.366339
7946fe2aeb47cc09a8bde3d964fb24ca01ff4a2d
6,562
py
Python
modules/audio_processing/test/py_quality_assessment/apm_quality_assessment_optimize.py
Aexyn/webrtc2
daea5bf2deb843567a792f22ea2047a037e09d78
[ "DOC", "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
modules/audio_processing/test/py_quality_assessment/apm_quality_assessment_optimize.py
modulesio/webrtc
ea143e774b4c00a74b617f272f5a8f71169cf24e
[ "DOC", "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
modules/audio_processing/test/py_quality_assessment/apm_quality_assessment_optimize.py
modulesio/webrtc
ea143e774b4c00a74b617f272f5a8f71169cf24e
[ "DOC", "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python # Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. """Finds the APM configuration that maximizes a provided metric by parsing the output generated apm_quality_assessment.py. """ from __future__ import division import collections import logging import os import quality_assessment.data_access as data_access import quality_assessment.collect_data as collect_data def _InstanceArgumentsParser(): """Arguments parser factory. Extends the arguments from 'collect_data' with a few extra for selecting what parameters to optimize for. """ parser = collect_data.InstanceArgumentsParser() parser.description = ( 'Rudimentary optimization of a function over different parameter' 'combinations.') parser.add_argument('-n', '--config_dir', required=False, help=('path to the folder with the configuration files'), default='apm_configs') parser.add_argument('-p', '--params', required=True, nargs='+', help=('parameters to parse from the config files in' 'config_dir')) parser.add_argument('-z', '--params_not_to_optimize', required=False, nargs='+', default=[], help=('parameters from `params` not to be optimized for')) return parser def _ConfigurationAndScores(data_frame, params, params_not_to_optimize, config_dir): """Returns a list of all configurations and scores. Args: data_frame: A pandas data frame with the scores and config name returned by _FindScores. params: The parameter names to parse from configs the config directory params_not_to_optimize: The parameter names which shouldn't affect the optimal parameter selection. E.g., fixed settings and not tunable parameters. config_dir: Path to folder with config files. Returns: Dictionary of the form {param_combination: [{params: {param1: value1, ...}, scores: {score1: value1, ...}}]}. The key `param_combination` runs over all parameter combinations of the parameters in `params` and not in `params_not_to_optimize`. A corresponding value is a list of all param combinations for params in `params_not_to_optimize` and their scores. """ results = collections.defaultdict(list) config_names = data_frame['apm_config'].drop_duplicates().values.tolist() score_names = data_frame['eval_score_name'].drop_duplicates().values.tolist() # Normalize the scores normalization_constants = {} for score_name in score_names: scores = data_frame[data_frame.eval_score_name == score_name].score normalization_constants[score_name] = max(scores) params_to_optimize = [p for p in params if p not in params_not_to_optimize] param_combination = collections.namedtuple("ParamCombination", params_to_optimize) for config_name in config_names: config_json = data_access.AudioProcConfigFile.Load( os.path.join(config_dir, config_name + ".json")) scores = {} data_cell = data_frame[data_frame.apm_config == config_name] for score_name in score_names: data_cell_scores = data_cell[data_cell.eval_score_name == score_name].score scores[score_name] = sum(data_cell_scores) / len(data_cell_scores) scores[score_name] /= normalization_constants[score_name] result = {'scores': scores, 'params': {}} config_optimize_params = {} for param in params: if param in params_to_optimize: config_optimize_params[param] = config_json['-' + param] else: result['params'][param] = config_json['-' + param] current_param_combination = param_combination( # pylint: disable=star-args **config_optimize_params) results[current_param_combination].append(result) return results def _FindOptimalParameter(configs_and_scores, score_weighting): """Finds the config producing the maximal score. Args: configs_and_scores: structure of the form returned by _ConfigurationAndScores score_weighting: a function to weight together all score values of the form [{params: {param1: value1, ...}, scores: {score1: value1, ...}}] into a numeric value Returns: the config that has the largest values of |score_weighting| applied to its scores. """ min_score = float('+inf') best_params = None for config in configs_and_scores: scores_and_params = configs_and_scores[config] current_score = score_weighting(scores_and_params) if current_score < min_score: min_score = current_score best_params = config logging.debug("Score: %f", current_score) logging.debug("Config: %s", str(config)) return best_params def _ExampleWeighting(scores_and_configs): """Example argument to `_FindOptimalParameter` Args: scores_and_configs: a list of configs and scores, in the form described in _FindOptimalParameter Returns: numeric value, the sum of all scores """ res = 0 for score_config in scores_and_configs: res += sum(score_config['scores'].values()) return res def main(): # Init. # TODO(alessiob): INFO once debugged. logging.basicConfig(level=logging.DEBUG) parser = _InstanceArgumentsParser() args = parser.parse_args() # Get the scores. src_path = collect_data.ConstructSrcPath(args) logging.debug('Src path <%s>', src_path) scores_data_frame = collect_data.FindScores(src_path, args) all_scores = _ConfigurationAndScores(scores_data_frame, args.params, args.params_not_to_optimize, args.config_dir) opt_param = _FindOptimalParameter(all_scores, _ExampleWeighting) logging.info('Optimal parameter combination: <%s>', opt_param) logging.info('It\'s score values: <%s>', all_scores[opt_param]) if __name__ == "__main__": main()
36.455556
80
0.674489
7946fffaba9c93c4ec0138fc131478b28bfaf59f
89
py
Python
run.py
rabramley/telomere
e0246c0be18ce0b7e9d4ca88999626a005fede80
[ "MIT" ]
null
null
null
run.py
rabramley/telomere
e0246c0be18ce0b7e9d4ca88999626a005fede80
[ "MIT" ]
null
null
null
run.py
rabramley/telomere
e0246c0be18ce0b7e9d4ca88999626a005fede80
[ "MIT" ]
null
null
null
#!/usr/bin/env python from app import telomere telomere.run(host='0.0.0.0', debug=True)
17.8
40
0.719101
7947013d8121bc25db6fbfdeec8607b6be530f9c
409
py
Python
iioy/movies/models/movie_rating.py
tizz98/iioy-v4
64d12fafb3c758f8291c6f577aba203932c44cbd
[ "MIT" ]
null
null
null
iioy/movies/models/movie_rating.py
tizz98/iioy-v4
64d12fafb3c758f8291c6f577aba203932c44cbd
[ "MIT" ]
2
2020-06-05T18:23:54.000Z
2021-03-19T22:02:23.000Z
iioy/movies/models/movie_rating.py
tizz98/iioy-v4
64d12fafb3c758f8291c6f577aba203932c44cbd
[ "MIT" ]
null
null
null
from django.db import models from django_extensions.db.models import TimeStampedModel class MovieRating(TimeStampedModel): source = models.TextField() value = models.TextField() movie = models.ForeignKey( to='movies.Movie', related_name='ratings', on_delete=models.CASCADE, ) def __str__(self): return f'{self.value} via {self.source} for {self.movie}'
24.058824
65
0.679707
79470150321b5821c928d9445069d9847b8e8d1d
4,631
py
Python
test/functional/combine_logs.py
anandhu-here/chuckrum
f2a734745e752cda50f5556cded7a713d969f4bc
[ "MIT" ]
null
null
null
test/functional/combine_logs.py
anandhu-here/chuckrum
f2a734745e752cda50f5556cded7a713d969f4bc
[ "MIT" ]
1
2021-07-12T07:38:58.000Z
2021-07-12T07:38:58.000Z
test/functional/combine_logs.py
anandhu-here/chuckrum
f2a734745e752cda50f5556cded7a713d969f4bc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Combine logs from multiple chuckrum nodes as well as the test_framework log. This streams the combined log output to stdout. Use combine_logs.py > outputfile to write to an outputfile.""" import argparse from collections import defaultdict, namedtuple import heapq import itertools import os import re import sys # Matches on the date format at the start of the log event TIMESTAMP_PATTERN = re.compile(r"^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{6}Z") LogEvent = namedtuple('LogEvent', ['timestamp', 'source', 'event']) def main(): """Main function. Parses args, reads the log files and renders them as text or html.""" parser = argparse.ArgumentParser(usage='%(prog)s [options] <test temporary directory>', description=__doc__) parser.add_argument('-c', '--color', dest='color', action='store_true', help='outputs the combined log with events colored by source (requires posix terminal colors. Use less -r for viewing)') parser.add_argument('--html', dest='html', action='store_true', help='outputs the combined log as html. Requires jinja2. pip install jinja2') args, unknown_args = parser.parse_known_args() if args.color and os.name != 'posix': print("Color output requires posix terminal colors.") sys.exit(1) if args.html and args.color: print("Only one out of --color or --html should be specified") sys.exit(1) # There should only be one unknown argument - the path of the temporary test directory if len(unknown_args) != 1: print("Unexpected arguments" + str(unknown_args)) sys.exit(1) log_events = read_logs(unknown_args[0]) print_logs(log_events, color=args.color, html=args.html) def read_logs(tmp_dir): """Reads log files. Delegates to generator function get_log_events() to provide individual log events for each of the input log files.""" files = [("test", "%s/test_framework.log" % tmp_dir)] for i in itertools.count(): logfile = "{}/node{}/regtest/debug.log".format(tmp_dir, i) if not os.path.isfile(logfile): break files.append(("node%d" % i, logfile)) return heapq.merge(*[get_log_events(source, f) for source, f in files]) def get_log_events(source, logfile): """Generator function that returns individual log events. Log events may be split over multiple lines. We use the timestamp regex match as the marker for a new log event.""" try: with open(logfile, 'r', encoding='utf-8') as infile: event = '' timestamp = '' for line in infile: # skip blank lines if line == '\n': continue # if this line has a timestamp, it's the start of a new log event. time_match = TIMESTAMP_PATTERN.match(line) if time_match: if event: yield LogEvent(timestamp=timestamp, source=source, event=event.rstrip()) event = line timestamp = time_match.group() # if it doesn't have a timestamp, it's a continuation line of the previous log. else: event += "\n" + line # Flush the final event yield LogEvent(timestamp=timestamp, source=source, event=event.rstrip()) except FileNotFoundError: print("File %s could not be opened. Continuing without it." % logfile, file=sys.stderr) def print_logs(log_events, color=False, html=False): """Renders the iterator of log events into text or html.""" if not html: colors = defaultdict(lambda: '') if color: colors["test"] = "\033[0;36m" # CYAN colors["node0"] = "\033[0;34m" # BLUE colors["node1"] = "\033[0;32m" # GREEN colors["node2"] = "\033[0;31m" # RED colors["node3"] = "\033[0;33m" # YELLOW colors["reset"] = "\033[0m" # Reset font color for event in log_events: print("{0} {1: <5} {2} {3}".format(colors[event.source.rstrip()], event.source, event.event, colors["reset"])) else: try: import jinja2 except ImportError: print("jinja2 not found. Try `pip install jinja2`") sys.exit(1) print(jinja2.Environment(loader=jinja2.FileSystemLoader('./')) .get_template('combined_log_template.html') .render(title="Combined Logs from testcase", log_events=[event._asdict() for event in log_events])) if __name__ == '__main__': main()
40.269565
196
0.618657
7947034c6b0d8b6a09cf2c5f960cd4da1240c1a9
2,925
py
Python
driving_kalman.py
mihaigalos/DrivingKalman
c6bff74d1c7cd1994fe941a5a95a3a0e260c00d1
[ "MIT" ]
null
null
null
driving_kalman.py
mihaigalos/DrivingKalman
c6bff74d1c7cd1994fe941a5a95a3a0e260c00d1
[ "MIT" ]
null
null
null
driving_kalman.py
mihaigalos/DrivingKalman
c6bff74d1c7cd1994fe941a5a95a3a0e260c00d1
[ "MIT" ]
null
null
null
# Adapted from https://stackoverflow.com/questions/47210512/using-pykalman-on-raw-acceleration-data-to-calculate-position # on dataset from https://github.com/mmalekzadeh/motion-sense from pykalman import KalmanFilter import numpy as np import matplotlib.pyplot as plt from numpy import genfromtxt AccX_HP = genfromtxt('driving_accelerometer_x_data.csv', delimiter=',') Time = [i for i in range(len(AccX_HP))] # Data description # Time # AccX_HP - high precision acceleration signal # AccX_LP - low precision acceleration signal # RefPosX - real position (ground truth) # RefVelX - real velocity (ground truth) # switch between two acceleration signals use_HP_signal = 1 if use_HP_signal: AccX_Value = AccX_HP AccX_Variance = 0.0007 else: AccX_Value = AccX_LP AccX_Variance = 0.0020 # time step dt = 0.01 # transition_matrix F = [[1, dt, 0.5 * dt**2], [0, 1, dt], [0, 0, 1]] # observation_matrix H = [0, 0, 1] # transition_covariance Q = [[0.2, 0, 0], [0, 0.1, 0], [0, 0, 10e-4]] # observation_covariance R = AccX_Variance # initial_state_mean X0 = [0, 0, AccX_Value[0]] # initial_state_covariance P0 = [[0, 0, 0], [0, 0, 0], [0, 0, AccX_Variance]] n_timesteps = AccX_Value.shape[0] n_dim_state = 3 filtered_state_means = np.zeros((n_timesteps, n_dim_state)) filtered_state_covariances = np.zeros((n_timesteps, n_dim_state, n_dim_state)) kf = KalmanFilter(transition_matrices=F, observation_matrices=H, transition_covariance=Q, observation_covariance=R, initial_state_mean=X0, initial_state_covariance=P0) # iterative estimation for each new measurement for t in range(n_timesteps): if t == 0: filtered_state_means[t] = X0 filtered_state_covariances[t] = P0 else: filtered_state_means[t], filtered_state_covariances[t] = ( kf.filter_update( filtered_state_means[t - 1], filtered_state_covariances[t - 1], AccX_Value[t] ) ) f, axarr = plt.subplots(3, sharex=True) axarr[0].plot(Time, AccX_Value, label="Input AccX") axarr[0].plot(Time, filtered_state_means[:, 2], "r-", label="Estimated AccX") axarr[0].set_title('Acceleration X') axarr[0].grid() axarr[0].legend() axarr[0].set_ylim([-4, 4]) # # axarr[1].plot(Time, RefVelX, label="Reference VelX") axarr[1].plot(Time, filtered_state_means[:, 1], "r-", label="Estimated VelX") axarr[1].set_title('Velocity X') axarr[1].grid() axarr[1].legend() axarr[1].set_ylim([-1, 20]) # # axarr[2].plot(Time, RefPosX, label="Reference PosX") axarr[2].plot(Time, filtered_state_means[:, 0], "r-", label="Estimated PosX") axarr[2].set_title('Position X') axarr[2].grid() axarr[2].legend() axarr[2].set_ylim([-10, 1000]) plt.show()
26.351351
121
0.648547
7947034e8d769a6a2c756434a17ff141700c941d
11,654
py
Python
src/training/network_training/nnUNetTrainerV2_DP.py
YZArren/ETCI2021
6dffb759b3439bc597e835f8dbd610ab4706e269
[ "Apache-2.0" ]
5
2021-07-26T12:19:08.000Z
2022-01-18T07:50:12.000Z
src/training/network_training/nnUNetTrainerV2_DP.py
YZArren/ETCI2021
6dffb759b3439bc597e835f8dbd610ab4706e269
[ "Apache-2.0" ]
null
null
null
src/training/network_training/nnUNetTrainerV2_DP.py
YZArren/ETCI2021
6dffb759b3439bc597e835f8dbd610ab4706e269
[ "Apache-2.0" ]
1
2022-03-02T15:19:07.000Z
2022-03-02T15:19:07.000Z
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from batchgenerators.utilities.file_and_folder_operations import * from src.network_architecture.generic_UNet_DP import Generic_UNet_DP from src.training.data_augmentation.data_augmentation_moreDA import get_moreDA_augmentation from src.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2 from src.utilities.to_torch import maybe_to_torch, to_cuda from src.network_architecture.initialization import InitWeights_He from src.network_architecture.neural_network import SegmentationNetwork from src.training.dataloading.dataset_loading import unpack_dataset from src.training.network_training.nnUNetTrainer import nnUNetTrainer from src.utilities.nd_softmax import softmax_helper from torch import nn from torch.cuda.amp import autocast from torch.nn.parallel.data_parallel import DataParallel from torch.nn.utils import clip_grad_norm_ class nnUNetTrainerV2_DP(nnUNetTrainerV2): def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, unpack_data=True, deterministic=True, num_gpus=1, distribute_batch_size=False, fp16=False): super(nnUNetTrainerV2_DP, self).__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, deterministic, fp16) self.init_args = (plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, deterministic, num_gpus, distribute_batch_size, fp16) self.num_gpus = num_gpus self.distribute_batch_size = distribute_batch_size self.dice_smooth = 1e-5 self.dice_do_BG = False self.loss = None self.loss_weights = None def setup_DA_params(self): super(nnUNetTrainerV2_DP, self).setup_DA_params() self.data_aug_params['num_threads'] = 8 * self.num_gpus def process_plans(self, plans): super(nnUNetTrainerV2_DP, self).process_plans(plans) if not self.distribute_batch_size: self.batch_size = self.num_gpus * self.plans['plans_per_stage'][self.stage]['batch_size'] else: if self.batch_size < self.num_gpus: print("WARNING: self.batch_size < self.num_gpus. Will not be able to use the GPUs well") elif self.batch_size % self.num_gpus != 0: print("WARNING: self.batch_size % self.num_gpus != 0. Will not be able to use the GPUs well") def initialize(self, training=True, force_load_plans=False): """ - replaced get_default_augmentation with get_moreDA_augmentation - only run this code once - loss function wrapper for deep supervision :param training: :param force_load_plans: :return: """ if not self.was_initialized: maybe_mkdir_p(self.output_folder) if force_load_plans or (self.plans is None): self.load_plans_file() self.process_plans(self.plans) self.setup_DA_params() ################# Here configure the loss for deep supervision ############ net_numpool = len(self.net_num_pool_op_kernel_sizes) weights = np.array([1 / (2 ** i) for i in range(net_numpool)]) mask = np.array([True if i < net_numpool - 1 else False for i in range(net_numpool)]) weights[~mask] = 0 weights = weights / weights.sum() self.loss_weights = weights ################# END ################### self.folder_with_preprocessed_data = join(self.dataset_directory, self.plans['data_identifier'] + "_stage%d" % self.stage) if training: self.dl_tr, self.dl_val = self.get_basic_generators() if self.unpack_data: print("unpacking dataset") unpack_dataset(self.folder_with_preprocessed_data) print("done") else: print( "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you " "will wait all winter for your model to finish!") self.tr_gen, self.val_gen = get_moreDA_augmentation(self.dl_tr, self.dl_val, self.data_aug_params[ 'patch_size_for_spatialtransform'], self.data_aug_params, deep_supervision_scales=self.deep_supervision_scales, pin_memory=self.pin_memory) self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())), also_print_to_console=False) self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())), also_print_to_console=False) else: pass self.initialize_network() self.initialize_optimizer_and_scheduler() assert isinstance(self.network, (SegmentationNetwork, DataParallel)) else: self.print_to_log_file('self.was_initialized is True, not running self.initialize again') self.was_initialized = True def initialize_network(self): """ replace genericUNet with the implementation of above for super speeds """ if self.threeD: conv_op = nn.Conv3d dropout_op = nn.Dropout3d norm_op = nn.InstanceNorm3d else: conv_op = nn.Conv2d dropout_op = nn.Dropout2d norm_op = nn.InstanceNorm2d norm_op_kwargs = {'eps': 1e-5, 'affine': True} dropout_op_kwargs = {'p': 0, 'inplace': True} net_nonlin = nn.LeakyReLU net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} self.network = Generic_UNet_DP(self.num_input_channels, self.base_num_features, self.num_classes, len(self.net_num_pool_op_kernel_sizes), self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, True, False, InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True) if torch.cuda.is_available(): self.network.cuda() self.network.inference_apply_nonlin = softmax_helper def initialize_optimizer_and_scheduler(self): assert self.network is not None, "self.initialize_network must be called first" self.optimizer = torch.optim.SGD(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay, momentum=0.99, nesterov=True) self.lr_scheduler = None def run_training(self): self.maybe_update_lr(self.epoch) # amp must be initialized before DP ds = self.network.do_ds self.network.do_ds = True self.network = DataParallel(self.network, tuple(range(self.num_gpus)), ) ret = nnUNetTrainer.run_training(self) self.network = self.network.module self.network.do_ds = ds return ret def run_iteration(self, data_generator, do_backprop=True, run_online_evaluation=False): data_dict = next(data_generator) data = data_dict['data'] target = data_dict['target'] data = maybe_to_torch(data) target = maybe_to_torch(target) if torch.cuda.is_available(): data = to_cuda(data) target = to_cuda(target) self.optimizer.zero_grad() if self.fp16: with autocast(): ret = self.network(data, target, return_hard_tp_fp_fn=run_online_evaluation) if run_online_evaluation: ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret self.run_online_evaluation(tp_hard, fp_hard, fn_hard) else: ces, tps, fps, fns = ret del data, target l = self.compute_loss(ces, tps, fps, fns) if do_backprop: self.amp_grad_scaler.scale(l).backward() self.amp_grad_scaler.unscale_(self.optimizer) torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12) self.amp_grad_scaler.step(self.optimizer) self.amp_grad_scaler.update() else: ret = self.network(data, target, return_hard_tp_fp_fn=run_online_evaluation) if run_online_evaluation: ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret self.run_online_evaluation(tp_hard, fp_hard, fn_hard) else: ces, tps, fps, fns = ret del data, target l = self.compute_loss(ces, tps, fps, fns) if do_backprop: l.backward() torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12) self.optimizer.step() return l.detach().cpu().numpy() def run_online_evaluation(self, tp_hard, fp_hard, fn_hard): tp_hard = tp_hard.detach().cpu().numpy().mean(0) fp_hard = fp_hard.detach().cpu().numpy().mean(0) fn_hard = fn_hard.detach().cpu().numpy().mean(0) self.online_eval_foreground_dc.append(list((2 * tp_hard) / (2 * tp_hard + fp_hard + fn_hard + 1e-8))) self.online_eval_tp.append(list(tp_hard)) self.online_eval_fp.append(list(fp_hard)) self.online_eval_fn.append(list(fn_hard)) def compute_loss(self, ces, tps, fps, fns): # we now need to effectively reimplement the loss loss = None for i in range(len(ces)): if not self.dice_do_BG: tp = tps[i][:, 1:] fp = fps[i][:, 1:] fn = fns[i][:, 1:] else: tp = tps[i] fp = fps[i] fn = fns[i] if self.batch_dice: tp = tp.sum(0) fp = fp.sum(0) fn = fn.sum(0) else: pass nominator = 2 * tp + self.dice_smooth denominator = 2 * tp + fp + fn + self.dice_smooth dice_loss = (- nominator / denominator).mean() if loss is None: loss = self.loss_weights[i] * (ces[i].mean() + dice_loss) else: loss += self.loss_weights[i] * (ces[i].mean() + dice_loss) ########### return loss
45.346304
124
0.596276
79470405ae200ae24d0ad0c23c149bf223d866e8
3,964
py
Python
saleor/account/utils.py
sebasgoldberg/saleor
2e94e8df80f305889434f549a4da6abc1257b598
[ "CC-BY-4.0" ]
1
2020-04-08T14:24:43.000Z
2020-04-08T14:24:43.000Z
saleor/account/utils.py
sebasgoldberg/saleor
2e94e8df80f305889434f549a4da6abc1257b598
[ "CC-BY-4.0" ]
10
2021-03-19T04:33:44.000Z
2022-03-12T00:45:59.000Z
saleor/account/utils.py
sebasgoldberg/saleor
2e94e8df80f305889434f549a4da6abc1257b598
[ "CC-BY-4.0" ]
4
2020-05-08T07:17:03.000Z
2020-05-16T12:34:57.000Z
import os import random import jwt from django.conf import settings from django.core.exceptions import ValidationError from django.core.files import File from django.utils import timezone from ..account.error_codes import AccountErrorCode from ..checkout import AddressType from ..core.utils import create_thumbnails from ..extensions.manager import get_extensions_manager from .models import User AVATARS_PATH = os.path.join( settings.PROJECT_ROOT, "saleor", "static", "images", "avatars" ) def store_user_address(user, address, address_type): """Add address to user address book and set as default one.""" address = get_extensions_manager().change_user_address(address, address_type, user) address_data = address.as_data() address = user.addresses.filter(**address_data).first() if address is None: address = user.addresses.create(**address_data) if address_type == AddressType.BILLING: if not user.default_billing_address: set_user_default_billing_address(user, address) elif address_type == AddressType.SHIPPING: if not user.default_shipping_address: set_user_default_shipping_address(user, address) def set_user_default_billing_address(user, address): user.default_billing_address = address user.save(update_fields=["default_billing_address"]) def set_user_default_shipping_address(user, address): user.default_shipping_address = address user.save(update_fields=["default_shipping_address"]) def change_user_default_address(user, address, address_type): address = get_extensions_manager().change_user_address(address, address_type, user) if address_type == AddressType.BILLING: if user.default_billing_address: user.addresses.add(user.default_billing_address) set_user_default_billing_address(user, address) elif address_type == AddressType.SHIPPING: if user.default_shipping_address: user.addresses.add(user.default_shipping_address) set_user_default_shipping_address(user, address) def create_superuser(credentials): user, created = User.objects.get_or_create( email=credentials["email"], defaults={"is_active": True, "is_staff": True, "is_superuser": True}, ) if created: user.avatar = get_random_avatar() user.set_password(credentials["password"]) user.save() create_thumbnails( pk=user.pk, model=User, size_set="user_avatars", image_attr="avatar" ) msg = "Superuser - %(email)s/%(password)s" % credentials else: msg = "Superuser already exists - %(email)s" % credentials return msg def get_random_avatar(): """Return random avatar picked from a pool of static avatars.""" avatar_name = random.choice(os.listdir(AVATARS_PATH)) avatar_path = os.path.join(AVATARS_PATH, avatar_name) return File(open(avatar_path, "rb"), name=avatar_name) def remove_staff_member(staff): """Remove staff member account only if it has no orders placed. Otherwise, switches is_staff status to False. """ if staff.orders.exists(): staff.is_staff = False staff.user_permissions.clear() staff.save() else: staff.delete() def create_jwt_token(token_data): expiration_date = timezone.now() + timezone.timedelta(hours=1) token_kwargs = {"exp": expiration_date} token_kwargs.update(token_data) token = jwt.encode(token_kwargs, settings.SECRET_KEY, algorithm="HS256").decode() return token def decode_jwt_token(token): try: decoded_token = jwt.decode( token.encode(), settings.SECRET_KEY, algorithms=["HS256"] ) except jwt.PyJWTError: raise ValidationError( { "token": ValidationError( "Invalid or expired token.", code=AccountErrorCode.INVALID ) } ) return decoded_token
32.760331
87
0.703078
794706b3c7e50240edce37cb61c48a2b9be260d1
1,064
py
Python
gravityspytools/collection_to_subjectset/forms.py
Gravity-Spy/gravityspytools
23ef83e36ed934f7c39440bf43f4d5c7b7b4abb0
[ "BSD-3-Clause" ]
4
2019-03-11T12:32:24.000Z
2020-12-01T06:31:39.000Z
gravityspytools/collection_to_subjectset/forms.py
johnwick211/gravityspytools
23ef83e36ed934f7c39440bf43f4d5c7b7b4abb0
[ "BSD-3-Clause" ]
19
2018-01-29T21:28:39.000Z
2020-07-14T18:38:23.000Z
gravityspytools/collection_to_subjectset/forms.py
johnwick211/gravityspytools
23ef83e36ed934f7c39440bf43f4d5c7b7b4abb0
[ "BSD-3-Clause" ]
4
2018-02-02T16:47:16.000Z
2020-12-01T06:31:49.000Z
from django import forms import panoptes_client class SearchForm(forms.Form): username = forms.CharField(label='The Zoo username of the collection owner', max_length=100) collection_display_name = forms.CharField(label='The display name of the collection as it is in the url. If the collecion url is https://www.zooniverse.org/collections/sbc538/45hz then 45hz would go here') workflow_name = forms.CharField(label='The name of the workflow. Should include the name of the category') def clean(self): cleaned_data = super(SearchForm, self).clean() username = cleaned_data.get('username') collection_display_name = cleaned_data.get('collection_display_name') tmp = panoptes_client.Collection.where(slug='{0}/{1}'.format(username, collection_display_name)) try: tmp.next() except: raise forms.ValidationError("Either this collection does not " "exist or the form was filled out in correctly." )
50.666667
209
0.668233
7947086a836610c8280f78fa44fe081e98cb729c
12,826
py
Python
pontoon/sync/tests/test_core.py
zbraniecki/pontoon
d559316783938bc66d5d9a52dcdb01137475c259
[ "BSD-3-Clause" ]
1
2017-04-04T06:55:46.000Z
2017-04-04T06:55:46.000Z
pontoon/sync/tests/test_core.py
zbraniecki/pontoon
d559316783938bc66d5d9a52dcdb01137475c259
[ "BSD-3-Clause" ]
null
null
null
pontoon/sync/tests/test_core.py
zbraniecki/pontoon
d559316783938bc66d5d9a52dcdb01137475c259
[ "BSD-3-Clause" ]
null
null
null
import os.path from django_nose.tools import ( assert_equal, assert_false, assert_not_equal, assert_raises, assert_true ) from mock import ANY, Mock, patch, PropertyMock, MagicMock from pontoon.base.models import ( Entity, Repository, Resource, TranslatedResource, ) from pontoon.base.tests import ( CONTAINS, NOT, UserFactory, ) from pontoon.sync.core import ( commit_changes, entity_key, pull_changes, update_entities, update_resources, update_translated_resources, update_translations, ) from pontoon.sync.tests import FAKE_CHECKOUT_PATH, FakeCheckoutTestCase class UpdateEntityTests(FakeCheckoutTestCase): def call_update_entities(self, collected): with patch('pontoon.sync.core.collect_entities') as mock_collect_entities: mock_collect_entities.return_value = collected return update_entities(self.db_project, self.vcs_project, self.changeset) def test_none(self): """ If both the db_entity and vcs_entity are None, raise a CommandError, as that should never happen. """ with assert_raises(ValueError): self.call_update_entities([('key', None, None)]) def test_obsolete(self): """If VCS is missing the entity in question, obsolete it.""" self.changeset.obsolete_db_entity = Mock() self.call_update_entities([('key', self.main_db_entity, None)]) self.changeset.obsolete_db_entity.assert_called_with(self.main_db_entity) def test_create(self): """If the DB is missing an entity in VCS, create it.""" self.changeset.create_db_entity = Mock() self.call_update_entities([('key', None, self.main_vcs_entity)]) self.changeset.create_db_entity.assert_called_with(self.main_vcs_entity) class UpdateTranslationsTests(FakeCheckoutTestCase): def call_update_translations(self, collected): with patch('pontoon.sync.core.collect_entities') as mock_collect_entities: mock_collect_entities.return_value = collected return update_translations(self.db_project, self.vcs_project, self.translated_locale, self.changeset) def test_missing_entities(self): """If either of the entities is missing, skip it.""" self.changeset.update_vcs_entity = Mock() self.changeset.update_db_entity = Mock() self.call_update_translations([ ('one', None, self.main_vcs_entity), ('other', self.main_db_entity, None), ('both', None, None), ]) assert_false(self.changeset.update_vcs_entity.called) assert_false(self.changeset.update_db_entity.called) def test_no_translation(self): """If no translation exists for a specific locale, skip it.""" self.changeset.update_vcs_entity = Mock() self.changeset.update_db_entity = Mock() self.main_vcs_entity.has_translation_for = Mock(return_value=False) self.call_update_translations([('key', self.main_db_entity, self.main_vcs_entity)]) assert_false(self.changeset.update_vcs_entity.called) assert_false(self.changeset.update_db_entity.called) def test_db_changed(self): """ If the DB entity has changed since the last sync, update the VCS. """ self.changeset.update_vcs_entity = Mock() with patch.object(Entity, 'has_changed', return_value=True): self.call_update_translations([('key', self.main_db_entity, self.main_vcs_entity)]) self.changeset.update_vcs_entity.assert_called_with( self.translated_locale, self.main_db_entity, self.main_vcs_entity ) def test_vcs_changed(self): """ If the DB entity has not changed since the last sync, update the DB with the latest changes from VCS. """ self.changeset.update_db_entity = Mock() with patch.object(Entity, 'has_changed', return_value=False): self.call_update_translations([('key', self.main_db_entity, self.main_vcs_entity)]) self.changeset.update_db_entity.assert_called_with( self.translated_locale, self.main_db_entity, self.main_vcs_entity ) class UpdateResourcesTests(FakeCheckoutTestCase): def test_basic(self): # Check for self.main_db_resource to be updated and # self.other_db_resource to be created. self.main_db_resource.total_strings = 5000 self.main_db_resource.save() self.other_db_resource.delete() update_resources(self.db_project, self.vcs_project) self.main_db_resource.refresh_from_db() assert_equal(self.main_db_resource.total_strings, len(self.main_vcs_resource.entities)) other_db_resource = Resource.objects.get(path=self.other_vcs_resource.path) assert_equal(other_db_resource.total_strings, len(self.other_vcs_resource.entities)) class UpdateTranslatedResourcesTests(FakeCheckoutTestCase): def test_basic(self): """ Create/update the TranslatedResource object on all resources available in the current locale. """ update_translated_resources(self.db_project, self.vcs_project, self.changeset, self.translated_locale) assert_true(TranslatedResource.objects.filter( resource=self.main_db_resource, locale=self.translated_locale ).exists()) assert_true(TranslatedResource.objects.filter( resource=self.other_db_resource, locale=self.translated_locale ).exists()) assert_false(TranslatedResource.objects.filter( resource=self.missing_db_resource, locale=self.translated_locale ).exists()) def test_asymmetric(self): """ Create/update the TranslatedResource object on asymmetric resources even if they don't exist in the target locale. """ with patch.object(Resource, 'is_asymmetric', new_callable=PropertyMock) as is_asymmetric: is_asymmetric.return_value = True update_translated_resources(self.db_project, self.vcs_project, self.changeset, self.translated_locale) assert_true(TranslatedResource.objects.filter( resource=self.main_db_resource, locale=self.translated_locale ).exists()) assert_true(TranslatedResource.objects.filter( resource=self.other_db_resource, locale=self.translated_locale ).exists()) assert_true(TranslatedResource.objects.filter( resource=self.missing_db_resource, locale=self.translated_locale ).exists()) def test_extra_locales(self): """ Only create/update the TranslatedResource object for active locales, even if the inactive locale has a resource. """ update_translated_resources(self.db_project, self.vcs_project, self.changeset, self.translated_locale) assert_true(TranslatedResource.objects.filter( resource=self.main_db_resource, locale=self.translated_locale ).exists()) assert_true(TranslatedResource.objects.filter( resource=self.other_db_resource, locale=self.translated_locale ).exists()) assert_false(TranslatedResource.objects.filter( resource=self.main_db_resource, locale=self.inactive_locale ).exists()) assert_false(TranslatedResource.objects.filter( resource=self.other_db_resource, locale=self.inactive_locale ).exists()) class EntityKeyTests(FakeCheckoutTestCase): def test_entity_key_common_string(self): """ Entities with the same string from different resources must not get the same key from entity_key. """ assert_not_equal( entity_key(self.main_vcs_resource.entities['Common String']), entity_key(self.other_vcs_resource.entities['Common String']) ) class CommitChangesTests(FakeCheckoutTestCase): def setUp(self): super(CommitChangesTests, self).setUp() self.mock_repo_commit = self.patch_object(Repository, 'commit') def test_multiple_authors(self): """ Tests if multiple authors are passed to commit message. The author with the most occurrences for the locale should be set as the commit author. """ first_author, second_author = UserFactory.create_batch(2) self.changeset.commit_authors_per_locale = { self.translated_locale.code: [first_author, first_author, second_author] } self.db_project.repository_for_path = Mock(return_value=self.repository) commit_changes(self.db_project, self.vcs_project, self.changeset, self.translated_locale) self.repository.commit.assert_called_with( CONTAINS(first_author.display_name_and_email, second_author.display_name_and_email), first_author, os.path.join(FAKE_CHECKOUT_PATH, self.translated_locale.code) ) def test_author_with_multiple_contributions(self): """ Tests if author with multiple contributions occurs once in commit message. """ author = UserFactory.create() self.changeset.commit_authors_per_locale = { self.translated_locale.code: [author, author] } self.db_project.repository_for_path = Mock(return_value=self.repository) commit_changes(self.db_project, self.vcs_project, self.changeset, self.translated_locale) self.repository.commit.assert_called_with( CONTAINS(author.display_name_and_email), author, os.path.join(FAKE_CHECKOUT_PATH, self.translated_locale.code) ) commit_message = self.repository.commit.mock_calls[0][1][0] assert_equal(commit_message.count(author.display_name_and_email), 1) def test_no_authors(self): """ If no authors are found in the changeset, default to a fake "Mozilla Pontoon" user. """ self.changeset.commit_authors_per_locale = { self.translated_locale.code: [] } self.db_project.repository_for_path = Mock(return_value=self.repository) commit_changes(self.db_project, self.vcs_project, self.changeset, self.translated_locale) self.repository.commit.assert_called_with( NOT(CONTAINS('Authors:')), # Don't list authors in commit ANY, os.path.join(FAKE_CHECKOUT_PATH, self.translated_locale.code) ) user = self.mock_repo_commit.call_args[0][1] assert_equal(user.first_name, 'Mozilla Pontoon') assert_equal(user.email, '[email protected]') class PullChangesTests(FakeCheckoutTestCase): def setUp(self): super(PullChangesTests, self).setUp() self.mock_repo_pull = self.patch_object(Repository, 'pull') def test_basic(self): """ Pull_changes should call repo.pull for each repo for the project, save the return value to repo.last_synced_revisions, and return whether any changes happened in VCS. """ mock_db_project = MagicMock() mock_db_project.repositories.all.return_value = [self.repository] self.mock_repo_pull.return_value = {'single_locale': 'asdf'} has_changed, revisions = pull_changes(self.db_project) assert_true(has_changed) assert_equal(revisions, {self.repository.pk: {'single_locale': 'asdf'}}) self.repository.last_synced_revisions = revisions[self.repository.pk] self.repository.save() self.repository.refresh_from_db() assert_equal(self.repository.last_synced_revisions, {'single_locale': 'asdf'}) def test_unsure_changes(self): """ If any of the repos returns None as a revision number, consider the VCS as changed even if the revisions match the last sync. """ self.mock_repo_pull.return_value = {'single_locale': None} self.repository.last_synced_revisions = {'single_locale': None} self.repository.save() assert_true(pull_changes(self.db_project)) def test_unchanged(self): """ If the revisions returned by repo.pull match those from the last sync, consider the VCS unchanged and return False. """ self.mock_repo_pull.return_value = {'single_locale': 'asdf'} self.repository.last_synced_revisions = {'single_locale': 'asdf'} self.repository.save() has_changed, _ = pull_changes(self.db_project) assert_false(has_changed)
39.223242
97
0.677608
794709794a8012f56bb9469cb256b06877905b67
31,821
py
Python
ansible_navigator/actions/run.py
ptoal/ansible-navigator
47d51e4c2861903e002f6ad58707a2126af18f00
[ "Apache-2.0", "MIT" ]
null
null
null
ansible_navigator/actions/run.py
ptoal/ansible-navigator
47d51e4c2861903e002f6ad58707a2126af18f00
[ "Apache-2.0", "MIT" ]
null
null
null
ansible_navigator/actions/run.py
ptoal/ansible-navigator
47d51e4c2861903e002f6ad58707a2126af18f00
[ "Apache-2.0", "MIT" ]
null
null
null
""" :run """ import curses import datetime import json import logging import os import re import shlex import shutil import uuid from math import floor from queue import Queue from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union from . import run_action from . import _actions as actions from ..runner.api import CommandRunnerAsync from ..app import App from ..app_public import AppPublic from ..configuration_subsystem import ApplicationConfiguration from ..steps import Step from ..ui_framework import CursesLinePart from ..ui_framework import CursesLines from ..ui_framework import Interaction from ..ui_framework import dict_to_form from ..ui_framework import form_to_dict from ..ui_framework import warning_notification from ..utils import abs_user_path from ..utils import human_time from ..utils import remove_ansi RESULT_TO_COLOR = [ ("(?i)^failed$", 9), ("(?i)^ok$", 10), ("(?i)^ignored$", 13), ("(?i)^skipped$", 14), ("(?i)^in_progress$", 8), ] get_color = lambda word: next( # noqa: E731 (x[1] for x in RESULT_TO_COLOR if re.match(x[0], word)), 0 ) def color_menu(_colno: int, colname: str, entry: Dict[str, Any]) -> Tuple[int, int]: # pylint: disable=too-many-branches """Find matching color for word :param word: A word to match :type word: str(able) """ colval = entry[colname] color = 0 decoration = 0 if "__play_name" in entry: if not colval: color = 8 elif colname in ["__task_count", "__play_name", "__progress"]: failures = entry["__failed"] + entry["__unreachable"] if failures: color = 9 elif entry["__ok"]: color = 10 else: color = 8 elif colname == "__changed": color = 11 else: color = get_color(colname[2:]) if colname == "__progress" and entry["__progress"].strip().lower() == "complete": decoration = curses.A_BOLD elif "task" in entry: if entry["__result"].lower() == "__in_progress": color = get_color(entry["__result"]) elif colname in ["__result", "__host", "__number", "__task", "__task_action"]: color = get_color(entry["__result"]) elif colname == "__changed": if colval is True: color = 11 else: color = get_color(entry["__result"]) elif colname == "__duration": color = 12 return color, decoration def content_heading(obj: Any, screen_w: int) -> Union[CursesLines, None]: """create a heading for some piece fo content showing :param obj: The content going to be shown :type obj: Any :param screen_w: The current screen width :type screen_w: int :return: The heading :rtype: Union[CursesLines, None] """ if isinstance(obj, dict) and "task" in obj: heading = [] detail = "PLAY [{play}:{tnum}] ".format(play=obj["play"], tnum=obj["__number"]) stars = "*" * (screen_w - len(detail)) heading.append( tuple([CursesLinePart(column=0, string=detail + stars, color=0, decoration=0)]) ) detail = "TASK [{task}] ".format(task=obj["task"]) stars = "*" * (screen_w - len(detail)) heading.append( tuple([CursesLinePart(column=0, string=detail + stars, color=0, decoration=0)]) ) if obj["__changed"] is True: color = 11 res = "CHANGED" else: color = next((x[1] for x in RESULT_TO_COLOR if re.match(x[0], obj["__result"])), 0) res = obj["__result"] if "res" in obj and "msg" in obj["res"]: msg = str(obj["res"]["msg"]).replace("\n", " ").replace("\r", "") else: msg = "" string = "{res}: [{host}] {msg}".format(res=res, host=obj["__host"], msg=msg) string = string + (" " * (screen_w - len(string) + 1)) heading.append( tuple( [ CursesLinePart( column=0, string=string, color=color, decoration=curses.A_UNDERLINE, ) ] ) ) return tuple(heading) return None def filter_content_keys(obj: Dict[Any, Any]) -> Dict[Any, Any]: """when showing content, filter out some keys""" return {k: v for k, v in obj.items() if not (k.startswith("_") or k.endswith("uuid"))} PLAY_COLUMNS = [ "__play_name", "__ok", "__changed", "__unreachable", "__failed", "__skipped", "__ignored", "__in_progress", "__task_count", "__progress", ] TASK_LIST_COLUMNS = [ "__result", "__host", "__number", "__changed", "__task", "__task_action", "__duration", ] @actions.register class Action(App): # pylint: disable=too-many-instance-attributes """:run""" KEGEX = r"""(?x) ^ (?P<run>r(?:un)? (\s(?P<params_run>.*))?) $""" def __init__( self, args: ApplicationConfiguration, play_columns: List = PLAY_COLUMNS, task_list_columns: List = TASK_LIST_COLUMNS, content_key_filter: Callable = filter_content_keys, ): # pylint: disable=dangerous-default-value # for display purposes use the 4: of the uuid super().__init__(args=args, logger_name=__name__, name="run") self._subaction_type: str self._msg_from_plays: Tuple[Optional[str], Optional[int]] = (None, None) self._queue: Queue = Queue() self.runner: CommandRunnerAsync self._runner_finished: bool self._auto_scroll = False self._plays = Step( name="plays", tipe="menu", columns=play_columns, value=[], show_func=self._play_stats, select_func=self._task_list_for_play, ) self._task_list_columns = task_list_columns self._content_key_filter = content_key_filter @property def mode(self): """if mode == stdout and playbook artifact creation is enabled run in interactive mode, but print stdout""" if all( ( self._args.mode == "stdout", self._args.playbook_artifact_enable, self._args.app != "replay", ) ): return "stdout_w_artifact" return self._args.mode def run_stdout(self) -> int: """Run in oldschool mode, just stdout :param args: The parsed args from the cli :type args: Namespace """ if self._args.app == "replay": successful: bool = self._init_replay() return 0 if successful else 1 self._logger.debug("playbook requested in interactive mode") self._subaction_type = "playbook" self._logger = logging.getLogger(f"{__name__}_{self._subaction_type}") self._run_runner() while True: self._dequeue() if self.runner.finished: if self._args.playbook_artifact_enable: self.write_artifact() self._logger.debug("runner finished") break return self.runner.ansible_runner_instance.rc def run(self, interaction: Interaction, app: AppPublic) -> Union[Interaction, None]: # pylint: disable=too-many-branches """run :run or :replay :param interaction: The interaction from the user :type interaction: Interaction :param app: The app instance :type app: App """ self._prepare_to_run(app, interaction) if interaction.action.match.groupdict().get("run"): self._logger.debug("run requested in interactive mode") self._subaction_type = "run" str_uuid = str(uuid.uuid4()) self._logger = logging.getLogger(f"{__name__}_{str_uuid[-4:]}") self._name = f"run_{str_uuid[-4:]}" initialized = self._init_run() elif interaction.action.match.groupdict().get("replay"): self._logger.debug("replay requested in interactive mode") self._subaction_type = "replay" self._name = "replay" self._logger = logging.getLogger(f"{__name__}_{self._subaction_type}") initialized = self._init_replay() if not initialized: self._prepare_to_exit(interaction) return None self.steps.append(self._plays) while True: self.update() self._take_step() if not self.steps: if not self._runner_finished: self._logger.error("Can not step back while playbook in progress, :q! to exit") self.steps.append(self._plays) else: self._logger.debug( "No steps remaining for '%s' returning to calling app", self._name ) break if self.steps.current.name == "quit": if self._args.app == "replay": self._prepare_to_exit(interaction) return self.steps.current done = self._prepare_to_quit(self.steps.current) if done: self._prepare_to_exit(interaction) return self.steps.current self.steps.back_one() self._prepare_to_exit(interaction) return None # pylint: disable=too-many-branches def _init_run(self) -> bool: """in the case of :run, check the user input""" # Ensure the playbook and inventory are valid self._update_args( ["run"] + shlex.split(self._interaction.action.match.groupdict()["params_run"] or "") ) if isinstance(self._args.playbook, str): playbook_valid = os.path.exists(self._args.playbook) else: playbook_valid = False if isinstance(self._args.inventory, list): inventory_valid = all((os.path.exists(inv) for inv in self._args.inventory)) else: # Permit running without an inventory inventory_valid = True if not all((playbook_valid, inventory_valid)): populated_form = self._prompt_for_playbook() if populated_form["cancelled"]: return False new_cmd = ["run"] new_cmd.append(populated_form["fields"]["playbook"]["value"]) for field in populated_form["fields"].values(): if field["name"].startswith("inv_") and field["value"] != "": new_cmd.extend(["-i", field["value"]]) if populated_form["fields"]["cmdline"]["value"]: new_cmd.extend(shlex.split(populated_form["fields"]["cmdline"]["value"])) # Parse as if provided from the cmdline self._update_args(new_cmd) self._run_runner() self._logger.info("Run initialized and playbook started.") return True def _init_replay(self) -> bool: """in the case of :replay, replay the artifact check for a version, to be safe copy the calling app args as our our so the can be updated safely with a uuid attached to the name """ self._logger.debug("Starting replay artifact request with mode %s", self.mode) if self.mode == "interactive": self._update_args( ["replay"] + shlex.split(self._interaction.action.match.groupdict()["params_replay"] or "") ) artifact_file = self._args.playbook_artifact_replay if isinstance(self._args.playbook_artifact_replay, str): artifact_valid = os.path.exists(self._args.playbook_artifact_replay) else: artifact_valid = False if not artifact_valid and self.mode == "interactive": populated_form = self._prompt_for_artifact(artifact_file=artifact_file) if populated_form["cancelled"]: return False artifact_file = populated_form["fields"]["artifact_file"]["value"] try: with open(artifact_file) as json_file: data = json.load(json_file) except json.JSONDecodeError as exc: self._logger.debug("json decode error: %s", str(exc)) self._logger.error("Unable to parse artifact file") return False version = data.get("version", "") if version.startswith("1."): try: stdout = data["stdout"] if self.mode == "interactive": self._plays.value = data["plays"] self._interaction.ui.update_status(data["status"], data["status_color"]) self.stdout = stdout else: for line in data["stdout"]: if self._args.display_color is True: print(line) else: print(remove_ansi(line)) except KeyError as exc: self._logger.debug("missing keys from artifact file") self._logger.debug("error was: %s", str(exc)) return False else: self._logger.error( "Incompatible artifact version, got '%s', compatible = '1.y.z'", version ) return False self._runner_finished = True self._logger.debug("Completed replay artifact request with mode %s", self.mode) return True def _prompt_for_artifact(self, artifact_file: str) -> Dict[Any, Any]: """prompt for a valid artifact file""" if not isinstance(artifact_file, str): artifact_file = "" FType = Dict[str, Any] form_dict: FType = { "title": "Artifact file not found, please confirm the following", "fields": [], } form_field = { "name": "artifact_file", "prompt": "Path to artifact file", "type": "text_input", "validator": {"name": "valid_file_path"}, "pre_populate": artifact_file, } form_dict["fields"].append(form_field) form = dict_to_form(form_dict) self._interaction.ui.show(form) populated_form = form_to_dict(form, key_on_name=True) return populated_form def _prompt_for_playbook(self) -> Dict[Any, Any]: """prepopulate a form to confirm the playbook details""" self._logger.debug("Inventory/Playbook not set, provided, or valid, prompting") if isinstance(self._args.playbook, str): playbook = self._args.playbook else: playbook = "" if isinstance(self._args.inventory, list): inventory = self._args.inventory else: inventory = ["", "", ""] if isinstance(self._args.cmdline, list): cmdline = " ".join(self._args.cmdline) else: cmdline = "" FType = Dict[str, Any] form_dict: FType = { "title": "Inventory and/or playbook not found, please confirm the following", "fields": [], } form_field = { "name": "playbook", "pre_populate": playbook, "prompt": "Path to playbook", "type": "text_input", "validator": {"name": "valid_file_path"}, } form_dict["fields"].append(form_field) for idx, inv in enumerate(inventory): form_field = { "name": f"inv_{idx}", "pre_populate": inv, "prompt": "Inventory source", "type": "text_input", "validator": {"name": "valid_path_or_none"}, } form_dict["fields"].append(form_field) form_field = { "name": "cmdline", "pre_populate": cmdline, "prompt": "Additional command line parameters", "type": "text_input", "validator": {"name": "none"}, } form_dict["fields"].append(form_field) form = dict_to_form(form_dict) self._interaction.ui.show(form) populated_form = form_to_dict(form, key_on_name=True) return populated_form def _take_step(self) -> None: """run the current step on the stack""" result = None if isinstance(self.steps.current, Interaction): result = run_action(self.steps.current.name, self.app, self.steps.current) elif isinstance(self.steps.current, Step): if self.steps.current.show_func: self.steps.current.show_func() if self.steps.current.type == "menu": new_scroll = len(self.steps.current.value) if self._auto_scroll: self._interaction.ui.scroll(new_scroll) result = self._interaction.ui.show( obj=self.steps.current.value, columns=self.steps.current.columns, color_menu_item=color_menu, ) if self._interaction.ui.scroll() < new_scroll and self._auto_scroll: self._logger.debug("autoscroll disabled") self._auto_scroll = False elif self._interaction.ui.scroll() >= new_scroll and not self._auto_scroll: self._logger.debug("autoscroll enabled") self._auto_scroll = True elif self.steps.current.type == "content": result = self._interaction.ui.show( obj=self.steps.current.value, index=self.steps.current.index, content_heading=content_heading, filter_content_keys=self._content_key_filter, ) if result is None: self.steps.back_one() else: self.steps.append(result) def _run_runner(self) -> None: """spin up runner""" executable_cmd: Optional[str] if self.mode == "stdout_w_artifact": mode = "interactive" else: mode = self.mode if isinstance(self._args.set_environment_variable, dict): set_envvars = {**self._args.set_environment_variable} else: set_envvars = {} if self._args.display_color is False: set_envvars["ANSIBLE_NOCOLOR"] = "1" kwargs = { "container_engine": self._args.container_engine, "host_cwd": os.getcwd(), "execution_environment_image": self._args.execution_environment_image, "execution_environment": self._args.execution_environment, "inventory": self._args.inventory, "navigator_mode": mode, "pass_environment_variable": self._args.pass_environment_variable, "set_environment_variable": set_envvars, } if isinstance(self._args.playbook, str): kwargs.update({"playbook": self._args.playbook}) if isinstance(self._args.execution_environment_volume_mounts, list): kwargs.update( {"container_volume_mounts": self._args.execution_environment_volume_mounts} ) if self._args.execution_environment: executable_cmd = "ansible-playbook" else: executable_cmd = shutil.which("ansible-playbook") if not executable_cmd: self._logger.error("'ansible-playbook' executable not found") return pass_through_arg = [] if self._args.help_playbook is True: pass_through_arg.append("--help") if isinstance(self._args.cmdline, list): pass_through_arg.extend(self._args.cmdline) kwargs.update({"cmdline": pass_through_arg}) self.runner = CommandRunnerAsync(executable_cmd=executable_cmd, queue=self._queue, **kwargs) self.runner.run() self._runner_finished = False self._logger.debug("runner requested to start") def _dequeue(self) -> None: """Drain the runner queue""" drain_count = 0 while not self._queue.empty(): message = self._queue.get() self._handle_message(message) drain_count += 1 if drain_count: self._logger.debug("Drained %s events", drain_count) def _handle_message(self, message: dict) -> None: # pylint: disable=too-many-branches # pylint: disable=too-many-nested-blocks # pylint: disable=too-many-statements """Handle a runner message :param message: The message from runner :type message: dict """ try: event = message["event"] except KeyError: error = f"Unhandled message from runner queue, discarded: {message}" self._logger.critical(error) else: if "stdout" in message and message["stdout"]: self.stdout.extend(message["stdout"].splitlines()) if self.mode == "stdout_w_artifact": print(message["stdout"]) if event in ["verbose", "error"]: if "ERROR!" in message["stdout"]: self._msg_from_plays = ("ERROR", 9) if self.mode == "interactive": self._notify_error(message["stdout"]) elif "WARNING" in message["stdout"]: self._msg_from_plays = ("WARNINGS", 13) if event == "playbook_on_play_start": play = message["event_data"] play["__play_name"] = play["name"] play["tasks"] = [] self._plays.value.append(play) if event.startswith("runner_on_"): runner_event = event.split("_")[2] task = message["event_data"] play_id = next( idx for idx, p in enumerate(self._plays.value) if p["uuid"] == task["play_uuid"] ) if runner_event in ["ok", "skipped", "unreachable", "failed"]: if runner_event == "failed" and task["ignore_errors"]: result = "ignored" else: result = runner_event task["__result"] = result.upper() task["__changed"] = task.get("res", {}).get("changed", False) task["__duration"] = human_time(seconds=round(task["duration"], 2)) task_id = None for idx, play_task in enumerate(self._plays.value[play_id]["tasks"]): if task["task_uuid"] == play_task["task_uuid"]: if task["host"] == play_task["host"]: task_id = idx break if task_id is not None: self._plays.value[play_id]["tasks"][task_id].update(task) elif runner_event == "start": task["__host"] = task["host"] task["__result"] = "IN_PROGRESS" task["__changed"] = "unknown" task["__duration"] = None task["__number"] = len(self._plays.value[play_id]["tasks"]) task["__task"] = task["task"] task["__task_action"] = task["task_action"] self._plays.value[play_id]["tasks"].append(task) def _play_stats(self) -> None: """Calculate the play's stats based on it's tasks """ for idx, play in enumerate(self._plays.value): total = ["__ok", "__skipped", "__failed", "__unreachable", "__ignored", "__in_progress"] self._plays.value[idx].update( { tot: len([t for t in play["tasks"] if t["__result"].lower() == tot[2:]]) for tot in total } ) self._plays.value[idx]["__changed"] = len( [t for t in play["tasks"] if t["__changed"] is True] ) task_count = len(play["tasks"]) self._plays.value[idx]["__task_count"] = task_count completed = task_count - self._plays.value[idx]["__in_progress"] if completed: new = floor((completed / task_count * 100)) current = self._plays.value[idx].get("__pcomplete", 0) self._plays.value[idx]["__pcomplete"] = max(new, current) self._plays.value[idx]["__progress"] = str(max(new, current)) + "%" else: self._plays.value[idx]["__progress"] = "0%" def _prepare_to_quit(self, interaction: Interaction) -> bool: """Looks like we're headed out of here :param interaction: the quit interaction :type interaction: Interaction :return: a bool indicating whether of not it's safe to exit :rtype: bool """ self.update() if self.runner is not None and not self.runner.finished: if interaction.action.match.groupdict()["exclamation"]: self._logger.debug("shutting down runner") self.runner.cancelled = True while not self.runner.finished: pass self.write_artifact() return True self._logger.warning("Quit requested but playbook running, try q! or quit!") return False self._logger.debug("runner not running") return True def _task_list_for_play(self) -> Step: """generate a menu of task for the currently selected play :return: The menu step :rtype: Step """ value = self.steps.current.selected["tasks"] step = Step( name="task_list", tipe="menu", columns=self._task_list_columns, select_func=self._task_from_task_list, value=value, ) return step def _task_from_task_list(self) -> Step: """generate task content for the selected task :return: content whic show a task :rtype: Step """ value = self.steps.current.value index = self.steps.current.index step = Step(name="task", tipe="content", index=index, value=value) return step def update(self) -> None: """Drain the queue, set the status and write the artifact if needed""" # let the calling app update as well self._calling_app.update() if hasattr(self, "runner"): self._dequeue() self._set_status() if self.runner.finished and not self._runner_finished: # self._interaction.ui.disable_refresh() self._logger.debug("runner finished") self._logger.info("Playbook complete") self.write_artifact() self._runner_finished = True def _get_status(self) -> Tuple[str, int]: """Get the status and color :return: status string, status color :rtype: tuple of str and int """ status = "" status_color = 0 if self.runner.status: if self.runner and self.runner.finished and self.runner.status: status = self.runner.status if self.runner.status == "failed": status_color = 9 else: status_color = self._msg_from_plays[1] or 10 else: if self._msg_from_plays[0] is not None and self._msg_from_plays[1] is not None: status = self._msg_from_plays[0] status_color = self._msg_from_plays[1] else: status = self.runner.status status_color = 10 return status, status_color def _set_status(self) -> None: """Set the ui status""" status, status_color = self._get_status() self._interaction.ui.update_status(status, status_color) def write_artifact(self, filename: Optional[str] = None) -> None: """Write the artifact :param filename: The file to write to :type filename: str """ if ( filename or self._args.playbook_artifact_enable is True and self._args.help_playbook is not True ): filename = filename or self._args.playbook_artifact_save_as filename = filename.format( playbook_dir=os.path.dirname(self._args.playbook), playbook_name=os.path.splitext(os.path.basename(self._args.playbook))[0], ts_utc=datetime.datetime.now(tz=datetime.timezone.utc).isoformat(), ) self._logger.debug("Formatted artifact file name set to %s", filename) filename = abs_user_path(filename) self._logger.debug("Resolved artifact file name set to %s", filename) status, status_color = self._get_status() try: os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w") as outfile: artifact = { "version": "1.0.0", "plays": self._plays.value, "stdout": self.stdout, "status": status, "status_color": status_color, } json.dump(artifact, outfile, indent=4) self._logger.info("Saved artifact as %s", filename) except (IOError, OSError) as exc: error = ( f"Saving the artifact file failed, resulted in the following error: f{str(exc)}" ) self._logger.error(error) def rerun(self) -> None: """rerun the current playbook since we're not reinstantiating run, drain the queue, clear the steps, reset the index, etc """ if self._subaction_type == "run": if self.runner.finished: self._plays.value = [] self._plays.index = None self._msg_from_plays = (None, None) self._queue.queue.clear() self.stdout = [] self._run_runner() self.steps.clear() self.steps.append(self._plays) self._logger.debug("Playbook rerun triggered") else: self._logger.warning("Playbook rerun ignored, current playbook not complete") elif self._subaction_type == "replay": self._logger.error("No rerun available when artifact is loaded") else: self._logger.error("sub-action type '%s' is invalid", self._subaction_type) def _notify_error(self, message: str): """show a blocking warning""" warn_msg = ["Errors were encountered while running the playbook:"] messages = remove_ansi(message).splitlines() messages[-1] += "..." warn_msg.extend(messages) warn_msg += ["[HINT] To see the full error message try ':stdout'"] warn_msg += ["[HINT] After it's fixed, try to ':rerun' the playbook"] warning = warning_notification(warn_msg) self._interaction.ui.show(warning)
36.119183
100
0.554602
7947099da5d94978d65208650463b1519b38bf4e
3,183
py
Python
tv.boxeeplay.svtplay3/settings.py
BoxeePlay/svtplay3
8bbaf5af0ec6927417ff1172bd0ea10b61fab605
[ "MIT" ]
1
2015-03-03T14:59:02.000Z
2015-03-03T14:59:02.000Z
tv.boxeeplay.svtplay3/settings.py
BoxeePlay/svtplay3
8bbaf5af0ec6927417ff1172bd0ea10b61fab605
[ "MIT" ]
null
null
null
tv.boxeeplay.svtplay3/settings.py
BoxeePlay/svtplay3
8bbaf5af0ec6927417ff1172bd0ea10b61fab605
[ "MIT" ]
null
null
null
#encoding:utf-8 #author:Andreas Pehrson #project:boxeeplay.tv import mc from logger import BPLog, Level USE_PIRATEPLAY_KEY = "use_pirateplay" BITRATE_LIMIT_KEY = "bitrate_limit" def conf(): return mc.GetApp().GetLocalConfig() def activate(): decision = mc.ShowDialogSelect("Jag vill ändra...", [get_option_stream_source(), get_option_bitrate_limit()]) if decision == 0: activate_stream_source_selection() if decision == 1: activate_bitrate_limit_selection() def activate_stream_source_selection(): cont = mc.ShowDialogConfirm("Ändra Uppspelningskälla", "Traditionellt öppnas videor i den inbyggda webbläsaren. Med pirateplay kan vi istället öppna videoströmmarna direkt i Boxee. Då startar de snabbare men med låst bitrate/kvalitet.", "Avbryt", "Fortsätt") if not cont: return opt_pirateplay = "Pirateplay om möjligt" opt_webonly = "Endast webbläsaren" if use_pirateplay(): opt_pirateplay = "[valt] " + opt_pirateplay else: opt_webonly = "[valt] " + opt_webonly decision = mc.ShowDialogSelect("Ändra Uppspelningskälla", [opt_pirateplay, opt_webonly]) if decision == 0: set_use_pirateplay(True) elif decision == 1: set_use_pirateplay(False) else: BPLog("Stream source dialog cancelled") return def activate_bitrate_limit_selection(): cont = mc.ShowDialogConfirm("Ändra bandbreddsbegränsning", "När Pirateplay används spelar vi normalt upp strömmarna med högsta möjliga kvalitet. Har du då problem med hackig och buffrande uppspelning kan du här ställa in en gräns för hur hög bitrate vi får välja.", "Avbryt", "Fortsätt") if not cont: return options = [ "Obegränsat", "2500 Kbps", "2000 Kbps", "1500 Kbps", "1000 Kbps", "500 Kbps" ] option_values = [ -1, 2500, 2000, 1500, 1000, 500 ] limit = bitrate_limit() active_value_index = 0 try: active_value_index = option_values.index(limit) except: BPLog("Value %d not found in list of bitrate limit options" %limit, Level.WARNING) options[active_value_index] = "[valt] " + options[active_value_index] decision = mc.ShowDialogSelect("Begränsa bandbredd", options) if decision == -1: BPLog("Bitrate limit dialog cancelled") return chosen_limit = option_values[decision] set_bitrate_limit(chosen_limit) BPLog("Bitrate limit set to %d kbps (%s)" %(chosen_limit, options[decision])) def use_pirateplay(): return conf().GetValue(USE_PIRATEPLAY_KEY) == "True" def set_use_pirateplay(use_pirateplay): conf().SetValue(USE_PIRATEPLAY_KEY, str(use_pirateplay)) def bitrate_limit(): limit = conf().GetValue(BITRATE_LIMIT_KEY) if limit == "": return -1 else: return int(limit) def set_bitrate_limit(limit): conf().SetValue(BITRATE_LIMIT_KEY, str(limit)) def get_option_stream_source(): opt = "Uppspelningskälla: " if use_pirateplay(): opt += "Pirateplay" else: opt += "Web" return opt def get_option_bitrate_limit(): opt = "Bandbreddsbegränsning: " limit = bitrate_limit() if limit == -1: opt += "Obegränsat" else: opt += "%d kbps" %limit return opt
34.225806
291
0.700283
79470a3e7e9fc34968d9340c4c032e16fd48e191
11,524
py
Python
scripts/test_globalF.py
Tarekbouamer/Image-Retrieval-for-Image-Based-Localization
fcad9af4f558bebb3cbec1d08e49603a452f439d
[ "BSD-3-Clause" ]
3
2021-01-15T13:58:22.000Z
2021-01-22T00:03:34.000Z
scripts/test_globalF.py
Tarekbouamer/Image-Retrieval-for-Image-Based-Localization
fcad9af4f558bebb3cbec1d08e49603a452f439d
[ "BSD-3-Clause" ]
null
null
null
scripts/test_globalF.py
Tarekbouamer/Image-Retrieval-for-Image-Based-Localization
fcad9af4f558bebb3cbec1d08e49603a452f439d
[ "BSD-3-Clause" ]
null
null
null
import argparse import os import time import pickle import numpy as np import torch from torch.utils.model_zoo import load_url from torchvision import transforms from cirtorch.models.GF_net import init_network, extract_vectors from cirtorch.datasets.datahelpers import cid2filename from cirtorch.datasets.testdataset import configdataset from cirtorch.utils.download import download_train, download_test from cirtorch.utils.whiten import whitenlearn, whitenapply from cirtorch.utils.evaluate import compute_map_and_print from cirtorch.utils.general import get_data_root, htime PRETRAINED = { 'retrievalSfM120k-vgg16-gem' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/retrieval-SfM-120k/retrievalSfM120k-vgg16-gem-b4dcdc6.pth', 'retrievalSfM120k-resnet101-gem' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/retrieval-SfM-120k/retrievalSfM120k-resnet101-gem-b80fb85.pth', # new modules with whitening learned end-to-end 'rSfM120k-tl-resnet50-gem-w' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/retrieval-SfM-120k/rSfM120k-tl-resnet50-gem-w-97bf910.pth', 'rSfM120k-tl-resnet101-gem-w' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/retrieval-SfM-120k/rSfM120k-tl-resnet101-gem-w-a155e54.pth', 'rSfM120k-tl-resnet152-gem-w' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/retrieval-SfM-120k/rSfM120k-tl-resnet152-gem-w-f39cada.pth', 'gl18-tl-resnet50-gem-w' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/gl18/gl18-tl-resnet50-gem-w-83fdc30.pth', 'gl18-tl-resnet101-gem-w' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/gl18/gl18-tl-resnet101-gem-w-a4d43db.pth', 'gl18-tl-resnet152-gem-w' : 'http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/gl18/gl18-tl-resnet152-gem-w-21278d5.pth', } datasets_names = ['oxford5k', 'paris6k', 'roxford5k', 'rparis6k'] whitening_names = ['retrieval-SfM-30k', 'retrieval-SfM-120k'] parser = argparse.ArgumentParser(description='PyTorch CNN Image Retrieval Testing') # network group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--network-path', '-npath', metavar='NETWORK', help="pretrained network or network path (destination where network is saved)") group.add_argument('--network-offtheshelf', '-noff', metavar='NETWORK', help="off-the-shelf network, in the format 'ARCHITECTURE-POOLING' or 'ARCHITECTURE-POOLING-{reg-lwhiten-whiten}'," + " examples: 'resnet101-gem' | 'resnet101-gem-reg' | 'resnet101-gem-whiten' | 'resnet101-gem-lwhiten' | 'resnet101-gem-reg-whiten'") # test options parser.add_argument('--datasets', '-d', metavar='DATASETS', default='oxford5k,paris6k', help="comma separated list of test datasets: " + " | ".join(datasets_names) + " (default: 'oxford5k,paris6k')") parser.add_argument('--image-size', '-imsize', default=1024, type=int, metavar='N', help="maximum size of longer image side used for testing (default: 1024)") parser.add_argument('--multiscale', '-ms', metavar='MULTISCALE', default='[1]', help="use multiscale vectors for testing, " + " examples: '[1]' | '[1, 1/2**(1/2), 1/2]' | '[1, 2**(1/2), 1/2**(1/2)]' (default: '[1]')") parser.add_argument('--whitening', '-w', metavar='WHITENING', default=None, choices=whitening_names, help="dataset used to learn whitening for testing: " + " | ".join(whitening_names) + " (default: None)") # GPU ID parser.add_argument('--gpu-id', '-g', default='0', metavar='N', help="gpu id used for testing (default: '0')") def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not download_train(get_data_root()) download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained modules (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'modules')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get('local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms)>1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize( mean=net.meta['mean'], std=net.meta['std'] ) transform = transforms.Compose([ transforms.ToTensor(), normalize ]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) if len(ms)>1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate modules from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])] try: bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] except: bbxs = None # for holidaysmanrot and copydays # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg['gnd']) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd']) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start))) if __name__ == '__main__': main()
43.486792
162
0.599098
79470abaee1d412287761485b77daf98d263b262
2,734
py
Python
poc.py
hcongvan/emotion-recognition-neural-networks
e98b1ce21599e83fccb97a31386ecd8ebfc6d3b3
[ "MIT" ]
null
null
null
poc.py
hcongvan/emotion-recognition-neural-networks
e98b1ce21599e83fccb97a31386ecd8ebfc6d3b3
[ "MIT" ]
null
null
null
poc.py
hcongvan/emotion-recognition-neural-networks
e98b1ce21599e83fccb97a31386ecd8ebfc6d3b3
[ "MIT" ]
null
null
null
# Proof-of-concept import cv2 import sys from constants import * from emotion_recognition import EmotionRecognition import numpy as np import pdb cascade_classifier = cv2.CascadeClassifier(CASC_PATH) def brighten(data,b): datab = data * b return datab def format_image(image): if len(image.shape) > 2 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE) faces = cascade_classifier.detectMultiScale( image, scaleFactor = 1.3, minNeighbors = 5 ) # pdb.set_trace() # faces = cv2.resize(faces,(SIZE_FACE,SIZE_FACE)) # None is we don't found an image if not len(faces) > 0: return None max_area_face = faces[0] for face in faces: if face[2] * face[3] > max_area_face[2] * max_area_face[3]: max_area_face = face # Chop image to face face = max_area_face image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] # Resize image to network size try: image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation = cv2.INTER_CUBIC) / 255. except Exception: print("[+] Problem during resize") return None #cv2.imshow("Lol", image) #cv2.waitKey(0) return image # Load Model network = EmotionRecognition() network.build_network() video_capture = cv2.VideoCapture(0) font = cv2.FONT_HERSHEY_SIMPLEX feelings_faces = [] for index, emotion in enumerate(EMOTIONS): feelings_faces.append(cv2.imread('./emojis/' + emotion + '.png', -1)) while True: # Capture frame-by-frame ret, frame = video_capture.read() #pdb.set_trace() # Predict result with network result = network.predict(format_image(frame)) # Draw face in frame # for (x,y,w,h) in faces: # cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 2) # Write results in frame if result is not None: for index, emotion in enumerate(EMOTIONS): cv2.putText(frame, emotion, (10, index * 20 + 20), cv2.FONT_HERSHEY_PLAIN, 0.5, (0, 255, 0), 1); cv2.rectangle(frame, (130, index * 20 + 10), (130 + int(result[0][index] * 100), (index + 1) * 20 + 4), (255, 0, 0), -1) # m = 0 # i = 0 # for c in result[0]: # if m < c: # m = c # i = i +1; face_image = feelings_faces[np.argmax(result[0])] # Ugly transparent fix for c in range(0, 3): frame[200:320, 10:130, c] = face_image[:,:,c] * (face_image[:, :, 3] / 255.0) + frame[200:320, 10:130, c] * (1.0 - face_image[:, :, 3] / 255.0) # Display the resulting frame cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()
28.778947
150
0.644111
79470bc632bfdd5e3ab8a407df89043379e127a5
1,632
py
Python
SRWLIB_ExampleViewDataFile.py
mrakitin/SRW-gui
9c603d5a407dfa36ba92e8646d1a57151de825ed
[ "Apache-2.0" ]
null
null
null
SRWLIB_ExampleViewDataFile.py
mrakitin/SRW-gui
9c603d5a407dfa36ba92e8646d1a57151de825ed
[ "Apache-2.0" ]
null
null
null
SRWLIB_ExampleViewDataFile.py
mrakitin/SRW-gui
9c603d5a407dfa36ba92e8646d1a57151de825ed
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ############################################################################# # SRWLIB Example View Data File: View data stored in a file # v 0.01 ############################################################################# from __future__ import print_function #Python 2.7 compatibility from uti_plot import * import optparse if __name__=='__main__': p = optparse.OptionParser() p.add_option('-f', '--infile', dest='infile', metavar='FILE', default='', help='input file name') p.add_option('-e', '--e', dest='e', metavar='NUMBER', type='float', default=0, help='photon energy') p.add_option('-x', '--x', dest='x', metavar='NUMBER', type='float', default=0, help='horizontal position') p.add_option('-y', '--y', dest='y', metavar='NUMBER', type='float', default=0, help='vertical position') p.add_option('-l', '--readlab', dest='readlab', metavar='NUMBER', type='int', nargs=0, default=0, help='read labels from the file header (1) or not (0)') p.add_option('-j', '--joined', dest='joined', metavar='NUMBER', type='int', nargs=0, default=0, help='place different graphs jointly into one figure (1) or into separate figures (0)') opt, args = p.parse_args() if opt.readlab != 0: opt.readlab = 1 if opt.joined != 0: opt.joined = 1 if len(opt.infile) == 0: print('File name was not specified. Use -f option to specify the file name with path.') quit() #print(opt.joined) uti_data_file_plot(opt.infile, opt.readlab, opt.e, opt.x, opt.y, opt.joined) uti_plot_show() #print(opt.infile, opt.readlab, opt.e, opt.x, opt.y, opt.joined)
49.454545
187
0.588848
79470bece896f0caea5cb18cf4b22ee0b32b2bd1
602
py
Python
If_and_circulation.py
Becavalier/Python-Practice-Cases
23139e8bab0f5c712d38f378364842262d17e520
[ "MIT" ]
1
2016-08-18T00:53:51.000Z
2016-08-18T00:53:51.000Z
If_and_circulation.py
Becavalier/Python-Practice-Cases
23139e8bab0f5c712d38f378364842262d17e520
[ "MIT" ]
null
null
null
If_and_circulation.py
Becavalier/Python-Practice-Cases
23139e8bab0f5c712d38f378364842262d17e520
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # If age = 3; if age >= 18: print('adult'); elif age >= 6: print('teenager'); else: print('kid'); s = input('birth: '); birth = int(s); if birth < 2000: print('00前'); else: print('00后'); # Circulation names = ['Michael', 'Bob', 'Tracy']; for name in names: print(name); sum = 0; for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: sum = sum + x; print(sum); # Python method: range() sum = 0; for x in range(101): sum = sum + x; print(sum); # While sum = 0; n = 99; while n > 0: sum = sum + n; n = n - 2; print(sum);
13.377778
41
0.51495
79470c218eb93beb3cbe517362d3c67eafa14117
1,446
py
Python
chameleon/legacy/skfeature/utility/mutual_information.py
diviyat/chameleon
12c212ef3ecaab73e6b2a4ae378b25495926ad75
[ "MIT" ]
2
2021-10-21T23:09:00.000Z
2021-12-14T07:55:43.000Z
chameleon/legacy/skfeature/utility/mutual_information.py
diviyat/chameleon
12c212ef3ecaab73e6b2a4ae378b25495926ad75
[ "MIT" ]
null
null
null
chameleon/legacy/skfeature/utility/mutual_information.py
diviyat/chameleon
12c212ef3ecaab73e6b2a4ae378b25495926ad75
[ "MIT" ]
null
null
null
import chameleon.legacy.skfeature.utility.entropy_estimators as ee def information_gain(f1, f2): """ This function calculates the information gain, where ig(f1,f2) = H(f1) - H(f1|f2) Input ----- f1: {numpy array}, shape (n_samples,) f2: {numpy array}, shape (n_samples,) Output ------ ig: {float} """ ig = ee.entropyd(f1) - conditional_entropy(f1, f2) return ig def conditional_entropy(f1, f2): """ This function calculates the conditional entropy, where ce = H(f1) - I(f1;f2) Input ----- f1: {numpy array}, shape (n_samples,) f2: {numpy array}, shape (n_samples,) Output ------ ce: {float} ce is conditional entropy of f1 and f2 """ ce = ee.entropyd(f1) - ee.midd(f1, f2) return ce def su_calculation(f1, f2): """ This function calculates the symmetrical uncertainty, where su(f1,f2) = 2*IG(f1,f2)/(H(f1)+H(f2)) Input ----- f1: {numpy array}, shape (n_samples,) f2: {numpy array}, shape (n_samples,) Output ------ su: {float} su is the symmetrical uncertainty of f1 and f2 """ # calculate information gain of f1 and f2, t1 = ig(f1,f2) t1 = information_gain(f1, f2) # calculate entropy of f1, t2 = H(f1) t2 = ee.entropyd(f1) # calculate entropy of f2, t3 = H(f2) t3 = ee.entropyd(f2) # su(f1,f2) = 2*t1/(t2+t3) su = 2.0*t1/(t2+t3) return su
21.58209
101
0.584371
79470c6ffe2f20b3049cbc386160009ef026da3d
1,716
py
Python
xlsxwriter/test/comparison/test_table08.py
shareablee/XlsxWriter
3cfcbe18fbc4526158ffbb5e7bb5227f78e3f5f9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_table08.py
shareablee/XlsxWriter
3cfcbe18fbc4526158ffbb5e7bb5227f78e3f5f9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_table08.py
shareablee/XlsxWriter
3cfcbe18fbc4526158ffbb5e7bb5227f78e3f5f9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2015, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'table08.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = ['xl/calcChain.xml', '[Content_Types].xml', 'xl/_rels/workbook.xml.rels'] self.ignore_elements = {} def test_create_file(self): """Test the creation of a simple XlsxWriter file with tables.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.set_column('C:F', 10.288) worksheet.write_string('A1', 'Column1') worksheet.write_string('B1', 'Column2') worksheet.write_string('C1', 'Column3') worksheet.write_string('D1', 'Column4') worksheet.write_string('E1', 'Total') worksheet.add_table('C3:F14', {'total_row': 1, 'columns': [{'total_string': 'Total'}, {}, {}, {'total_function': 'count'}, ]}) workbook.close() self.assertExcelEqual()
31.2
101
0.52331
79470c836165dc8858da71bf43bd6b14c83a53dd
68
py
Python
bci_learning_studio/__init__.py
hellomoto-ai/bci-learning-studio
f37256bd0e2d85590ff258f14d70f09afcd9609f
[ "MIT" ]
null
null
null
bci_learning_studio/__init__.py
hellomoto-ai/bci-learning-studio
f37256bd0e2d85590ff258f14d70f09afcd9609f
[ "MIT" ]
13
2018-11-28T05:00:00.000Z
2019-01-07T04:06:37.000Z
bci_learning_studio/__init__.py
hellomoto-ai/bci-learning-studio
f37256bd0e2d85590ff258f14d70f09afcd9609f
[ "MIT" ]
null
null
null
__all__ = [ '__version__', ] from ._version import __version__
11.333333
33
0.691176
79470f8e4c770d0b26e1dd0a0fc2b31f65659d51
9,021
py
Python
src/python/ilp_pipeline_config.py
hhelm10/distPURL
735480bceff38b7a10ea618c13fe93a5b3d26910
[ "MIT" ]
2
2021-04-27T15:26:00.000Z
2021-09-12T23:15:02.000Z
src/python/ilp_pipeline_config.py
hhelm10/distPURL
735480bceff38b7a10ea618c13fe93a5b3d26910
[ "MIT" ]
null
null
null
src/python/ilp_pipeline_config.py
hhelm10/distPURL
735480bceff38b7a10ea618c13fe93a5b3d26910
[ "MIT" ]
2
2021-04-27T15:26:33.000Z
2021-09-13T12:32:24.000Z
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. """ import logging import os import sys from typing import * from typing import List, Any, Dict from multiprocessing import Lock from datetime import datetime from pytz import timezone from ilp_common import * from ilp_common_classes import * from ilp_manual_input import * from ilp_voi_experiment import * from ilp_pre_proc import * class ILPPipelineParameter: def __init__(self, name: str, function_handler: Callable[[str],Any], value: Any = None, default: Any = None): self.name: str = name self.function_handler: Callable[[str],Any] = function_handler self.value: Any = value self.default: Any = default class ILPPipelineConfig: def __init__(self): self.ilp_params: ILPParams self.cmd_options: Dict[str, ILPPipelineParameter] self.voi_indices: List[int] = [] self.pipeline_driver_input_path: str = "../json/pipeline_driver_input_template.json" self.run_id_input_flag: bool = False self.run_id_dir_path = '../../.ilp_code/' self.run_id: str = '100' self.sub_run_id: int = 1 self.run_output_dir_path: str = '' self.experiment_dicts: Dict[str,List[ILPVoiExperiment]] = {} self.output_dir_paths: List[str] = [] self.all_training_similar_sets_dict: Dict[strDict[str,int]] = {} self.logger: str = '' self.test_successful: bool = False def reset_run_id(self): #increment run_id with open(os.path.join(self.run_id_dir_path, 'run_id_file.txt'), 'w') as run_id_file: run_id_file.write(str(int(self.run_id) + 1)) def create_output_dirs(self): ''' Create an output directory ''' create_dir((self.ilp_params.path_to_root+'/src/output_data'),False) create_dir(self.ilp_params.path_to_output,False) if self.run_id_input_flag == False: get_run_id_lock = Lock() create_dir(self.run_id_dir_path, False) runid_file_path = os.path.join(self.run_id_dir_path, 'run_id_file.txt') if os.path.exists(runid_file_path) == False: with open(runid_file_path, 'w') as f: f.write(str(self.run_id)) with get_run_id_lock: with open(runid_file_path, 'r') as run_id_file: self.run_id = run_id_file.read() self.reset_run_id() self.run_output_dir_path = os.path.join(self.ilp_params.path_to_output, '{d}_{r}_{t}'.format(d=self.ilp_params.dataset, r=self.run_id, t=(datetime.now(timezone('US/Pacific')).strftime('_%m%d%Y_%H:%M:%S_%z')))) create_dir(self.run_output_dir_path, True) def save_log_preproc_data_debug_mode(self, pre_processed_data:ILPPreProcData): ''' Configure logger ''' self.logger = logging.getLogger('ilp_pipeline_driver') self.logger.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(message)s') ''' Save logging to file in debug mode ''' if self.ilp_params.mode == RunMode.DEBUG: # create file handler and set level to debug fh = logging.FileHandler(os.path.join(self.run_output_dir_path,'ilp_pipeline_logging.log'),'w') fh.setLevel(logging.DEBUG) # add formatter to fh fh.setFormatter(formatter) # add fh to logger self.logger.addHandler(fh) ''' Save preprocessed data in debug mode ''' if self.ilp_params.persist_data == True and self.ilp_params.mode == RunMode.DEBUG: try: dump_json(pre_processed_data.__dict__, os.path.join(self.run_output_dir_path,'pre_processed_data.json')) except ValueError: raise ILPError('Output directory needs to be created before saving pre-processed data.') self.logger.info("pre-processed data loaded to JSON") def help_handler(self, arg: List[str]): print('\n-- use default values for all testing parameters --') print('ilp_pipeline_driver.py\n') print("-- modify specific parameters --") print("ilp_pipeline_driver.py --dataset --root-path --metadata-path --output-path --num-vois --training-sets-sizes --minimum-ranking-thresholds --solvers-apis --weight-approx-resolutions --num-cores --persist-data --mode --eval-data-mode --training-data-mode --gurobi-outputflag --time-limit --num-threads --eval-size --eval-param\n") print('-- create a new json input file using current testing parameters: [-c or --create] (avoid spaces in list params) --') print('ilp_pipeline_driver.py -c <inputfile.json>\n') print('-- use a pre-written json input file: [-i or --ifile] --') print('ilp_pipeline_driver.py -i <inputfile.json>\n') print('-- enter parameters one by one (for users unfamiliar with required input): [--manual] --') print('ilp_pipeline_driver.py --manual\n') print('-- specify your run label: [--runid] --') print('ilp_pipeline_driver.py --runid <run_label>\n') print('-- specify your vertices of interest: [--indices] --') print('ilp_pipeline_driver.py --indices <[voi1,voi2,..,voi_n]>\n') sys.exit(0) def ifile_handler(self, arg: List[str]): ilp_params = ILPParams() ilp_params.load_data(arg[0]) self.ilp_params = ilp_params self.pipeline_driver_input_path = arg[0] def runid_handler(self, arg: List[str]): self.run_id_input_flag = True self.run_id = arg[0] def dataset_handler(self, arg: List[str]): self.ilp_params.dataset = arg[0] def path_to_root_handler(self, arg: List[str]): self.ilp_params.path_to_root = arg[0] def path_to_metadata_handler(self, arg: List[str]): self.ilp_params.path_to_metadata = arg[0] def path_to_output_handler(self, arg: List[str]): self.ilp_params.path_to_output = arg[0] def num_vois_handler(self, arg: List[str]): self.ilp_params.num_vois = int(arg[0]) def training_sizes_handler(self, arg: List[str]): self.ilp_params.training_sets_sizes = [int(i) for i in arg[0].strip().strip('[]').split(',')] def threshold_handler(self, arg: List[str]): self.ilp_params.minimum_ranking_thresholds = [int(i) if (i != 'None') else None for i in arg[0].strip().strip('[]').split(',')] def solver_api_handler(self, arg: List[str]): self.ilp_params.solvers_and_apis = [[i for i in j.split(',')] for j in arg[0].strip().strip('[]').split('],[')] def weight_approx_resolution_handler(self, arg: List[str]): self.ilp_params.weight_approx_resolutions = [float(i) if (i != 'None') else None for i in arg[0].strip().strip('[]').split(',')] def num_cores_handler(self, arg: List[str]): self.ilp_params.num_cores = int(arg[0]) def persist_data_handler(self, arg: List[str]): self.ilp_params.persist_data = True if arg[0].lower()=='true' else False def mode_handler(self, arg: List[str]): self.ilp_params.mode = RunMode(arg[0].upper()) def eval_data_mode_handler(self, arg: List[str]): self.ilp_params.eval_data_mode = DataInputMode(arg[0].upper()) def training_data_mode_handler(self, arg: List[str]): self.ilp_params.training_data_mode = DataInputMode(arg[0].upper()) def gurobi_outputflag_handler(self, arg: List[str]): self.ilp_params.gurobi_outputflag = int(arg[0]) def time_limit_handler(self, arg: List[str]): self.ilp_params.time_limit = float(arg[0]) def num_threads_handler(self, arg: List[str]): self.ilp_params.num_threads = int(arg[0]) def eval_size_handler(self, arg: List[str]): self.ilp_params.eval_size = int(arg[0]) def eval_param_handler(self, arg: List[str]): self.ilp_params.eval_param = EvalParam(arg[0]) def create_handler(self, arg: List[str]): drive_archive_dir = os.path.join(self.ilp_params.path_to_root, 'src/driver_input_temp') create_dir(drive_archive_dir,False) self.pipeline_driver_input_path = os.path.join(drive_archive_dir, arg[0]) with open(self.pipeline_driver_input_path, 'w') as json_file: json_file.write(self.ilp_params.__repr__()) def manual_input_handler(self, arg: List[str]): ilp_params = ILPParams() pipeline_driver_input_path = input_from_cmd(ilp_params) self.ilp_params = ilp_params self.pipeline_driver_input_path = pipeline_driver_input_path def indices_handler(self, arg: List[str]): voi_indices = [int(i) for i in arg[0].strip().strip('[]').split(',')] self.voi_indices = voi_indices self.ilp_params.num_vois = len(voi_indices) def cmd_update(self,opt:str,arg: str): self.cmd_options[opt].function_handler([arg])
42.551887
342
0.651923
79471059b35427cd96ca20cc6bb060b2e13e059e
2,290
py
Python
lncrawl/sources/tapread.py
betabeast12/lightnovel-crawler
215b20846a71ad37ec893799cf684c76af707e62
[ "Apache-2.0" ]
2
2021-05-01T23:21:35.000Z
2022-01-15T20:05:17.000Z
lncrawl/sources/tapread.py
dragonroad99/lncrawlod
a2f5e8fb115822d855baa992ecc65741822e315b
[ "Apache-2.0" ]
4
2021-03-31T20:08:34.000Z
2021-12-13T20:49:55.000Z
lncrawl/sources/tapread.py
dragonroad99/lncrawlod
a2f5e8fb115822d855baa992ecc65741822e315b
[ "Apache-2.0" ]
1
2020-05-21T23:40:47.000Z
2020-05-21T23:40:47.000Z
# -*- coding: utf-8 -*- import logging from urllib.parse import urlparse from ..utils.crawler import Crawler logger = logging.getLogger(__name__) chapter_list_url = 'https://www.tapread.com/book/contents?bookId=%s' chapter_url = 'https://www.tapread.com/book/chapter?bookId=%s&chapterId=%s' class TapreadCrawler(Crawler): base_url = 'https://www.tapread.com/' def read_novel_info(self): '''Get novel title, autor, cover etc''' logger.debug('Visiting %s', self.novel_url) soup = self.get_soup(self.novel_url) self.novel_title = soup.select_one('.book-name').text.strip() logger.info('Novel title: %s', self.novel_title) try: self.novel_cover = self.absolute_url( soup.select_one('img.bg-img, img.cover-img, .book-img img')['src']) except Exception: pass # end try logger.info('Novel cover: %s', self.novel_cover) try: possible_authors = [] for div in soup.select('.author, .translator'): possible_authors.append( ': '.join([x.strip() for x in div.text.split(':')])) # end for self.novel_author = ', '.join(possible_authors) except Exception: pass # end try logger.info(self.novel_author) path = urlparse(self.novel_url).path book_id = path.split('/')[3] data = self.get_json(chapter_list_url % book_id) volumes = set() for chap in data['result']['chapterList']: chap_id = chap['chapterNo'] vol_id = (chap_id - 1) // 100 + 1 volumes.add(vol_id) self.chapters.append({ 'id': chap_id, 'volume': vol_id, 'title': chap['chapterName'], 'url': chapter_url % (chap['bookId'], chap['chapterId']), }) # end for self.volumes = [{'id': x} for x in volumes] # end def def download_chapter_body(self, chapter): '''Download body of a single chapter and return as clean html format''' logger.info('Downloading %s', chapter['url']) data = self.get_json(chapter['url']) return data['result']['content'] # end def # end class
32.714286
83
0.567686
794711790c51b1f818edfafbd0bdc0ffd8bf4765
10,925
py
Python
compound_disease/compound_treats_disease/edge_prediction_experiment/edge_prediction_experiment.py
ajlee21/snorkeling
93ca5269199a55ed2093334cb32b6d3120ae3535
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
compound_disease/compound_treats_disease/edge_prediction_experiment/edge_prediction_experiment.py
ajlee21/snorkeling
93ca5269199a55ed2093334cb32b6d3120ae3535
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
compound_disease/compound_treats_disease/edge_prediction_experiment/edge_prediction_experiment.py
ajlee21/snorkeling
93ca5269199a55ed2093334cb32b6d3120ae3535
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # # Compound Treats Disease Edge Prediction # This notebook is designed to take the next step moving from predicted sentences to edge predictions. After training the discriminator model, each sentences contains a confidence score for the likelihood of mentioning a relationship. Multiple relationships contain multiple sentences, which makes establishing an edge unintuitive. Is taking the max score appropiate for determining existence of an edge? Does taking the mean of each relationship make more sense? The answer towards these questions are shown below. # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('matplotlib', 'inline') import math import os import sys import pandas as pd from sklearn.metrics import precision_recall_curve, roc_curve, auc import matplotlib.pyplot as plt import plotnine as p9 import seaborn as sns sys.path.append(os.path.abspath('../../../modules')) from utils.notebook_utils.dataframe_helper import mark_sentence, tag_sentence # In[2]: #Set up the environment username = "danich1" password = "snorkel" dbname = "pubmeddb" #Path subject to change for different os database_str = "postgresql+psycopg2://{}:{}@/{}?host=/var/run/postgresql".format(username, password, dbname) os.environ['SNORKELDB'] = database_str from snorkel import SnorkelSession session = SnorkelSession() # In[3]: from snorkel.learning.pytorch.rnn.utils import candidate_to_tokens from snorkel.models import Candidate, candidate_subclass # In[4]: CompoundDisease = candidate_subclass('CompoundDisease', ['Compound', 'Disease']) # In[5]: total_candidates_df = ( pd .read_csv("input/all_ctd_candidates.tsv.xz", sep="\t") .sort_values("candidate_id") ) total_candidates_df.head(2) # In[6]: sentence_prediction_df = ( pd .read_csv("input/all_predicted_ctd_sentences.tsv.xz", sep="\t") .sort_values("candidate_id") ) sentence_prediction_df.head(2) # In[7]: # DataFrame that combines likelihood scores with each candidate sentence total_candidates_pred_df = ( total_candidates_df[[ "doid_id", "doid_name", "drugbank_id", "drug_name", "text", "hetionet", "candidate_id", "split" ]] .merge(sentence_prediction_df, on="candidate_id") ) #total_candidates_pred_df.to_csv( # "output/combined_predicted_ctd_sentences.tsv.xz", # sep="\t", index=False, compression="xz" #) total_candidates_pred_df.head(2) # In[8]: # DataFrame that groups disease and compound mentions together and takes # the max, median and mean of each group grouped_candidates_pred_df=( total_candidates_pred_df .groupby(["doid_id", "drugbank_id"], as_index=False) .agg({ "pred": ['max', 'mean', 'median'], 'hetionet': 'max', "drug_name": 'first', "doid_name": 'first', "split": 'first' }) ) grouped_candidates_pred_df.head(2) # In[9]: grouped_candidates_pred_df.columns = [ "_".join(col) if col[1] != '' and col[0] not in ['hetionet', 'drug_name', 'doid_name', 'split'] else col[0] for col in grouped_candidates_pred_df.columns.values ] grouped_candidates_pred_df.head(2) # In[10]: grouped_candidates_pred_subset_df = ( grouped_candidates_pred_df .query("split==11") .drop("split", axis=1) ) grouped_candidates_pred_subset_df.head(2) # In[11]: grouped_candidates_pred_subset_df.hetionet.value_counts() # # Best Sentence Representation Metric # This section aims to answer the question: What metric (Mean, Max, Median) best predicts Hetionet Edges? # In[12]: performance_map = {} # In[13]: precision, recall, pr_threshold = precision_recall_curve( grouped_candidates_pred_subset_df.hetionet, grouped_candidates_pred_subset_df.pred_max, ) fpr, tpr, roc_threshold = roc_curve( grouped_candidates_pred_subset_df.hetionet, grouped_candidates_pred_subset_df.pred_max, ) performance_map['max'] = { "precision":precision, "recall":recall, "pr_threshold":pr_threshold, "false_pos":fpr, "true_pos":tpr, "roc_threshold":roc_threshold, } # In[14]: precision, recall, pr_threshold = precision_recall_curve( grouped_candidates_pred_subset_df.hetionet, grouped_candidates_pred_subset_df.pred_mean, ) fpr, tpr, roc_threshold = roc_curve( grouped_candidates_pred_subset_df.hetionet, grouped_candidates_pred_subset_df.pred_mean, ) performance_map['mean'] = { "precision":precision, "recall":recall, "pr_threshold":pr_threshold, "false_pos":fpr, "true_pos":tpr, "roc_threshold":roc_threshold, } # In[15]: precision, recall, pr_threshold = precision_recall_curve( grouped_candidates_pred_subset_df.hetionet, grouped_candidates_pred_subset_df.pred_median, ) fpr, tpr, roc_threshold = roc_curve( grouped_candidates_pred_subset_df.hetionet, grouped_candidates_pred_subset_df.pred_median, ) performance_map['median'] = { "precision":precision, "recall":recall, "pr_threshold":pr_threshold, "false_pos":fpr, "true_pos":tpr, "roc_threshold":roc_threshold, } # In[16]: for key in performance_map: plt.plot( performance_map[key]['false_pos'], performance_map[key]['true_pos'], label=f"{key}:AUC ({auc(performance_map[key]['false_pos'], performance_map[key]['true_pos']):.3f})" ) plt.plot([0,1], [0,1], linestyle='--', color='black') plt.legend() plt.show() # In[17]: for key in performance_map: plt.plot( performance_map[key]['recall'], performance_map[key]['precision'], label=f"{key}:AUC ({auc(performance_map[key]['recall'], performance_map[key]['precision']):.3f})" ) plt.legend() plt.show() # # Optimal Cutoff Using PR-Curve # In[18]: threshold_df = ( pd.DataFrame( list( zip( performance_map['max']['precision'], performance_map['max']['recall'], performance_map['max']['pr_threshold'] ) ), columns=["precision", "recall", "pr_threshold"] ) .sort_values("precision", ascending=False) ) threshold_df.head(2) # In[19]: #precision_thresholds = pd.np.linspace(0,1,num=5) precision_thresholds = threshold_df.round(2).drop_duplicates("precision").precision.values # Add the lowest precision rather than # Keep it zero precision_thresholds = ( pd.np.where( precision_thresholds==0, threshold_df.precision.min(), precision_thresholds ) ) performance_records = [] for precision_cutoff in precision_thresholds: cutoff = ( threshold_df .query("precision>=@precision_cutoff") .pr_threshold .min() ) values_added = ( grouped_candidates_pred_subset_df .query("pred_max >= @cutoff") .hetionet .value_counts() ) series_keys = list(values_added.keys()) for key in series_keys: performance_records.append( { "edges": values_added[key], "in_hetionet": "Existing" if key == 1 else "Novel", "precision": precision_cutoff, "sen_cutoff": cutoff } ) edges_added_df = ( pd .DataFrame .from_records(performance_records) ) edges_added_df.head(10) # In[20]: ax = sns.scatterplot(x="precision", y="edges", hue="in_hetionet", data=edges_added_df) ax.set(yscale="log") # In[21]: edges_added_df.to_csv("output/precision_ctd_edges_added.tsv", index=False, sep="\t") # # Total Recalled Edges # How many edges of hetionet can we recall using an equal error rate cutoff score? # In[23]: gen_pred_df = ( pd.read_csv("../label_sampling_experiment/results/CtD/marginals/train/22_sampled_train.tsv.xz", sep="\t") .iloc[:, [0,-1]] .append( pd.read_csv("../label_sampling_experiment/results/CtD/marginals/tune/22_sampled_dev.tsv", sep="\t") .iloc[:, [0,-1]] ) .append( pd.read_csv("../label_sampling_experiment/results/CtD/marginals/test/22_sampled_test.tsv", sep="\t") .iloc[:, [0,-1]] ) ) gen_pred_df.columns = ["gen_pred", "candidate_id"] gen_pred_df.head(2) # In[24]: ( total_candidates_pred_df.iloc[ total_candidates_pred_df .groupby(["drugbank_id", "doid_id"], as_index=False) .agg({ "pred": 'idxmax' }) .pred ] .merge(gen_pred_df, on=["candidate_id"]) .assign(edge_type="CtD") .sort_values("pred", ascending=False) .head(10) .sort_values("candidate_id") .assign(text=lambda x: tag_sentence(x, CompoundDisease)) .merge(total_candidates_df[["n_sentences", "candidate_id"]], on="candidate_id") .sort_values("pred", ascending=False) .drop_duplicates() .assign(hetionet=lambda x: x.hetionet.apply(lambda x: "Existing" if x == 1 else "Novel")) [["edge_type", "drug_name", "doid_name", "gen_pred", "pred", "n_sentences", "hetionet", "text"]] .to_csv("output/top_ten_edge_predictions.tsv", sep="\t", index=False, float_format="%.3g") ) # In[25]: datarows = [] fpr, tpr, threshold = roc_curve( grouped_candidates_pred_df.hetionet.values, grouped_candidates_pred_df.pred_max.values ) fnr = 1 - tpr optimal_threshold = threshold[pd.np.nanargmin(pd.np.absolute((fnr - fpr)))] datarows.append({ "recall":( grouped_candidates_pred_df .query("pred_max > @optimal_threshold") .hetionet .value_counts()[1] / grouped_candidates_pred_df .hetionet. value_counts()[1] ), "edges":( grouped_candidates_pred_df .query("pred_max > @optimal_threshold") .hetionet .value_counts()[1] ), "in_hetionet": "Existing", "total": int(grouped_candidates_pred_df.hetionet.value_counts()[1]), "relation":"CtD" }) datarows.append({ "edges":( grouped_candidates_pred_df .query("pred_max > @optimal_threshold") .hetionet .value_counts()[0] ), "in_hetionet": "Novel", "relation":"CtD" }) edges_df = pd.DataFrame.from_records(datarows) edges_df # In[26]: g = ( p9.ggplot(edges_df, p9.aes(x="relation", y="edges", fill="in_hetionet")) + p9.geom_col(position="dodge") + p9.geom_text( p9.aes( label=( edges_df .apply( lambda x: f"{x['edges']} ({x['recall']*100:.0f}%)" if not math.isnan(x['recall']) else f"{x['edges']}", axis=1 ) ) ), position=p9.position_dodge(width=1), size=9, va="bottom" ) + p9.scale_y_log10() + p9.theme( axis_text_y=p9.element_blank(), axis_ticks_major = p9.element_blank(), rect=p9.element_blank() ) ) print(g)
23.596112
515
0.660137
794712af13447b27948a2be27b8ed594d55572aa
9,275
py
Python
src/geneflow/extend/data_manager_contexts.py
82ndAirborneDiv/geneflow2
521544adbae1221d2d80496016548670ce5391c1
[ "Apache-2.0" ]
null
null
null
src/geneflow/extend/data_manager_contexts.py
82ndAirborneDiv/geneflow2
521544adbae1221d2d80496016548670ce5391c1
[ "Apache-2.0" ]
null
null
null
src/geneflow/extend/data_manager_contexts.py
82ndAirborneDiv/geneflow2
521544adbae1221d2d80496016548670ce5391c1
[ "Apache-2.0" ]
null
null
null
""" This module contains data management extension functions for various contexts. """ import glob import os import shutil from geneflow.log import Log from geneflow.uri_parser import URIParser from geneflow.extend.agave_wrapper import AgaveWrapper ### Local data management functions and move/copy with Local as source def _list_local(uri, local=None): """ List contents of local URI. Args: uri: parsed URI to list. local: local context options. Returns: On success: a list of filenames (basenames only). On failure: False. """ try: file_list = [ os.path.basename(item) for item in glob.glob( uri['chopped_path']+'/*' ) ] except OSError as err: Log.an().error( 'cannot get file list for uri: %s [%s]', uri['chopped_uri'], str(err) ) return False return file_list def _exists_local(uri, local=None): """ Check if local URI exists. Args: uri: parsed URI to check. local: local context options. Returns: True if the URI exists, False otherwise. """ return os.path.exists(uri['chopped_path']) def _mkdir_local(uri, local=None): """ Create local directory specified by URI. Args: uri: parsed URI to create. local: local context options. Returns: On success: True. On failure: False. """ try: os.makedirs(uri['chopped_path']) except OSError as err: Log.an().error( 'cannot create uri: %s [%s]', uri['chopped_uri'], str(err) ) return False return True def _mkdir_recursive_local(uri, local=None): """ Recursively create local directory specified by URI. Args: uri: parsed URI to create. local: local context options. Returns: On success: True. On failure: False. """ # same as the non-recursive call return _mkdir_local(uri, local) def _delete_local(uri, local=None): """ Delete local file/folder specified by URI. Args: uri: parsed URI to delete. local: local context options. Returns: On success: True. On failure: False. """ try: shutil.rmtree(uri['chopped_path']) except OSError as err: Log.an().error( 'cannot delete uri: %s [%s]', uri['chopped_uri'], str(err) ) return False return True def _copy_local_local(src_uri, dest_uri, local=None): """ Copy local data with system shell. Args: src_uri: Source URI parsed into dict with URIParser. dest_uri: Destination URI parsed into dict with URIParser. local: local context options. Returns: On success: True. On failure: False. """ try: shutil.copytree( src_uri['path'], dest_uri['path'] ) except OSError as err: Log.an().error( 'cannot copy from %s to %s [%s]', src_uri['uri'], dest_uri['uri'], str(err) ) return False return True def _move_local_local(src_uri, dest_uri, local=None): """ Move local data with system shell. Args: src_uri: Source URI parsed into dict with URIParser. dest_uri: Destination URI parsed into dict with URIParser. local: local context options. Returns: On success: True. On failure: False. """ try: shutil.move( src_uri['path'], dest_uri['path'] ) except OSError as err: Log.an().error( 'cannot move from %s to %s [%s]', src_uri['uri'], dest_uri['uri'], str(err) ) return False return True ### Agave data management functions and move/copy with Agave as source def _list_agave(uri, agave): """ List contents of agave URI. Args: uri: parsed URI to list. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: a list of filenames (basenames only). On failure: False. """ file_list = agave['agave_wrapper'].files_list(uri['authority'], uri['chopped_path']) if file_list is False: Log.an().error( 'cannot get file list for uri: %s', uri['chopped_uri'] ) return False return [file['name'] for file in file_list] def _exists_agave(uri, agave): """ Check if agave URI exists. Args: uri: parsed URI to check. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: True if the URI exists, False if it doesn't or if there's an error. """ if agave['agave_wrapper'].files_exist(uri['authority'], uri['chopped_path']) is False: return False return True def _mkdir_agave(uri, agave): """ Create agave directory specified by URI. Args: uri: parsed URI to create. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: True. On failure: False. """ if not agave['agave_wrapper'].files_mkdir(uri['authority'], uri['folder'], uri['name']): Log.an().error( 'cannot create folder at uri: %s', uri['chopped_uri'] ) return False return True def _mkdir_recursive_agave(uri, agave): """ Recursively create agave directory specified by URI. Args: uri: parsed URI to create. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: True. On failure: False. """ if uri['folder'] != '/': # make sure parent folder exists first parent_uri = URIParser.parse( '{}://{}{}'.format( uri['scheme'], uri['authority'], uri['folder'] ) ) if not _exists_agave(parent_uri, agave): # parent folder does not exist, create if not _mkdir_recursive_agave(parent_uri, agave): Log.an().error( 'cannot create parent folder at uri: %s', parent_uri['chopped_uri'] ) return False return _mkdir_agave(uri, agave) def _delete_agave(uri, agave): """ Delete agave file/folder specified by URI. Args: uri: parsed URI to delete. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: True. On failure: False. """ if not agave['agave_wrapper'].files_delete(uri['authority'], uri['chopped_path']): Log.an().error('cannot delete uri: %s', uri['chopped_path']) return False return True def _copy_agave_agave(src_uri, dest_uri, agave): """ Copy Agave data using AgavePy Wrapper. Args: src_uri: Source URI parsed into dict with URIParser. dest_uri: Destination URI parsed into dict with URIParser. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: True. On failure: False. """ if not agave['agave_wrapper'].files_import_from_agave( dest_uri['authority'], dest_uri['folder'], dest_uri['name'], src_uri['uri'] ): Log.an().error( 'cannot copy from %s to %s', src_uri['uri'], dest_uri['uri'] ) return False return True # local/Agave mixed methods def _copy_local_agave(src_uri, dest_uri, agave, local=None): """ Copy local data to Agave using AgavePy Wrapper. Args: src_uri: Source URI parsed into dict with URIParser. dest_uri: Destination URI parsed into dict with URIParser. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: True. On failure: False. """ if not agave['agave_wrapper'].files_import_from_local( dest_uri['authority'], dest_uri['folder'], dest_uri['name'], src_uri['chopped_path'] ): Log.an().error( 'cannot copy from %s to %s', src_uri['uri'], dest_uri['uri'] ) return False return True def _copy_agave_local(src_uri, dest_uri, agave, local=None): """ Copy Agave data to a local destination using AgavePy Wrapper. Args: src_uri: Source URI parsed into dict with URIParser. dest_uri: Destination URI parsed into dict with URIParser. agave: dict that contains: agave_wrapper: Agave wrapper object. Returns: On success: True. On failure: False. """ if not agave['agave_wrapper'].files_download( src_uri['authority'], src_uri['chopped_path'], dest_uri['chopped_path'], -1 ): Log.an().error( 'cannot copy from %s to %s', src_uri['uri'], dest_uri['uri'] ) return False return True
22.788698
92
0.570135
7947148c3dc373d9f56992cc048c15d158fab7b0
742
py
Python
hello_app/plotly/__init__.py
agaitskellwork/flask2
d1de6baf721f3a4d7ccf8afbc39e08683eb7642d
[ "MIT" ]
null
null
null
hello_app/plotly/__init__.py
agaitskellwork/flask2
d1de6baf721f3a4d7ccf8afbc39e08683eb7642d
[ "MIT" ]
null
null
null
hello_app/plotly/__init__.py
agaitskellwork/flask2
d1de6baf721f3a4d7ccf8afbc39e08683eb7642d
[ "MIT" ]
null
null
null
"""Initialize Flask app.""" from ddtrace import patch_all from flask import Flask from flask_assets import Environment patch_all() def init_app(): """Construct core Flask application with embedded Dash app.""" app = Flask(__name__, instance_relative_config=False) app.config.from_object("config.Config") assets = Environment() assets.init_app(app) with app.app_context(): # Import parts of our core Flask app from . import routes from .assets import compile_static_assets # Import Dash application from .plotlydash.dashboard import init_dashboard app = init_dashboard(app) # Compile static assets compile_static_assets(assets) return app
24.733333
66
0.692722
7947159b76871693b28d5bca513dbd85fdfa6e77
2,220
py
Python
odds/scraper.py
nik849/Odds
a2403e5f5428fcf826322b59410471ec97a6aa26
[ "MIT" ]
1
2017-11-05T20:41:12.000Z
2017-11-05T20:41:12.000Z
odds/scraper.py
nik849/Odds
a2403e5f5428fcf826322b59410471ec97a6aa26
[ "MIT" ]
2
2021-03-31T18:43:15.000Z
2021-12-13T19:46:28.000Z
odds/scraper.py
nik849/Odds
a2403e5f5428fcf826322b59410471ec97a6aa26
[ "MIT" ]
null
null
null
import pandas import requests class scrape: """ Scraping class, using asyncio and aiophttp. """ def __init__(self, url): """ Initialiser for scrape class. """ self.URL = url def _get(self, port=None): """ Method to scrape a single page and return a json object. :param port: Port for access Optional :return: text object containing scraped data """ req_str = self.URL response = requests.get(url=req_str) assert response.status_code == 200 return response.text def get_odds_html(self, config=None): """ Method to return a Dataframe object of scraped results. :param config: search criteria, type dict :return: Pandas Dataframe object """ scr_data = pandas.read_html(self._get())[4] if config: if config['query'] is not None: data = scr_data return data else: return scr_data.fillna(value='').to_html() def get_odds_obj(self, config=None): """ Method to return a Dataframe object of scraped results. :param config: search criteria, type dict :return: Pandas Dataframe object """ df = pandas.read_html(self._get())[4] indexes = df[df[0].str.contains(' - ', na=False) | df[0].isnull()].index.tolist() df_dict = {} for i in list(range(len(indexes)-1)): current = indexes[i] nex = indexes[i + 1] df_dict[str(df.ix[indexes[i], 0])] = df[current:nex] if config: if config['query'] is not None: data = df_dict return data else: return df_dict def download(self, config=None): """ Method to download .csv file of scraped results :param config: search criteria, type dict :return: Pandas Dataframe object """ scr_data = pandas.read_html(self._get())[4] if config: if config['query'] is not None: data = scr_data return data else: return scr_data
29.6
64
0.541441
794715a9a7dee6c86ae10497f790c75abeafa000
2,589
py
Python
caffe2/python/modifier_context.py
KevinKecc/caffe2
a2b6c6e2f0686358a84277df65e9489fb7d9ddb2
[ "Apache-2.0" ]
585
2015-08-10T02:48:52.000Z
2021-12-01T08:46:59.000Z
caffe2/python/modifier_context.py
mingzhe09088/caffe2
8f41717c46d214aaf62b53e5b3b9b308b5b8db91
[ "Apache-2.0" ]
27
2018-04-14T06:44:22.000Z
2018-08-01T18:02:39.000Z
caffe2/python/modifier_context.py
mingzhe09088/caffe2
8f41717c46d214aaf62b53e5b3b9b308b5b8db91
[ "Apache-2.0" ]
183
2015-08-10T02:49:04.000Z
2021-12-01T08:47:13.000Z
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # @package modifier_context # Module caffe2.python.modifier_context from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals DEFAULT_MODIFIER = 'DEFAULT' class ModifierContext(object): """ provide context to allow param_info to have different modifiers """ def __init__(self): self._modifiers = {} self._modifiers_list = [] def _rebuild_modifiers(self): self._modifiers = {} for m in self._modifiers_list: self._modifiers.update(m) def _has_modifier(self, name): return name in self._modifiers def _get_modifier(self, name): return self._modifiers.get(name) def push_modifiers(self, modifiers): # modifier override is allowed self._modifiers_list.append(modifiers) self._modifiers.update(modifiers) def pop_modifiers(self): assert len(self._modifiers_list) > 0 self._modifiers_list.pop() self._rebuild_modifiers() class UseModifierBase(object): ''' context class to allow setting the current context. Example useage with layer: modifiers = {'modifier1': modifier1, 'modifier2': modifier2} with Modifiers(modifiers): modifier = ModifierContext.current().get_modifier('modifier1') layer(modifier=modifier) ''' def __init__(self, modifier_or_dict): if isinstance(modifier_or_dict, dict): self._modifiers = modifier_or_dict else: self._modifiers = {DEFAULT_MODIFIER: modifier_or_dict} def _context_class(self): raise NotImplementedError def __enter__(self): self._context_class().current().push_modifiers(self._modifiers) return self def __exit__(self, type, value, traceback): self._context_class().current().pop_modifiers()
31.192771
78
0.677868
79471627f96f2d3da751e1335163ae36d5daae5a
195
py
Python
app/api/__init__.py
typ0520/flask-blog
198898c2576962fb635e518dd32147b56cc3ba5f
[ "Apache-2.0" ]
1
2017-08-07T10:49:49.000Z
2017-08-07T10:49:49.000Z
app/api/__init__.py
typ0520/flask-blog
198898c2576962fb635e518dd32147b56cc3ba5f
[ "Apache-2.0" ]
null
null
null
app/api/__init__.py
typ0520/flask-blog
198898c2576962fb635e518dd32147b56cc3ba5f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'typ0520' from flask import Blueprint api = Blueprint('api', __name__) from . import authentication, posts, users, comments, errors
19.5
60
0.707692
7947162fae6fa8268965ea38631a7f9a631f0b3f
686
py
Python
app/core/migrations/0003_ingredient.py
arona504/recipe-api
27acd3d1b1908248cb5e53d78e911f8abaec8fc4
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
arona504/recipe-api
27acd3d1b1908248cb5e53d78e911f8abaec8fc4
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
arona504/recipe-api
27acd3d1b1908248cb5e53d78e911f8abaec8fc4
[ "MIT" ]
null
null
null
# Generated by Django 2.1.15 on 2020-04-21 17:43 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0002_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
28.583333
118
0.618076
79471647145c001f33f3289666fe54f4eb1e45aa
444
py
Python
raiden/messages/cmdid.py
luehrsFred/raiden
a1b118ebe14badb1acd0744b2d7f2b39f8ba5313
[ "MIT" ]
null
null
null
raiden/messages/cmdid.py
luehrsFred/raiden
a1b118ebe14badb1acd0744b2d7f2b39f8ba5313
[ "MIT" ]
69
2020-07-21T05:49:21.000Z
2022-03-08T18:09:44.000Z
raiden/messages/cmdid.py
luehrsFred/raiden
a1b118ebe14badb1acd0744b2d7f2b39f8ba5313
[ "MIT" ]
null
null
null
import enum @enum.unique class CmdId(enum.Enum): """ Identifier for off-chain messages. These magic numbers are used to identify the type of a message. """ PROCESSED = 0 PING = 1 PONG = 2 SECRETREQUEST = 3 UNLOCK = 4 LOCKEDTRANSFER = 7 REFUNDTRANSFER = 8 REVEALSECRET = 11 DELIVERED = 12 LOCKEXPIRED = 13 WITHDRAW_REQUEST = 15 WITHDRAW_CONFIRMATION = 16 WITHDRAW_EXPIRED = 17
18.5
67
0.644144
794716c12e2c51044e5d52eb20108781b83aa94a
981
py
Python
sample_project/env/lib/python3.9/site-packages/qtpy/Qt3DInput.py
Istiakmorsalin/ML-Data-Science
681e68059b146343ef55b0671432dc946970730d
[ "MIT" ]
4
2021-11-19T03:25:13.000Z
2022-02-24T15:32:30.000Z
sample_project/env/lib/python3.9/site-packages/qtpy/Qt3DInput.py
Istiakmorsalin/ML-Data-Science
681e68059b146343ef55b0671432dc946970730d
[ "MIT" ]
null
null
null
sample_project/env/lib/python3.9/site-packages/qtpy/Qt3DInput.py
Istiakmorsalin/ML-Data-Science
681e68059b146343ef55b0671432dc946970730d
[ "MIT" ]
3
2020-08-04T02:48:32.000Z
2020-08-17T01:20:09.000Z
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright © 2009- The Spyder Development Team # # Licensed under the terms of the MIT License # (see LICENSE.txt for details) # ----------------------------------------------------------------------------- """Provides Qt3DInput classes and functions.""" # Local imports from . import PYQT5, PYSIDE2, PythonQtError, PYSIDE_VERSION from .py3compat import PY2 if PYQT5: from PyQt5.Qt3DInput import * elif PYSIDE2: if not PY2 or (PY2 and PYSIDE_VERSION < '5.12.4'): # https://bugreports.qt.io/projects/PYSIDE/issues/PYSIDE-1026 import PySide2.Qt3DInput as __temp import inspect for __name in inspect.getmembers(__temp.Qt3DInput): globals()[__name[0]] = __name[1] else: raise PythonQtError('A bug in Shiboken prevents this') else: raise PythonQtError('No Qt bindings could be found')
36.333333
80
0.561672
794717b6ae039d7359e14e4b2ff18feac4c29ec6
8,265
py
Python
bert-sst2/bert_sst2.py
yyxx1997/pytorch
3d9fca2119c260317c06b11aa8bdb9b29b4c8cca
[ "MIT" ]
1
2022-02-17T11:34:02.000Z
2022-02-17T11:34:02.000Z
bert-sst2/bert_sst2.py
yyxx1997/pytorch
3d9fca2119c260317c06b11aa8bdb9b29b4c8cca
[ "MIT" ]
null
null
null
bert-sst2/bert_sst2.py
yyxx1997/pytorch
3d9fca2119c260317c06b11aa8bdb9b29b4c8cca
[ "MIT" ]
1
2022-03-17T10:36:58.000Z
2022-03-17T10:36:58.000Z
# -*- coding: utf-8 -*- # @Time : 2021/1/11 9:09 # @Author : yx # @File : bert_sst2.py import torch import torch.nn as nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from transformers import BertModel from tqdm import tqdm import os import time from transformers import BertTokenizer from transformers import logging # 设置transformers模块的日志等级,减少不必要的警告,对训练过程无影响,请忽略 logging.set_verbosity_error() # 环境变量:设置程序能使用的GPU序号。例如: # 当前服务器有8张GPU可用,想用其中的第2、5、8卡,这里应该设置为: # os.environ["CUDA_VISIBLE_DEVICES"] = "1,4,7" os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 通过继承nn.Module类自定义符合自己需求的模型 class BertSST2Model(nn.Module): # 初始化类 def __init__(self, class_size, pretrained_name='bert-base-chinese'): """ Args: class_size :指定分类模型的最终类别数目,以确定线性分类器的映射维度 pretrained_name :用以指定bert的预训练模型 """ # 类继承的初始化,固定写法 super(BertSST2Model, self).__init__() # 加载HuggingFace的BertModel # BertModel的最终输出维度默认为768 # return_dict=True 可以使BertModel的输出具有dict属性,即以 bert_output['last_hidden_state'] 方式调用 self.bert = BertModel.from_pretrained(pretrained_name, return_dict=True) # 通过一个线性层将[CLS]标签对应的维度:768->class_size # class_size 在SST-2情感分类任务中设置为:2 self.classifier = nn.Linear(768, class_size) def forward(self, inputs): # 获取DataLoader中已经处理好的输入数据: # input_ids :tensor类型,shape=batch_size*max_len max_len为当前batch中的最大句长 # input_tyi :tensor类型, # input_attn_mask :tensor类型,因为input_ids中存在大量[Pad]填充,attention mask将pad部分值置为0,让模型只关注非pad部分 input_ids, input_tyi, input_attn_mask = inputs['input_ids'], inputs[ 'token_type_ids'], inputs['attention_mask'] # 将三者输入进模型,如果想知道模型内部如何运作,前面的蛆以后再来探索吧~ output = self.bert(input_ids, input_tyi, input_attn_mask) # bert_output 分为两个部分: # last_hidden_state:最后一个隐层的值 # pooler output:对应的是[CLS]的输出,用于分类任务 # 通过线性层将维度:768->2 # categories_numberic:tensor类型,shape=batch_size*class_size,用于后续的CrossEntropy计算 categories_numberic = self.classifier(output.pooler_output) return categories_numberic def save_pretrained(model, path): # 保存模型,先利用os模块创建文件夹,后利用torch.save()写入模型文件 os.makedirs(path, exist_ok=True) torch.save(model, os.path.join(path, 'model.pth')) def load_sentence_polarity(data_path, train_ratio=0.8): # 本任务中暂时只用train、test做划分,不包含dev验证集, # train的比例由train_ratio参数指定,train_ratio=0.8代表训练语料占80%,test占20% # 本函数只适用于读取指定文件,不具通用性,仅作示范 all_data = [] # categories用于统计分类标签的总数,用set结构去重 categories = set() with open(data_path, 'r', encoding="utf8") as file: for sample in file.readlines(): # polar指情感的类别,当前只有两种: # ——0:positive # ——1:negative # sent指对应的句子 polar, sent = sample.strip().split("\t") categories.add(polar) all_data.append((polar, sent)) length = len(all_data) train_len = int(length * train_ratio) train_data = all_data[:train_len] test_data = all_data[train_len:] return train_data, test_data, categories """ torch提供了优秀的数据加载类Dataloader,可以自动加载数据。 1. 想要使用torch的DataLoader作为训练数据的自动加载模块,就必须使用torch提供的Dataset类 2. 一定要具有__len__和__getitem__的方法,不然DataLoader不知道如何如何加载数据 这里是固定写法,是官方要求,不懂可以不做深究,一般的任务这里都通用 """ class BertDataset(Dataset): def __init__(self, dataset): self.dataset = dataset self.data_size = len(dataset) def __len__(self): return self.data_size def __getitem__(self, index): # 这里可以自行定义,Dataloader会使用__getitem__(self, index)获取数据 # 这里我设置 self.dataset[index] 规定了数据是按序号取得,序号是多少DataLoader自己算,用户不用操心 return self.dataset[index] def coffate_fn(examples): inputs, targets = [], [] for polar, sent in examples: inputs.append(sent) targets.append(int(polar)) inputs = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt", max_length=512) targets = torch.tensor(targets) return inputs, targets # 训练准备阶段,设置超参数和全局变量 batch_size = 8 num_epoch = 5 # 训练轮次 check_step = 1 # 用以训练中途对模型进行检验:每check_step个epoch进行一次测试和保存模型 data_path = "./sst2_shuffled.tsv" # 数据所在地址 train_ratio = 0.8 # 训练集比例 learning_rate = 1e-5 # 优化器的学习率 # 获取训练、测试数据、分类类别总数 train_data, test_data, categories = load_sentence_polarity( data_path=data_path, train_ratio=train_ratio) # 将训练数据和测试数据的列表封装成Dataset以供DataLoader加载 train_dataset = BertDataset(train_data) test_dataset = BertDataset(test_data) """ DataLoader主要有以下几个参数: Args: dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per batch to load(default: ``1``). shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). collate_fn : 传入一个处理数据的回调函数 DataLoader工作流程: 1. 先从dataset中取出batch_size个数据 2. 对每个batch,执行collate_fn传入的函数以改变成为适合模型的输入 3. 下个epoch取数据前先对当前的数据集进行shuffle,以防模型学会数据的顺序而导致过拟合 """ train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=coffate_fn, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=1, collate_fn=coffate_fn) #固定写法,可以牢记,cuda代表Gpu # torch.cuda.is_available()可以查看当前Gpu是否可用 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 加载预训练模型,因为这里是英文数据集,需要用在英文上的预训练模型:bert-base-uncased # uncased指该预训练模型对应的词表不区分字母的大小写 # 详情可了解:https://huggingface.co/bert-base-uncased pretrained_model_name = 'bert-base-uncased' # 创建模型 BertSST2Model model = BertSST2Model(len(categories), pretrained_model_name) # 固定写法,将模型加载到device上, # 如果是GPU上运行,此时可以观察到GPU的显存增加 model.to(device) # 加载预训练模型对应的tokenizer tokenizer = BertTokenizer.from_pretrained(pretrained_model_name) # 训练过程 # Adam是最近较为常用的优化器,详情可查看:https://www.jianshu.com/p/aebcaf8af76e optimizer = Adam(model.parameters(), learning_rate) #使用Adam优化器 CE_loss = nn.CrossEntropyLoss() # 使用crossentropy作为二分类任务的损失函数 # 记录当前训练时间,用以记录日志和存储 timestamp = time.strftime("%m_%d_%H_%M", time.localtime()) # 开始训练,model.train()固定写法,详情可以百度 model.train() for epoch in range(1, num_epoch + 1): # 记录当前epoch的总loss total_loss = 0 # tqdm用以观察训练进度,在console中会打印出进度条 for batch in tqdm(train_dataloader, desc=f"Training Epoch {epoch}"): # tqdm(train_dataloader, desc=f"Training Epoch {epoch}") 会自动执行DataLoader的工作流程, # 想要知道内部如何工作可以在debug时将断点打在 coffate_fn 函数内部,查看数据的处理过程 # 对batch中的每条tensor类型数据,都执行.to(device), # 因为模型和数据要在同一个设备上才能运行 inputs, targets = [x.to(device) for x in batch] # 清除现有的梯度 optimizer.zero_grad() # 模型前向传播,model(inputs)等同于model.forward(inputs) bert_output = model(inputs) # 计算损失,交叉熵损失计算可参考:https://zhuanlan.zhihu.com/p/159477597 loss = CE_loss(bert_output, targets) # 梯度反向传播 loss.backward() # 根据反向传播的值更新模型的参数 optimizer.step() # 统计总的损失,.item()方法用于取出tensor中的值 total_loss += loss.item() #测试过程 # acc统计模型在测试数据上分类结果中的正确个数 acc = 0 for batch in tqdm(test_dataloader, desc=f"Testing"): inputs, targets = [x.to(device) for x in batch] # with torch.no_grad(): 为固定写法, # 这个代码块中的全部有关tensor的操作都不产生梯度。目的是节省时间和空间,不加也没事 with torch.no_grad(): bert_output = model(inputs) """ .argmax()用于取出一个tensor向量中的最大值对应的下表序号,dim指定了维度 假设 bert_output为3*2的tensor: tensor [ [3.2,1.1], [0.4,0.6], [-0.1,0.2] ] 则 bert_output.argmax(dim=1) 的结果为:tensor[0,1,1] """ acc += (bert_output.argmax(dim=1) == targets).sum().item() #输出在测试集上的准确率 print(f"Acc: {acc / len(test_dataloader):.2f}") if epoch % check_step == 0: # 保存模型 checkpoints_dirname = "bert_sst2_" + timestamp os.makedirs(checkpoints_dirname, exist_ok=True) save_pretrained(model, checkpoints_dirname + '/checkpoints-{}/'.format(epoch))
32.667984
110
0.66824
794717b6cf3b92d6c4748c894de5e5a27422406e
1,078
py
Python
LC/74.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
2
2018-02-24T17:20:02.000Z
2018-02-24T17:25:43.000Z
LC/74.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
null
null
null
LC/74.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
null
null
null
class Solution(object): def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ m = len(matrix) n = len(matrix[0]) if m else 0 if m * n == 0: return False if target < matrix[0][0] or target > matrix[-1][-1]: return False i = 0 j = len(matrix) - 1 if target>=matrix[-1][0]: return self.searchList(matrix[-1], target) while i < j - 1: mid = (i + j) // 2 if matrix[mid][0] == target: return True if matrix[mid][0] < target: i = mid else: j = mid return self.searchList(matrix[i], target) def searchList(self, l, t): i = 0 j = len(l) - 1 while i <= j: m = (i + j) // 2 if l[m] == t: return True if l[m] > t: j = m - 1 else: i = m + 1 return False
26.292683
60
0.396104
7947187f8c809c12d5b883cb598cfa7083adde50
649
py
Python
snakepit/adapters/pip.py
kk6/pip-require
09ef6da8a13ec65cdaea653b6d69f8218ee1da2e
[ "MIT" ]
1
2018-08-27T10:11:21.000Z
2018-08-27T10:11:21.000Z
snakepit/adapters/pip.py
kk6/pip-require
09ef6da8a13ec65cdaea653b6d69f8218ee1da2e
[ "MIT" ]
2
2015-11-20T06:55:37.000Z
2015-11-22T17:03:14.000Z
snakepit/adapters/pip.py
kk6/pip-require
09ef6da8a13ec65cdaea653b6d69f8218ee1da2e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Adapter of pip module.""" from __future__ import absolute_import, division, print_function, unicode_literals import pip def install(packages, options): """Execute `pip install`. :param packages: Package name list. :return: If `pip install` is successful, then return 0 else 1. """ return pip.main(["install"] + options + [pkg for pkg in packages]) def uninstall(packages): """Execute `pip uninstall`. :param packages: Package name list. :return: If `pip install` is successful, then return 0 else 1. """ return pip.main(["uninstall"] + ['-y'] + [pkg for pkg in packages])
24.037037
82
0.657935
794718f0f368c542ad42a45410bc21c8376ac316
6,003
py
Python
docs/conf.py
MorrisMA/py65
bda1553ff88fc577944bde3d7cb3e75a3b83ccfa
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
MorrisMA/py65
bda1553ff88fc577944bde3d7cb3e75a3b83ccfa
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
MorrisMA/py65
bda1553ff88fc577944bde3d7cb3e75a3b83ccfa
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # test documentation build configuration file, created by # sphinx-quickstart on Sun Nov 30 14:39:06 2008. # # This file is execfile()d with the current dir set to its containing # directory. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed # automatically). # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys from datetime import date # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.append(os.path.abspath('.')) # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc'] # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Py65' year = date.today().year copyright = u'2008-%d, Mike Naberezny and contributors' % year # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.25.dev0' # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'default.css' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'testdoc' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class # [howto/manual]). latex_documents = [ ('index', 'test.tex', ur'test Documentation', ur'foo', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True
30.784615
79
0.729635
79471a236af4e0e4a170b71a7efd197a63ece32a
27,131
py
Python
wgail_info_0/models.py
liubaoryol/InfoGAIL
89f553da1ed415f8383c0f9e8c3774debc628dcd
[ "MIT" ]
null
null
null
wgail_info_0/models.py
liubaoryol/InfoGAIL
89f553da1ed415f8383c0f9e8c3774debc628dcd
[ "MIT" ]
null
null
null
wgail_info_0/models.py
liubaoryol/InfoGAIL
89f553da1ed415f8383c0f9e8c3774debc628dcd
[ "MIT" ]
null
null
null
from utils import * import numpy as np import time import math import argparse from keras.initializers import normal, identity, uniform from keras.models import model_from_json from keras.models import Sequential, Model from keras.layers import Dense, BatchNormalization, Activation, Convolution2D, MaxPooling2D, Flatten, Input, merge, Lambda from keras.layers.advanced_activations import LeakyReLU from tensorflow.keras.optimizers import Adam, RMSprop import tensorflow as tf import keras.backend as K import json from tensorflow.keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input from keras.utils.np_utils import to_categorical parser = argparse.ArgumentParser(description="TRPO") parser.add_argument("--paths_per_collect", type=int, default=10) parser.add_argument("--max_step_limit", type=int, default=300) parser.add_argument("--min_step_limit", type=int, default=100) parser.add_argument("--pre_step", type=int, default=100) parser.add_argument("--n_iter", type=int, default=1000) parser.add_argument("--gamma", type=float, default=.95) parser.add_argument("--lam", type=float, default=.97) parser.add_argument("--max_kl", type=float, default=0.01) parser.add_argument("--cg_damping", type=float, default=0.1) parser.add_argument("--lr_discriminator", type=float, default=5e-5) parser.add_argument("--d_iter", type=int, default=100) parser.add_argument("--clamp_lower", type=float, default=-0.01) parser.add_argument("--clamp_upper", type=float, default=0.01) parser.add_argument("--lr_baseline", type=float, default=1e-4) parser.add_argument("--b_iter", type=int, default=25) parser.add_argument("--lr_posterior", type=float, default=1e-4) parser.add_argument("--p_iter", type=int, default=50) parser.add_argument("--buffer_size", type=int, default=75) parser.add_argument("--sample_size", type=int, default=50) parser.add_argument("--batch_size", type=int, default=500) args = parser.parse_args() tf.compat.v1.disable_eager_execution() class TRPOAgent(object): config = dict2(paths_per_collect = args.paths_per_collect, max_step_limit = args.max_step_limit, min_step_limit = args.min_step_limit, pre_step = args.pre_step, n_iter = args.n_iter, gamma = args.gamma, lam = args.lam, max_kl = args.max_kl, cg_damping = args.cg_damping, lr_discriminator = args.lr_discriminator, d_iter = args.d_iter, clamp_lower = args.clamp_lower, clamp_upper = args.clamp_upper, lr_baseline = args.lr_baseline, b_iter = args.b_iter, lr_posterior = args.lr_posterior, p_iter = args.p_iter, buffer_size = args.buffer_size, sample_size = args.sample_size, batch_size = args.batch_size) def __init__(self, env, sess, feat_dim, aux_dim, encode_dim, action_dim, img_dim, pre_actions): self.env = env self.sess = sess self.buffer = ReplayBuffer(self.config.buffer_size) self.feat_dim = feat_dim self.aux_dim = aux_dim self.encode_dim = encode_dim self.action_dim = action_dim self.img_dim = img_dim self.pre_actions = pre_actions self.feats = feats = tf.compat.v1.placeholder( dtype, shape=[None, feat_dim[0], feat_dim[1], feat_dim[2]] ) self.auxs = auxs = tf.compat.v1.placeholder(dtype, shape=[None, aux_dim]) self.encodes = encodes = tf.compat.v1.placeholder(dtype, shape=[None, encode_dim]) self.actions = actions = tf.compat.v1.placeholder(dtype, shape=[None, action_dim]) self.advants = advants = tf.compat.v1.placeholder(dtype, shape=[None]) self.oldaction_dist_mu = oldaction_dist_mu = \ tf.compat.v1.placeholder(dtype, shape=[None, action_dim]) self.oldaction_dist_logstd = oldaction_dist_logstd = \ tf.compat.v1.placeholder(dtype, shape=[None, action_dim]) # Create neural network. print("Now we build trpo generator") self.generator = self.create_generator(feats, auxs, encodes) print("Now we build discriminator") self.discriminator, self.discriminate = \ self.create_discriminator(img_dim, aux_dim, action_dim) print("Now we build posterior") self.posterior = \ self.create_posterior(img_dim, aux_dim, action_dim, encode_dim) self.posterior_target = \ self.create_posterior(img_dim, aux_dim, action_dim, encode_dim) self.demo_idx = 0 action_dist_mu = self.generator.outputs[0] # self.action_dist_logstd_param = action_dist_logstd_param = \ # tf.compat.v1.placeholder(dtype, shape=[1, action_dim]) # action_dist_logstd = tf.tile(action_dist_logstd_param, # tf.pack((tf.shape(action_dist_mu)[0], 1))) action_dist_logstd = tf.compat.v1.placeholder(dtype, shape=[None, action_dim]) eps = 1e-8 self.action_dist_mu = action_dist_mu self.action_dist_logstd = action_dist_logstd N = tf.shape(feats)[0] # compute probabilities of current actions and old actions log_p_n = gauss_log_prob(action_dist_mu, action_dist_logstd, actions) log_oldp_n = gauss_log_prob(oldaction_dist_mu, oldaction_dist_logstd, actions) ratio_n = tf.exp(log_p_n - log_oldp_n) Nf = tf.cast(N, dtype) surr = -tf.reduce_mean(ratio_n * advants) # Surrogate loss var_list = self.generator.trainable_weights kl = gauss_KL(oldaction_dist_mu, oldaction_dist_logstd, action_dist_mu, action_dist_logstd) / Nf ent = gauss_ent(action_dist_mu, action_dist_logstd) / Nf self.losses = [surr, kl, ent] self.pg = flatgrad(surr, var_list) # KL divergence where first arg is fixed kl_firstfixed = gauss_selfKL_firstfixed(action_dist_mu, action_dist_logstd) / Nf grads = tf.gradients(kl_firstfixed, var_list) self.flat_tangent = tf.compat.v1.placeholder(dtype, shape=[None]) shapes = list(map(var_shape, var_list)) start = 0 tangents = [] for shape in shapes: size = np.prod(shape) param = tf.reshape(self.flat_tangent[start:(start + size)], shape) tangents.append(param) start += size gvp = [tf.reduce_sum(g * t) for (g, t) in zip(grads, tangents)] self.fvp = flatgrad(gvp, var_list) self.gf = GetFlat(self.sess, var_list) self.sff = SetFromFlat(self.sess, var_list) self.baseline = NNBaseline(sess, feat_dim, aux_dim, encode_dim, self.config.lr_baseline, self.config.b_iter, self.config.batch_size) self.sess.run(tf.global_variables_initializer()) # Create feature extractor self.base_model = ResNet50(weights='imagenet', include_top=False) self.feat_extractor = Model( input=self.base_model.input, output=self.base_model.get_layer('activation_40').output ) def create_generator(self, feats, auxs, encodes): feats = Input(tensor=feats) x = Convolution2D(256, 3, 3)(feats) x = LeakyReLU()(x) x = Convolution2D(256, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Flatten()(x) auxs = Input(tensor=auxs) h = merge([x, auxs], mode='concat') h = Dense(256)(h) h = LeakyReLU()(h) h = Dense(128)(h) encodes = Input(tensor=encodes) c = Dense(128)(encodes) h = merge([h, c], mode='sum') h = LeakyReLU()(h) steer = Dense(1, activation='tanh', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h) accel = Dense(1, activation='sigmoid', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h) brake = Dense(1, activation='sigmoid', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h) actions = merge([steer, accel, brake], mode='concat') model = Model(input=[feats, auxs, encodes], output=actions) return model def create_discriminator(self, img_dim, aux_dim, action_dim): imgs = Input(shape=[img_dim[0], img_dim[1], img_dim[2]]) x = Convolution2D(32, 3, 3, subsample=(2, 2))(imgs) x = LeakyReLU()(x) x = Convolution2D(64, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Convolution2D(128, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Flatten()(x) auxs = Input(shape=[aux_dim]) actions = Input(shape=[action_dim]) h = merge([x, auxs, actions], mode='concat') h = Dense(256)(h) h = LeakyReLU()(h) h = Dense(128)(h) h = LeakyReLU()(h) p = Dense(1)(h) discriminate = Model(input=[imgs, auxs, actions], output=p) imgs_n = Input(shape=[img_dim[0], img_dim[1], img_dim[2]]) imgs_d = Input(shape=[img_dim[0], img_dim[1], img_dim[2]]) auxs_n = Input(shape=[aux_dim]) auxs_d = Input(shape=[aux_dim]) actions_n = Input(shape=[action_dim]) actions_d = Input(shape=[action_dim]) p_n = discriminate([imgs_n, auxs_n, actions_n]) p_d = discriminate([imgs_d, auxs_d, actions_d]) p_d = Lambda(lambda x: -x)(p_d) p_output = merge([p_n, p_d], mode='sum') model = Model(input=[imgs_n, auxs_n, actions_n, imgs_d, auxs_d, actions_d], output=p_output) rmsprop = RMSprop(lr=self.config.lr_discriminator) model.compile( # little trick to use Keras predefined lambda loss function loss=lambda y_pred, p_true: K.mean(y_pred * p_true), optimizer=rmsprop ) return model, discriminate def create_posterior(self, img_dim, aux_dim, action_dim, encode_dim): imgs = Input(shape=[img_dim[0], img_dim[1], img_dim[2]]) x = Convolution2D(32, 3, 3, subsample=(2, 2))(imgs) x = LeakyReLU()(x) x = Convolution2D(64, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Convolution2D(128, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Flatten()(x) auxs = Input(shape=[aux_dim]) actions = Input(shape=[action_dim]) h = merge([x, auxs, actions], mode='concat') h = Dense(256)(h) h = LeakyReLU()(h) h = Dense(128)(h) h = LeakyReLU()(h) c = Dense(encode_dim, activation='softmax')(h) model = Model(input=[imgs, auxs, actions], output=c) adam = Adam(lr=self.config.lr_posterior) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) return model def act(self, feats, auxs, encodes, logstds, *args): action_dist_mu = \ self.sess.run( self.action_dist_mu, {self.feats: feats, self.auxs: auxs, self.encodes: encodes} ) act = action_dist_mu + np.exp(logstds) * \ np.random.randn(*logstds.shape) act[:, 0] = np.clip(act[:, 0], -1, 1) act[:, 1] = np.clip(act[:, 1], 0, 1) act[:, 2] = np.clip(act[:, 2], 0, 1) return act def learn(self, demo): config = self.config start_time = time.time() numeptotal = 0 # Set up for training discrimiator print("Loading data ...") imgs_d, auxs_d, actions_d = demo["imgs"], demo["auxs"], demo["actions"] numdetotal = imgs_d.shape[0] idx_d = np.arange(numdetotal) np.random.shuffle(idx_d) imgs_d = imgs_d[idx_d] auxs_d = auxs_d[idx_d] actions_d = actions_d[idx_d] print("Resizing img for demo ...") imgs_reshaped_d = [] for i in range(numdetotal): imgs_reshaped_d.append(np.expand_dims(cv2.resize(imgs_d[i], (self.img_dim[0], self.img_dim[1])), axis=0)) imgs_d = np.concatenate(imgs_reshaped_d, axis=0).astype(np.float32) imgs_d = (imgs_d - 128.) / 128. print("Shape of resized demo images:", imgs_d.shape) for i in range(38, config.n_iter): # Generating paths. # if i == 1: if i == 38: paths_per_collect = 30 else: paths_per_collect = 10 rollouts = rollout_contin( self.env, self, self.feat_extractor, self.feat_dim, self.aux_dim, self.encode_dim, config.max_step_limit, config.min_step_limit, config.pre_step, paths_per_collect, self.pre_actions, self.discriminate, self.posterior_target) for path in rollouts: self.buffer.add(path) print("Buffer count:", self.buffer.count()) paths = self.buffer.get_sample(config.sample_size) print("Calculating actions ...") for path in paths: path["mus"] = self.sess.run( self.action_dist_mu, {self.feats: path["feats"], self.auxs: path["auxs"], self.encodes: path["encodes"]} ) mus_n = np.concatenate([path["mus"] for path in paths]) logstds_n = np.concatenate([path["logstds"] for path in paths]) feats_n = np.concatenate([path["feats"] for path in paths]) auxs_n = np.concatenate([path["auxs"] for path in paths]) encodes_n = np.concatenate([path["encodes"] for path in paths]) actions_n = np.concatenate([path["actions"] for path in paths]) imgs_n = np.concatenate([path["imgs"] for path in paths]) print("Epoch:", i, "Total sampled data points:", feats_n.shape[0]) # Train discriminator numnototal = feats_n.shape[0] batch_size = config.batch_size start_d = self.demo_idx start_n = 0 if i <= 5: d_iter = 120 - i * 20 else: d_iter = 10 for k in range(d_iter): loss = self.discriminator.train_on_batch( [imgs_n[start_n:start_n + batch_size], auxs_n[start_n:start_n + batch_size], actions_n[start_n:start_n + batch_size], imgs_d[start_d:start_d + batch_size], auxs_d[start_d:start_d + batch_size], actions_d[start_d:start_d + batch_size]], np.ones(batch_size) ) # print self.discriminator.summary() for l in self.discriminator.layers: weights = l.get_weights() weights = [np.clip(w, config.clamp_lower, config.clamp_upper) for w in weights] l.set_weights(weights) start_d = self.demo_idx = self.demo_idx + batch_size start_n = start_n + batch_size if start_d + batch_size >= numdetotal: start_d = self.demo_idx = (start_d + batch_size) % numdetotal if start_n + batch_size >= numnototal: start_n = (start_n + batch_size) % numnototal print("Discriminator step:", k, "loss:", loss) idx = np.arange(numnototal) np.random.shuffle(idx) train_val_ratio = 0.7 # Training data for posterior numno_train = int(numnototal * train_val_ratio) imgs_train = imgs_n[idx][:numno_train] auxs_train = auxs_n[idx][:numno_train] actions_train = actions_n[idx][:numno_train] encodes_train = encodes_n[idx][:numno_train] # Validation data for posterior imgs_val = imgs_n[idx][numno_train:] auxs_val = auxs_n[idx][numno_train:] actions_val = actions_n[idx][numno_train:] encodes_val = encodes_n[idx][numno_train:] start_n = 0 for j in range(config.p_iter): loss = self.posterior.train_on_batch( [imgs_train[start_n:start_n + batch_size], auxs_train[start_n:start_n + batch_size], actions_train[start_n:start_n + batch_size]], encodes_train[start_n:start_n + batch_size] ) start_n += batch_size if start_n + batch_size >= numno_train: start_n = (start_n + batch_size) % numno_train posterior_weights = self.posterior.get_weights() posterior_target_weights = self.posterior_target.get_weights() for k in range(len(posterior_weights)): posterior_target_weights[k] = 0.5 * posterior_weights[k] +\ 0.5 * posterior_target_weights[k] self.posterior_target.set_weights(posterior_target_weights) output_p = self.posterior_target.predict( [imgs_val, auxs_val, actions_val]) val_loss = -np.average( np.sum(np.log(output_p) * encodes_val, axis=1)) print("Posterior step:", j, "loss:", loss, val_loss) # Computing returns and estimating advantage function. path_idx = 0 for path in paths: file_path = "C:/Users/HRI/Documents/GitHub/InfoGAIL/log/iter_%d_path_%d.txt" % (i, path_idx) f = open(file_path, "w") path["baselines"] = self.baseline.predict(path) output_d = self.discriminate.predict( [path["imgs"], path["auxs"], path["actions"]]) output_p = self.posterior_target.predict( [path["imgs"], path["auxs"], path["actions"]]) path["rewards"] = np.ones(path["raws"].shape[0]) * 2 + \ output_d.flatten() * 0.1 + \ np.sum(np.log(output_p) * path["encodes"], axis=1) path_baselines = np.append(path["baselines"], 0 if path["baselines"].shape[0] == 100 else path["baselines"][-1]) deltas = path["rewards"] + config.gamma * path_baselines[1:] -\ path_baselines[:-1] # path["returns"] = discount(path["rewards"], config.gamma) # path["advants"] = path["returns"] - path["baselines"] path["advants"] = discount(deltas, config.gamma * config.lam) path["returns"] = discount(path["rewards"], config.gamma) f.write("Baseline:\n" + np.array_str(path_baselines) + "\n") f.write("Returns:\n" + np.array_str(path["returns"]) + "\n") f.write("Advants:\n" + np.array_str(path["advants"]) + "\n") f.write("Mus:\n" + np.array_str(path["mus"]) + "\n") f.write("Actions:\n" + np.array_str(path["actions"]) + "\n") f.write("Logstds:\n" + np.array_str(path["logstds"]) + "\n") path_idx += 1 # Standardize the advantage function to have mean=0 and std=1 advants_n = np.concatenate([path["advants"] for path in paths]) # advants_n -= advants_n.mean() advants_n /= (advants_n.std() + 1e-8) # Computing baseline function for next iter. self.baseline.fit(paths) feed = {self.feats: feats_n, self.auxs: auxs_n, self.encodes: encodes_n, self.actions: actions_n, self.advants: advants_n, self.action_dist_logstd: logstds_n, self.oldaction_dist_mu: mus_n, self.oldaction_dist_logstd: logstds_n} thprev = self.gf() def fisher_vector_product(p): feed[self.flat_tangent] = p return self.sess.run(self.fvp, feed) + p * config.cg_damping g = self.sess.run(self.pg, feed_dict=feed) stepdir = conjugate_gradient(fisher_vector_product, -g) shs = .5 * stepdir.dot(fisher_vector_product(stepdir)) assert shs > 0 lm = np.sqrt(shs / config.max_kl) fullstep = stepdir / lm neggdotstepdir = -g.dot(stepdir) def loss(th): self.sff(th) return self.sess.run(self.losses[0], feed_dict=feed) theta = linesearch(loss, thprev, fullstep, neggdotstepdir / lm) self.sff(theta) surrafter, kloldnew, entropy = self.sess.run( self.losses, feed_dict=feed ) episoderewards = np.array([path["rewards"].sum() for path in paths]) stats = {} numeptotal += len(episoderewards) stats["Total number of episodes"] = numeptotal stats["Average sum of rewards per episode"] = episoderewards.mean() stats["Entropy"] = entropy stats["Time elapsed"] = "%.2f mins" % ((time.time() - start_time) / 60.0) stats["KL between old and new distribution"] = kloldnew stats["Surrogate loss"] = surrafter print(("\n********** Iteration {} **********".format(i))) for k, v in stats.items(): print((k + ": " + " " * (40 - len(k)) + str(v))) if entropy != entropy: exit(-1) param_dir = "C:/Users/HRI/Documents/GitHub/InfoGAIL/params/" print("Now we save model") self.generator.save_weights( param_dir + "generator_model_%d.h5" % i, overwrite=True) with open(param_dir + "generator_model_%d.json" % i, "w") as outfile: json.dump(self.generator.to_json(), outfile) self.discriminator.save_weights( param_dir + "discriminator_model_%d.h5" % i, overwrite=True) with open(param_dir + "discriminator_model_%d.json" % i, "w") as outfile: json.dump(self.discriminator.to_json(), outfile) self.baseline.model.save_weights( param_dir + "baseline_model_%d.h5" % i, overwrite=True) with open(param_dir + "baseline_model_%d.json" % i, "w") as outfile: json.dump(self.baseline.model.to_json(), outfile) self.posterior.save_weights( param_dir + "posterior_model_%d.h5" % i, overwrite=True) with open(param_dir + "posterior_model_%d.json" % i, "w") as outfile: json.dump(self.posterior.to_json(), outfile) self.posterior_target.save_weights( param_dir + "posterior_target_model_%d.h5" % i, overwrite=True) with open(param_dir + "posterior_target_model_%d.json" % i, "w") as outfile: json.dump(self.posterior_target.to_json(), outfile) class Generator(object): def __init__(self, sess, feat_dim, aux_dim, encode_dim, action_dim): self.sess = sess self.lr = tf.compat.v1.placeholder(tf.float32, shape=[]) K.set_session(sess) self.model, self.weights, self.feats, self.auxs, self.encodes = \ self.create_generator(feat_dim, aux_dim, encode_dim) self.action_gradient = tf.compat.v1.placeholder(tf.float32, [None, action_dim]) self.params_grad = tf.gradients(self.model.output, self.weights, self.action_gradient) grads = list(zip(self.params_grad, self.weights)) self.optimize = tf.train.AdamOptimizer(self.lr).apply_gradients(grads) self.sess.run(tf.global_variables_initializer()) def train(self, feats, auxs, encodes, action_grads, lr): self.sess.run(self.optimize, feed_dict={ self.feats: feats, self.auxs: auxs, self.encodes: encodes, self.lr: lr, self.action_gradient: action_grads, K.learning_phase(): 1 }) def create_generator(self, feat_dim, aux_dim, encode_dim): feats = Input(shape=[feat_dim[0], feat_dim[1], feat_dim[2]]) x = Convolution2D(256, 3, 3)(feats) x = LeakyReLU()(x) x = Convolution2D(256, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Flatten()(x) auxs = Input(shape=[aux_dim]) h = merge([x, auxs], mode='concat') h = Dense(256)(h) h = LeakyReLU()(h) h = Dense(128)(h) encodes = Input(shape=[encode_dim]) c = Dense(128)(encodes) h = merge([h, c], mode='sum') h = LeakyReLU()(h) steer = Dense(1, activation='tanh', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h) accel = Dense(1, activation='sigmoid', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h) brake = Dense(1, activation='sigmoid', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h) actions = merge([steer, accel, brake], mode='concat') model = Model(input=[feats, auxs, encodes], output=actions) return model, model.trainable_weights, feats, auxs, encodes class Posterior(object): def __init__(self, sess, img_dim, aux_dim, action_dim, encode_dim): self.sess = sess self.lr = tf.compat.v1.placeholder(tf.float32, shape=[]) K.set_session(sess) self.model = self.create_posterior(img_dim, aux_dim, action_dim, encode_dim) def create_posterior(self, img_dim, aux_dim, action_dim, encode_dim): imgs = Input(shape=[img_dim[0], img_dim[1], img_dim[2]]) x = Convolution2D(32, 3, 3, subsample=(2, 2))(imgs) x = LeakyReLU()(x) x = Convolution2D(64, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Convolution2D(128, 3, 3, subsample=(2, 2))(x) x = LeakyReLU()(x) x = Flatten()(x) auxs = Input(shape=[aux_dim]) actions = Input(shape=[action_dim]) h = merge([x, auxs, actions], mode='concat') h = Dense(256)(h) h = LeakyReLU()(h) h = Dense(128)(h) h = LeakyReLU()(h) c = Dense(encode_dim, activation='softmax')(h) model = Model(input=[imgs, auxs, actions], output=c) return model
43.618971
122
0.570454
79471ac969dd0b15dc004a68049eb9673c928b2c
2,582
py
Python
river/metrics/fowlkes_mallows.py
online-ml/creme
60872844e6052b5ef20e4075aea30f9031377136
[ "BSD-3-Clause" ]
1,105
2019-01-24T15:15:30.000Z
2020-11-10T18:27:00.000Z
river/metrics/fowlkes_mallows.py
online-ml/creme
60872844e6052b5ef20e4075aea30f9031377136
[ "BSD-3-Clause" ]
328
2019-01-25T13:48:43.000Z
2020-11-11T11:41:44.000Z
river/metrics/fowlkes_mallows.py
online-ml/creme
60872844e6052b5ef20e4075aea30f9031377136
[ "BSD-3-Clause" ]
150
2019-01-29T19:05:21.000Z
2020-11-11T11:50:14.000Z
import math from river import metrics __all__ = ["FowlkesMallows"] class FowlkesMallows(metrics.base.MultiClassMetric): r"""Fowlkes-Mallows Index. The Fowlkes-Mallows Index [^1] [^2] is an external evaluation method that is used to determine the similarity between two clusterings, and also a metric to measure confusion matrices. The measure of similarity could be either between two hierarchical clusterings or a clustering and a benchmark classification. A higher value for the Fowlkes-Mallows index indicates a greater similarity between the clusters and the benchmark classifications. The Fowlkes-Mallows Index, for two cluster algorithms, is defined as: $$ FM = \sqrt{PPV \times TPR} = \sqrt{\frac{TP}{TP+FP} \times \frac{TP}{TP+FN}} $$ where * TP, FP, FN are respectively the number of true positives, false positives and false negatives; * TPR is the True Positive Rate (or Sensitivity/Recall), PPV is the Positive Predictive Rate (or Precision). Parameters ---------- cm This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time. Examples -------- >>> from river import metrics >>> y_true = [0, 0, 0, 1, 1, 1] >>> y_pred = [0, 0, 1, 1, 2, 2] >>> metric = metrics.FowlkesMallows() >>> for yt, yp in zip(y_true, y_pred): ... print(metric.update(yt, yp)) FowlkesMallows: 0.00% FowlkesMallows: 100.00% FowlkesMallows: 57.74% FowlkesMallows: 40.82% FowlkesMallows: 35.36% FowlkesMallows: 47.14% References ---------- [^1]: Wikipedia contributors. (2020, December 22). Fowlkes–Mallows index. In Wikipedia, The Free Encyclopedia, from https://en.wikipedia.org/w/index.php?title=Fowlkes%E2%80%93Mallows_index&oldid=995714222 [^2]: E. B. Fowkles and C. L. Mallows (1983). “A method for comparing two hierarchical clusterings”. Journal of the American Statistical Association """ @property def works_with_weights(self): return False def get(self): n = self.cm.n_samples tk = sum(c * c for row in self.cm.data.values() for c in row.values()) - n pk = sum(sc * sc for sc in self.cm.sum_col.values()) - n qk = sum(sr * sr for sr in self.cm.sum_row.values()) - n try: return math.sqrt(tk / pk) * math.sqrt(tk / qk) except ZeroDivisionError: return 0.0
31.108434
103
0.647947
79471b7e8c70b597c18a2028023b4e0bd4bf6540
17,810
py
Python
elasticsearch/transport.py
shub1095/elasticsearch-py
778c7e4ac000b51ced7c9a1a588200ec395e40ca
[ "Apache-2.0" ]
null
null
null
elasticsearch/transport.py
shub1095/elasticsearch-py
778c7e4ac000b51ced7c9a1a588200ec395e40ca
[ "Apache-2.0" ]
null
null
null
elasticsearch/transport.py
shub1095/elasticsearch-py
778c7e4ac000b51ced7c9a1a588200ec395e40ca
[ "Apache-2.0" ]
1
2020-08-04T11:42:43.000Z
2020-08-04T11:42:43.000Z
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import time from itertools import chain from .connection import Urllib3HttpConnection from .connection_pool import ConnectionPool, DummyConnectionPool, EmptyConnectionPool from .serializer import JSONSerializer, Deserializer, DEFAULT_SERIALIZERS from .exceptions import ( ConnectionError, TransportError, SerializationError, ConnectionTimeout, ) def get_host_info(node_info, host): """ Simple callback that takes the node info from `/_cluster/nodes` and a parsed connection information and return the connection information. If `None` is returned this node will be skipped. Useful for filtering nodes (by proximity for example) or if additional information needs to be provided for the :class:`~elasticsearch.Connection` class. By default master only nodes are filtered out since they shouldn't typically be used for API operations. :arg node_info: node information from `/_cluster/nodes` :arg host: connection information (host, port) extracted from the node info """ # ignore master only nodes if node_info.get("roles", []) == ["master"]: return None return host class Transport(object): """ Encapsulation of transport-related to logic. Handles instantiation of the individual connections as well as creating a connection pool to hold them. Main interface is the `perform_request` method. """ DEFAULT_CONNECTION_CLASS = Urllib3HttpConnection def __init__( self, hosts, connection_class=None, connection_pool_class=ConnectionPool, host_info_callback=get_host_info, sniff_on_start=False, sniffer_timeout=None, sniff_timeout=0.1, sniff_on_connection_fail=False, serializer=JSONSerializer(), serializers=None, default_mimetype="application/json", max_retries=3, retry_on_status=(502, 503, 504), retry_on_timeout=False, send_get_body_as="GET", **kwargs ): """ :arg hosts: list of dictionaries, each containing keyword arguments to create a `connection_class` instance :arg connection_class: subclass of :class:`~elasticsearch.Connection` to use :arg connection_pool_class: subclass of :class:`~elasticsearch.ConnectionPool` to use :arg host_info_callback: callback responsible for taking the node information from `/_cluster/nodes`, along with already extracted information, and producing a list of arguments (same as `hosts` parameter) :arg sniff_on_start: flag indicating whether to obtain a list of nodes from the cluster at startup time :arg sniffer_timeout: number of seconds between automatic sniffs :arg sniff_on_connection_fail: flag controlling if connection failure triggers a sniff :arg sniff_timeout: timeout used for the sniff request - it should be a fast api call and we are talking potentially to more nodes so we want to fail quickly. Not used during initial sniffing (if ``sniff_on_start`` is on) when the connection still isn't initialized. :arg serializer: serializer instance :arg serializers: optional dict of serializer instances that will be used for deserializing data coming from the server. (key is the mimetype) :arg default_mimetype: when no mimetype is specified by the server response assume this mimetype, defaults to `'application/json'` :arg max_retries: maximum number of retries before an exception is propagated :arg retry_on_status: set of HTTP status codes on which we should retry on a different node. defaults to ``(502, 503, 504)`` :arg retry_on_timeout: should timeout trigger a retry on different node? (default `False`) :arg send_get_body_as: for GET requests with body this option allows you to specify an alternate way of execution for environments that don't support passing bodies with GET requests. If you set this to 'POST' a POST method will be used instead, if to 'source' then the body will be serialized and passed as a query parameter `source`. Any extra keyword arguments will be passed to the `connection_class` when creating and instance unless overridden by that connection's options provided as part of the hosts parameter. """ if connection_class is None: connection_class = self.DEFAULT_CONNECTION_CLASS # serialization config _serializers = DEFAULT_SERIALIZERS.copy() # if a serializer has been specified, use it for deserialization as well _serializers[serializer.mimetype] = serializer # if custom serializers map has been supplied, override the defaults with it if serializers: _serializers.update(serializers) # create a deserializer with our config self.deserializer = Deserializer(_serializers, default_mimetype) self.max_retries = max_retries self.retry_on_timeout = retry_on_timeout self.retry_on_status = retry_on_status self.send_get_body_as = send_get_body_as # data serializer self.serializer = serializer # store all strategies... self.connection_pool_class = connection_pool_class self.connection_class = connection_class # ...save kwargs to be passed to the connections self.kwargs = kwargs self.hosts = hosts # Start with an empty pool specifically for `AsyncTransport`. # It should never be used, will be replaced on first call to # .set_connections() self.connection_pool = EmptyConnectionPool() if hosts: # ...and instantiate them self.set_connections(hosts) # retain the original connection instances for sniffing self.seed_connections = list(self.connection_pool.connections[:]) else: self.seed_connections = [] # Don't enable sniffing on Cloud instances. if kwargs.get("cloud_id", False): sniff_on_start = False sniff_on_connection_fail = False # sniffing data self.sniffer_timeout = sniffer_timeout self.sniff_on_start = sniff_on_start self.sniff_on_connection_fail = sniff_on_connection_fail self.last_sniff = time.time() self.sniff_timeout = sniff_timeout # callback to construct host dict from data in /_cluster/nodes self.host_info_callback = host_info_callback if sniff_on_start: self.sniff_hosts(True) def add_connection(self, host): """ Create a new :class:`~elasticsearch.Connection` instance and add it to the pool. :arg host: kwargs that will be used to create the instance """ self.hosts.append(host) self.set_connections(self.hosts) def set_connections(self, hosts): """ Instantiate all the connections and create new connection pool to hold them. Tries to identify unchanged hosts and re-use existing :class:`~elasticsearch.Connection` instances. :arg hosts: same as `__init__` """ # construct the connections def _create_connection(host): # if this is not the initial setup look at the existing connection # options and identify connections that haven't changed and can be # kept around. if hasattr(self, "connection_pool"): for (connection, old_host) in self.connection_pool.connection_opts: if old_host == host: return connection # previously unseen params, create new connection kwargs = self.kwargs.copy() kwargs.update(host) return self.connection_class(**kwargs) connections = map(_create_connection, hosts) connections = list(zip(connections, hosts)) if len(connections) == 1: self.connection_pool = DummyConnectionPool(connections) else: # pass the hosts dicts to the connection pool to optionally extract parameters from self.connection_pool = self.connection_pool_class( connections, **self.kwargs ) def get_connection(self): """ Retrieve a :class:`~elasticsearch.Connection` instance from the :class:`~elasticsearch.ConnectionPool` instance. """ if self.sniffer_timeout: if time.time() >= self.last_sniff + self.sniffer_timeout: self.sniff_hosts() return self.connection_pool.get_connection() def _get_sniff_data(self, initial=False): """ Perform the request to get sniffing information. Returns a list of dictionaries (one per node) containing all the information from the cluster. It also sets the last_sniff attribute in case of a successful attempt. In rare cases it might be possible to override this method in your custom Transport class to serve data from alternative source like configuration management. """ previous_sniff = self.last_sniff try: # reset last_sniff timestamp self.last_sniff = time.time() # go through all current connections as well as the # seed_connections for good measure for c in chain(self.connection_pool.connections, self.seed_connections): try: # use small timeout for the sniffing request, should be a fast api call _, headers, node_info = c.perform_request( "GET", "/_nodes/_all/http", timeout=self.sniff_timeout if not initial else None, ) node_info = self.deserializer.loads( node_info, headers.get("content-type") ) break except (ConnectionError, SerializationError): pass else: raise TransportError("N/A", "Unable to sniff hosts.") except Exception: # keep the previous value on error self.last_sniff = previous_sniff raise return list(node_info["nodes"].values()) def _get_host_info(self, host_info): host = {} address = host_info.get("http", {}).get("publish_address") # malformed or no address given if not address or ":" not in address: return None if "/" in address: # Support 7.x host/ip:port behavior where http.publish_host has been set. fqdn, ipaddress = address.split("/", 1) host["host"] = fqdn _, host["port"] = ipaddress.rsplit(":", 1) host["port"] = int(host["port"]) else: host["host"], host["port"] = address.rsplit(":", 1) host["port"] = int(host["port"]) return self.host_info_callback(host_info, host) def sniff_hosts(self, initial=False): """ Obtain a list of nodes from the cluster and create a new connection pool using the information retrieved. To extract the node connection parameters use the ``nodes_to_host_callback``. :arg initial: flag indicating if this is during startup (``sniff_on_start``), ignore the ``sniff_timeout`` if ``True`` """ node_info = self._get_sniff_data(initial) hosts = list(filter(None, (self._get_host_info(n) for n in node_info))) # we weren't able to get any nodes or host_info_callback blocked all - # raise error. if not hosts: raise TransportError( "N/A", "Unable to sniff hosts - no viable hosts found." ) self.set_connections(hosts) def mark_dead(self, connection): """ Mark a connection as dead (failed) in the connection pool. If sniffing on failure is enabled this will initiate the sniffing process. :arg connection: instance of :class:`~elasticsearch.Connection` that failed """ # mark as dead even when sniffing to avoid hitting this host during the sniff process self.connection_pool.mark_dead(connection) if self.sniff_on_connection_fail: self.sniff_hosts() def perform_request(self, method, url, headers=None, params=None, body=None): """ Perform the actual request. Retrieve a connection from the connection pool, pass all the information to it's perform_request method and return the data. If an exception was raised, mark the connection as failed and retry (up to `max_retries` times). If the operation was successful and the connection used was previously marked as dead, mark it as live, resetting it's failure count. :arg method: HTTP method to use :arg url: absolute url (without host) to target :arg headers: dictionary of headers, will be handed over to the underlying :class:`~elasticsearch.Connection` class :arg params: dictionary of query parameters, will be handed over to the underlying :class:`~elasticsearch.Connection` class for serialization :arg body: body of the request, will be serialized using serializer and passed to the connection """ method, params, body, ignore, timeout = self._resolve_request_args( method, params, body ) for attempt in range(self.max_retries + 1): connection = self.get_connection() try: status, headers_response, data = connection.perform_request( method, url, params, body, headers=headers, ignore=ignore, timeout=timeout, ) except TransportError as e: if method == "HEAD" and e.status_code == 404: return False retry = False if isinstance(e, ConnectionTimeout): retry = self.retry_on_timeout elif isinstance(e, ConnectionError): retry = True elif e.status_code in self.retry_on_status: retry = True if retry: try: # only mark as dead if we are retrying self.mark_dead(connection) except TransportError: # If sniffing on failure, it could fail too. Catch the # exception not to interrupt the retries. pass # raise exception on last retry if attempt == self.max_retries: raise e else: raise e else: # connection didn't fail, confirm it's live status self.connection_pool.mark_live(connection) if method == "HEAD": return 200 <= status < 300 if data: data = self.deserializer.loads( data, headers_response.get("content-type") ) return data def close(self): """ Explicitly closes connections """ self.connection_pool.close() def _resolve_request_args(self, method, params, body): """Resolves parameters for .perform_request()""" if body is not None: body = self.serializer.dumps(body) # some clients or environments don't support sending GET with body if method in ("HEAD", "GET") and self.send_get_body_as != "GET": # send it as post instead if self.send_get_body_as == "POST": method = "POST" # or as source parameter elif self.send_get_body_as == "source": if params is None: params = {} params["source"] = body body = None if body is not None: try: body = body.encode("utf-8", "surrogatepass") except (UnicodeDecodeError, AttributeError): # bytes/str - no need to re-encode pass ignore = () timeout = None if params: timeout = params.pop("request_timeout", None) ignore = params.pop("ignore", ()) if isinstance(ignore, int): ignore = (ignore,) return method, params, body, ignore, timeout
39.8434
95
0.616788
79471bce507a8a833060d8eb8f6f34c58aa6bb7d
3,016
py
Python
submission_patch.py
doublechenching/ship_detection
1ba4926e0d28043863df05ae8afc3d5b336b350d
[ "Apache-2.0" ]
8
2019-03-12T08:47:37.000Z
2021-05-13T05:28:20.000Z
submission_patch.py
doublechenching/ship_detection
1ba4926e0d28043863df05ae8afc3d5b336b350d
[ "Apache-2.0" ]
null
null
null
submission_patch.py
doublechenching/ship_detection
1ba4926e0d28043863df05ae8afc3d5b336b350d
[ "Apache-2.0" ]
null
null
null
#encoding: utf-8 from __future__ import print_function from utils import init_env init_env('1') from config import config as cfg from models.patch_dense_unet import dense121_unet from dataset.data import compose_ndcube, decompose_ndimage import os import glob import numpy as np from dataset.data import rle_encode from skimage import morphology as m import pandas as pd from skimage.io import imread from tqdm import tqdm cfg.patch_shape = (256, 256, 3) def multi_rle_encode(img, **kwargs): ''' Encode connected regions as separated masks ''' labels = m.label(img[0, :, :, :], connectivity=2) if img.ndim > 2: return [rle_encode(np.sum(labels==k, axis=2), **kwargs) for k in np.unique(labels[labels>0])] else: return [rle_encode(labels==k, **kwargs) for k in np.unique(labels[labels>0])] def load_model(weigths_path): model = dense121_unet(cfg.patch_shape) model.load_weights(weigths_path) return model def submission(model, test_img_dir, opt_threshold=0.5, tta=True): test_img_paths = glob.glob(os.path.join(test_img_dir, '*.jpg')) pred_rows = [] for path in tqdm(test_img_paths): test_img = imread(path) / 255.0 test_patches = decompose_ndimage(test_img, cfg.patch_shape[:2]) test_patches = np.stack(test_patches, axis=0) if tta: pred_prob1 = model.predict(test_patches) pred_prob2 = model.predict(np.flip(test_patches, axis=1)) pred_prob2 = np.flip(pred_prob2, axis=1) pred_prob3 = model.predict(np.flip(test_patches, axis=2)) pred_prob3 = np.flip(pred_prob3, axis=2) test_img4 = np.flip(test_patches, axis=1) test_img4 = np.flip(test_img4, axis=2) pred_prob4 = model.predict(test_img4) pred_prob4 = np.flip(pred_prob4, axis=2) pred_prob4 = np.flip(pred_prob4, axis=1) pred_prob = (pred_prob1 + pred_prob2 + pred_prob3 + pred_prob4) / 4 else: pred_prob = model.predict(test_patches) pred_patches = [patches for patches in pred_prob] com_pred = compose_ndcube(pred_patches, list(test_img.shape[:2]) + [1]) pred_mask = com_pred > opt_threshold pred_mask = np.expand_dims(pred_mask, axis=0) # (b, h, w, c) rles = multi_rle_encode(pred_mask) name = os.path.split(path)[-1] if len(rles)>0: for rle in rles: pred_rows += [{'ImageId': name, 'EncodedPixels': rle}] else: pred_rows += [{'ImageId': name, 'EncodedPixels': None}] submission_df = pd.DataFrame(pred_rows)[['ImageId', 'EncodedPixels']] submission_df.to_csv('submission_patch_28.csv', index=False) if __name__ == "__main__": cfg.task_name = 'dense_unet_patch' epoch = 28 log_dir = os.path.join(cfg.log_dir, cfg.task_name) weights_path = os.path.join(log_dir, cfg.weigts_file.format(epoch=epoch)) model = load_model(weights_path) submission(model, cfg.test_dir)
35.482353
101
0.66313
79471c8306b7078fd9c52c359a3fc526d7e31533
5,223
py
Python
scripts/auto_nav_guidance.py
vanttec/rb_missions
f05384f84a256b9f64defaef625bee689b79701f
[ "MIT" ]
null
null
null
scripts/auto_nav_guidance.py
vanttec/rb_missions
f05384f84a256b9f64defaef625bee689b79701f
[ "MIT" ]
null
null
null
scripts/auto_nav_guidance.py
vanttec/rb_missions
f05384f84a256b9f64defaef625bee689b79701f
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy from std_msgs.msg import String from std_msgs.msg import Float64 from std_msgs.msg import Int32 from custom_msgs.msg import obj_detected from custom_msgs.msg import obj_detected_list from geometry_msgs.msg import Pose2D import numpy as np import math import time #import matplotlib.pyplot as plt class AutoNav: def __init__(self): self.yaw = 0 self.obj_list = [] self.activated = True self.state = -1 self.ang = 0 self.desired_speed = 0 self.distance = 0 self.InitTime = rospy.Time.now().secs self.desired_heading = 0 rospy.Subscriber("/vectornav/ins_2d/ins_pose", Pose2D, self.ins_pose_callback) rospy.Subscriber('/usv_perception/yolo_zed/objects_detected', obj_detected_list, self.objs_callback) self.d_speed_pub = rospy.Publisher("/guidance/desired_speed", Float64, queue_size=10) self.d_heading_pub = rospy.Publisher("/guidance/desired_heading", Float64, queue_size=10) self.status_pub = rospy.Publisher("/status", Int32, queue_size=10) self.test = rospy.Publisher("/test", Int32, queue_size=10) def ins_pose_callback(self,pose): self.yaw = pose.theta def objs_callback(self,data): #print("a") self.obj_list = [] for i in range(data.len): if str(data.objects[i].clase) == 'marker': self.obj_list.append({'X' : data.objects[i].X + 0.55, 'Y' : data.objects[i].Y, 'color' : data.objects[i].color, 'class' : data.objects[i].clase}) def punto_medio(self): distances_list = [] y_list = [] class_list = [] for i in range(len(self.obj_list)): distances_list.append(self.obj_list[i]['X']) y_list.append(self.obj_list[i]['Y']) class_list.append(self.obj_list[i]['class']) ind_x1 = np.argsort(distances_list)[0] ind_x2 = np.argsort(distances_list)[1] x1 = distances_list[ind_x1] y1 = -1*y_list[ind_x1] x2 = distances_list[ind_x2] y2 = -1*y_list[ind_x2] xc = min([x1,x2]) + abs(x1 - x2)/2 yc = min([y1,y2]) + abs(y1 - y2)/2 self.distance = xc offset = .55 yc = 0.00001 if yc == 0 else yc relative_heading = math.atan((xc+offset)/yc) if relative_heading < 0: relative_heading = -1*(relative_heading + math.pi/2) else: relative_heading = math.pi/2 - relative_heading self.ang = -1 if relative_heading < 0 else 1 self.desired_heading = relative_heading + self.yaw self.desired_speed = 1 if self.distance < 7: self.desired_speed = 0.6 if self.distance < 0.2: self.desired_speed = 0 self.desired(self.desired_speed, self.desired_heading) '''plt.clf() plt.plot(y1,x1, 'go',markersize=5) plt.plot(y2,x2, 'go',markersize=5) plt.plot(0,0,'ro') plt.plot(yc,xc,'r*') plt.axis([-15, 15, 0, 20]) plt.pause(0.0001) plt.draw()''' def straight(self): self.desired_speed = 0.7 self.desired(self.desired_speed, self.yaw) def desired(self, speed, heading): self.d_speed_pub.publish(speed) self.d_heading_pub.publish(heading) def main(): rospy.init_node('auto_nav_guidance', anonymous=True) rate = rospy.Rate(100) E = AutoNav() while not rospy.is_shutdown() and E.activated: if E.state == -1: while not rospy.is_shutdown() and len(E.obj_list) < 2: E.test.publish(E.state) rate.sleep() E.state = 0 if E.state == 0: E.test.publish(E.state) if len(E.obj_list) >= 2: E.punto_medio() else: initTime = rospy.Time.now().secs while not rospy.is_shutdown() and len(E.obj_list) < 2: if rospy.Time.now().secs - initTime > 5: E.state = 1 rate.sleep() break if E.state == 1: E.test.publish(E.state) E.straight() time.sleep(2) angle = E.yaw E.state = 2 if E.state == 2: E.test.publish(E.state) if len(E.obj_list) >= 2: E.state = 3 else: E.desired(0.4,E.yaw) if E.state == 3: E.test.publish(E.state) if len(E.obj_list) >= 2: E.punto_medio() else: initTime = rospy.Time.now().secs while not rospy.is_shutdown() and len(E.obj_list) < 2: if rospy.Time.now().secs - initTime > 5: E.state = 4 rate.sleep() break if E.state == 4: E.test.publish(E.state) E.desired(0,E.yaw) E.activated = False time.sleep(1) E.status_pub.publish(1) rate.sleep() rospy.spin() if __name__ == "__main__": try: main() except rospy.ROSInterruptException: pass
30.905325
161
0.548152
79471d2c8ff431311b7675ff0e4d1680dff8526c
810
py
Python
gallery/urls.py
Nyota254/my-gallery
956262b746ea65bccb7842e54e76a1d7474c643a
[ "MIT" ]
null
null
null
gallery/urls.py
Nyota254/my-gallery
956262b746ea65bccb7842e54e76a1d7474c643a
[ "MIT" ]
6
2020-06-05T23:32:54.000Z
2021-06-09T18:28:32.000Z
gallery/urls.py
Nyota254/my-gallery
956262b746ea65bccb7842e54e76a1d7474c643a
[ "MIT" ]
1
2019-10-13T10:05:40.000Z
2019-10-13T10:05:40.000Z
"""gallery URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,re_path,include urlpatterns = [ re_path(r'^admin/', admin.site.urls), re_path(r'',include('images.urls')) ]
35.217391
77
0.708642
79471d57640fa4b9231c1ff021231c8e7d4f1086
23,312
py
Python
Wrapping/Python/vtk/wx/wxVTKRenderWindow.py
Lin1225/vtk_v5.10.0
b54ac74f4716572862365fbff28cd0ecb8d08c3d
[ "BSD-3-Clause" ]
1
2021-10-13T01:57:14.000Z
2021-10-13T01:57:14.000Z
Wrapping/Python/vtk/wx/wxVTKRenderWindow.py
Lin1225/vtk_v5.10.0
b54ac74f4716572862365fbff28cd0ecb8d08c3d
[ "BSD-3-Clause" ]
null
null
null
Wrapping/Python/vtk/wx/wxVTKRenderWindow.py
Lin1225/vtk_v5.10.0
b54ac74f4716572862365fbff28cd0ecb8d08c3d
[ "BSD-3-Clause" ]
5
2015-03-23T21:13:19.000Z
2022-01-03T11:15:39.000Z
""" A simple VTK widget for wxPython. Find wxPython info at http://wxPython.org Created by David Gobbi, December 2001 Based on vtkTkRenderWindget.py Updated to new wx namespace and some cleaning by Andrea Gavana, December 2006 """ """ Please see the example at the end of this file. ---------------------------------------- Creation: wxVTKRenderWindow(parent, ID, stereo=0, [wx keywords]): You should create a wx.PySimpleApp() or some other wx**App before creating the window. ---------------------------------------- Methods: Render() AddRenderer(ren) GetRenderers() GetRenderWindow() ---------------------------------------- Methods to override (all take a wx.Event): OnButtonDown(event) default: propagate event to Left, Right, Middle OnLeftDown(event) default: set _Mode to 'Rotate' OnRightDown(event) default: set _Mode to 'Zoom' OnMiddleDown(event) default: set _Mode to 'Pan' OnButtonUp(event) default: propagate event to L, R, M and unset _Mode OnLeftUp(event) OnRightUp(event) OnMiddleUp(event) OnMotion(event) default: call appropriate handler for _Mode OnEnterWindow(event) default: set focus to this window OnLeaveWindow(event) default: release focus OnKeyDown(event) default: [R]eset, [W]irefreme, [S]olid, [P]ick OnKeyUp(event) OnChar(event) OnSetFocus(event) OnKillFocus(event) OnSize(event) OnMove(event) OnPaint(event) default: Render() ---------------------------------------- Protected Members: _Mode: Current mode: 'Rotate', 'Zoom', 'Pan' _LastX, _LastY: The (x,y) coordinates of the previous event _CurrentRenderer: The renderer that was most recently clicked in _CurrentCamera: The camera for the current renderer ---------------------------------------- Private Members: __Handle: Handle to the window containing the vtkRenderWindow """ # import usual libraries import math, os, sys import wx import vtk # a few configuration items, see what works best on your system # Use GLCanvas as base class instead of wx.Window. # This is sometimes necessary under wxGTK or the image is blank. # (in wxWindows 2.3.1 and earlier, the GLCanvas had scroll bars) baseClass = wx.Window if wx.Platform == "__WXGTK__": import wx.glcanvas baseClass = wx.glcanvas.GLCanvas # Keep capturing mouse after mouse is dragged out of window # (in wxGTK 2.3.2 there is a bug that keeps this from working, # but it is only relevant in wxGTK if there are multiple windows) _useCapture = (wx.Platform == "__WXMSW__") # end of configuration items class wxVTKRenderWindow(baseClass): """ A wxRenderWindow for wxPython. Use GetRenderWindow() to get the vtkRenderWindow. Create with the keyword stereo=1 in order to generate a stereo-capable window. """ def __init__(self, parent, ID, *args, **kw): """Default class constructor. @param parent: parent window @param ID: window id @param **kw: wxPython keywords (position, size, style) plus the 'stereo' keyword """ # miscellaneous protected variables self._CurrentRenderer = None self._CurrentCamera = None self._CurrentZoom = 1.0 self._CurrentLight = None self._ViewportCenterX = 0 self._ViewportCenterY = 0 self._Picker = vtk.vtkCellPicker() self._PickedActor = None self._PickedProperty = vtk.vtkProperty() self._PickedProperty.SetColor(1,0,0) self._PrePickedProperty = None # these record the previous mouse position self._LastX = 0 self._LastY = 0 # the current interaction mode (Rotate, Pan, Zoom, etc) self._Mode = None self._ActiveButton = None # private attributes self.__OldFocus = None # used by the LOD actors self._DesiredUpdateRate = 15 self._StillUpdateRate = 0.0001 # First do special handling of some keywords: # stereo, position, size, width, height, style stereo = 0 if kw.has_key('stereo'): if kw['stereo']: stereo = 1 del kw['stereo'] position = wx.DefaultPosition if kw.has_key('position'): position = kw['position'] del kw['position'] try: size = parent.GetSize() except AttributeError: size = wx.DefaultSize if kw.has_key('size'): size = kw['size'] del kw['size'] # wx.WANTS_CHARS says to give us e.g. TAB # wx.NO_FULL_REPAINT_ON_RESIZE cuts down resize flicker under GTK style = wx.WANTS_CHARS | wx.NO_FULL_REPAINT_ON_RESIZE if kw.has_key('style'): style = style | kw['style'] del kw['style'] # the enclosing frame must be shown under GTK or the windows # don't connect together properly l = [] p = parent while p: # make a list of all parents l.append(p) p = p.GetParent() l.reverse() # sort list into descending order for p in l: p.Show(1) # initialize the wx.Window if baseClass.__name__ == 'GLCanvas': # Set the doublebuffer attribute of the GL canvas. baseClass.__init__(self, parent, ID, position, size, style, attribList=[wx.glcanvas.WX_GL_DOUBLEBUFFER]) else: baseClass.__init__(self, parent, ID, position, size, style) # create the RenderWindow and initialize it self._RenderWindow = vtk.vtkRenderWindow() self._RenderWindow.SetSize(size.width, size.height) if stereo: self._RenderWindow.StereoCapableWindowOn() self._RenderWindow.SetStereoTypeToCrystalEyes() self.__handle = None # refresh window by doing a Render self.Bind(wx.EVT_PAINT, self.OnPaint) # turn off background erase to reduce flicker self.Bind(wx.EVT_ERASE_BACKGROUND, lambda e: None) # Bind the events to the event converters self.Bind(wx.EVT_RIGHT_DOWN, self._OnButtonDown) self.Bind(wx.EVT_LEFT_DOWN, self._OnButtonDown) self.Bind(wx.EVT_MIDDLE_DOWN, self._OnButtonDown) self.Bind(wx.EVT_RIGHT_UP, self._OnButtonUp) self.Bind(wx.EVT_LEFT_UP, self._OnButtonUp) self.Bind(wx.EVT_MIDDLE_UP, self._OnButtonUp) self.Bind(wx.EVT_MOTION, self.OnMotion) self.Bind(wx.EVT_ENTER_WINDOW, self._OnEnterWindow) self.Bind(wx.EVT_LEAVE_WINDOW, self._OnLeaveWindow) self.Bind(wx.EVT_CHAR, self.OnChar) # If we use EVT_KEY_DOWN instead of EVT_CHAR, capital versions # of all characters are always returned. EVT_CHAR also performs # other necessary keyboard-dependent translations. self.Bind(wx.EVT_CHAR, self.OnKeyDown) self.Bind(wx.EVT_KEY_UP, self.OnKeyUp) self.Bind(wx.EVT_SIZE, self._OnSize) self.Bind(wx.EVT_MOVE, self.OnMove) self.Bind(wx.EVT_SET_FOCUS, self.OnSetFocus) self.Bind(wx.EVT_KILL_FOCUS, self.OnKillFocus) def SetDesiredUpdateRate(self, rate): """Mirrors the method with the same name in vtkRenderWindowInteractor. """ self._DesiredUpdateRate = rate def GetDesiredUpdateRate(self): """Mirrors the method with the same name in vtkRenderWindowInteractor. """ return self._DesiredUpdateRate def SetStillUpdateRate(self, rate): """Mirrors the method with the same name in vtkRenderWindowInteractor. """ self._StillUpdateRate = rate def GetStillUpdateRate(self): """Mirrors the method with the same name in vtkRenderWindowInteractor. """ return self._StillUpdateRate def OnPaint(self, event): """Handles the wx.EVT_PAINT event for wxVTKRenderWindow. """ dc = wx.PaintDC(self) self.Render() def _OnSize(self, event): """Handles the wx.EVT_SIZE event for wxVTKRenderWindow. """ if wx.Platform != '__WXMSW__': width, height = event.GetSize() self._RenderWindow.SetSize(width, height) self.OnSize(event) self.Render() def OnSize(self, event): """Overridable event. """ pass def OnMove(self, event): """Overridable event. """ pass def _OnEnterWindow(self, event): """Handles the wx.EVT_ENTER_WINDOW event for wxVTKRenderWindow. """ self.UpdateRenderer(event) self.OnEnterWindow(event) def OnEnterWindow(self, event): """Overridable event. """ if self.__OldFocus == None: self.__OldFocus = wx.Window.FindFocus() self.SetFocus() def _OnLeaveWindow(self, event): """Handles the wx.EVT_LEAVE_WINDOW event for wxVTKRenderWindow. """ self.OnLeaveWindow(event) def OnLeaveWindow(self, event): """Overridable event. """ if self.__OldFocus: self.__OldFocus.SetFocus() self.__OldFocus = None def OnSetFocus(self, event): """Overridable event. """ pass def OnKillFocus(self, event): """Overridable event. """ pass def _OnButtonDown(self, event): """Handles the wx.EVT_LEFT/RIGHT/MIDDLE_DOWN events for wxVTKRenderWindow. """ # helper function for capturing mouse until button released self._RenderWindow.SetDesiredUpdateRate(self._DesiredUpdateRate) if event.RightDown(): button = "Right" elif event.LeftDown(): button = "Left" elif event.MiddleDown(): button = "Middle" else: button = None # save the button and capture mouse until the button is released if button and not self._ActiveButton: self._ActiveButton = button if _useCapture: self.CaptureMouse() self.OnButtonDown(event) def OnButtonDown(self, event): """Overridable event. """ if not self._Mode: # figure out what renderer the mouse is over self.UpdateRenderer(event) if event.LeftDown(): self.OnLeftDown(event) elif event.RightDown(): self.OnRightDown(event) elif event.MiddleDown(): self.OnMiddleDown(event) def OnLeftDown(self, event): """Overridable event. """ if not self._Mode: if event.ControlDown(): self._Mode = "Zoom" elif event.ShiftDown(): self._Mode = "Pan" else: self._Mode = "Rotate" def OnRightDown(self, event): """Overridable event. """ if not self._Mode: self._Mode = "Zoom" def OnMiddleDown(self, event): """Overridable event. """ if not self._Mode: self._Mode = "Pan" def _OnButtonUp(self, event): """Handles the wx.EVT_LEFT/RIGHT/MIDDLE_UP events for wxVTKRenderWindow. """ # helper function for releasing mouse capture self._RenderWindow.SetDesiredUpdateRate(self._StillUpdateRate) if event.RightUp(): button = "Right" elif event.LeftUp(): button = "Left" elif event.MiddleUp(): button = "Middle" else: button = None # if the ActiveButton is realeased, then release mouse capture if self._ActiveButton and button == self._ActiveButton: if _useCapture: self.ReleaseMouse() self._ActiveButton = None self.OnButtonUp(event) def OnButtonUp(self, event): """Overridable event. """ if event.LeftUp(): self.OnLeftUp(event) elif event.RightUp(): self.OnRightUp(event) elif event.MiddleUp(): self.OnMiddleUp(event) # if not interacting, then do nothing more if self._Mode: if self._CurrentRenderer: self.Render() self._Mode = None def OnLeftUp(self, event): """Overridable event. """ pass def OnRightUp(self, event): """Overridable event. """ pass def OnMiddleUp(self, event): """Overridable event. """ pass def OnMotion(self, event): """Overridable event. """ if self._Mode == "Pan": self.Pan(event) elif self._Mode == "Rotate": self.Rotate(event) elif self._Mode == "Zoom": self.Zoom(event) def OnChar(self, event): """Overridable event. """ pass def OnKeyDown(self, event): """Handles the wx.EVT_KEY_DOWN events for wxVTKRenderWindow. """ if event.GetKeyCode() == ord('r'): self.Reset(event) if event.GetKeyCode() == ord('w'): self.Wireframe() if event.GetKeyCode() == ord('s'): self.Surface() if event.GetKeyCode() == ord('p'): self.PickActor(event) if event.GetKeyCode() < 256: self.OnChar(event) def OnKeyUp(self, event): """Overridable event. """ pass def GetZoomFactor(self): """Returns the current zoom factor. """ return self._CurrentZoom def GetRenderWindow(self): """Returns the render window (vtkRenderWindow). """ return self._RenderWindow def GetPicker(self): """Returns the current picker (vtkCellPicker). """ return self._Picker def Render(self): """Actually renders the VTK scene on screen. """ if self._CurrentLight: light = self._CurrentLight light.SetPosition(self._CurrentCamera.GetPosition()) light.SetFocalPoint(self._CurrentCamera.GetFocalPoint()) if not self.GetUpdateRegion().IsEmpty() or self.__handle: if self.__handle and self.__handle == self.GetHandle(): self._RenderWindow.Render() elif self.GetHandle(): # this means the user has reparented us # let's adapt to the new situation by doing the WindowRemap # dance self._RenderWindow.SetNextWindowInfo(str(self.GetHandle())) self._RenderWindow.WindowRemap() # store the new situation self.__handle = self.GetHandle() self._RenderWindow.Render() def UpdateRenderer(self, event): """ UpdateRenderer will identify the renderer under the mouse and set up _CurrentRenderer, _CurrentCamera, and _CurrentLight. """ x = event.GetX() y = event.GetY() windowX, windowY = self._RenderWindow.GetSize() renderers = self._RenderWindow.GetRenderers() numRenderers = renderers.GetNumberOfItems() self._CurrentRenderer = None renderers.InitTraversal() for i in range(0,numRenderers): renderer = renderers.GetNextItem() vx,vy = (0,0) if (windowX > 1): vx = float(x)/(windowX-1) if (windowY > 1): vy = (windowY-float(y)-1)/(windowY-1) (vpxmin,vpymin,vpxmax,vpymax) = renderer.GetViewport() if (vx >= vpxmin and vx <= vpxmax and vy >= vpymin and vy <= vpymax): self._CurrentRenderer = renderer self._ViewportCenterX = float(windowX)*(vpxmax-vpxmin)/2.0\ +vpxmin self._ViewportCenterY = float(windowY)*(vpymax-vpymin)/2.0\ +vpymin self._CurrentCamera = self._CurrentRenderer.GetActiveCamera() lights = self._CurrentRenderer.GetLights() lights.InitTraversal() self._CurrentLight = lights.GetNextItem() break self._LastX = x self._LastY = y def GetCurrentRenderer(self): """Returns the current renderer. """ return self._CurrentRenderer def Rotate(self, event): """Rotates the scene (camera). """ if self._CurrentRenderer: x = event.GetX() y = event.GetY() self._CurrentCamera.Azimuth(self._LastX - x) self._CurrentCamera.Elevation(y - self._LastY) self._CurrentCamera.OrthogonalizeViewUp() self._LastX = x self._LastY = y self._CurrentRenderer.ResetCameraClippingRange() self.Render() def Pan(self, event): """Pans the scene (camera). """ if self._CurrentRenderer: x = event.GetX() y = event.GetY() renderer = self._CurrentRenderer camera = self._CurrentCamera (pPoint0,pPoint1,pPoint2) = camera.GetPosition() (fPoint0,fPoint1,fPoint2) = camera.GetFocalPoint() if camera.GetParallelProjection(): renderer.SetWorldPoint(fPoint0,fPoint1,fPoint2,1.0) renderer.WorldToDisplay() fx,fy,fz = renderer.GetDisplayPoint() renderer.SetDisplayPoint(fx-x+self._LastX, fy+y-self._LastY, fz) renderer.DisplayToWorld() fx,fy,fz,fw = renderer.GetWorldPoint() camera.SetFocalPoint(fx,fy,fz) renderer.SetWorldPoint(pPoint0,pPoint1,pPoint2,1.0) renderer.WorldToDisplay() fx,fy,fz = renderer.GetDisplayPoint() renderer.SetDisplayPoint(fx-x+self._LastX, fy+y-self._LastY, fz) renderer.DisplayToWorld() fx,fy,fz,fw = renderer.GetWorldPoint() camera.SetPosition(fx,fy,fz) else: (fPoint0,fPoint1,fPoint2) = camera.GetFocalPoint() # Specify a point location in world coordinates renderer.SetWorldPoint(fPoint0,fPoint1,fPoint2,1.0) renderer.WorldToDisplay() # Convert world point coordinates to display coordinates dPoint = renderer.GetDisplayPoint() focalDepth = dPoint[2] aPoint0 = self._ViewportCenterX + (x - self._LastX) aPoint1 = self._ViewportCenterY - (y - self._LastY) renderer.SetDisplayPoint(aPoint0,aPoint1,focalDepth) renderer.DisplayToWorld() (rPoint0,rPoint1,rPoint2,rPoint3) = renderer.GetWorldPoint() if (rPoint3 != 0.0): rPoint0 = rPoint0/rPoint3 rPoint1 = rPoint1/rPoint3 rPoint2 = rPoint2/rPoint3 camera.SetFocalPoint((fPoint0 - rPoint0) + fPoint0, (fPoint1 - rPoint1) + fPoint1, (fPoint2 - rPoint2) + fPoint2) camera.SetPosition((fPoint0 - rPoint0) + pPoint0, (fPoint1 - rPoint1) + pPoint1, (fPoint2 - rPoint2) + pPoint2) self._LastX = x self._LastY = y self.Render() def Zoom(self, event): """Zooms the scene (camera). """ if self._CurrentRenderer: x = event.GetX() y = event.GetY() renderer = self._CurrentRenderer camera = self._CurrentCamera zoomFactor = math.pow(1.02,(0.5*(self._LastY - y))) self._CurrentZoom = self._CurrentZoom * zoomFactor if camera.GetParallelProjection(): parallelScale = camera.GetParallelScale()/zoomFactor camera.SetParallelScale(parallelScale) else: camera.Dolly(zoomFactor) renderer.ResetCameraClippingRange() self._LastX = x self._LastY = y self.Render() def Reset(self, event=None): """Resets the camera. """ if self._CurrentRenderer: self._CurrentRenderer.ResetCamera() self.Render() def Wireframe(self): """Sets the current actor representation as wireframe. """ actors = self._CurrentRenderer.GetActors() numActors = actors.GetNumberOfItems() actors.InitTraversal() for i in range(0,numActors): actor = actors.GetNextItem() actor.GetProperty().SetRepresentationToWireframe() self.Render() def Surface(self): """Sets the current actor representation as surface. """ actors = self._CurrentRenderer.GetActors() numActors = actors.GetNumberOfItems() actors.InitTraversal() for i in range(0,numActors): actor = actors.GetNextItem() actor.GetProperty().SetRepresentationToSurface() self.Render() def PickActor(self, event): """Picks an actor. """ if self._CurrentRenderer: x = event.GetX() y = event.GetY() renderer = self._CurrentRenderer picker = self._Picker windowX, windowY = self._RenderWindow.GetSize() picker.Pick(x,(windowY - y - 1),0.0,renderer) actor = picker.GetActor() if (self._PickedActor != None and self._PrePickedProperty != None): self._PickedActor.SetProperty(self._PrePickedProperty) # release hold of the property self._PrePickedProperty.UnRegister(self._PrePickedProperty) self._PrePickedProperty = None if (actor != None): self._PickedActor = actor self._PrePickedProperty = self._PickedActor.GetProperty() # hold onto the property self._PrePickedProperty.Register(self._PrePickedProperty) self._PickedActor.SetProperty(self._PickedProperty) self.Render() #---------------------------------------------------------------------------- def wxVTKRenderWindowConeExample(): """Like it says, just a simple example. """ # every wx app needs an app app = wx.PySimpleApp() # create the widget frame = wx.Frame(None, -1, "wxVTKRenderWindow", size=(400,400)) widget = wxVTKRenderWindow(frame, -1) ren = vtk.vtkRenderer() widget.GetRenderWindow().AddRenderer(ren) cone = vtk.vtkConeSource() cone.SetResolution(8) coneMapper = vtk.vtkPolyDataMapper() coneMapper.SetInputConnection(cone.GetOutputPort()) coneActor = vtk.vtkActor() coneActor.SetMapper(coneMapper) ren.AddActor(coneActor) # show the window frame.Show() app.MainLoop() if __name__ == "__main__": wxVTKRenderWindowConeExample()
30.43342
77
0.575026
79471da6604539c7e590e8eda7fab5640057d702
1,985
py
Python
src/api/StockService.py
webclinic017/stocksim
bdc658eb7d08b228eb47a92964f474cf33c2f226
[ "MIT" ]
3
2019-10-16T16:27:06.000Z
2019-12-30T16:16:32.000Z
src/api/StockService.py
webclinic017/stocksim
bdc658eb7d08b228eb47a92964f474cf33c2f226
[ "MIT" ]
20
2019-10-10T20:01:54.000Z
2019-12-10T05:03:12.000Z
src/api/StockService.py
webclinic017/stocksim
bdc658eb7d08b228eb47a92964f474cf33c2f226
[ "MIT" ]
2
2020-11-11T15:29:26.000Z
2020-12-02T01:06:33.000Z
import json from flask import render_template from flask_restful import Resource, reqparse from flask_jwt_extended import (create_access_token, create_refresh_token, jwt_required, jwt_refresh_token_required, get_jwt_identity, get_raw_jwt) from controllers.StockController import StockController from models.assets import Stock from Resources.MarketProvider import MarketProvider parser = reqparse.RequestParser() parser.add_argument("stock_symbol", help="", required=False) parser.add_argument("user_id", help="", required=False) parser.add_argument("stock_id", help="", required=False) # Test function for MarketProvider class GetStock(Resource): def post(self): data = parser.parse_args() mp = MarketProvider() stock = mp.getStock(data["stock_symbol"]) controller = StockController() lastid = controller.insertStock(stock) return json.loads(stock.to_json()) # Arguments: username, stock symbol class PurchaseAsset(Resource): @jwt_required def post(self): data = parser.parse_args() mp = MarketProvider() stock = mp.getStock(data["stock_symbol"]) # This is gonna be a hefty boi class WatchListAsset(Resource): @jwt_required def post(self): data = parser.parse_args() marketProvider = MarketProvider() stockController = StockController() return stockController.addWatch(stock, data["user_id"]) class WatchAsset(Resource): @jwt_required def post(self): data = parser.parse_args() marketProvider = MarketProvider() stockController = StockController() stock = marketProvider.getStock(data["stock_symbol"]) return stockController.addWatch(stock, data["user_id"]) class RemoveWatchedAsset(Resource): @jwt_required def post(self): data = parser.parse_args() stockController = StockController() return stockController.removeWatch(data["stock_id"], data["user_id"])
30.538462
147
0.713854
79471f91c34e8d7ace449201d6c823778ec68a43
5,538
py
Python
setup.py
mos3abof/dir2html
fe8f09a43ebbcf9913e31ea3bf799eefc8654ea8
[ "MIT" ]
1
2018-11-21T12:55:47.000Z
2018-11-21T12:55:47.000Z
setup.py
mos3abof/dir2html
fe8f09a43ebbcf9913e31ea3bf799eefc8654ea8
[ "MIT" ]
17
2018-11-21T12:33:55.000Z
2018-11-21T14:41:58.000Z
setup.py
mos3abof/dir2html
fe8f09a43ebbcf9913e31ea3bf799eefc8654ea8
[ "MIT" ]
null
null
null
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages from os import path # io.open is needed for projects that support Python 2.7 # It ensures open() defaults to text mode with universal newlines, # and accepts an argument to specify the text encoding # Python 3 only projects can skip this import from io import open here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() # Arguments marked as "Required" below must be included for upload to PyPI. # Fields marked as "Optional" may be commented out. setup( name='dir2html', # Required version='0.2.3', # Required description='Generate an html album from a given directory', # Optional long_description=long_description, # Optional long_description_content_type='text/markdown', # Optional (see note above) url='https://github.com/mos3abof/dir2html', # Optional author='Mosab Ibrahim', # Optional author_email='[email protected]', # Optional classifiers=[ # Optional # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', # 'Programming Language :: Python :: 2', # 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], # This field adds keywords for your project which will appear on the # project page. What does your project relate to? # # Note that this is a string of words separated by whitespace, not a list. # keywords='html album generator', # Optional # You can just specify package directories manually here if your project is # simple. Or you can use find_packages(). # # Alternatively, if you just want to distribute a single Python file, use # the `py_modules` argument instead as follows, which will expect a file # called `my_module.py` to exist: # # py_modules=["my_module"], # packages=find_packages(exclude=['contrib', 'docs', 'tests']), # Required # This field lists other packages that your project depends on to run. # Any package you put here will be installed by pip when your project is # installed, so they must be valid existing projects. # # For an analysis of "install_requires" vs pip's requirements files see: # https://packaging.python.org/en/latest/requirements.html # install_requires=['peppercorn'], # Optional # List additional groups of dependencies here (e.g. development # dependencies). Users will be able to install these using the "extras" # syntax, for example: # # $ pip install sampleproject[dev] # # Similar to `install_requires` above, these must be valid existing # projects. # extras_require={ # Optional # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. # # If using Python 2.6 or earlier, then these have to be included in # MANIFEST.in as well. package_data={ # Optional '': [ 'resources/*.html', 'resources/assets/*.css', 'resources/assets/*.js', ], }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # Optional # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # `pip` to create the appropriate form of executable for the target # platform. # # For example, the following would provide a command called `sample` which # executes the function `main` from this package when invoked: entry_points={ # Optional 'console_scripts': [ 'dir2html=dir2html.__main__:main', ], }, # List additional URLs that are relevant to your project as a dict. # # This field corresponds to the "Project-URL" metadata fields: # https://packaging.python.org/specifications/core-metadata/#project-url-multiple-use # # Examples listed include a pattern for specifying where the package tracks # issues, where the source is hosted, where to say thanks to the package # maintainers, and where to support the project financially. The key is # what's used to render the link text on PyPI. project_urls={ # Optional 'Bug Reports': 'https://github.com/mos3abof/dir2html/issues', # 'Funding': 'https://donate.pypi.org', # 'Say Thanks!': 'http://saythanks.io/to/example', 'Source': 'https://github.com/mos3abof/dir2html/', }, )
39.276596
89
0.665222
79472016f82c670ec23409193dda7bbc698e9c52
2,657
py
Python
test/data_processing/base_data_processor_test.py
spencerking/qiskit-experiments
11a254b010afe35933aaabac70de12b5b5a244bf
[ "Apache-2.0" ]
null
null
null
test/data_processing/base_data_processor_test.py
spencerking/qiskit-experiments
11a254b010afe35933aaabac70de12b5b5a244bf
[ "Apache-2.0" ]
1
2021-06-01T01:43:52.000Z
2021-06-01T01:43:52.000Z
test/data_processing/base_data_processor_test.py
spencerking/qiskit-experiments
11a254b010afe35933aaabac70de12b5b5a244bf
[ "Apache-2.0" ]
2
2021-05-17T10:13:20.000Z
2021-06-01T01:34:34.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Base class for data processor tests.""" from test.fake_experiment import FakeExperiment from typing import Any, List from qiskit.result import Result from qiskit.test import QiskitTestCase from qiskit.qobj.common import QobjExperimentHeader from qiskit.result.models import ExperimentResultData, ExperimentResult from qiskit_experiments.framework import ExperimentData class BaseDataProcessorTest(QiskitTestCase): """Define some basic setup functionality for data processor tests.""" def setUp(self): """Define variables needed for most tests.""" super().setUp() self.base_result_args = dict( backend_name="test_backend", backend_version="1.0.0", qobj_id="id-123", job_id="job-123", success=True, ) self.header = QobjExperimentHeader( memory_slots=2, metadata={"experiment_type": "fake_test_experiment"}, ) def create_experiment(self, iq_data: List[Any], single_shot: bool = False): """Populate avg_iq_data to use it for testing. Args: iq_data: A List of IQ data. single_shot: Indicates if the data is single-shot or not. """ results = [] if not single_shot: for circ_data in iq_data: res = ExperimentResult( success=True, meas_level=1, meas_return="avg", data=ExperimentResultData(memory=circ_data), header=self.header, shots=1024, ) results.append(res) else: res = ExperimentResult( success=True, meas_level=1, meas_return="single", data=ExperimentResultData(memory=iq_data), header=self.header, shots=1024, ) results.append(res) # pylint: disable=attribute-defined-outside-init self.iq_experiment = ExperimentData(FakeExperiment()) self.iq_experiment.add_data(Result(results=results, **self.base_result_args))
33.632911
85
0.621001
7947205d7b124abc0236cf35ac8f0d0f3f4d2756
5,950
py
Python
test.py
czella/poker-player-theempiredidnothingwrong
fd064967b9ff37c81a22cb22e72ff086a752e158
[ "MIT" ]
null
null
null
test.py
czella/poker-player-theempiredidnothingwrong
fd064967b9ff37c81a22cb22e72ff086a752e158
[ "MIT" ]
null
null
null
test.py
czella/poker-player-theempiredidnothingwrong
fd064967b9ff37c81a22cb22e72ff086a752e158
[ "MIT" ]
null
null
null
import player import json testJSon_one_high = json.loads("""{"community_cards": [], "minimum_raise": 2, "big_blind": 4, "orbits": 0, "in_action": 3, "bet_index": 2, "current_buy_in": 4, "round": 0, "players": [{"id": 0, "bet": 0, "version": "Pony 1.0.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Bright Pony"}, {"id": 1, "bet": 2, "version": "1.0", "time_used": 0, "stack": 998, "status": "active", "name": "PokerMasters"}, {"id": 2, "bet": 4, "version": "ERROR: Unreachable", "time_used": 0, "stack": 996, "status": "active", "name": "NADagascar"}, {"hole_cards": [{"suit": "hearts", "rank": "4"}, {"suit": "diamonds", "rank": "Q"}], "bet": 0, "version": "DS.1.0.0", "time_used": 0, "id": 3, "stack": 1000, "status": "active", "name": "TheEmpireDidNothingWrong"}, {"id": 4, "bet": 0, "version": "1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Hive"}, {"id": 5, "bet": 0, "version": "Gopnik_FM_ver_1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Gopnik FM"}], "small_blind": 2, "game_id": "5c5d4b96a972e80004000021", "dealer": 0, "pot": 6, "tournament_id": "5c38a553b0fea40004000003"} """) testJSon_two_high = json.loads("""{"community_cards": [], "minimum_raise": 2, "big_blind": 4, "orbits": 0, "in_action": 3, "bet_index": 2, "current_buy_in": 4, "round": 0, "players": [{"id": 0, "bet": 0, "version": "Pony 1.0.0", "time_used": 0, "stack": 1000, "status": "out", "name": "Bright Pony"}, {"id": 1, "bet": 2, "version": "1.0", "time_used": 0, "stack": 998, "status": "active", "name": "PokerMasters"}, {"id": 2, "bet": 4, "version": "ERROR: Unreachable", "time_used": 0, "stack": 996, "status": "active", "name": "NADagascar"}, {"hole_cards": [{"suit": "hearts", "rank": "J"}, {"suit": "diamonds", "rank": "Q"}], "bet": 0, "version": "DS.1.0.0", "time_used": 0, "id": 3, "stack": 1000, "status": "active", "name": "TheEmpireDidNothingWrong"}, {"id": 4, "bet": 0, "version": "1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Hive"}, {"id": 5, "bet": 0, "version": "Gopnik_FM_ver_1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Gopnik FM"}], "small_blind": 2, "game_id": "5c5d4b96a972e80004000021", "dealer": 0, "pot": 6, "tournament_id": "5c38a553b0fea40004000003"} """) testJSon_three_out_one_high = json.loads("""{"community_cards": [], "minimum_raise": 2, "big_blind": 4, "orbits": 0, "in_action": 3, "bet_index": 2, "current_buy_in": 4, "round": 0, "players": [{"id": 0, "bet": 0, "version": "Pony 1.0.0", "time_used": 0, "stack": 1000, "status": "out", "name": "Bright Pony"}, {"id": 1, "bet": 2, "version": "1.0", "time_used": 0, "stack": 998, "status": "out", "name": "PokerMasters"}, {"id": 2, "bet": 4, "version": "ERROR: Unreachable", "time_used": 0, "stack": 996, "status": "out", "name": "NADagascar"}, {"hole_cards": [{"suit": "hearts", "rank": "2"}, {"suit": "diamonds", "rank": "Q"}], "bet": 0, "version": "DS.1.0.0", "time_used": 0, "id": 3, "stack": 1000, "status": "active", "name": "TheEmpireDidNothingWrong"}, {"id": 4, "bet": 0, "version": "1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Hive"}, {"id": 5, "bet": 0, "version": "Gopnik_FM_ver_1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Gopnik FM"}], "small_blind": 2, "game_id": "5c5d4b96a972e80004000021", "dealer": 0, "pot": 6, "tournament_id": "5c38a553b0fea40004000003"} """) testJSon_three_out_two_high = json.loads("""{"community_cards": [], "minimum_raise": 2, "big_blind": 4, "orbits": 0, "in_action": 3, "bet_index": 2, "current_buy_in": 4, "round": 0, "players": [{"id": 0, "bet": 0, "version": "Pony 1.0.0", "time_used": 0, "stack": 1000, "status": "out", "name": "Bright Pony"}, {"id": 1, "bet": 2, "version": "1.0", "time_used": 0, "stack": 998, "status": "out", "name": "PokerMasters"}, {"id": 2, "bet": 4, "version": "ERROR: Unreachable", "time_used": 0, "stack": 996, "status": "out", "name": "NADagascar"}, {"hole_cards": [{"suit": "hearts", "rank": "Q"}, {"suit": "diamonds", "rank": "Q"}], "bet": 0, "version": "DS.1.0.0", "time_used": 0, "id": 3, "stack": 1000, "status": "active", "name": "TheEmpireDidNothingWrong"}, {"id": 4, "bet": 0, "version": "1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Hive"}, {"id": 5, "bet": 0, "version": "Gopnik_FM_ver_1.0", "time_used": 0, "stack": 1000, "status": "active", "name": "Gopnik FM"}], "small_blind": 2, "game_id": "5c5d4b96a972e80004000021", "dealer": 0, "pot": 6, "tournament_id": "5c38a553b0fea40004000003"} """) if __name__ == "__main__": player = player.Player() print(player.betRequest(testJSon_one_high)) print(player.betRequest(testJSon_two_high)) print(player.betRequest(testJSon_three_out_one_high)) print(player.betRequest(testJSon_three_out_two_high))
39.666667
138
0.482857
7947227eb14292f59667dcd8dae977259e513856
4,933
py
Python
scripts/pyqtgraph-develop/examples/__main__.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
scripts/pyqtgraph-develop/examples/__main__.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
scripts/pyqtgraph-develop/examples/__main__.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
import sys, os if __name__ == "__main__" and (__package__ is None or __package__==''): parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, parent_dir) import examples __package__ = "examples" import pyqtgraph as pg import subprocess from pyqtgraph.python2_3 import basestring from pyqtgraph.Qt import QtGui, USE_PYSIDE, USE_PYQT5 from .utils import buildFileList, testFile, path, examples if USE_PYSIDE: from .exampleLoaderTemplate_pyside import Ui_Form elif USE_PYQT5: from .exampleLoaderTemplate_pyqt5 import Ui_Form else: from .exampleLoaderTemplate_pyqt import Ui_Form class ExampleLoader(QtGui.QMainWindow): def __init__(self): QtGui.QMainWindow.__init__(self) self.ui = Ui_Form() self.cw = QtGui.QWidget() self.setCentralWidget(self.cw) self.ui.setupUi(self.cw) self.codeBtn = QtGui.QPushButton('Run Edited Code') self.codeLayout = QtGui.QGridLayout() self.ui.codeView.setLayout(self.codeLayout) self.codeLayout.addItem(QtGui.QSpacerItem(100,100,QtGui.QSizePolicy.Expanding,QtGui.QSizePolicy.Expanding), 0, 0) self.codeLayout.addWidget(self.codeBtn, 1, 1) self.codeBtn.hide() global examples self.itemCache = [] self.populateTree(self.ui.exampleTree.invisibleRootItem(), examples) self.ui.exampleTree.expandAll() self.resize(1000,500) self.show() self.ui.splitter.setSizes([250,750]) self.ui.loadBtn.clicked.connect(self.loadFile) self.ui.exampleTree.currentItemChanged.connect(self.showFile) self.ui.exampleTree.itemDoubleClicked.connect(self.loadFile) self.ui.codeView.textChanged.connect(self.codeEdited) self.codeBtn.clicked.connect(self.runEditedCode) def populateTree(self, root, examples): for key, val in examples.items(): item = QtGui.QTreeWidgetItem([key]) self.itemCache.append(item) # PyQt 4.9.6 no longer keeps references to these wrappers, # so we need to make an explicit reference or else the .file # attribute will disappear. if isinstance(val, basestring): item.file = val else: self.populateTree(item, val) root.addChild(item) def currentFile(self): item = self.ui.exampleTree.currentItem() if hasattr(item, 'file'): global path return os.path.join(path, item.file) return None def loadFile(self, edited=False): extra = [] qtLib = str(self.ui.qtLibCombo.currentText()) gfxSys = str(self.ui.graphicsSystemCombo.currentText()) if qtLib != 'default': extra.append(qtLib.lower()) elif gfxSys != 'default': extra.append(gfxSys) if edited: path = os.path.abspath(os.path.dirname(__file__)) proc = subprocess.Popen([sys.executable, '-'] + extra, stdin=subprocess.PIPE, cwd=path) code = str(self.ui.codeView.toPlainText()).encode('UTF-8') proc.stdin.write(code) proc.stdin.close() else: fn = self.currentFile() if fn is None: return if sys.platform.startswith('win'): os.spawnl(os.P_NOWAIT, sys.executable, '"'+sys.executable+'"', '"' + fn + '"', *extra) else: os.spawnl(os.P_NOWAIT, sys.executable, sys.executable, fn, *extra) def showFile(self): fn = self.currentFile() if fn is None: self.ui.codeView.clear() return if os.path.isdir(fn): fn = os.path.join(fn, '__main__.py') text = open(fn).read() self.ui.codeView.setPlainText(text) self.ui.loadedFileLabel.setText(fn) self.codeBtn.hide() def codeEdited(self): self.codeBtn.show() def runEditedCode(self): self.loadFile(edited=True) def run(): app = QtGui.QApplication([]) loader = ExampleLoader() app.exec_() if __name__ == '__main__': args = sys.argv[1:] if '--test' in args: # get rid of orphaned cache files first pg.renamePyc(path) files = buildFileList(examples) if '--pyside' in args: lib = 'PySide' elif '--pyqt' in args or '--pyqt4' in args: lib = 'PyQt4' elif '--pyqt5' in args: lib = 'PyQt5' else: lib = '' exe = sys.executable print("Running tests:", lib, sys.executable) for f in files: testFile(f[0], f[1], exe, lib) else: run()
34.256944
122
0.579769
794722eb5e6a8a8c2eaeba7de981d8963f81ab68
1,907
py
Python
practiceCR/restAPI/models.py
faisaladisoe/learn-python-rest-API
d597f38eea4aff54889c241303df5136dc9278ae
[ "MIT" ]
null
null
null
practiceCR/restAPI/models.py
faisaladisoe/learn-python-rest-API
d597f38eea4aff54889c241303df5136dc9278ae
[ "MIT" ]
null
null
null
practiceCR/restAPI/models.py
faisaladisoe/learn-python-rest-API
d597f38eea4aff54889c241303df5136dc9278ae
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Biodata(models.Model): nickname = models.CharField(max_length = 20, null = True) fullname = models.CharField(max_length = 100, null = True) CLASSROOM_CHOICES = ( ('12 IPA 1', '12 IPA 1'), ('12 IPA 2', '12 IPA 2'), ('12 IPA 3', '12 IPA 3'), ('12 IPA 4', '12 IPA 4'), ('12 IPA 5', '12 IPA 5'), ('12 IPA 6', '12 IPA 6'), ('12 IPA 7', '12 IPA 7'), ('12 IPA 8', '12 IPA 8'), ('12 IPS', '12 IPS'), ) classroom = models.CharField( max_length = 10, choices = CLASSROOM_CHOICES, default = '12 IPA 1', null = True ) randomThought = models.CharField(max_length = 100, null = True) email = models.EmailField(max_length = 100, null = True) instagram = models.CharField(max_length = 50, null = True) linkedin = models.CharField(max_length = 50, null = True) def __str__(self): return self.fullname class Layouting(models.Model): search = models.CharField(max_length = 50, null = True) GROUP_CHOICES = ( ('All', 'All'), ('12 IPA 1', '12 IPA 1'), ('12 IPA 2', '12 IPA 2'), ('12 IPA 3', '12 IPA 3'), ('12 IPA 4', '12 IPA 4'), ('12 IPA 5', '12 IPA 5'), ('12 IPA 6', '12 IPA 6'), ('12 IPA 7', '12 IPA 7'), ('12 IPA 8', '12 IPA 8'), ('12 IPS', '12 IPS'), ) groupby = models.CharField( max_length = 10, choices = GROUP_CHOICES, default = 'All', null = True ) SORTING_CHOICES = ( ('Ascending', 'Ascending'), ('Descending', 'Descending'), ) sorting = models.CharField( max_length = 10, choices = SORTING_CHOICES, default = 'Ascending', null = True )
31.262295
68
0.505506
79472384747a0ca864b420aaaf702e46b4c64004
6,191
py
Python
src/test_workflow/integ_test/integ_test_suite.py
VijayanB/opensearch-build
c84c06cffee2396360c0ae8f41f0027982e0b2d8
[ "Apache-2.0" ]
null
null
null
src/test_workflow/integ_test/integ_test_suite.py
VijayanB/opensearch-build
c84c06cffee2396360c0ae8f41f0027982e0b2d8
[ "Apache-2.0" ]
null
null
null
src/test_workflow/integ_test/integ_test_suite.py
VijayanB/opensearch-build
c84c06cffee2396360c0ae8f41f0027982e0b2d8
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. import glob import logging import os from git.git_repository import GitRepository from paths.script_finder import ScriptFinder from paths.tree_walker import walk from system.execute import execute from test_workflow.dependency_installer import DependencyInstaller from test_workflow.integ_test.local_test_cluster import LocalTestCluster from test_workflow.test_recorder.test_result_data import TestResultData from test_workflow.test_result.test_component_results import \ TestComponentResults from test_workflow.test_result.test_result import TestResult class IntegTestSuite: """ Kicks of integration tests for a component based on test configurations provided in test_support_matrix.yml """ def __init__( self, component, test_config, bundle_manifest, build_manifest, work_dir, s3_bucket_name, test_recorder ): self.component = component self.bundle_manifest = bundle_manifest self.build_manifest = build_manifest self.work_dir = work_dir self.test_config = test_config self.s3_bucket_name = s3_bucket_name self.additional_cluster_config = None self.test_recorder = test_recorder self.repo = GitRepository( self.component.repository, self.component.commit_id, os.path.join(self.work_dir, self.component.name), test_config.working_directory ) self.save_logs = test_recorder.test_results_logs def execute(self): test_results = TestComponentResults() self.__install_build_dependencies() for config in self.test_config.integ_test["test-configs"]: status = self.__setup_cluster_and_execute_test_config(config) test_results.append(TestResult(self.component.name, config, status)) return test_results def __install_build_dependencies(self): if "build-dependencies" in self.test_config.integ_test: dependency_list = self.test_config.integ_test["build-dependencies"] if len(dependency_list) == 1 and "job-scheduler" in dependency_list: self.__copy_job_scheduler_artifact() else: raise InvalidTestConfigError( "Integration test job only supports job-scheduler build dependency at present." ) def __copy_job_scheduler_artifact(self): custom_local_path = os.path.join( self.repo.dir, "src/test/resources/job-scheduler" ) for file in glob.glob( os.path.join(custom_local_path, "opensearch-job-scheduler-*.zip") ): os.unlink(file) job_scheduler = self.build_manifest.get_component("job-scheduler") DependencyInstaller(self.build_manifest.build).install_build_dependencies( {"opensearch-job-scheduler": job_scheduler.version}, custom_local_path ) @staticmethod def __is_security_enabled(config): if config in ["with-security", "without-security"]: return True if config == "with-security" else False else: raise InvalidTestConfigError("Unsupported test config: " + config) def __setup_cluster_and_execute_test_config(self, config): security = self.__is_security_enabled(config) if "additional-cluster-configs" in self.test_config.integ_test.keys(): self.additional_cluster_config = self.test_config.integ_test.get( "additional-cluster-configs" ) logging.info(f"Additional config found: {self.additional_cluster_config}") with LocalTestCluster.create( self.work_dir, self.component.name, self.additional_cluster_config, self.bundle_manifest, security, config, self.test_recorder, self.s3_bucket_name) as (test_cluster_endpoint, test_cluster_port): self.__pretty_print_message( "Running integration tests for " + self.component.name ) os.chdir(self.work_dir) return self.__execute_integtest_sh( test_cluster_endpoint, test_cluster_port, security, config ) def __execute_integtest_sh(self, endpoint, port, security, test_config): script = ScriptFinder.find_integ_test_script( self.component.name, self.repo.working_directory ) if os.path.exists(script): cmd = f"{script} -b {endpoint} -p {port} -s {str(security).lower()} -v {self.bundle_manifest.build.version}" work_dir = ( os.path.join(self.repo.dir, self.test_config.working_directory) if self.test_config.working_directory is not None else self.repo.dir ) (status, stdout, stderr) = execute(cmd, work_dir, True, False) results_dir = os.path.join( work_dir, "build", "reports", "tests", "integTest" ) test_result_data = TestResultData(self.component.name, test_config, status, stdout, stderr, walk(results_dir)) self.save_logs.save_test_result_data(test_result_data) if stderr: logging.info( "Integration test run failed for component " + self.component.name ) logging.info(stderr) return status else: logging.info( f"{script} does not exist. Skipping integ tests for {self.name}" ) @staticmethod def __pretty_print_message(message): logging.info("===============================================") logging.info(message) logging.info("===============================================") class InvalidTestConfigError(Exception): pass
39.941935
120
0.633177
794723b171c2cb1868e1c2891e709109b0f92ddf
3,238
py
Python
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/policy/v2019_01_01/_configuration.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/policy/v2019_01_01/_configuration.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/policy/v2019_01_01/_configuration.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential class PolicyClientConfiguration(Configuration): """Configuration for PolicyClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(PolicyClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.api_version = "2019-01-01" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-resource/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
44.972222
129
0.68252
7947242267b9a3c24f97e667faebe3d047946bcd
2,263
py
Python
src/emoji_prediction/config/ABCDM_config.py
Ehsan-Tavan/Emoji-Prediction
f79e19ac3b975b7d43bb1971f12afeffda1a072d
[ "MIT" ]
1
2020-11-11T04:35:33.000Z
2020-11-11T04:35:33.000Z
src/emoji_prediction/config/ABCDM_config.py
Ehsan-Tavan/Emoji-Prediction
f79e19ac3b975b7d43bb1971f12afeffda1a072d
[ "MIT" ]
null
null
null
src/emoji_prediction/config/ABCDM_config.py
Ehsan-Tavan/Emoji-Prediction
f79e19ac3b975b7d43bb1971f12afeffda1a072d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # pylint: disable-msg=no-member """ ABCDM_config.py is a module for ABCDM model config """ import torch __author__ = "Ehsan Tavan" __project__ = "Persian Emoji Prediction" __credits__ = ["Ehsan Tavan"] __license__ = "Public Domain" __version__ = "1.0.0" __maintainer__ = "Ehsan Tavan" __email__ = "[email protected]" __status__ = "Production" __date__ = "01/11/2021" RAW_NO_MENTION_DATA_PATH = "../data/Raw/first_categori_no_mention_tweets.csv" RAW_DATA_PATH = "../data/Raw/first_categori_tweets.csv" TRAIN_NORMAL_NO_MENTION_DATA_PATH = "../data/Processed/" \ "train_first_categori_no_mention_tweets_normal.csv" TEST_NORMAL_NO_MENTION_DATA_PATH = "../data/Processed/" \ "test_first_categori_no_mention_tweets_normal.csv" TRAIN_NORMAL_DATA_PATH = "../data/Processed/" \ "train_first_categori_tweets_normal_5.csv" TEST_NORMAL_DATA_PATH = "../data/Processed/" \ "train_first_categori_tweets_normal_5.csv" VALIDATION_NORMAL_DATA_PATH = "../data/Processed/" \ "train_first_categori_tweets_normal_5.csv" GLOVE_NEWS_300D = "../data/Embeddings/news_glove_300d_e10.txt" SKIPGRAM_NEWS_300D = "../data/Embeddings/skipgram_news_300d_30e.txt" CBOW_NEWS_300D = "../data/Embeddings/cbow_news_300d_30e.txt" EMOTION_EMBEDDING_PATH = "../data/Embeddings/word_emotion_dict.pkl" LOSS_CURVE_PATH = "../models/tmp/Curves/loss_curve.png" ACC_CURVE_PATH = "../models/tmp/Curves/accuracy_curve.png" TEXT_FIELD_PATH = "../models/tmp/Fields/text_field" LABEL_FIELD_PATH = "../models/tmp/Fields/label_field" LOG_PATH = "../models/tmp/Logs/log.txt" TEST_AUG_LOG_PATH = "../models/tmp/Logs/test_aug_log.txt" MODEL_PATH = "../models/tmp/" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") N_EPOCHS = 10 BATCH_SIZE = 512 EMBEDDING_DIM = 300 EMOTION_EMBEDDING_DIM = 10 LSTM_HIDDEN_DIM = 128 LSTM_LAYERS = 1 BIDIRECTIONAL = True DROPOUT = 0.2 N_FILTERS = 32 FILTER_SIZE = [4, 6] DENSE_UNITS = 64 MIN_FREQ = 20 MAX_LENGTH = None ADDING_NOISE = False LR_DECAY = False TRAIN_AUGMENTATION = False TEST_AUGMENTATION = True USE_EMOTION = False
31.873239
87
0.714538
7947278a711fa0097a7a51f1aa722134292f1353
27,513
py
Python
nrm_analysis/misctools/mask_definitions.py
vandalt/ImPlaneIA
72b22e487ef45a8a665e4a6a88a91e99e382fdd0
[ "BSD-3-Clause" ]
null
null
null
nrm_analysis/misctools/mask_definitions.py
vandalt/ImPlaneIA
72b22e487ef45a8a665e4a6a88a91e99e382fdd0
[ "BSD-3-Clause" ]
null
null
null
nrm_analysis/misctools/mask_definitions.py
vandalt/ImPlaneIA
72b22e487ef45a8a665e4a6a88a91e99e382fdd0
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python from __future__ import print_function import numpy as np import math import sys import time from nrm_analysis.misctools.utils import makedisk, rotate2dccw from astropy.io import fits from copy import copy """ ================ NRM_mask_definitions ================ A module defining mask geometry in pupil space. Mask names (str): * gpi_g10s40 * jwst_g7s6c * jwst_g7s6 * p1640 * keck_nirc2 * pharo Code by Alexandra Greenbaum <[email protected]> and Anand Sivaramakrishnan <[email protected]> Dec 2012 """ m = 1.0 mm = 1.0e-3 * m um = 1.0e-6 * m class NRM_mask_definitions(): def __init__(self, maskname=None, rotdeg=None, holeshape="circ", rescale=False,\ verbose=False, chooseholes=None): if verbose: print("NRM_mask_definitions(maskname,...:" + maskname) if maskname not in ["gpi_g10s40", "jwst_g7s6", "jwst_g7s6c", "visir_sam", \ "p1640", "keck_nirc2", "pharo", "NIRC2_9NRM"]: raise ValueError("mask not supported") if holeshape == None: holeshape = 'circ' if verbose: print(holeshape) if holeshape not in ["circ", "hex",]: raise ValueError("Unsupported mask holeshape" + maskname) self.maskname = maskname if verbose: print("\n\t=====================================") print("Mask being created" + self.maskname) if self.maskname == "gpi_g10s40": self.hdia, self.ctrs = gpi_g10s40(rescale=rescale) #self.rotdeg = 115.0 # By inspection of I&T data Dec 2012 #if rotdeg is not None: # self.rotdeg = rotdeg # print("rotating by {0} deg".format(rotdeg)) #else: # print("rotating by 115.0 deg -- hard coded.") #self.ctrs = rotate2dccw(self.ctrs, self.rotdeg*np.pi/180.0) #self.rotate = self.rotdeg self.activeD = self.showmask() # calculates circle dia including all holes self.OD = 7770.1 * mm # DGS = 7770.1 * mm with M2 cardboard baffle # GS OD from GPI fundamental values self.ID = 1023.75 * mm # Formed by M2 diameter # (Bauman GPI_Optical_Fundamental_Values.doc) elif self.maskname == "jwst_g7s6c": """ activeD and D taken from webbpsf-data/NIRISS/coronagraph/MASK_NRM.fits""" if verbose: print('self.maskname = "jwst_g7s6c"') self.hdia, self.ctrs = jwst_g7s6c(chooseholes=chooseholes) # self.activeD = 6.559*m # webbpsf kwd DIAM - not a 'circle including all holes' self.OD = 6.610645669291339*m # Full pupil file size, incl padding, webbpsf kwd PUPLDIAM if rotdeg is not None: self.rotdeg = rotdeg elif self.maskname == "jwst_g7s6": print("\tnot finished") elif self.maskname == "visir_sam": """Mask dimensions from Eric Pantin""" self.hdia, self.ctrs = visir_sam(rescale=rescale) self.rotdeg = 16.5 # By inspection of data if rotdeg is not None: self.rotdeg += rotdeg print("rotating by {0} + 9 (hardcoded) deg".format(rotdeg)) else: print("rotating by 9 deg -- hard coded") self.ctrs = rotate2dccw(self.ctrs, self.rotdeg*np.pi/180.0) self.rotate = self.rotdeg self.activeD = self.showmask() # calculated circle dia including all holes self.OD = 8115.0 * mm # DVLT = 8115.0 * mm -- but what is the M2 dia?? # From Eric Pantin Document self.ID = 1000.0 * mm # Don't know this, but this number shouldn't matter elif self.maskname == "NIRC2_9NRM": """Mask dimensions from Steph Sallum?""" self.hdia, self.ctrs = keck_nrm() self.rotdeg = 28.0 # By inspection of data if rotdeg is not None: self.rotdeg += rotdeg print("rotating by {0} + 9 (hardcoded) deg".format(rotdeg)) else: print("rotating by 9 deg -- hard coded") self.ctrs = rotate2dccw(self.ctrs, self.rotdeg*np.pi/180.0) self.rotate = self.rotdeg self.activeD = self.showmask() # calculated circle dia including all holes self.OD = 10.0 # DVLT = 8115.0 * mm -- but what is the M2 dia?? # From Eric Pantin Document self.ID = 1.0 # Don't know this, but this number shouldn't matter else: print("\tmask_definitions: Unknown maskname: check back later") # make image at angular pixel scale, at given wavelength/bandpass # choose pupil pixel scale # image oversampling before rebinning # possibly put in OPD def get_scale(self, band='Hband', date='2013_Jan15', slc=0, fldr = ''): # write now file is J through H, can we somehow specify the band and use that to get this info by just putting in a slice? if band == 'Hband': start = 0 end = 37 elif band == 'Yband': start = 37 end = 74 elif band == 'Jband': start = 74 end = None else: print('Must specify valid band: Yband, Jband, or Hband') fh='wlcorrection_' info = np.loadtxt(fldr+fh+date+'.txt') print('Returning scaled wavelengths from '+date) return info[start:end, 2] def get_rotation(self, band = 'Hband', date='2013_Jan15', slc=None, fldr=''): if band == 'Hband': start = 0 end = 37 elif band == 'Yband': start = 37 end = 74 elif band == 'Jband': start = 74 end = None else: print('Must specify valid band: Yband, Jband, or Hband') fh='rotcorrection_' info = np.loadtxt(fldr+fh+date+'.txt') return info[start:end,1] def createpupilarray(self, puplscal=None, fitsfile=None): pupil = np.zeros((int(np.ceil(self.OD/puplscal)), int(np.ceil(self.OD/puplscal)))) pupil = pupil + \ makedisk(s=pupil.shape, c=(pupil.shape[0]/2.0 - 0.5, pupil.shape[1]/2.0 - 0.5), r=0.5*self.OD/puplscal, t=np.float64, grey=0) - \ makedisk(s=pupil.shape, c=(pupil.shape[0]/2.0 - 0.5, pupil.shape[1]/2.0 - 0.5), r=0.5*self.ID/puplscal, t=np.float64, grey=0) hdu = fits.PrimaryHDU () hdu.data = pupil.astype(np.uint8) hdu.header.update("PUPLSCAL", puplscal, "Pupil pixel scale in m/pixels DL") hdu.header.update("PIXSCALE", puplscal, "Pupil pixel scale in m/pixels MDP") hdu.header.update("PUPLDIAM", self.OD, "Full pupil file size, incl padding in m") hdu.header.update("DIAM", self.activeD, "Active pupil diameter in m") # changed from OD - AS Feb 13 hdu.header.update("ROTATE", self.rotdeg, "Mask counterclockwise rotation (deg)") if fitsfile is not None: hdu.writeto(fitsfile, clobber=True) self.fullpupil = pupil.copy() self.fullpuplscale = puplscal hdulist = fits.HDUList([hdu]) return hdulist def createnrmarray(self, puplscal=None, fitsfile=None, holeid=None, fullpupil=False): """ fullpupil is a possibly oversized array, in meters using puplscal """ if fullpupil: D = self.OD # array side size, m else: D = self.activeD # light-transmitting diameter, m pupil = np.zeros((int(np.ceil(D/puplscal)), int(np.ceil(D/puplscal)))) print("creating pupil array with shape ", pupil.shape) factor=1 #modify to add hex holes later for ctrn, ctr in enumerate(self.ctrs): if holeid: factor = ctrn +1 # convert to zero-at-corner, meters center = (0.5*pupil.shape[0] + ctr[0]/puplscal - 0.5, 0.5*pupil.shape[1] + ctr[1]/puplscal - 0.5) pupil = pupil + \ makedisk(s=pupil.shape, c=center, r=0.5*self.hdia/puplscal, t=np.float64, grey=0)* factor self.nrmpupil = pupil.copy() self.puplscale = puplscal hdu = fits.PrimaryHDU () hdu.data = pupil.astype(np.uint8) hdu.header.update("PUPLSCAL", puplscal, "Pupil pixel scale in m/pixels MDP") hdu.header.update("PIXSCALE", puplscal, "Pupil pixel scale in m/pixels DL") hdu.header.update("PUPLDIAM", D, "Full pupil file size, incl padding in m") hdu.header.update("DIAM", self.activeD, "Active pupil diameter in m") if hasattr(self, 'rotate'): hdu.header.update("ROTATE", self.rotdeg, "Mask counterclockwise rotation (deg)") (year, month, day, hour, minute, second, weekday, DOY, DST) = time.gmtime() hdu.header.update("CODESRC", "NRM_mask_definitions.py", "Anand S. and Alex G.") hdu.header.update("DATE", "%4d-%02d-%02dT%02d:%02d:%02d" % \ (year, month, day, hour, minute, second), "Date of calculation") if fitsfile is not None: hdu.writeto(fitsfile, clobber=True) hdulist = fits.HDUList([hdu]) return hdulist def showmask(self): """ prints mask geometry, returns diameter of smallest centered circle (D) enclosing live mask area """ print("\t%s" % self.maskname) print("\tholeD\t%+6.3f" % self.hdia) print("\t\t x/m \t y/m r/m r+h_rad/m 2(r+h)/m") radii = [] for ctr in self.ctrs: print("\t\t%+7.3f\t%+7.3f" % (ctr[0], -1.0*ctr[1]), end=' ') radii.append(math.sqrt(ctr[0]*ctr[0] + ctr[1]*ctr[1])) print(" %.3f " % radii[-1], end=' ') print(" %.3f " % (radii[-1] + self.hdia/2.0), end=' ') print(" %.3f " % (2.0*radii[-1] + self.hdia)) print("\t2X max (r+h) \t%.3f m" % (2.0*(max(radii) + 0.5*self.hdia))) print() return 2.0*(max(radii) + 0.5*self.hdia) """ [email protected]:172 ./gpipoppy.py All X,Y dimensions in m from center of mask All hole DIAMETERS are in m: G10S40lenox holeD +0.596 x/m y/m r/m r+h_rad/m 2(r+h)/m -0.687 +2.514 2.606 2.904 5.808 -0.252 +3.362 3.372 3.670 7.340 +1.822 +0.157 1.829 2.127 4.254 +2.342 -0.644 2.429 2.727 5.453 -2.862 -1.733 3.346 3.644 7.287 -0.869 -3.288 3.401 3.699 7.398 -3.026 +1.568 3.408 3.706 7.411 +2.692 +1.855 3.269 3.567 7.134 +3.297 -0.596 3.350 3.648 7.297 +1.036 -3.192 3.356 3.654 7.308 2X max (r+h) 7.411 m """ "[email protected] Feb 2011" """ Barnaby Norris <[email protected]> to Peter Tuthill <[email protected]> cc Anand Sivaramakrishnan <[email protected]>, James Lloyd <[email protected]>, "[email protected]" <[email protected]>, "[email protected]" <[email protected]>, "[email protected]" <[email protected]>, Laurent Pueyo <[email protected]>, David Lafreniere <[email protected]> date Tue, Feb 8, 2011 at 6:24 PM Hi Everyone, I've been working on the mask designs for Peter, and we've whittled down the various mask solutions to a 10, 12 and 15 hole mask - diagrams and the corresponding Fourier coverage are attached. I've used the diagram Anand sent (GPI_LyotBadActuators.png) as a guide and avoided the bad actuators by the size of the blacked-out circles in that diagram, which corresponds to 2 actuator spacings away (these obstructions are shown in green on the diagrams).. The measurements are in mm and based on the inside of the black filled area (in Anand's png file) being the Lyot stop outer diameter (ie 9.532mm). The holes are sized based on a slight relaxation of strict non-redundancy, with the hole radius being 0.33 times the minimum baseline. The measurements are included below - please let me know if you need anything else. Cheers Barnaby GPI 10 hole mask, soln 40 X Position Y Position -0.580002 -3.13987 0.00000 -4.14446 2.32001 -0.126087 2.90001 0.878506 -3.48001 1.88310 -1.16000 3.89229 -3.48001 -2.13527 3.48001 -2.13527 4.06002 0.878506 1.16000 3.89229 Hole Radius: 0.382802 """ # go from Barnaby's first LS design to cut-metal-coords in GPI PPM # mag is slight expansion (~0.5%) then 1.2 mag factor to PPM def gpi_g10s40_asmanufactured(mag): """ In PPM metal space - measured cooordinates from sample G10S40""" holedia = 0.920*mm holectrs = [ [-1.061*mm, -3.882*mm], [-0.389*mm, -5.192*mm], [ 2.814*mm, -0.243*mm], [ 3.616*mm, 0.995*mm], [-4.419*mm, 2.676*mm], [-1.342*mm, 5.077*mm], [-4.672*mm, -2.421*mm], [ 4.157*mm, -2.864*mm], [ 5.091*mm, 0.920*mm], [ 1.599*mm, 4.929*mm], ] # design2metal mag holedia = holedia * mag print(mag) ctrs = [] #REVERSE = -1 # Flip y dimensions to match I&T data Dec 2012 REVERSE = 1 # With new affine updates, need to reverse the reverse March 2019 for r in holectrs: ctrs.append([r[0]*mag, r[1]*mag*REVERSE]) # return cut-the-metal coords per Lenox PPM mm spec in meters on PM ctrs_asbuilt = copy(ctrs) # March 2019: # Rotate hole centers by 90 deg to match GPI detector with new coordinate handling # no affine2d transformations 8/2018 AS ctrs_asbuilt = rotate2dccw(ctrs_asbuilt, 160*np.pi/180.0) # overwrites attributes return holedia, ctrs_asbuilt def gpi_mag_asdesigned(): #logging.basicConfig(level=logging.DEBUG,format='%(name)-10s: %(levelname)-8s %(message)s') datapath='/Users/anand/data/NRM/GPI/' """ returns demag (dimensionless) pupil dimensions * demag gives manufactured dimensions """ """ COR-SATR... The coronagraph module shall achieve the specifications at an inner working distance of 4lam/D (goal 3.5 lam/D), where D is the telescope entrance diameter of 7.7701 m. """ DGN = 7908.0 DGS = 7770.1 * mm # with M2 baffle GS OD Bauman http://dms.hia.nrc.ca/view.php?fDocumentId=2164 D = DGS d = 11.998 * mm # with M2 baffle GS OD Bauman http://dms.hia.nrc.ca/view.php?fDocumentId=2164 #d = 11.68 * mm # March 2019 update based on manufactured values. #demag = 0.99*d/D # about 1/800... demag = d/D # about 1/800... dppm = 11.671 * mm # Precision Optical or Aktiwave dapod 11.68 flip = "_flip" print("""" This program (gpipoppy.py) uses DGS = 7770.1 * mm with M2 cardboard baffle GS OD from GPI Fundamental Values (Bauman GPI_Optical_Fundamental_Values.doc) http://dms.hia.nrc.ca/view.php?fDocumentId=2164 and Lenox Laser measured hole diameter of G40S10 sample design, with average hole size in LenoxSTScI_delivery_APOD_NRM10.[pdf xlsx] (also on HIA's KT) All X,Y dimensions in m from center of mask in PM space All hole DIAMETERS are in m:\n""") ##### Preliminary set-up:- design-to-metal scale ##### Multiply design by MAG to get metal coords, origin at part center ####assumedLSOD = 9.532 * mm # Barnaby's email Feb 2011 ####correctLSOD = 9.571 * mm # source - Anand's order of GS version 3 apodizers to CTM ####magLS2PPM = 11.790/9.825 # GSOD@PPM/GSOD@Lyot source - Remi's COR dimensions final designs.pdf, 1.2 exactly ####magBarnaby2LS = correctLSOD / assumedLSOD # slight mag, about 0.5% ####magBarnaby2PPM = magBarnaby2LS * magLS2PPM ####MAG = magBarnaby2PPM ####print "DESIGN to PPM magnification is %.4f\n" % MAG print(demag) return demag def gpi_g10s40(rescale=False): """ Multiply by the 'rescale' factor to adjust hole sizes and centers in entrance pupil (PM) (Magnify the physical mask coordinates up to the primary mirror size) """ demag = gpi_mag_asdesigned() if rescale: demag = demag/rescale # rescale 1.1 gives a bigger mask in PM pupil space print ("gpi_g10s4...") hdia, ctrs = gpi_g10s40_asmanufactured(1.0/demag) # meters return hdia, ctrs """ From GPI FPRD 2008 http://dms.hia.nrc.ca/view.php?fDocumentId=1398 Filter 1/2 pwr bandwidth name wavelen/um % Y 0.95-1.14 18 J 1.12-1.35 19 H 1.50-1.80 18 K1 1.9-2.19 14 K2 2.13-2.4 12 Spectral Resolution 34-36 35-39 44-49 62-70 75-83 # spectral pixels 12-13 13-15 16-18 18-20 18-20 pixels 14mas are nyquist at 1.1 """ """ Mathilde Beaulieu eg. Thu, Jun 18, 2009 at 06:28:19PM Thank you for the drawing. It really helps! The distance between the center of the 2 segments in your drawing does not match exactly with the distance I have (1.32 instead of 1.325). Could you please check if I have the good center coordinates? XY - PUPIL 0.00000 -2.64000 -2.28631 0.00000 2.28631 -1.32000 -2.28631 1.32000 -1.14315 1.98000 2.28631 1.32000 1.14315 1.98000 where y is the direction aligned with the spider which is not collinear with any of pupil edges (it is not the same definition as Ball). Thank you, Regards, Mathilde n.b. This differs from the metal-mask-projected-to-PM-space with Zheng Hai (Com Dev)'s mapping communicated by Mathilde Beaulieu to Anand. This mapping has offset, rotation, shrink x, magnification. Reference is a JWST Tech Report to be finalized 2013 by Anand. jwst_g7s6_centers_asdesigned function superceded in LG++: """ def jwst_g7s6_centers_asbuilt(chooseholes=None): # was jwst_g7s6_centers_asdesigned holedict = {} # as_built names, C2 open, C5 closed, but as designed coordinates # Assemble holes by actual open segment names (as_built). Either the full mask or the # subset-of-holes mask will be V2-reversed after the as_designed centers are defined # Debug orientations with b4,c6,[c2] allholes = ('b4','c2','b5','b2','c1','b6','c6') b4,c2,b5,b2,c1,b6,c6 = ('b4','c2','b5','b2','c1','b6','c6') # design built holedict['b4'] = [ 0.00000000, -2.640000] #B4 -> B4 holedict['c2'] = [-2.2863100 , 0.0000000] #C5 -> C2 holedict['b5'] = [ 2.2863100 , -1.3200001] #B3 -> B5 holedict['b2'] = [-2.2863100 , 1.3200001] #B6 -> B2 holedict['c1'] = [-1.1431500 , 1.9800000] #C6 -> C1 holedict['b6'] = [ 2.2863100 , 1.3200001] #B2 -> B6 holedict['c6'] = [ 1.1431500 , 1.9800000] #C1 -> C6 # as designed MB coordinates (Mathilde Beaulieu, Peter, Anand). # as designed: segments C5 open, C2 closed, meters V2V3 per Paul Lightsey def # as built C5 closed, C2 open # # undistorted pupil coords on PM. These numbers are considered immutable. # as designed seg -> as built seg in comments each ctr entry (no distortion) if chooseholes: #holes B4 B5 C6 asbuilt for orientation testing print("\n chooseholes creates mask with JWST as_built holes ", chooseholes) #time.sleep(2) holelist = [] for h in allholes: if h in chooseholes: holelist.append(holedict[h]) ctrs_asdesigned = np.array( holelist ) else: # the REAL THING - as_designed 7 hole, m in PM space, no distortion shape (7,2) ctrs_asdesigned = np.array( [ [ 0.00000000, -2.640000], #B4 -> B4 as-designed -> as-built mapping [-2.2863100 , 0.0000000], #C5 -> C2 [ 2.2863100 , -1.3200001], #B3 -> B5 [-2.2863100 , 1.3200001], #B6 -> B2 [-1.1431500 , 1.9800000], #C6 -> C1 [ 2.2863100 , 1.3200001], #B2 -> B6 [ 1.1431500 , 1.9800000] ] ) #C1 -> C6 # Preserve ctrs.as-designed (treat as immutable) # Reverse V2 axis coordinates to close C5 open C2, and others follow suit... # preserve cts.as_built (treat as immutable) ctrs_asbuilt = ctrs_asdesigned.copy() # create 'live' hole centers in an ideal, orthogonal undistorted xy pupil space, # eg maps open hole C5 in as_designed to C2 as_built, eg C4 unaffacted.... ctrs_asbuilt[:,0] *= -1 # LG++ rotate hole centers by 90 deg to match MAST o/p DMS PSF with # no affine2d transformations 8/2018 AS # LG++ The above aligns the hole patern with the hex analytic FT, # flat top & bottom as seen in DMS data. 8/2018 AS ctrs_asbuilt = rotate2dccw(ctrs_asbuilt, np.pi/2.0) # overwrites attributes # create 'live' hole centers in an ideal, orthogonal undistorted xy pupil space, return ctrs_asbuilt * m def jwst_g7s6c(chooseholes=None): # WARNING! JWST CHOOSEHOLES CODE NOW DUPLICATED IN LG_Model.py WARNING! ### #return 0.80*m, jwst_g7s6_centers_asbuilt(chooseholes=chooseholes) #comment out 2019 Aug w/Joel to match webbpsf 0.8.something f2f = 0.82 * m # m flat to flat return f2f, jwst_g7s6_centers_asbuilt(chooseholes=chooseholes) def visir_sam_asmanufactured(mag): """VISIR has hexagonal holes The SAM plate has a main external diameter of 26 mm """ holedia = 2.8*mm # (=side length) => 0.61 m in telescope pupil of 8.115 m # Equivalenent diameter is thus 1.22m # pupil footprint center (/= coordinates center in the drawing) holectrs = [ [-5.707*mm, -2.885*mm], [-5.834*mm, 3.804*mm], [ 0.099*mm, 7.271*mm], [ 7.989*mm, 0.422*mm], [ 3.989*mm, -6.481*mm], [-3.790*mm, -6.481*mm], [-1.928*mm, -2.974*mm] ] """ xc, yc = 387., 294.75 holectrs = =[ [342.000-xc, 272.000-yc], [341.000-xc, 324.750-yc], [387.780-xc, 352.080-yc], [449.992-xc, 298.080-yc], [418.456-xc, 243.648-yc], [357.112-xc, 243.648-yc], [371.800-xc, 271.296-yc] ] There is an offset between the mechanical plate and the fottprint of the cold stop of - 0.636 mm, which probably explains the need for manual (filing) increase of the size of the fixing holes on the size after mounting and checking the optical alignment on the instrument. """ # design2metal mag holedia = holedia * mag print(mag) ctrs = [] REVERSE = -1 # The pupil we measure with VISIR pupil imaging lens is # [probably] point symmetry reversed w.r.t reality. => OK checked for r in holectrs: ctrs.append([r[0]*mag*REVERSE, r[1]*mag*REVERSE]) # return mask coords return holedia, ctrs def visir_mag_asdesigned(): #logging.basicConfig(level=logging.DEBUG,format='%(name)-10s: %(levelname)-8s %(message)s') datapath='/Users/agreenba/data/visir/' """ returns demag (dimensionless) pupil dimensions * demag gives manufactured dimensions """ """ The hexagons have radii of 1.4 mm (=side length) => 0.61 m in telescope pupil of 8.115 m. Equivalenent diameter is thus 1.22m """ DVLT = 8115. * mm # DTH = 1220.*mm # diam of hex on primary D = DTH d = 2.8 * mm # diam of hex in pupil demag = d/D # about 1/800... print("""" This program (VISIR.py) uses GVLT = 8115.0 * mm from SAM report c/o Eric Pantin (report_SAM_pupil.pdf) All X,Y dimensions in m from center of mask in PM space All hole DIAMETERS are ... :\n""") ####print "DESIGN to PPM magnification is %.4f\n" % MAG print(demag) return demag def visir_sam(rescale=False): """ Multiply by the 'rescale' factor to adjust hole sizes and centers in entrance pupil (PM) (Magnify the physical mask coordinates up to the primary mirror size) """ demag = visir_mag_asdesigned() if rescale: demag = demag/rescale # rescale 1.1 gives a bigger mask in PM pupil space print ("VISIR SAM") hdia, ctrs = visir_sam_asmanufactured(1.0/demag) # meters return hdia, ctrs """ From VISIR documentation Filter 1/2 pwr bandwidth name wavelen/um % Spectral Resolution 34-36 35-39 44-49 62-70 75-83 # spectral pixels 12-13 13-15 16-18 18-20 18-20 pixels ??mas are nyquist at ??um """ def keck_nrm(rescale=False): """ Multiply by the 'rescale' factor to adjust hole sizes and centers in entrance pupil (PM) (Magnify the physical mask coordinates up to the primary mirror size) """ hdia = 1.098 # m # All projected onto the primary in m holectrs = np.array([[-3.44, -2.22], [-4.57 , -1.00], [-2.01 , 2.52], [-0.20 , 4.09], [ 1.42 , 4.46], [ 3.19 , 0.48], [ 3.65 , -1.87], [ 3.15 , -3.46], [-1.18 , -3.01]]) ctrs = [] REVERSE = -1 # The pupil we measure with VISIR pupil imaging lens is # [probably] point symmetry reversed w.r.t reality. => OK checked for r in holectrs: ctrs.append([r[0], r[1]*REVERSE]) return hdia, ctrs if __name__ == "__main__": # JWST G7S6 circular 0.8m dia holes... nrm = NRM_mask_definitions("gpi_g10s40") PUPLSCAL= 0.006455708661417323 # scale (m/pixels) from webbpsf-data/NIRISS/coronagraph/MASK_NRM.fits # for jwst-g7s6c fullpupil=True gets us a file like that in webbpsf-data... #maskobj = nrm.createnrmarray(puplscal=PUPLSCAL,fitsfile='g7s6c.fits' % r, fullpupil=True) print(nrm.activeD) sys.exit() maskobj = nrm.createnrmarray(puplscal=PUPLSCAL, fitsfile='/Users/anand/Desktop/jwst_g7s6c_which.fits', fullpupil=True, holeid=True) maskobj = nrm.createnrmarray(puplscal=PUPLSCAL, fitsfile='/Users/anand/Desktop/jwst_g7s6c.fits', fullpupil=True, holeid=False) # GPI explorations ##for r in (0.99, 1.0, 1.01): ## nrm = NRM_mask_definitions("gpi_g10s40", rescale = r) ## maskobj = nrm.createnrmarray(puplscal=1.0e-2,fitsfile='g10s40Fr%.2f.fits' % r, fullpupil=True) ##pupobj = nrm.createpupilarray(puplscal=1.0e-2) ##print maskobj #nrm.createnrmarray(puplscal=1.0e-2,fitsfile='/Users/anand/Desktop/g10s40id.fits', holeid=True) #nrm.createpupilarray(puplscal=1.0e-2,fitsfile='/Users/anand/Desktop/gpipupil.fits') #pupil = NRM_mask_definitions("gpi_g10s40") #pupil.createpupilarray(puplscal) # make image at angular pixel scale, at given wavelength/bandpass # choose pupil pixel scale # image oversampling before rebinning # possibly put in OPD
38.587658
130
0.589285
794727abf7142ffbc261e4a1a49b5f0c79b14daa
1,742
py
Python
venv/lib/python3.6/site-packages/ansible_collections/sensu/sensu_go/tests/unit/plugins/filter/test_package_name.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/sensu/sensu_go/tests/unit/plugins/filter/test_package_name.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/sensu/sensu_go/tests/unit/plugins/filter/test_package_name.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# Copyright: (c) 2020, XLAB Steampunk <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type import sys import pytest from ansible_collections.sensu.sensu_go.plugins.filter import package_name pytestmark = pytest.mark.skipif( sys.version_info < (2, 7), reason="requires python2.7 or higher" ) class TestPackageName: def test_yum_latest_version(self): assert "package" == package_name.package_name( "yum", "package", "latest", "latest", ) def test_yum_latest_build(self): assert "package-123" == package_name.package_name( "yum", "package", "123", "latest", ) def test_yum_selected_build(self): assert "package-123-456" == package_name.package_name( "yum", "package", "123", "456", ) def test_yum_ignore_build_if_latest_version(self): assert "package" == package_name.package_name( "yum", "package", "latest", "456", ) def test_apt_latest_version(self): assert "package" == package_name.package_name( "apt", "package", "latest", "latest", ) def test_apt_latest_build(self): assert "package=123-*" == package_name.package_name( "apt", "package", "123", "latest", ) def test_apt_selected_build(self): assert "package=123-456" == package_name.package_name( "apt", "package", "123", "456", ) def test_apt_ignore_build_if_latest_version(self): assert "package" == package_name.package_name( "apt", "package", "latest", "456", )
29.525424
92
0.630884
7947284b67f1da002bca200aa1819af6491a4871
66
py
Python
addons/checks/__init__.py
enterspeed/kurisu
48163391d1861fe92125f59dad63884d5e767ab2
[ "MIT" ]
10
2017-06-10T21:22:21.000Z
2021-01-22T13:45:31.000Z
addons/checks/__init__.py
enterspeed/kurisu
48163391d1861fe92125f59dad63884d5e767ab2
[ "MIT" ]
1
2018-06-08T18:18:17.000Z
2018-06-08T21:12:23.000Z
addons/checks/__init__.py
enterspeed/makisekurisu
48163391d1861fe92125f59dad63884d5e767ab2
[ "MIT" ]
3
2017-06-10T21:22:22.000Z
2021-01-29T00:23:10.000Z
from addons.checks import checks from addons.checks import errors
22
32
0.848485
7947284bab43037b9b043e76a4c98c1aab80d885
432
py
Python
award/api/urls.py
margaret254/Awwards
9af3de00c4200b86c92b16b141a4642fe8f02c87
[ "MIT" ]
null
null
null
award/api/urls.py
margaret254/Awwards
9af3de00c4200b86c92b16b141a4642fe8f02c87
[ "MIT" ]
9
2020-02-12T03:24:03.000Z
2022-02-10T14:10:21.000Z
award/api/urls.py
margaret254/Awwards
9af3de00c4200b86c92b16b141a4642fe8f02c87
[ "MIT" ]
1
2020-06-05T17:47:06.000Z
2020-06-05T17:47:06.000Z
from django.urls import path from award.api.views import( api_detail_award_view, api_update_award_view, api_delete_award_view, api_create_award_view ) app_name = 'award' urlpatterns = [ path('<slug>/', api_detail_award_view, name="detail"), path('<slug>/update', api_update_award_view, name="update"), path('<slug>/delete', api_delete_award_view, name="delete"), path('create', api_create_award_view, name="create") ]
21.6
61
0.752315
79472870ae23492e959b3e728a3208fd1fa720fa
514
py
Python
env/lib/python3.8/site-packages/plotly/validators/mesh3d/_visible.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/mesh3d/_visible.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/mesh3d/_visible.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class VisibleValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="visible", parent_name="mesh3d", **kwargs): super(VisibleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", [True, False, "legendonly"]), **kwargs )
36.714286
78
0.643969
794728abe39bf42e1e0e72d5c6382d9f34f070f5
3,609
py
Python
py/simulator/game.py
coderanger/farmrpg-ext
bade8519fcd0481b08ecba3f8554fde2de5828ed
[ "Apache-2.0" ]
8
2022-02-04T05:57:47.000Z
2022-03-25T08:02:42.000Z
py/simulator/game.py
coderanger/farmrpg-ext
bade8519fcd0481b08ecba3f8554fde2de5828ed
[ "Apache-2.0" ]
null
null
null
py/simulator/game.py
coderanger/farmrpg-ext
bade8519fcd0481b08ecba3f8554fde2de5828ed
[ "Apache-2.0" ]
2
2022-02-07T05:38:33.000Z
2022-02-07T05:54:51.000Z
from __future__ import annotations import datetime from io import StringIO from typing import Optional import attrs import structlog from .ai import AI from .buildings import HayField, RaptorPen, Sawmill from .farm import Farm from .player import Player from .steak_market import SteakMarket from .utils import format_number def SelfFactory(type: type): return attrs.Factory(lambda self: type(game=self), takes_self=True) @attrs.define class Game: player: Player = SelfFactory(Player) farm: Farm = SelfFactory(Farm) sawmill: Sawmill = SelfFactory(Sawmill) hay_field: HayField = SelfFactory(HayField) raptor_pen: RaptorPen = SelfFactory(RaptorPen) steak_market: SteakMarket = SelfFactory(SteakMarket) ai_class: Optional[type] = None ai: Optional[AI] = None time: datetime.datetime = datetime.datetime.now() log: structlog.stdlib.BoundLogger = structlog.stdlib.get_logger(mod="farm") def __attrs_post_init__(self): if self.ai is None and self.ai_class is not None: self.ai = self.ai_class(self) def tick(self, seconds: int) -> None: self.time += datetime.timedelta(seconds=seconds) self.player.tick(seconds) self.farm.tick(seconds) self.sawmill.tick(seconds) self.hay_field.tick(seconds) self.raptor_pen.tick(seconds) self.steak_market.tick(seconds) def process_ai(self): if self.ai is None: return if self.farm.can_harvest: self.log.debug("AI harvest") self.farm.harvest_all() if self.farm.can_plant: seed = self.ai.plant() if seed is not None: self.log.debug("AI plant", seed=seed.name) self.farm.plant_all(seed) if self.raptor_pen.can_pet: self.raptor_pen.pet_all() while self.player.can_fish: loc = self.ai.fish() if loc is not None: self.log.debug("AI fish", location=loc.name) items = loc.net(self.player) self.player.sell_all(items) else: break while self.player.can_explore: loc = self.ai.explore() if loc is not None: self.log.debug("AI explore", location=loc.name) loc.explore(self.player) else: break self.ai.process() def run(self, iterations: int = 60, interval: int = 60) -> None: """Run a simulation for the given number of iterations.""" # ???: Should this run for a given length of simulated time instead? for _ in range(iterations): self.log.debug( "AI state", silver=self.player.silver, stamina=self.player.stamina ) self.process_ai() self.tick(interval) # Finalize the AI. if self.ai: self.ai.finish() def summary(self) -> str: """Render a string summary of the game state.""" out = StringIO() out.write(f"Silver: {format_number(self.player.silver)}\n") out.write(f"Stamina Used: {self.player.stamina_used}\n") out.write(f"Explore Count: {self.player.explore_count}\n") out.write("Inventory:\n") for item, count in self.player.inventory.items(): out.write(f"\t{item.name}: {count}\n") out.write("Overflow:\n") for item, count in self.player.overflow_items.items(): out.write(f"\t{item.name}: {count}\n") out.write(self.steak_market.summary()) return out.getvalue()
33.728972
82
0.610973
794729e152b3f51acb5a858812fa29d853af4f73
8,792
py
Python
kivy/input/providers/probesysfs.py
CharaD7/kivy
85065fe6633f5ac831c193dc84e3f636b789cc3a
[ "MIT" ]
2
2021-05-16T09:46:14.000Z
2021-11-17T11:23:15.000Z
kivy/input/providers/probesysfs.py
CharaD7/kivy
85065fe6633f5ac831c193dc84e3f636b789cc3a
[ "MIT" ]
1
2016-11-11T13:45:42.000Z
2016-11-11T13:45:42.000Z
kivy/input/providers/probesysfs.py
CharaD7/kivy
85065fe6633f5ac831c193dc84e3f636b789cc3a
[ "MIT" ]
2
2020-03-28T10:18:00.000Z
2021-02-13T06:34:14.000Z
''' Auto Create Input Provider Config Entry for Available MT Hardware (linux only). =============================================================================== Thanks to Marc Tardif for the probing code, taken from scan-for-mt-device. The device discovery is done by this provider. However, the reading of input can be performed by other providers like: hidinput, mtdev and linuxwacom. mtdev is used prior to other providers. For more information about mtdev, check :py:class:`~kivy.input.providers.mtdev`. Here is an example of auto creation:: [input] # using mtdev device_%(name)s = probesysfs,provider=mtdev # using hidinput device_%(name)s = probesysfs,provider=hidinput # using mtdev with a match on name device_%(name)s = probesysfs,provider=mtdev,match=acer # using hidinput with custom parameters to hidinput (all on one line) %(name)s = probesysfs, provider=hidinput,param=min_pressure=1,param=max_pressure=99 # you can also match your wacom touchscreen touch = probesysfs,match=E3 Finger,provider=linuxwacom, select_all=1,param=mode=touch # and your wacom pen pen = probesysfs,match=E3 Pen,provider=linuxwacom, select_all=1,param=mode=pen By default, ProbeSysfs module will enumerate hardware from the /sys/class/input device, and configure hardware with ABS_MT_POSITION_X capability. But for example, the wacom screen doesn't support this capability. You can prevent this behavior by putting select_all=1 in your config line. ''' __all__ = ('ProbeSysfsHardwareProbe', ) import os from os.path import sep if 'KIVY_DOC' in os.environ: ProbeSysfsHardwareProbe = None else: from re import match, IGNORECASE from glob import glob from subprocess import Popen, PIPE from kivy.logger import Logger from kivy.input.provider import MotionEventProvider from kivy.input.providers.mouse import MouseMotionEventProvider from kivy.input.factory import MotionEventFactory from kivy.config import _is_rpi EventLoop = None # See linux/input.h ABS_MT_POSITION_X = 0x35 _cache_input = None _cache_xinput = None class Input(object): def __init__(self, path): query_xinput() self.path = path @property def device(self): base = os.path.basename(self.path) return os.path.join("/dev", "input", base) @property def name(self): path = os.path.join(self.path, "device", "name") return read_line(path) def get_capabilities(self): path = os.path.join(self.path, "device", "capabilities", "abs") line = read_line(path) capabilities = [] long_bit = getconf("LONG_BIT") for i, word in enumerate(line.split(" ")): word = int(word, 16) subcapabilities = [bool(word & 1 << i) for i in range(long_bit)] capabilities[:0] = subcapabilities return capabilities def has_capability(self, capability): capabilities = self.get_capabilities() return len(capabilities) > capability and capabilities[capability] @property def is_mouse(self): return self.device in _cache_xinput def getout(*args): try: return Popen(args, stdout=PIPE).communicate()[0] except OSError: return '' def getconf(var): output = getout("getconf", var) return int(output) def query_xinput(): global _cache_xinput if _cache_xinput is None: _cache_xinput = [] devids = getout('xinput', '--list', '--id-only') for did in devids.splitlines(): devprops = getout('xinput', '--list-props', did) evpath = None for prop in devprops.splitlines(): prop = prop.strip() if (prop.startswith(b'Device Enabled') and prop.endswith(b'0')): evpath = None break if prop.startswith(b'Device Node'): try: evpath = prop.split('"')[1] except Exception: evpath = None if evpath: _cache_xinput.append(evpath) def get_inputs(path): global _cache_input if _cache_input is None: event_glob = os.path.join(path, "event*") _cache_input = [Input(x) for x in glob(event_glob)] return _cache_input def read_line(path): f = open(path) try: return f.readline().strip() finally: f.close() class ProbeSysfsHardwareProbe(MotionEventProvider): def __new__(self, device, args): # hack to not return an instance of this provider. # :) instance = super(ProbeSysfsHardwareProbe, self).__new__(self) instance.__init__(device, args) def __init__(self, device, args): super(ProbeSysfsHardwareProbe, self).__init__(device, args) self.provider = 'mtdev' self.match = None self.input_path = '/sys/class/input' self.select_all = True if _is_rpi else False self.use_regex = False self.args = [] args = args.split(',') for arg in args: if arg == '': continue arg = arg.split('=', 1) # ensure it's a key = value if len(arg) != 2: Logger.error('ProbeSysfs: invalid parameters %s, not' ' key=value format' % arg) continue key, value = arg if key == 'match': self.match = value elif key == 'provider': self.provider = value elif key == 'use_regex': self.use_regex = bool(value) elif key == 'select_all': self.select_all = bool(value) elif key == 'param': self.args.append(value) else: Logger.error('ProbeSysfs: unknown %s option' % key) continue self.probe() def should_use_mouse(self): return not any(p for p in EventLoop.input_providers if isinstance(p, MouseMotionEventProvider)) def probe(self): global EventLoop from kivy.base import EventLoop inputs = get_inputs(self.input_path) Logger.debug('ProbeSysfs: using probesysfs!') use_mouse = self.should_use_mouse() if not self.select_all: inputs = [x for x in inputs if x.has_capability(ABS_MT_POSITION_X) and (use_mouse or not x.is_mouse)] for device in inputs: Logger.debug('ProbeSysfs: found device: %s at %s' % ( device.name, device.device)) # must ignore ? if self.match: if self.use_regex: if not match(self.match, device.name, IGNORECASE): Logger.debug('ProbeSysfs: device not match the' ' rule in config, ignoring.') continue else: if self.match not in device.name: continue Logger.info('ProbeSysfs: device match: %s' % device.device) d = device.device devicename = self.device % dict(name=d.split(sep)[-1]) provider = MotionEventFactory.get(self.provider) if provider is None: Logger.info('ProbeSysfs: unable to found provider %s' % self.provider) Logger.info('ProbeSysfs: fallback on hidinput') provider = MotionEventFactory.get('hidinput') if provider is None: Logger.critical('ProbeSysfs: no input provider found' ' to handle this device !') continue instance = provider(devicename, '%s,%s' % ( device.device, ','.join(self.args))) if instance: EventLoop.add_input_provider(instance) MotionEventFactory.register('probesysfs', ProbeSysfsHardwareProbe)
35.451613
79
0.540833
79472ac373fdba478d4002e0cab601b3e723ab0d
5,079
py
Python
CV19Dash/_notebooks/covid_overview.py
Ehnryu/archives
36f5d1b8b0168ada3a1a25fbe3112709f4134652
[ "MIT" ]
1,740
2020-03-19T17:26:24.000Z
2022-03-30T08:04:55.000Z
CV19Dash/_notebooks/covid_overview.py
Ehnryu/archives
36f5d1b8b0168ada3a1a25fbe3112709f4134652
[ "MIT" ]
3,565
2020-03-29T04:44:21.000Z
2022-03-31T20:29:54.000Z
CV19Dash/_notebooks/covid_overview.py
Ehnryu/archives
36f5d1b8b0168ada3a1a25fbe3112709f4134652
[ "MIT" ]
516
2020-03-19T16:28:36.000Z
2022-03-28T15:22:19.000Z
import pandas as pd base_url = 'https://raw.githubusercontent.com/pratapvardhan/notebooks/master/covid19/' paths = { 'mapping': base_url + 'mapping_countries.csv', 'overview': base_url + 'overview.tpl' } def get_mappings(url): df = pd.read_csv(url, encoding='utf-8') return { 'df': df, 'replace.country': dict(df.dropna(subset=['Name']).set_index('Country')['Name']), 'map.continent': dict(df.set_index('Name')['Continent']) } mapping = get_mappings(paths['mapping']) def get_template(path): from urllib.parse import urlparse if bool(urlparse(path).netloc): from urllib.request import urlopen return urlopen(path).read().decode('utf8') return open(path, encoding='utf8').read() def get_frame(name): url = ( 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/' f'csse_covid_19_time_series/time_series_covid19_{name}_global.csv') df = pd.read_csv(url, encoding='utf-8') # rename countries df['Country/Region'] = df['Country/Region'].replace(mapping['replace.country']) return df def get_dates(df): dt_cols = df.columns[~df.columns.isin(['Province/State', 'Country/Region', 'Lat', 'Long'])] latest_date_idx = -1 # sometimes last column may be empty, then go backwards for i in range(-1, -len(dt_cols), -1): if not df[dt_cols[i]].fillna(0).eq(0).all(): latest_date_idx = i break return latest_date_idx, dt_cols def gen_data(region='Country/Region', filter_frame=lambda x: x, add_table=[], kpis_info=[]): col_region = region df = get_frame('confirmed') dft_cases = df.pipe(filter_frame) dft_deaths = get_frame('deaths').pipe(filter_frame) latest_date_idx, dt_cols = get_dates(df) dt_today = dt_cols[latest_date_idx] dt_5ago = dt_cols[latest_date_idx - 5] dfc_cases = dft_cases.groupby(col_region)[dt_today].sum() dfc_deaths = dft_deaths.groupby(col_region)[dt_today].sum() dfp_cases = dft_cases.groupby(col_region)[dt_5ago].sum() dfp_deaths = dft_deaths.groupby(col_region)[dt_5ago].sum() df_table = (pd.DataFrame(dict( Cases=dfc_cases, Deaths=dfc_deaths, PCases=dfp_cases, PDeaths=dfp_deaths)) .sort_values(by=['Cases', 'Deaths'], ascending=[False, False]) .reset_index()) for c in 'Cases, Deaths'.split(', '): df_table[f'{c} (+)'] = (df_table[c] - df_table[f'P{c}']).clip(0) # DATABUG df_table['Fatality Rate'] = (100 * df_table['Deaths'] / df_table['Cases']).round(1) for rule in add_table: df_table[rule['name']] = df_table.pipe(rule['apply']) def kpi_of(name, prefix, pipe): df_f = df_table.pipe(pipe or (lambda x: x[x[col_region].eq(name)])) return df_f[metrics].sum().add_prefix(prefix) metrics = ['Cases', 'Deaths', 'Cases (+)', 'Deaths (+)'] s_kpis = pd.concat([ kpi_of(x['title'], f'{x["prefix"]} ', x.get('pipe')) for x in kpis_info]) summary = {'updated': pd.to_datetime(dt_today), 'since': pd.to_datetime(dt_5ago)} summary = {**summary, **df_table[metrics].sum(), **s_kpis} dft_ct_cases = dft_cases.groupby(col_region)[dt_cols].sum() dft_ct_new_cases = dft_ct_cases.diff(axis=1).fillna(0).astype(int) return { 'summary': summary, 'table': df_table, 'newcases': dft_ct_new_cases, 'dt_last': latest_date_idx, 'dt_cols': dt_cols} def gen_data_us(region='Province/State', kpis_info=[]): col_region = region df = pd.read_csv( 'https://raw.githubusercontent.com/nytimes/covid-19-data' '/master/us-states.csv') dt_today = df['date'].max() dt_5ago = (pd.to_datetime(dt_today) - pd.Timedelta(days=5)).strftime('%Y-%m-%d') cols = ['cases', 'deaths'] df_table = df[df['date'].eq(dt_today)].set_index('state')[cols].join( df[df['date'].eq(dt_5ago)].set_index('state')[cols], rsuffix='Ago' ).reset_index().fillna(0) for col in cols: df_table[f'{col.title()} (+)'] = df_table[col] - df_table[f'{col}Ago'] df_table = df_table.rename( columns={'state': col_region, 'cases': 'Cases', 'deaths': 'Deaths'}) df_table['Fatality Rate'] = (100 * df_table['Deaths'] / df_table['Cases']).round(1) df_table = df_table.sort_values(by='Cases', ascending=False) dft_ct_cases = df.set_index(['state', 'date'])['cases'].unstack(1, fill_value=0) metrics = ['Cases', 'Deaths', 'Cases (+)', 'Deaths (+)'] def kpi_of(name, prefix, pipe): df_f = df_table.pipe(pipe or (lambda x: x[x[col_region].eq(name)])) return df_f[metrics].sum().add_prefix(prefix) s_kpis = pd.concat([ kpi_of(x['title'], f'{x["prefix"]} ', x.get('pipe')) for x in kpis_info]) summary = {'updated': pd.to_datetime(dt_today), 'since': pd.to_datetime(dt_5ago)} summary = {**summary, **df_table[metrics].sum(), **s_kpis} dft_ct_new_cases = dft_ct_cases.diff(axis=1).fillna(0).astype(int) data = {'summary': summary, 'table': df_table, 'newcases': dft_ct_new_cases} return data
39.992126
95
0.642646
79472ad2586ec0ebbc5692bb8e966c704385cdfa
62,484
py
Python
manta/cmdln.py
joyent/python-manta
f68ef142bdbac058c981e3b28e18d77612f5b7c6
[ "MIT" ]
16
2015-01-24T22:52:08.000Z
2020-04-12T20:41:54.000Z
manta/cmdln.py
joyent/python-manta
f68ef142bdbac058c981e3b28e18d77612f5b7c6
[ "MIT" ]
42
2015-01-21T23:38:40.000Z
2020-09-30T20:53:12.000Z
manta/cmdln.py
joyent/python-manta
f68ef142bdbac058c981e3b28e18d77612f5b7c6
[ "MIT" ]
18
2015-01-21T23:39:25.000Z
2020-11-28T17:32:08.000Z
#!/usr/bin/env python # Copyright (c) 2012 Trent Mick # Copyright (c) 2002-2009 ActiveState Software Inc. # License: MIT (see LICENSE.txt for license details) # Author: Trent Mick """An improvement on Python's standard cmd.py module. As with cmd.py, this module provides "a simple framework for writing line-oriented command intepreters." This module provides a 'RawCmdln' class that fixes some design flaws in cmd.Cmd, making it more scalable and nicer to use for good 'cvs'- or 'svn'-style command line interfaces or simple shells. And it provides a 'Cmdln' class that add optparse-based option processing. Basically you use it like this: import cmdln class MySVN(cmdln.Cmdln): name = "svn" @cmdln.alias('stat', 'st') @cmdln.option('-v', '--verbose', action='store_true' help='print verbose information') def do_status(self, subcmd, opts, *paths): print "handle 'svn status' command" #... if __name__ == "__main__": shell = MySVN() retval = shell.main() sys.exit(retval) See the README.txt or <http://trentm.com/projects/cmdln/> for more details. """ from __future__ import absolute_import from __future__ import print_function __version_info__ = (2, 0, 0) __version__ = '.'.join(map(str, __version_info__)) import os import sys import re import cmd import optparse from pprint import pprint import sys import datetime #---- globals LOOP_ALWAYS, LOOP_NEVER, LOOP_IF_EMPTY = range(3) # An unspecified optional argument when None is a meaningful value. _NOT_SPECIFIED = ("Not", "Specified") PY3 = (sys.version_info[0] >= 3) if not PY3: input = raw_input #---- exceptions class CmdlnError(Exception): """A cmdln.py usage error.""" def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class CmdlnUserError(Exception): """An error by a user of a cmdln-based tool/shell.""" pass #---- public methods and classes def alias(*aliases): """Decorator to add aliases for Cmdln.do_* command handlers. Example: class MyShell(cmdln.Cmdln): @cmdln.alias("!", "sh") def do_shell(self, argv): #...implement 'shell' command """ def decorate(f): if not hasattr(f, "aliases"): f.aliases = [] f.aliases += aliases return f return decorate class RawCmdln(cmd.Cmd): """An improved (on cmd.Cmd) framework for building multi-subcommand scripts (think "svn" & "cvs") and simple shells (think "pdb" and "gdb"). A simple example: import cmdln class MySVN(cmdln.RawCmdln): name = "svn" @cmdln.aliases('stat', 'st') def do_status(self, argv): print "handle 'svn status' command" if __name__ == "__main__": shell = MySVN() retval = shell.main() sys.exit(retval) """ name = None # if unset, defaults basename(sys.argv[0]) prompt = None # if unset, defaults to self.name+"> " version = None # if set, default top-level options include --version # Default messages for some 'help' command error cases. # They are interpolated with one arg: the command. nohelp = "no help on '%s'" unknowncmd = "unknown command: '%s'" helpindent = '' # string with which to indent help output def __init__(self, completekey='tab', stdin=None, stdout=None, stderr=None): """Cmdln(completekey='tab', stdin=None, stdout=None, stderr=None) The optional argument 'completekey' is the readline name of a completion key; it defaults to the Tab key. If completekey is not None and the readline module is available, command completion is done automatically. The optional arguments 'stdin', 'stdout' and 'stderr' specify alternate input, output and error output file objects; if not specified, sys.* are used. If 'stdout' but not 'stderr' is specified, stdout is used for error output. This is to provide least surprise for users used to only the 'stdin' and 'stdout' options with cmd.Cmd. """ import sys if self.name is None: self.name = os.path.basename(sys.argv[0]) if self.prompt is None: self.prompt = self.name + "> " self._name_str = self._str(self.name) if stdin is not None: self.stdin = stdin else: self.stdin = sys.stdin if stdout is not None: self.stdout = stdout else: self.stdout = sys.stdout if stderr is not None: self.stderr = stderr elif stdout is not None: self.stderr = stdout else: self.stderr = sys.stderr self.cmdqueue = [] self.completekey = completekey self.cmdlooping = False def get_optparser(self): """Hook for subclasses to set the option parser for the top-level command/shell. This option parser is used retrieved and used by `.main()' to handle top-level options. The default implements a single '-h|--help' option. Sub-classes can return None to have no options at the top-level. Typically an instance of CmdlnOptionParser should be returned. """ version = (self.version is not None and "%s %s" % (self._name_str, self.version) or None) return CmdlnOptionParser(self, version=version) def postoptparse(self): """Hook method executed just after `.main()' parses top-level options. When called `self.options' holds the results of the option parse. If this returns non-zero/non-None, then command processing is stopped and this retval is returned from `main()`. """ pass def main(self, argv=None, loop=LOOP_NEVER): """A possible mainline handler for a script, like so: import cmdln class MyCmd(cmdln.Cmdln): name = "mycmd" ... if __name__ == "__main__": MyCmd().main() By default this will use sys.argv to issue a single command to 'MyCmd', then exit. The 'loop' argument can be use to control interactive shell behaviour. Arguments: "argv" (optional, default sys.argv) is the command to run. It must be a sequence, where the first element is the command name and subsequent elements the args for that command. "loop" (optional, default LOOP_NEVER) is a constant indicating if a command loop should be started (i.e. an interactive shell). Valid values (constants on this module): LOOP_ALWAYS start loop and run "argv", if any LOOP_NEVER run "argv" (or .emptyline()) and exit LOOP_IF_EMPTY run "argv", if given, and exit; otherwise, start loop """ if argv is None: import sys argv = sys.argv else: argv = argv[:] # don't modify caller's list self.optparser = self.get_optparser() if self.optparser: # i.e. optparser=None means don't process for opts try: self.options, args = self.optparser.parse_args(argv[1:]) except CmdlnUserError as ex: msg = "%s: %s\nTry '%s help' for info.\n" % (self.name, ex, self.name) self.stderr.write(self._str(msg)) self.stderr.flush() return 1 except StopOptionProcessing as ex: return 0 else: self.options, args = None, argv[1:] retval = self.postoptparse() if retval: return retval if loop == LOOP_ALWAYS: if args: self.cmdqueue.append(args) return self.cmdloop() elif loop == LOOP_NEVER: if args: return self.cmd(args) else: return self.emptyline() elif loop == LOOP_IF_EMPTY: if args: return self.cmd(args) else: return self.cmdloop() def cmd(self, argv): """Run one command and exit. "argv" is the arglist for the command to run. argv[0] is the command to run. If argv is an empty list then the 'emptyline' handler is run. Returns the return value from the command handler. """ assert isinstance(argv, (list, tuple)), \ "'argv' is not a sequence: %r" % argv retval = None try: argv = self.precmd(argv) retval = self.onecmd(argv) self.postcmd(argv) except: if not self.cmdexc(argv): raise retval = 1 return retval def _str(self, s): """Safely convert the given str/unicode to a string for printing.""" try: return str(s) except UnicodeError: #XXX What is the proper encoding to use here? 'utf-8' seems # to work better than "getdefaultencoding" (usually # 'ascii'), on OS X at least. #import sys #return s.encode(sys.getdefaultencoding(), "replace") return s.encode("utf-8", "replace") def cmdloop(self, intro=None): """Repeatedly issue a prompt, accept input, parse into an argv, and dispatch (via .precmd(), .onecmd() and .postcmd()), passing them the argv. In other words, start a shell. "intro" (optional) is a introductory message to print when starting the command loop. This overrides the class "intro" attribute, if any. """ self.cmdlooping = True self.preloop() if self.use_rawinput and self.completekey: try: import readline self.old_completer = readline.get_completer() readline.set_completer(self.complete) if sys.platform == "darwin": readline.parse_and_bind("bind ^I rl_complete") else: readline.parse_and_bind(self.completekey + ": complete") except ImportError: pass try: if intro is None: intro = self.intro if intro: intro_str = self._str(intro) self.stdout.write(intro_str + '\n') self.stop = False retval = None while not self.stop: if self.cmdqueue: argv = self.cmdqueue.pop(0) assert isinstance(argv, (list, tuple)), \ "item on 'cmdqueue' is not a sequence: %r" % argv else: if self.use_rawinput: try: line = input(self._str(self._prompt_str)) except EOFError: line = 'EOF' except KeyboardInterrupt: line = 'KeyboardInterrupt' else: self.stdout.write(self._str(self._prompt_str)) self.stdout.flush() line = self.stdin.readline() if not len(line): line = 'EOF' else: line = line[:-1] # chop '\n' argv = line2argv(line) try: argv = self.precmd(argv) retval = self.onecmd(argv) self.postcmd(argv) except: if not self.cmdexc(argv): raise retval = 1 self.lastretval = retval self.postloop() finally: if self.use_rawinput and self.completekey: try: import readline readline.set_completer(self.old_completer) except ImportError: pass self.cmdlooping = False return retval def precmd(self, argv): """Hook method executed just before the command argv is interpreted, but after the input prompt is generated and issued. "argv" is the cmd to run. Returns an argv to run (i.e. this method can modify the command to run). """ return argv def postcmd(self, argv): """Hook method executed just after a command dispatch is finished. "argv" is the command that was run. """ pass def cmdexc(self, argv): """Called if an exception is raised in any of precmd(), onecmd(), or postcmd(). If True is returned, the exception is deemed to have been dealt with. Otherwise, the exception is re-raised. The default implementation handles CmdlnUserError's, which typically correspond to user error in calling commands (as opposed to programmer error in the design of the script using cmdln.py). """ import sys type, exc, traceback = sys.exc_info() if isinstance(exc, CmdlnUserError): msg = "%s %s: %s\nTry '%s help %s' for info.\n"\ % (self.name, argv[0], exc, self.name, argv[0]) self.stderr.write(self._str(msg)) self.stderr.flush() return True def onecmd(self, argv): if not argv: return self.emptyline() self.lastcmd = argv cmdname = self._get_canonical_cmd_name(argv[0]) if cmdname: handler = self._get_cmd_handler(cmdname) if handler: try: return self._dispatch_cmd(handler, argv) except KeyboardInterrupt: return self.onecmd(["KeyboardInterrupt"]) except Exception as ex: raise ex return self.default(argv) def _dispatch_cmd(self, handler, argv): return handler(argv) def default(self, argv): """Hook called to handle a command for which there is no handler. "argv" is the command and arguments to run. The default implementation writes an error message to stderr and returns an error exit status. Returns a numeric command exit status. """ errmsg = self._str(self.unknowncmd % (argv[0], )) if self.cmdlooping: self.stderr.write(errmsg + "\n") else: self.stderr.write("%s: %s\nTry '%s help' for info.\n" % (self._name_str, errmsg, self._name_str)) self.stderr.flush() return 1 def parseline(self, line): # This is used by Cmd.complete (readline completer function) to # massage the current line buffer before completion processing. # We override to drop special '!' handling. line = line.strip() if not line: return None, None, line elif line[0] == '?': line = 'help ' + line[1:] i, n = 0, len(line) while i < n and line[i] in self.identchars: i = i + 1 cmd, arg = line[:i], line[i:].strip() return cmd, arg, line def helpdefault(self, cmd, known): """Hook called to handle help on a command for which there is no help handler. "cmd" is the command name on which help was requested. "known" is a boolean indicating if this command is known (i.e. if there is a handler for it). Returns a return code. """ if known: msg = self._str(self.nohelp % (cmd, )) if self.cmdlooping: self.stderr.write(msg + '\n') else: self.stderr.write("%s: %s\n" % (self.name, msg)) else: msg = self.unknowncmd % (cmd, ) if self.cmdlooping: self.stderr.write(msg + '\n') else: self.stderr.write("%s: %s\n" "Try '%s help' for info.\n" % (self.name, msg, self.name)) self.stderr.flush() return 1 def do_help(self, argv): """${cmd_name}: give detailed help on a specific sub-command Usage: ${name} help [COMMAND] """ if len(argv) > 1: # asking for help on a particular command doc = None cmdname = self._get_canonical_cmd_name(argv[1]) or argv[1] if not cmdname: return self.helpdefault(argv[1], False) else: helpfunc = getattr(self, "help_" + cmdname, None) if helpfunc: doc = helpfunc() else: handler = self._get_cmd_handler(cmdname) if handler: doc = handler.__doc__ if doc is None: return self.helpdefault(argv[1], handler != None) else: # bare "help" command doc = self.__class__.__doc__ # try class docstring if doc is None: # Try to provide some reasonable useful default help. if self.cmdlooping: prefix = "" else: prefix = self.name + ' ' doc = """Usage: %sCOMMAND [ARGS...] %shelp [COMMAND] ${option_list} ${command_list} ${help_list} """ % (prefix, prefix) cmdname = None if doc: # *do* have help content, massage and print that doc = self._help_reindent(doc) doc = self._help_preprocess(doc, cmdname) doc = doc.rstrip() + '\n' # trim down trailing space self.stdout.write(self._str(doc)) self.stdout.flush() do_help.aliases = ["?"] def _help_reindent(self, help, indent=None): """Hook to re-indent help strings before writing to stdout. "help" is the help content to re-indent "indent" is a string with which to indent each line of the help content after normalizing. If unspecified or None then the default is use: the 'self.helpindent' class attribute. By default this is the empty string, i.e. no indentation. By default, all common leading whitespace is removed and then the lot is indented by 'self.helpindent'. When calculating the common leading whitespace the first line is ignored -- hence help content for Conan can be written as follows and have the expected indentation: def do_crush(self, ...): '''${cmd_name}: crush your enemies, see them driven before you... c.f. Conan the Barbarian''' """ if indent is None: indent = self.helpindent lines = help.splitlines(0) _dedentlines(lines, skip_first_line=True) lines = [(indent + line).rstrip() for line in lines] return '\n'.join(lines) def _help_preprocess(self, help, cmdname): """Hook to preprocess a help string before writing to stdout. "help" is the help string to process. "cmdname" is the canonical sub-command name for which help is being given, or None if the help is not specific to a command. By default the following template variables are interpolated in help content. (Note: these are similar to Python 2.4's string.Template interpolation but not quite.) ${name} The tool's/shell's name, i.e. 'self.name'. ${option_list} A formatted table of options for this shell/tool. ${command_list} A formatted table of available sub-commands. ${help_list} A formatted table of additional help topics (i.e. 'help_*' methods with no matching 'do_*' method). ${cmd_name} The name (and aliases) for this sub-command formatted as: "NAME (ALIAS1, ALIAS2, ...)". ${cmd_usage} A formatted usage block inferred from the command function signature. ${cmd_option_list} A formatted table of options for this sub-command. (This is only available for commands using the optparse integration, i.e. using @cmdln.option decorators or manually setting the 'optparser' attribute on the 'do_*' method.) Returns the processed help. """ preprocessors = { "${name}": self._help_preprocess_name, "${option_list}": self._help_preprocess_option_list, "${command_list}": self._help_preprocess_command_list, "${help_list}": self._help_preprocess_help_list, "${cmd_name}": self._help_preprocess_cmd_name, "${cmd_usage}": self._help_preprocess_cmd_usage, "${cmd_option_list}": self._help_preprocess_cmd_option_list, } for marker, preprocessor in preprocessors.items(): if marker in help: help = preprocessor(help, cmdname) return help def _help_preprocess_name(self, help, cmdname=None): return help.replace("${name}", self.name) def _help_preprocess_option_list(self, help, cmdname=None): marker = "${option_list}" indent, indent_width = _get_indent(marker, help) suffix = _get_trailing_whitespace(marker, help) if self.optparser: # Setup formatting options and format. # - Indentation of 4 is better than optparse default of 2. # C.f. Damian Conway's discussion of this in Perl Best # Practices. self.optparser.formatter.indent_increment = 4 self.optparser.formatter.current_indent = indent_width block = self.optparser.format_option_help() + '\n' else: block = "" help = help.replace(indent + marker + suffix, block, 1) return help def _get_cmds_data(self): # Find any aliases for commands. token2canonical = self._get_canonical_map() aliases = {} for token, cmdname in token2canonical.items(): if token == cmdname: continue aliases.setdefault(cmdname, []).append(token) # Get the list of (non-hidden) commands and their # documentation, if any. cmdnames = set() for attr in self.get_names(): if attr.startswith("do_"): cmdnames.add(attr[3:]) linedata = [] for cmdname in sorted(cmdnames): if aliases.get(cmdname): a = aliases[cmdname] a.sort() cmdstr = "%s (%s)" % (cmdname, ", ".join(a)) else: cmdstr = cmdname doc = None try: helpfunc = getattr(self, 'help_' + cmdname) except AttributeError: handler = self._get_cmd_handler(cmdname) if handler: doc = handler.__doc__ else: doc = helpfunc() # Strip "${cmd_name}: " from the start of a command's doc. Best # practice dictates that command help strings begin with this, but # it isn't at all wanted for the command list. to_strip = "${cmd_name}:" if doc and doc.startswith(to_strip): #log.debug("stripping %r from start of %s's help string", # to_strip, cmdname) doc = doc[len(to_strip):].lstrip() linedata.append((cmdstr, doc)) return linedata def _help_preprocess_command_list(self, help, cmdname=None): marker = "${command_list}" indent, indent_width = _get_indent(marker, help) suffix = _get_trailing_whitespace(marker, help) linedata = self._get_cmds_data() if linedata: subindent = indent + ' ' * 4 lines = _format_linedata(linedata, subindent, indent_width + 4) block = indent + "Commands:\n" \ + '\n'.join(lines) + "\n\n" help = help.replace(indent + marker + suffix, block, 1) return help def _gen_names_and_attrs(self): # Inheritance says we have to look in class and # base classes; order is not important. names = [] classes = [self.__class__] while classes: aclass = classes.pop(0) if aclass.__bases__: classes = classes + list(aclass.__bases__) for name in dir(aclass): yield (name, getattr(aclass, name)) def _get_help_names(self): """Return a mapping of help topic name to `.help_*()` method.""" # Determine the additional help topics, if any. help_names = {} token2cmdname = self._get_canonical_map() for attrname, attr in self._gen_names_and_attrs(): if not attrname.startswith("help_"): continue help_name = attrname[5:] if help_name not in token2cmdname: help_names[help_name] = attr return help_names def _help_preprocess_help_list(self, help, cmdname=None): marker = "${help_list}" indent, indent_width = _get_indent(marker, help) suffix = _get_trailing_whitespace(marker, help) help_names = self._get_help_names() if help_names: linedata = [(n, a.__doc__ or "") for n, a in help_names.items()] linedata.sort() subindent = indent + ' ' * 4 lines = _format_linedata(linedata, subindent, indent_width + 4) block = (indent + "Additional help topics (run `%s help TOPIC'):\n" % self.name + '\n'.join(lines) + "\n\n") else: block = '' help = help.replace(indent + marker + suffix, block, 1) return help def _help_preprocess_cmd_name(self, help, cmdname=None): marker = "${cmd_name}" handler = self._get_cmd_handler(cmdname) if not handler: raise CmdlnError("cannot preprocess '%s' into help string: " "could not find command handler for %r" % (marker, cmdname)) s = cmdname if hasattr(handler, "aliases"): s += " (%s)" % (", ".join(handler.aliases)) help = help.replace(marker, s) return help #TODO: this only makes sense as part of the Cmdln class. # Add hooks to add help preprocessing template vars and put # this one on that class. def _help_preprocess_cmd_usage(self, help, cmdname=None): marker = "${cmd_usage}" handler = self._get_cmd_handler(cmdname) if not handler: raise CmdlnError("cannot preprocess '%s' into help string: " "could not find command handler for %r" % (marker, cmdname)) indent, indent_width = _get_indent(marker, help) suffix = _get_trailing_whitespace(marker, help) # Extract the introspection bits we need. func = handler.__func__ if func.__defaults__: func_defaults = list(func.__defaults__) else: func_defaults = [] co_argcount = func.__code__.co_argcount co_varnames = func.__code__.co_varnames co_flags = func.__code__.co_flags CO_FLAGS_ARGS = 4 CO_FLAGS_KWARGS = 8 # Adjust argcount for possible *args and **kwargs arguments. argcount = co_argcount if co_flags & CO_FLAGS_ARGS: argcount += 1 if co_flags & CO_FLAGS_KWARGS: argcount += 1 # Determine the usage string. usage = "%s %s" % (self.name, cmdname) if argcount <= 2: # handler ::= do_FOO(self, argv) usage += " [ARGS...]" elif argcount >= 3: # handler ::= do_FOO(self, subcmd, opts, ...) argnames = list(co_varnames[3:argcount]) tail = "" if co_flags & CO_FLAGS_KWARGS: name = argnames.pop(-1) import warnings # There is no generally accepted mechanism for passing # keyword arguments from the command line. Could # *perhaps* consider: arg=value arg2=value2 ... warnings.warn("argument '**%s' on '%s.%s' command " "handler will never get values" % (name, self.__class__.__name__, func.func_name)) if co_flags & CO_FLAGS_ARGS: name = argnames.pop(-1) tail = "[%s...]" % name.upper() while func_defaults: func_defaults.pop(-1) name = argnames.pop(-1) tail = "[%s%s%s]" % (name.upper(), (tail and ' ' or ''), tail) while argnames: name = argnames.pop(-1) tail = "%s %s" % (name.upper(), tail) usage += ' ' + tail block_lines = [ self.helpindent + "Usage:", self.helpindent + ' ' * 4 + usage ] block = '\n'.join(block_lines) + '\n\n' help = help.replace(indent + marker + suffix, block, 1) return help #TODO: this only makes sense as part of the Cmdln class. # Add hooks to add help preprocessing template vars and put # this one on that class. def _help_preprocess_cmd_option_list(self, help, cmdname=None): marker = "${cmd_option_list}" handler = self._get_cmd_handler(cmdname) if not handler: raise CmdlnError("cannot preprocess '%s' into help string: " "could not find command handler for %r" % (marker, cmdname)) indent, indent_width = _get_indent(marker, help) suffix = _get_trailing_whitespace(marker, help) if hasattr(handler, "optparser"): # Setup formatting options and format. # - Indentation of 4 is better than optparse default of 2. # C.f. Damian Conway's discussion of this in Perl Best # Practices. handler.optparser.formatter.indent_increment = 4 handler.optparser.formatter.current_indent = indent_width block = handler.optparser.format_option_help() + '\n' else: block = "" help = help.replace(indent + marker + suffix, block, 1) return help def _get_canonical_cmd_name(self, token): map = self._get_canonical_map() return map.get(token, None) def _get_canonical_map(self): """Return a mapping of available command names and aliases to their canonical command name. """ cacheattr = "_token2canonical" if not hasattr(self, cacheattr): # Get the list of commands and their aliases, if any. token2canonical = {} cmd2funcname = {} # use a dict to strip duplicates for attr in self.get_names(): if attr.startswith("do_"): cmdname = attr[3:] elif attr.startswith("_do_"): cmdname = attr[4:] else: continue cmd2funcname[cmdname] = attr token2canonical[cmdname] = cmdname for cmdname, funcname in cmd2funcname.items(): # add aliases func = getattr(self, funcname) aliases = getattr(func, "aliases", []) for alias in aliases: if alias in cmd2funcname: import warnings warnings.warn("'%s' alias for '%s' command conflicts " "with '%s' handler" % (alias, cmdname, cmd2funcname[alias])) continue token2canonical[alias] = cmdname setattr(self, cacheattr, token2canonical) return getattr(self, cacheattr) def _get_cmd_handler(self, cmdname): handler = None try: handler = getattr(self, 'do_' + cmdname) except AttributeError: try: # Private command handlers begin with "_do_". handler = getattr(self, '_do_' + cmdname) except AttributeError: pass return handler def _do_EOF(self, argv): # Default EOF handler # TODO: A mechanism so "EOF" and "KeyboardInterrupt" work as handlers # but are *not* real available commands. self.stdout.write('\n') self.stdout.flush() self.stop = True def _do_KeyboardInterrupt(self, argv): # Default keyboard interrupt (i.e. <Ctrl+C>) handler. # TODO: A mechanism so "EOF" and "KeyboardInterrupt" work as handlers # but are *not* real available commands. self.stdout.write('\n') self.stdout.flush() def emptyline(self): # Different from cmd.Cmd: don't repeat the last command for an # emptyline. if self.cmdlooping: pass else: return self.do_help(["help"]) #---- optparse.py extension to fix (IMO) some deficiencies # # See the class _OptionParserEx docstring for details. # class StopOptionProcessing(Exception): """Indicate that option *and argument* processing should stop cleanly. This is not an error condition. It is similar in spirit to StopIteration. This is raised by _OptionParserEx's default "help" and "version" option actions and can be raised by custom option callbacks too. Hence the typical CmdlnOptionParser (a subclass of _OptionParserEx) usage is: parser = CmdlnOptionParser(mycmd) parser.add_option("-f", "--force", dest="force") ... try: opts, args = parser.parse_args() except StopOptionProcessing: # normal termination, "--help" was probably given sys.exit(0) """ class _OptionParserEx(optparse.OptionParser): """An optparse.OptionParser that uses exceptions instead of sys.exit. This class is an extension of optparse.OptionParser that differs as follows: - Correct (IMO) the default OptionParser error handling to never sys.exit(). Instead OptParseError exceptions are passed through. - Add the StopOptionProcessing exception (a la StopIteration) to indicate normal termination of option processing. See StopOptionProcessing's docstring for details. I'd also like to see the following in the core optparse.py, perhaps as a RawOptionParser which would serve as a base class for the more generally used OptionParser (that works as current): - Remove the implicit addition of the -h|--help and --version options. They can get in the way (e.g. if want '-?' and '-V' for these as well) and it is not hard to do: optparser.add_option("-h", "--help", action="help") optparser.add_option("--version", action="version") These are good practices, just not valid defaults if they can get in the way. """ def error(self, msg): raise optparse.OptParseError(msg) def exit(self, status=0, msg=None): if status == 0: raise StopOptionProcessing(msg) else: #TODO: don't lose status info here raise optparse.OptParseError(msg) #---- optparse.py-based option processing support class CmdlnOptionParser(_OptionParserEx): """An optparse.OptionParser class more appropriate for top-level Cmdln options. For parsing of sub-command options, see SubCmdOptionParser. Changes: - disable_interspersed_args() by default, because a Cmdln instance has sub-commands which may themselves have options. - Redirect print_help() to the Cmdln.do_help() which is better equiped to handle the "help" action. - error() will raise a CmdlnUserError: OptionParse.error() is meant to be called for user errors. Raising a well-known error here can make error handling clearer. - Also see the changes in _OptionParserEx. """ def __init__(self, cmdln, **kwargs): self.cmdln = cmdln kwargs["prog"] = self.cmdln.name _OptionParserEx.__init__(self, **kwargs) self.disable_interspersed_args() def print_help(self, file=None): self.cmdln.onecmd(["help"]) def error(self, msg): raise CmdlnUserError(msg) class SubCmdOptionParser(_OptionParserEx): def set_cmdln_info(self, cmdln, subcmd): """Called by Cmdln to pass relevant info about itself needed for print_help(). """ self.cmdln = cmdln self.subcmd = subcmd def print_help(self, file=None): self.cmdln.onecmd(["help", self.subcmd]) def error(self, msg): raise CmdlnUserError(msg) def option(*args, **kwargs): """Decorator to add an option to the optparser argument of a Cmdln subcommand. Example: class MyShell(cmdln.Cmdln): @cmdln.option("-f", "--force", help="force removal") def do_remove(self, subcmd, opts, *args): #... """ #XXX Is there a possible optimization for many options to not have a # large stack depth here? def decorate(f): if not hasattr(f, "optparser"): f.optparser = SubCmdOptionParser() f.optparser.add_option(*args, **kwargs) return f return decorate class Cmdln(RawCmdln): """An improved (on cmd.Cmd) framework for building multi-subcommand scripts (think "svn" & "cvs") and simple shells (think "pdb" and "gdb"). A simple example: import cmdln class MySVN(cmdln.Cmdln): name = "svn" @cmdln.aliases('stat', 'st') @cmdln.option('-v', '--verbose', action='store_true' help='print verbose information') def do_status(self, subcmd, opts, *paths): print "handle 'svn status' command" #... if __name__ == "__main__": shell = MySVN() retval = shell.main() sys.exit(retval) 'Cmdln' extends 'RawCmdln' by providing optparse option processing integration. See this class' _dispatch_cmd() docstring and general cmdln document for more information. """ def _dispatch_cmd(self, handler, argv): """Introspect sub-command handler signature to determine how to dispatch the command. The raw handler provided by the base 'RawCmdln' class is still supported: def do_foo(self, argv): # 'argv' is the vector of command line args, argv[0] is # the command name itself (i.e. "foo" or an alias) pass In addition, if the handler has more than 2 arguments option processing is automatically done (using optparse): @cmdln.option('-v', '--verbose', action='store_true') def do_bar(self, subcmd, opts, *args): # subcmd = <"bar" or an alias> # opts = <an optparse.Values instance> if opts.verbose: print "lots of debugging output..." # args = <tuple of arguments> for arg in args: bar(arg) TODO: explain that "*args" can be other signatures as well. The `cmdln.option` decorator corresponds to an `add_option()` method call on an `optparse.OptionParser` instance. You can declare a specific number of arguments: @cmdln.option('-v', '--verbose', action='store_true') def do_bar2(self, subcmd, opts, bar_one, bar_two): #... and an appropriate error message will be raised/printed if the command is called with a different number of args. """ co_argcount = handler.__func__.__code__.co_argcount if co_argcount == 2: # handler ::= do_foo(self, argv) return handler(argv) elif co_argcount >= 3: # handler ::= do_foo(self, subcmd, opts, ...) try: optparser = handler.optparser except AttributeError: optparser = handler.__func__.optparser = SubCmdOptionParser() assert isinstance(optparser, SubCmdOptionParser) optparser.set_cmdln_info(self, argv[0]) try: opts, args = optparser.parse_args(argv[1:]) except StopOptionProcessing: #TODO: this doesn't really fly for a replacement of # optparse.py behaviour, does it? return 0 # Normal command termination try: return handler(argv[0], opts, *args) except TypeError as ex: # Some TypeError's are user errors because of incorrect number # of arguments. Raise CmdlnUserError for these with a suitably # massaged error message. import sys tb = sys.exc_info()[2] # the traceback object if tb.tb_next is not None: # If the traceback is more than one level deep, then the # TypeError do *not* happen on the "handler(...)" call # above. In that we don't want to handle it specially # here: it would falsely mask deeper code errors. raise msg = ex.args[0] userErr = self._userErrFromNumArgsErrmsg(msg) if userErr: raise userErr else: raise else: raise CmdlnError("incorrect argcount for %s(): takes %d, must " "take 2 for 'argv' signature or 3+ for 'opts' " "signature" % (handler.__name__, co_argcount)) def _userErrFromNumArgsErrmsg(self, msg): if sys.version_info[0] < 3: # Examples (see Python/getargs.c): # do_foo() takes at least 4 arguments (3 given) # do_foo() takes at most 5 arguments (6 given) # do_foo() takes exactly 5 arguments (6 given) pattern = re.compile( r"(takes [\w ]+ )(\d+)( arguments? \()(\d+)( given\))") match = pattern.search(msg) if match: msg = list(match.groups()) msg[1] = int(msg[1]) - 3 if msg[1] == 1: msg[2] = msg[2].replace("arguments", "argument") msg[3] = int(msg[3]) - 3 msg = ''.join(map(str, msg)) return CmdlnUserError(msg) else: # Examples: # do_foo() missing 1 required positional argument: 'bar' patterns = [ re.compile(r"missing \d+ required positional argument"), ] for pat in patterns: match = pat.search(msg) if match: return CmdlnUserError("incorrect number of arguments") #---- support for generating `man` page output from a Cmdln class def man_sections_from_cmdln(inst, summary=None, description=None, author=None): """Return man page sections appropriate for the given Cmdln instance. Join these sections for man page content. The man page sections generated are: NAME SYNOPSIS DESCRIPTION (if `description` is given) OPTIONS COMMANDS HELP TOPICS (if any) @param inst {Cmdln} Instance of Cmdln subclass for which to generate man page content. @param summary {str} A one-liner summary of the command. @param description {str} A description of the command. If given, it will be used for a "DESCRIPTION" section. @param author {str} The author name and email for the AUTHOR secion of the man page. @raises {ValueError} if man page content cannot be generated for the given class. """ if not inst.__class__.name: raise ValueError("cannot generate man page content: `name` is not " "set on class %r" % inst.__class__) data = { "name": inst.name, "ucname": inst.name.upper(), "date": datetime.date.today().strftime("%b %Y"), "cmdln_version": __version__, "version_str": inst.version and " %s" % inst.version or "", "summary_str": summary and r" \- %s" % summary or "", } sections = [] sections.append( '.\\" Automatically generated by cmdln %(cmdln_version)s\n' '.TH %(ucname)s "1" "%(date)s" "%(name)s%(version_str)s" "User Commands"\n' % data) sections.append(".SH NAME\n%(name)s%(summary_str)s\n" % data) sections.append(_dedent(r""" .SH SYNOPSIS .B %(name)s [\fIGLOBALOPTS\fR] \fISUBCOMMAND \fR[\fIOPTS\fR] [\fIARGS\fR...] .br .B %(name)s \fIhelp SUBCOMMAND\fR """) % data) if description: sections.append(".SH DESCRIPTION\n%s\n" % description) section = ".SH OPTIONS\n" if not hasattr(inst, "optparser") is None: #HACK: In case `.main()` hasn't been run. inst.optparser = inst.get_optparser() lines = inst._help_preprocess("${option_list}", None).splitlines(False) for line in lines[1:]: line = line.lstrip() if not line: continue section += ".TP\n" opts, desc = line.split(' ', 1) section += ".B %s\n" % opts section += "%s\n" % _dedent(desc.lstrip(), skip_first_line=True) sections.append(section) section = ".SH COMMANDS\n" cmds = inst._get_cmds_data() for cmdstr, doc in cmds: cmdname = cmdstr.split(' ')[0] # e.g. "commit (ci)" -> "commit" doc = inst._help_reindent(doc, indent="") doc = inst._help_preprocess(doc, cmdname) doc = doc.rstrip() + "\n" # trim down trailing space section += '.PP\n.SS %s\n%s\n' % (cmdstr, doc) sections.append(section) help_names = inst._get_help_names() if help_names: section = ".SH HELP TOPICS\n" for help_name, help_meth in sorted(help_names.items()): help = help_meth(inst) help = inst._help_reindent(help, indent="") section += '.PP\n.SS %s\n%s\n' % (help_name, help) sections.append(section) if author: sections.append(".SH AUTHOR\n%s\n" % author) return sections #---- internal support functions def _format_linedata(linedata, indent, indent_width): """Format specific linedata into a pleasant layout. "linedata" is a list of 2-tuples of the form: (<item-display-string>, <item-docstring>) "indent" is a string to use for one level of indentation "indent_width" is a number of columns by which the formatted data will be indented when printed. The <item-display-string> column is held to 30 columns. """ lines = [] WIDTH = 78 - indent_width SPACING = 2 NAME_WIDTH_LOWER_BOUND = 13 NAME_WIDTH_UPPER_BOUND = 30 NAME_WIDTH = max([len(s) for s, d in linedata]) if NAME_WIDTH < NAME_WIDTH_LOWER_BOUND: NAME_WIDTH = NAME_WIDTH_LOWER_BOUND elif NAME_WIDTH > NAME_WIDTH_UPPER_BOUND: NAME_WIDTH = NAME_WIDTH_UPPER_BOUND DOC_WIDTH = WIDTH - NAME_WIDTH - SPACING for namestr, doc in linedata: line = indent + namestr if len(namestr) <= NAME_WIDTH: line += ' ' * (NAME_WIDTH + SPACING - len(namestr)) else: lines.append(line) line = indent + ' ' * (NAME_WIDTH + SPACING) line += _summarize_doc(doc, DOC_WIDTH) lines.append(line.rstrip()) return lines def _summarize_doc(doc, length=60): r"""Parse out a short one line summary from the given doclines. "doc" is the doc string to summarize. "length" is the max length for the summary >>> _summarize_doc("this function does this") 'this function does this' >>> _summarize_doc("this function does this", 10) 'this fu...' >>> _summarize_doc("this function does this\nand that") 'this function does this and that' >>> _summarize_doc("this function does this\n\nand that") 'this function does this' """ import re if doc is None: return "" assert length > 3, "length <= 3 is absurdly short for a doc summary" doclines = doc.strip().splitlines(0) if not doclines: return "" summlines = [] for i, line in enumerate(doclines): stripped = line.strip() if not stripped: break summlines.append(stripped) if len(''.join(summlines)) >= length: break summary = ' '.join(summlines) if len(summary) > length: summary = summary[:length - 3] + "..." return summary def line2argv(line): r"""Parse the given line into an argument vector. "line" is the line of input to parse. This may get niggly when dealing with quoting and escaping. The current state of this parsing may not be completely thorough/correct in this respect. >>> from cmdln import line2argv >>> line2argv("foo") ['foo'] >>> line2argv("foo bar") ['foo', 'bar'] >>> line2argv("foo bar ") ['foo', 'bar'] >>> line2argv(" foo bar") ['foo', 'bar'] Quote handling: >>> line2argv("'foo bar'") ['foo bar'] >>> line2argv('"foo bar"') ['foo bar'] >>> line2argv(r'"foo\"bar"') ['foo"bar'] >>> line2argv("'foo bar' spam") ['foo bar', 'spam'] >>> line2argv("'foo 'bar spam") ['foo bar', 'spam'] >>> line2argv('some\tsimple\ttests') ['some', 'simple', 'tests'] >>> line2argv('a "more complex" test') ['a', 'more complex', 'test'] >>> line2argv('a more="complex test of " quotes') ['a', 'more=complex test of ', 'quotes'] >>> line2argv('a more" complex test of " quotes') ['a', 'more complex test of ', 'quotes'] >>> line2argv('an "embedded \\"quote\\""') ['an', 'embedded "quote"'] # Komodo bug 48027 >>> line2argv('foo bar C:\\') ['foo', 'bar', 'C:\\'] # Komodo change 127581 >>> line2argv(r'"\test\slash" "foo bar" "foo\"bar"') ['\\test\\slash', 'foo bar', 'foo"bar'] # Komodo change 127629 >>> if sys.platform == "win32": ... line2argv(r'\foo\bar') == ['\\foo\\bar'] ... line2argv(r'\\foo\\bar') == ['\\\\foo\\\\bar'] ... line2argv('"foo') == ['foo'] ... else: ... line2argv(r'\foo\bar') == ['foobar'] ... line2argv(r'\\foo\\bar') == ['\\foo\\bar'] ... try: ... line2argv('"foo') ... except ValueError as ex: ... "not terminated" in str(ex) True True True """ line = line.strip() argv = [] state = "default" arg = None # the current argument being parsed i = -1 WHITESPACE = '\t\n\x0b\x0c\r ' # don't use string.whitespace (bug 81316) while 1: i += 1 if i >= len(line): break ch = line[i] if ch == "\\" and i + 1 < len(line): # escaped char always added to arg, regardless of state if arg is None: arg = "" if (sys.platform == "win32" or state in ("double-quoted", "single-quoted") ) and line[i + 1] not in tuple('"\''): arg += ch i += 1 arg += line[i] continue if state == "single-quoted": if ch == "'": state = "default" else: arg += ch elif state == "double-quoted": if ch == '"': state = "default" else: arg += ch elif state == "default": if ch == '"': if arg is None: arg = "" state = "double-quoted" elif ch == "'": if arg is None: arg = "" state = "single-quoted" elif ch in WHITESPACE: if arg is not None: argv.append(arg) arg = None else: if arg is None: arg = "" arg += ch if arg is not None: argv.append(arg) if not sys.platform == "win32" and state != "default": raise ValueError("command line is not terminated: unfinished %s " "segment" % state) return argv def argv2line(argv): r"""Put together the given argument vector into a command line. "argv" is the argument vector to process. >>> from cmdln import argv2line >>> argv2line(['foo']) 'foo' >>> argv2line(['foo', 'bar']) 'foo bar' >>> argv2line(['foo', 'bar baz']) 'foo "bar baz"' >>> argv2line(['foo"bar']) 'foo"bar' >>> print(argv2line(['foo" bar'])) 'foo" bar' >>> print(argv2line(["foo' bar"])) "foo' bar" >>> argv2line(["foo'bar"]) "foo'bar" """ escapedArgs = [] for arg in argv: if ' ' in arg and '"' not in arg: arg = '"' + arg + '"' elif ' ' in arg and "'" not in arg: arg = "'" + arg + "'" elif ' ' in arg: arg = arg.replace('"', r'\"') arg = '"' + arg + '"' escapedArgs.append(arg) return ' '.join(escapedArgs) # Recipe: dedent (0.1) in /Users/trentm/tm/recipes/cookbook def _dedentlines(lines, tabsize=8, skip_first_line=False): """_dedentlines(lines, tabsize=8, skip_first_line=False) -> dedented lines "lines" is a list of lines to dedent. "tabsize" is the tab width to use for indent width calculations. "skip_first_line" is a boolean indicating if the first line should be skipped for calculating the indent width and for dedenting. This is sometimes useful for docstrings and similar. Same as dedent() except operates on a sequence of lines. Note: the lines list is modified **in-place**. """ DEBUG = False if DEBUG: print("dedent: dedent(..., tabsize=%d, skip_first_line=%r)"\ % (tabsize, skip_first_line)) indents = [] margin = None for i, line in enumerate(lines): if i == 0 and skip_first_line: continue indent = 0 for ch in line: if ch == ' ': indent += 1 elif ch == '\t': indent += tabsize - (indent % tabsize) elif ch in '\r\n': continue # skip all-whitespace lines else: break else: continue # skip all-whitespace lines if DEBUG: print("dedent: indent=%d: %r" % (indent, line)) if margin is None: margin = indent else: margin = min(margin, indent) if DEBUG: print("dedent: margin=%r" % margin) if margin is not None and margin > 0: for i, line in enumerate(lines): if i == 0 and skip_first_line: continue removed = 0 for j, ch in enumerate(line): if ch == ' ': removed += 1 elif ch == '\t': removed += tabsize - (removed % tabsize) elif ch in '\r\n': if DEBUG: print("dedent: %r: EOL -> strip up to EOL" % line) lines[i] = lines[i][j:] break else: raise ValueError("unexpected non-whitespace char %r in " "line %r while removing %d-space margin" % (ch, line, margin)) if DEBUG: print("dedent: %r: %r -> removed %d/%d"\ % (line, ch, removed, margin)) if removed == margin: lines[i] = lines[i][j + 1:] break elif removed > margin: lines[i] = ' ' * (removed - margin) + lines[i][j + 1:] break return lines def _dedent(text, tabsize=8, skip_first_line=False): """_dedent(text, tabsize=8, skip_first_line=False) -> dedented text "text" is the text to dedent. "tabsize" is the tab width to use for indent width calculations. "skip_first_line" is a boolean indicating if the first line should be skipped for calculating the indent width and for dedenting. This is sometimes useful for docstrings and similar. textwrap.dedent(s), but don't expand tabs to spaces """ lines = text.splitlines(1) _dedentlines(lines, tabsize=tabsize, skip_first_line=skip_first_line) return ''.join(lines) def _get_indent(marker, s, tab_width=8): """_get_indent(marker, s, tab_width=8) -> (<indentation-of-'marker'>, <indentation-width>)""" # Figure out how much the marker is indented. INDENT_CHARS = tuple(' \t') start = s.index(marker) i = start while i > 0: if s[i - 1] not in INDENT_CHARS: break i -= 1 indent = s[i:start] indent_width = 0 for ch in indent: if ch == ' ': indent_width += 1 elif ch == '\t': indent_width += tab_width - (indent_width % tab_width) return indent, indent_width def _get_trailing_whitespace(marker, s): """Return the whitespace content trailing the given 'marker' in string 's', up to and including a newline. """ suffix = '' start = s.index(marker) + len(marker) i = start while i < len(s): if s[i] in ' \t': suffix += s[i] elif s[i] in '\r\n': suffix += s[i] if s[i] == '\r' and i + 1 < len(s) and s[i + 1] == '\n': suffix += s[i + 1] break else: break i += 1 return suffix #---- bash completion support # Note: This is still experimental. I expect to change this # significantly. # # To get Bash completion for a cmdln.Cmdln class, run the following # bash command: # $ complete -C 'python -m cmdln /path/to/script.py CmdlnClass' cmdname # For example: # $ complete -C 'python -m cmdln ~/bin/svn.py SVN' svn # #TODO: Simplify the above so don't have to given path to script (try to # find it on PATH, if possible). Could also make class name # optional if there is only one in the module (common case). if __name__ == "__main__" and len(sys.argv) == 6: def _log(s): return # no-op, comment out for debugging from os.path import expanduser fout = open(expanduser("~/tmp/bashcpln.log"), 'a') fout.write(str(s) + '\n') fout.close() # Recipe: module_from_path (1.0.1+) def _module_from_path(path): import imp, os, sys path = os.path.expanduser(path) dir = os.path.dirname(path) or os.curdir name = os.path.splitext(os.path.basename(path))[0] sys.path.insert(0, dir) try: iinfo = imp.find_module(name, [dir]) return imp.load_module(name, *iinfo) finally: sys.path.remove(dir) def _get_bash_cplns(script_path, class_name, cmd_name, token, preceding_token): _log('--') _log('get_cplns(%r, %r, %r, %r, %r)' % (script_path, class_name, cmd_name, token, preceding_token)) comp_line = os.environ["COMP_LINE"] comp_point = int(os.environ["COMP_POINT"]) _log("COMP_LINE: %r" % comp_line) _log("COMP_POINT: %r" % comp_point) try: script = _module_from_path(script_path) except ImportError as ex: _log("error importing `%s': %s" % (script_path, ex)) return [] shell = getattr(script, class_name)() cmd_map = shell._get_canonical_map() del cmd_map["EOF"] del cmd_map["KeyboardInterrupt"] # Determine if completing the sub-command name. parts = comp_line[:comp_point].split(None, 1) _log(parts) if len(parts) == 1 or not (' ' in parts[1] or '\t' in parts[1]): #TODO: if parts[1].startswith('-'): handle top-level opts _log("complete sub-command names") matches = {} for name, canon_name in cmd_map.items(): if name.startswith(token): matches[name] = canon_name if not matches: return [] elif len(matches) == 1: return matches.keys() elif len(set(matches.values())) == 1: return [matches.values()[0]] else: return matches.keys() # Otherwise, complete options for the given sub-command. #TODO: refine this so it does the right thing with option args if token.startswith('-'): cmd_name = comp_line.split(None, 2)[1] try: cmd_canon_name = cmd_map[cmd_name] except KeyError: return [] handler = shell._get_cmd_handler(cmd_canon_name) optparser = getattr(handler, "optparser", None) if optparser is None: optparser = SubCmdOptionParser() opt_strs = [] for option in optparser.option_list: for opt_str in option._short_opts + option._long_opts: if opt_str.startswith(token): opt_strs.append(opt_str) return opt_strs return [] for cpln in _get_bash_cplns(*sys.argv[1:]): print(cpln)
36.097054
83
0.554014
79472afda37eabd0815e3f8c258ec1bcd55ef2cb
10,153
py
Python
MultiTool_src/Modules/proxy_checker.py
Reven8e/multitool
7a70cc8200f08e917ecf538e7589a2eba97e38bb
[ "MIT" ]
17
2020-11-17T17:40:26.000Z
2022-03-13T07:05:43.000Z
MultiTool_src/Modules/proxy_checker.py
Reven8e/multitool
7a70cc8200f08e917ecf538e7589a2eba97e38bb
[ "MIT" ]
null
null
null
MultiTool_src/Modules/proxy_checker.py
Reven8e/multitool
7a70cc8200f08e917ecf538e7589a2eba97e38bb
[ "MIT" ]
5
2020-11-17T17:55:04.000Z
2021-12-15T20:59:37.000Z
import random, time, sys, subprocess, threading, pycurl, os, requests from colorama import Fore class Proxy_Checker(): def __init__(self): subprocess.call('clear', shell=True) sys.setrecursionlimit(10**6) print(f"""{Fore.BLUE} ██▓███ ██▀███ ▒█████ ▒██ ██▓██ ██▓ ▄▄▄█████▓▒█████ ▒█████ ██▓ ▓██░ ██▓██ ▒ ██▒██▒ ██▒▒ █ █ ▒░▒██ ██▒ ▓ ██▒ ▓▒██▒ ██▒██▒ ██▓██▒ ▓██░ ██▓▓██ ░▄█ ▒██░ ██░░ █ ░ ▒██ ██░ ▒ ▓██░ ▒▒██░ ██▒██░ ██▒██░ ▒██▄█▓▒ ▒██▀▀█▄ ▒██ ██░░ █ █ ▒ ░ ▐██▓░ ░ ▓██▓ ░▒██ ██▒██ ██▒██░ ▒██▒ ░ ░██▓ ▒██░ ████▓▒▒██▒ ▒██▒ ░ ██▒▓░ ▒██▒ ░░ ████▓▒░ ████▓▒░██████▒ ▒▓▒░ ░ ░ ▒▓ ░▒▓░ ▒░▒░▒░▒▒ ░ ░▓ ░ ██▒▒▒ ▒ ░░ ░ ▒░▒░▒░░ ▒░▒░▒░░ ▒░▓ ░ ░▒ ░ ░▒ ░ ▒░ ░ ▒ ▒░░░ ░▒ ░▓██ ░▒░ ░ ░ ▒ ▒░ ░ ▒ ▒░░ ░ ▒ ░ ░░ ░░ ░░ ░ ░ ▒ ░ ░ ▒ ▒ ░░ ░ ░ ░ ░ ▒ ░ ░ ░ ▒ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ """) self.yes = ["yes", "y", "ye", "Y", "YES", 'YE'] self.no = ["no", "n", "NO", "n"] self.thr = 100 self.TARGET = input(f"{Fore.BLUE}[CONSOLE] Please enter full target url to check the proxies: ") self.verbose = input(f"{Fore.BLUE}[CONSOLE] Input bad requests too?: ") self.proxy_type = input(f"{Fore.BLUE}[CONSOLE] Proxy type (http, socks4, socks5): ") get_proxies = input(f'{Fore.BLUE}[CONSOLE] Get the proxies or you already have http proxy list? (get/n):') if get_proxies == 'get': try: os.remove("ProxyChecker/http_proxies.txt") os.remove("ProxyChecker/good_proxies.txt") except: pass proxylist = open(f'ProxyChecker/{self.proxy_type}_proxies.txt', 'a+') try: r1 = requests.get(f'https://api.proxyscrape.com?request=getproxies&proxytype={self.proxy_type}&ssl=yes') proxylist.write(r1.text) except: pass proxylist.close() self.proxy_file = f'ProxyChecker/{self.proxy_type}_proxies.txt' else: self.proxy_file = input(f"{Fore.BLUE}[CONSOLE] Please enter the proxy filename: ") self.timeout = int(input(f"{Fore.BLUE}[CONSOLE] Please enter proxy timeout (10-100): ")) self.pro = open("ProxyChecker/good_proxies.txt", "a+") self.checked = 0 self.good = 0 self.headers= [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36', 'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10', 'Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 Edge/16.16299', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000', "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)", "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0", "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5", "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52", ] def proxy_checker(self, proxy): if self.proxy_type == "http": try: ip, port = proxy.split(":")[0].replace('\n', ''), proxy.split(":")[1].replace('\n', '') c = pycurl.Curl() c.setopt(pycurl.URL, self.TARGET) c.setopt(pycurl.PROXY, ip) c.setopt(pycurl.PROXYPORT, int(port)) c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_HTTP) c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.choice(self.headers)}']) c.setopt(pycurl.CONNECTTIMEOUT, self.timeout) c.setopt(pycurl.WRITEFUNCTION, lambda x: None) c.perform() if c.getinfo(pycurl.HTTP_CODE) != 403: print(f"{Fore.GREEN}Good Proxy: {proxy}") self.good += 1 self.pro.write(f"{proxy}\n") else: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except pycurl.error: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except Exception as e: print(f'{Fore.RED}{e}') elif self.proxy_type == "socks4": try: ip, port = proxy.split(":")[0].replace('\n', ''), proxy.split(":")[1].replace('\n', '') c = pycurl.Curl() c.setopt(pycurl.URL, self.TARGET) c.setopt(pycurl.PROXY, ip) c.setopt(pycurl.PROXYPORT, int(port)) c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS4) c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.choice(self.headers)}']) c.setopt(pycurl.CONNECTTIMEOUT, self.timeout) c.setopt(pycurl.WRITEFUNCTION, lambda x: None) c.perform() print(f"{Fore.GREEN}Good Proxy: {proxy}") self.good += 1 self.pro.write(f"{proxy}\n") except pycurl.error: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except Exception as e: print(f'{Fore.RED}{e}') elif self.proxy_type == "socks5": try: ip, port = proxy.split(":")[0].replace('\n', ''), proxy.split(":")[1].replace('\n', '') c = pycurl.Curl() c.setopt(pycurl.URL, self.TARGET) c.setopt(pycurl.PROXY, ip) c.setopt(pycurl.PROXYPORT, int(port)) c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS5) c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.choice(self.headers)}']) c.setopt(pycurl.CONNECTTIMEOUT, self.timeout) c.setopt(pycurl.WRITEFUNCTION, lambda x: None) c.perform() print(f"{Fore.GREEN}Good Proxy: {proxy}") self.good += 1 self.pro.write(f"{proxy}\n") except pycurl.error: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except Exception as e: print(f'{Fore.RED}{e}') def start(self): print(f"{Fore.YELLOW}[CONSOLE] Okay! I'm searching for the best proxies. It may take some time...") proxys = open(f"{self.proxy_file}", "r", encoding="utf-8", errors='ignore') proxies = [proxy.replace("\n", "") for proxy in proxys] threads = [] length = 0 for _ in proxies: length +=1 while True: if threading.active_count() <self.thr: if self.checked < length: t = threading.Thread(target=self.proxy_checker, args=(proxies[self.checked],)) threads.append(t) t.start() self.checked +=1 else: print(f"\n\n{Fore.RED}[CONSOLE] Closing proxy threads.") for th in threads: th.join() print(f"\n\n{Fore.YELLOW}[CONSOLE] Found {self.good} proxies out of {length}.") proxys.close() self.pro.close() return
54.005319
204
0.504087
79472b249a47ce17f0bf199424f6d6172c76bf52
6,164
py
Python
sphinx_gallery/notebook.py
ksunden/sphinx-gallery
7f26c1a6fc8f53169af2e5fa558d0efbfb32fb4f
[ "BSD-3-Clause" ]
null
null
null
sphinx_gallery/notebook.py
ksunden/sphinx-gallery
7f26c1a6fc8f53169af2e5fa558d0efbfb32fb4f
[ "BSD-3-Clause" ]
null
null
null
sphinx_gallery/notebook.py
ksunden/sphinx-gallery
7f26c1a6fc8f53169af2e5fa558d0efbfb32fb4f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- r""" Parser for Jupyter notebooks ============================ Class that holds the Jupyter notebook information """ # Author: Óscar Nájera # License: 3-clause BSD from __future__ import division, absolute_import, print_function from functools import partial import argparse import json import re import sys import copy from .py_source_parser import split_code_and_text_blocks from .utils import replace_py_ipynb def jupyter_notebook_skeleton(): """Returns a dictionary with the elements of a Jupyter notebook""" py_version = sys.version_info notebook_skeleton = { "cells": [], "metadata": { "kernelspec": { "display_name": "Python " + str(py_version[0]), "language": "python", "name": "python" + str(py_version[0]) }, "language_info": { "codemirror_mode": { "name": "ipython", "version": py_version[0] }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython" + str(py_version[0]), "version": '{0}.{1}.{2}'.format(*sys.version_info[:3]) } }, "nbformat": 4, "nbformat_minor": 0 } return notebook_skeleton def directive_fun(match, directive): """Helper to fill in directives""" directive_to_alert = dict(note="info", warning="danger") return ('<div class="alert alert-{0}"><h4>{1}</h4><p>{2}</p></div>' .format(directive_to_alert[directive], directive.capitalize(), match.group(1).strip())) def rst2md(text): """Converts the RST text from the examples docstrigs and comments into markdown text for the Jupyter notebooks""" top_heading = re.compile(r'^=+$\s^([\w\s-]+)^=+$', flags=re.M) text = re.sub(top_heading, r'# \1', text) math_eq = re.compile(r'^\.\. math::((?:.+)?(?:\n+^ .+)*)', flags=re.M) text = re.sub(math_eq, lambda match: r'\begin{{align}}{0}\end{{align}}'.format( match.group(1).strip()), text) inline_math = re.compile(r':math:`(.+?)`', re.DOTALL) text = re.sub(inline_math, r'$\1$', text) directives = ('warning', 'note') for directive in directives: directive_re = re.compile(r'^\.\. %s::((?:.+)?(?:\n+^ .+)*)' % directive, flags=re.M) text = re.sub(directive_re, partial(directive_fun, directive=directive), text) links = re.compile(r'^ *\.\. _.*:.*$\n', flags=re.M) text = re.sub(links, '', text) refs = re.compile(r':ref:`') text = re.sub(refs, '`', text) contents = re.compile(r'^\s*\.\. contents::.*$(\n +:\S+: *$)*\n', flags=re.M) text = re.sub(contents, '', text) images = re.compile( r'^\.\. image::(.*$)(?:\n *:alt:(.*$)\n)?(?: +:\S+:.*$\n)*', flags=re.M) text = re.sub( images, lambda match: '![{1}]({0})\n'.format( match.group(1).strip(), (match.group(2) or '').strip()), text) return text def jupyter_notebook(script_blocks, gallery_conf): """Generate a Jupyter notebook file cell-by-cell Parameters ---------- script_blocks : list Script execution cells. gallery_conf : dict The sphinx-gallery configuration dictionary. """ first_cell = gallery_conf.get("first_notebook_cell", "%matplotlib inline") work_notebook = jupyter_notebook_skeleton() add_code_cell(work_notebook, first_cell) fill_notebook(work_notebook, script_blocks) return work_notebook def add_code_cell(work_notebook, code): """Add a code cell to the notebook Parameters ---------- code : str Cell content """ code_cell = { "cell_type": "code", "execution_count": None, "metadata": {"collapsed": False}, "outputs": [], "source": [code.strip()] } work_notebook["cells"].append(code_cell) def add_markdown_cell(work_notebook, text): """Add a markdown cell to the notebook Parameters ---------- code : str Cell content """ markdown_cell = { "cell_type": "markdown", "metadata": {}, "source": [rst2md(text)] } work_notebook["cells"].append(markdown_cell) def fill_notebook(work_notebook, script_blocks): """Writes the Jupyter notebook cells Parameters ---------- script_blocks : list of tuples """ for blabel, bcontent, lineno in script_blocks: if blabel == 'code': add_code_cell(work_notebook, bcontent) else: add_markdown_cell(work_notebook, bcontent + '\n') def save_notebook(work_notebook, write_file): """Saves the Jupyter work_notebook to write_file""" with open(write_file, 'w') as out_nb: json.dump(work_notebook, out_nb, indent=2) ############################################################################### # Notebook shell utility def python_to_jupyter_cli(args=None, namespace=None): """Exposes the jupyter notebook renderer to the command line Takes the same arguments as ArgumentParser.parse_args """ from . import gen_gallery # To avoid circular import parser = argparse.ArgumentParser( description='Sphinx-Gallery Notebook converter') parser.add_argument('python_src_file', nargs='+', help='Input Python file script to convert. ' 'Supports multiple files and shell wildcards' ' (e.g. *.py)') args = parser.parse_args(args, namespace) for src_file in args.python_src_file: file_conf, blocks = split_code_and_text_blocks(src_file) print('Converting {0}'.format(src_file)) gallery_conf = copy.deepcopy(gen_gallery.DEFAULT_GALLERY_CONF) example_nb = jupyter_notebook(blocks, gallery_conf) save_notebook(example_nb, replace_py_ipynb(src_file))
30.666667
79
0.572193
79472b2a7262f4908984c2732bffbfcf4699d39a
1,368
py
Python
glue-scripts/process_marketing_data.py
biswas/aws-serverless-etl
062c013d2025ad1be9cd65bcf5a4663be479396d
[ "Unlicense" ]
null
null
null
glue-scripts/process_marketing_data.py
biswas/aws-serverless-etl
062c013d2025ad1be9cd65bcf5a4663be479396d
[ "Unlicense" ]
1
2022-02-04T23:00:32.000Z
2022-02-04T23:00:32.000Z
glue-scripts/process_marketing_data.py
biswas/aws-serverless-etl
062c013d2025ad1be9cd65bcf5a4663be479396d
[ "Unlicense" ]
null
null
null
import sys import pyspark.sql.functions as func from awsglue.dynamicframe import DynamicFrame from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.job import Job args = getResolvedOptions(sys.argv, ['JOB_NAME', 's3_output_path', 'database_name', 'table_name']) s3_output_path = args['s3_output_path'] database_name = args['database_name'] table_name = args['table_name'] sc = SparkContext.getOrCreate() glueContext = GlueContext(sc) spark = glueContext.spark_session job = Job(glueContext) job.init(args['JOB_NAME'], args) mktg_DyF = glueContext.create_dynamic_frame\ .from_catalog(database=database_name, table_name=table_name) mktg_DyF = ApplyMapping.apply(frame=mktg_DyF, mappings=[ ('date', 'string', 'date', 'string'), ('new visitors seo', 'bigint', 'new_visitors_seo', 'bigint'), ('new visitors cpc', 'bigint', 'new_visitors_cpc', 'bigint'), ('new visitors social media', 'bigint', 'new_visitors_social_media', 'bigint'), ('return visitors', 'bigint', 'return_visitors', 'bigint'), ], transformation_ctx='applymapping1') mktg_DyF.printSchema() mktg_DF = mktg_DyF.toDF() mktg_DF.write\ .format('parquet')\ .option('header', 'true')\ .mode('overwrite')\ .save(s3_output_path) job.commit()
31.813953
98
0.739766
79472c022a4eb58620afb086a13e6cf1fd6b7ca5
8,089
py
Python
calc_metrics.py
maua-maua-maua/nvGAN
edea24c58646780c9fb8ea942e49708ce9d62421
[ "MIT" ]
null
null
null
calc_metrics.py
maua-maua-maua/nvGAN
edea24c58646780c9fb8ea942e49708ce9d62421
[ "MIT" ]
null
null
null
calc_metrics.py
maua-maua-maua/nvGAN
edea24c58646780c9fb8ea942e49708ce9d62421
[ "MIT" ]
null
null
null
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Calculate quality metrics for previous training run or pretrained network pickle.""" import copy import json import os import tempfile import click import torch import dnnlib import legacy from metrics import metric_main, metric_utils from torch_utils import custom_ops, misc, training_stats from torch_utils.ops import conv2d_gradfix #---------------------------------------------------------------------------- def subprocess_fn(rank, args, temp_dir): dnnlib.util.Logger(should_flush=True) # Init torch.distributed. if args.num_gpus > 1: init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) if os.name == 'nt': init_method = 'file:///' + init_file.replace('\\', '/') torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus) else: init_method = f'file://{init_file}' torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus) # Init torch_utils. sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) if rank != 0 or not args.verbose: custom_ops.verbosity = 'none' # Configure torch. device = torch.device('cuda', rank) torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False conv2d_gradfix.enabled = True # Print network summary. G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device) if rank == 0 and args.verbose: z = torch.empty([1, G.z_dim], device=device) c = torch.empty([1, G.c_dim], device=device) misc.print_module_summary(G, dict(z=z, c=c)) # Calculate each metric. for metric in args.metrics: if rank == 0 and args.verbose: print(f'Calculating {metric}...') progress = metric_utils.ProgressMonitor(verbose=args.verbose) result_dict = metric_main.calc_metric(metric=metric, G=G, dataset_kwargs=args.dataset_kwargs, num_gpus=args.num_gpus, rank=rank, device=device, progress=progress, snapshot_pkl=args.network_pkl) if rank == 0: metric_main.report_metric(result_dict, run_dir=args.run_dir, snapshot_pkl=args.network_pkl) if rank == 0 and args.verbose: print() # Done. if rank == 0 and args.verbose: print('Exiting...') #---------------------------------------------------------------------------- def parse_comma_separated_list(s): if isinstance(s, list): return s if s is None or s.lower() == 'none' or s == '': return [] return s.split(',') #---------------------------------------------------------------------------- @click.command() @click.pass_context @click.option('network_pkl', '--network', help='Network pickle filename or URL', metavar='PATH', required=True) @click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True) @click.option('--data', help='Dataset to evaluate against [default: look up]', metavar='[ZIP|DIR]') @click.option('--mirror', help='Enable dataset x-flips [default: look up]', type=bool, metavar='BOOL') @click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True) @click.option('--verbose', help='Print optional information', type=bool, default=True, metavar='BOOL', show_default=True) def calc_metrics(ctx, network_pkl, metrics, data, mirror, gpus, verbose): """Calculate quality metrics for previous training run or pretrained network pickle. Examples: \b # Previous training run: look up options automatically, save result to JSONL file. python calc_metrics.py --metrics=eqt50k_int,eqr50k \\ --network=~/training-runs/00000-stylegan3-r-mydataset/network-snapshot-000000.pkl \b # Pre-trained network pickle: specify dataset explicitly, print result to stdout. python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq-1024x1024.zip --mirror=1 \\ --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl \b Recommended metrics: fid50k_full Frechet inception distance against the full dataset. kid50k_full Kernel inception distance against the full dataset. pr50k3_full Precision and recall againt the full dataset. ppl2_wend Perceptual path length in W, endpoints, full image. eqt50k_int Equivariance w.r.t. integer translation (EQ-T). eqt50k_frac Equivariance w.r.t. fractional translation (EQ-T_frac). eqr50k Equivariance w.r.t. rotation (EQ-R). \b Legacy metrics: fid50k Frechet inception distance against 50k real images. kid50k Kernel inception distance against 50k real images. pr50k3 Precision and recall against 50k real images. is50k Inception score for CIFAR-10. """ dnnlib.util.Logger(should_flush=True) # Validate arguments. args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network_pkl, verbose=verbose) if not all(metric_main.is_valid_metric(metric) for metric in args.metrics): ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) if not args.num_gpus >= 1: ctx.fail('--gpus must be at least 1') # Load network. if not dnnlib.util.is_url(network_pkl, allow_file_urls=True) and not os.path.isfile(network_pkl): ctx.fail('--network must point to a file or URL') if args.verbose: print(f'Loading network from "{network_pkl}"...') with dnnlib.util.open_url(network_pkl, verbose=args.verbose) as f: network_dict = legacy.load_network_pkl(f) args.G = network_dict['G_ema'] # subclass of torch.nn.Module # Initialize dataset options. if data is not None: args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data) elif network_dict['training_set_kwargs'] is not None: args.dataset_kwargs = dnnlib.EasyDict(network_dict['training_set_kwargs']) else: ctx.fail('Could not look up dataset options; please specify --data') # Finalize dataset options. args.dataset_kwargs.resolution = args.G.img_resolution args.dataset_kwargs.use_labels = (args.G.c_dim != 0) if mirror is not None: args.dataset_kwargs.xflip = mirror # Print dataset options. if args.verbose: print('Dataset options:') print(json.dumps(args.dataset_kwargs, indent=2)) # Locate run dir. args.run_dir = None if os.path.isfile(network_pkl): pkl_dir = os.path.dirname(network_pkl) if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')): args.run_dir = pkl_dir # Launch processes. if args.verbose: print('Launching processes...') torch.multiprocessing.set_start_method('spawn') with tempfile.TemporaryDirectory() as temp_dir: if args.num_gpus == 1: subprocess_fn(rank=0, args=args, temp_dir=temp_dir) else: torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus) #---------------------------------------------------------------------------- if __name__ == "__main__": calc_metrics() # pylint: disable=no-value-for-parameter #----------------------------------------------------------------------------
43.256684
154
0.664606
79472cdbb5787bbb74b76e1e8d236cdb5bfff36b
4,151
py
Python
3d_classification/ignite/densenet_evaluation_dict.py
tommydino93/tutorials
aca1f3c44e6697029a8b81c86497ca19bf433698
[ "Apache-2.0" ]
535
2020-09-16T06:23:49.000Z
2022-03-31T13:48:34.000Z
3d_classification/ignite/densenet_evaluation_dict.py
tommydino93/tutorials
aca1f3c44e6697029a8b81c86497ca19bf433698
[ "Apache-2.0" ]
454
2020-09-16T02:11:17.000Z
2022-03-31T20:00:09.000Z
3d_classification/ignite/densenet_evaluation_dict.py
tommydino93/tutorials
aca1f3c44e6697029a8b81c86497ca19bf433698
[ "Apache-2.0" ]
289
2020-09-21T16:24:53.000Z
2022-03-31T13:04:14.000Z
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import numpy as np import torch from ignite.engine import _prepare_batch, create_supervised_evaluator from ignite.metrics import Accuracy from torch.utils.data import DataLoader import monai from monai.handlers import CheckpointLoader, ClassificationSaver, StatsHandler from monai.transforms import AddChanneld, Compose, LoadImaged, Resized, ScaleIntensityd, EnsureTyped def main(): monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/ # the path of ixi IXI-T1 dataset data_path = os.sep.join([".", "workspace", "data", "medical", "ixi", "IXI-T1"]) images = [ "IXI607-Guys-1097-T1.nii.gz", "IXI175-HH-1570-T1.nii.gz", "IXI385-HH-2078-T1.nii.gz", "IXI344-Guys-0905-T1.nii.gz", "IXI409-Guys-0960-T1.nii.gz", "IXI584-Guys-1129-T1.nii.gz", "IXI253-HH-1694-T1.nii.gz", "IXI092-HH-1436-T1.nii.gz", "IXI574-IOP-1156-T1.nii.gz", "IXI585-Guys-1130-T1.nii.gz", ] images = [os.sep.join([data_path, f]) for f in images] # 2 binary labels for gender classification: man and woman labels = np.array([0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64) val_files = [{"img": img, "label": label} for img, label in zip(images, labels)] # define transforms for image val_transforms = Compose( [ LoadImaged(keys=["img"]), AddChanneld(keys=["img"]), ScaleIntensityd(keys=["img"]), Resized(keys=["img"], spatial_size=(96, 96, 96)), EnsureTyped(keys=["img"]), ] ) # create DenseNet121 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = monai.networks.nets.DenseNet121(spatial_dims=3, in_channels=1, out_channels=2).to(device) def prepare_batch(batch, device=None, non_blocking=False): return _prepare_batch((batch["img"], batch["label"]), device, non_blocking) metric_name = "Accuracy" # add evaluation metric to the evaluator engine val_metrics = {metric_name: Accuracy()} # Ignite evaluator expects batch=(img, label) and returns output=(y_pred, y) at every iteration, # user can add output_transform to return other values evaluator = create_supervised_evaluator(net, val_metrics, device, True, prepare_batch=prepare_batch) # add stats event handler to print validation stats via evaluator val_stats_handler = StatsHandler( name="evaluator", output_transform=lambda x: None, # no need to print loss value, so disable per iteration output ) val_stats_handler.attach(evaluator) # for the array data format, assume the 3rd item of batch data is the meta_data prediction_saver = ClassificationSaver( output_dir="tempdir", name="evaluator", batch_transform=lambda batch: batch["img_meta_dict"], output_transform=lambda output: output[0].argmax(1), ) prediction_saver.attach(evaluator) # the model was trained by "densenet_training_dict" example CheckpointLoader(load_path="./runs_dict/net_checkpoint_20.pt", load_dict={"net": net}).attach(evaluator) # create a validation data loader val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) val_loader = DataLoader(val_ds, batch_size=2, num_workers=4, pin_memory=torch.cuda.is_available()) state = evaluator.run(val_loader) print(state) if __name__ == "__main__": main()
39.160377
108
0.695736
79472db7498321532b0da88898cf94fe3736043a
14,987
py
Python
bundle/Conque-GDB/autoload/conque_term/conque_sole.py
wonwooddo/vim_setup
7555031a846ceb2986f491fd1738a5b5263af2f1
[ "MIT" ]
1
2018-02-15T10:33:31.000Z
2018-02-15T10:33:31.000Z
bundle/Conque-GDB/autoload/conque_term/conque_sole.py
wonwooddo/vim_setup
7555031a846ceb2986f491fd1738a5b5263af2f1
[ "MIT" ]
2
2018-11-30T10:33:35.000Z
2019-03-07T12:04:56.000Z
bundle/Conque-GDB/autoload/conque_term/conque_sole.py
wonwooddo/vim_setup
7555031a846ceb2986f491fd1738a5b5263af2f1
[ "MIT" ]
2
2020-11-08T06:02:44.000Z
2020-11-19T01:45:01.000Z
# FILE: autoload/conque_term/conque_sole.py # AUTHOR: Nico Raffo <[email protected]> # WEBSITE: http://conque.googlecode.com # MODIFIED: 2011-09-12 # VERSION: 2.3, for Vim 7.0 # LICENSE: # Conque - Vim terminal/console emulator # Copyright (C) 2009-2011 Nico Raffo # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Windows Console Emulator This is the main interface to the Windows emulator. It reads new output from the background console and updates the Vim buffer. """ import vim class ConqueSole(Conque): window_top = None window_bottom = None color_cache = {} attribute_cache = {} color_mode = None color_conceals = {} buffer = None encoding = None # counters for periodic rendering buffer_redraw_ct = 1 screen_redraw_ct = 1 # line offset, shifts output down offset = 0 def open(self): """ Start command and initialize this instance Arguments: command - Command string, e.g. "Powershell.exe" options - Dictionary of config options python_exe - Path to the python.exe executable. Usually C:\PythonXX\python.exe communicator_py - Path to subprocess controller script in user's vimfiles directory """ # get arguments command = vim.eval('command') options = vim.eval('options') python_exe = vim.eval('py_exe') communicator_py = vim.eval('py_vim') # init size self.columns = vim.current.window.width self.lines = vim.current.window.height self.window_top = 0 self.window_bottom = vim.current.window.height - 1 # color mode self.color_mode = vim.eval('g:ConqueTerm_ColorMode') # line offset self.offset = int(options['offset']) # init color self.enable_colors = options['color'] and not CONQUE_FAST_MODE # open command self.proc = ConqueSoleWrapper() self.proc.open(command, self.lines, self.columns, python_exe, communicator_py, options) self.buffer = vim.current.buffer self.screen_encoding = vim.eval('&fileencoding') def read(self, timeout=1, set_cursor=True, return_output=False, update_buffer=True): """ Read from console and update Vim buffer. """ try: stats = self.proc.get_stats() if not stats: return # disable screen and buffer redraws in fast mode if not CONQUE_FAST_MODE: self.buffer_redraw_ct += 1 self.screen_redraw_ct += 1 update_top = 0 update_bottom = 0 lines = [] # full buffer redraw, our favorite! #if self.buffer_redraw_ct == CONQUE_SOLE_BUFFER_REDRAW: # self.buffer_redraw_ct = 0 # update_top = 0 # update_bottom = stats['top_offset'] + self.lines # (lines, attributes) = self.proc.read(update_top, update_bottom) # if return_output: # output = self.get_new_output(lines, update_top, stats) # if update_buffer: # for i in range(update_top, update_bottom + 1): # if CONQUE_FAST_MODE: # self.plain_text(i, lines[i], None, stats) # else: # self.plain_text(i, lines[i], attributes[i], stats) # full screen redraw if stats['cursor_y'] + 1 != self.l or stats['top_offset'] != self.window_top or self.screen_redraw_ct >= CONQUE_SOLE_SCREEN_REDRAW: self.screen_redraw_ct = 0 update_top = self.window_top update_bottom = max([stats['top_offset'] + self.lines + 1, stats['cursor_y']]) (lines, attributes) = self.proc.read(update_top, update_bottom - update_top + 1) if return_output: output = self.get_new_output(lines, update_top, stats) if update_buffer: for i in range(update_top, update_bottom + 1): if CONQUE_FAST_MODE: self.plain_text(i, lines[i - update_top], None, stats) else: self.plain_text(i, lines[i - update_top], attributes[i - update_top], stats) # single line redraw else: update_top = stats['cursor_y'] (lines, attributes) = self.proc.read(update_top, 1) if return_output: output = self.get_new_output(lines, update_top, stats) if update_buffer: if lines[0].rstrip() != u(self.buffer[update_top].rstrip()): if CONQUE_FAST_MODE: self.plain_text(update_top, lines[0], None, stats) else: self.plain_text(update_top, lines[0], attributes[0], stats) # reset current position self.window_top = stats['top_offset'] self.l = stats['cursor_y'] + 1 self.c = stats['cursor_x'] + 1 # reposition cursor if this seems plausible if set_cursor: self.set_cursor(self.l, self.c) if return_output: return output except: pass def get_new_output(self, lines, update_top, stats): """ Calculate the "new" output from this read. Fake but useful """ if not (stats['cursor_y'] + 1 > self.l or (stats['cursor_y'] + 1 == self.l and stats['cursor_x'] + 1 > self.c)): return "" try: num_to_return = stats['cursor_y'] - self.l + 2 lines = lines[self.l - update_top - 1:] new_output = [] # first line new_output.append(lines[0][self.c - 1:].rstrip()) # the rest for i in range(1, num_to_return): new_output.append(lines[i].rstrip()) except: pass return "\n".join(new_output) def plain_text(self, line_nr, text, attributes, stats): """ Write plain text to Vim buffer. """ # handle line offset line_nr += self.offset self.l = line_nr + 1 # remove trailing whitespace text = text.rstrip() # if we're using concealed text for color, then s- is weird if self.color_mode == 'conceal': text = self.add_conceal_color(text, attributes, stats, line_nr) # deal with character encoding if CONQUE_PYTHON_VERSION == 2: val = text.encode(self.screen_encoding) else: # XXX / Vim's python3 interface doesn't accept bytes object val = str(text) # update vim buffer if len(self.buffer) <= line_nr: self.buffer.append(val) else: self.buffer[line_nr] = val if self.enable_colors and not self.color_mode == 'conceal' and line_nr > self.l - CONQUE_MAX_SYNTAX_LINES: relevant = attributes[0:len(text)] if line_nr not in self.attribute_cache or self.attribute_cache[line_nr] != relevant: self.do_color(attributes=relevant, stats=stats) self.attribute_cache[line_nr] = relevant def add_conceal_color(self, text, attributes, stats, line_nr): """ Add 'conceal' color strings to output text """ # stop here if coloration is disabled if not self.enable_colors: return text # if no colors for this line, clear everything out if len(attributes) == 0 or attributes == u(chr(stats['default_attribute'])) * len(attributes): return text new_text = '' self.color_conceals[line_nr] = [] attribute_chunks = CONQUE_WIN32_REGEX_ATTR.findall(attributes) offset = 0 ends = [] for attr in attribute_chunks: attr_num = ord(attr[1]) ends = [] if attr_num != stats['default_attribute']: color = self.translate_color(attr_num) new_text += chr(27) + 'sf' + color['fg_code'] + ';' ends.append(chr(27) + 'ef' + color['fg_code'] + ';') self.color_conceals[line_nr].append(offset) if attr_num > 15: new_text += chr(27) + 'sb' + color['bg_code'] + ';' ends.append(chr(27) + 'eb' + color['bg_code'] + ';') self.color_conceals[line_nr].append(offset) new_text += text[offset:offset + len(attr[0])] # close color regions ends.reverse() for i in range(0, len(ends)): self.color_conceals[line_nr].append(len(new_text)) new_text += ends[i] offset += len(attr[0]) return new_text def do_color(self, start=0, end=0, attributes='', stats=None): """ Convert Windows console attributes into Vim syntax highlighting """ # if no colors for this line, clear everything out if len(attributes) == 0 or attributes == u(chr(stats['default_attribute'])) * len(attributes): self.color_changes = {} self.apply_color(1, len(attributes), self.l) return attribute_chunks = CONQUE_WIN32_REGEX_ATTR.findall(attributes) offset = 0 for attr in attribute_chunks: attr_num = ord(attr[1]) if attr_num != stats['default_attribute']: self.color_changes = self.translate_color(attr_num) self.apply_color(offset + 1, offset + len(attr[0]) + 1, self.l) offset += len(attr[0]) def translate_color(self, attr): """ Convert Windows console attributes into RGB colors """ # check for cached color if attr in self.color_cache: return self.color_cache[attr] # convert attribute integer to bit string bit_str = bin(attr) bit_str = bit_str.replace('0b', '') # slice foreground and background portions of bit string fg = bit_str[-4:].rjust(4, '0') bg = bit_str[-8:-4].rjust(4, '0') # ok, first create foreground #rbg red = int(fg[1]) * 204 + int(fg[0]) * int(fg[1]) * 51 green = int(fg[2]) * 204 + int(fg[0]) * int(fg[2]) * 51 blue = int(fg[3]) * 204 + int(fg[0]) * int(fg[3]) * 51 fg_str = "#%02x%02x%02x" % (red, green, blue) fg_code = "%02x%02x%02x" % (red, green, blue) fg_code = fg_code[0] + fg_code[2] + fg_code[4] # ok, first create foreground #rbg red = int(bg[1]) * 204 + int(bg[0]) * int(bg[1]) * 51 green = int(bg[2]) * 204 + int(bg[0]) * int(bg[2]) * 51 blue = int(bg[3]) * 204 + int(bg[0]) * int(bg[3]) * 51 bg_str = "#%02x%02x%02x" % (red, green, blue) bg_code = "%02x%02x%02x" % (red, green, blue) bg_code = bg_code[0] + bg_code[2] + bg_code[4] # build value for color_changes color = {'guifg': fg_str, 'guibg': bg_str} if self.color_mode == 'conceal': color['fg_code'] = fg_code color['bg_code'] = bg_code self.color_cache[attr] = color return color def write_vk(self, vk_code): """ write virtual key code to shared memory using proprietary escape seq """ self.proc.write_vk(vk_code) def update_window(self, force=False): # This magically works vim.command("normal! i") def update_window_size(self, tell_subprocess = True): """ Resize underlying console if Vim buffer size has changed """ if vim.current.window.width != self.columns or vim.current.window.height != self.lines: # reset all window size attributes to default self.columns = vim.current.window.width self.lines = vim.current.window.height self.working_columns = vim.current.window.width self.working_lines = vim.current.window.height self.bottom = vim.current.window.height if tell_subprocess: self.proc.window_resize(vim.current.window.height, vim.current.window.width) def set_cursor(self, line, column): """ Update cursor position in Vim buffer """ # handle offset line += self.offset # shift cursor position to handle concealed text if self.enable_colors and self.color_mode == 'conceal': if line - 1 in self.color_conceals: for c in self.color_conceals[line - 1]: if c < column: column += 7 else: break # figure out line buffer_line = line if buffer_line > len(self.buffer): for l in range(len(self.buffer) - 1, buffer_line): self.buffer.append('') # figure out column real_column = column if len(self.buffer[buffer_line - 1]) < real_column: self.buffer[buffer_line - 1] = self.buffer[buffer_line - 1] + ' ' * (real_column - len(self.buffer[buffer_line - 1])) # python version is occasionally grumpy try: vim.current.window.cursor = (buffer_line, real_column - 1) except: vim.command('call cursor(' + str(buffer_line) + ', ' + str(real_column) + ')') def idle(self): """ go into idle mode """ self.proc.idle() def resume(self): """ resume from idle mode """ self.proc.resume() def close(self): """ end console subprocess """ self.proc.close() def abort(self): """ end subprocess forcefully """ self.proc.close() def get_buffer_line(self, line): """ get buffer line """ return line # vim:foldmethod=marker
32.439394
143
0.575832
79472e5043ed044b0831d6e3d903523186f0f8dc
788
py
Python
leetcode/007_reverse-integer.py
heyf/cloaked-octo-adventure
8180684a8a1859efb836edd48556b5f3088be398
[ "MIT" ]
null
null
null
leetcode/007_reverse-integer.py
heyf/cloaked-octo-adventure
8180684a8a1859efb836edd48556b5f3088be398
[ "MIT" ]
null
null
null
leetcode/007_reverse-integer.py
heyf/cloaked-octo-adventure
8180684a8a1859efb836edd48556b5f3088be398
[ "MIT" ]
null
null
null
''' 7. Reverse Integer https://leetcode.com/problems/reverse-integer/ ''' class Solution(object): def reverse(self, x): """ :type x: int :rtype: int """ ret = 0 sign = 1 if x < 0: x = -x sign = -1 while x > 0: digit = x % 10 x /= 10 ret = ret * 10 + digit return ret * sign def test(): cases = list() cases.append( (0,0) ) cases.append( (123,321) ) cases.append( (-123,-321) ) def verify(case): s = Solution() print s.reverse(case[0]) return s.reverse(case[0]) == case[1] result = filter(verify, cases) return len(result) == len(cases), len(result), len(cases) test()
21.297297
61
0.458122
79472ef1c0fb88dd174511473e3956ae8727e364
1,314
py
Python
website/forms.py
Jason13201/Lets-tidy-up-this-space
ca815f1e8227e7b60c9047c7a36d05355616021b
[ "MIT" ]
2
2021-03-15T04:34:29.000Z
2021-03-15T04:34:56.000Z
website/forms.py
Jason13201/Lets-tidy-up-this-space
ca815f1e8227e7b60c9047c7a36d05355616021b
[ "MIT" ]
null
null
null
website/forms.py
Jason13201/Lets-tidy-up-this-space
ca815f1e8227e7b60c9047c7a36d05355616021b
[ "MIT" ]
1
2021-03-15T04:35:18.000Z
2021-03-15T04:35:18.000Z
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, BooleanField, DecimalField from wtforms.fields.html5 import EmailField from wtforms.validators import DataRequired, Length, Email, EqualTo class RegistrationForm(FlaskForm): username = StringField( "Username", validators=[DataRequired(), Length(max=16)], render_kw={"placeholder": "Enter a nickname for your household"}, ) password = PasswordField( "Password", validators=[DataRequired()], render_kw={"placeholder": "Choose a strong password"}, ) confirm_password = PasswordField( "Confirm Password", validators=[ DataRequired(), EqualTo("password", message="Passwords do not match."), ], render_kw={"placeholder": "Re-enter your password"}, ) submit = SubmitField("Create account") class LoginForm(FlaskForm): username = StringField( "Household nickname", validators=[DataRequired()], render_kw={"placeholder": "Enter nick"}, ) password = PasswordField( "Password", validators=[DataRequired()], render_kw={"placeholder": "Enter password"}, ) remember = BooleanField("Remember Me") submit = SubmitField("Login")
30.55814
87
0.649163
79472f3d8a59a37784856594f2e3a95c926e8dcb
268
py
Python
Exercises/Exercise1.py
davidavg/OOP_Python
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
[ "MIT" ]
null
null
null
Exercises/Exercise1.py
davidavg/OOP_Python
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
[ "MIT" ]
null
null
null
Exercises/Exercise1.py
davidavg/OOP_Python
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
[ "MIT" ]
null
null
null
''' Created on Aug 13, 2018 @author: david avalos ''' class Calculator: def addition(self, a, b): print(a+b) def subtraction(self, a, b): print(a-b) obj = Calculator() obj.addition(5,2) obj.subtraction(5,2)
14.888889
32
0.533582
79472fcbf7f028caab53f1c890fa17d95483484a
1,029
py
Python
data-science_interview_problems/app/forms.py
Max1993Liu/data-science-interview-problems
e71eed547f46bc2652722ed1f006be1ec6acf03c
[ "MIT" ]
null
null
null
data-science_interview_problems/app/forms.py
Max1993Liu/data-science-interview-problems
e71eed547f46bc2652722ed1f006be1ec6acf03c
[ "MIT" ]
null
null
null
data-science_interview_problems/app/forms.py
Max1993Liu/data-science-interview-problems
e71eed547f46bc2652722ed1f006be1ec6acf03c
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired, EqualTo from wtforms import ValidationError from app.models import User class LoginForm(FlaskForm): username = StringField("Username", validators=[DataRequired()]) password = PasswordField("Password", validators=[DataRequired()]) remember_me = BooleanField("Remember Me") submit = SubmitField("Sign In") class RegistrationForm(FlaskForm): username = StringField("Username", validators=[DataRequired()]) password = PasswordField("Password", validators=[DataRequired()]) password2 = PasswordField("Repeat Password", validators=[DataRequired(), EqualTo('password')]) submit = SubmitField("Register") def validate_username(self, username): # methods with pattern validate_<xx> will be invoked by wtform automatically user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('Please use a different username.')
36.75
95
0.781341
794730b5e6382952686cfa0e4cd6ef3754920115
2,209
py
Python
modules/python/test/test_houghcircles.py
paleozogt/opencv
c4b158ff91b2acb33252f4169ef0b24e0427e3e9
[ "BSD-3-Clause" ]
6
2018-03-08T09:06:31.000Z
2021-05-16T22:07:34.000Z
modules/python/test/test_houghcircles.py
LiangYue1981816/ComputeVision-opencv
1f214d232daa6f6a4d0f297327e656f638e8e13a
[ "BSD-3-Clause" ]
1
2019-10-10T22:25:52.000Z
2019-10-10T22:25:52.000Z
modules/python/test/test_houghcircles.py
LiangYue1981816/ComputeVision-opencv
1f214d232daa6f6a4d0f297327e656f638e8e13a
[ "BSD-3-Clause" ]
11
2016-03-20T18:32:24.000Z
2020-12-31T21:22:22.000Z
#!/usr/bin/python ''' This example illustrates how to use cv2.HoughCircles() function. ''' # Python 2/3 compatibility from __future__ import print_function import cv2 import numpy as np import sys from numpy import pi, sin, cos from tests_common import NewOpenCVTests def circleApproximation(circle): nPoints = 30 dPhi = 2*pi / nPoints contour = [] for i in range(nPoints): contour.append(([circle[0] + circle[2]*cos(i*dPhi), circle[1] + circle[2]*sin(i*dPhi)])) return np.array(contour).astype(int) def convContoursIntersectiponRate(c1, c2): s1 = cv2.contourArea(c1) s2 = cv2.contourArea(c2) s, _ = cv2.intersectConvexConvex(c1, c2) return 2*s/(s1+s2) class houghcircles_test(NewOpenCVTests): def test_houghcircles(self): fn = "samples/data/board.jpg" src = self.get_sample(fn, 1) img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) img = cv2.medianBlur(img, 5) circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0] testCircles = [[38, 181, 17.6], [99.7, 166, 13.12], [142.7, 160, 13.52], [223.6, 110, 8.62], [79.1, 206.7, 8.62], [47.5, 351.6, 11.64], [189.5, 354.4, 11.64], [189.8, 298.9, 10.64], [189.5, 252.4, 14.62], [252.5, 393.4, 15.62], [602.9, 467.5, 11.42], [222, 210.4, 9.12], [263.1, 216.7, 9.12], [359.8, 222.6, 9.12], [518.9, 120.9, 9.12], [413.8, 113.4, 9.12], [489, 127.2, 9.12], [448.4, 121.3, 9.12], [384.6, 128.9, 8.62]] matches_counter = 0 for i in range(len(testCircles)): for j in range(len(circles)): tstCircle = circleApproximation(testCircles[i]) circle = circleApproximation(circles[j]) if convContoursIntersectiponRate(tstCircle, circle) > 0.6: matches_counter += 1 self.assertGreater(float(matches_counter) / len(testCircles), .5) self.assertLess(float(len(circles) - matches_counter) / len(circles), .75) if __name__ == '__main__': NewOpenCVTests.bootstrap()
25.988235
99
0.574468
794730e959856d88fa1d09587f498ac7b3ec2ede
76,997
py
Python
tests/unit/gapic/compute_v1/test_backend_buckets.py
georgiyekkert/python-compute
d128efbb3bf10af9b41e55b20aaa8080b3221e77
[ "Apache-2.0" ]
null
null
null
tests/unit/gapic/compute_v1/test_backend_buckets.py
georgiyekkert/python-compute
d128efbb3bf10af9b41e55b20aaa8080b3221e77
[ "Apache-2.0" ]
null
null
null
tests/unit/gapic/compute_v1/test_backend_buckets.py
georgiyekkert/python-compute
d128efbb3bf10af9b41e55b20aaa8080b3221e77
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import mock import grpc from grpc.experimental import aio import math import pytest from proto.marshal.rules.dates import DurationRule, TimestampRule from requests import Response from requests import Request from requests.sessions import Session from google.api_core import client_options from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import grpc_helpers from google.api_core import grpc_helpers_async from google.api_core import path_template from google.auth import credentials as ga_credentials from google.auth.exceptions import MutualTLSChannelError from google.cloud.compute_v1.services.backend_buckets import BackendBucketsClient from google.cloud.compute_v1.services.backend_buckets import pagers from google.cloud.compute_v1.services.backend_buckets import transports from google.cloud.compute_v1.types import compute from google.oauth2 import service_account import google.auth def client_cert_source_callback(): return b"cert bytes", b"key bytes" # If default endpoint is localhost, then default mtls endpoint will be the same. # This method modifies the default endpoint so the client can produce a different # mtls endpoint for endpoint testing purposes. def modify_default_endpoint(client): return ( "foo.googleapis.com" if ("localhost" in client.DEFAULT_ENDPOINT) else client.DEFAULT_ENDPOINT ) def test__get_default_mtls_endpoint(): api_endpoint = "example.googleapis.com" api_mtls_endpoint = "example.mtls.googleapis.com" sandbox_endpoint = "example.sandbox.googleapis.com" sandbox_mtls_endpoint = "example.mtls.sandbox.googleapis.com" non_googleapi = "api.example.com" assert BackendBucketsClient._get_default_mtls_endpoint(None) is None assert ( BackendBucketsClient._get_default_mtls_endpoint(api_endpoint) == api_mtls_endpoint ) assert ( BackendBucketsClient._get_default_mtls_endpoint(api_mtls_endpoint) == api_mtls_endpoint ) assert ( BackendBucketsClient._get_default_mtls_endpoint(sandbox_endpoint) == sandbox_mtls_endpoint ) assert ( BackendBucketsClient._get_default_mtls_endpoint(sandbox_mtls_endpoint) == sandbox_mtls_endpoint ) assert ( BackendBucketsClient._get_default_mtls_endpoint(non_googleapi) == non_googleapi ) @pytest.mark.parametrize("client_class", [BackendBucketsClient,]) def test_backend_buckets_client_from_service_account_info(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object( service_account.Credentials, "from_service_account_info" ) as factory: factory.return_value = creds info = {"valid": True} client = client_class.from_service_account_info(info) assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == "compute.googleapis.com:443" @pytest.mark.parametrize( "transport_class,transport_name", [(transports.BackendBucketsRestTransport, "rest"),], ) def test_backend_buckets_client_service_account_always_use_jwt( transport_class, transport_name ): with mock.patch.object( service_account.Credentials, "with_always_use_jwt_access", create=True ) as use_jwt: creds = service_account.Credentials(None, None, None) transport = transport_class(credentials=creds, always_use_jwt_access=True) use_jwt.assert_called_once_with(True) with mock.patch.object( service_account.Credentials, "with_always_use_jwt_access", create=True ) as use_jwt: creds = service_account.Credentials(None, None, None) transport = transport_class(credentials=creds, always_use_jwt_access=False) use_jwt.assert_not_called() @pytest.mark.parametrize("client_class", [BackendBucketsClient,]) def test_backend_buckets_client_from_service_account_file(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object( service_account.Credentials, "from_service_account_file" ) as factory: factory.return_value = creds client = client_class.from_service_account_file("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) client = client_class.from_service_account_json("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == "compute.googleapis.com:443" def test_backend_buckets_client_get_transport_class(): transport = BackendBucketsClient.get_transport_class() available_transports = [ transports.BackendBucketsRestTransport, ] assert transport in available_transports transport = BackendBucketsClient.get_transport_class("rest") assert transport == transports.BackendBucketsRestTransport @pytest.mark.parametrize( "client_class,transport_class,transport_name", [(BackendBucketsClient, transports.BackendBucketsRestTransport, "rest"),], ) @mock.patch.object( BackendBucketsClient, "DEFAULT_ENDPOINT", modify_default_endpoint(BackendBucketsClient), ) def test_backend_buckets_client_client_options( client_class, transport_class, transport_name ): # Check that if channel is provided we won't create a new one. with mock.patch.object(BackendBucketsClient, "get_transport_class") as gtc: transport = transport_class(credentials=ga_credentials.AnonymousCredentials()) client = client_class(transport=transport) gtc.assert_not_called() # Check that if channel is provided via str we will create a new one. with mock.patch.object(BackendBucketsClient, "get_transport_class") as gtc: client = client_class(transport=transport_name) gtc.assert_called() # Check the case api_endpoint is provided. options = client_options.ClientOptions(api_endpoint="squid.clam.whelk") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name, client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "never". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "never"}): with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "always". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "always"}): with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_MTLS_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT has # unsupported value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "Unsupported"}): with pytest.raises(MutualTLSChannelError): client = client_class() # Check the case GOOGLE_API_USE_CLIENT_CERTIFICATE has unsupported value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "Unsupported"} ): with pytest.raises(ValueError): client = client_class() # Check the case quota_project_id is provided options = client_options.ClientOptions(quota_project_id="octopus") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name, client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id="octopus", client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name,use_client_cert_env", [ (BackendBucketsClient, transports.BackendBucketsRestTransport, "rest", "true"), (BackendBucketsClient, transports.BackendBucketsRestTransport, "rest", "false"), ], ) @mock.patch.object( BackendBucketsClient, "DEFAULT_ENDPOINT", modify_default_endpoint(BackendBucketsClient), ) @mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "auto"}) def test_backend_buckets_client_mtls_env_auto( client_class, transport_class, transport_name, use_client_cert_env ): # This tests the endpoint autoswitch behavior. Endpoint is autoswitched to the default # mtls endpoint, if GOOGLE_API_USE_CLIENT_CERTIFICATE is "true" and client cert exists. # Check the case client_cert_source is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): options = client_options.ClientOptions( client_cert_source=client_cert_source_callback ) with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name, client_options=options) if use_client_cert_env == "false": expected_client_cert_source = None expected_host = client.DEFAULT_ENDPOINT else: expected_client_cert_source = client_cert_source_callback expected_host = client.DEFAULT_MTLS_ENDPOINT patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case ADC client cert is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): with mock.patch.object(transport_class, "__init__") as patched: with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=True, ): with mock.patch( "google.auth.transport.mtls.default_client_cert_source", return_value=client_cert_source_callback, ): if use_client_cert_env == "false": expected_host = client.DEFAULT_ENDPOINT expected_client_cert_source = None else: expected_host = client.DEFAULT_MTLS_ENDPOINT expected_client_cert_source = client_cert_source_callback patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) # Check the case client_cert_source and ADC client cert are not provided. with mock.patch.dict( os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env} ): with mock.patch.object(transport_class, "__init__") as patched: with mock.patch( "google.auth.transport.mtls.has_default_client_cert_source", return_value=False, ): patched.return_value = None client = client_class(transport=transport_name) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name", [(BackendBucketsClient, transports.BackendBucketsRestTransport, "rest"),], ) def test_backend_buckets_client_client_options_scopes( client_class, transport_class, transport_name ): # Check the case scopes are provided. options = client_options.ClientOptions(scopes=["1", "2"],) with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name, client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=["1", "2"], client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) @pytest.mark.parametrize( "client_class,transport_class,transport_name", [(BackendBucketsClient, transports.BackendBucketsRestTransport, "rest"),], ) def test_backend_buckets_client_client_options_credentials_file( client_class, transport_class, transport_name ): # Check the case credentials file is provided. options = client_options.ClientOptions(credentials_file="credentials.json") with mock.patch.object(transport_class, "__init__") as patched: patched.return_value = None client = client_class(transport=transport_name, client_options=options) patched.assert_called_once_with( credentials=None, credentials_file="credentials.json", host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, always_use_jwt_access=True, ) def test_add_signed_url_key_rest( transport: str = "rest", request_type=compute.AddSignedUrlKeyBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request_init["signed_url_key_resource"] = compute.SignedUrlKey( key_name="key_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation( client_operation_id="client_operation_id_value", creation_timestamp="creation_timestamp_value", description="description_value", end_time="end_time_value", http_error_message="http_error_message_value", http_error_status_code=2374, id=205, insert_time="insert_time_value", kind="kind_value", name="name_value", operation_group_id="operation_group_id_value", operation_type="operation_type_value", progress=885, region="region_value", self_link="self_link_value", start_time="start_time_value", status=compute.Operation.Status.DONE, status_message="status_message_value", target_id=947, target_link="target_link_value", user="user_value", zone="zone_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.add_signed_url_key(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.Operation) assert response.client_operation_id == "client_operation_id_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.description == "description_value" assert response.end_time == "end_time_value" assert response.http_error_message == "http_error_message_value" assert response.http_error_status_code == 2374 assert response.id == 205 assert response.insert_time == "insert_time_value" assert response.kind == "kind_value" assert response.name == "name_value" assert response.operation_group_id == "operation_group_id_value" assert response.operation_type == "operation_type_value" assert response.progress == 885 assert response.region == "region_value" assert response.self_link == "self_link_value" assert response.start_time == "start_time_value" assert response.status == compute.Operation.Status.DONE assert response.status_message == "status_message_value" assert response.target_id == 947 assert response.target_link == "target_link_value" assert response.user == "user_value" assert response.zone == "zone_value" def test_add_signed_url_key_rest_bad_request( transport: str = "rest", request_type=compute.AddSignedUrlKeyBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request_init["signed_url_key_resource"] = compute.SignedUrlKey( key_name="key_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.add_signed_url_key(request) def test_add_signed_url_key_rest_from_dict(): test_add_signed_url_key_rest(request_type=dict) def test_add_signed_url_key_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1", "backend_bucket": "sample2"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket="backend_bucket_value", signed_url_key_resource=compute.SignedUrlKey(key_name="key_name_value"), ) mock_args.update(sample_request) client.add_signed_url_key(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets/{backend_bucket}/addSignedUrlKey" % client.transport._host, args[1], ) def test_add_signed_url_key_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.add_signed_url_key( compute.AddSignedUrlKeyBackendBucketRequest(), project="project_value", backend_bucket="backend_bucket_value", signed_url_key_resource=compute.SignedUrlKey(key_name="key_name_value"), ) def test_delete_rest( transport: str = "rest", request_type=compute.DeleteBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation( client_operation_id="client_operation_id_value", creation_timestamp="creation_timestamp_value", description="description_value", end_time="end_time_value", http_error_message="http_error_message_value", http_error_status_code=2374, id=205, insert_time="insert_time_value", kind="kind_value", name="name_value", operation_group_id="operation_group_id_value", operation_type="operation_type_value", progress=885, region="region_value", self_link="self_link_value", start_time="start_time_value", status=compute.Operation.Status.DONE, status_message="status_message_value", target_id=947, target_link="target_link_value", user="user_value", zone="zone_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.delete(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.Operation) assert response.client_operation_id == "client_operation_id_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.description == "description_value" assert response.end_time == "end_time_value" assert response.http_error_message == "http_error_message_value" assert response.http_error_status_code == 2374 assert response.id == 205 assert response.insert_time == "insert_time_value" assert response.kind == "kind_value" assert response.name == "name_value" assert response.operation_group_id == "operation_group_id_value" assert response.operation_type == "operation_type_value" assert response.progress == 885 assert response.region == "region_value" assert response.self_link == "self_link_value" assert response.start_time == "start_time_value" assert response.status == compute.Operation.Status.DONE assert response.status_message == "status_message_value" assert response.target_id == 947 assert response.target_link == "target_link_value" assert response.user == "user_value" assert response.zone == "zone_value" def test_delete_rest_bad_request( transport: str = "rest", request_type=compute.DeleteBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.delete(request) def test_delete_rest_from_dict(): test_delete_rest(request_type=dict) def test_delete_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1", "backend_bucket": "sample2"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket="backend_bucket_value", ) mock_args.update(sample_request) client.delete(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets/{backend_bucket}" % client.transport._host, args[1], ) def test_delete_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete( compute.DeleteBackendBucketRequest(), project="project_value", backend_bucket="backend_bucket_value", ) def test_delete_signed_url_key_rest( transport: str = "rest", request_type=compute.DeleteSignedUrlKeyBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation( client_operation_id="client_operation_id_value", creation_timestamp="creation_timestamp_value", description="description_value", end_time="end_time_value", http_error_message="http_error_message_value", http_error_status_code=2374, id=205, insert_time="insert_time_value", kind="kind_value", name="name_value", operation_group_id="operation_group_id_value", operation_type="operation_type_value", progress=885, region="region_value", self_link="self_link_value", start_time="start_time_value", status=compute.Operation.Status.DONE, status_message="status_message_value", target_id=947, target_link="target_link_value", user="user_value", zone="zone_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.delete_signed_url_key(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.Operation) assert response.client_operation_id == "client_operation_id_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.description == "description_value" assert response.end_time == "end_time_value" assert response.http_error_message == "http_error_message_value" assert response.http_error_status_code == 2374 assert response.id == 205 assert response.insert_time == "insert_time_value" assert response.kind == "kind_value" assert response.name == "name_value" assert response.operation_group_id == "operation_group_id_value" assert response.operation_type == "operation_type_value" assert response.progress == 885 assert response.region == "region_value" assert response.self_link == "self_link_value" assert response.start_time == "start_time_value" assert response.status == compute.Operation.Status.DONE assert response.status_message == "status_message_value" assert response.target_id == 947 assert response.target_link == "target_link_value" assert response.user == "user_value" assert response.zone == "zone_value" def test_delete_signed_url_key_rest_bad_request( transport: str = "rest", request_type=compute.DeleteSignedUrlKeyBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.delete_signed_url_key(request) def test_delete_signed_url_key_rest_from_dict(): test_delete_signed_url_key_rest(request_type=dict) def test_delete_signed_url_key_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1", "backend_bucket": "sample2"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket="backend_bucket_value", key_name="key_name_value", ) mock_args.update(sample_request) client.delete_signed_url_key(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets/{backend_bucket}/deleteSignedUrlKey" % client.transport._host, args[1], ) def test_delete_signed_url_key_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete_signed_url_key( compute.DeleteSignedUrlKeyBackendBucketRequest(), project="project_value", backend_bucket="backend_bucket_value", key_name="key_name_value", ) def test_get_rest( transport: str = "rest", request_type=compute.GetBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.BackendBucket( bucket_name="bucket_name_value", creation_timestamp="creation_timestamp_value", custom_response_headers=["custom_response_headers_value"], description="description_value", enable_cdn=True, id=205, kind="kind_value", name="name_value", self_link="self_link_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.BackendBucket.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.get(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.BackendBucket) assert response.bucket_name == "bucket_name_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.custom_response_headers == ["custom_response_headers_value"] assert response.description == "description_value" assert response.enable_cdn is True assert response.id == 205 assert response.kind == "kind_value" assert response.name == "name_value" assert response.self_link == "self_link_value" def test_get_rest_bad_request( transport: str = "rest", request_type=compute.GetBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.get(request) def test_get_rest_from_dict(): test_get_rest(request_type=dict) def test_get_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.BackendBucket() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.BackendBucket.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1", "backend_bucket": "sample2"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket="backend_bucket_value", ) mock_args.update(sample_request) client.get(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets/{backend_bucket}" % client.transport._host, args[1], ) def test_get_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get( compute.GetBackendBucketRequest(), project="project_value", backend_bucket="backend_bucket_value", ) def test_insert_rest( transport: str = "rest", request_type=compute.InsertBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1"} request_init["backend_bucket_resource"] = compute.BackendBucket( bucket_name="bucket_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation( client_operation_id="client_operation_id_value", creation_timestamp="creation_timestamp_value", description="description_value", end_time="end_time_value", http_error_message="http_error_message_value", http_error_status_code=2374, id=205, insert_time="insert_time_value", kind="kind_value", name="name_value", operation_group_id="operation_group_id_value", operation_type="operation_type_value", progress=885, region="region_value", self_link="self_link_value", start_time="start_time_value", status=compute.Operation.Status.DONE, status_message="status_message_value", target_id=947, target_link="target_link_value", user="user_value", zone="zone_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.insert(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.Operation) assert response.client_operation_id == "client_operation_id_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.description == "description_value" assert response.end_time == "end_time_value" assert response.http_error_message == "http_error_message_value" assert response.http_error_status_code == 2374 assert response.id == 205 assert response.insert_time == "insert_time_value" assert response.kind == "kind_value" assert response.name == "name_value" assert response.operation_group_id == "operation_group_id_value" assert response.operation_type == "operation_type_value" assert response.progress == 885 assert response.region == "region_value" assert response.self_link == "self_link_value" assert response.start_time == "start_time_value" assert response.status == compute.Operation.Status.DONE assert response.status_message == "status_message_value" assert response.target_id == 947 assert response.target_link == "target_link_value" assert response.user == "user_value" assert response.zone == "zone_value" def test_insert_rest_bad_request( transport: str = "rest", request_type=compute.InsertBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1"} request_init["backend_bucket_resource"] = compute.BackendBucket( bucket_name="bucket_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.insert(request) def test_insert_rest_from_dict(): test_insert_rest(request_type=dict) def test_insert_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket_resource=compute.BackendBucket( bucket_name="bucket_name_value" ), ) mock_args.update(sample_request) client.insert(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets" % client.transport._host, args[1], ) def test_insert_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.insert( compute.InsertBackendBucketRequest(), project="project_value", backend_bucket_resource=compute.BackendBucket( bucket_name="bucket_name_value" ), ) def test_list_rest( transport: str = "rest", request_type=compute.ListBackendBucketsRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1"} request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.BackendBucketList( id="id_value", kind="kind_value", next_page_token="next_page_token_value", self_link="self_link_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.BackendBucketList.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.list(request) # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListPager) assert response.id == "id_value" assert response.kind == "kind_value" assert response.next_page_token == "next_page_token_value" assert response.self_link == "self_link_value" def test_list_rest_bad_request( transport: str = "rest", request_type=compute.ListBackendBucketsRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1"} request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.list(request) def test_list_rest_from_dict(): test_list_rest(request_type=dict) def test_list_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.BackendBucketList() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.BackendBucketList.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1"} # get truthy value for each flattened field mock_args = dict(project="project_value",) mock_args.update(sample_request) client.list(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets" % client.transport._host, args[1], ) def test_list_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.list( compute.ListBackendBucketsRequest(), project="project_value", ) def test_list_rest_pager(): client = BackendBucketsClient(credentials=ga_credentials.AnonymousCredentials(),) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # TODO(kbandes): remove this mock unless there's a good reason for it. # with mock.patch.object(path_template, 'transcode') as transcode: # Set the response as a series of pages response = ( compute.BackendBucketList( items=[ compute.BackendBucket(), compute.BackendBucket(), compute.BackendBucket(), ], next_page_token="abc", ), compute.BackendBucketList(items=[], next_page_token="def",), compute.BackendBucketList( items=[compute.BackendBucket(),], next_page_token="ghi", ), compute.BackendBucketList( items=[compute.BackendBucket(), compute.BackendBucket(),], ), ) # Two responses for two calls response = response + response # Wrap the values into proper Response objs response = tuple(compute.BackendBucketList.to_json(x) for x in response) return_values = tuple(Response() for i in response) for return_val, response_val in zip(return_values, response): return_val._content = response_val.encode("UTF-8") return_val.status_code = 200 req.side_effect = return_values sample_request = {"project": "sample1"} pager = client.list(request=sample_request) results = list(pager) assert len(results) == 6 assert all(isinstance(i, compute.BackendBucket) for i in results) pages = list(client.list(request=sample_request).pages) for page_, token in zip(pages, ["abc", "def", "ghi", ""]): assert page_.raw_page.next_page_token == token def test_patch_rest( transport: str = "rest", request_type=compute.PatchBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request_init["backend_bucket_resource"] = compute.BackendBucket( bucket_name="bucket_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation( client_operation_id="client_operation_id_value", creation_timestamp="creation_timestamp_value", description="description_value", end_time="end_time_value", http_error_message="http_error_message_value", http_error_status_code=2374, id=205, insert_time="insert_time_value", kind="kind_value", name="name_value", operation_group_id="operation_group_id_value", operation_type="operation_type_value", progress=885, region="region_value", self_link="self_link_value", start_time="start_time_value", status=compute.Operation.Status.DONE, status_message="status_message_value", target_id=947, target_link="target_link_value", user="user_value", zone="zone_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.patch(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.Operation) assert response.client_operation_id == "client_operation_id_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.description == "description_value" assert response.end_time == "end_time_value" assert response.http_error_message == "http_error_message_value" assert response.http_error_status_code == 2374 assert response.id == 205 assert response.insert_time == "insert_time_value" assert response.kind == "kind_value" assert response.name == "name_value" assert response.operation_group_id == "operation_group_id_value" assert response.operation_type == "operation_type_value" assert response.progress == 885 assert response.region == "region_value" assert response.self_link == "self_link_value" assert response.start_time == "start_time_value" assert response.status == compute.Operation.Status.DONE assert response.status_message == "status_message_value" assert response.target_id == 947 assert response.target_link == "target_link_value" assert response.user == "user_value" assert response.zone == "zone_value" def test_patch_rest_bad_request( transport: str = "rest", request_type=compute.PatchBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request_init["backend_bucket_resource"] = compute.BackendBucket( bucket_name="bucket_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.patch(request) def test_patch_rest_from_dict(): test_patch_rest(request_type=dict) def test_patch_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1", "backend_bucket": "sample2"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket="backend_bucket_value", backend_bucket_resource=compute.BackendBucket( bucket_name="bucket_name_value" ), ) mock_args.update(sample_request) client.patch(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets/{backend_bucket}" % client.transport._host, args[1], ) def test_patch_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.patch( compute.PatchBackendBucketRequest(), project="project_value", backend_bucket="backend_bucket_value", backend_bucket_resource=compute.BackendBucket( bucket_name="bucket_name_value" ), ) def test_update_rest( transport: str = "rest", request_type=compute.UpdateBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request_init["backend_bucket_resource"] = compute.BackendBucket( bucket_name="bucket_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation( client_operation_id="client_operation_id_value", creation_timestamp="creation_timestamp_value", description="description_value", end_time="end_time_value", http_error_message="http_error_message_value", http_error_status_code=2374, id=205, insert_time="insert_time_value", kind="kind_value", name="name_value", operation_group_id="operation_group_id_value", operation_type="operation_type_value", progress=885, region="region_value", self_link="self_link_value", start_time="start_time_value", status=compute.Operation.Status.DONE, status_message="status_message_value", target_id=947, target_link="target_link_value", user="user_value", zone="zone_value", ) # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value response = client.update(request) # Establish that the response is the type that we expect. assert isinstance(response, compute.Operation) assert response.client_operation_id == "client_operation_id_value" assert response.creation_timestamp == "creation_timestamp_value" assert response.description == "description_value" assert response.end_time == "end_time_value" assert response.http_error_message == "http_error_message_value" assert response.http_error_status_code == 2374 assert response.id == 205 assert response.insert_time == "insert_time_value" assert response.kind == "kind_value" assert response.name == "name_value" assert response.operation_group_id == "operation_group_id_value" assert response.operation_type == "operation_type_value" assert response.progress == 885 assert response.region == "region_value" assert response.self_link == "self_link_value" assert response.start_time == "start_time_value" assert response.status == compute.Operation.Status.DONE assert response.status_message == "status_message_value" assert response.target_id == 947 assert response.target_link == "target_link_value" assert response.user == "user_value" assert response.zone == "zone_value" def test_update_rest_bad_request( transport: str = "rest", request_type=compute.UpdateBackendBucketRequest ): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # send a request that will satisfy transcoding request_init = {"project": "sample1", "backend_bucket": "sample2"} request_init["backend_bucket_resource"] = compute.BackendBucket( bucket_name="bucket_name_value" ) request = request_type(request_init) # Mock the http request call within the method and fake a BadRequest error. with mock.patch.object(Session, "request") as req, pytest.raises( core_exceptions.BadRequest ): # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 400 response_value.request = Request() req.return_value = response_value client.update(request) def test_update_rest_from_dict(): test_update_rest(request_type=dict) def test_update_rest_flattened(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Mock the http request call within the method and fake a response. with mock.patch.object(Session, "request") as req: # Designate an appropriate value for the returned response. return_value = compute.Operation() # Wrap the value into a proper Response obj response_value = Response() response_value.status_code = 200 json_return_value = compute.Operation.to_json(return_value) response_value._content = json_return_value.encode("UTF-8") req.return_value = response_value # get arguments that satisfy an http rule for this method sample_request = {"project": "sample1", "backend_bucket": "sample2"} # get truthy value for each flattened field mock_args = dict( project="project_value", backend_bucket="backend_bucket_value", backend_bucket_resource=compute.BackendBucket( bucket_name="bucket_name_value" ), ) mock_args.update(sample_request) client.update(**mock_args) # Establish that the underlying call was made with the expected # request object values. assert len(req.mock_calls) == 1 _, args, _ = req.mock_calls[0] assert path_template.validate( "https://%s/compute/v1/projects/{project}/global/backendBuckets/{backend_bucket}" % client.transport._host, args[1], ) def test_update_rest_flattened_error(transport: str = "rest"): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update( compute.UpdateBackendBucketRequest(), project="project_value", backend_bucket="backend_bucket_value", backend_bucket_resource=compute.BackendBucket( bucket_name="bucket_name_value" ), ) def test_credentials_transport_error(): # It is an error to provide credentials and a transport instance. transport = transports.BackendBucketsRestTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # It is an error to provide a credentials file and a transport instance. transport = transports.BackendBucketsRestTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = BackendBucketsClient( client_options={"credentials_file": "credentials.json"}, transport=transport, ) # It is an error to provide scopes and a transport instance. transport = transports.BackendBucketsRestTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = BackendBucketsClient( client_options={"scopes": ["1", "2"]}, transport=transport, ) def test_transport_instance(): # A client may be instantiated with a custom transport instance. transport = transports.BackendBucketsRestTransport( credentials=ga_credentials.AnonymousCredentials(), ) client = BackendBucketsClient(transport=transport) assert client.transport is transport @pytest.mark.parametrize("transport_class", [transports.BackendBucketsRestTransport,]) def test_transport_adc(transport_class): # Test default credentials are used if not provided. with mock.patch.object(google.auth, "default") as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class() adc.assert_called_once() def test_backend_buckets_base_transport_error(): # Passing both a credentials object and credentials_file should raise an error with pytest.raises(core_exceptions.DuplicateCredentialArgs): transport = transports.BackendBucketsTransport( credentials=ga_credentials.AnonymousCredentials(), credentials_file="credentials.json", ) def test_backend_buckets_base_transport(): # Instantiate the base transport. with mock.patch( "google.cloud.compute_v1.services.backend_buckets.transports.BackendBucketsTransport.__init__" ) as Transport: Transport.return_value = None transport = transports.BackendBucketsTransport( credentials=ga_credentials.AnonymousCredentials(), ) # Every method on the transport should just blindly # raise NotImplementedError. methods = ( "add_signed_url_key", "delete", "delete_signed_url_key", "get", "insert", "list", "patch", "update", ) for method in methods: with pytest.raises(NotImplementedError): getattr(transport, method)(request=object()) with pytest.raises(NotImplementedError): transport.close() def test_backend_buckets_base_transport_with_credentials_file(): # Instantiate the base transport with a credentials file with mock.patch.object( google.auth, "load_credentials_from_file", autospec=True ) as load_creds, mock.patch( "google.cloud.compute_v1.services.backend_buckets.transports.BackendBucketsTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None load_creds.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.BackendBucketsTransport( credentials_file="credentials.json", quota_project_id="octopus", ) load_creds.assert_called_once_with( "credentials.json", scopes=None, default_scopes=( "https://www.googleapis.com/auth/compute", "https://www.googleapis.com/auth/cloud-platform", ), quota_project_id="octopus", ) def test_backend_buckets_base_transport_with_adc(): # Test the default credentials are used if credentials and credentials_file are None. with mock.patch.object(google.auth, "default", autospec=True) as adc, mock.patch( "google.cloud.compute_v1.services.backend_buckets.transports.BackendBucketsTransport._prep_wrapped_messages" ) as Transport: Transport.return_value = None adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.BackendBucketsTransport() adc.assert_called_once() def test_backend_buckets_auth_adc(): # If no credentials are provided, we should use ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) BackendBucketsClient() adc.assert_called_once_with( scopes=None, default_scopes=( "https://www.googleapis.com/auth/compute", "https://www.googleapis.com/auth/cloud-platform", ), quota_project_id=None, ) def test_backend_buckets_http_transport_client_cert_source_for_mtls(): cred = ga_credentials.AnonymousCredentials() with mock.patch( "google.auth.transport.requests.AuthorizedSession.configure_mtls_channel" ) as mock_configure_mtls_channel: transports.BackendBucketsRestTransport( credentials=cred, client_cert_source_for_mtls=client_cert_source_callback ) mock_configure_mtls_channel.assert_called_once_with(client_cert_source_callback) def test_backend_buckets_host_no_port(): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions( api_endpoint="compute.googleapis.com" ), ) assert client.transport._host == "compute.googleapis.com:443" def test_backend_buckets_host_with_port(): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions( api_endpoint="compute.googleapis.com:8000" ), ) assert client.transport._host == "compute.googleapis.com:8000" def test_common_billing_account_path(): billing_account = "squid" expected = "billingAccounts/{billing_account}".format( billing_account=billing_account, ) actual = BackendBucketsClient.common_billing_account_path(billing_account) assert expected == actual def test_parse_common_billing_account_path(): expected = { "billing_account": "clam", } path = BackendBucketsClient.common_billing_account_path(**expected) # Check that the path construction is reversible. actual = BackendBucketsClient.parse_common_billing_account_path(path) assert expected == actual def test_common_folder_path(): folder = "whelk" expected = "folders/{folder}".format(folder=folder,) actual = BackendBucketsClient.common_folder_path(folder) assert expected == actual def test_parse_common_folder_path(): expected = { "folder": "octopus", } path = BackendBucketsClient.common_folder_path(**expected) # Check that the path construction is reversible. actual = BackendBucketsClient.parse_common_folder_path(path) assert expected == actual def test_common_organization_path(): organization = "oyster" expected = "organizations/{organization}".format(organization=organization,) actual = BackendBucketsClient.common_organization_path(organization) assert expected == actual def test_parse_common_organization_path(): expected = { "organization": "nudibranch", } path = BackendBucketsClient.common_organization_path(**expected) # Check that the path construction is reversible. actual = BackendBucketsClient.parse_common_organization_path(path) assert expected == actual def test_common_project_path(): project = "cuttlefish" expected = "projects/{project}".format(project=project,) actual = BackendBucketsClient.common_project_path(project) assert expected == actual def test_parse_common_project_path(): expected = { "project": "mussel", } path = BackendBucketsClient.common_project_path(**expected) # Check that the path construction is reversible. actual = BackendBucketsClient.parse_common_project_path(path) assert expected == actual def test_common_location_path(): project = "winkle" location = "nautilus" expected = "projects/{project}/locations/{location}".format( project=project, location=location, ) actual = BackendBucketsClient.common_location_path(project, location) assert expected == actual def test_parse_common_location_path(): expected = { "project": "scallop", "location": "abalone", } path = BackendBucketsClient.common_location_path(**expected) # Check that the path construction is reversible. actual = BackendBucketsClient.parse_common_location_path(path) assert expected == actual def test_client_withDEFAULT_CLIENT_INFO(): client_info = gapic_v1.client_info.ClientInfo() with mock.patch.object( transports.BackendBucketsTransport, "_prep_wrapped_messages" ) as prep: client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) with mock.patch.object( transports.BackendBucketsTransport, "_prep_wrapped_messages" ) as prep: transport_class = BackendBucketsClient.get_transport_class() transport = transport_class( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) def test_transport_close(): transports = { "rest": "_session", } for transport, close_name in transports.items(): client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport ) with mock.patch.object( type(getattr(client.transport, close_name)), "close" ) as close: with client: close.assert_not_called() close.assert_called_once() def test_client_ctx(): transports = [ "rest", ] for transport in transports: client = BackendBucketsClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport ) # Test client calls underlying transport. with mock.patch.object(type(client.transport), "close") as close: close.assert_not_called() with client: pass close.assert_called()
38.672526
116
0.689079
794732c144f962df5c34da9e89f7fe633ccfc5ce
1,295
py
Python
network.py
priyavrat-misra/fashion-mnist
9e9d18612b7556dbff5849be87cb35c296993d9e
[ "MIT" ]
1
2021-12-09T06:58:28.000Z
2021-12-09T06:58:28.000Z
network.py
priyavrat-misra/fashion-mnist
9e9d18612b7556dbff5849be87cb35c296993d9e
[ "MIT" ]
null
null
null
network.py
priyavrat-misra/fashion-mnist
9e9d18612b7556dbff5849be87cb35c296993d9e
[ "MIT" ]
null
null
null
import torch.nn as nn class Network(nn.Module): def __init__(self): super().__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=8, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(num_features=8), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=8, out_channels=16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(num_features=16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.fc1 = nn.Sequential( nn.Linear(in_features=7*7*16, out_features=128), nn.BatchNorm1d(num_features=128), nn.Dropout(0.2), nn.ReLU() ) self.fc2 = nn.Sequential( nn.Linear(in_features=128, out_features=64), nn.BatchNorm1d(num_features=64), nn.ReLU() ) self.out = nn.Linear(in_features=64, out_features=10) def forward(self, t): t = self.layer1(t) t = self.layer2(t) t = t.reshape(t.size(0), -1) t = self.fc1(t) t = self.fc2(t) t = self.out(t) return t
30.116279
61
0.522008
794733b463f811a61585dbc78228d7c99d4a57f7
1,400
py
Python
custom_components/smartthinq/__init__.py
csirk51/hass-smartthinq
bd59f776b445c4c0d5626a836711d3fe1d85edc2
[ "MIT" ]
null
null
null
custom_components/smartthinq/__init__.py
csirk51/hass-smartthinq
bd59f776b445c4c0d5626a836711d3fe1d85edc2
[ "MIT" ]
null
null
null
custom_components/smartthinq/__init__.py
csirk51/hass-smartthinq
bd59f776b445c4c0d5626a836711d3fe1d85edc2
[ "MIT" ]
null
null
null
""" Support for LG Smartthinq device. This is made for korean only. If you want to apply other county devices, you should change the code little bit. """ import logging import wideq import voluptuous as vol from homeassistant.const import ( CONF_TOKEN, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity REQUIREMENTS = ['https://github.com/csirk51/wideq/archive/master.zip#wideq'] DOMAIN = 'smartthinq' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_TOKEN): cv.string, }) }, extra=vol.ALLOW_EXTRA) LGE_DEVICES = 'lge_devices' _LOGGER = logging.getLogger(__name__) def setup(hass, config): import wideq _LOGGER.info("Creating new LGE component") if LGE_DEVICES not in hass.data: hass.data[LGE_DEVICES] = [] refresh_token = config[DOMAIN][CONF_TOKEN] client = wideq.Client.from_token(refresh_token) hass.data[CONF_TOKEN] = refresh_token for device in client.devices: device_id = device.id hass.data[LGE_DEVICES].append(device_id) return True class LGEDevice(Entity): def __init__(self, client, device): self._client = client self._device = device @property def name(self): return self._device.name @property def available(self): return True
22.222222
81
0.682143
794733d7b532de6b215695d5b56304168386af8d
14,510
py
Python
lib/python2.7/site-packages/pelican/settings.py
drpaneas/linuxed.gr
95676e9f18a234092656c61b73b9e6633f2e39ec
[ "MIT" ]
null
null
null
lib/python2.7/site-packages/pelican/settings.py
drpaneas/linuxed.gr
95676e9f18a234092656c61b73b9e6633f2e39ec
[ "MIT" ]
null
null
null
lib/python2.7/site-packages/pelican/settings.py
drpaneas/linuxed.gr
95676e9f18a234092656c61b73b9e6633f2e39ec
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function import six import copy import inspect import os import locale import logging try: # SourceFileLoader is the recommended way in 3.3+ from importlib.machinery import SourceFileLoader load_source = lambda name, path: SourceFileLoader(name, path).load_module() except ImportError: # but it does not exist in 3.2-, so fall back to imp import imp load_source = imp.load_source from os.path import isabs from pelican.log import LimitFilter logger = logging.getLogger(__name__) DEFAULT_THEME = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'themes', 'notmyidea') DEFAULT_CONFIG = { 'PATH': os.curdir, 'ARTICLE_PATHS': [''], 'ARTICLE_EXCLUDES': [], 'PAGE_PATHS': ['pages'], 'PAGE_EXCLUDES': [], 'THEME': DEFAULT_THEME, 'OUTPUT_PATH': 'output', 'READERS': {}, 'STATIC_PATHS': ['images'], 'STATIC_EXCLUDES': [], 'STATIC_EXCLUDE_SOURCES': True, 'THEME_STATIC_DIR': 'theme', 'THEME_STATIC_PATHS': ['static', ], 'FEED_ALL_ATOM': os.path.join('feeds', 'all.atom.xml'), 'CATEGORY_FEED_ATOM': os.path.join('feeds', '%s.atom.xml'), 'AUTHOR_FEED_ATOM': os.path.join('feeds', '%s.atom.xml'), 'AUTHOR_FEED_RSS': os.path.join('feeds', '%s.rss.xml'), 'TRANSLATION_FEED_ATOM': os.path.join('feeds', 'all-%s.atom.xml'), 'FEED_MAX_ITEMS': '', 'SITEURL': '', 'SITENAME': 'A Pelican Blog', 'DISPLAY_PAGES_ON_MENU': True, 'DISPLAY_CATEGORIES_ON_MENU': True, 'DOCUTILS_SETTINGS': {}, 'OUTPUT_SOURCES': False, 'OUTPUT_SOURCES_EXTENSION': '.text', 'USE_FOLDER_AS_CATEGORY': True, 'DEFAULT_CATEGORY': 'misc', 'WITH_FUTURE_DATES': True, 'CSS_FILE': 'main.css', 'NEWEST_FIRST_ARCHIVES': True, 'REVERSE_CATEGORY_ORDER': False, 'DELETE_OUTPUT_DIRECTORY': False, 'OUTPUT_RETENTION': (), 'ARTICLE_URL': '{slug}.html', 'ARTICLE_SAVE_AS': '{slug}.html', 'ARTICLE_ORDER_BY': 'slug', 'ARTICLE_LANG_URL': '{slug}-{lang}.html', 'ARTICLE_LANG_SAVE_AS': '{slug}-{lang}.html', 'DRAFT_URL': 'drafts/{slug}.html', 'DRAFT_SAVE_AS': os.path.join('drafts', '{slug}.html'), 'DRAFT_LANG_URL': 'drafts/{slug}-{lang}.html', 'DRAFT_LANG_SAVE_AS': os.path.join('drafts', '{slug}-{lang}.html'), 'PAGE_URL': 'pages/{slug}.html', 'PAGE_SAVE_AS': os.path.join('pages', '{slug}.html'), 'PAGE_ORDER_BY': 'basename', 'PAGE_LANG_URL': 'pages/{slug}-{lang}.html', 'PAGE_LANG_SAVE_AS': os.path.join('pages', '{slug}-{lang}.html'), 'STATIC_URL': '{path}', 'STATIC_SAVE_AS': '{path}', 'PDF_GENERATOR': False, 'PDF_STYLE_PATH': '', 'PDF_STYLE': 'twelvepoint', 'CATEGORY_URL': 'category/{slug}.html', 'CATEGORY_SAVE_AS': os.path.join('category', '{slug}.html'), 'TAG_URL': 'tag/{slug}.html', 'TAG_SAVE_AS': os.path.join('tag', '{slug}.html'), 'AUTHOR_URL': 'author/{slug}.html', 'AUTHOR_SAVE_AS': os.path.join('author', '{slug}.html'), 'PAGINATION_PATTERNS': [ (0, '{name}{number}{extension}', '{name}{number}{extension}'), ], 'YEAR_ARCHIVE_SAVE_AS': '', 'MONTH_ARCHIVE_SAVE_AS': '', 'DAY_ARCHIVE_SAVE_AS': '', 'RELATIVE_URLS': False, 'DEFAULT_LANG': 'en', 'TAG_CLOUD_STEPS': 4, 'TAG_CLOUD_MAX_ITEMS': 100, 'DIRECT_TEMPLATES': ('index', 'tags', 'categories', 'authors', 'archives'), 'EXTRA_TEMPLATES_PATHS': [], 'PAGINATED_DIRECT_TEMPLATES': ('index', ), 'PELICAN_CLASS': 'pelican.Pelican', 'DEFAULT_DATE_FORMAT': '%a %d %B %Y', 'DATE_FORMATS': {}, 'MD_EXTENSIONS': ['codehilite(css_class=highlight)', 'extra'], 'JINJA_EXTENSIONS': [], 'JINJA_FILTERS': {}, 'LOG_FILTER': [], 'LOCALE': [''], # defaults to user locale 'DEFAULT_PAGINATION': False, 'DEFAULT_ORPHANS': 0, 'DEFAULT_METADATA': (), 'FILENAME_METADATA': '(?P<date>\d{4}-\d{2}-\d{2}).*', 'PATH_METADATA': '', 'EXTRA_PATH_METADATA': {}, 'DEFAULT_STATUS': 'published', 'ARTICLE_PERMALINK_STRUCTURE': '', 'TYPOGRIFY': False, 'TYPOGRIFY_IGNORE_TAGS': [], 'SUMMARY_MAX_LENGTH': 50, 'PLUGIN_PATHS': [], 'PLUGINS': [], 'PYGMENTS_RST_OPTIONS': {}, 'TEMPLATE_PAGES': {}, 'IGNORE_FILES': ['.#*'], 'SLUG_SUBSTITUTIONS': (), 'INTRASITE_LINK_REGEX': '[{|](?P<what>.*?)[|}]', 'SLUGIFY_SOURCE': 'title', 'CACHE_CONTENT': True, 'CONTENT_CACHING_LAYER': 'reader', 'CACHE_PATH': 'cache', 'GZIP_CACHE': True, 'CHECK_MODIFIED_METHOD': 'mtime', 'LOAD_CONTENT_CACHE': True, 'AUTORELOAD_IGNORE_CACHE': False, 'WRITE_SELECTED': [], } PYGMENTS_RST_OPTIONS = None def read_settings(path=None, override=None): if path: local_settings = get_settings_from_file(path) # Make the paths relative to the settings file for p in ['PATH', 'OUTPUT_PATH', 'THEME', 'CACHE_PATH']: if p in local_settings and local_settings[p] is not None \ and not isabs(local_settings[p]): absp = os.path.abspath(os.path.normpath(os.path.join( os.path.dirname(path), local_settings[p]))) if p not in ('THEME') or os.path.exists(absp): local_settings[p] = absp if 'PLUGIN_PATH' in local_settings: logger.warning('PLUGIN_PATH setting has been replaced by ' 'PLUGIN_PATHS, moving it to the new setting name.') local_settings['PLUGIN_PATHS'] = local_settings['PLUGIN_PATH'] del local_settings['PLUGIN_PATH'] if isinstance(local_settings['PLUGIN_PATHS'], six.string_types): logger.warning("Defining PLUGIN_PATHS setting as string " "has been deprecated (should be a list)") local_settings['PLUGIN_PATHS'] = [local_settings['PLUGIN_PATHS']] elif local_settings['PLUGIN_PATHS'] is not None: local_settings['PLUGIN_PATHS'] = [os.path.abspath(os.path.normpath(os.path.join(os.path.dirname(path), pluginpath))) if not isabs(pluginpath) else pluginpath for pluginpath in local_settings['PLUGIN_PATHS']] else: local_settings = copy.deepcopy(DEFAULT_CONFIG) if override: local_settings.update(override) parsed_settings = configure_settings(local_settings) # This is because there doesn't seem to be a way to pass extra # parameters to docutils directive handlers, so we have to have a # variable here that we'll import from within Pygments.run (see # rstdirectives.py) to see what the user defaults were. global PYGMENTS_RST_OPTIONS PYGMENTS_RST_OPTIONS = parsed_settings.get('PYGMENTS_RST_OPTIONS', None) return parsed_settings def get_settings_from_module(module=None, default_settings=DEFAULT_CONFIG): """Loads settings from a module, returns a dictionary.""" context = copy.deepcopy(default_settings) if module is not None: context.update( (k, v) for k, v in inspect.getmembers(module) if k.isupper()) return context def get_settings_from_file(path, default_settings=DEFAULT_CONFIG): """Loads settings from a file path, returning a dict.""" name, ext = os.path.splitext(os.path.basename(path)) module = load_source(name, path) return get_settings_from_module(module, default_settings=default_settings) def configure_settings(settings): """Provide optimizations, error checking, and warnings for the given settings. Also, specify the log messages to be ignored. """ if not 'PATH' in settings or not os.path.isdir(settings['PATH']): raise Exception('You need to specify a path containing the content' ' (see pelican --help for more information)') # specify the log messages to be ignored LimitFilter._ignore.update(set(settings.get('LOG_FILTER', DEFAULT_CONFIG['LOG_FILTER']))) # lookup the theme in "pelican/themes" if the given one doesn't exist if not os.path.isdir(settings['THEME']): theme_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'themes', settings['THEME']) if os.path.exists(theme_path): settings['THEME'] = theme_path else: raise Exception("Could not find the theme %s" % settings['THEME']) # make paths selected for writing absolute if necessary settings['WRITE_SELECTED'] = [ os.path.abspath(path) for path in settings.get('WRITE_SELECTED', DEFAULT_CONFIG['WRITE_SELECTED']) ] # standardize strings to lowercase strings for key in [ 'DEFAULT_LANG', ]: if key in settings: settings[key] = settings[key].lower() # standardize strings to lists for key in [ 'LOCALE', ]: if key in settings and isinstance(settings[key], six.string_types): settings[key] = [settings[key]] # check settings that must be a particular type for key, types in [ ('OUTPUT_SOURCES_EXTENSION', six.string_types), ('FILENAME_METADATA', six.string_types), ]: if key in settings and not isinstance(settings[key], types): value = settings.pop(key) logger.warn('Detected misconfigured %s (%s), ' 'falling back to the default (%s)', key, value, DEFAULT_CONFIG[key]) # try to set the different locales, fallback on the default. locales = settings.get('LOCALE', DEFAULT_CONFIG['LOCALE']) for locale_ in locales: try: locale.setlocale(locale.LC_ALL, str(locale_)) break # break if it is successful except locale.Error: pass else: logger.warning("LOCALE option doesn't contain a correct value") if ('SITEURL' in settings): # If SITEURL has a trailing slash, remove it and provide a warning siteurl = settings['SITEURL'] if (siteurl.endswith('/')): settings['SITEURL'] = siteurl[:-1] logger.warning("Removed extraneous trailing slash from SITEURL.") # If SITEURL is defined but FEED_DOMAIN isn't, # set FEED_DOMAIN to SITEURL if not 'FEED_DOMAIN' in settings: settings['FEED_DOMAIN'] = settings['SITEURL'] # check content caching layer and warn of incompatibilities if (settings.get('CACHE_CONTENT', False) and settings.get('CONTENT_CACHING_LAYER', '') == 'generator' and settings.get('WITH_FUTURE_DATES', DEFAULT_CONFIG['WITH_FUTURE_DATES'])): logger.warning('WITH_FUTURE_DATES conflicts with ' "CONTENT_CACHING_LAYER set to 'generator', " "use 'reader' layer instead") # Warn if feeds are generated with both SITEURL & FEED_DOMAIN undefined feed_keys = [ 'FEED_ATOM', 'FEED_RSS', 'FEED_ALL_ATOM', 'FEED_ALL_RSS', 'CATEGORY_FEED_ATOM', 'CATEGORY_FEED_RSS', 'AUTHOR_FEED_ATOM', 'AUTHOR_FEED_RSS', 'TAG_FEED_ATOM', 'TAG_FEED_RSS', 'TRANSLATION_FEED_ATOM', 'TRANSLATION_FEED_RSS', ] if any(settings.get(k) for k in feed_keys): if not settings.get('SITEURL'): logger.warning('Feeds generated without SITEURL set properly may' ' not be valid') if not 'TIMEZONE' in settings: logger.warning( 'No timezone information specified in the settings. Assuming' ' your timezone is UTC for feed generation. Check ' 'http://docs.getpelican.com/en/latest/settings.html#timezone ' 'for more information') # fix up pagination rules from pelican.paginator import PaginationRule pagination_rules = [ PaginationRule(*r) for r in settings.get( 'PAGINATION_PATTERNS', DEFAULT_CONFIG['PAGINATION_PATTERNS'], ) ] settings['PAGINATION_PATTERNS'] = sorted( pagination_rules, key=lambda r: r[0], ) # move {ARTICLE,PAGE}_DIR -> {ARTICLE,PAGE}_PATHS for key in ['ARTICLE', 'PAGE']: old_key = key + '_DIR' new_key = key + '_PATHS' if old_key in settings: logger.warning('Deprecated setting %s, moving it to %s list', old_key, new_key) settings[new_key] = [settings[old_key]] # also make a list del settings[old_key] # Save people from accidentally setting a string rather than a list path_keys = ( 'ARTICLE_EXCLUDES', 'DEFAULT_METADATA', 'DIRECT_TEMPLATES', 'EXTRA_TEMPLATES_PATHS', 'FILES_TO_COPY', 'IGNORE_FILES', 'JINJA_EXTENSIONS', 'PAGINATED_DIRECT_TEMPLATES', 'PLUGINS', 'STATIC_EXCLUDES', 'STATIC_PATHS', 'THEME_STATIC_PATHS', 'ARTICLE_PATHS', 'PAGE_PATHS', ) for PATH_KEY in filter(lambda k: k in settings, path_keys): if isinstance(settings[PATH_KEY], six.string_types): logger.warning("Detected misconfiguration with %s setting " "(must be a list), falling back to the default", PATH_KEY) settings[PATH_KEY] = DEFAULT_CONFIG[PATH_KEY] # Add {PAGE,ARTICLE}_PATHS to {ARTICLE,PAGE}_EXCLUDES mutually_exclusive = ('ARTICLE', 'PAGE') for type_1, type_2 in [mutually_exclusive, mutually_exclusive[::-1]]: try: includes = settings[type_1 + '_PATHS'] excludes = settings[type_2 + '_EXCLUDES'] for path in includes: if path not in excludes: excludes.append(path) except KeyError: continue # setting not specified, nothing to do for old, new, doc in [ ('LESS_GENERATOR', 'the Webassets plugin', None), ('FILES_TO_COPY', 'STATIC_PATHS and EXTRA_PATH_METADATA', 'https://github.com/getpelican/pelican/blob/master/docs/settings.rst#path-metadata'), ]: if old in settings: message = 'The {} setting has been removed in favor of {}'.format( old, new) if doc: message += ', see {} for details'.format(doc) logger.warning(message) return settings
37.984293
132
0.617298
794734326ea80688441217658443c159a118c41b
33,961
py
Python
cinder/volume/drivers/rbd.py
oodrive/cinder
40b43d6698128ab26b056586e0a5c5e818e21c11
[ "Apache-2.0" ]
1
2015-11-25T10:18:28.000Z
2015-11-25T10:18:28.000Z
cinder/volume/drivers/rbd.py
oodrive/cinder
40b43d6698128ab26b056586e0a5c5e818e21c11
[ "Apache-2.0" ]
null
null
null
cinder/volume/drivers/rbd.py
oodrive/cinder
40b43d6698128ab26b056586e0a5c5e818e21c11
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """RADOS Block Device Driver""" from __future__ import absolute_import import io import json import os import tempfile import urllib from oslo.config import cfg from cinder import exception from cinder.image import image_utils from cinder.openstack.common import fileutils from cinder.openstack.common import log as logging from cinder.openstack.common import strutils from cinder import units from cinder.volume import driver try: import rados import rbd except ImportError: rados = None rbd = None LOG = logging.getLogger(__name__) rbd_opts = [ cfg.StrOpt('rbd_pool', default='rbd', help='the RADOS pool in which rbd volumes are stored'), cfg.StrOpt('rbd_user', default=None, help='the RADOS client name for accessing rbd volumes ' '- only set when using cephx authentication'), cfg.StrOpt('rbd_ceph_conf', default='', # default determined by librados help='path to the ceph configuration file to use'), cfg.BoolOpt('rbd_flatten_volume_from_snapshot', default=False, help='flatten volumes created from snapshots to remove ' 'dependency'), cfg.StrOpt('rbd_secret_uuid', default=None, help='the libvirt uuid of the secret for the rbd_user' 'volumes'), cfg.StrOpt('volume_tmp_dir', default=None, help='where to store temporary image files if the volume ' 'driver does not write them directly to the volume'), cfg.IntOpt('rbd_max_clone_depth', default=5, help='maximum number of nested clones that can be taken of a ' 'volume before enforcing a flatten prior to next clone. ' 'A value of zero disables cloning'), cfg.IntOpt('rados_connect_timeout', default=-1, help=_('Timeout value (in seconds) used when connecting to ' 'ceph cluster. If value < 0, no timeout is set and ' 'default librados value is used.'))] CONF = cfg.CONF CONF.register_opts(rbd_opts) def ascii_str(string): """Convert a string to ascii, or return None if the input is None. This is useful when a parameter is None by default, or a string. LibRBD only accepts ascii, hence the need for conversion. """ if string is None: return string return str(string) class RBDImageMetadata(object): """RBD image metadata to be used with RBDImageIOWrapper.""" def __init__(self, image, pool, user, conf): self.image = image self.pool = str(pool) self.user = str(user) self.conf = str(conf) class RBDImageIOWrapper(io.RawIOBase): """Enables LibRBD.Image objects to be treated as Python IO objects. Calling unimplemented interfaces will raise IOError. """ def __init__(self, rbd_meta): super(RBDImageIOWrapper, self).__init__() self._rbd_meta = rbd_meta self._offset = 0 def _inc_offset(self, length): self._offset += length @property def rbd_image(self): return self._rbd_meta.image @property def rbd_user(self): return self._rbd_meta.user @property def rbd_pool(self): return self._rbd_meta.pool @property def rbd_conf(self): return self._rbd_meta.conf def read(self, length=None): offset = self._offset total = self._rbd_meta.image.size() # NOTE(dosaboy): posix files do not barf if you read beyond their # length (they just return nothing) but rbd images do so we need to # return empty string if we have reached the end of the image. if (offset >= total): return '' if length is None: length = total if (offset + length) > total: length = total - offset self._inc_offset(length) return self._rbd_meta.image.read(int(offset), int(length)) def write(self, data): self._rbd_meta.image.write(data, self._offset) self._inc_offset(len(data)) def seekable(self): return True def seek(self, offset, whence=0): if whence == 0: new_offset = offset elif whence == 1: new_offset = self._offset + offset elif whence == 2: new_offset = self._rbd_meta.image.size() new_offset += offset else: raise IOError(_("Invalid argument - whence=%s not supported") % (whence)) if (new_offset < 0): raise IOError(_("Invalid argument")) self._offset = new_offset def tell(self): return self._offset def flush(self): try: self._rbd_meta.image.flush() except AttributeError: LOG.warning(_("flush() not supported in this version of librbd")) def fileno(self): """RBD does not have support for fileno() so we raise IOError. Raising IOError is recommended way to notify caller that interface is not supported - see http://docs.python.org/2/library/io.html#io.IOBase """ raise IOError(_("fileno() not supported by RBD()")) # NOTE(dosaboy): if IO object is not closed explicitly, Python auto closes # it which, if this is not overridden, calls flush() prior to close which # in this case is unwanted since the rbd image may have been closed prior # to the autoclean - currently triggering a segfault in librbd. def close(self): pass class RBDVolumeProxy(object): """Context manager for dealing with an existing rbd volume. This handles connecting to rados and opening an ioctx automatically, and otherwise acts like a librbd Image object. The underlying librados client and ioctx can be accessed as the attributes 'client' and 'ioctx'. """ def __init__(self, driver, name, pool=None, snapshot=None, read_only=False): client, ioctx = driver._connect_to_rados(pool) try: self.volume = driver.rbd.Image(ioctx, str(name), snapshot=ascii_str(snapshot), read_only=read_only) except driver.rbd.Error: LOG.exception(_("error opening rbd image %s"), name) driver._disconnect_from_rados(client, ioctx) raise self.driver = driver self.client = client self.ioctx = ioctx def __enter__(self): return self def __exit__(self, type_, value, traceback): try: self.volume.close() finally: self.driver._disconnect_from_rados(self.client, self.ioctx) def __getattr__(self, attrib): return getattr(self.volume, attrib) class RADOSClient(object): """Context manager to simplify error handling for connecting to ceph.""" def __init__(self, driver, pool=None): self.driver = driver self.cluster, self.ioctx = driver._connect_to_rados(pool) def __enter__(self): return self def __exit__(self, type_, value, traceback): self.driver._disconnect_from_rados(self.cluster, self.ioctx) class RBDDriver(driver.VolumeDriver): """Implements RADOS block device (RBD) volume commands.""" VERSION = '1.1.0' def __init__(self, *args, **kwargs): super(RBDDriver, self).__init__(*args, **kwargs) self.configuration.append_config_values(rbd_opts) self._stats = {} # allow overrides for testing self.rados = kwargs.get('rados', rados) self.rbd = kwargs.get('rbd', rbd) def check_for_setup_error(self): """Returns an error if prerequisites aren't met.""" if rados is None: msg = _('rados and rbd python libraries not found') raise exception.VolumeBackendAPIException(data=msg) try: with RADOSClient(self): pass except self.rados.Error: msg = _('error connecting to ceph cluster') LOG.exception(msg) raise exception.VolumeBackendAPIException(data=msg) def _ceph_args(self): args = [] if self.configuration.rbd_user: args.extend(['--id', self.configuration.rbd_user]) if self.configuration.rbd_ceph_conf: args.extend(['--conf', self.configuration.rbd_ceph_conf]) return args def _connect_to_rados(self, pool=None): ascii_user = ascii_str(self.configuration.rbd_user) ascii_conf = ascii_str(self.configuration.rbd_ceph_conf) client = self.rados.Rados(rados_id=ascii_user, conffile=ascii_conf) try: if self.configuration.rados_connect_timeout >= 0: client.connect( timeout=self.configuration.rados_connect_timeout) else: client.connect() pool_to_open = str(pool or self.configuration.rbd_pool) ioctx = client.open_ioctx(pool_to_open) return client, ioctx except self.rados.Error: # shutdown cannot raise an exception client.shutdown() raise def _disconnect_from_rados(self, client, ioctx): # closing an ioctx cannot raise an exception ioctx.close() client.shutdown() def _get_backup_snaps(self, rbd_image): """Get list of any backup snapshots that exist on this volume. There should only ever be one but accept all since they need to be deleted before the volume can be. """ # NOTE(dosaboy): we do the import here otherwise we get import conflict # issues between the rbd driver and the ceph backup driver. These # issues only seem to occur when NOT using them together and are # triggered when the ceph backup driver imports the rbd volume driver. from cinder.backup.drivers import ceph return ceph.CephBackupDriver.get_backup_snaps(rbd_image) def _get_mon_addrs(self): args = ['ceph', 'mon', 'dump', '--format=json'] args.extend(self._ceph_args()) out, _ = self._execute(*args) lines = out.split('\n') if lines[0].startswith('dumped monmap epoch'): lines = lines[1:] monmap = json.loads('\n'.join(lines)) addrs = [mon['addr'] for mon in monmap['mons']] hosts = [] ports = [] for addr in addrs: host_port = addr[:addr.rindex('/')] host, port = host_port.rsplit(':', 1) hosts.append(host.strip('[]')) ports.append(port) return hosts, ports def _update_volume_stats(self): stats = { 'vendor_name': 'Open Source', 'driver_version': self.VERSION, 'storage_protocol': 'ceph', 'total_capacity_gb': 'unknown', 'free_capacity_gb': 'unknown', 'reserved_percentage': 0, } backend_name = self.configuration.safe_get('volume_backend_name') stats['volume_backend_name'] = backend_name or 'RBD' try: with RADOSClient(self) as client: new_stats = client.cluster.get_cluster_stats() stats['total_capacity_gb'] = new_stats['kb'] / units.MiB stats['free_capacity_gb'] = new_stats['kb_avail'] / units.MiB except self.rados.Error: # just log and return unknown capacities LOG.exception(_('error refreshing volume stats')) self._stats = stats def get_volume_stats(self, refresh=False): """Return the current state of the volume service. If 'refresh' is True, run the update first. """ if refresh: self._update_volume_stats() return self._stats def _supports_layering(self): return hasattr(self.rbd, 'RBD_FEATURE_LAYERING') def _get_clone_depth(self, client, volume_name, depth=0): """Returns the number of ancestral clones (if any) of the given volume. """ parent_volume = self.rbd.Image(client.ioctx, volume_name) try: pool, parent, snap = self._get_clone_info(parent_volume, volume_name) finally: parent_volume.close() if not parent: return depth # If clone depth was reached, flatten should have occurred so if it has # been exceeded then something has gone wrong. if depth > CONF.rbd_max_clone_depth: raise Exception(_("clone depth exceeds limit of %s") % (CONF.rbd_max_clone_depth)) return self._get_clone_depth(client, parent, depth + 1) def create_cloned_volume(self, volume, src_vref): """Create a cloned volume from another volume. Since we are cloning from a volume and not a snapshot, we must first create a snapshot of the source volume. The user has the option to limit how long a volume's clone chain can be by setting rbd_max_clone_depth. If a clone is made of another clone and that clone has rbd_max_clone_depth clones behind it, the source volume will be flattened. """ src_name = str(src_vref['name']) dest_name = str(volume['name']) flatten_parent = False # Do full copy if requested if CONF.rbd_max_clone_depth <= 0: with RBDVolumeProxy(self, src_name, read_only=True) as vol: vol.copy(vol.ioctx, dest_name) return # Otherwise do COW clone. with RADOSClient(self) as client: depth = self._get_clone_depth(client, src_name) # If source volume is a clone and rbd_max_clone_depth reached, # flatten the source before cloning. Zero rbd_max_clone_depth means # infinite is allowed. if depth == CONF.rbd_max_clone_depth: LOG.debug(_("maximum clone depth (%d) has been reached - " "flattening source volume") % (CONF.rbd_max_clone_depth)) flatten_parent = True src_volume = self.rbd.Image(client.ioctx, src_name) try: # First flatten source volume if required. if flatten_parent: pool, parent, snap = self._get_clone_info(src_volume, src_name) # Flatten source volume LOG.debug(_("flattening source volume %s") % (src_name)) src_volume.flatten() # Delete parent clone snap parent_volume = self.rbd.Image(client.ioctx, parent) try: parent_volume.unprotect_snap(snap) parent_volume.remove_snap(snap) finally: parent_volume.close() # Create new snapshot of source volume clone_snap = "%s.clone_snap" % dest_name LOG.debug(_("creating snapshot='%s'") % (clone_snap)) src_volume.create_snap(clone_snap) src_volume.protect_snap(clone_snap) except Exception as exc: # Only close if exception since we still need it. src_volume.close() raise exc # Now clone source volume snapshot try: LOG.debug(_("cloning '%(src_vol)s@%(src_snap)s' to " "'%(dest)s'") % {'src_vol': src_name, 'src_snap': clone_snap, 'dest': dest_name}) self.rbd.RBD().clone(client.ioctx, src_name, clone_snap, client.ioctx, dest_name, features=self.rbd.RBD_FEATURE_LAYERING) except Exception as exc: src_volume.unprotect_snap(clone_snap) src_volume.remove_snap(clone_snap) raise exc finally: src_volume.close() LOG.debug(_("clone created successfully")) def create_volume(self, volume): """Creates a logical volume.""" if int(volume['size']) == 0: size = 100 * units.MiB else: size = int(volume['size']) * units.GiB LOG.debug(_("creating volume '%s'") % (volume['name'])) old_format = True features = 0 if self._supports_layering(): old_format = False features = self.rbd.RBD_FEATURE_LAYERING with RADOSClient(self) as client: self.rbd.RBD().create(client.ioctx, str(volume['name']), size, old_format=old_format, features=features) def _flatten(self, pool, volume_name): LOG.debug(_('flattening %(pool)s/%(img)s') % dict(pool=pool, img=volume_name)) with RBDVolumeProxy(self, volume_name, pool) as vol: vol.flatten() def _clone(self, volume, src_pool, src_image, src_snap): LOG.debug(_('cloning %(pool)s/%(img)s@%(snap)s to %(dst)s') % dict(pool=src_pool, img=src_image, snap=src_snap, dst=volume['name'])) with RADOSClient(self, src_pool) as src_client: with RADOSClient(self) as dest_client: self.rbd.RBD().clone(src_client.ioctx, str(src_image), str(src_snap), dest_client.ioctx, str(volume['name']), features=self.rbd.RBD_FEATURE_LAYERING) def _resize(self, volume, **kwargs): size = kwargs.get('size', None) if not size: size = int(volume['size']) * units.GiB with RBDVolumeProxy(self, volume['name']) as vol: vol.resize(size) def create_volume_from_snapshot(self, volume, snapshot): """Creates a volume from a snapshot.""" self._clone(volume, self.configuration.rbd_pool, snapshot['volume_name'], snapshot['name']) if self.configuration.rbd_flatten_volume_from_snapshot: self._flatten(self.configuration.rbd_pool, volume['name']) if int(volume['size']): self._resize(volume) def _delete_backup_snaps(self, rbd_image): backup_snaps = self._get_backup_snaps(rbd_image) if backup_snaps: for snap in backup_snaps: rbd_image.remove_snap(snap['name']) else: LOG.debug(_("volume has no backup snaps")) def _get_clone_info(self, volume, volume_name, snap=None): """If volume is a clone, return its parent info. Returns a tuple of (pool, parent, snap). A snapshot may optionally be provided for the case where a cloned volume has been flattened but it's snapshot still depends on the parent. """ try: snap and volume.set_snap(snap) pool, parent, parent_snap = tuple(volume.parent_info()) snap and volume.set_snap(None) # Strip the tag off the end of the volume name since it will not be # in the snap name. if volume_name.endswith('.deleted'): volume_name = volume_name[:-len('.deleted')] # Now check the snap name matches. if parent_snap == "%s.clone_snap" % volume_name: return pool, parent, parent_snap except self.rbd.ImageNotFound: LOG.debug(_("volume %s is not a clone") % volume_name) volume.set_snap(None) return (None, None, None) def _delete_clone_parent_refs(self, client, parent_name, parent_snap): """Walk back up the clone chain and delete references. Deletes references i.e. deleted parent volumes and snapshots. """ parent_rbd = self.rbd.Image(client.ioctx, parent_name) parent_has_snaps = False try: # Check for grandparent _pool, g_parent, g_parent_snap = self._get_clone_info(parent_rbd, parent_name, parent_snap) LOG.debug(_("deleting parent snapshot %s") % (parent_snap)) parent_rbd.unprotect_snap(parent_snap) parent_rbd.remove_snap(parent_snap) parent_has_snaps = bool(list(parent_rbd.list_snaps())) finally: parent_rbd.close() # If parent has been deleted in Cinder, delete the silent reference and # keep walking up the chain if it is itself a clone. if (not parent_has_snaps) and parent_name.endswith('.deleted'): LOG.debug(_("deleting parent %s") % (parent_name)) self.rbd.RBD().remove(client.ioctx, parent_name) # Now move up to grandparent if there is one if g_parent: self._delete_clone_parent_refs(client, g_parent, g_parent_snap) def delete_volume(self, volume): """Deletes a logical volume.""" # NOTE(dosaboy): this was broken by commit cbe1d5f. Ensure names are # utf-8 otherwise librbd will barf. volume_name = strutils.safe_encode(volume['name']) with RADOSClient(self) as client: try: rbd_image = self.rbd.Image(client.ioctx, volume_name) except self.rbd.ImageNotFound: LOG.info(_("volume %s no longer exists in backend") % (volume_name)) return clone_snap = None parent = None # Ensure any backup snapshots are deleted self._delete_backup_snaps(rbd_image) # If the volume has non-clone snapshots this delete is expected to # raise VolumeIsBusy so do so straight away. try: snaps = rbd_image.list_snaps() for snap in snaps: if snap['name'].endswith('.clone_snap'): LOG.debug(_("volume has clone snapshot(s)")) # We grab one of these and use it when fetching parent # info in case the volume has been flattened. clone_snap = snap['name'] break raise exception.VolumeIsBusy(volume_name=volume_name) # Determine if this volume is itself a clone pool, parent, parent_snap = self._get_clone_info(rbd_image, volume_name, clone_snap) finally: rbd_image.close() if clone_snap is None: LOG.debug(_("deleting rbd volume %s") % (volume_name)) try: self.rbd.RBD().remove(client.ioctx, volume_name) except self.rbd.ImageBusy: msg = (_("ImageBusy error raised while deleting rbd " "volume. This may have been caused by a " "connection from a client that has crashed and, " "if so, may be resolved by retrying the delete " "after 30 seconds has elapsed.")) LOG.warn(msg) # Now raise this so that volume stays available so that we # delete can be retried. raise exception.VolumeIsBusy(msg, volume_name=volume_name) except self.rbd.ImageNotFound: msg = (_("RBD volume %s not found, allowing delete " "operation to proceed.") % volume_name) LOG.info(msg) return # If it is a clone, walk back up the parent chain deleting # references. if parent: LOG.debug(_("volume is a clone so cleaning references")) self._delete_clone_parent_refs(client, parent, parent_snap) else: # If the volume has copy-on-write clones we will not be able to # delete it. Instead we will keep it as a silent volume which # will be deleted when it's snapshot and clones are deleted. new_name = "%s.deleted" % (volume_name) self.rbd.RBD().rename(client.ioctx, volume_name, new_name) def create_snapshot(self, snapshot): """Creates an rbd snapshot.""" with RBDVolumeProxy(self, snapshot['volume_name']) as volume: snap = str(snapshot['name']) volume.create_snap(snap) if self._supports_layering(): volume.protect_snap(snap) def delete_snapshot(self, snapshot): """Deletes an rbd snapshot.""" # NOTE(dosaboy): this was broken by commit cbe1d5f. Ensure names are # utf-8 otherwise librbd will barf. volume_name = strutils.safe_encode(snapshot['volume_name']) snap_name = strutils.safe_encode(snapshot['name']) with RBDVolumeProxy(self, volume_name) as volume: if self._supports_layering(): try: volume.unprotect_snap(snap_name) except self.rbd.ImageBusy: raise exception.SnapshotIsBusy(snapshot_name=snap_name) volume.remove_snap(snap_name) def ensure_export(self, context, volume): """Synchronously recreates an export for a logical volume.""" pass def create_export(self, context, volume): """Exports the volume.""" pass def remove_export(self, context, volume): """Removes an export for a logical volume.""" pass def initialize_connection(self, volume, connector): hosts, ports = self._get_mon_addrs() data = { 'driver_volume_type': 'rbd', 'data': { 'name': '%s/%s' % (self.configuration.rbd_pool, volume['name']), 'hosts': hosts, 'ports': ports, 'auth_enabled': (self.configuration.rbd_user is not None), 'auth_username': self.configuration.rbd_user, 'secret_type': 'ceph', 'secret_uuid': self.configuration.rbd_secret_uuid, } } LOG.debug(_('connection data: %s'), data) return data def terminate_connection(self, volume, connector, **kwargs): pass def _parse_location(self, location): prefix = 'rbd://' if not location.startswith(prefix): reason = _('Not stored in rbd') raise exception.ImageUnacceptable(image_id=location, reason=reason) pieces = map(urllib.unquote, location[len(prefix):].split('/')) if any(map(lambda p: p == '', pieces)): reason = _('Blank components') raise exception.ImageUnacceptable(image_id=location, reason=reason) if len(pieces) != 4: reason = _('Not an rbd snapshot') raise exception.ImageUnacceptable(image_id=location, reason=reason) return pieces def _get_fsid(self): with RADOSClient(self) as client: return client.cluster.get_fsid() def _is_cloneable(self, image_location, image_meta): try: fsid, pool, image, snapshot = self._parse_location(image_location) except exception.ImageUnacceptable as e: LOG.debug(_('not cloneable: %s'), e) return False if self._get_fsid() != fsid: reason = _('%s is in a different ceph cluster') % image_location LOG.debug(reason) return False if image_meta['disk_format'] != 'raw': reason = _("rbd image clone requires image format to be " "'raw' but image {0} is '{1}'").format( image_location, image_meta['disk_format']) LOG.debug(reason) return False # check that we can read the image try: with RBDVolumeProxy(self, image, pool=pool, snapshot=snapshot, read_only=True): return True except self.rbd.Error as e: LOG.debug(_('Unable to open image %(loc)s: %(err)s') % dict(loc=image_location, err=e)) return False def clone_image(self, volume, image_location, image_id, image_meta): image_location = image_location[0] if image_location else None if image_location is None or not self._is_cloneable( image_location, image_meta): return ({}, False) prefix, pool, image, snapshot = self._parse_location(image_location) self._clone(volume, pool, image, snapshot) self._resize(volume) return {'provider_location': None}, True def _ensure_tmp_exists(self): tmp_dir = self.configuration.volume_tmp_dir if tmp_dir and not os.path.exists(tmp_dir): os.makedirs(tmp_dir) def copy_image_to_volume(self, context, volume, image_service, image_id): self._ensure_tmp_exists() tmp_dir = self.configuration.volume_tmp_dir with tempfile.NamedTemporaryFile(dir=tmp_dir) as tmp: image_utils.fetch_to_raw(context, image_service, image_id, tmp.name, self.configuration.volume_dd_blocksize, size=volume['size']) self.delete_volume(volume) # keep using the command line import instead of librbd since it # detects zeroes to preserve sparseness in the image args = ['rbd', 'import', '--pool', self.configuration.rbd_pool, tmp.name, volume['name']] if self._supports_layering(): args.append('--new-format') args.extend(self._ceph_args()) self._try_execute(*args) self._resize(volume) def copy_volume_to_image(self, context, volume, image_service, image_meta): self._ensure_tmp_exists() tmp_dir = self.configuration.volume_tmp_dir or '/tmp' tmp_file = os.path.join(tmp_dir, volume['name'] + '-' + image_meta['id']) with fileutils.remove_path_on_error(tmp_file): args = ['rbd', 'export', '--pool', self.configuration.rbd_pool, volume['name'], tmp_file] args.extend(self._ceph_args()) self._try_execute(*args) image_utils.upload_volume(context, image_service, image_meta, tmp_file) os.unlink(tmp_file) def backup_volume(self, context, backup, backup_service): """Create a new backup from an existing volume.""" volume = self.db.volume_get(context, backup['volume_id']) pool = self.configuration.rbd_pool with RBDVolumeProxy(self, volume['name'], pool) as rbd_image: rbd_meta = RBDImageMetadata(rbd_image, self.configuration.rbd_pool, self.configuration.rbd_user, self.configuration.rbd_ceph_conf) rbd_fd = RBDImageIOWrapper(rbd_meta) backup_service.backup(backup, rbd_fd) LOG.debug(_("volume backup complete.")) def restore_backup(self, context, backup, volume, backup_service): """Restore an existing backup to a new or existing volume.""" pool = self.configuration.rbd_pool with RBDVolumeProxy(self, volume['name'], pool) as rbd_image: rbd_meta = RBDImageMetadata(rbd_image, self.configuration.rbd_pool, self.configuration.rbd_user, self.configuration.rbd_ceph_conf) rbd_fd = RBDImageIOWrapper(rbd_meta) backup_service.restore(backup, volume['id'], rbd_fd) LOG.debug(_("volume restore complete.")) def extend_volume(self, volume, new_size): """Extend an existing volume.""" old_size = volume['size'] try: size = int(new_size) * units.GiB self._resize(volume, size=size) except Exception: msg = _('Failed to Extend Volume ' '%(volname)s') % {'volname': volume['name']} LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) LOG.debug(_("Extend volume from %(old_size)s GB to %(new_size)s GB."), {'old_size': old_size, 'new_size': new_size})
39.35226
79
0.576308
79473461c93af9057724f218135752c6c9a50273
26,904
py
Python
src/typhoonae/redis/tests/test_datastore_redis.py
ukris/typhoonae.redis
ef43f4448bfc59e643b6344064759633dbbb1ab6
[ "Apache-2.0" ]
null
null
null
src/typhoonae/redis/tests/test_datastore_redis.py
ukris/typhoonae.redis
ef43f4448bfc59e643b6344064759633dbbb1ab6
[ "Apache-2.0" ]
null
null
null
src/typhoonae/redis/tests/test_datastore_redis.py
ukris/typhoonae.redis
ef43f4448bfc59e643b6344064759633dbbb1ab6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2010 Tobias Rodäbel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the Datastore Redis stub.""" from google.appengine.api import datastore_types from google.appengine.datastore import datastore_index from google.appengine.ext import db import datetime import google.appengine.api.apiproxy_stub import google.appengine.api.apiproxy_stub_map import google.appengine.api.datastore_admin import google.appengine.api.datastore_errors import google.appengine.api.users import google.appengine.datastore.entity_pb import google.appengine.runtime.apiproxy_errors import os import time import threading import typhoonae.redis.datastore_redis_stub import unittest class DatastoreRedisTestCaseBase(unittest.TestCase): """Base class for testing the TyphoonAE Datastore Redis API proxy stub.""" def setUp(self): """Sets up test environment and regisers stub.""" # Set required environment variables os.environ['APPLICATION_ID'] = 'test' os.environ['AUTH_DOMAIN'] = 'mydomain.local' os.environ['USER_EMAIL'] = '[email protected]' os.environ['USER_IS_ADMIN'] = '1' # Read index definitions. index_yaml = open( os.path.join(os.path.dirname(__file__), 'index.yaml'), 'r') try: indexes = datastore_index.IndexDefinitionsToProtos( 'test', datastore_index.ParseIndexDefinitions(index_yaml).indexes) except TypeError: indexes = [] index_yaml.close() # Register API proxy stub. google.appengine.api.apiproxy_stub_map.apiproxy = ( google.appengine.api.apiproxy_stub_map.APIProxyStubMap()) datastore = typhoonae.redis.datastore_redis_stub.DatastoreRedisStub( 'test', indexes) try: google.appengine.api.apiproxy_stub_map.apiproxy.RegisterStub( 'datastore_v3', datastore) except google.appengine.runtime.apiproxy_errors.ApplicationError, e: raise RuntimeError('These tests require a running Redis server ' '(%s)' % e) self.stub = google.appengine.api.apiproxy_stub_map.apiproxy.GetStub( 'datastore_v3') def tearDown(self): """Clears all data.""" self.stub.Clear() class StoredEntityTestCase(DatastoreRedisTestCaseBase): """Testing entity wrapper class.""" def testStoredEntity(self): """Initializes a stored entity instance.""" class MyModel(db.Model): contents = db.StringProperty() key = MyModel(contents="Some contents.").save() entity = db.get(key) protobuf = db.model_to_protobuf(entity) stored_entity = typhoonae.redis.datastore_redis_stub._StoredEntity( protobuf) self.assertEqual(protobuf, stored_entity.protobuf) self.assertEqual( 'j\x15j\x04testr\r\x0b\x12\x07MyModel\x18\x01\x0cr\x1e\x1a\x08' 'contents \x00*\x10\x1a\x0eSome contents.\x82\x01\r\x0b\x12\x07' 'MyModel\x18\x01\x0c', stored_entity.encoded_protobuf) self.assertEqual({u'contents': u'Some contents.'}, stored_entity.native) self.assertTrue( isinstance( stored_entity.key(), google.appengine.datastore.entity_pb.Reference)) class DatastoreRedisTestCase(DatastoreRedisTestCaseBase): """Testing the TyphoonAE Datastore Redis API proxy stub.""" def testStub(self): """Tests whether our stub is registered.""" self.assertNotEqual(None, self.stub) def testConnectionError(self): """Tries to connect to wrong host and port.""" self.assertRaises( google.appengine.runtime.apiproxy_errors.ApplicationError, typhoonae.redis.datastore_redis_stub.DatastoreRedisStub, 'test', [], host='nowhere', port=10987) def test__ValidateAppId(self): """Validates an application id.""" self.assertRaises( google.appengine.api.datastore_errors.BadRequestError, self.stub._DatastoreRedisStub__ValidateAppId, 'foo') def test_GetAppIdNamespaceKindForKey(self): """Gets encoded app and kind from given key.""" ref = google.appengine.datastore.entity_pb.Reference() ref.set_app(u'test') ref.set_name_space(u'namespace') path = ref.mutable_path() elem = path.add_element() elem.set_type('Foo') elem = path.add_element() elem.set_type('Bar') self.assertEqual( u'test!namespace\x08Bar', self.stub._GetAppIdNamespaceKindForKey(ref)) def test_GetKeyForRedisKey(self): """Inititalizes an entity_pb.Reference from a Redis key.""" key = self.stub._GetKeyForRedisKey( u'test!Foo\x08\t0000000000002\x07Bar\x08bar') self.assertEqual( datastore_types.Key.from_path( u'Foo', 2, u'Bar', u'bar', _app=u'test'), key) def test_GetRedisKeyForKey(self): """Creates a valid Redis key.""" ref = google.appengine.datastore.entity_pb.Reference() ref.set_app(u'test') ref.set_name_space(u'namespace') path = ref.mutable_path() elem = path.add_element() elem.set_type('Foo') elem.set_id(1) elem = path.add_element() elem.set_type('Bar') elem.set_id(2) self.assertEqual( u'test!Foo\x08\t0000000000001\x07Bar\x08\t0000000000002', self.stub._GetRedisKeyForKey(ref)) def testPutGetDelete(self): """Puts/gets/deletes entities into/from the datastore.""" class Author(db.Model): name = db.StringProperty() class Book(db.Model): title = db.StringProperty() a = Author(name='Mark Twain', key_name='marktwain') a.put() b = Book(parent=a, title="The Adventures Of Tom Sawyer") b.put() key = b.key() del a, b book = google.appengine.api.datastore.Get(key) self.assertEqual( "{u'title': u'The Adventures Of Tom Sawyer'}", str(book)) author = google.appengine.api.datastore.Get(book.parent()) self.assertEqual("{u'name': u'Mark Twain'}", str(author)) del book google.appengine.api.datastore.Delete(key) self.assertRaises( google.appengine.api.datastore_errors.EntityNotFoundError, google.appengine.api.datastore.Get, key) del author mark_twain = Author.get_by_key_name('marktwain') self.assertEqual('Author', mark_twain.kind()) self.assertEqual('Mark Twain', mark_twain.name) mark_twain.delete() def testGetEntitiesByNameAndID(self): """Tries to retrieve entities by name or numeric id.""" class Book(db.Model): title = db.StringProperty() Book(title="The Hitchhiker's Guide to the Galaxy").put() book = Book.get_by_id(1) self.assertEqual("The Hitchhiker's Guide to the Galaxy", book.title) Book(key_name="solong", title="So Long, and Thanks for All the Fish").put() book = Book.get_by_key_name("solong") self.assertEqual("So Long, and Thanks for All the Fish", book.title) def testLocking(self): """Acquires and releases transaction locks.""" self.stub._AcquireLockForEntityGroup('foo', timeout=1) self.stub._ReleaseLockForEntityGroup('foo') self.stub._AcquireLockForEntityGroup('bar', timeout=2) t = time.time() self.stub._AcquireLockForEntityGroup('bar', timeout=1) assert time.time() > t + 1 self.stub._ReleaseLockForEntityGroup('bar') def testTransactions(self): """Executes 1000 transactions in 10 concurrent threads.""" class Counter(db.Model): value = db.IntegerProperty() counter = Counter(key_name='counter', value=0) counter.put() del counter class Incrementer(threading.Thread): def run(self): def tx(): counter = Counter.get_by_key_name('counter') counter.value += 1 counter.put() for i in range(100): db.run_in_transaction(tx) incrementers = [] for i in range(10): incrementers.append(Incrementer()) incrementers[i].start() for incr in incrementers: incr.join() counter = Counter.get_by_key_name('counter') self.assertEqual(1000, counter.value) def testLargerTransaction(self): """Executes multiple operations in one transaction.""" class Author(db.Model): name = db.StringProperty() class Book(db.Model): title = db.StringProperty() def tx(): a = Author(name='Mark Twain', key_name='marktwain') a.put() b = Book(parent=a, title="The Adventures Of Tom Sawyer") b.put() b.delete() db.run_in_transaction(tx) self.assertEqual(1, Author.all().count()) self.assertEqual(0, Book.all().count()) marktwain = Author.get_by_key_name('marktwain') def query_tx(): query = db.Query() query.filter('__key__ = ', marktwain.key()) author = query.get() self.assertRaises( google.appengine.api.datastore_errors.BadRequestError, db.run_in_transaction, query_tx) def testKindlessAncestorQueries(self): """Perform kindless queries for entities with a given ancestor.""" class Author(db.Model): name = db.StringProperty() class Book(db.Model): title = db.StringProperty() author = Author(name='Mark Twain', key_name='marktwain').put() book = Book(parent=author, title="The Adventures Of Tom Sawyer").put() query = db.Query() query.ancestor(author) query.filter('__key__ = ', book) self.assertEqual(book, query.get().key()) book = query.get() book.delete() self.assertEqual(0, query.count()) def testRunQuery(self): """Runs some simple queries.""" class Employee(db.Model): first_name = db.StringProperty(required=True) last_name = db.StringProperty(required=True) manager = db.SelfReferenceProperty() manager = Employee(first_name='John', last_name='Dowe') manager.put() employee = Employee( first_name=u'John', last_name='Appleseed', manager=manager.key()) employee.put() # Perform a very simple query. query = Employee.all() self.assertEqual(set(['John Dowe', 'John Appleseed']), set(['%s %s' % (e.first_name, e.last_name) for e in query.run()])) # Rename the manager. manager.first_name = 'Clara' manager.put() # And perform the same query as above. query = Employee.all() self.assertEqual(set(['Clara Dowe', 'John Appleseed']), set(['%s %s' % (e.first_name, e.last_name) for e in query.run()])) # Get only one entity. query = Employee.all() self.assertEqual(u'Dowe', query.get().last_name) self.assertEqual(u'Dowe', query.fetch(1)[0].last_name) # Delete our entities. employee.delete() manager.delete() # Our query results should now be empty. query = Employee.all() self.assertEqual([], list(query.run())) def testCount(self): """Counts query results.""" class Balloon(db.Model): color = db.StringProperty() Balloon(color='Red').put() self.assertEqual(1, Balloon.all().count()) Balloon(color='Blue').put() self.assertEqual(2, Balloon.all().count()) def testQueryWithFilter(self): """Tries queries with filters.""" class SomeKind(db.Model): value = db.StringProperty() foo = SomeKind(value="foo") foo.put() bar = SomeKind(value="bar") bar.put() class Artifact(db.Model): description = db.StringProperty(required=True) age = db.IntegerProperty() vase = Artifact(description="Mycenaean stirrup vase", age=3300) vase.put() helmet = Artifact(description="Spartan full size helmet", age=2400) helmet.put() unknown = Artifact(description="Some unknown artifact") unknown.put() query = Artifact.all().filter('age =', 2400) self.assertEqual( ['Spartan full size helmet'], [artifact.description for artifact in query.run()]) query = db.GqlQuery("SELECT * FROM Artifact WHERE age = :1", 3300) self.assertEqual( ['Mycenaean stirrup vase'], [artifact.description for artifact in query.run()]) query = Artifact.all().filter('age IN', [2400, 3300]) self.assertEqual( set(['Spartan full size helmet', 'Mycenaean stirrup vase']), set([artifact.description for artifact in query.run()])) vase.delete() query = Artifact.all().filter('age IN', [2400]) self.assertEqual( ['Spartan full size helmet'], [artifact.description for artifact in query.run()]) helmet.age = 2300 helmet.put() query = Artifact.all().filter('age =', 2300) self.assertEqual([2300], [artifact.age for artifact in query.run()]) query = Artifact.all() self.assertEqual( set([2300L, None]), set([artifact.age for artifact in query.run()])) def testQueryForKeysOnly(self): """Queries for entity keys instead of full entities.""" class Asset(db.Model): name = db.StringProperty(required=True) price = db.FloatProperty(required=True) lamp = Asset(name="Bedside Lamp", price=10.45) lamp.put() towel = Asset(name="Large Towel", price=3.50) towel.put() query = Asset.all(keys_only=True) self.assertEqual( set([ datastore_types.Key.from_path(u'Asset', 1, _app=u'test'), datastore_types.Key.from_path(u'Asset', 2, _app=u'test')]), set(query.run())) def testQueryWithOrder(self): """Tests queries with sorting.""" class Planet(db.Model): name = db.StringProperty() moon_count = db.IntegerProperty() distance = db.FloatProperty() earth = Planet(name="Earth", distance=93.0, moon_count=1) earth.put() saturn = Planet(name="Saturn", distance=886.7, moon_count=18) saturn.put() venus = Planet(name="Venus", distance=67.2, moon_count=0) venus.put() mars = Planet(name="Mars", distance=141.6, moon_count=2) mars.put() mercury = Planet(name="Mercury", distance=36.0, moon_count=0) mercury.put() query = (Planet.all() .filter('moon_count <', 10) .order('moon_count') .order('-name') .order('distance')) self.assertEqual( [u'Venus', u'Mercury', u'Earth', u'Mars'], [planet.name for planet in query.run()] ) query = Planet.all().filter('distance >', 100).order('-distance') self.assertEqual( ['Saturn', 'Mars'], [planet.name for planet in query.run()] ) query = Planet.all().filter('distance <=', 93).order('distance') self.assertEqual( ['Mercury', 'Venus', 'Earth'], [planet.name for planet in query.run()] ) query = (Planet.all() .filter('distance >', 80.0) .filter('distance <', 150) .order('distance')) self.assertEqual( ['Earth', 'Mars'], [planet.name for planet in query.run()]) query = Planet.all().filter('distance >=', 93.0).order('distance') self.assertEqual( [u'Earth', u'Mars', u'Saturn'], [planet.name for planet in query.run()]) query = Planet.all().filter('distance ==', 93.0) self.assertEqual( [u'Earth'], [planet.name for planet in query.run()]) def testQueriesWithMultipleFiltersAndOrders(self): """Tests queries with multiple filters and orders.""" class Artist(db.Model): name = db.StringProperty() class Album(db.Model): title = db.StringProperty() class Song(db.Model): artist = db.ReferenceProperty(Artist) album = db.ReferenceProperty(Album) duration = db.StringProperty() genre = db.CategoryProperty() title = db.StringProperty() beatles = Artist(name="The Beatles") beatles.put() abbeyroad = Album(title="Abbey Road") abbeyroad.put() herecomesthesun = Song( artist=beatles.key(), album=abbeyroad.key(), duration="3:06", genre=db.Category("Pop"), title="Here Comes The Sun") herecomesthesun.put() query = (Song.all() .filter('artist =', beatles) .filter('album =', abbeyroad)) self.assertEqual(u'Here Comes The Sun', query.get().title) cometogether = Song( artist=beatles.key(), album=abbeyroad.key(), duration="4:21", genre=db.Category("Pop"), title="Come Together") cometogether.put() something = Song( artist=beatles.key(), album=abbeyroad.key(), duration="3:03", genre=db.Category("Pop"), title="Something") something.put() because1 = Song( key_name='because', artist=beatles.key(), album=abbeyroad.key(), duration="2:46", genre=db.Category("Pop"), title="Because") because1.put() because2= Song( artist=beatles.key(), album=abbeyroad.key(), duration="2:46", genre=db.Category("Pop"), title="Because") because2.put() query = (Song.all() .filter('artist =', beatles) .filter('album =', abbeyroad) .order('title')) self.assertEqual( [u'Because', u'Because', u'Come Together', u'Here Comes The Sun', u'Something'], [song.title for song in query.run()]) query = Song.all().filter('title !=', 'Because').order('title') self.assertEqual( [u'Come Together', u'Here Comes The Sun', u'Something'], [song.title for song in query.run()]) query = Song.all().filter('title >', 'Come').order('title') self.assertEqual( [u'Come Together', u'Here Comes The Sun', u'Something'], [song.title for song in query.run()]) something.delete() query = Song.all().filter('title >', 'Come').order('title') self.assertEqual( [u'Come Together', u'Here Comes The Sun'], [song.title for song in query.run()]) def testUnicode(self): """Tests unicode.""" class Employee(db.Model): first_name = db.StringProperty(required=True) last_name = db.StringProperty(required=True) employee = Employee(first_name=u'Björn', last_name=u'Müller') employee.put() query = Employee.all(keys_only=True).filter('first_name =', u'Björn') self.assertEqual( datastore_types.Key.from_path(u'Employee', 1, _app=u'test'), query.get()) def testListProperties(self): """Tests list properties.""" class Numbers(db.Model): values = db.ListProperty(int) Numbers(values=[0, 1, 2, 3]).put() Numbers(values=[4, 5, 6, 7]).put() query = Numbers.all().filter('values =', 0) self.assertEqual([0, 1, 2, 3], query.get().values) query = db.GqlQuery( "SELECT * FROM Numbers WHERE values > :1 AND values < :2", 4, 7) self.assertEqual([4, 5, 6, 7], query.get().values) class Issue(db.Model): reviewers = db.ListProperty(db.Email) me = db.Email('[email protected]') you = db.Email('[email protected]') issue = Issue(reviewers=[me, you]) issue.put() query = db.GqlQuery( "SELECT * FROM Issue WHERE reviewers = :1", db.Email('[email protected]')) self.assertEqual(1, query.count()) query = db.GqlQuery( "SELECT * FROM Issue WHERE reviewers = :1", '[email protected]') self.assertEqual(1, query.count()) query = db.GqlQuery( "SELECT * FROM Issue WHERE reviewers = :1", db.Email('[email protected]')) self.assertEqual(0, query.count()) def testStringListProperties(self): """Tests string list properties.""" class Pizza(db.Model): topping = db.StringListProperty() Pizza(topping=["tomatoe", "cheese"]).put() Pizza(topping=["tomatoe", "cheese", "salami"]).put() Pizza(topping=["tomatoe", "cheese", "prosciutto"]).put() query = Pizza.all(keys_only=True).filter('topping =', "salami") self.assertEqual(1, query.count()) query = Pizza.all(keys_only=True).filter('topping =', "cheese") self.assertEqual(3, query.count()) query = Pizza.all().filter('topping IN', ["salami", "prosciutto"]) self.assertEqual(2, query.count()) key = datastore_types.Key.from_path('Pizza', 1) query = db.GqlQuery("SELECT * FROM Pizza WHERE __key__ IN :1", [key]) pizza = query.get() self.assertEqual(["tomatoe", "cheese"], pizza.topping) pizza.delete() query = db.GqlQuery("SELECT * FROM Pizza WHERE __key__ IN :1", [key]) self.assertEqual(0, query.count()) def testVariousPropertiyTypes(self): """Tests various property types.""" class Note(db.Model): timestamp = db.DateTimeProperty(auto_now=True) description = db.StringProperty() author_email = db.EmailProperty() location = db.GeoPtProperty() user = db.UserProperty() Note( description="My first note.", author_email="[email protected]", location="52.518,13.408", user=google.appengine.api.users.get_current_user() ).put() query = db.GqlQuery("SELECT * FROM Note ORDER BY timestamp DESC") self.assertEqual(1, query.count()) query = db.GqlQuery( "SELECT * FROM Note WHERE timestamp <= :1", datetime.datetime.now()) self.assertEqual(1, query.count()) note = query.get() self.assertEqual("My first note.", note.description) self.assertEqual(db.Email("[email protected]"), note.author_email) self.assertEqual("[email protected]", note.author_email) self.assertEqual( datastore_types.GeoPt(52.518000000000001, 13.407999999999999), note.location) self.assertEqual("52.518,13.408", note.location) del note query = Note.all().filter( 'location =', datastore_types.GeoPt(52.518000000000001, 13.407999999999999)) self.assertEqual(1, query.count()) query = Note.all().filter('location =', "52.518,13.408") self.assertEqual(1, query.count()) def testQueriesWithLimit(self): """Retrieves a limited number of results.""" class MyModel(db.Model): property = db.StringProperty() for i in range(100): MyModel(property="Random data.").put() self.assertEqual(50, MyModel.all().count(limit=50)) def testAllocateIds(self): """ """ class EmptyModel(db.Model): pass for i in xrange(0, 1000): key = EmptyModel().put() query = db.GqlQuery("SELECT * FROM EmptyModel") self.assertEqual(1000, query.count()) start, end = db.allocate_ids(key, 2000) self.assertEqual(start, 1000) self.assertEqual(end, 2999) def testCursors(self): """Tests the cursor API.""" class Integer(db.Model): value = db.IntegerProperty() for i in xrange(0, 2000): Integer(value=i).put() # Set up a simple query. query = Integer.all() # Fetch some results. a = query.fetch(500) self.assertEqual(0L, a[0].value) self.assertEqual(499L, a[-1].value) b = query.fetch(500, offset=500) self.assertEqual(500L, b[0].value) self.assertEqual(999L, b[-1].value) # Perform several queries with a cursor. cursor = query.cursor() query.with_cursor(cursor) c = query.fetch(200) self.assertEqual(1000L, c[0].value) self.assertEqual(1199L, c[-1].value) query.with_cursor(query.cursor()) d = query.fetch(500) self.assertEqual(1200L, d[0].value) self.assertEqual(1699L, d[-1].value) query.with_cursor(query.cursor()) self.assertEqual(1700L, query.get().value) # Use a query with filters. query = Integer.all().filter('value >', 500).filter('value <=', 1000) e = query.fetch(100) query.with_cursor(query.cursor()) e = query.fetch(50) self.assertEqual(601, e[0].value) self.assertEqual(650, e[-1].value) def testGetSchema(self): """Infers an app's schema from the entities in the datastore.""" class Foo(db.Model): foobar = db.IntegerProperty(default=42) Foo().put() entity_pbs = google.appengine.api.datastore_admin.GetSchema() entity = google.appengine.api.datastore.Entity.FromPb(entity_pbs.pop()) self.assertEqual('Foo', entity.key().kind())
30.853211
80
0.583408
794734eceab228f17ef1907a17686ea853aa3b2c
4,636
py
Python
tests/tests_preprocessing/test_preprocessing_categorical_integers.py
michaelneale/mljar-supervised
8d1b5fdd56e994a7f13ec5f6d2033830744f3d6f
[ "MIT" ]
1
2020-03-13T09:44:41.000Z
2020-03-13T09:44:41.000Z
tests/tests_preprocessing/test_preprocessing_categorical_integers.py
wambagilles/mljar-supervised
3192c91979b31810b249767a63e60ee74068c668
[ "MIT" ]
null
null
null
tests/tests_preprocessing/test_preprocessing_categorical_integers.py
wambagilles/mljar-supervised
3192c91979b31810b249767a63e60ee74068c668
[ "MIT" ]
1
2021-03-12T05:48:45.000Z
2021-03-12T05:48:45.000Z
import unittest import tempfile import numpy as np import pandas as pd from supervised.preprocessing.preprocessing_categorical import PreprocessingCategorical class PreprocessingCategoricalIntegersTest(unittest.TestCase): def test_constructor_preprocessing_categorical(self): """ Check if PreprocessingCategorical object is properly initialized """ categorical = PreprocessingCategorical( [], PreprocessingCategorical.CONVERT_INTEGER ) self.assertEqual( categorical._convert_method, PreprocessingCategorical.CONVERT_INTEGER ) self.assertEqual(categorical._convert_params, {}) def test_fit_integers(self): # training data d = { "col1": [1, 2, 3], "col2": ["a", "a", "c"], "col3": [1, 1, 3], "col4": ["a", "b", "c"], } df = pd.DataFrame(data=d) categorical = PreprocessingCategorical( df.columns, PreprocessingCategorical.CONVERT_INTEGER ) categorical.fit(df) self.assertTrue("col2" in categorical._convert_params) self.assertTrue("col4" in categorical._convert_params) self.assertTrue("a" in categorical._convert_params["col2"]) self.assertTrue("c" in categorical._convert_params["col2"]) self.assertTrue("b" not in categorical._convert_params["col2"]) self.assertTrue("a" in categorical._convert_params["col4"]) self.assertTrue("b" in categorical._convert_params["col4"]) self.assertTrue("c" in categorical._convert_params["col4"]) def test_fit_transform_integers(self): # training data d = { "col1": [1, 2, 3], "col2": ["a", "a", "c"], "col3": [1, 1, 3], "col4": ["a", "b", "c"], } df = pd.DataFrame(data=d) categorical = PreprocessingCategorical( df.columns, PreprocessingCategorical.CONVERT_INTEGER ) categorical.fit(df) df = categorical.transform(df) for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in df.columns) self.assertEqual(df["col2"][0], 0) self.assertEqual(df["col2"][1], 0) self.assertEqual(df["col2"][2], 1) self.assertEqual(df["col4"][0], 0) self.assertEqual(df["col4"][1], 1) self.assertEqual(df["col4"][2], 2) def test_fit_transform_integers_with_new_values(self): # training data d_train = { "col1": [1, 2, 3], "col2": ["a", "a", "c"], "col3": [1, 1, 3], "col4": ["a", "b", "c"], } df_train = pd.DataFrame(data=d_train) categorical = PreprocessingCategorical( df_train.columns, PreprocessingCategorical.CONVERT_INTEGER ) categorical.fit(df_train) # testing data d = { "col1": [1, 2, 3], "col2": ["a", "d", "f"], "col3": [1, 1, 3], "col4": ["e", "b", "z"], } df = pd.DataFrame(data=d) df = categorical.transform(df) for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in df.columns) self.assertEqual(df["col2"][0], 0) self.assertEqual(df["col2"][1], 2) # new values get higher indexes self.assertEqual(df["col2"][2], 3) # new values get higher indexes self.assertEqual(df["col4"][0], 3) # new values get higher indexes self.assertEqual(df["col4"][1], 1) self.assertEqual(df["col4"][2], 4) # new values get higher indexes def test_to_and_from_json_convert_integers(self): # training data d = { "col1": [1, 2, 3], "col2": ["a", "a", "c"], "col3": [1, 1, 3], "col4": ["a", "b", "c"], } df = pd.DataFrame(data=d) cat1 = PreprocessingCategorical( df.columns, PreprocessingCategorical.CONVERT_INTEGER ) cat1.fit(df) cat2 = PreprocessingCategorical( df.columns, PreprocessingCategorical.CONVERT_INTEGER ) cat2.from_json(cat1.to_json()) df = cat2.transform(df) for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in df.columns) self.assertEqual(df["col2"][0], 0) self.assertEqual(df["col2"][1], 0) self.assertEqual(df["col2"][2], 1) self.assertEqual(df["col4"][0], 0) self.assertEqual(df["col4"][1], 1) self.assertEqual(df["col4"][2], 2) if __name__ == "__main__": unittest.main()
35.937984
87
0.561044
7947351288e440875dd9116b3060ca2dde6d9779
12,552
py
Python
examples/mmt_train_kmeans.py
Dingyuan-Zheng/ctf-UDA
3e3c67f68d7eb0b52a16a259e5a77e153062c4fd
[ "MIT" ]
null
null
null
examples/mmt_train_kmeans.py
Dingyuan-Zheng/ctf-UDA
3e3c67f68d7eb0b52a16a259e5a77e153062c4fd
[ "MIT" ]
null
null
null
examples/mmt_train_kmeans.py
Dingyuan-Zheng/ctf-UDA
3e3c67f68d7eb0b52a16a259e5a77e153062c4fd
[ "MIT" ]
null
null
null
from __future__ import print_function, absolute_import import argparse import os.path as osp import random import numpy as np import sys from sklearn.cluster import KMeans from sklearn.preprocessing import normalize import torch from torch import nn from torch.backends import cudnn from torch.utils.data import DataLoader from mmt import datasets from mmt import models from mmt.trainers import MMTTrainer from mmt.evaluators import Evaluator, extract_features from mmt.utils.data import IterLoader from mmt.utils.data import transforms as T from mmt.utils.data.sampler import RandomMultipleGallerySampler from mmt.utils.data.preprocessor import Preprocessor from mmt.utils.logging import Logger from mmt.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict import os best_mAP = 0 def get_data(name, data_dir): root = osp.join(data_dir, name) dataset = datasets.create(name, root) return dataset def get_train_loader(dataset, height, width, batch_size, workers, num_instances, iters): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.RandomHorizontalFlip(p=0.5), T.Pad(10), T.RandomCrop((height, width)), T.ToTensor(), normalizer, T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406]) ]) train_set = sorted(dataset.train, key=lambda x:x[1]) rmgs_flag = num_instances > 0 if rmgs_flag: sampler = RandomMultipleGallerySampler(train_set, num_instances) else: sampler = None train_loader = IterLoader( DataLoader(Preprocessor(train_set, root=dataset.images_dir, transform=train_transformer, mutual=True), batch_size=batch_size, num_workers=workers, sampler=sampler, shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters) return train_loader def get_test_loader(dataset, height, width, batch_size, workers, testset=None): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) test_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.ToTensor(), normalizer ]) if (testset is None): testset = list(set(dataset.query) | set(dataset.gallery)) test_loader = DataLoader( Preprocessor(testset, root=dataset.images_dir, transform=test_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) else: test_loader = DataLoader( Preprocessor(testset, root=dataset.images_dir, transform=test_transformer, mutual=False, cluster=True), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) return test_loader def create_model(args): model_1 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_2 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_1_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_2_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_1.cuda() model_2.cuda() model_1_ema.cuda() model_2_ema.cuda() model_1 = nn.DataParallel(model_1) model_2 = nn.DataParallel(model_2) model_1_ema = nn.DataParallel(model_1_ema) model_2_ema = nn.DataParallel(model_2_ema) initial_weights = load_checkpoint(args.init_1) copy_state_dict(initial_weights['state_dict'], model_1) copy_state_dict(initial_weights['state_dict'], model_1_ema) model_1_ema.module.classifier.weight.data.copy_(model_1.module.classifier.weight.data) initial_weights = load_checkpoint(args.init_2) copy_state_dict(initial_weights['state_dict'], model_2) copy_state_dict(initial_weights['state_dict'], model_2_ema) model_2_ema.module.classifier.weight.data.copy_(model_2.module.classifier.weight.data) for param in model_1_ema.parameters(): param.detach_() for param in model_2_ema.parameters(): param.detach_() return model_1, model_2, model_1_ema, model_2_ema def main(): args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # CUDA environment if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True main_worker(args) def main_worker(args): global best_mAP cudnn.benchmark = True sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt')) print("==========\nArgs:{}\n==========".format(args)) # Create data loaders iters = args.iters if (args.iters>0) else None dataset_target = get_data(args.dataset_target, args.data_dir) test_loader_target = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers) cluster_loader = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers, testset=dataset_target.train) # Create model model_1, model_2, model_1_ema, model_2_ema = create_model(args) # Evaluator evaluator_1_ema = Evaluator(model_1_ema) evaluator_2_ema = Evaluator(model_2_ema) for epoch in range(args.epochs): dict_f, _ = extract_features(model_1_ema, cluster_loader, print_freq=50) cf_1 = torch.stack(list(dict_f.values())).numpy() dict_f, _ = extract_features(model_2_ema, cluster_loader, print_freq=50) cf_2 = torch.stack(list(dict_f.values())).numpy() cf = (cf_1+cf_2)/2 print('\n Clustering into {} classes \n'.format(args.num_clusters)) km = KMeans(n_clusters=args.num_clusters, random_state=args.seed, n_jobs=2).fit(cf) model_1.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) model_2.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) model_1_ema.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) model_2_ema.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) target_label = km.labels_ # change pseudo labels for i in range(len(dataset_target.train)): dataset_target.train[i] = list(dataset_target.train[i]) dataset_target.train[i][2] = int(target_label[i]) ## change dataset_target.train[i][1] --> [2] dataset_target.train[i] = tuple(dataset_target.train[i]) # the place to re-compute cluster centers (e.g.500) with re-assigned pseudo labels # based on the memory slot which contains the features of each target training images train_loader_target = get_train_loader(dataset_target, args.height, args.width, args.batch_size, args.workers, args.num_instances, iters) # Optimizer params = [] for key, value in model_1.named_parameters(): if not value.requires_grad: continue params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}] for key, value in model_2.named_parameters(): if not value.requires_grad: continue params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}] optimizer = torch.optim.Adam(params) # Trainer ## trainer = MMTTrainer(model_1, model_2, model_1_ema, model_2_ema, num_cluster=args.num_clusters, alpha=args.alpha, cf=cf, f_memory_label=target_label) ## train_loader_target.new_epoch() trainer.train(epoch, train_loader_target, optimizer, ce_soft_weight=args.soft_ce_weight, tri_soft_weight=args.soft_tri_weight, print_freq=args.print_freq, train_iters=len(train_loader_target)) def save_model(model_ema, is_best, best_mAP, mid): save_checkpoint({ 'state_dict': model_ema.state_dict(), 'epoch': epoch + 1, 'best_mAP': best_mAP, }, is_best, fpath=osp.join(args.logs_dir, 'model'+str(mid)+'_checkpoint.pth.tar')) if ((epoch+1)%args.eval_step==0 or (epoch==args.epochs-1)): mAP_1 = evaluator_1_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=False) mAP_2 = evaluator_2_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=False) is_best = (mAP_1>best_mAP) or (mAP_2>best_mAP) best_mAP = max(mAP_1, mAP_2, best_mAP) save_model(model_1_ema, (is_best and (mAP_1>mAP_2)), best_mAP, 1) save_model(model_2_ema, (is_best and (mAP_1<=mAP_2)), best_mAP, 2) print('\n * Finished epoch {:3d} model no.1 mAP: {:5.1%} model no.2 mAP: {:5.1%} best: {:5.1%}{}\n'. format(epoch, mAP_1, mAP_2, best_mAP, ' *' if is_best else '')) print ('Test on the best model.') checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar')) model_1_ema.load_state_dict(checkpoint['state_dict']) evaluator_1_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description="MMT Training") # data parser.add_argument('-dt', '--dataset-target', type=str, default='market1501', choices=datasets.names()) parser.add_argument('-b', '--batch-size', type=int, default=64) parser.add_argument('-j', '--workers', type=int, default=4) parser.add_argument('--num-clusters', type=int, default=500) parser.add_argument('--height', type=int, default=256, help="input height") parser.add_argument('--width', type=int, default=128, help="input width") parser.add_argument('--num-instances', type=int, default=4, help="each minibatch consist of " "(batch_size // num_instances) identities, and " "each identity has num_instances instances, " "default: 0 (NOT USE)") # model parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.names()) parser.add_argument('--features', type=int, default=0) parser.add_argument('--dropout', type=float, default=0) # optimizer parser.add_argument('--lr', type=float, default=0.00035, help="learning rate of new parameters, for pretrained " "parameters it is 10 times smaller than this") parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--alpha', type=float, default=0.999) parser.add_argument('--moving-avg-momentum', type=float, default=0) parser.add_argument('--weight-decay', type=float, default=5e-4) parser.add_argument('--soft-ce-weight', type=float, default=0.5) parser.add_argument('--soft-tri-weight', type=float, default=0.8) parser.add_argument('--epochs', type=int, default=40) parser.add_argument('--iters', type=int, default=800) # training configs parser.add_argument('--init-1', type=str, default='', metavar='PATH') parser.add_argument('--init-2', type=str, default='', metavar='PATH') parser.add_argument('--seed', type=int, default=1) parser.add_argument('--print-freq', type=int, default=1) parser.add_argument('--eval-step', type=int, default=1) # path working_dir = osp.dirname(osp.abspath(__file__)) parser.add_argument('--data-dir', type=str, metavar='PATH', default=osp.join(working_dir, 'data')) parser.add_argument('--logs-dir', type=str, metavar='PATH', default=osp.join(working_dir, 'logs')) #parser.add_argument('--memory_size', type=int, default=12936) main()
44.828571
138
0.661648
7947363d31f128ce3314e0feec37c2c15fa8503d
7,881
py
Python
tests/msg_hz_test.py
suet-lee/mycelium
db83cd3ab00697f28b2def2cebcdef52698fdd92
[ "Apache-2.0" ]
6
2021-05-23T17:36:02.000Z
2022-01-21T20:34:17.000Z
tests/msg_hz_test.py
suet-lee/mycelium
db83cd3ab00697f28b2def2cebcdef52698fdd92
[ "Apache-2.0" ]
null
null
null
tests/msg_hz_test.py
suet-lee/mycelium
db83cd3ab00697f28b2def2cebcdef52698fdd92
[ "Apache-2.0" ]
1
2021-06-17T20:35:10.000Z
2021-06-17T20:35:10.000Z
#!/usr/bin/env python3 # Set MAVLink protocol to 2. import os os.environ["MAVLINK20"] = "1" import time import threading import traceback import logging from apscheduler.schedulers.background import BackgroundScheduler from mycelium.components import RedisBridge, Connector from mycelium_utils import Scripter, utils, DefaultConfig from pymavlink import mavutil class RedisToAPScripterExt: instance = None i=0 def __init__(self, **kwargs): if not RedisToAPScripterExt.instance: RedisToAPScripterExt.instance = RedisToAPScripterExt.__RedisToAPScripterExt(**kwargs) def __getattr__(self, name): return getattr(self.instance, name) class __RedisToAPScripterExt(Scripter): def __init__(self, **kwargs): super().__init__(**kwargs) self.rb = RedisBridge(db=self.rd_cfg.databases['instruments']) self.keys = self.rd_cfg.generate_flat_keys('instruments') self.conn = mavutil.mavlink_connection( self.cfg.redis_to_ap, autoreconnect = True, source_system = 1, source_component = 93, baud=self.cfg.connection_baudrate, force_connected=True ) self.lock = threading.Lock() default_msg_hz = 30.0 msg_hz = { 'send_vision_position_estimate': 30.0, 'send_obstacle_distance': 15.0 } self.mavlink_thread = threading.Thread(target=self.mavlink_loop, args=[self.conn]) self.mavlink_thread.start() self.sched = BackgroundScheduler() logging.getLogger('apscheduler').setLevel(logging.ERROR) self.data = {} for k, v in self.keys.items(): try: if v in msg_hz.keys(): seconds = 1.0/msg_hz[v] else: seconds = 1.0/default_msg_hz func = getattr(self, v) self.sched.add_job(self.send_message, 'interval', seconds=seconds, args=[func, k], max_instances=1 ) except: utils.progress(traceback) else: self.data[k] = None # https://mavlink.io/en/messages/common.html#VISION_POSITION_ESTIMATE def send_vision_position_estimate(self, current_time_us, x, y, z, roll, pitch, yaw, covariance, reset_counter): # self.connect(self.connection_string, self.connection_baudrate, self.source_system, self.source_component) self.conn.mav.vision_position_estimate_send( current_time_us, # us Timestamp (UNIX time or time since system boot) x, # Local X position y, # Local Y position z, # Local Z position roll, # Roll angle pitch, # Pitch angle yaw, # Yaw angle covariance, # Row-major representation of pose 6x6 cross-covariance matrix reset_counter # Estimate reset counter. Increment every time pose estimate jumps. ) # def send_vision_position_delta_message(self, current_time_us, delta_time_us, delta_angle_rad, delta_position_m, current_confidence_level): # conn.mav.vision_position_delta_send( # current_time_us, # us: Timestamp (UNIX time or time since system boot) # delta_time_us, # us: Time since last reported camera frame # delta_angle_rad, # float[3] in radian: Defines a rotation vector in body frame that rotates the vehicle from the previous to the current orientation # delta_position_m, # float[3] in m: Change in position from previous to current frame rotated into body frame (0=forward, 1=right, 2=down) # current_confidence_level # Normalized confidence value from 0 to 100. # ) # def send_vision_speed_estimate(self, current): # self.conn.mav.vision_speed_estimate_send( # current_time_us, # us Timestamp (UNIX time or time since system boot) # V_aeroRef_aeroBody[0][3], # Global X speed # V_aeroRef_aeroBody[1][3], # Global Y speed # V_aeroRef_aeroBody[2][3], # Global Z speed # covariance, # covariance # reset_counter # Estimate reset counter. Increment every time pose estimate jumps. # ) # https://mavlink.io/en/messages/common.html#OBSTACLE_DISTANCE def send_obstacle_distance(self, current_time_us, sensor_type, distances, increment, min_distance, max_distance, increment_f, angle_offset, mav_frame): # self.connect(self.connection_string, self.connection_baudrate, self.source_system, self.source_component) self.conn.mav.obstacle_distance_send( current_time_us, # us Timestamp (UNIX time or time since system boot) sensor_type, # sensor_type, defined here: https://mavlink.io/en/messages/common.html#MAV_DISTANCE_SENSOR distances, # distances, uint16_t[72], cm increment, # increment, uint8_t, deg min_distance, # min_distance, uint16_t, cm max_distance, # max_distance, uint16_t, cm increment_f, # increment_f, float, deg angle_offset, # angle_offset, float, deg mav_frame # MAV_FRAME, vehicle-front aligned: https://mavlink.io/en/messages/common.html#MAV_FRAME_BODY_FRD ) def run_main(self): self.sched.start() while not self.exit_threads: with self.lock: for k, _ in self.keys.items(): self.data[k] = self.rb.get_key_by_string(k) # time.sleep(0.3) # self.conn.send_heartbeat() # m = self.conn.get_callbacks(['HEARTBEAT']) # if m is None: # continue # self.logger.log_debug("Received callback: %s" % m) # # utils.progress(m) def mavlink_loop(self, conn, callbacks=['HEARTBEAT']): while not self.exit_threads: self.conn.mav.heartbeat_send(mavutil.mavlink.MAV_TYPE_ONBOARD_CONTROLLER, mavutil.mavlink.MAV_AUTOPILOT_GENERIC, 0, 0, 0) m = self.conn.recv_match(type=callbacks, timeout=1, blocking=True) if m is None: continue self.logger.log_debug("Received callback: %s" % m) def send_message(self, func, key): while not self.exit_threads: with self.lock: try: value = self.data[key] if value is not None: func(*value) except Exception as e: self.logger.log_error("Could not send %s"%e) def close_script(self): try: self.sched.shutdown() self.mavlink_thread.join() self.conn.close() except: pass scripter = RedisToAPScripterExt(log_source="redis_to_ap") scripter.run()
44.778409
169
0.544601
79473741de85ba6e6a2fc642ec790b1794a14534
5,944
py
Python
nyflow/core_simple.py
namyoungkim/NyFlow
d6c749e5a88e1ef3b6c73a1f927ab83abe1d7a3f
[ "MIT" ]
null
null
null
nyflow/core_simple.py
namyoungkim/NyFlow
d6c749e5a88e1ef3b6c73a1f927ab83abe1d7a3f
[ "MIT" ]
1
2021-09-22T15:34:31.000Z
2021-09-22T15:34:31.000Z
nyflow/core_simple.py
namyoungkim/nyflow
d6c749e5a88e1ef3b6c73a1f927ab83abe1d7a3f
[ "MIT" ]
null
null
null
import weakref import numpy as np import contextlib # ============================================================================= # Config # ============================================================================= class Config: enable_backprop = True @contextlib.contextmanager def using_config(name, value): old_value = getattr(Config, name) setattr(Config, name, value) try: yield finally: setattr(Config, name, old_value) def no_grad(): return using_config('enable_backprop', False) # ============================================================================= # Variable # ============================================================================= class Variable: __array_priority__ = 200 def __init__(self, data, name=None): if data is not None: if not isinstance(data, np.ndarray): raise TypeError('{} is not supported'.format(type(data))) self.data = data self.name = name self.grad = None self.creator = None self.generation = 0 @property def shape(self): return self.data.shape @property def ndim(self): return self.data.ndim @property def size(self): return self.data.size @property def dtype(self): return self.data.dtype def __len__(self): return len(self.data) def __repr__(self): if self.data is None: return 'variable(None)' p = str(self.data).replace('\n', '\n' + ' ' * 9) return 'variable(' + p + ')' def set_creator(self, func): self.creator = func self.generation = func.generation + 1 def cleargrad(self): self.grad = None def backward(self, retain_grad=False): if self.grad is None: self.grad = np.ones_like(self.data) funcs = [] seen_set = set() def add_func(f): if f not in seen_set: funcs.append(f) seen_set.add(f) funcs.sort(key=lambda x: x.generation) add_func(self.creator) while funcs: f = funcs.pop() gys = [output().grad for output in f.outputs] # output is weakref gxs = f.backward(*gys) if not isinstance(gxs, tuple): gxs = (gxs,) for x, gx in zip(f.inputs, gxs): if x.grad is None: x.grad = gx else: x.grad = x.grad + gx if x.creator is not None: add_func(x.creator) if not retain_grad: for y in f.outputs: y().grad = None # y is weakref def as_variable(obj): if isinstance(obj, Variable): return obj return Variable(obj) def as_array(x): if np.isscalar(x): return np.array(x) return x # ============================================================================= # Function # ============================================================================= class Function: def __call__(self, *inputs): inputs = [as_variable(x) for x in inputs] xs = [x.data for x in inputs] ys = self.forward(*xs) if not isinstance(ys, tuple): ys = (ys,) outputs = [Variable(as_array(y)) for y in ys] if Config.enable_backprop: self.generation = max([x.generation for x in inputs]) for output in outputs: output.set_creator(self) self.inputs = inputs self.outputs = [weakref.ref(output) for output in outputs] return outputs if len(outputs) > 1 else outputs[0] def forward(self, xs): raise NotImplementedError() def backward(self, gys): raise NotImplementedError() # ============================================================================= # 사칙연산 / 연산자 오버로드 # ============================================================================= class Add(Function): def forward(self, x0, x1): y = x0 + x1 return y def backward(self, gy): return gy, gy def add(x0, x1): x1 = as_array(x1) return Add()(x0, x1) class Mul(Function): def forward(self, x0, x1): y = x0 * x1 return y def backward(self, gy): x0, x1 = self.inputs[0].data, self.inputs[1].data return gy * x1, gy * x0 def mul(x0, x1): x1 = as_array(x1) return Mul()(x0, x1) class Neg(Function): def forward(self, x): return -x def backward(self, gy): return -gy def neg(x): return Neg()(x) class Sub(Function): def forward(self, x0, x1): y = x0 - x1 return y def backward(self, gy): return gy, -gy def sub(x0, x1): x1 = as_array(x1) return Sub()(x0, x1) def rsub(x0, x1): x1 = as_array(x1) return sub(x1, x0) class Div(Function): def forward(self, x0, x1): y = x0 / x1 return y def backward(self, gy): x0, x1 = self.inputs[0].data, self.inputs[1].data gx0 = gy / x1 gx1 = gy * (-x0 / x1 ** 2) return gx0, gx1 def div(x0, x1): x1 = as_array(x1) return Div()(x0, x1) def rdiv(x0, x1): x1 = as_array(x1) return div(x1, x0) class Pow(Function): def __init__(self, c): self.c = c def forward(self, x): y = x ** self.c return y def backward(self, gy): x = self.inputs[0].data c = self.c gx = c * x ** (c - 1) * gy return gx def pow(x, c): return Pow(c)(x) def setup_variable(): Variable.__add__ = add Variable.__radd__ = add Variable.__mul__ = mul Variable.__rmul__ = mul Variable.__neg__ = neg Variable.__sub__ = sub Variable.__rsub__ = rsub Variable.__truediv__ = div Variable.__rtruediv__ = rdiv Variable.__pow__ = pow
22.096654
79
0.4857
794737a97c176c9f701f94c89a9d3fa6ea1cba13
601
py
Python
python/cartpole1.py
lusing/mljs
4c708bb8e0759803ed94ead3e9cfadc3a97d6ed8
[ "MIT" ]
null
null
null
python/cartpole1.py
lusing/mljs
4c708bb8e0759803ed94ead3e9cfadc3a97d6ed8
[ "MIT" ]
null
null
null
python/cartpole1.py
lusing/mljs
4c708bb8e0759803ed94ead3e9cfadc3a97d6ed8
[ "MIT" ]
null
null
null
import gym def cartpole(): environment = gym.make('CartPole-v1') environment.reset() for i in range(1000): # environment.render() action = environment.action_space.sample() observation, reward, done, info = environment.step(action) print("Step {}:".format(i)) print("action: {}:".format(action)) print('observation: {}'.format(observation)) print('reward: {}'.format(reward)) print('done: {}'.format(done)) print('info: {}'.format(info)) if done: break if __name__ == '__main__': cartpole()
28.619048
66
0.577371