hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7946a1b746e880a69e881eee572c87e4be02b590
2,404
py
Python
chatterbox/tests/test_utils_facebook.py
blitzagency/django-chatterbox
7bf17444f8308aa12b6718bd62ee1344021c21aa
[ "MIT" ]
8
2015-03-10T20:03:09.000Z
2018-06-14T23:03:58.000Z
chatterbox/tests/test_utils_facebook.py
blitzagency/django-chatterbox
7bf17444f8308aa12b6718bd62ee1344021c21aa
[ "MIT" ]
3
2015-07-14T22:44:47.000Z
2020-06-05T23:43:05.000Z
chatterbox/tests/test_utils_facebook.py
blitzagency/django-chatterbox
7bf17444f8308aa12b6718bd62ee1344021c21aa
[ "MIT" ]
null
null
null
import json from django.test import TestCase from .utils import load_json from chatterbox.utils.facebook import activity_dict_from_dict class FacebookUtils(TestCase): def test_facebook_link_activity_dict_from_dict(self): data = load_json("facebook-in-basic-link") final = load_json("facebook-out-basic-link") output = activity_dict_from_dict(data) value1 = json.dumps(output, sort_keys=True) value2 = json.dumps(final, sort_keys=True) self.assertEqual(value1, value2) def test_facebook_photo_activity_dict_from_dict(self): data = load_json("facebook-in-basic-photo") final = load_json("facebook-out-basic-photo") output = activity_dict_from_dict(data) value1 = json.dumps(output, sort_keys=True) value2 = json.dumps(final, sort_keys=True) self.assertEqual(value1, value2) def test_facebook_basic_status_message_activity_dict_from_dict(self): data = load_json("facebook-in-basic-status+message") final = load_json("facebook-out-basic-status+message") output = activity_dict_from_dict(data) value1 = json.dumps(output, sort_keys=True) value2 = json.dumps(final, sort_keys=True) self.assertEqual(value1, value2) def test_facebook_basic_status_message_comments_activity_dict_from_dict(self): data = load_json("facebook-in-basic-status+message+comments") final = load_json("facebook-out-basic-status+message+comments") output = activity_dict_from_dict(data) value1 = json.dumps(output, sort_keys=True) value2 = json.dumps(final, sort_keys=True) self.assertEqual(value1, value2) def test_facebook_status_activity_dict_from_dict(self): data = load_json("facebook-in-basic-status") final = load_json("facebook-out-basic-status") output = activity_dict_from_dict(data) value1 = json.dumps(output, sort_keys=True) value2 = json.dumps(final, sort_keys=True) self.assertEqual(value1, value2) def test_facebook_video_activity_dict_from_dict(self): data = load_json("facebook-in-basic-video") final = load_json("facebook-out-basic-video") output = activity_dict_from_dict(data) value1 = json.dumps(output, sort_keys=True) value2 = json.dumps(final, sort_keys=True) self.assertEqual(value1, value2)
42.928571
82
0.707571
7946a24d65e7accfdaad6b33ab5b3d3818b6c9a1
2,681
py
Python
main/tests/tests_management.py
jhdulaney/oh-ubiome-source
c01bd6c26fb6625ce455e3c2b24ff009bf2f0c64
[ "MIT" ]
null
null
null
main/tests/tests_management.py
jhdulaney/oh-ubiome-source
c01bd6c26fb6625ce455e3c2b24ff009bf2f0c64
[ "MIT" ]
4
2020-02-11T23:02:53.000Z
2021-06-10T20:40:55.000Z
main/tests/tests_management.py
jhdulaney/oh-ubiome-source
c01bd6c26fb6625ce455e3c2b24ff009bf2f0c64
[ "MIT" ]
2
2018-07-13T15:51:18.000Z
2018-12-27T20:54:52.000Z
from django.test import TestCase, RequestFactory import vcr from django.conf import settings from django.core.management import call_command from open_humans.models import OpenHumansMember import requests_mock class ManagementTestCase(TestCase): """ test that files are parsed correctly """ def setUp(self): """ Set up the app for following tests """ settings.DEBUG = True call_command('init_proj_config') self.factory = RequestFactory() data = {"access_token": 'myaccesstoken', "refresh_token": 'bar', "expires_in": 36000} self.oh_member = OpenHumansMember.create(oh_id='1234', data=data) self.oh_member.save() self.user = self.oh_member.user self.user.save() @vcr.use_cassette('main/tests/fixtures/process_file.yaml', record_mode='none') def test_management_process_file(self): with requests_mock.Mocker() as m: m.register_uri("GET", "https://www.openhumans.org/api/direct-sharing/project/exchange-member/?access_token=myaccesstoken", json={'data': [{'id': 34567, 'basename': '23andme_valid.txt', 'created': '2018-03-30T00:09:36.563486Z', 'download_url': 'https://myawslink.com/member-files/direct-sharing-1337/1234/23andme_valid.txt?Signature=nope&Expires=1522390374&AWSAccessKeyId=nope', 'metadata': {'tags': ['bar'], 'description': 'foo'}, 'source': 'direct-sharing-1337'}]}) m.register_uri("POST", "https://www.openhumans.org/api/direct-sharing/project/files/delete/?access_token=myaccesstoken") call_command('process_files') @vcr.use_cassette('main/tests/fixtures/import_test_file.yaml', record_mode='none') def test_management_import_user(self): self.assertEqual(len(OpenHumansMember.objects.all()), 1) call_command('import_users', infile='main/tests/fixtures/test_import.csv', delimiter=',') old_oh_member = OpenHumansMember.objects.get(oh_id='1234') self.assertEqual(old_oh_member.refresh_token, 'bar') new_oh_member = OpenHumansMember.objects.get(oh_id='2345') self.assertEqual(new_oh_member.refresh_token, 'new_refresh')
43.95082
185
0.56658
7946a360386bfa19eba8a4dab74830fbc01079d9
8,636
py
Python
ebay/resolution_case_management.py
roopeshvaddepally/python-ebay
d49edd513459b2f0531cab0d7e840f53347ad1ad
[ "Apache-2.0" ]
55
2015-01-20T10:08:01.000Z
2022-01-11T18:01:45.000Z
ebay/resolution_case_management.py
roopeshvaddepally/python-ebay
d49edd513459b2f0531cab0d7e840f53347ad1ad
[ "Apache-2.0" ]
3
2016-07-17T09:23:36.000Z
2017-02-08T09:34:57.000Z
ebay/resolution_case_management.py
roopeshvaddepally/python-ebay
d49edd513459b2f0531cab0d7e840f53347ad1ad
[ "Apache-2.0" ]
31
2015-02-17T08:44:44.000Z
2021-12-23T00:54:04.000Z
import urllib2 from lxml import etree from utils import get_config_store # case retrieval calls def getUserCases(caseStatusFilter=None, caseTypeFilter=None, creationDateRangeFilterFrom=None, creationDateRangeFilterTo=None, itemFilter=None, paginationInput=None, sortOrder=None, encoding="JSON"): root = etree.Element("getUserCasesRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") #caseStatusFilter is a List if caseStatusFilter: caseStatusFilter_elem = etree.SubElement(root, "caseStatusFilter") for status in caseStatusFilter: caseStatus_elem = etree.SubElement(caseStatusFilter_elem, "caseStatus") caseStatus_elem.text = status #caseTypeFilter is a List if caseTypeFilter: caseTypeFilter_elem = etree.SubElement(root, "caseTypeFilter") for case_type in caseTypeFilter: caseType_elem = etree.SubElement(caseStatusFilter_elem, "caseType") caseType_elem.text = case_type if creationDateRangeFilterFrom and creationDateRangeFilterTo: creationDateRangeFilter_elem = etree.SubElement(root, "creationDateRangeFilter") creationDateRangeFilterFrom_elem = etree.SubElement(creationDateRangeFilter_elem, "fromDate") creationDateRangeFilterFrom_elem.text = creationDateRangeFilterFrom creationDateRangeFilterTo_elem = etree.SubElement(creationDateRangeFilter_elem, "toDate") creationDateRangeFilterTo_elem.text = creationDateRangeFilterTo #itemFilter is a dict: {itemId:123, transactionId:72} if itemFilter and len(itemFilter) > 0: itemFilter_elem = etree.SubElement(root, "itemFilter") for key in itemFilter.keys(): itemId_elem = etree.SubElement(itemFilter_elem, key) itemId_elem.text = itemFilter[key] # paginationInput is a dict: {entriesPerPage:5, pageNumber:10} if paginationInput and len(paginationInput) > 0: paginationInput_elem = etree.SubElement(root, "paginationInput") for key in paginationInput.keys(): input_values_elem = etree.SubElement(paginationInput_elem, key) input_values_elem.text = paginationInput[key] if sortOrder: sortOrder_elem = etree.SubElement(root, "sortOrder") sortOrder_elem.text = sortOrder request = etree.tostring(root, pretty_print=True) return get_response(getUserCases.__name__, request, encoding) def getEBPCaseDetail(caseId, caseType, encoding="JSON"): root = etree.Element("getEBPCaseDetailRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType request = etree.tostring(root, pretty_print=True) return get_response(getEBPCaseDetail.__name__, request, encoding) # Seller Option Calls def provideTrackingInfo(caseId, caseType, carrierUsed, trackingNumber, comments=None, encoding="JSON"): root = etree.Element("provideTrackingInfoRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType carrierUsed_elem = etree.SubElement(root, "carrierUsed") carrierUsed_elem.text = carrierUsed trackingNumber_elem = etree.SubElement(root, "trackingNumber") trackingNumber_elem.text = trackingNumber if comments: comments_elem = etree.SubElement(root, "comments") comments_elem.text = comments request = etree.tostring(root, pretty_print=True) return get_response(provideTrackingInfo.__name__, request, encoding) def issueFullRefund(caseId, caseType, comments=None, encoding="JSON"): root = etree.Element("issueFullRefundRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType if comments: comments_elem = etree.SubElement(root, "comments") comments_elem.text = comments request = etree.tostring(root, pretty_print=True) return get_response(issueFullRefund.__name__, request, encoding) def offerOtherSolution(caseId, caseType, messageToBuyer, encoding="JSON"): root = etree.Element("offerOtherSolutionRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType messageToBuyer_elem = etree.SubElement(root, "messageToBuyer") messageToBuyer_elem.text = messageToBuyer request = etree.tostring(root, pretty_print=True) return get_response(offerOtherSolution.__name__, request, encoding) #NOT WORKING on SANDBOX, need to investigate def escalateToCustomerSuppport(caseId, caseType, escalationReason, comments=None, encoding="JSON"): root = etree.Element("escalateToCustomerSuppportRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType #escalationReason is a dict escalationReason_elem = etree.SubElement(root, "escalationReason") for key in escalationReason.keys(): key_elem = etree.SubElement(escalationReason_elem, key) key_elem.text = escalationReason[key] if comments: comments_elem = etree.SubElement(root, "comments") comments_elem.text = comments request = etree.tostring(root, pretty_print=True) return get_response(escalateToCustomerSuppport.__name__, request, encoding) def appealToCustomerSupport(caseId, caseType, appealReason, comments=None, encoding="JSON"): root = etree.Element("appealToCustomerSupportRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType appealReason_elem = etree.SubElement(root, "appealReason") appealReason_elem.text = appealReason if comments: comments_elem = etree.SubElement(root, "comments") comments_elem.text = comments request = etree.tostring(root, pretty_print=True) return get_response(appealToCustomerSupport.__name__, request, encoding) # Metadata calls def getActivityOptions(caseId, caseType, encoding="JSON"): root = etree.Element("getActivityOptionsRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") caseId_elem = etree.SubElement(root, "caseId") id_elem = etree.SubElement(caseId_elem, "id") id_elem.text = caseId type_elem = etree.SubElement(caseId_elem, "type") type_elem.text = caseType request = etree.tostring(root, pretty_print=True) return get_response(getActivityOptions.__name__, request, encoding) def getVersion(encoding="JSON"): root = etree.Element("getVersionRequest", xmlns="http://www.ebay.com/marketplace/search/v1/services") request = etree.tostring(root, pretty_print=True) return get_response(getVersion.__name__, request, encoding) def get_response(operation_name, data, encoding, **headers): config = get_config_store() access_token = config.get("auth", "token") endpoint = config.get("endpoints", "resolution_case_management") http_headers = { "X-EBAY-SOA-OPERATION-NAME": operation_name, "X-EBAY-SOA-SECURITY-TOKEN": access_token, "X-EBAY-SOA-RESPONSE-DATA-FORMAT": encoding} http_headers.update(headers) req = urllib2.Request(endpoint, data, http_headers) res = urllib2.urlopen(req) data = res.read() return data
38.553571
103
0.701945
7946a37de353db77b3a7c35cbde2bee8564ab190
55
py
Python
modules.py
bab81/IntroPython
87cd55f0afdbfe69f28c8ec95b782c2c4c76eb50
[ "MIT" ]
null
null
null
modules.py
bab81/IntroPython
87cd55f0afdbfe69f28c8ec95b782c2c4c76eb50
[ "MIT" ]
null
null
null
modules.py
bab81/IntroPython
87cd55f0afdbfe69f28c8ec95b782c2c4c76eb50
[ "MIT" ]
null
null
null
import useful_tools print(useful_tools.roll_dice(10))
13.75
33
0.836364
7946a3a4b723dfc35d2a69da1583ec08e2a9102c
2,955
py
Python
scripts/quest/q22750s.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
54
2019-04-16T23:24:48.000Z
2021-12-18T11:41:50.000Z
scripts/quest/q22750s.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
3
2019-05-19T15:19:41.000Z
2020-04-27T16:29:16.000Z
scripts/quest/q22750s.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
49
2020-11-25T23:29:16.000Z
2022-03-26T16:20:24.000Z
KINESIS = 1531000 JAY = 1531000 YUNA = 1531002 NERO = 1531003 sm.lockForIntro() sm.removeAdditionalEffect() sm.blind(1, 255, 0, 0) sm.spawnNpc(YUNA, 760, -272) sm.showNpcSpecialActionByTemplateId(YUNA, "summon") sm.spawnNpc(NERO, 600, -272) sm.showNpcSpecialActionByTemplateId(NERO, "summon") sm.teleportInField(647, -272) sm.forcedFlip(False) sm.zoomCamera(0, 2000, 0, 700, -200) sm.blind(1, 255, 0, 0) sm.sendDelay(1200) sm.blind(0, 0, 0, 1000) sm.sendDelay(1400) sm.setIntroBoxChat(KINESIS) sm.sendNext("Did you cry, Yuna?") sm.showNpcSpecialActionByTemplateId(YUNA, "angry", -1) sm.setIntroBoxChat(YUNA) sm.sendSay("#face0#No, you dummy! I didn't cry.") sm.stopNpcSpecialActionByTemplateId(YUNA) sm.setIntroBoxChat(KINESIS) sm.sendSay("#face2#You can hug me if you like. We can make it a touching reunion.") sm.setIntroBoxChat(YUNA) sm.sendSay("#face0#You jerk! You have no idea...") sm.sendSay("#face4#Ahh, nevermind. So... What's with the clothes? You look like a wizard from some video game.") sm.setIntroBoxChat(KINESIS) sm.sendSay("#face3#It's a long story. What do you think? I can pull it off, right?") sm.sendDelay(500) sm.zoomCamera(500, 2000, 500, 800, -200) sm.sendDelay(sm.getAnswerVal()) sm.setIntroBoxChat(JAY) sm.sendSay("I knew you'd be fine. ") sm.setIntroBoxChat(KINESIS) sm.sendSay("Wow, Jay. Can't even pretend to be happy to see me?") sm.setIntroBoxChat(JAY) sm.sendSay("#face2#I mean, I knew something was up because your signal kept coming from the sinkhole, but your vitals were all over the place. Strange, but I'm used to that with you. So, what happened? And who's the kid?") sm.setIntroBoxChat(YUNA) sm.sendSay("#face1#Oh yeah, who IS that kid?") sm.setIntroBoxChat(KINESIS) sm.sendSay("Jay, you're a sharp cookie. I bet you already figured out what happened to me. As for the kid, this is Nero the cat.") sm.setIntroBoxChat(NERO) sm.sendSay("#face0#Ahem! I am #bNella Medionel Roonia#k. In our ancient tongue, it means half-child of the sacred moonlight. See, I'm from a real big-deal magician family...") sm.setIntroBoxChat(KINESIS) sm.sendSay("You can call her Nero.") sm.setIntroBoxChat(NERO) sm.sendSay("#face2#Mrrrow!") sm.setIntroBoxChat(JAY) sm.sendSay(" #face1#Oo-kaaay...") sm.setIntroBoxChat(YUNA) sm.sendSay(" #face4#Wait, so... that kid is the black cat? The black cat is this kid?") sm.setIntroBoxChat(NERO) sm.sendSay(" #face2#Correct! ") sm.setIntroBoxChat(YUNA) sm.sendSay(" #face4#") sm.setIntroBoxChat(JAY) sm.sendSay(" #face6#") sm.setIntroBoxChat(KINESIS) sm.sendSay(" #face2#Okay, so... There's a lot to go over, so let's continue this over some food. Preferably something that's not Cold Eye Tail Spicy Soup.") sm.zoomCamera(0, 1000, 2147483647, 2147483647, 2147483647) sm.moveCamera(True, 0, 0, 0) sm.sendDelay(300) sm.removeOverlapScreen(1000) sm.unlockForIntro() sm.startQuest(parentID) sm.completeQuest(parentID) sm.giveExp(3000) sm.removeNpc(YUNA) sm.removeNpc(NERO)
29.257426
222
0.743824
7946a41c791be3875e67642aa31542e326df9ae5
3,568
py
Python
non-overlap/evaluate_acc.py
MalekNaimi/VGGish-Model
61369097fe669c642f15a94f964e9130b0218756
[ "MIT" ]
null
null
null
non-overlap/evaluate_acc.py
MalekNaimi/VGGish-Model
61369097fe669c642f15a94f964e9130b0218756
[ "MIT" ]
null
null
null
non-overlap/evaluate_acc.py
MalekNaimi/VGGish-Model
61369097fe669c642f15a94f964e9130b0218756
[ "MIT" ]
null
null
null
from tqdm import tqdm import numpy as np from collections import Counter import random with open('/content/VGGish-Model/non-overlap/test_clip_length.txt','r') as f: line = f.readline().split() test_clip_length = [int(x) for x in line] with open('/content/VGGish-Model/non-overlap/test_preds.txt','r') as f: line = f.readline().split() test_preds = [int(x) for x in line] with open('/content/VGGish-Model/non-overlap/test_labels.txt','r') as f: line = f.readline().split() test_labels = [int(x) for x in line] with open('/content/VGGish-Model/non-overlap/test_logits.txt','r') as f: line = f.readlines() test_logits = np.asarray([[float(y) for y in x.strip().split()] for x in line]) def confusion_matrix(label,pred,num_classes=4): hist = np.zeros((num_classes,num_classes)) for i,j in zip(label,pred): hist[i,j] += 1 axis_sum = np.sum(hist,axis=1) return hist y_clip_label = [] abs_cnt,standard_cnt,logits_cnt = [],[],[] for i in tqdm(range(len(test_clip_length)-1)): start,end = test_clip_length[i],test_clip_length[i+1] y_labels = test_labels[start:end] y_preds = test_preds[start:end] y_logits = test_logits[start:end] clip_label = Counter(y_labels).most_common(1)[0][0] y_clip_label.append(clip_label) y_pred_max_count = Counter(y_preds).most_common(1)[0][1] y_pred_dict = dict(Counter(y_preds)) # List of the classes that are predicted maximum times. # For eg. if predictions = [1,1,2,3,4,3,2,1,2] # max_freq = [1,2] as both of them occur maximum(3) # times in predictions. max_freq = [] for key in list(y_pred_dict.keys()): if y_pred_dict[key] == y_pred_max_count: max_freq.append(key) max_freq = list(set(list(max_freq))) # print(clip_label,max_freq[0],Counter(y_labels),Counter(y_preds)) # Absolute Clip Accuracy (Strictest Accuracy): If the model predicts only one # class for each and every frame of a particular clip then # only we assume that the model has predicted the class of the clip. # Note that this can't predict for all clips. For e.g. if 8/10 frames of a clip are predicted 1 and rest are predicted zero, we can't predict any class. abs_cnt.append(1) if clip_label == max_freq[0] and len(Counter(y_preds)) == 1 else abs_cnt.append(0) # Standard Clip Accuracy: If len(max_freq) == 1 i.e. there is exactly one # class with maximum frequency and that class is the clip label, we assume # the model has correctly predicted the class of the clip. Statistically # speaking if the clip label is the mode of the predictions.For example,there is a # 5 second clip of class 1 and the model predicts = [1,1,2,3,0] then we say # that the model has predicted correct. If it predicts [1,1,2,2,3], we say it is incorrect. standard_cnt.append(max_freq[0]) # Average Logits Accuracy logits_cnt.append(np.argmax(np.mean(y_logits,axis=0))) # Frame Level Accuracy. frame_cnt = [1 for x,y in zip(test_labels,test_preds) if x == y] print('frame_accuracy:',np.sum(frame_cnt)/float(len(test_labels))) print('absolute_clip_accuracy:',np.sum(abs_cnt)/float(len(test_clip_length)-1)) print('standard_clip_accuracy:',np.sum(np.asarray(standard_cnt) == np.asarray(y_clip_label))/float(len(test_clip_length)-1)) print('average_logits_clip_accuracy:',np.sum(np.asarray(logits_cnt) == np.asarray(y_clip_label))/float(len(test_clip_length)-1)) np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) print(confusion_matrix(y_clip_label,standard_cnt))
43.512195
156
0.706278
7946a4dd9f09f5ccf4e23f689103336a1fe5247f
4,906
py
Python
WANNRelease/WANN/wann_src/dataGatherer.py
tusharganguli/brain-tokyo-workshop
4ccee864229598f5af29af56197fb5fc7240c1c9
[ "Apache-2.0" ]
null
null
null
WANNRelease/WANN/wann_src/dataGatherer.py
tusharganguli/brain-tokyo-workshop
4ccee864229598f5af29af56197fb5fc7240c1c9
[ "Apache-2.0" ]
null
null
null
WANNRelease/WANN/wann_src/dataGatherer.py
tusharganguli/brain-tokyo-workshop
4ccee864229598f5af29af56197fb5fc7240c1c9
[ "Apache-2.0" ]
null
null
null
import os import numpy as np import copy from .ind import exportNet import logging from wann_train import rank class DataGatherer(): ''' Data recorder for WANN algorithm''' def __init__(self, filename, hyp): """ Args: filename - (string) - path+prefix of file output destination hyp - (dict) - algorithm hyperparameters """ logging.info(str(rank) + "__init__") self.filename = filename # File name path + prefix self.p = hyp # Initialize empty fields self.elite = [] self.best = [] self.bestFitVec = [] self.spec_fit = [] self.field = ['x_scale','fit_med','fit_max','fit_top','fit_peak',\ 'node_med','conn_med',\ 'elite','best'] self.objVals = np.array([]) for f in self.field[:-2]: exec('self.' + f + ' = np.array([])') #e.g. self.fit_max = np.array([]) self.newBest = False def gatherData(self, pop, species): # Readability fitness = [ind.fitness for ind in pop] peakfit = [ind.fitMax for ind in pop] nodes = np.asarray([np.shape(ind.node)[1] for ind in pop]) conns = np.asarray([ind.nConn for ind in pop]) # --- Evaluation Scale --------------------------------------------------- if len(self.x_scale) is 0: self.x_scale = np.append(self.x_scale, len(pop)) else: self.x_scale = np.append(self.x_scale, self.x_scale[-1]+len(pop)) # ------------------------------------------------------------------------ # --- Best Individual ---------------------------------------------------- self.elite.append(pop[np.argmax(fitness)]) if len(self.best) is 0: self.best = copy.deepcopy(self.elite) elif (self.elite[-1].fitness > self.best[-1].fitness): self.best = np.append(self.best,copy.deepcopy(self.elite[-1])) self.newBest = True else: self.best = np.append(self.best,copy.deepcopy(self.best[-1])) self.newBest = False # ------------------------------------------------------------------------ # --- Generation fit/complexity stats ------------------------------------ self.node_med = np.append(self.node_med,np.median(nodes)) self.conn_med = np.append(self.conn_med,np.median(conns)) self.fit_med = np.append(self.fit_med, np.median(fitness)) self.fit_max = np.append(self.fit_max, self.elite[-1].fitness) self.fit_top = np.append(self.fit_top, self.best[-1].fitness) self.fit_peak = np.append(self.fit_peak, self.best[-1].fitMax) # ------------------------------------------------------------------------ # --- MOO Fronts --------------------------------------------------------- if len(self.objVals) == 0: self.objVals = np.c_[fitness,peakfit,conns] else: self.objVals = np.c_[self.objVals, np.c_[fitness,peakfit,conns]] # ------------------------------------------------------------------------ def display(self): return "|---| Elite Fit: " + '{:.2f}'.format(self.fit_max[-1]) \ + " \t|---| Best Fit: " + '{:.2f}'.format(self.fit_top[-1]) \ + " \t|---| Peak Fit: " + '{:.2f}'.format(self.fit_peak[-1]) def save(self, gen=(-1), saveFullPop=False): ''' Save data to disk ''' filename = self.filename pref = 'log/' + filename # --- Generation fit/complexity stats ------------------------------------ gStatLabel = ['x_scale',\ 'fit_med','fit_max','fit_top','fit_peak',\ 'node_med','conn_med'] genStats = np.empty((len(self.x_scale),0)) for i in range(len(gStatLabel)): #e.g. self. fit_max [:,None] evalString = 'self.' + gStatLabel[i] + '[:,None]' genStats = np.hstack((genStats, eval(evalString))) lsave(pref + '_stats.out', genStats) # ------------------------------------------------------------------------ # --- Best Individual ---------------------------------------------------- wMat = self.best[gen].wMat aVec = self.best[gen].aVec exportNet(pref + '_best.out',wMat,aVec) if gen > 1: folder = 'log/' + filename + '_best/' if not os.path.exists(folder): os.makedirs(folder) exportNet(folder + str(gen).zfill(4) +'.out',wMat,aVec) # ------------------------------------------------------------------------ # --- MOO Fronts --------------------------------------------------------- lsave(pref + '_objVals.out',self.objVals) # ------------------------------------------------------------------------ def savePop(self,pop,filename): folder = 'log/' + filename + '_pop/' if not os.path.exists(folder): os.makedirs(folder) for i in range(len(pop)): exportNet(folder+'ind_'+str(i)+'.out', pop[i].wMat, pop[i].aVec) def lsave(filename, data): np.savetxt(filename, data, delimiter=',',fmt='%1.2e')
35.810219
79
0.481247
7946a63af83551baa3012f3eb8b4c6d01d05492d
47,427
py
Python
cassandra/cqltypes.py
lauranovich/python-driver
89e4b246f259db38322d2f9a7c1111a4ff380c92
[ "Apache-2.0" ]
1,163
2015-01-01T03:02:05.000Z
2022-03-22T13:04:00.000Z
cassandra/cqltypes.py
lauranovich/python-driver
89e4b246f259db38322d2f9a7c1111a4ff380c92
[ "Apache-2.0" ]
556
2015-01-05T16:39:29.000Z
2022-03-26T20:51:36.000Z
cassandra/cqltypes.py
lauranovich/python-driver
89e4b246f259db38322d2f9a7c1111a4ff380c92
[ "Apache-2.0" ]
449
2015-01-05T10:28:59.000Z
2022-03-14T23:15:32.000Z
# Copyright DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Representation of Cassandra data types. These classes should make it simple for the library (and caller software) to deal with Cassandra-style Java class type names and CQL type specifiers, and convert between them cleanly. Parameterized types are fully supported in both flavors. Once you have the right Type object for the type you want, you can use it to serialize, deserialize, or retrieve the corresponding CQL or Cassandra type strings. """ # NOTE: # If/when the need arises for interpret types from CQL string literals in # different ways (for https://issues.apache.org/jira/browse/CASSANDRA-3799, # for example), these classes would be a good place to tack on # .from_cql_literal() and .as_cql_literal() classmethods (or whatever). from __future__ import absolute_import # to enable import io from stdlib import ast from binascii import unhexlify import calendar from collections import namedtuple from decimal import Decimal import io from itertools import chain import logging import re import socket import time import six from six.moves import range import struct import sys from uuid import UUID from cassandra.marshal import (int8_pack, int8_unpack, int16_pack, int16_unpack, uint16_pack, uint16_unpack, uint32_pack, uint32_unpack, int32_pack, int32_unpack, int64_pack, int64_unpack, float_pack, float_unpack, double_pack, double_unpack, varint_pack, varint_unpack, point_be, point_le, vints_pack, vints_unpack) from cassandra import util _little_endian_flag = 1 # we always serialize LE if six.PY3: import ipaddress _ord = ord if six.PY2 else lambda x: x apache_cassandra_type_prefix = 'org.apache.cassandra.db.marshal.' cassandra_empty_type = 'org.apache.cassandra.db.marshal.EmptyType' cql_empty_type = 'empty' log = logging.getLogger(__name__) if six.PY3: _number_types = frozenset((int, float)) long = int def _name_from_hex_string(encoded_name): bin_str = unhexlify(encoded_name) return bin_str.decode('ascii') else: _number_types = frozenset((int, long, float)) _name_from_hex_string = unhexlify def trim_if_startswith(s, prefix): if s.startswith(prefix): return s[len(prefix):] return s _casstypes = {} _cqltypes = {} cql_type_scanner = re.Scanner(( ('frozen', None), (r'[a-zA-Z0-9_]+', lambda s, t: t), (r'[\s,<>]', None), )) def cql_types_from_string(cql_type): return cql_type_scanner.scan(cql_type)[0] class CassandraTypeType(type): """ The CassandraType objects in this module will normally be used directly, rather than through instances of those types. They can be instantiated, of course, but the type information is what this driver mainly needs. This metaclass registers CassandraType classes in the global by-cassandra-typename and by-cql-typename registries, unless their class name starts with an underscore. """ def __new__(metacls, name, bases, dct): dct.setdefault('cassname', name) cls = type.__new__(metacls, name, bases, dct) if not name.startswith('_'): _casstypes[name] = cls if not cls.typename.startswith(apache_cassandra_type_prefix): _cqltypes[cls.typename] = cls return cls casstype_scanner = re.Scanner(( (r'[()]', lambda s, t: t), (r'[a-zA-Z0-9_.:=>]+', lambda s, t: t), (r'[\s,]', None), )) def cqltype_to_python(cql_string): """ Given a cql type string, creates a list that can be manipulated in python Example: int -> ['int'] frozen<tuple<text, int>> -> ['frozen', ['tuple', ['text', 'int']]] """ scanner = re.Scanner(( (r'[a-zA-Z0-9_]+', lambda s, t: "'{}'".format(t)), (r'<', lambda s, t: ', ['), (r'>', lambda s, t: ']'), (r'[, ]', lambda s, t: t), (r'".*?"', lambda s, t: "'{}'".format(t)), )) scanned_tokens = scanner.scan(cql_string)[0] hierarchy = ast.literal_eval(''.join(scanned_tokens)) return [hierarchy] if isinstance(hierarchy, str) else list(hierarchy) def python_to_cqltype(types): """ Opposite of the `cql_to_python` function. Given a python list, creates a cql type string from the representation Example: ['int'] -> int ['frozen', ['tuple', ['text', 'int']]] -> frozen<tuple<text, int>> """ scanner = re.Scanner(( (r"'[a-zA-Z0-9_]+'", lambda s, t: t[1:-1]), (r'^\[', lambda s, t: None), (r'\]$', lambda s, t: None), (r',\s*\[', lambda s, t: '<'), (r'\]', lambda s, t: '>'), (r'[, ]', lambda s, t: t), (r'\'".*?"\'', lambda s, t: t[1:-1]), )) scanned_tokens = scanner.scan(repr(types))[0] cql = ''.join(scanned_tokens).replace('\\\\', '\\') return cql def _strip_frozen_from_python(types): """ Given a python list representing a cql type, removes 'frozen' Example: ['frozen', ['tuple', ['text', 'int']]] -> ['tuple', ['text', 'int']] """ while 'frozen' in types: index = types.index('frozen') types = types[:index] + types[index + 1] + types[index + 2:] new_types = [_strip_frozen_from_python(item) if isinstance(item, list) else item for item in types] return new_types def strip_frozen(cql): """ Given a cql type string, and removes frozen Example: frozen<tuple<int>> -> tuple<int> """ types = cqltype_to_python(cql) types_without_frozen = _strip_frozen_from_python(types) cql = python_to_cqltype(types_without_frozen) return cql def lookup_casstype_simple(casstype): """ Given a Cassandra type name (either fully distinguished or not), hand back the CassandraType class responsible for it. If a name is not recognized, a custom _UnrecognizedType subclass will be created for it. This function does not handle complex types (so no type parameters-- nothing with parentheses). Use lookup_casstype() instead if you might need that. """ shortname = trim_if_startswith(casstype, apache_cassandra_type_prefix) try: typeclass = _casstypes[shortname] except KeyError: typeclass = mkUnrecognizedType(casstype) return typeclass def parse_casstype_args(typestring): tokens, remainder = casstype_scanner.scan(typestring) if remainder: raise ValueError("weird characters %r at end" % remainder) # use a stack of (types, names) lists args = [([], [])] for tok in tokens: if tok == '(': args.append(([], [])) elif tok == ')': types, names = args.pop() prev_types, prev_names = args[-1] prev_types[-1] = prev_types[-1].apply_parameters(types, names) else: types, names = args[-1] parts = re.split(':|=>', tok) tok = parts.pop() if parts: names.append(parts[0]) else: names.append(None) ctype = lookup_casstype_simple(tok) types.append(ctype) # return the first (outer) type, which will have all parameters applied return args[0][0][0] def lookup_casstype(casstype): """ Given a Cassandra type as a string (possibly including parameters), hand back the CassandraType class responsible for it. If a name is not recognized, a custom _UnrecognizedType subclass will be created for it. Example: >>> lookup_casstype('org.apache.cassandra.db.marshal.MapType(org.apache.cassandra.db.marshal.UTF8Type,org.apache.cassandra.db.marshal.Int32Type)') <class 'cassandra.cqltypes.MapType(UTF8Type, Int32Type)'> """ if isinstance(casstype, (CassandraType, CassandraTypeType)): return casstype try: return parse_casstype_args(casstype) except (ValueError, AssertionError, IndexError) as e: raise ValueError("Don't know how to parse type string %r: %s" % (casstype, e)) def is_reversed_casstype(data_type): return issubclass(data_type, ReversedType) class EmptyValue(object): """ See _CassandraType.support_empty_values """ def __str__(self): return "EMPTY" __repr__ = __str__ EMPTY = EmptyValue() @six.add_metaclass(CassandraTypeType) class _CassandraType(object): subtypes = () num_subtypes = 0 empty_binary_ok = False support_empty_values = False """ Back in the Thrift days, empty strings were used for "null" values of all types, including non-string types. For most users, an empty string value in an int column is the same as being null/not present, so the driver normally returns None in this case. (For string-like types, it *will* return an empty string by default instead of None.) To avoid this behavior, set this to :const:`True`. Instead of returning None for empty string values, the EMPTY singleton (an instance of EmptyValue) will be returned. """ def __repr__(self): return '<%s( %r )>' % (self.cql_parameterized_type(), self.val) @classmethod def from_binary(cls, byts, protocol_version): """ Deserialize a bytestring into a value. See the deserialize() method for more information. This method differs in that if None or the empty string is passed in, None may be returned. """ if byts is None: return None elif len(byts) == 0 and not cls.empty_binary_ok: return EMPTY if cls.support_empty_values else None return cls.deserialize(byts, protocol_version) @classmethod def to_binary(cls, val, protocol_version): """ Serialize a value into a bytestring. See the serialize() method for more information. This method differs in that if None is passed in, the result is the empty string. """ return b'' if val is None else cls.serialize(val, protocol_version) @staticmethod def deserialize(byts, protocol_version): """ Given a bytestring, deserialize into a value according to the protocol for this type. Note that this does not create a new instance of this class; it merely gives back a value that would be appropriate to go inside an instance of this class. """ return byts @staticmethod def serialize(val, protocol_version): """ Given a value appropriate for this class, serialize it according to the protocol for this type and return the corresponding bytestring. """ return val @classmethod def cass_parameterized_type_with(cls, subtypes, full=False): """ Return the name of this type as it would be expressed by Cassandra, optionally fully qualified. If subtypes is not None, it is expected to be a list of other CassandraType subclasses, and the output string includes the Cassandra names for those subclasses as well, as parameters to this one. Example: >>> LongType.cass_parameterized_type_with(()) 'LongType' >>> LongType.cass_parameterized_type_with((), full=True) 'org.apache.cassandra.db.marshal.LongType' >>> SetType.cass_parameterized_type_with([DecimalType], full=True) 'org.apache.cassandra.db.marshal.SetType(org.apache.cassandra.db.marshal.DecimalType)' """ cname = cls.cassname if full and '.' not in cname: cname = apache_cassandra_type_prefix + cname if not subtypes: return cname sublist = ', '.join(styp.cass_parameterized_type(full=full) for styp in subtypes) return '%s(%s)' % (cname, sublist) @classmethod def apply_parameters(cls, subtypes, names=None): """ Given a set of other CassandraTypes, create a new subtype of this type using them as parameters. This is how composite types are constructed. >>> MapType.apply_parameters([DateType, BooleanType]) <class 'cassandra.cqltypes.MapType(DateType, BooleanType)'> `subtypes` will be a sequence of CassandraTypes. If provided, `names` will be an equally long sequence of column names or Nones. """ if cls.num_subtypes != 'UNKNOWN' and len(subtypes) != cls.num_subtypes: raise ValueError("%s types require %d subtypes (%d given)" % (cls.typename, cls.num_subtypes, len(subtypes))) newname = cls.cass_parameterized_type_with(subtypes) if six.PY2 and isinstance(newname, unicode): newname = newname.encode('utf-8') return type(newname, (cls,), {'subtypes': subtypes, 'cassname': cls.cassname, 'fieldnames': names}) @classmethod def cql_parameterized_type(cls): """ Return a CQL type specifier for this type. If this type has parameters, they are included in standard CQL <> notation. """ if not cls.subtypes: return cls.typename return '%s<%s>' % (cls.typename, ', '.join(styp.cql_parameterized_type() for styp in cls.subtypes)) @classmethod def cass_parameterized_type(cls, full=False): """ Return a Cassandra type specifier for this type. If this type has parameters, they are included in the standard () notation. """ return cls.cass_parameterized_type_with(cls.subtypes, full=full) # it's initially named with a _ to avoid registering it as a real type, but # client programs may want to use the name still for isinstance(), etc CassandraType = _CassandraType class _UnrecognizedType(_CassandraType): num_subtypes = 'UNKNOWN' if six.PY3: def mkUnrecognizedType(casstypename): return CassandraTypeType(casstypename, (_UnrecognizedType,), {'typename': "'%s'" % casstypename}) else: def mkUnrecognizedType(casstypename): # noqa return CassandraTypeType(casstypename.encode('utf8'), (_UnrecognizedType,), {'typename': "'%s'" % casstypename}) class BytesType(_CassandraType): typename = 'blob' empty_binary_ok = True @staticmethod def serialize(val, protocol_version): return six.binary_type(val) class DecimalType(_CassandraType): typename = 'decimal' @staticmethod def deserialize(byts, protocol_version): scale = int32_unpack(byts[:4]) unscaled = varint_unpack(byts[4:]) return Decimal('%de%d' % (unscaled, -scale)) @staticmethod def serialize(dec, protocol_version): try: sign, digits, exponent = dec.as_tuple() except AttributeError: try: sign, digits, exponent = Decimal(dec).as_tuple() except Exception: raise TypeError("Invalid type for Decimal value: %r", dec) unscaled = int(''.join([str(digit) for digit in digits])) if sign: unscaled *= -1 scale = int32_pack(-exponent) unscaled = varint_pack(unscaled) return scale + unscaled class UUIDType(_CassandraType): typename = 'uuid' @staticmethod def deserialize(byts, protocol_version): return UUID(bytes=byts) @staticmethod def serialize(uuid, protocol_version): try: return uuid.bytes except AttributeError: raise TypeError("Got a non-UUID object for a UUID value") class BooleanType(_CassandraType): typename = 'boolean' @staticmethod def deserialize(byts, protocol_version): return bool(int8_unpack(byts)) @staticmethod def serialize(truth, protocol_version): return int8_pack(truth) class ByteType(_CassandraType): typename = 'tinyint' @staticmethod def deserialize(byts, protocol_version): return int8_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int8_pack(byts) if six.PY2: class AsciiType(_CassandraType): typename = 'ascii' empty_binary_ok = True else: class AsciiType(_CassandraType): typename = 'ascii' empty_binary_ok = True @staticmethod def deserialize(byts, protocol_version): return byts.decode('ascii') @staticmethod def serialize(var, protocol_version): try: return var.encode('ascii') except UnicodeDecodeError: return var class FloatType(_CassandraType): typename = 'float' @staticmethod def deserialize(byts, protocol_version): return float_unpack(byts) @staticmethod def serialize(byts, protocol_version): return float_pack(byts) class DoubleType(_CassandraType): typename = 'double' @staticmethod def deserialize(byts, protocol_version): return double_unpack(byts) @staticmethod def serialize(byts, protocol_version): return double_pack(byts) class LongType(_CassandraType): typename = 'bigint' @staticmethod def deserialize(byts, protocol_version): return int64_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int64_pack(byts) class Int32Type(_CassandraType): typename = 'int' @staticmethod def deserialize(byts, protocol_version): return int32_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int32_pack(byts) class IntegerType(_CassandraType): typename = 'varint' @staticmethod def deserialize(byts, protocol_version): return varint_unpack(byts) @staticmethod def serialize(byts, protocol_version): return varint_pack(byts) class InetAddressType(_CassandraType): typename = 'inet' @staticmethod def deserialize(byts, protocol_version): if len(byts) == 16: return util.inet_ntop(socket.AF_INET6, byts) else: # util.inet_pton could also handle, but this is faster # since we've already determined the AF return socket.inet_ntoa(byts) @staticmethod def serialize(addr, protocol_version): try: if ':' in addr: return util.inet_pton(socket.AF_INET6, addr) else: # util.inet_pton could also handle, but this is faster # since we've already determined the AF return socket.inet_aton(addr) except: if six.PY3 and isinstance(addr, (ipaddress.IPv4Address, ipaddress.IPv6Address)): return addr.packed raise ValueError("can't interpret %r as an inet address" % (addr,)) class CounterColumnType(LongType): typename = 'counter' cql_timestamp_formats = ( '%Y-%m-%d %H:%M', '%Y-%m-%d %H:%M:%S', '%Y-%m-%dT%H:%M', '%Y-%m-%dT%H:%M:%S', '%Y-%m-%d' ) _have_warned_about_timestamps = False class DateType(_CassandraType): typename = 'timestamp' @staticmethod def interpret_datestring(val): if val[-5] in ('+', '-'): offset = (int(val[-4:-2]) * 3600 + int(val[-2:]) * 60) * int(val[-5] + '1') val = val[:-5] else: offset = -time.timezone for tformat in cql_timestamp_formats: try: tval = time.strptime(val, tformat) except ValueError: continue # scale seconds to millis for the raw value return (calendar.timegm(tval) + offset) * 1e3 else: raise ValueError("can't interpret %r as a date" % (val,)) @staticmethod def deserialize(byts, protocol_version): timestamp = int64_unpack(byts) / 1000.0 return util.datetime_from_timestamp(timestamp) @staticmethod def serialize(v, protocol_version): try: # v is datetime timestamp_seconds = calendar.timegm(v.utctimetuple()) timestamp = timestamp_seconds * 1e3 + getattr(v, 'microsecond', 0) / 1e3 except AttributeError: try: timestamp = calendar.timegm(v.timetuple()) * 1e3 except AttributeError: # Ints and floats are valid timestamps too if type(v) not in _number_types: raise TypeError('DateType arguments must be a datetime, date, or timestamp') timestamp = v return int64_pack(long(timestamp)) class TimestampType(DateType): pass class TimeUUIDType(DateType): typename = 'timeuuid' def my_timestamp(self): return util.unix_time_from_uuid1(self.val) @staticmethod def deserialize(byts, protocol_version): return UUID(bytes=byts) @staticmethod def serialize(timeuuid, protocol_version): try: return timeuuid.bytes except AttributeError: raise TypeError("Got a non-UUID object for a UUID value") class SimpleDateType(_CassandraType): typename = 'date' date_format = "%Y-%m-%d" # Values of the 'date'` type are encoded as 32-bit unsigned integers # representing a number of days with epoch (January 1st, 1970) at the center of the # range (2^31). EPOCH_OFFSET_DAYS = 2 ** 31 @staticmethod def deserialize(byts, protocol_version): days = uint32_unpack(byts) - SimpleDateType.EPOCH_OFFSET_DAYS return util.Date(days) @staticmethod def serialize(val, protocol_version): try: days = val.days_from_epoch except AttributeError: if isinstance(val, six.integer_types): # the DB wants offset int values, but util.Date init takes days from epoch # here we assume int values are offset, as they would appear in CQL # short circuit to avoid subtracting just to add offset return uint32_pack(val) days = util.Date(val).days_from_epoch return uint32_pack(days + SimpleDateType.EPOCH_OFFSET_DAYS) class ShortType(_CassandraType): typename = 'smallint' @staticmethod def deserialize(byts, protocol_version): return int16_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int16_pack(byts) class TimeType(_CassandraType): typename = 'time' @staticmethod def deserialize(byts, protocol_version): return util.Time(int64_unpack(byts)) @staticmethod def serialize(val, protocol_version): try: nano = val.nanosecond_time except AttributeError: nano = util.Time(val).nanosecond_time return int64_pack(nano) class DurationType(_CassandraType): typename = 'duration' @staticmethod def deserialize(byts, protocol_version): months, days, nanoseconds = vints_unpack(byts) return util.Duration(months, days, nanoseconds) @staticmethod def serialize(duration, protocol_version): try: m, d, n = duration.months, duration.days, duration.nanoseconds except AttributeError: raise TypeError('DurationType arguments must be a Duration.') return vints_pack([m, d, n]) class UTF8Type(_CassandraType): typename = 'text' empty_binary_ok = True @staticmethod def deserialize(byts, protocol_version): return byts.decode('utf8') @staticmethod def serialize(ustr, protocol_version): try: return ustr.encode('utf-8') except UnicodeDecodeError: # already utf-8 return ustr class VarcharType(UTF8Type): typename = 'varchar' class _ParameterizedType(_CassandraType): num_subtypes = 'UNKNOWN' @classmethod def deserialize(cls, byts, protocol_version): if not cls.subtypes: raise NotImplementedError("can't deserialize unparameterized %s" % cls.typename) return cls.deserialize_safe(byts, protocol_version) @classmethod def serialize(cls, val, protocol_version): if not cls.subtypes: raise NotImplementedError("can't serialize unparameterized %s" % cls.typename) return cls.serialize_safe(val, protocol_version) class _SimpleParameterizedType(_ParameterizedType): @classmethod def deserialize_safe(cls, byts, protocol_version): subtype, = cls.subtypes if protocol_version >= 3: unpack = int32_unpack length = 4 else: unpack = uint16_unpack length = 2 numelements = unpack(byts[:length]) p = length result = [] inner_proto = max(3, protocol_version) for _ in range(numelements): itemlen = unpack(byts[p:p + length]) p += length if itemlen < 0: result.append(None) else: item = byts[p:p + itemlen] p += itemlen result.append(subtype.from_binary(item, inner_proto)) return cls.adapter(result) @classmethod def serialize_safe(cls, items, protocol_version): if isinstance(items, six.string_types): raise TypeError("Received a string for a type that expects a sequence") subtype, = cls.subtypes pack = int32_pack if protocol_version >= 3 else uint16_pack buf = io.BytesIO() buf.write(pack(len(items))) inner_proto = max(3, protocol_version) for item in items: itembytes = subtype.to_binary(item, inner_proto) buf.write(pack(len(itembytes))) buf.write(itembytes) return buf.getvalue() class ListType(_SimpleParameterizedType): typename = 'list' num_subtypes = 1 adapter = list class SetType(_SimpleParameterizedType): typename = 'set' num_subtypes = 1 adapter = util.sortedset class MapType(_ParameterizedType): typename = 'map' num_subtypes = 2 @classmethod def deserialize_safe(cls, byts, protocol_version): key_type, value_type = cls.subtypes if protocol_version >= 3: unpack = int32_unpack length = 4 else: unpack = uint16_unpack length = 2 numelements = unpack(byts[:length]) p = length themap = util.OrderedMapSerializedKey(key_type, protocol_version) inner_proto = max(3, protocol_version) for _ in range(numelements): key_len = unpack(byts[p:p + length]) p += length if key_len < 0: keybytes = None key = None else: keybytes = byts[p:p + key_len] p += key_len key = key_type.from_binary(keybytes, inner_proto) val_len = unpack(byts[p:p + length]) p += length if val_len < 0: val = None else: valbytes = byts[p:p + val_len] p += val_len val = value_type.from_binary(valbytes, inner_proto) themap._insert_unchecked(key, keybytes, val) return themap @classmethod def serialize_safe(cls, themap, protocol_version): key_type, value_type = cls.subtypes pack = int32_pack if protocol_version >= 3 else uint16_pack buf = io.BytesIO() buf.write(pack(len(themap))) try: items = six.iteritems(themap) except AttributeError: raise TypeError("Got a non-map object for a map value") inner_proto = max(3, protocol_version) for key, val in items: keybytes = key_type.to_binary(key, inner_proto) valbytes = value_type.to_binary(val, inner_proto) buf.write(pack(len(keybytes))) buf.write(keybytes) buf.write(pack(len(valbytes))) buf.write(valbytes) return buf.getvalue() class TupleType(_ParameterizedType): typename = 'tuple' @classmethod def deserialize_safe(cls, byts, protocol_version): proto_version = max(3, protocol_version) p = 0 values = [] for col_type in cls.subtypes: if p == len(byts): break itemlen = int32_unpack(byts[p:p + 4]) p += 4 if itemlen >= 0: item = byts[p:p + itemlen] p += itemlen else: item = None # collections inside UDTs are always encoded with at least the # version 3 format values.append(col_type.from_binary(item, proto_version)) if len(values) < len(cls.subtypes): nones = [None] * (len(cls.subtypes) - len(values)) values = values + nones return tuple(values) @classmethod def serialize_safe(cls, val, protocol_version): if len(val) > len(cls.subtypes): raise ValueError("Expected %d items in a tuple, but got %d: %s" % (len(cls.subtypes), len(val), val)) proto_version = max(3, protocol_version) buf = io.BytesIO() for item, subtype in zip(val, cls.subtypes): if item is not None: packed_item = subtype.to_binary(item, proto_version) buf.write(int32_pack(len(packed_item))) buf.write(packed_item) else: buf.write(int32_pack(-1)) return buf.getvalue() @classmethod def cql_parameterized_type(cls): subtypes_string = ', '.join(sub.cql_parameterized_type() for sub in cls.subtypes) return 'frozen<tuple<%s>>' % (subtypes_string,) class UserType(TupleType): typename = "org.apache.cassandra.db.marshal.UserType" _cache = {} _module = sys.modules[__name__] @classmethod def make_udt_class(cls, keyspace, udt_name, field_names, field_types): assert len(field_names) == len(field_types) if six.PY2 and isinstance(udt_name, unicode): udt_name = udt_name.encode('utf-8') instance = cls._cache.get((keyspace, udt_name)) if not instance or instance.fieldnames != field_names or instance.subtypes != field_types: instance = type(udt_name, (cls,), {'subtypes': field_types, 'cassname': cls.cassname, 'typename': udt_name, 'fieldnames': field_names, 'keyspace': keyspace, 'mapped_class': None, 'tuple_type': cls._make_registered_udt_namedtuple(keyspace, udt_name, field_names)}) cls._cache[(keyspace, udt_name)] = instance return instance @classmethod def evict_udt_class(cls, keyspace, udt_name): if six.PY2 and isinstance(udt_name, unicode): udt_name = udt_name.encode('utf-8') try: del cls._cache[(keyspace, udt_name)] except KeyError: pass @classmethod def apply_parameters(cls, subtypes, names): keyspace = subtypes[0].cass_parameterized_type() # when parsed from cassandra type, the keyspace is created as an unrecognized cass type; This gets the name back udt_name = _name_from_hex_string(subtypes[1].cassname) field_names = tuple(_name_from_hex_string(encoded_name) for encoded_name in names[2:]) # using tuple here to match what comes into make_udt_class from other sources (for caching equality test) return cls.make_udt_class(keyspace, udt_name, field_names, tuple(subtypes[2:])) @classmethod def cql_parameterized_type(cls): return "frozen<%s>" % (cls.typename,) @classmethod def deserialize_safe(cls, byts, protocol_version): values = super(UserType, cls).deserialize_safe(byts, protocol_version) if cls.mapped_class: return cls.mapped_class(**dict(zip(cls.fieldnames, values))) elif cls.tuple_type: return cls.tuple_type(*values) else: return tuple(values) @classmethod def serialize_safe(cls, val, protocol_version): proto_version = max(3, protocol_version) buf = io.BytesIO() for i, (fieldname, subtype) in enumerate(zip(cls.fieldnames, cls.subtypes)): # first treat as a tuple, else by custom type try: item = val[i] except TypeError: item = getattr(val, fieldname) if item is not None: packed_item = subtype.to_binary(item, proto_version) buf.write(int32_pack(len(packed_item))) buf.write(packed_item) else: buf.write(int32_pack(-1)) return buf.getvalue() @classmethod def _make_registered_udt_namedtuple(cls, keyspace, name, field_names): # this is required to make the type resolvable via this module... # required when unregistered udts are pickled for use as keys in # util.OrderedMap t = cls._make_udt_tuple_type(name, field_names) if t: qualified_name = "%s_%s" % (keyspace, name) setattr(cls._module, qualified_name, t) return t @classmethod def _make_udt_tuple_type(cls, name, field_names): # fallback to positional named, then unnamed tuples # for CQL identifiers that aren't valid in Python, try: t = namedtuple(name, field_names) except ValueError: try: t = namedtuple(name, util._positional_rename_invalid_identifiers(field_names)) log.warning("could not create a namedtuple for '%s' because one or more " "field names are not valid Python identifiers (%s); " "returning positionally-named fields" % (name, field_names)) except ValueError: t = None log.warning("could not create a namedtuple for '%s' because the name is " "not a valid Python identifier; will return tuples in " "its place" % (name,)) return t class CompositeType(_ParameterizedType): typename = "org.apache.cassandra.db.marshal.CompositeType" @classmethod def cql_parameterized_type(cls): """ There is no CQL notation for Composites, so we override this. """ typestring = cls.cass_parameterized_type(full=True) return "'%s'" % (typestring,) @classmethod def deserialize_safe(cls, byts, protocol_version): result = [] for subtype in cls.subtypes: if not byts: # CompositeType can have missing elements at the end break element_length = uint16_unpack(byts[:2]) element = byts[2:2 + element_length] # skip element length, element, and the EOC (one byte) byts = byts[2 + element_length + 1:] result.append(subtype.from_binary(element, protocol_version)) return tuple(result) class DynamicCompositeType(_ParameterizedType): typename = "org.apache.cassandra.db.marshal.DynamicCompositeType" @classmethod def cql_parameterized_type(cls): sublist = ', '.join('%s=>%s' % (alias, typ.cass_parameterized_type(full=True)) for alias, typ in zip(cls.fieldnames, cls.subtypes)) return "'%s(%s)'" % (cls.typename, sublist) class ColumnToCollectionType(_ParameterizedType): """ This class only really exists so that we can cleanly evaluate types when Cassandra includes this. We don't actually need or want the extra information. """ typename = "org.apache.cassandra.db.marshal.ColumnToCollectionType" class ReversedType(_ParameterizedType): typename = "org.apache.cassandra.db.marshal.ReversedType" num_subtypes = 1 @classmethod def deserialize_safe(cls, byts, protocol_version): subtype, = cls.subtypes return subtype.from_binary(byts, protocol_version) @classmethod def serialize_safe(cls, val, protocol_version): subtype, = cls.subtypes return subtype.to_binary(val, protocol_version) class FrozenType(_ParameterizedType): typename = "frozen" num_subtypes = 1 @classmethod def deserialize_safe(cls, byts, protocol_version): subtype, = cls.subtypes return subtype.from_binary(byts, protocol_version) @classmethod def serialize_safe(cls, val, protocol_version): subtype, = cls.subtypes return subtype.to_binary(val, protocol_version) def is_counter_type(t): if isinstance(t, six.string_types): t = lookup_casstype(t) return issubclass(t, CounterColumnType) def cql_typename(casstypename): """ Translate a Cassandra-style type specifier (optionally-fully-distinguished Java class names for data types, along with optional parameters) into a CQL-style type specifier. >>> cql_typename('DateType') 'timestamp' >>> cql_typename('org.apache.cassandra.db.marshal.ListType(IntegerType)') 'list<varint>' """ return lookup_casstype(casstypename).cql_parameterized_type() class WKBGeometryType(object): POINT = 1 LINESTRING = 2 POLYGON = 3 class PointType(CassandraType): typename = 'PointType' _type = struct.pack('<BI', _little_endian_flag, WKBGeometryType.POINT) @staticmethod def serialize(val, protocol_version): return PointType._type + point_le.pack(val.x, val.y) @staticmethod def deserialize(byts, protocol_version): is_little_endian = bool(_ord(byts[0])) point = point_le if is_little_endian else point_be return util.Point(*point.unpack_from(byts, 5)) # ofs = endian byte + int type class LineStringType(CassandraType): typename = 'LineStringType' _type = struct.pack('<BI', _little_endian_flag, WKBGeometryType.LINESTRING) @staticmethod def serialize(val, protocol_version): num_points = len(val.coords) return LineStringType._type + struct.pack('<I' + 'dd' * num_points, num_points, *(d for coords in val.coords for d in coords)) @staticmethod def deserialize(byts, protocol_version): is_little_endian = bool(_ord(byts[0])) point = point_le if is_little_endian else point_be coords = ((point.unpack_from(byts, offset) for offset in range(1 + 4 + 4, len(byts), point.size))) # start = endian + int type + int count return util.LineString(coords) class PolygonType(CassandraType): typename = 'PolygonType' _type = struct.pack('<BI', _little_endian_flag, WKBGeometryType.POLYGON) _ring_count = struct.Struct('<I').pack @staticmethod def serialize(val, protocol_version): buf = io.BytesIO(PolygonType._type) buf.seek(0, 2) if val.exterior.coords: num_rings = 1 + len(val.interiors) buf.write(PolygonType._ring_count(num_rings)) for ring in chain((val.exterior,), val.interiors): num_points = len(ring.coords) buf.write(struct.pack('<I' + 'dd' * num_points, num_points, *(d for coord in ring.coords for d in coord))) else: buf.write(PolygonType._ring_count(0)) return buf.getvalue() @staticmethod def deserialize(byts, protocol_version): is_little_endian = bool(_ord(byts[0])) if is_little_endian: int_fmt = '<i' point = point_le else: int_fmt = '>i' point = point_be p = 5 ring_count = struct.unpack_from(int_fmt, byts, p)[0] p += 4 rings = [] for _ in range(ring_count): point_count = struct.unpack_from(int_fmt, byts, p)[0] p += 4 end = p + point_count * point.size rings.append([point.unpack_from(byts, offset) for offset in range(p, end, point.size)]) p = end return util.Polygon(exterior=rings[0], interiors=rings[1:]) if rings else util.Polygon() class BoundKind(object): """ "Enum" representing the 6 possible DateRangeTypes """ SINGLE_DATE = 'SINGLE_DATE' CLOSED_RANGE = 'CLOSED_RANGE' OPEN_RANGE_HIGH = 'OPEN_RANGE_HIGH' OPEN_RANGE_LOW = 'OPEN_RANGE_LOW' BOTH_OPEN_RANGE = 'BOTH_OPEN_RANGE' SINGLE_DATE_OPEN = 'SINGLE_DATE_OPEN' VALID_RANGE_BOUNDS = (SINGLE_DATE, CLOSED_RANGE, OPEN_RANGE_HIGH, OPEN_RANGE_LOW, BOTH_OPEN_RANGE, SINGLE_DATE_OPEN) _bound_str_to_int_map = { 'SINGLE_DATE': 0, 'CLOSED_RANGE': 1, 'OPEN_RANGE_HIGH': 2, 'OPEN_RANGE_LOW': 3, 'BOTH_OPEN_RANGE': 4, 'SINGLE_DATE_OPEN': 5, } _bound_int_to_str_map = {i: s for i, s in six.iteritems(_bound_str_to_int_map)} @classmethod def to_int(cls, bound_str): """ Encode a string as an int for serialization. """ return cls._bound_str_to_int_map[bound_str.upper()] @classmethod def to_str(cls, bound_int): """ Decode an int to a string for deserialization. """ return cls._bound_int_to_str_map[bound_int.upper()] class DateRangeType(CassandraType): typename = 'daterange' _precision_str_to_int_map = { 'YEAR': 0, 'MONTH': 1, 'DAY': 2, 'HOUR': 3, 'MINUTE': 4, 'SECOND': 5, 'MILLISECOND': 6 } _precision_int_to_str_map = {s: i for i, s in six.iteritems(_precision_str_to_int_map)} @classmethod def _encode_precision(cls, precision_str): normalized_str = precision_str.upper() if normalized_str not in cls._precision_str_to_int_map: raise ValueError( '%s is not a valid DateRange precision string. Valid values: %s' % (repr(precision_str), ', '.join(list(cls._precision_str_to_int_map))) ) return cls._precision_str_to_int_map[normalized_str] @classmethod def _decode_precision(cls, precision_int): if precision_int not in cls._precision_int_to_str_map: raise ValueError( '%s not a valid DateRange precision int. Valid values: %s' % (precision_int, ', '.join([str(i) for i in cls._precision_int_to_str_map])) ) return cls._precision_int_to_str_map[precision_int] @classmethod def deserialize(cls, byts, protocol_version): # <type>[<time0><precision0>[<time1><precision1>]] type_ = int8_unpack(byts[0:1]) if type_ in (BoundKind.to_int(BoundKind.BOTH_OPEN_RANGE), BoundKind.to_int(BoundKind.SINGLE_DATE_OPEN)): time0 = precision0 = None else: time0 = int64_unpack(byts[1:9]) precision0 = int8_unpack(byts[9:10]) if type_ == BoundKind.to_int(BoundKind.CLOSED_RANGE): time1 = int64_unpack(byts[10:18]) precision1 = int8_unpack(byts[18:19]) else: time1 = precision1 = None if time0 is not None: date_range_bound0 = util.DateRangeBound( time0, cls._decode_precision(precision0) ) if time1 is not None: date_range_bound1 = util.DateRangeBound( time1, cls._decode_precision(precision1) ) if type_ == BoundKind.to_int(BoundKind.SINGLE_DATE): return util.DateRange(value=date_range_bound0) if type_ == BoundKind.to_int(BoundKind.CLOSED_RANGE): return util.DateRange(lower_bound=date_range_bound0, upper_bound=date_range_bound1) if type_ == BoundKind.to_int(BoundKind.OPEN_RANGE_HIGH): return util.DateRange(lower_bound=date_range_bound0, upper_bound=util.OPEN_BOUND) if type_ == BoundKind.to_int(BoundKind.OPEN_RANGE_LOW): return util.DateRange(lower_bound=util.OPEN_BOUND, upper_bound=date_range_bound0) if type_ == BoundKind.to_int(BoundKind.BOTH_OPEN_RANGE): return util.DateRange(lower_bound=util.OPEN_BOUND, upper_bound=util.OPEN_BOUND) if type_ == BoundKind.to_int(BoundKind.SINGLE_DATE_OPEN): return util.DateRange(value=util.OPEN_BOUND) raise ValueError('Could not deserialize %r' % (byts,)) @classmethod def serialize(cls, v, protocol_version): buf = io.BytesIO() bound_kind, bounds = None, () try: value = v.value except AttributeError: raise ValueError( '%s.serialize expects an object with a value attribute; got' '%r' % (cls.__name__, v) ) if value is None: try: lower_bound, upper_bound = v.lower_bound, v.upper_bound except AttributeError: raise ValueError( '%s.serialize expects an object with lower_bound and ' 'upper_bound attributes; got %r' % (cls.__name__, v) ) if lower_bound == util.OPEN_BOUND and upper_bound == util.OPEN_BOUND: bound_kind = BoundKind.BOTH_OPEN_RANGE elif lower_bound == util.OPEN_BOUND: bound_kind = BoundKind.OPEN_RANGE_LOW bounds = (upper_bound,) elif upper_bound == util.OPEN_BOUND: bound_kind = BoundKind.OPEN_RANGE_HIGH bounds = (lower_bound,) else: bound_kind = BoundKind.CLOSED_RANGE bounds = lower_bound, upper_bound else: # value is not None if value == util.OPEN_BOUND: bound_kind = BoundKind.SINGLE_DATE_OPEN else: bound_kind = BoundKind.SINGLE_DATE bounds = (value,) if bound_kind is None: raise ValueError( 'Cannot serialize %r; could not find bound kind' % (v,) ) buf.write(int8_pack(BoundKind.to_int(bound_kind))) for bound in bounds: buf.write(int64_pack(bound.milliseconds)) buf.write(int8_pack(cls._encode_precision(bound.precision))) return buf.getvalue()
33.305478
201
0.62068
7946a6416f519c5f58c1ab8b925fb3e041cb396f
8,371
py
Python
docs/conf.py
natteruw/worms
6530505d4fca3229bb93738a0bae0463a17229b8
[ "Apache-2.0" ]
null
null
null
docs/conf.py
natteruw/worms
6530505d4fca3229bb93738a0bae0463a17229b8
[ "Apache-2.0" ]
null
null
null
docs/conf.py
natteruw/worms
6530505d4fca3229bb93738a0bae0463a17229b8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # worms documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import worms # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'worms' copyright = u"2018, Will Sheffler" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = worms.__version__ # The full version, including alpha/beta/rc tags. release = worms.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = [] # ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'wormsdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'worms.tex', u'worms Documentation', u'Will Sheffler', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'worms', u'worms Documentation', [u'Will Sheffler'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'worms', u'worms Documentation', u'Will Sheffler', 'worms', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
30.32971
76
0.713774
7946a9adf00a8ac19b3e2287ecbd9131cd462281
3,296
py
Python
test/test_generate/test_autograder.py
afspies/otter-grader
5d5ba1b049596eaee1fd9c039bb1cd15f6786f4f
[ "BSD-3-Clause" ]
1
2021-10-01T02:02:55.000Z
2021-10-01T02:02:55.000Z
test/test_generate/test_autograder.py
afspies/otter-grader
5d5ba1b049596eaee1fd9c039bb1cd15f6786f4f
[ "BSD-3-Clause" ]
null
null
null
test/test_generate/test_autograder.py
afspies/otter-grader
5d5ba1b049596eaee1fd9c039bb1cd15f6786f4f
[ "BSD-3-Clause" ]
null
null
null
#################################### ##### Tests for otter generate ##### #################################### import json import os import shutil import subprocess import unittest from glob import glob from subprocess import PIPE from unittest import mock from otter.generate import main as generate from .. import TestCase TEST_FILES_PATH = "test/test_generate/test-autograder/" class TestAutograder(TestCase): def test_autograder(self): """ Check that the correct zipfile is created by gs_generator.py """ # create the zipfile generate( tests_dir = TEST_FILES_PATH + "tests", output_path = TEST_FILES_PATH + "autograder.zip", requirements = TEST_FILES_PATH + "requirements.txt", files = [TEST_FILES_PATH + "data/test-df.csv"], no_environment = True, # don't use the environment.yml in the root of the repo ) with self.unzip_to_temp(TEST_FILES_PATH + "autograder.zip", delete=True) as unzipped_dir: self.assertDirsEqual(unzipped_dir, TEST_FILES_PATH + "autograder-correct") def test_autograder_with_token(self): """ Checks otter assign with token specified instead of username and password. """ # create the zipfile with mock.patch("otter.generate.APIClient") as mocked_client: generate( tests_dir = TEST_FILES_PATH + "tests", output_path = TEST_FILES_PATH + "autograder.zip", requirements = TEST_FILES_PATH + "requirements.txt", config = TEST_FILES_PATH + "otter_config.json", files = [TEST_FILES_PATH + "data/test-df.csv"], no_environment = True, # don't use the environment.yml in the root of the repo ) mocked_client.assert_not_called() with self.unzip_to_temp(TEST_FILES_PATH + "autograder.zip", delete=True) as unzipped_dir: self.assertDirsEqual(unzipped_dir, TEST_FILES_PATH + "autograder-token-correct") def test_custom_env(self): """ Check that a custom environment.yml is correctly read and modified """ # create the zipfile generate( tests_dir = TEST_FILES_PATH + "tests", output_path = TEST_FILES_PATH + "autograder.zip", requirements = TEST_FILES_PATH + "requirements.txt", environment = TEST_FILES_PATH + "environment.yml", files = [TEST_FILES_PATH + "data/test-df.csv"], ) with self.unzip_to_temp(TEST_FILES_PATH + "autograder.zip", delete=True) as unzipped_dir: self.assertDirsEqual(unzipped_dir, TEST_FILES_PATH + "autograder-custom-env") def test_lang_r(self): """ Check that a correct R autograder is built """ # create the zipfile generate( tests_dir = TEST_FILES_PATH + "tests", output_path = TEST_FILES_PATH + "autograder.zip", config = TEST_FILES_PATH + "r_otter_config.json", no_environment = True, ) with self.unzip_to_temp(TEST_FILES_PATH + "autograder.zip", delete=True) as unzipped_dir: self.assertDirsEqual(unzipped_dir, TEST_FILES_PATH + "autograder-r-correct")
36.622222
97
0.622573
7946a9fe51587fb83d713e05d8e400391b306a17
30,690
py
Python
addons/blender_mmd_tools-main/tests/test_pmx_exporter.py
V-Sekai/V-Sekai-Blender-tools
3473ad4abb737756290a9007273519460742960d
[ "MIT" ]
2
2021-12-21T16:38:58.000Z
2022-01-08T00:56:35.000Z
addons/blender_mmd_tools-main/tests/test_pmx_exporter.py
V-Sekai/V-Sekai-Blender-game-tools
3473ad4abb737756290a9007273519460742960d
[ "MIT" ]
1
2022-01-29T05:46:50.000Z
2022-01-29T05:46:50.000Z
addons/blender_mmd_tools-main/tests/test_pmx_exporter.py
V-Sekai/V-Sekai-Blender-game-tools
3473ad4abb737756290a9007273519460742960d
[ "MIT" ]
1
2021-11-07T19:41:34.000Z
2021-11-07T19:41:34.000Z
# -*- coding: utf-8 -*- import os import shutil import unittest import bpy from math import pi from mathutils import Euler from mathutils import Vector from mmd_tools.core import pmx from mmd_tools.core.model import Model from mmd_tools.core.pmd.importer import import_pmd_to_pmx from mmd_tools.core.pmx.importer import PMXImporter TESTS_DIR = os.path.dirname(os.path.abspath(__file__)) SAMPLES_DIR = os.path.join(os.path.dirname(TESTS_DIR), 'samples') class TestPmxExporter(unittest.TestCase): @classmethod def setUpClass(cls): ''' Clean up output from previous tests ''' output_dir = os.path.join(TESTS_DIR, 'output') for item in os.listdir(output_dir): if item.endswith('.OUTPUT'): continue # Skip the placeholder item_fp = os.path.join(output_dir, item) if os.path.isfile(item_fp): os.remove(item_fp) elif os.path.isdir(item_fp): shutil.rmtree(item_fp) def setUp(self): ''' ''' import logging logger = logging.getLogger() logger.setLevel('ERROR') #******************************************** # Utils #******************************************** def __axis_error(self, axis0, axis1): return (Vector(axis0).normalized() - Vector(axis1).normalized()).length def __vector_error(self, vec0, vec1): return (Vector(vec0) - Vector(vec1)).length def __quaternion_error(self, quat0, quat1): angle = quat0.rotation_difference(quat1).angle % pi assert(angle >= 0) return min(angle, pi-angle) #******************************************** # Header & Informations #******************************************** def __check_pmx_header_info(self, source_model, result_model, import_types): ''' Test pmx model info, header ''' # Informations ================ self.assertEqual(source_model.name, result_model.name) self.assertEqual(source_model.name_e, result_model.name_e) self.assertEqual(source_model.comment.replace('\r', ''), result_model.comment.replace('\r', '')) self.assertEqual(source_model.comment_e.replace('\r', ''), result_model.comment_e.replace('\r', '')) # Header ====================== if source_model.header: source_header = source_model.header result_header = result_model.header self.assertEqual(source_header.sign, result_header.sign) self.assertEqual(source_header.version, result_header.version) self.assertEqual(source_header.encoding.index, result_header.encoding.index) self.assertEqual(source_header.encoding.charset, result_header.encoding.charset) if 'MESH' in import_types: self.assertEqual(source_header.additional_uvs, result_header.additional_uvs) self.assertEqual(source_header.vertex_index_size, result_header.vertex_index_size) self.assertEqual(source_header.texture_index_size, result_header.texture_index_size) self.assertEqual(source_header.material_index_size, result_header.material_index_size) if 'ARMATURE' in import_types: self.assertEqual(source_header.bone_index_size, result_header.bone_index_size) if 'MORPHS' in import_types: self.assertEqual(source_header.morph_index_size, result_header.morph_index_size) if 'PHYSICS' in import_types: self.assertEqual(source_header.rigid_index_size, result_header.rigid_index_size) #******************************************** # Mesh #******************************************** def __get_pmx_textures(self, textures): ret = [] for t in textures: path = t.path path = os.path.basename(path) ret.append(path) return ret def __get_texture(self, tex_id, textures): if 0 <= tex_id < len(textures): return textures[tex_id] return tex_id def __get_toon_texture(self, tex_id, textures, is_shared): return tex_id if is_shared else self.__get_texture(tex_id, textures) def __check_pmx_mesh(self, source_model, result_model): ''' Test pmx textures, materials, vertices, faces ''' # textures ==================== # TODO source_textures = self.__get_pmx_textures(source_model.textures) result_textures = self.__get_pmx_textures(result_model.textures) self.assertEqual(len(source_textures), len(result_textures)) for tex0, tex1 in zip(sorted(source_textures), sorted(result_textures)): self.assertEqual(tex0, tex1) # materials =================== source_materials = source_model.materials result_materials = result_model.materials self.assertEqual(len(source_materials), len(result_materials)) for mat0, mat1 in zip(source_materials, result_materials): msg = mat0.name self.assertEqual(mat0.name, mat1.name, msg) self.assertEqual(mat0.name_e, mat1.name_e, msg) self.assertEqual(mat0.diffuse, mat1.diffuse, msg) self.assertEqual(mat0.specular, mat1.specular, msg) self.assertEqual(mat0.shininess, mat1.shininess, msg) self.assertEqual(mat0.ambient, mat1.ambient, msg) self.assertEqual(mat0.is_double_sided, mat1.is_double_sided, msg) self.assertEqual(mat0.enabled_drop_shadow, mat1.enabled_drop_shadow, msg) self.assertEqual(mat0.enabled_self_shadow_map, mat1.enabled_self_shadow_map, msg) self.assertEqual(mat0.enabled_self_shadow, mat1.enabled_self_shadow, msg) self.assertEqual(mat0.enabled_toon_edge, mat1.enabled_toon_edge, msg) self.assertEqual(mat0.edge_color, mat1.edge_color, msg) self.assertEqual(mat0.edge_size, mat1.edge_size, msg) self.assertEqual(mat0.comment, mat1.comment, msg) self.assertEqual(mat0.vertex_count, mat1.vertex_count, msg) tex0 = self.__get_texture(mat0.texture, source_textures) tex1 = self.__get_texture(mat1.texture, result_textures) self.assertEqual(tex0, tex1, msg) self.assertEqual(mat0.sphere_texture_mode, mat1.sphere_texture_mode, msg) sph0 = self.__get_texture(mat0.sphere_texture, source_textures) sph1 = self.__get_texture(mat1.sphere_texture, result_textures) self.assertEqual(sph0, sph1, msg) self.assertEqual(mat0.is_shared_toon_texture, mat1.is_shared_toon_texture, msg) toon0 = self.__get_toon_texture(mat0.toon_texture, source_textures, mat0.is_shared_toon_texture) toon1 = self.__get_toon_texture(mat1.toon_texture, result_textures, mat1.is_shared_toon_texture) self.assertEqual(toon0, toon1, msg) # vertices & faces ============ # TODO source_vertices = source_model.vertices result_vertices = result_model.vertices #self.assertEqual(len(source_vertices), len(result_vertices)) source_faces = source_model.faces result_faces = result_model.faces self.assertEqual(len(source_faces), len(result_faces)) for f0, f1 in zip(source_faces, result_faces): seq0 = [source_vertices[i] for i in f0] seq1 = [result_vertices[i] for i in f1] for v0, v1 in zip(seq0, seq1): self.assertLess(self.__vector_error(v0.co, v1.co), 1e-6) self.assertLess(self.__vector_error(v0.uv, v1.uv), 1e-6) #self.assertLess(self.__vector_error(v0.normal, v1.normal), 1e-3) self.assertEqual(v0.additional_uvs, v1.additional_uvs) self.assertEqual(v0.edge_scale, v1.edge_scale) #self.assertEqual(v0.weight.weights, v1.weight.weights) #self.assertEqual(v0.weight.bones, v1.weight.bones) #******************************************** # Armature #******************************************** def __get_bone(self, bone_id, bones): if bone_id is not None and 0 <= bone_id < len(bones): return bones[bone_id] return bone_id def __get_bone_name(self, bone_id, bones): if bone_id is not None and 0 <= bone_id < len(bones): return bones[bone_id].name return bone_id def __get_bone_display_connection(self, bone, bones): displayConnection = bone.displayConnection if isinstance(displayConnection, int): if displayConnection == -1: return (0.0, 0.0, 0.0) tail_bone = self.__get_bone(displayConnection, bones) if self.__get_bone_name(tail_bone.parent, bones) == bone.name and not tail_bone.isMovable: return tail_bone.name return tuple(Vector(tail_bone.location) - Vector(bone.location)) return displayConnection def __check_pmx_bones(self, source_model, result_model): ''' Test pmx bones ''' source_bones = source_model.bones result_bones = result_model.bones self.assertEqual(len(source_bones), len(result_bones)) # check bone order bone_order0 = [x.name for x in source_bones] bone_order1 = [x.name for x in result_bones] self.assertEqual(bone_order0, bone_order1) for bone0, bone1 in zip(source_bones, result_bones): msg = bone0.name self.assertEqual(bone0.name, bone1.name, msg) self.assertEqual(bone0.name_e, bone1.name_e, msg) self.assertLess(self.__vector_error(bone0.location, bone1.location), 1e-6, msg) parent0 = self.__get_bone_name(bone0.parent, source_bones) parent1 = self.__get_bone_name(bone1.parent, result_bones) self.assertEqual(parent0, parent1, msg) self.assertEqual(bone0.transform_order, bone1.transform_order, msg) self.assertEqual(bone0.isRotatable, bone1.isRotatable, msg) self.assertEqual(bone0.isMovable and not bone0.axis, bone1.isMovable, msg) self.assertEqual(bone0.visible, bone1.visible, msg) self.assertEqual(bone0.isControllable, bone1.isControllable, msg) self.assertEqual(bone0.isIK, bone1.isIK, msg) self.assertEqual(bone0.transAfterPhis, bone1.transAfterPhis, msg) self.assertEqual(bone0.externalTransKey, bone1.externalTransKey, msg) if bone0.axis and bone1.axis: self.assertLess(self.__axis_error(bone0.axis, bone1.axis), 1e-6, msg) else: self.assertEqual(bone0.axis, bone1.axis, msg) if bone0.localCoordinate and bone1.localCoordinate: self.assertLess(self.__axis_error(bone0.localCoordinate.x_axis, bone1.localCoordinate.x_axis), 1e-6, msg) self.assertLess(self.__axis_error(bone0.localCoordinate.z_axis, bone1.localCoordinate.z_axis), 1e-6, msg) else: self.assertEqual(bone0.localCoordinate, bone1.localCoordinate, msg) self.assertEqual(bone0.hasAdditionalRotate, bone1.hasAdditionalRotate, msg) self.assertEqual(bone0.hasAdditionalLocation, bone1.hasAdditionalLocation, msg) if bone0.additionalTransform and bone1.additionalTransform: at_target0, at_infl0 = bone0.additionalTransform at_target1, at_infl1 = bone1.additionalTransform at_target0 = self.__get_bone_name(at_target0, source_bones) at_target1 = self.__get_bone_name(at_target1, result_bones) self.assertEqual(at_target0, at_target1, msg) self.assertLess(abs(at_infl0 - at_infl1), 1e-4, msg) else: self.assertEqual(bone0.additionalTransform, bone1.additionalTransform, msg) target0 = self.__get_bone_name(bone0.target, source_bones) target1 = self.__get_bone_name(bone1.target, result_bones) self.assertEqual(target0, target1, msg) self.assertEqual(bone0.loopCount, bone1.loopCount, msg) self.assertEqual(bone0.rotationConstraint, bone1.rotationConstraint, msg) self.assertEqual(len(bone0.ik_links), len(bone1.ik_links), msg) for link0, link1 in zip(bone0.ik_links, bone1.ik_links): target0 = self.__get_bone_name(link0.target, source_bones) target1 = self.__get_bone_name(link1.target, result_bones) self.assertEqual(target0, target1, msg) maximumAngle0 = link0.maximumAngle maximumAngle1 = link1.maximumAngle if maximumAngle0 and maximumAngle1: self.assertLess(self.__vector_error(maximumAngle0, maximumAngle1), 1e-6, msg) else: self.assertEqual(maximumAngle0, maximumAngle1, msg) minimumAngle0 = link0.minimumAngle minimumAngle1 = link1.minimumAngle if minimumAngle0 and minimumAngle1: self.assertLess(self.__vector_error(minimumAngle0, minimumAngle1), 1e-6, msg) else: self.assertEqual(minimumAngle0, minimumAngle1, msg) for bone0, bone1 in zip(source_bones, result_bones): msg = bone0.name displayConnection0 = self.__get_bone_display_connection(bone0, source_bones) displayConnection1 = self.__get_bone_display_connection(bone1, result_bones) if not isinstance(displayConnection0, str) and not isinstance(displayConnection1, str): self.assertLess(self.__vector_error(displayConnection0, displayConnection1), 1e-4, msg) else: self.assertEqual(displayConnection0, displayConnection1, msg) #******************************************** # Physics #******************************************** def __get_rigid_name(self, rigid_id, rigids): if rigid_id is not None and 0 <= rigid_id < len(rigids): return rigids[rigid_id].name return rigid_id def __check_pmx_physics(self, source_model, result_model): ''' Test pmx rigids, joints ''' # rigids ====================== source_rigids = source_model.rigids result_rigids = result_model.rigids self.assertEqual(len(source_rigids), len(result_rigids)) source_bones = source_model.bones result_bones = result_model.bones for rigid0, rigid1 in zip(source_rigids, result_rigids): msg = rigid0.name self.assertEqual(rigid0.name, rigid1.name, msg) self.assertEqual(rigid0.name_e, rigid1.name_e, msg) bone0 = self.__get_bone_name(rigid0.bone, source_bones) bone1 = self.__get_bone_name(rigid0.bone, source_bones) self.assertEqual(bone0, bone1, msg) self.assertEqual(rigid0.collision_group_number, rigid1.collision_group_number, msg) self.assertEqual(rigid0.collision_group_mask, rigid1.collision_group_mask, msg) self.assertEqual(rigid0.type, rigid1.type, msg) if rigid0.type == 0: # SHAPE_SPHERE self.assertLess(abs(rigid0.size[0]-rigid1.size[0]), 1e-6, msg) elif rigid0.type == 1: # SHAPE_BOX self.assertLess(self.__vector_error(rigid0.size, rigid1.size), 1e-6, msg) elif rigid0.type == 2: # SHAPE_CAPSULE self.assertLess(self.__vector_error(rigid0.size[0:2], rigid1.size[0:2]), 1e-6, msg) self.assertLess(self.__vector_error(rigid0.location, rigid1.location), 1e-6, msg) rigid0_rotation = Euler(rigid0.rotation,'YXZ').to_quaternion() rigid1_rotation = Euler(rigid1.rotation,'YXZ').to_quaternion() self.assertLess(self.__quaternion_error(rigid0_rotation, rigid1_rotation), 1e-6, msg) self.assertEqual(rigid0.mass, rigid1.mass, msg) self.assertEqual(rigid0.velocity_attenuation, rigid1.velocity_attenuation, msg) self.assertEqual(rigid0.rotation_attenuation, rigid1.rotation_attenuation, msg) self.assertEqual(rigid0.bounce, rigid1.bounce, msg) self.assertEqual(rigid0.friction, rigid1.friction, msg) self.assertEqual(rigid0.mode, rigid1.mode, msg) # joints ====================== source_joints = source_model.joints result_joints = result_model.joints self.assertEqual(len(source_joints), len(result_joints)) for joint0, joint1 in zip(source_joints, result_joints): msg = joint0.name self.assertEqual(joint0.name, joint1.name, msg) self.assertEqual(joint0.name_e, joint1.name_e, msg) self.assertEqual(joint0.mode, joint1.mode, msg) src_rigid0 = self.__get_rigid_name(joint0.src_rigid, source_rigids) src_rigid1 = self.__get_rigid_name(joint1.src_rigid, result_rigids) self.assertEqual(src_rigid0, src_rigid1, msg) dest_rigid0 = self.__get_rigid_name(joint0.dest_rigid, source_rigids) dest_rigid1 = self.__get_rigid_name(joint1.dest_rigid, result_rigids) self.assertEqual(dest_rigid0, dest_rigid1, msg) self.assertEqual(joint0.location, joint1.location, msg) joint0_rotation = Euler(joint0.rotation,'YXZ').to_quaternion() joint1_rotation = Euler(joint1.rotation,'YXZ').to_quaternion() self.assertLess(self.__quaternion_error(joint0_rotation, joint1_rotation), 1e-6, msg) self.assertLess(self.__vector_error(joint0.maximum_location, joint1.maximum_location), 1e-6, msg) self.assertLess(self.__vector_error(joint0.minimum_location, joint1.minimum_location), 1e-6, msg) self.assertEqual(joint0.maximum_rotation, joint1.maximum_rotation, msg) self.assertEqual(joint0.minimum_rotation, joint1.minimum_rotation, msg) self.assertEqual(joint0.spring_constant, joint1.spring_constant, msg) self.assertEqual(joint0.spring_rotation_constant, joint1.spring_rotation_constant, msg) #******************************************** # Morphs #******************************************** def __get_material(self, index, materials): if 0 <= index < len(materials): return materials[index] class _dummy: name = None return _dummy def __check_pmx_morphs(self, source_model, result_model): ''' Test pmx morphs ''' source_morphs = source_model.morphs result_morphs = result_model.morphs self.assertEqual(len(source_morphs), len(result_morphs)) source_table = {} for m in source_morphs: source_table.setdefault(type(m), []).append(m) result_table = {} for m in result_morphs: result_table.setdefault(type(m), []).append(m) self.assertEqual(source_table.keys(), result_table.keys(), 'types mismatch') #source_vertices = source_model.vertices #result_vertices = result_model.vertices # VertexMorph ================= # TODO source = source_table.get(pmx.VertexMorph, []) result = result_table.get(pmx.VertexMorph, []) self.assertEqual(len(source), len(result)) for m0, m1 in zip(source, result): msg = 'VertexMorph %s'%m0.name self.assertEqual(m0.name, m1.name, msg) self.assertEqual(m0.name_e, m1.name_e, msg) self.assertEqual(m0.category, m1.category, msg) #self.assertEqual(len(m0.offsets), len(m1.offsets), msg) # UVMorph ===================== # TODO source = source_table.get(pmx.UVMorph, []) result = result_table.get(pmx.UVMorph, []) self.assertEqual(len(source), len(result)) for m0, m1 in zip(source, result): msg = 'UVMorph %s'%m0.name self.assertEqual(m0.name, m1.name, msg) self.assertEqual(m0.name_e, m1.name_e, msg) self.assertEqual(m0.category, m1.category, msg) self.assertEqual(len(m0.offsets), len(m1.offsets), msg) #for s0, s1 in zip(m0.offsets, m1.offsets): # self.assertEqual(s0.index, s1.index, msg) # self.assertEqual(s0.offset, s1.offset, msg) # BoneMorph =================== source_bones = source_model.bones result_bones = result_model.bones source = source_table.get(pmx.BoneMorph, []) result = result_table.get(pmx.BoneMorph, []) self.assertEqual(len(source), len(result)) for m0, m1 in zip(source, result): msg = 'BoneMorph %s'%m0.name self.assertEqual(m0.name, m1.name, msg) self.assertEqual(m0.name_e, m1.name_e, msg) self.assertEqual(m0.category, m1.category, msg) # the source may contains invalid data source_offsets = [m for m in m0.offsets if 0 <= m.index < len(source_bones)] result_offsets = m1.offsets self.assertEqual(len(source_offsets), len(result_offsets), msg) for s0, s1 in zip(source_offsets, result_offsets): bone0 = source_bones[s0.index] bone1 = result_bones[s1.index] self.assertEqual(bone0.name, bone1.name, msg) self.assertLess(self.__vector_error(s0.location_offset, s1.location_offset), 1e-5, msg) self.assertLess(self.__vector_error(s0.rotation_offset, s1.rotation_offset), 1e-5, msg) # MaterialMorph =============== source_materials = source_model.materials result_materials = result_model.materials source = source_table.get(pmx.MaterialMorph, []) result = result_table.get(pmx.MaterialMorph, []) self.assertEqual(len(source), len(result)) for m0, m1 in zip(source, result): msg = 'MaterialMorph %s'%m0.name self.assertEqual(m0.name, m1.name, msg) self.assertEqual(m0.name_e, m1.name_e, msg) self.assertEqual(m0.category, m1.category, msg) source_offsets = m0.offsets result_offsets = m1.offsets self.assertEqual(len(source_offsets), len(result_offsets), msg) for s0, s1 in zip(source_offsets, result_offsets): mat0 = self.__get_material(s0.index, source_materials) mat1 = self.__get_material(s1.index, result_materials) self.assertEqual(mat0.name, mat1.name, msg) self.assertEqual(s0.offset_type, s1.offset_type, msg) self.assertEqual(s0.diffuse_offset, s1.diffuse_offset, msg) self.assertEqual(s0.specular_offset, s1.specular_offset, msg) self.assertEqual(s0.shininess_offset, s1.shininess_offset, msg) self.assertEqual(s0.ambient_offset, s1.ambient_offset, msg) self.assertEqual(s0.edge_color_offset, s1.edge_color_offset, msg) self.assertEqual(s0.edge_size_offset, s1.edge_size_offset, msg) self.assertEqual(s0.texture_factor, s1.texture_factor, msg) self.assertEqual(s0.sphere_texture_factor, s1.sphere_texture_factor, msg) self.assertEqual(s0.toon_texture_factor, s1.toon_texture_factor, msg) # GroupMorph ================== source = source_table.get(pmx.GroupMorph, []) result = result_table.get(pmx.GroupMorph, []) self.assertEqual(len(source), len(result)) for m0, m1 in zip(source, result): msg = 'GroupMorph %s'%m0.name self.assertEqual(m0.name, m1.name, msg) self.assertEqual(m0.name_e, m1.name_e, msg) self.assertEqual(m0.category, m1.category, msg) # the source may contains invalid data source_offsets = [m for m in m0.offsets if 0 <= m.morph < len(source_morphs)] result_offsets = m1.offsets self.assertEqual(len(source_offsets), len(result_offsets), msg) for s0, s1 in zip(source_offsets, result_offsets): morph0 = source_morphs[s0.morph] morph1 = result_morphs[s1.morph] self.assertEqual(morph0.name, morph1.name, msg) self.assertEqual(morph0.category, morph1.category, msg) self.assertEqual(s0.factor, s1.factor, msg) #******************************************** # Display #******************************************** def __check_pmx_display_data(self, source_model, result_model, check_morphs): ''' Test pmx display ''' source_display = source_model.display result_display = result_model.display self.assertEqual(len(source_display), len(result_display)) for source, result in zip(source_display, result_display): self.assertEqual(source.name, result.name) self.assertEqual(source.name_e, result.name_e) self.assertEqual(source.isSpecial, result.isSpecial) source_items = source.data if not check_morphs: source_items = [i for i in source_items if i[0] == 0] result_items = result.data self.assertEqual(len(source_items), len(result_items)) for item0, item1 in zip(source_items, result_items): disp_type0, index0 = item0 disp_type1, index1 = item1 self.assertEqual(disp_type0, disp_type1) if disp_type0 == 0: bone_name0 = source_model.bones[index0].name bone_name1 = result_model.bones[index1].name self.assertEqual(bone_name0, bone_name1) elif disp_type0 == 1: morph0 = source_model.morphs[index0] morph1 = result_model.morphs[index1] self.assertEqual(morph0.name, morph1.name) self.assertEqual(morph0.category, morph1.category) #******************************************** # Test Function #******************************************** def __get_import_types(self, types): types = types.copy() if 'PHYSICS' in types: types.add('ARMATURE') if 'DISPLAY' in types: types.add('ARMATURE') if 'MORPHS' in types: types.add('ARMATURE') types.add('MESH') return types def __list_sample_files(self, file_types): ret = [] for file_type in file_types: file_ext ='.' + file_type for root, dirs, files in os.walk(os.path.join(SAMPLES_DIR, file_type)): for name in files: if name.lower().endswith(file_ext): ret.append(os.path.join(root, name)) return ret def __enable_mmd_tools(self): bpy.ops.wm.read_homefile() # reload blender startup file pref = getattr(bpy.context, 'preferences', None) or bpy.context.user_preferences if not pref.addons.get('mmd_tools', None): addon_enable = bpy.ops.wm.addon_enable if 'addon_enable' in dir(bpy.ops.wm) else bpy.ops.preferences.addon_enable addon_enable(module='mmd_tools') # make sure addon 'mmd_tools' is enabled def test_pmx_exporter(self): ''' ''' input_files = self.__list_sample_files(('pmd', 'pmx')) if len(input_files) < 1: self.fail('required pmd/pmx sample file(s)!') check_types = set() check_types.add('MESH') check_types.add('ARMATURE') check_types.add('PHYSICS') check_types.add('MORPHS') check_types.add('DISPLAY') import_types = self.__get_import_types(check_types) print('\n Check: %s | Import: %s'%(str(check_types), str(import_types))) for test_num, filepath in enumerate(input_files): print('\n - %2d/%d | filepath: %s'%(test_num+1, len(input_files), filepath)) try: self.__enable_mmd_tools() file_loader = pmx.load if filepath.lower().endswith('.pmd'): file_loader = import_pmd_to_pmx source_model = file_loader(filepath) PMXImporter().execute( pmx=source_model, types=import_types, scale=1, clean_model=False, ) #bpy.context.scene.update() bpy.context.scene.frame_set(bpy.context.scene.frame_current) except Exception: self.fail('Exception happened during import %s'%filepath) else: try: output_pmx = os.path.join(TESTS_DIR, 'output', '%d.pmx'%test_num) bpy.ops.mmd_tools.export_pmx( filepath=output_pmx, scale=1, copy_textures=False, sort_materials=False, log_level='ERROR', ) except Exception: self.fail('Exception happened during export %s'%output_pmx) else: self.assertTrue(os.path.isfile(output_pmx), 'File was not created') # Is this a race condition? try: result_model = pmx.load(output_pmx) except: self.fail('Failed to load output file %s'%output_pmx) self.__check_pmx_header_info(source_model, result_model, import_types) if 'MESH' in check_types: self.__check_pmx_mesh(source_model, result_model) if 'ARMATURE' in check_types: self.__check_pmx_bones(source_model, result_model) if 'PHYSICS' in check_types: self.__check_pmx_physics(source_model, result_model) if 'MORPHS' in check_types: self.__check_pmx_morphs(source_model, result_model) if 'DISPLAY' in check_types: self.__check_pmx_display_data(source_model, result_model, 'MORPHS' in check_types) if __name__ == '__main__': import sys sys.argv = [__file__] + (sys.argv[sys.argv.index('--') + 1:] if '--' in sys.argv else []) unittest.main()
45.874439
125
0.60971
7946aa0c0eef12a1b63de123544f0ad719074538
2,653
py
Python
wagtail/wagtailsnippets/edit_handlers.py
minervaproject/wagtail
b94b1179fbf2019d809fd69ed62cd1a096b5d407
[ "BSD-3-Clause" ]
null
null
null
wagtail/wagtailsnippets/edit_handlers.py
minervaproject/wagtail
b94b1179fbf2019d809fd69ed62cd1a096b5d407
[ "BSD-3-Clause" ]
1
2016-04-20T00:54:15.000Z
2016-04-20T00:54:15.000Z
wagtail/wagtailsnippets/edit_handlers.py
minervaproject/wagtail
b94b1179fbf2019d809fd69ed62cd1a096b5d407
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, unicode_literals import warnings from django.core.exceptions import ImproperlyConfigured from django.template.loader import render_to_string from django.utils.safestring import mark_safe from wagtail.utils.deprecation import RemovedInWagtail16Warning from wagtail.wagtailadmin.edit_handlers import BaseChooserPanel from wagtail.wagtailcore.utils import resolve_model_string from .widgets import AdminSnippetChooser class BaseSnippetChooserPanel(BaseChooserPanel): object_type_name = 'item' _target_model = None @classmethod def widget_overrides(cls): return {cls.field_name: AdminSnippetChooser(model=cls.target_model())} @classmethod def target_model(cls): if cls._target_model is None: if cls.snippet_type: # RemovedInWagtail16Warning: The target_model is automatically # detected from the relation, so snippet_type is deprecated. try: cls._target_model = resolve_model_string(cls.snippet_type) except LookupError: raise ImproperlyConfigured( "{0}.snippet_type must be of the form 'app_label.model_name', given {1!r}" .format(cls.__name__, cls.snippet_type) ) except ValueError: raise ImproperlyConfigured( "{0}.snippet_type refers to model {1!r} that has not been installed" .format(cls.__name__, cls.snippet_type) ) else: cls._target_model = cls.model._meta.get_field(cls.field_name).rel.model return cls._target_model def render_as_field(self): instance_obj = self.get_chosen_item() return mark_safe(render_to_string(self.field_template, { 'field': self.bound_field, self.object_type_name: instance_obj, })) class SnippetChooserPanel(object): def __init__(self, field_name, snippet_type=None): self.field_name = field_name if snippet_type is not None: warnings.warn( 'The snippet_type argument to SnippetChooserPanel is deprecated. ' 'The related model is now automatically detected.', RemovedInWagtail16Warning) self.snippet_type = snippet_type def bind_to_model(self, model): return type(str('_SnippetChooserPanel'), (BaseSnippetChooserPanel,), { 'model': model, 'field_name': self.field_name, 'snippet_type': self.snippet_type, })
36.847222
98
0.648323
7946aae40299cf0f493e5e92bbe69db907942624
7,732
py
Python
jaxnerf/nerf/models.py
muell-monster/google-research
04d2024f4723bc4be3d639a668c19fb1f6a31478
[ "Apache-2.0" ]
1
2021-07-02T07:29:04.000Z
2021-07-02T07:29:04.000Z
jaxnerf/nerf/models.py
thomascherickal/google-research
294a888bbb6678ac255c6422fd703c325cbb0772
[ "Apache-2.0" ]
null
null
null
jaxnerf/nerf/models.py
thomascherickal/google-research
294a888bbb6678ac255c6422fd703c325cbb0772
[ "Apache-2.0" ]
1
2021-09-27T03:17:14.000Z
2021-09-27T03:17:14.000Z
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Different model implementation plus a general port for all the models.""" from flax import nn import jax.numpy as jnp from jaxnerf.nerf import model_utils def get_model(key, args): return model_dict[args.model](key, args) class NerfModel(nn.Module): """Nerf NN Model with both coarse and fine MLPs.""" def apply(self, key_0, key_1, rays, n_samples, n_fine_samples, use_viewdirs, near, far, noise_std, net_depth, net_width, net_depth_condition, net_width_condition, activation, skip_layer, alpha_channel, rgb_channel, randomized, white_bkgd, deg_point, deg_view, lindisp): """Nerf Model. Args: key_0: jnp.ndarray, random number generator for coarse model sampling. key_1: jnp.ndarray, random number generator for fine model sampling. rays: jnp.ndarray(float32), [batch_size, 6/9], each ray is a 6-d vector where the first 3 dimensions represent the ray origin and the last 3 dimensions represent the unormalized ray direction. Note that if ndc rays are used, rays are 9-d where the extra 3-dimensional vector is the view direction before transformed to ndc rays. n_samples: int, the number of samples for coarse nerf. n_fine_samples: int, the number of samples for fine nerf. use_viewdirs: bool, use viewdirs as a condition. near: float, near clip. far: float, far clip. noise_std: float, std dev of noise added to regularize sigma output. net_depth: int, the depth of the first part of MLP. net_width: int, the width of the first part of MLP. net_depth_condition: int, the depth of the second part of MLP. net_width_condition: int, the width of the second part of MLP. activation: function, the activation function used in the MLP. skip_layer: int, add a skip connection to the output vector of every skip_layer layers. alpha_channel: int, the number of alpha_channels. rgb_channel: int, the number of rgb_channels. randomized: bool, use randomized stratified sampling. white_bkgd: bool, use white background. deg_point: degree of positional encoding for positions. deg_view: degree of positional encoding for viewdirs. lindisp: bool, sampling linearly in disparity rather than depth if true. Returns: ret: list, [(rgb, disp, acc), (rgb_coarse, disp_coarse, acc_coarse)] """ # Extract viewdirs from the ray array if rays.shape[-1] > 6: # viewdirs different from rays_d viewdirs = rays[Ellipsis, -3:] rays = rays[Ellipsis, :-3] else: # viewdirs are normalized rays_d viewdirs = rays[Ellipsis, 3:6] # Stratified sampling along rays z_vals, samples = model_utils.sample_along_rays(key_0, rays, n_samples, near, far, randomized, lindisp) samples = model_utils.posenc(samples, deg_point) # Point attribute predictions if use_viewdirs: norms = jnp.linalg.norm(viewdirs, axis=-1, keepdims=True) viewdirs = viewdirs / norms viewdirs = model_utils.posenc(viewdirs, deg_view) raw = model_utils.MLP( samples, viewdirs, net_depth=net_depth, net_width=net_width, net_depth_condition=net_depth_condition, net_width_condition=net_width_condition, activation=activation, skip_layer=skip_layer, alpha_channel=alpha_channel, rgb_channel=rgb_channel, ) else: raw = model_utils.MLP( samples, net_depth=net_depth, net_width=net_width, net_depth_condition=net_depth_condition, net_width_condition=net_width_condition, activation=activation, skip_layer=skip_layer, alpha_channel=alpha_channel, rgb_channel=rgb_channel, ) # Add noises to regularize the density predictions if needed raw = model_utils.noise_regularize(key_0, raw, noise_std, randomized) # Volumetric rendering. rgb, disp, acc, weights = model_utils.volumetric_rendering( raw, z_vals, rays[Ellipsis, 3:6], white_bkgd=white_bkgd, ) ret = [ (rgb, disp, acc), ] # Hierarchical sampling based on coarse predictions if n_fine_samples > 0: z_vals_mid = .5 * (z_vals[Ellipsis, 1:] + z_vals[Ellipsis, :-1]) z_vals, samples = model_utils.sample_pdf( key_1, z_vals_mid, weights[Ellipsis, 1:-1], rays, z_vals, n_fine_samples, randomized, ) samples = model_utils.posenc(samples, deg_point) if use_viewdirs: raw = model_utils.MLP(samples, viewdirs) else: raw = model_utils.MLP(samples) raw = model_utils.noise_regularize(key_1, raw, noise_std, randomized) rgb, disp, acc, unused_weights = model_utils.volumetric_rendering( raw, z_vals, rays[Ellipsis, 3:6], white_bkgd=white_bkgd, ) ret.append((rgb, disp, acc)) return ret def nerf(key, args): """Neural Randiance Field. Args: key: jnp.ndarray. Random number generator. args: FLAGS class. Hyperparameters of nerf. Returns: model: nn.Model. Nerf model with parameters. state: flax.Module.state. Nerf model state for stateful parameters. """ deg_point = args.deg_point deg_view = args.deg_view n_samples = args.n_samples n_fine_samples = args.n_fine_samples use_viewdirs = args.use_viewdirs near = args.near far = args.far noise_std = args.noise_std randomized = args.randomized white_bkgd = args.white_bkgd net_depth = args.net_depth net_width = args.net_width net_depth_condition = args.net_depth_condition net_width_condition = args.net_width_condition if args.activation == "relu": activation = nn.relu else: raise NotImplementedError("Invalid choice of activation {}".format( args.activation)) skip_layer = args.skip_layer alpha_channel = args.alpha_channel rgb_channel = args.rgb_channel lindisp = args.lindisp ray_shape = (args.batch_size, 6 if args.dataset != "llff" else 9) model_fn = NerfModel.partial( n_samples=n_samples, n_fine_samples=n_fine_samples, use_viewdirs=use_viewdirs, near=near, far=far, noise_std=noise_std, net_depth=net_depth, net_width=net_width, net_depth_condition=net_depth_condition, net_width_condition=net_width_condition, activation=activation, skip_layer=skip_layer, alpha_channel=alpha_channel, rgb_channel=rgb_channel, randomized=randomized, white_bkgd=white_bkgd, deg_point=deg_point, deg_view=deg_view, lindisp=lindisp) with nn.stateful() as init_state: unused_outspec, init_params = model_fn.init_by_shape( key, [ (key.shape, key.dtype), (key.shape, key.dtype), (ray_shape, jnp.float32), ], ) model = nn.Model(model_fn, init_params) return model, init_state model_dict = { "nerf": nerf, }
36.471698
79
0.678996
7946ab514da23177c8fa136ae47580349c8d5e7a
19,752
py
Python
networking_hyperv/neutron/agent/layer2.py
vaibhavjaiman/networking-hyperv
1f6462a76e7c3f8fc57bf7b1d7d0fc3d39910935
[ "Apache-2.0" ]
14
2015-10-18T02:55:08.000Z
2019-01-28T22:05:28.000Z
networking_hyperv/neutron/agent/layer2.py
vaibhavjaiman/networking-hyperv
1f6462a76e7c3f8fc57bf7b1d7d0fc3d39910935
[ "Apache-2.0" ]
2
2021-03-01T06:13:30.000Z
2021-05-09T06:13:28.000Z
networking_hyperv/neutron/agent/layer2.py
vaibhavjaiman/networking-hyperv
1f6462a76e7c3f8fc57bf7b1d7d0fc3d39910935
[ "Apache-2.0" ]
18
2016-02-03T17:26:34.000Z
2021-02-28T13:36:22.000Z
# Copyright 2017 Cloudbase Solutions SRL # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """This module contains all the available contract classes.""" import abc import collections import re import eventlet from eventlet import tpool from neutron.agent import rpc as agent_rpc from neutron_lib.agent import topics from neutron_lib import constants as n_const from neutron_lib import rpc as n_rpc from os_win import constants as os_win_const from os_win import exceptions as os_win_exc from oslo_concurrency import lockutils from oslo_log import log as logging from oslo_service import loopingcall import six from networking_hyperv.common.i18n import _, _LI, _LE # noqa from networking_hyperv.neutron import _common_utils as c_util from networking_hyperv.neutron.agent import base as base_agent from networking_hyperv.neutron import config from networking_hyperv.neutron import constants from networking_hyperv.neutron import exception LOG = logging.getLogger(__name__) CONF = config.CONF _synchronized = lockutils.synchronized_with_prefix('n-hv-agent-') _port_synchronized = c_util.get_port_synchronized_decorator('n-hv-agent-') class Layer2Agent(base_agent.BaseAgent): """Contract class for all the layer two agents.""" _AGENT_TOPIC = n_const.L2_AGENT_TOPIC _OVS_EXT_NAME_RE = re.compile(r'.*((open.?v.?switch)|(ovs)).*', re.IGNORECASE) def __init__(self): super(Layer2Agent, self).__init__() self._network_vswitch_map = {} # The following sets contain ports that are to be processed. self._added_ports = set() self._removed_ports = set() # The following sets contain ports that have been processed. self._bound_ports = set() self._unbound_ports = set() self._physical_network_mappings = collections.OrderedDict() self._consumers = [] self._event_callback_pairs = [] # Setup the current agent. self._setup() self._set_agent_state() self._setup_rpc() def _setup(self): """Setup the layer two agent.""" agent_config = CONF.get("AGENT", {}) self._worker_count = agent_config.get('worker_count') self._phys_net_map = agent_config.get( 'physical_network_vswitch_mappings', []) self._local_network_vswitch = agent_config.get( 'local_network_vswitch') self._load_physical_network_mappings(self._phys_net_map) self._validate_vswitches() self._endpoints.append(self) self._event_callback_pairs.extend([ (self._utils.EVENT_TYPE_CREATE, self._process_added_port_event), (self._utils.EVENT_TYPE_DELETE, self._process_removed_port_event) ]) tpool.set_num_threads(self._worker_count) def _setup_qos_extension(self): """Setup the QOS extension if it is required.""" pass def _setup_rpc(self): """Setup the RPC client for the current agent.""" self._plugin_rpc = agent_rpc.PluginApi(topics.PLUGIN) self._state_rpc = agent_rpc.PluginReportStateAPI(topics.PLUGIN) self._client = n_rpc.get_client(self.target) self._consumers.extend([ [topics.PORT, topics.UPDATE], [topics.NETWORK, topics.DELETE], [topics.PORT, topics.DELETE] ]) self._connection = agent_rpc.create_consumers( self._endpoints, self._topic, self._consumers, start_listening=False ) self._setup_qos_extension() self._connection.consume_in_threads() report_interval = CONF.AGENT.report_interval if report_interval: heartbeat = loopingcall.FixedIntervalLoopingCall( self._report_state) heartbeat.start(interval=report_interval) def _process_added_port_event(self, port_name): """Callback for added ports.""" LOG.info("Hyper-V VM vNIC added: %s", port_name) self._added_ports.add(port_name) def _process_removed_port_event(self, port_name): LOG.info("Hyper-V VM vNIC removed: %s", port_name) self._removed_ports.add(port_name) def _load_physical_network_mappings(self, phys_net_vswitch_mappings): """Load all the information regarding the physical network.""" for mapping in phys_net_vswitch_mappings: parts = mapping.split(':') if len(parts) != 2: LOG.debug('Invalid physical network mapping: %s', mapping) else: pattern = re.escape(parts[0].strip()).replace('\\*', '.*') pattern = pattern + '$' vswitch = parts[1].strip() self._physical_network_mappings[pattern] = vswitch def _validate_vswitches(self): vswitch_names = list(self._physical_network_mappings.values()) if self._local_network_vswitch: vswitch_names.append(self._local_network_vswitch) vswitches_valid = True for vswitch_name in vswitch_names: try: self._validate_vswitch(vswitch_name) except exception.ValidationError: # We're validating all the vSwitches before erroring out. LOG.error("Validating vSwitch %s failed", vswitch_name) vswitches_valid = False # We're currently stopping the service if any of the configured # vSwitches are unavailable. if not vswitches_valid: err_msg = _("Validating one or more configured vSwitches failed.") raise exception.ValidationError(err_msg) elif not vswitch_names: err_msg = _("No vSwitch configured.") raise exception.ValidationError(err_msg) def _validate_vswitch(self, vswitch_name): try: vswitch_extensions = self._utils.get_vswitch_extensions( vswitch_name) except os_win_exc.HyperVvSwitchNotFound as exc: raise exception.ValidationError(exc.message) for ext in vswitch_extensions: if (self._is_ovs_extension(ext) and ext['enabled_state'] == os_win_const.CIM_STATE_ENABLED): err_msg = _("The Open vSwitch extension is enabled on the " "'%s' vSwitch. For this reason, this agent " "cannot use the specified vSwitch.") raise exception.ValidationError(err_msg % vswitch_name) def _is_ovs_extension(self, vswitch_extension): # The OVS extension name keeps changing, while some vendors # redistribute it under a different name. return bool(self._OVS_EXT_NAME_RE.match(vswitch_extension['name'])) def _get_vswitch_name(self, network_type, physical_network): """Get the vswitch name for the received network information.""" if network_type != constants.TYPE_LOCAL: vswitch_name = self._get_vswitch_for_physical_network( physical_network) else: vswitch_name = self._local_network_vswitch if vswitch_name: return vswitch_name err_msg = _("No vSwitch configured for physical network " "'%(physical_network)s'. Neutron network type: " "'%(network_type)s'.") raise exception.NetworkingHyperVException( err_msg % dict(physical_network=physical_network, network_type=network_type)) def _get_vswitch_for_physical_network(self, phys_network_name): """Get the vswitch name for the received network name.""" for pattern in self._physical_network_mappings: if phys_network_name is None: phys_network_name = '' if re.match(pattern, phys_network_name): return self._physical_network_mappings[pattern] def _get_network_vswitch_map_by_port_id(self, port_id): """Get the vswitch name for the received port id.""" for network_id, vswitch in six.iteritems(self._network_vswitch_map): if port_id in vswitch['ports']: return (network_id, vswitch) # If the port was not found, just return (None, None) return (None, None) def _update_port_status_cache(self, device, device_bound=True): """Update the ports status cache.""" with self._cache_lock: if device_bound: self._bound_ports.add(device) self._unbound_ports.discard(device) else: self._bound_ports.discard(device) self._unbound_ports.add(device) def _create_event_listeners(self): """Create and bind the event listeners.""" LOG.debug("Create the event listeners.") for event_type, callback in self._event_callback_pairs: LOG.debug("Create listener for %r event", event_type) listener = self._utils.get_vnic_event_listener(event_type) eventlet.spawn_n(listener, callback) def _prologue(self): """Executed once before the daemon loop.""" self._added_ports = self._utils.get_vnic_ids() self._create_event_listeners() def _reclaim_local_network(self, net_uuid): LOG.info("Reclaiming local network %s", net_uuid) del self._network_vswitch_map[net_uuid] def _port_bound(self, port_id, network_id, network_type, physical_network, segmentation_id, port_security_enabled, set_port_sriov): """Bind the port to the recived network.""" LOG.debug("Binding port %s", port_id) if network_id not in self._network_vswitch_map: self._provision_network( port_id, network_id, network_type, physical_network, segmentation_id) vswitch_map = self._network_vswitch_map[network_id] vswitch_map['ports'].append(port_id) LOG.debug("Trying to connect the current port to vswitch %r.", vswitch_map['vswitch_name']) self._utils.connect_vnic_to_vswitch( vswitch_name=vswitch_map['vswitch_name'], switch_port_name=port_id, ) if set_port_sriov: LOG.debug("Enabling SR-IOV for port: %s", port_id) self._utils.set_vswitch_port_sriov(port_id, True) def _port_unbound(self, port_id, vnic_deleted=False): LOG.debug("Trying to unbind the port %r", port_id) vswitch = self._get_network_vswitch_map_by_port_id(port_id) net_uuid, vswitch_map = vswitch if not net_uuid: LOG.debug('Port %s was not found on this agent.', port_id) return LOG.debug("Unbinding port %s", port_id) self._utils.remove_switch_port(port_id, vnic_deleted) vswitch_map['ports'].remove(port_id) if not vswitch_map['ports']: self._reclaim_local_network(net_uuid) def _process_added_port(self, device_details): # NOTE(claudiub): A port requiring SR-IOV will specify a PCI slot. set_port_sriov = 'pci_slot' in device_details.get('profile', {}) self._treat_vif_port( port_id=device_details['port_id'], network_id=device_details['network_id'], network_type=device_details['network_type'], physical_network=device_details['physical_network'], segmentation_id=device_details['segmentation_id'], admin_state_up=device_details['admin_state_up'], port_security_enabled=device_details['port_security_enabled'], set_port_sriov=set_port_sriov) def process_added_port(self, device_details): """Process the new ports. Wraps _process_added_port, and treats the sucessful and exception cases. """ device = device_details['device'] port_id = device_details['port_id'] reprocess = True try: self._process_added_port(device_details) LOG.debug("Updating cached port %s status as UP.", port_id) self._update_port_status_cache(device, device_bound=True) LOG.info("Port %s processed.", port_id) except os_win_exc.HyperVvNicNotFound: LOG.debug('vNIC %s not found. This can happen if the VM was ' 'destroyed.', port_id) reprocess = False except os_win_exc.HyperVPortNotFoundException: LOG.debug('vSwitch port %s not found. This can happen if the VM ' 'was destroyed.', port_id) # NOTE(claudiub): just to be on the safe side, in case Hyper-V said # that the port was added, but it hasn't really, we're leaving # reprocess = True. If the VM / vNIC was removed, on the next # reprocess, a HyperVvNicNotFound will be raised. except Exception as ex: # NOTE(claudiub): in case of a non-transient error, the port will # be processed over and over again, and will not be reported as # bound (e.g.: InvalidParameterValue when setting QoS), until the # port is deleted. These issues have to be investigated and solved LOG.exception("Exception encountered while processing " "port %(port_id)s. Exception: %(ex)s", dict(port_id=port_id, ex=ex)) else: # no exception encountered, no need to reprocess. reprocess = False if reprocess: # Readd the port as "added", so it can be reprocessed. self._added_ports.add(device) # Force cache refresh. self._refresh_cache = True return False return True def _treat_devices_added(self): """Process the new devices.""" try: devices_details_list = self._plugin_rpc.get_devices_details_list( self._context, self._added_ports, self._agent_id, self._host) except Exception as exc: LOG.debug("Unable to get ports details for " "devices %(devices)s: %(exc)s", {'devices': self._added_ports, 'exc': exc}) return for device_details in devices_details_list: device = device_details['device'] LOG.info("Adding port %s", device) if 'port_id' in device_details: LOG.info("Port %(device)s updated. " "Details: %(device_details)s", {'device': device, 'device_details': device_details}) eventlet.spawn_n(self.process_added_port, device_details) else: LOG.debug("Missing port_id from device details: " "%(device)s. Details: %(device_details)s", {'device': device, 'device_details': device_details}) LOG.debug("Remove the port from added ports set, so it " "doesn't get reprocessed.") self._added_ports.discard(device) def _process_removed_port(self, device): """Process the removed ports.""" LOG.debug("Trying to remove the port %r", device) self._update_port_status_cache(device, device_bound=False) self._port_unbound(device, vnic_deleted=True) LOG.debug("The port was successfully removed.") self._removed_ports.discard(device) def _treat_devices_removed(self): """Process the removed devices.""" for device in self._removed_ports.copy(): eventlet.spawn_n(self._process_removed_port, device) @_synchronized('n-plugin-notifier') def _notify_plugin_on_port_updates(self): if not (self._bound_ports or self._unbound_ports): return with self._cache_lock: bound_ports = self._bound_ports.copy() unbound_ports = self._unbound_ports.copy() self._plugin_rpc.update_device_list( self._context, list(bound_ports), list(unbound_ports), self._agent_id, self._host) with self._cache_lock: self._bound_ports = self._bound_ports.difference(bound_ports) self._unbound_ports = self._unbound_ports.difference( unbound_ports) def _work(self): """Process the information regarding the available ports.""" if self._refresh_cache: # Inconsistent cache might cause exceptions. For example, # if a port has been removed, it will be known in the next # loop. Using the old switch port can cause exceptions. LOG.debug("Refreshing os_win caches...") self._utils.update_cache() self._refresh_cache = False if self._bound_ports or self._unbound_ports: eventlet.spawn_n(self._notify_plugin_on_port_updates) # notify plugin about port deltas if self._added_ports: LOG.debug("Agent loop has new devices!") self._treat_devices_added() if self._removed_ports: LOG.debug("Agent loop has lost devices...") self._treat_devices_removed() def port_update(self, context, port=None, network_type=None, segmentation_id=None, physical_network=None): LOG.debug("port_update received: %s", port['id']) if self._utils.vnic_port_exists(port['id']): self._treat_vif_port( port_id=port['id'], network_id=port['network_id'], network_type=network_type, physical_network=physical_network, segmentation_id=segmentation_id, admin_state_up=port['admin_state_up'], port_security_enabled=port['port_security_enabled'], ) else: LOG.debug("No port %s defined on agent.", port['id']) def port_delete(self, context, port_id=None): """Delete the received port.""" LOG.debug("port_delete event received for %r", port_id) def network_delete(self, context, network_id=None): LOG.debug("network_delete received. " "Deleting network %s", network_id) # The network may not be defined on this agent if network_id in self._network_vswitch_map: self._reclaim_local_network(network_id) else: LOG.debug("Network %s not defined on agent.", network_id) @abc.abstractmethod def _provision_network(self, port_id, net_uuid, network_type, physical_network, segmentation_id): """Provision the network with the received information.""" pass @_port_synchronized def _treat_vif_port(self, port_id, network_id, network_type, physical_network, segmentation_id, admin_state_up, port_security_enabled, set_port_sriov=False): if admin_state_up: self._port_bound(port_id, network_id, network_type, physical_network, segmentation_id, port_security_enabled, set_port_sriov) else: self._port_unbound(port_id)
40.979253
79
0.638264
7946ab56412a91399c1b1bad47a07dc5c7f96a8f
19,861
py
Python
manila/tests/api/v1/test_security_service.py
kpawar89/manila
d487c2db728cedf8357b9f4acbc0a45c21c3a83e
[ "Apache-2.0" ]
159
2015-01-02T09:35:15.000Z
2022-01-04T11:51:34.000Z
manila/tests/api/v1/test_security_service.py
kpawar89/manila
d487c2db728cedf8357b9f4acbc0a45c21c3a83e
[ "Apache-2.0" ]
5
2015-07-24T09:28:21.000Z
2020-11-20T04:33:51.000Z
manila/tests/api/v1/test_security_service.py
kpawar89/manila
d487c2db728cedf8357b9f4acbc0a45c21c3a83e
[ "Apache-2.0" ]
128
2015-01-05T22:52:28.000Z
2021-12-29T14:00:58.000Z
# Copyright 2012 NetApp # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from urllib import parse import ddt import webob from manila.api.v1 import security_service from manila.common import constants from manila import db from manila import exception from manila import test from manila.tests.api import fakes @ddt.ddt class ShareApiTest(test.TestCase): """Share Api Test.""" def setUp(self): super(ShareApiTest, self).setUp() self.controller = security_service.SecurityServiceController() self.maxDiff = None self.ss_active_directory = { "created_at": "fake-time", "updated_at": "fake-time-2", "id": 1, "name": "fake-name", "description": "Fake Security Service Desc", "type": constants.SECURITY_SERVICES_ALLOWED_TYPES[0], "dns_ip": "1.1.1.1", "server": "fake-server", "domain": "fake-domain", "user": "fake-user", "password": "fake-password", "status": constants.STATUS_NEW, "project_id": "fake", } self.ss_ldap = { "created_at": "fake-time", "updated_at": "fake-time-2", "id": 2, "name": "ss-ldap", "description": "Fake Security Service Desc", "type": constants.SECURITY_SERVICES_ALLOWED_TYPES[1], "dns_ip": "2.2.2.2", "server": "test-server", "domain": "test-domain", "user": "test-user", "password": "test-password", "status": "active", "project_id": "fake", } self.valid_search_opts = { 'user': 'fake-user', 'server': 'fake-server', 'dns_ip': '1.1.1.1', 'domain': 'fake-domain', 'type': constants.SECURITY_SERVICES_ALLOWED_TYPES[0], } self.check_policy_patcher = mock.patch( 'manila.api.v1.security_service.policy.check_policy') self.check_policy_patcher.start() self.addCleanup(self._stop_started_patcher, self.check_policy_patcher) self.security_service_list_expected_resp = { 'security_services': [{ 'id': self.ss_active_directory['id'], 'name': self.ss_active_directory['name'], 'type': self.ss_active_directory['type'], 'status': self.ss_active_directory['status'] }, ] } self.fake_share_network_list_with_share_servers = [{ 'id': 'fake_sn_id', 'share_network_subnets': [{ 'id': 'fake_sns_id', 'share_servers': [{'id': 'fake_ss_id'}] }] }] self.fake_share_network_list_without_share_servers = [{ 'id': 'fake_sn_id', 'share_network_subnets': [{ 'id': 'fake_sns_id', 'share_servers': [] }] }] def _stop_started_patcher(self, patcher): if hasattr(patcher, 'is_local'): patcher.stop() def test_security_service_show(self): db.security_service_get = mock.Mock( return_value=self.ss_active_directory) req = fakes.HTTPRequest.blank('/security-services/1') res_dict = self.controller.show(req, '1') expected = self.ss_active_directory.copy() expected.update() self.assertEqual({'security_service': self.ss_active_directory}, res_dict) def test_security_service_show_not_found(self): db.security_service_get = mock.Mock(side_effect=exception.NotFound) req = fakes.HTTPRequest.blank('/shares/1') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, '1') def test_security_service_create(self): sec_service = self.ss_active_directory.copy() create_stub = mock.Mock( return_value=sec_service) self.mock_object(db, 'security_service_create', create_stub) req = fakes.HTTPRequest.blank('/security-services') res_dict = self.controller.create( req, {"security_service": sec_service}) expected = self.ss_active_directory.copy() self.assertEqual({'security_service': expected}, res_dict) def test_security_service_create_invalid_types(self): sec_service = self.ss_active_directory.copy() sec_service['type'] = 'invalid' req = fakes.HTTPRequest.blank('/security-services') self.assertRaises(exception.InvalidInput, self.controller.create, req, {"security_service": sec_service}) def test_create_security_service_no_body(self): body = {} req = fakes.HTTPRequest.blank('/security-services') self.assertRaises(webob.exc.HTTPUnprocessableEntity, self.controller.create, req, body) def test_security_service_delete(self): db.security_service_delete = mock.Mock() db.security_service_get = mock.Mock() db.share_network_get_all_by_security_service = mock.Mock( return_value=[]) req = fakes.HTTPRequest.blank('/security_services/1') resp = self.controller.delete(req, 1) db.security_service_delete.assert_called_once_with( req.environ['manila.context'], 1) self.assertEqual(202, resp.status_int) def test_security_service_delete_not_found(self): db.security_service_get = mock.Mock(side_effect=exception.NotFound) req = fakes.HTTPRequest.blank('/security_services/1') self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, 1) def test_security_service_delete_has_share_networks(self): db.security_service_get = mock.Mock() db.share_network_get_all_by_security_service = mock.Mock( return_value=[{'share_network': 'fake_share_network'}]) req = fakes.HTTPRequest.blank('/security_services/1') self.assertRaises(webob.exc.HTTPForbidden, self.controller.delete, req, 1) def test_security_service_update_name(self): new = self.ss_active_directory.copy() updated = self.ss_active_directory.copy() updated['name'] = 'new' self.mock_object(security_service.policy, 'check_policy') db.security_service_get = mock.Mock(return_value=new) db.security_service_update = mock.Mock(return_value=updated) fake_sns = {'id': 'fake_sns_id', 'share_servers': ['fake_ss']} db.share_network_get_all_by_security_service = mock.Mock( return_value=[{ 'id': 'fake_id', 'share_network_subnets': [fake_sns] }]) body = {"security_service": {"name": "new"}} req = fakes.HTTPRequest.blank('/security_service/1') res_dict = self.controller.update(req, 1, body)['security_service'] self.assertEqual(updated['name'], res_dict['name']) db.share_network_get_all_by_security_service.assert_called_once_with( req.environ['manila.context'], 1) self.assertEqual(2, security_service.policy.check_policy.call_count) security_service.policy.check_policy.assert_has_calls([ mock.call(req.environ['manila.context'], security_service.RESOURCE_NAME, 'update', new) ]) def test_security_service_update_description(self): new = self.ss_active_directory.copy() updated = self.ss_active_directory.copy() updated['description'] = 'new' self.mock_object(security_service.policy, 'check_policy') db.security_service_get = mock.Mock(return_value=new) db.security_service_update = mock.Mock(return_value=updated) fake_sns = {'id': 'fake_sns_id', 'share_servers': ['fake_ss']} db.share_network_get_all_by_security_service = mock.Mock( return_value=[{ 'id': 'fake_id', 'share_network_subnets': [fake_sns] }]) body = {"security_service": {"description": "new"}} req = fakes.HTTPRequest.blank('/security_service/1') res_dict = self.controller.update(req, 1, body)['security_service'] self.assertEqual(updated['description'], res_dict['description']) db.share_network_get_all_by_security_service.assert_called_once_with( req.environ['manila.context'], 1) self.assertEqual(2, security_service.policy.check_policy.call_count) security_service.policy.check_policy.assert_has_calls([ mock.call(req.environ['manila.context'], security_service.RESOURCE_NAME, 'update', new) ]) @mock.patch.object(db, 'security_service_get', mock.Mock()) @mock.patch.object(db, 'share_network_get_all_by_security_service', mock.Mock()) def test_security_service_update_invalid_keys_sh_server_exists(self): self.mock_object(security_service.policy, 'check_policy') fake_sns = {'id': 'fake_sns_id', 'share_servers': ['fake_ss']} db.share_network_get_all_by_security_service.return_value = [ {'id': 'fake_id', 'share_network_subnets': [fake_sns]}, ] db.security_service_get.return_value = self.ss_active_directory.copy() body = {'security_service': {'user_id': 'new_user'}} req = fakes.HTTPRequest.blank('/security_services/1') self.assertRaises(webob.exc.HTTPForbidden, self.controller.update, req, 1, body) db.security_service_get.assert_called_once_with( req.environ['manila.context'], 1) db.share_network_get_all_by_security_service.assert_called_once_with( req.environ['manila.context'], 1) self.assertEqual(1, security_service.policy.check_policy.call_count) security_service.policy.check_policy.assert_has_calls([ mock.call(req.environ['manila.context'], security_service.RESOURCE_NAME, 'update', db.security_service_get.return_value) ]) @mock.patch.object(db, 'security_service_get', mock.Mock()) @mock.patch.object(db, 'security_service_update', mock.Mock()) @mock.patch.object(db, 'share_network_get_all_by_security_service', mock.Mock()) def test_security_service_update_valid_keys_sh_server_exists(self): self.mock_object(security_service.policy, 'check_policy') fake_sns = {'id': 'fake_sns_id', 'share_servers': ['fake_ss']} db.share_network_get_all_by_security_service.return_value = [ {'id': 'fake_id', 'share_network_subnets': [fake_sns]}, ] old = self.ss_active_directory.copy() updated = self.ss_active_directory.copy() updated['name'] = 'new name' updated['description'] = 'new description' db.security_service_get.return_value = old db.security_service_update.return_value = updated body = { 'security_service': { 'description': 'new description', 'name': 'new name', }, } req = fakes.HTTPRequest.blank('/security_services/1') res_dict = self.controller.update(req, 1, body)['security_service'] self.assertEqual(updated['description'], res_dict['description']) self.assertEqual(updated['name'], res_dict['name']) db.security_service_get.assert_called_once_with( req.environ['manila.context'], 1) db.share_network_get_all_by_security_service.assert_called_once_with( req.environ['manila.context'], 1) db.security_service_update.assert_called_once_with( req.environ['manila.context'], 1, body['security_service']) self.assertEqual(2, security_service.policy.check_policy.call_count) security_service.policy.check_policy.assert_has_calls([ mock.call(req.environ['manila.context'], security_service.RESOURCE_NAME, 'update', old) ]) @mock.patch.object(db, 'security_service_get', mock.Mock()) def test_security_service_update_has_share_servers(self): db.security_service_get = mock.Mock() self.mock_object( self.controller, '_share_servers_dependent_on_sn_exist', mock.Mock(return_value=True)) body = {"security_service": {"type": "ldap"}} req = fakes.HTTPRequest.blank('/security_services/1') self.assertRaises(webob.exc.HTTPForbidden, self.controller.update, req, 1, body) @ddt.data(True, False) def test_security_service_update_share_server_dependent_exists(self, expected): req = fakes.HTTPRequest.blank('/security_services/1') context = req.environ['manila.context'] db.security_service_get = mock.Mock() network = (self.fake_share_network_list_with_share_servers if expected else self.fake_share_network_list_without_share_servers) db.share_network_get_all_by_security_service = mock.Mock( return_value=network) result = self.controller._share_servers_dependent_on_sn_exist( context, 'fake_id') self.assertEqual(expected, result) def test_security_service_list(self): db.security_service_get_all_by_project = mock.Mock( return_value=[self.ss_active_directory.copy()]) req = fakes.HTTPRequest.blank('/security_services') res_dict = self.controller.index(req) self.assertEqual(self.security_service_list_expected_resp, res_dict) @mock.patch.object(db, 'share_network_get', mock.Mock()) def test_security_service_list_filter_by_sn(self): sn = { 'id': 'fake_sn_id', 'security_services': [self.ss_active_directory, ], } db.share_network_get.return_value = sn req = fakes.HTTPRequest.blank( '/security-services?share_network_id=fake_sn_id') res_dict = self.controller.index(req) self.assertEqual(self.security_service_list_expected_resp, res_dict) db.share_network_get.assert_called_once_with( req.environ['manila.context'], sn['id']) @mock.patch.object(db, 'security_service_get_all', mock.Mock()) def test_security_services_list_all_tenants_admin_context(self): self.check_policy_patcher.stop() db.security_service_get_all.return_value = [ self.ss_active_directory, self.ss_ldap, ] req = fakes.HTTPRequest.blank( '/security-services?all_tenants=1&name=fake-name', use_admin_context=True) res_dict = self.controller.index(req) self.assertEqual(self.security_service_list_expected_resp, res_dict) db.security_service_get_all.assert_called_once_with( req.environ['manila.context']) @mock.patch.object(db, 'security_service_get_all_by_project', mock.Mock()) def test_security_services_list_all_tenants_non_admin_context(self): db.security_service_get_all_by_project.return_value = [] req = fakes.HTTPRequest.blank( '/security-services?all_tenants=1') fake_context = req.environ['manila.context'] self.controller.index(req) db.security_service_get_all_by_project.assert_called_once_with( fake_context, fake_context.project_id ) @mock.patch.object(db, 'security_service_get_all', mock.Mock()) def test_security_services_list_all_tenants_with_invalid_value(self): req = fakes.HTTPRequest.blank( '/security-services?all_tenants=nerd', use_admin_context=True) self.assertRaises(exception.InvalidInput, self.controller.index, req) @mock.patch.object(db, 'security_service_get_all_by_project', mock.Mock()) def test_security_services_list_all_tenants_with_value_zero(self): db.security_service_get_all_by_project.return_value = [] req = fakes.HTTPRequest.blank( '/security-services?all_tenants=0', use_admin_context=True) res_dict = self.controller.index(req) self.assertEqual({'security_services': []}, res_dict) db.security_service_get_all_by_project.assert_called_once_with( req.environ['manila.context'], req.environ['manila.context'].project_id) @mock.patch.object(db, 'security_service_get_all_by_project', mock.Mock()) def test_security_services_list_admin_context_invalid_opts(self): db.security_service_get_all_by_project.return_value = [ self.ss_active_directory, self.ss_ldap, ] req = fakes.HTTPRequest.blank( '/security-services?fake_opt=fake_value', use_admin_context=True) res_dict = self.controller.index(req) self.assertEqual({'security_services': []}, res_dict) db.security_service_get_all_by_project.assert_called_once_with( req.environ['manila.context'], req.environ['manila.context'].project_id) @mock.patch.object(db, 'security_service_get_all_by_project', mock.Mock()) def test_security_service_list_all_filter_opts_separately(self): db.security_service_get_all_by_project.return_value = [ self.ss_active_directory, self.ss_ldap, ] for opt, val in self.valid_search_opts.items(): for use_admin_context in [True, False]: req = fakes.HTTPRequest.blank( '/security-services?' + opt + '=' + val, use_admin_context=use_admin_context) res_dict = self.controller.index(req) self.assertEqual(self.security_service_list_expected_resp, res_dict) db.security_service_get_all_by_project.assert_called_with( req.environ['manila.context'], req.environ['manila.context'].project_id) @mock.patch.object(db, 'security_service_get_all_by_project', mock.Mock()) def test_security_service_list_all_filter_opts(self): db.security_service_get_all_by_project.return_value = [ self.ss_active_directory, self.ss_ldap, ] query_string = '/security-services?' + parse.urlencode(sorted( [(k, v) for (k, v) in list(self.valid_search_opts.items())])) for use_admin_context in [True, False]: req = fakes.HTTPRequest.blank(query_string, use_admin_context=use_admin_context) res_dict = self.controller.index(req) self.assertEqual(self.security_service_list_expected_resp, res_dict) db.security_service_get_all_by_project.assert_called_with( req.environ['manila.context'], req.environ['manila.context'].project_id)
45.448513
78
0.636272
7946acc2388304fdfb6caf49e55542368561af96
245
py
Python
2_Baekjoon/7_practice.py
YOON-CC/Baekjoon
608daac0b294f0273f706eff83d7abcb47815097
[ "MIT" ]
null
null
null
2_Baekjoon/7_practice.py
YOON-CC/Baekjoon
608daac0b294f0273f706eff83d7abcb47815097
[ "MIT" ]
null
null
null
2_Baekjoon/7_practice.py
YOON-CC/Baekjoon
608daac0b294f0273f706eff83d7abcb47815097
[ "MIT" ]
null
null
null
#백준 1149 n=int(input()) a=[list(map(int,input().split())) for _ in range(n)] for i in range(1,n): a[i][0]+=min(a[i-1][1],a[i-1][2]) a[i][1]+=min(a[i-1][0],a[i-1][2]) a[i][2]+=min(a[i-1][0],a[i-1][1]) print(a) print(min(a[n-1]))
20.416667
52
0.489796
7946ad0c8b69f2fb349f003fa8f368c5ef072927
2,044
py
Python
calibration/src/calibration/calibration/publish_camera_info.py
sieniven/detect-obstacles-ros
2fe2e502781060da83e4840538c779808553dbfb
[ "Apache-2.0" ]
6
2021-04-26T15:11:24.000Z
2022-01-05T23:10:43.000Z
calibration/src/calibration/calibration/publish_camera_info.py
sieniven/detect-obstacles-ros
2fe2e502781060da83e4840538c779808553dbfb
[ "Apache-2.0" ]
null
null
null
calibration/src/calibration/calibration/publish_camera_info.py
sieniven/detect-obstacles-ros
2fe2e502781060da83e4840538c779808553dbfb
[ "Apache-2.0" ]
null
null
null
# basic Python frameworks import argparse import yaml import numpy as np # ROS2 libraries import rclpy # import messages from sensor_msgs.msg import CameraInfo def main(): """ main function to publish camera info ros2 messages """ rclpy.init(args=None) parser = argparse.ArgumentParser() parser.add_argument('--topic-to-publish', action="store", help="ROS topic to publish the camera info", required=True, type=str) topic_to_publish = parser.parse_args().topic_to_publish if "left" in topic_to_publish: identifier = "left" else: identifier = "right" node = rclpy.create_node('%s_camera_info_publisher' % identifier) publisher = node.create_publisher(CameraInfo, topic_to_publish, 10) msg = CameraInfo() with open(r'/home/garuda/dev_ws/src/copilot_daa_calibration/data/intrinsic/camera_info.yaml') \ as config_file: camera_info_file_path = yaml.load(config_file, Loader=yaml.FullLoader)["config"]["intrinsic"] with open(camera_info_file_path, 'r') as camera_info_file: camera_info = yaml.load(camera_info_file, Loader=yaml.FullLoader) msg.height = camera_info["image"]["height"] msg.width = camera_info["image"]["width"] msg.distortion_model = "plumb bob" msg.d = camera_info["distortion"][identifier][0] msg.k = np.array(camera_info["intrinsic"][identifier]).flatten().tolist() msg.r = np.array(camera_info["rectification"][identifier]).flatten().tolist() msg.p = np.array(camera_info["projection_mtx"][identifier]).flatten().tolist() frame_id = 1 def timer_callback(): nonlocal frame_id msg.header.stamp = rclpy.clock.Clock().now().to_msg() msg.header.frame_id = str(frame_id) publisher.publish(msg) frame_id += 1 timer_period = 0.5 timer = node.create_timer(timer_period, timer_callback) rclpy.spin(node) node.destroy_timer(timer) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
31.9375
101
0.683953
7946ad790478927b894a9cfe94d86022ebe4a01e
7,946
py
Python
base_python/cogment_verse/model_registry_client.py
kharyal/cogment-verse
12bcb855bc742e3ec4ed11c40a1b475e95a32515
[ "Apache-2.0" ]
null
null
null
base_python/cogment_verse/model_registry_client.py
kharyal/cogment-verse
12bcb855bc742e3ec4ed11c40a1b475e95a32515
[ "Apache-2.0" ]
null
null
null
base_python/cogment_verse/model_registry_client.py
kharyal/cogment-verse
12bcb855bc742e3ec4ed11c40a1b475e95a32515
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 AI Redefined Inc. <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import io import logging import time import grpc.aio from google.protobuf.json_format import MessageToDict from cogment.api.model_registry_pb2 import ( CreateOrUpdateModelRequest, CreateVersionRequestChunk, ModelInfo, ModelVersionInfo, RetrieveModelsRequest, RetrieveVersionDataRequest, RetrieveVersionInfosRequest, ) from cogment.api.model_registry_pb2_grpc import ModelRegistrySPStub from cogment_verse.utils import LRU from prometheus_client import Summary MODEL_REGISTRY_PUBLISH_VERSION_TIME = Summary( "model_registry_publish_version_seconds", "Time spent serializing and sending the model to the registry", ["model_id"], ) MODEL_REGISTRY_RETRIEVE_VERSION_TIME = Summary( "model_registry_retrieve_version_seconds", "Time spent retrieving and deserializing the agent model version from the registry", ["model_id", "cached"], ) log = logging.getLogger(__name__) class ModelRegistryClient: def __init__(self, endpoint, cache=LRU()): channel = grpc.aio.insecure_channel(endpoint) self._stub = ModelRegistrySPStub(channel) self._cache = cache @staticmethod def _build_model_version_data_cache_key(data_hash): return f"model_version_data_{data_hash}" @staticmethod def _build_model_info_cache_key(model_id): return f"model_info_{model_id}" async def create_model(self, model_id, model_user_data=None): """ Create a new model in the model registry Parameters: model_id (string): The model id model_user_data (dict[str, str] - optional): model user data """ model_user_data_str = {} if model_user_data: for key, value in model_user_data.items(): model_user_data_str[key] = str(value) model_info = ModelInfo(model_id=model_id, user_data=model_user_data_str) req = CreateOrUpdateModelRequest(model_info=model_info) await self._stub.CreateOrUpdateModel(req) self._cache[self._build_model_info_cache_key(model_id)] = model_info async def retrieve_model_info(self, model_id): """ Retrieve the given's model information Parameters: model_id (string): The model id Returns model_info (dict): The information of the model """ cache_key = self._build_model_info_cache_key(model_id) if cache_key not in self._cache: req = RetrieveModelsRequest(model_ids=[model_id]) rep = await self._stub.RetrieveModels(req) model_info = rep.model_infos[0] self._cache[cache_key] = model_info return MessageToDict(self._cache[cache_key], preserving_proto_field_name=True) async def publish_version(self, model_id, model, save_model, archived=False, **kwargs): """ Publish a new version of the model Parameters: model_id (string): Unique id of the model model (ModelT): The model save_model (f(ModelT, dict[str, str], BinaryIO, **kwargs) -> dict[str, str]): A function able to save the model, returning version_user_data archive (bool - default is False): If true, the model version will be archived (i.e. stored in permanent storage) kwargs: any number of key/values parameters, forwarded to `save_model` Returns version_info (dict): The information of the published version """ model_info = await self.retrieve_model_info(model_id) model_user_data = model_info["user_data"] def generate_chunks(): try: with io.BytesIO() as model_data_io: version_user_data = save_model(model, model_user_data, model_data_io, **kwargs) version_data = model_data_io.getvalue() version_info = ModelVersionInfo(model_id=model_id, archived=archived, data_size=len(version_data)) for key, value in version_user_data.items(): version_info.user_data[key] = str(value) yield CreateVersionRequestChunk(header=CreateVersionRequestChunk.Header(version_info=version_info)) chunksize = 2 * 1024 * 1024 # 2MB to keep under well under the GRPC 4MB while version_data: yield CreateVersionRequestChunk( body=CreateVersionRequestChunk.Body(data_chunk=version_data[:chunksize]) ) version_data = version_data[chunksize:] except Exception as error: log.error("Error while generating model version chunk", exc_info=error) raise error with MODEL_REGISTRY_PUBLISH_VERSION_TIME.labels(model_id=model_id).time(): rep = await self._stub.CreateVersion(generate_chunks()) cache_key = self._build_model_version_data_cache_key(rep.version_info.data_hash) self._cache[cache_key] = model return MessageToDict(rep.version_info, preserving_proto_field_name=True) async def retrieve_version(self, model_id, load_model, version_number=-1, **kwargs): """ Retrieve a version of the model Parameters: model_id (string): Unique id of the model load_model (f(string, int, dict[str, str], dict[str, str], BinaryIO)): A function able to load the model version_number (int - default is -1): The version number (-1 for the latest) kwargs: any number of key/values parameters, forwarded to `load_model` Returns model, model_info, version_info (ModelT, dict[str, str], dict[str, str]): A tuple containing the model version data, the model info and the model version info """ start_time = time.time() # First retrieve the model info and model version info async def retrieve_version_info(model_id, version_number): req = RetrieveVersionInfosRequest(model_id=model_id, version_numbers=[version_number]) rep = await self._stub.RetrieveVersionInfos(req) version_info_pb = rep.version_infos[0] version_info = MessageToDict(version_info_pb, preserving_proto_field_name=True) return version_info [model_info, version_info] = await asyncio.gather( self.retrieve_model_info(model_id), retrieve_version_info(model_id, version_number) ) cache_key = self._build_model_version_data_cache_key(version_info["data_hash"]) cached = cache_key in self._cache # Check if the model version data is already in memory, if not retrieve if not cached: req = RetrieveVersionDataRequest(model_id=model_id, version_number=version_info["version_number"]) data = b"" async for chunk in self._stub.RetrieveVersionData(req): data += chunk.data_chunk model = load_model( model_id, version_number, model_info["user_data"], version_info["user_data"], io.BytesIO(data), **kwargs ) self._cache[cache_key] = model MODEL_REGISTRY_RETRIEVE_VERSION_TIME.labels(model_id=model_id, cached=cached).observe(time.time() - start_time) return self._cache[cache_key], model_info, version_info
40.131313
170
0.679713
7946ae510ee16ccd1a48c745d68e8645cabcce00
23,939
py
Python
bauh/gems/web/environment.py
Flash1232/bauh
6f65556c05ae272c1dbbd557c7f80a606658eb56
[ "Zlib" ]
507
2019-08-12T16:15:55.000Z
2022-03-28T15:49:39.000Z
bauh/gems/web/environment.py
Flash1232/bauh
6f65556c05ae272c1dbbd557c7f80a606658eb56
[ "Zlib" ]
176
2019-08-14T02:35:21.000Z
2022-03-31T21:43:56.000Z
bauh/gems/web/environment.py
Flash1232/bauh
6f65556c05ae272c1dbbd557c7f80a606658eb56
[ "Zlib" ]
57
2019-09-02T04:09:22.000Z
2022-03-21T21:37:16.000Z
import glob import logging import os import shutil import tarfile import traceback from datetime import datetime, timedelta from pathlib import Path from threading import Thread from typing import Dict, List, Optional import requests import yaml from bauh.api.abstract.download import FileDownloader from bauh.api.abstract.handler import ProcessWatcher, TaskManager from bauh.api.abstract.view import MessageType from bauh.api.http import HttpClient from bauh.commons import system from bauh.commons.html import bold from bauh.commons.system import SimpleProcess, ProcessHandler from bauh.gems.web import ENV_PATH, NODE_DIR_PATH, NODE_BIN_PATH, NODE_MODULES_PATH, NATIVEFIER_BIN_PATH, \ ELECTRON_PATH, ELECTRON_DOWNLOAD_URL, ELECTRON_SHA256_URL, URL_ENVIRONMENT_SETTINGS, NPM_BIN_PATH, NODE_PATHS, \ nativefier, ELECTRON_WIDEVINE_URL, ELECTRON_WIDEVINE_SHA256_URL, \ ENVIRONMENT_SETTINGS_CACHED_FILE, ENVIRONMENT_SETTINGS_TS_FILE, get_icon_path, NATIVEFIER_BASE_URL from bauh.gems.web.model import WebApplication from bauh.view.util.translation import I18n class EnvironmentComponent: def __init__(self, id: str, name: str, size: str, version: str, url: str, update: bool = False, properties: Optional[dict] = None): self.id = id self.name = name self.size = size self.version = version self.url = url self.update = update self.properties = properties class EnvironmentUpdater: def __init__(self, logger: logging.Logger, http_client: HttpClient, file_downloader: FileDownloader, i18n: I18n, taskman: Optional[TaskManager] = None): self.logger = logger self.file_downloader = file_downloader self.i18n = i18n self.http_client = http_client self.task_read_settings_id = 'web_read_settings' self.taskman = taskman def _download_and_install(self, version: str, version_url: str, watcher: ProcessWatcher) -> bool: self.logger.info("Downloading NodeJS {}: {}".format(version, version_url)) tarf_path = '{}/{}'.format(ENV_PATH, version_url.split('/')[-1]) downloaded = self.file_downloader.download(version_url, watcher=watcher, output_path=tarf_path, cwd=ENV_PATH) if not downloaded: self.logger.error("Could not download '{}'. Aborting...".format(version_url)) return False else: try: tf = tarfile.open(tarf_path) tf.extractall(path=ENV_PATH) extracted_file = '{}/{}'.format(ENV_PATH, tf.getnames()[0]) if os.path.exists(NODE_DIR_PATH): self.logger.info("Removing old NodeJS version installation dir -> {}".format(NODE_DIR_PATH)) try: shutil.rmtree(NODE_DIR_PATH) except: self.logger.error("Could not delete old NodeJS version dir -> {}".format(NODE_DIR_PATH)) traceback.print_exc() return False try: os.rename(extracted_file, NODE_DIR_PATH) except: self.logger.error("Could not rename the NodeJS version file {} as {}".format(extracted_file, NODE_DIR_PATH)) traceback.print_exc() return False if os.path.exists(NODE_MODULES_PATH): self.logger.info('Deleting {}'.format(NODE_MODULES_PATH)) try: shutil.rmtree(NODE_MODULES_PATH) except: self.logger.error("Could not delete the directory {}".format(NODE_MODULES_PATH)) return False return True except: self.logger.error('Could not extract {}'.format(tarf_path)) traceback.print_exc() return False finally: if os.path.exists(tarf_path): try: os.remove(tarf_path) except: self.logger.error('Could not delete file {}'.format(tarf_path)) def check_node_installed(self, version: str) -> bool: if not os.path.exists(NODE_DIR_PATH): return False else: installed_version = system.run_cmd('{} --version'.format(NODE_BIN_PATH), print_error=False) if installed_version: installed_version = installed_version.strip() if installed_version.startswith('v'): installed_version = installed_version[1:] self.logger.info('Node versions: installed ({}), cloud ({})'.format(installed_version, version)) if version != installed_version: self.logger.info("The NodeJs installed version is different from the Cloud.") return False else: self.logger.info("Node is already up to date") return True else: self.logger.warning("Could not determine the current NodeJS installed version") return False def update_node(self, version: str, version_url: str, watcher: ProcessWatcher = None) -> bool: Path(ENV_PATH).mkdir(parents=True, exist_ok=True) if not os.path.exists(NODE_DIR_PATH): return self._download_and_install(version=version, version_url=version_url, watcher=watcher) else: installed_version = system.run_cmd('{} --version'.format(NODE_BIN_PATH), print_error=False) if installed_version: installed_version = installed_version.strip() if installed_version.startswith('v'): installed_version = installed_version[1:] self.logger.info('Node versions: installed ({}), cloud ({})'.format(installed_version, version)) if version != installed_version: self.logger.info("The NodeJs installed version is different from the Cloud.") return self._download_and_install(version=version, version_url=version_url, watcher=watcher) else: self.logger.info("Node is already up to date") return True else: self.logger.warning("Could not determine the current NodeJS installed version") self.logger.info("Removing {}".format(NODE_DIR_PATH)) try: shutil.rmtree(NODE_DIR_PATH) return self._download_and_install(version=version, version_url=version_url, watcher=watcher) except: self.logger.error('Could not delete the dir {}'.format(NODE_DIR_PATH)) return False def _install_node_lib(self, name: str, version: str, handler: ProcessHandler): lib_repr = '{}{}'.format(name, '@{}'.format(version) if version else '') self.logger.info("Installing {}".format(lib_repr)) if handler and handler.watcher: handler.watcher.change_substatus(self.i18n['web.environment.install'].format(bold(lib_repr))) proc = SimpleProcess([NPM_BIN_PATH, 'install', lib_repr], cwd=ENV_PATH, extra_paths=NODE_PATHS) installed = handler.handle_simple(proc)[0] if installed: self.logger.info("{} successfully installed".format(lib_repr)) return installed def _install_nativefier(self, version: str, url: str, handler: ProcessHandler) -> bool: self.logger.info("Checking if nativefier@{} exists".format(version)) if not url or not self.http_client.exists(url): self.logger.warning("The file {} seems not to exist".format(url)) handler.watcher.show_message(title=self.i18n['message.file.not_exist'], body=self.i18n['message.file.not_exist.body'].format(bold(url)), type_=MessageType.ERROR) return False success = self._install_node_lib('nativefier', version, handler) if success: return self._is_nativefier_installed() def _is_nativefier_installed(self) -> bool: return os.path.exists(NATIVEFIER_BIN_PATH) def download_electron(self, version: str, url: str, widevine: bool, watcher: ProcessWatcher) -> bool: Path(ELECTRON_PATH).mkdir(parents=True, exist_ok=True) self.logger.info("Downloading Electron {}".format(version)) electron_path = self._get_electron_file_path(url=url, relative=False) if not self.http_client.exists(url): self.logger.warning("The file {} seems not to exist".format(url)) watcher.show_message(title=self.i18n['message.file.not_exist'], body=self.i18n['message.file.not_exist.body'].format(bold(url)), type_=MessageType.ERROR) return False return self.file_downloader.download(file_url=url, watcher=watcher, output_path=electron_path, cwd=ELECTRON_PATH) def download_electron_sha256(self, version: str, url: str, widevine: bool, watcher: ProcessWatcher) -> bool: self.logger.info("Downloading Electron {} sha526".format(version)) sha256_path = self._get_electron_file_path(url=url, relative=False) if not self.http_client.exists(url): self.logger.warning("The file {} seems not to exist".format(url)) watcher.show_message(title=self.i18n['message.file.not_exist'], body=self.i18n['message.file.not_exist.body'].format(bold(url)), type_=MessageType.ERROR) return False return self.file_downloader.download(file_url=url, watcher=watcher, output_path=sha256_path, cwd=ELECTRON_PATH) def _get_electron_url(self, version: str, is_x86_x64_arch: bool, widevine: bool) -> str: arch = 'x64' if is_x86_x64_arch else 'ia32' if widevine: return ELECTRON_WIDEVINE_URL.format(version=version, arch=arch) else: return ELECTRON_DOWNLOAD_URL.format(version=version, arch=arch) def _get_electron_sha256_url(self, version: str, widevine: bool) -> str: if widevine: return ELECTRON_WIDEVINE_SHA256_URL.format(version=version) else: return ELECTRON_SHA256_URL.format(version=version) def _get_electron_file_path(self, url: str, relative: bool) -> str: file_path = url.replace(':', '').replace('/', '') + '/' + url.split('/')[-1] return '{}/{}'.format(ELECTRON_PATH, file_path) if not relative else file_path def check_electron_installed(self, version: str, is_x86_x64_arch: bool, widevine: bool) -> Dict[str, bool]: self.logger.info("Checking if Electron {} (widevine={}) is installed".format(version, widevine)) res = {'electron': False, 'sha256': False} if not os.path.exists(ELECTRON_PATH): self.logger.info("The Electron folder {} was not found".format(ELECTRON_PATH)) else: files = {f.split(ELECTRON_PATH + '/')[1] for f in glob.glob(ELECTRON_PATH + '/**', recursive=True) if os.path.isfile(f)} if files: electron_url = self._get_electron_url(version, is_x86_x64_arch, widevine) file_path = self._get_electron_file_path(url=electron_url, relative=True) res['electron'] = file_path in files if not res['electron']: res['sha256'] = True else: sha_url = self._get_electron_sha256_url(version=version, widevine=widevine) sha_path = self._get_electron_file_path(url=sha_url, relative=True) res['sha256'] = sha_path in files else: self.logger.info('No Electron file found in {}'.format(ELECTRON_PATH)) for att in ('electron', 'sha256'): if res[att]: self.logger.info('{} ({}) already downloaded'.format(att, version)) return res def _finish_task_download_settings(self): if self.taskman: self.taskman.update_progress(self.task_read_settings_id, 100, None) self.taskman.finish_task(self.task_read_settings_id) def should_download_settings(self, web_config: dict) -> bool: try: settings_exp = int(web_config['environment']['cache_exp']) except ValueError: self.logger.error("Could not parse settings property 'environment.cache_exp': {}".format(web_config['environment']['cache_exp'])) return True if settings_exp <= 0: self.logger.info("No expiration time configured for the environment settings cache file.") return True self.logger.info("Checking cached environment settings file") if not os.path.exists(ENVIRONMENT_SETTINGS_CACHED_FILE): self.logger.warning("Environment settings file not cached.") return True if not os.path.exists(ENVIRONMENT_SETTINGS_TS_FILE): self.logger.warning("Environment settings file has no timestamp associated with it.") return True with open(ENVIRONMENT_SETTINGS_TS_FILE) as f: env_ts_str = f.read() try: env_timestamp = datetime.fromtimestamp(float(env_ts_str)) except: self.logger.error("Could not parse environment settings file timestamp: {}".format(env_ts_str)) return True expired = env_timestamp + timedelta(hours=settings_exp) <= datetime.utcnow() if expired: self.logger.info("Environment settings file has expired. It should be re-downloaded") return True else: self.logger.info("Cached environment settings file is up to date") return False def read_cached_settings(self, web_config: dict) -> Optional[dict]: if not self.should_download_settings(web_config): with open(ENVIRONMENT_SETTINGS_CACHED_FILE) as f: cached_settings_str = f.read() try: return yaml.safe_load(cached_settings_str) except yaml.YAMLError: self.logger.error('Could not parse the cache environment settings file: {}'.format(cached_settings_str)) def read_settings(self, web_config: dict, cache: bool = True) -> Optional[dict]: if self.taskman: self.taskman.register_task(self.task_read_settings_id, self.i18n['web.task.download_settings'], get_icon_path()) self.taskman.update_progress(self.task_read_settings_id, 1, None) cached_settings = self.read_cached_settings(web_config) if cache else None if cached_settings: return cached_settings try: if self.taskman: self.taskman.update_progress(self.task_read_settings_id, 10, None) self.logger.info("Downloading environment settings") res = self.http_client.get(URL_ENVIRONMENT_SETTINGS) if not res: self.logger.warning('Could not retrieve the environments settings from the cloud') self._finish_task_download_settings() return try: settings = yaml.safe_load(res.content) except yaml.YAMLError: self.logger.error('Could not parse environment settings: {}'.format(res.text)) self._finish_task_download_settings() return self.logger.info("Caching environment settings to disk") cache_dir = os.path.dirname(ENVIRONMENT_SETTINGS_CACHED_FILE) try: Path(cache_dir).mkdir(parents=True, exist_ok=True) except OSError: self.logger.error("Could not create Web cache directory: {}".format(cache_dir)) self.logger.info('Finished') self._finish_task_download_settings() return cache_timestamp = datetime.utcnow().timestamp() with open(ENVIRONMENT_SETTINGS_CACHED_FILE, 'w+') as f: f.write(yaml.safe_dump(settings)) with open(ENVIRONMENT_SETTINGS_TS_FILE, 'w+') as f: f.write(str(cache_timestamp)) self._finish_task_download_settings() self.logger.info("Finished") return settings except requests.exceptions.ConnectionError: self._finish_task_download_settings() return def _check_and_fill_electron(self, pkg: WebApplication, env: dict, local_config: dict, x86_x64: bool, widevine: bool, output: List[EnvironmentComponent]): electron_version = env['electron-wvvmp' if widevine else 'electron']['version'] if not widevine and pkg.version and pkg.version != electron_version: # this feature does not support custom widevine electron at the moment self.logger.info('A preset Electron version is defined for {}: {}'.format(pkg.url, pkg.version)) electron_version = pkg.version if not widevine and local_config['environment']['electron']['version']: self.logger.warning("A custom Electron version will be used {} to install {}".format(electron_version, pkg.url)) electron_version = local_config['environment']['electron']['version'] electron_status = self.check_electron_installed(version=electron_version, is_x86_x64_arch=x86_x64, widevine=widevine) electron_url = self._get_electron_url(version=electron_version, is_x86_x64_arch=x86_x64, widevine=widevine) output.append(EnvironmentComponent(name=electron_url.split('/')[-1], version=electron_version, url=electron_url, size=self.http_client.get_content_length(electron_url), id='electron', update=not electron_status['electron'], properties={'widevine': widevine})) sha_url = self._get_electron_sha256_url(version=electron_version, widevine=widevine) output.append(EnvironmentComponent(name=sha_url.split('/')[-1], version=electron_version, url=sha_url, size=self.http_client.get_content_length(sha_url), id='electron_sha256', update=not electron_status['electron'] or not electron_status['sha256'], properties={'widevine': widevine})) def _check_and_fill_node(self, env: dict, output: List[EnvironmentComponent]): node = EnvironmentComponent(name=env['nodejs']['url'].split('/')[-1], url=env['nodejs']['url'], size=self.http_client.get_content_length(env['nodejs']['url']), version=env['nodejs']['version'], id='nodejs') output.append(node) native = self._map_nativefier_file(env['nativefier']) output.append(native) if not self.check_node_installed(env['nodejs']['version']): node.update, native.update = True, True else: if not self._check_nativefier_installed(env['nativefier']): native.update = True def _check_nativefier_installed(self, nativefier_settings: dict) -> bool: if not os.path.exists(NODE_MODULES_PATH): self.logger.info('Node modules path {} not found'.format(NODE_MODULES_PATH)) return False else: if not self._is_nativefier_installed(): return False installed_version = nativefier.get_version() if installed_version: installed_version = installed_version.strip() self.logger.info("Nativefier versions: installed ({}), cloud ({})".format(installed_version, nativefier_settings['version'])) if nativefier_settings['version'] != installed_version: self.logger.info("Installed nativefier version is different from cloud's. Changing version.") return False self.logger.info("Nativefier is already installed and up to date") return True def _map_nativefier_file(self, nativefier_settings: dict) -> EnvironmentComponent: base_url = nativefier_settings.get('url') if not base_url: self.logger.warning("'url' not found in nativefier environment settings. Using hardcoded URL '{}'".format(NATIVEFIER_BASE_URL)) base_url = NATIVEFIER_BASE_URL url = base_url.format(version=nativefier_settings['version']) return EnvironmentComponent(name='nativefier@{}'.format(nativefier_settings['version']), url=url, size=self.http_client.get_content_length(url), version=nativefier_settings['version'], id='nativefier') def check_environment(self, env: dict, local_config: dict, app: WebApplication, is_x86_x64_arch: bool, widevine: bool) -> List[EnvironmentComponent]: """ :param app: :param is_x86_x64_arch: :return: the environment settings """ components, check_threads = [], [] system_env = local_config['environment'].get('system', False) if system_env: self.logger.warning("Using system's nativefier to install {}".format(app.url)) else: node_check = Thread(target=self._check_and_fill_node, args=(env, components)) node_check.start() check_threads.append(node_check) elec_check = Thread(target=self._check_and_fill_electron, args=(app, env, local_config, is_x86_x64_arch, widevine, components)) elec_check.start() check_threads.append(elec_check) for t in check_threads: t.join() return components def update(self, components: List[EnvironmentComponent], handler: ProcessHandler) -> bool: self.logger.info('Updating environment') Path(ENV_PATH).mkdir(parents=True, exist_ok=True) comp_map = {c.id: c for c in components} node_data = comp_map.get('nodejs') nativefier_data = comp_map.get('nativefier') if node_data: if not self._download_and_install(version=node_data.version, version_url=node_data.url, watcher=handler.watcher): return False if not self._install_nativefier(version=nativefier_data.version, url=nativefier_data.url, handler=handler): return False else: if nativefier_data and not self._install_nativefier(version=nativefier_data.version, url=nativefier_data.url, handler=handler): return False electron_data = comp_map.get('electron') if electron_data: if not self.download_electron(version=electron_data.version, url=electron_data.url, watcher=handler.watcher, widevine=electron_data.properties['widevine']): return False sha256_data = comp_map.get('electron_sha256') if sha256_data: if not self.download_electron_sha256(version=sha256_data.version, url=sha256_data.url, watcher=handler.watcher, widevine=sha256_data.properties['widevine']): return False self.logger.info('Environment successfully updated') return True
45.772467
169
0.619073
7946b16ca90dfcc3d54ff43875533eb7a7f8a9b4
23,198
py
Python
graspologic/match/qap.py
kellymarchisio/graspologic
9aaca9067142c2e83d4cbc6bfa41738e64b3c066
[ "MIT" ]
null
null
null
graspologic/match/qap.py
kellymarchisio/graspologic
9aaca9067142c2e83d4cbc6bfa41738e64b3c066
[ "MIT" ]
null
null
null
graspologic/match/qap.py
kellymarchisio/graspologic
9aaca9067142c2e83d4cbc6bfa41738e64b3c066
[ "MIT" ]
null
null
null
# adapted from scipy.optimze.quadratic_assignment() # will live here temporalily until this function is officially released # original code can be found here # https://github.com/scipy/scipy/blob/master/scipy/optimize/_qap.py import operator import numpy as np from scipy._lib._util import check_random_state from scipy.optimize import OptimizeResult, linear_sum_assignment def quadratic_assignment(A, B, method="faq", options=None): r""" Approximates solution to the quadratic assignment problem and the graph matching problem. Quadratic assignment solves problems of the following form: .. math:: \min_P & \ {\ \text{trace}(A^T P B P^T)}\\ \mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\ where :math:`\mathcal{P}` is the set of all permutation matrices, and :math:`A` and :math:`B` are square matrices. Graph matching tries to *maximize* the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences. Note that the quadratic assignment problem is NP-hard, is not known to be solvable in polynomial time, and is computationally intractable. Therefore, the results given are approximations, not guaranteed to be exact solutions. Parameters ---------- A : 2d-array, square The square matrix :math:`A` in the objective function above. B : 2d-array, square The square matrix :math:`B` in the objective function above. method : str in {'faq', '2opt'} (default: 'faq') The algorithm used to solve the problem. :ref:`'faq' <optimize.qap-faq>` (default) and :ref:`'2opt' <optimize.qap-2opt>` are available. options : dict, optional A dictionary of solver options. All solvers support the following: partial_match : 2d-array of integers, optional, (default = None) Allows the user to fix part of the matching between the two matrices. In the literature, a partial match is also known as a "seed" [2]_. Each row of `partial_match` specifies the indices of a pair of corresponding nodes, that is, node ``partial_match[i, 0]`` of `A` is matched to node ``partial_match[i, 1]`` of `B`. Accordingly, ``partial_match`` is an array of size ``(m , 2)``, where ``m`` is not greater than the number of nodes. maximize : bool (default = False) Setting `maximize` to ``True`` solves the Graph Matching Problem (GMP) rather than the Quadratic Assingnment Problem (QAP). rng : {None, int, `~np.random.RandomState`, `~np.random.Generator`} This parameter defines the object to use for drawing random variates. If `rng` is ``None`` the `~np.random.RandomState` singleton is used. If `rng` is an int, a new ``RandomState`` instance is used, seeded with `rng`. If `rng` is already a ``RandomState`` or ``Generator`` instance, then that object is used. Default is None. For method-specific options, see :func:`show_options('quadratic_assignment') <show_options>`. Returns ------- res : OptimizeResult A :class:`scipy.optimize.OptimizeResult` containing the following fields. col_ind : 1-D array An array of column indices corresponding with the best permutation of the nodes of `B` found. fun : float The corresponding value of the objective function. nit : int The number of iterations performed during optimization. Notes ----- The default method :ref:`'faq' <optimize.qap-faq>` uses the Fast Approximate QAP algorithm [1]_; it is typically offers the best combination of speed and accuracy. Method :ref:`'2opt' <optimize.qap-2opt>` can be computationally expensive, but may be a useful alternative, or it can be used to refine the solution returned by another method. References ---------- .. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik, S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and C.E. Priebe, "Fast approximate quadratic programming for graph matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015, :doi:`10.1371/journal.pone.0121002` .. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019): 203-215, :doi:`10.1016/j.patcog.2018.09.014` .. [3] "2-opt," Wikipedia. https://en.wikipedia.org/wiki/2-opt Examples -------- >>> import numpy as np >>> from scipy.optimize import quadratic_assignment >>> A = np.array([[0, 80, 150, 170], [80, 0, 130, 100], ... [150, 130, 0, 120], [170, 100, 120, 0]]) >>> B = np.array([[0, 5, 2, 7], [0, 0, 3, 8], ... [0, 0, 0, 3], [0, 0, 0, 0]]) >>> res = quadratic_assignment(A, B) >>> print(res) col_ind: array([0, 3, 2, 1]) fun: 3260 nit: 9 The see the relationship between the returned ``col_ind`` and ``fun``, use ``col_ind`` to form the best permutation matrix found, then evaluate the objective function :math:`f(P) = trace(A^T P B P^T )`. >>> n = A.shape[0] >>> perm = res['col_ind'] >>> P = np.eye(n, dtype=int)[perm] >>> fun = np.trace(A.T @ P @ B @ P.T) >>> print(fun) 3260 Alternatively, to avoid constructing the permutation matrix explicitly, directly permute the rows and columns of the distance matrix. >>> fun = np.trace(A.T @ B[perm][:, perm]) >>> print(fun) 3260 Although not guaranteed in general, ``quadratic_assignment`` happens to have found the globally optimal solution. >>> from itertools import permutations >>> perm_opt, fun_opt = None, np.inf >>> for perm in permutations([0, 1, 2, 3]): ... perm = np.array(perm) ... fun = np.trace(A.T @ B[perm][:, perm]) ... if fun < fun_opt: ... fun_opt, perm_opt = fun, perm >>> print(np.array_equal(perm_opt, res['col_ind'])) True Here is an example for which the default method, :ref:`'faq' <optimize.qap-faq>`, does not find the global optimum. >>> A = np.array([[0, 5, 8, 6], [5, 0, 5, 1], ... [8, 5, 0, 2], [6, 1, 2, 0]]) >>> B = np.array([[0, 1, 8, 4], [1, 0, 5, 2], ... [8, 5, 0, 5], [4, 2, 5, 0]]) >>> res = quadratic_assignment(A, B) >>> print(res) col_ind: array([1, 0, 3, 2]) fun: 178 nit: 13 If accuracy is important, consider using :ref:`'2opt' <optimize.qap-2opt>` to refine the solution. >>> guess = np.array([np.arange(A.shape[0]), res.col_ind]).T >>> res = quadratic_assignment(A, B, method="2opt", ... options = {'partial_guess': guess}) >>> print(res) col_ind: array([1, 2, 3, 0]) fun: 176 nit: 17 """ if options is None: options = {} method = method.lower() methods = {"faq": _quadratic_assignment_faq} if method not in methods: raise ValueError(f"method {method} must be in {methods}.") res = methods[method](A, B, **options) return res def _calc_score(A, B, S, perm): # equivalent to objective function but avoids matmul return np.sum(A * B[perm][:, perm]) + np.sum(S[np.arange(len(S)), perm]) def _common_input_validation(A, B, partial_match): A = np.atleast_2d(A) B = np.atleast_2d(B) if partial_match is None: partial_match = np.array([[], []]).T partial_match = np.atleast_2d(partial_match).astype(int) msg = None if A.shape[0] != A.shape[1]: msg = "`A` must be square" elif B.shape[0] != B.shape[1]: msg = "`B` must be square" elif A.ndim != 2 or B.ndim != 2: msg = "`A` and `B` must have exactly two dimensions" elif A.shape != B.shape: msg = "`A` and `B` matrices must be of equal size" elif partial_match.shape[0] > A.shape[0]: msg = "`partial_match` can have only as many seeds as there are nodes" elif partial_match.shape[1] != 2: msg = "`partial_match` must have two columns" elif partial_match.ndim != 2: msg = "`partial_match` must have exactly two dimensions" elif (partial_match < 0).any(): msg = "`partial_match` must contain only positive indices" elif (partial_match >= len(A)).any(): msg = "`partial_match` entries must be less than number of nodes" elif not len(set(partial_match[:, 0])) == len(partial_match[:, 0]) or not len( set(partial_match[:, 1]) ) == len(partial_match[:, 1]): msg = "`partial_match` column entries must be unique" if msg is not None: raise ValueError(msg) return A, B, partial_match def _quadratic_assignment_faq( A, B, maximize=False, partial_match=None, S=None, rng=None, P0="barycenter", shuffle_input=False, maxiter=30, tol=0.03, ): r""" Solve the quadratic assignment problem (approximately). This function solves the Quadratic Assignment Problem (QAP) and the Graph Matching Problem (GMP) using the Fast Approximate QAP Algorithm (FAQ) [1]_. Quadratic assignment solves problems of the following form: .. math:: \min_P & \ {\ \text{trace}(A^T P B P^T)}\\ \mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\ where :math:`\mathcal{P}` is the set of all permutation matrices, and :math:`A` and :math:`B` are square matrices. Graph matching tries to *maximize* the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences. Note that the quadratic assignment problem is NP-hard, is not known to be solvable in polynomial time, and is computationally intractable. Therefore, the results given are approximations, not guaranteed to be exact solutions. Parameters ---------- A : 2d-array, square The square matrix :math:`A` in the objective function above. B : 2d-array, square The square matrix :math:`B` in the objective function above. method : str in {'faq', '2opt'} (default: 'faq') The algorithm used to solve the problem. This is the method-specific documentation for 'faq'. :ref:`'2opt' <optimize.qap-2opt>` is also available. Options ------- maximize : bool (default = False) Setting `maximize` to ``True`` solves the Graph Matching Problem (GMP) rather than the Quadratic Assingnment Problem (QAP). This is accomplished through trivial negation of the objective function. rng : {None, int, `~np.random.RandomState`, `~np.random.Generator`} This parameter defines the object to use for drawing random variates. If `rng` is ``None`` the `~np.random.RandomState` singleton is used. If `rng` is an int, a new ``RandomState`` instance is used, seeded with `rng`. If `rng` is already a ``RandomState`` or ``Generator`` instance, then that object is used. Default is None. partial_match : 2d-array of integers, optional, (default = None) Allows the user to fix part of the matching between the two matrices. In the literature, a partial match is also known as a "seed". Each row of `partial_match` specifies the indices of a pair of corresponding nodes, that is, node ``partial_match[i, 0]`` of `A` is matched to node ``partial_match[i, 1]`` of `B`. Accordingly, ``partial_match`` is an array of size ``(m , 2)``, where ``m`` is not greater than the number of nodes, :math:`n`. S : 2d-array, square A similarity matrix. Should be same shape as ``A`` and ``B``. Note: the scale of `S` may effect the weight placed on the term :math:`\\text{trace}(S^T P)` relative to :math:`\\text{trace}(A^T PBP^T)` during the optimization process. P0 : 2d-array, "barycenter", or "randomized" (default = "barycenter") The initial (guess) permutation matrix or search "position" `P0`. `P0` need not be a proper permutation matrix; however, it must be :math:`m' x m'`, where :math:`m' = n - m`, and it must be doubly stochastic: each of its rows and columns must sum to 1. If unspecified or ``"barycenter"``, the non-informative "flat doubly stochastic matrix" :math:`J = 1*1^T/m'`, where :math:`1` is a :math:`m' \times 1` array of ones, is used. This is the "barycenter" of the search space of doubly-stochastic matrices. If ``"randomized"``, the algorithm will start from the randomized initial search position :math:`P_0 = (J + K)/2`, where :math:`J` is the "barycenter" and :math:`K` is a random doubly stochastic matrix. shuffle_input : bool (default = False) To avoid artificially high or low matching due to inherent sorting of input matrices, gives users the option to shuffle the nodes. Results are then unshuffled so that the returned results correspond with the node order of inputs. Shuffling may cause the algorithm to be non-deterministic, unless a random seed is set or an `rng` option is provided. maxiter : int, positive (default = 30) Integer specifying the max number of Franke-Wolfe iterations performed. tol : float (default = 0.03) A threshold for the stopping criterion. Franke-Wolfe iteration terminates when the change in search position between iterations is sufficiently small, that is, when the relative Frobenius norm, :math:`\frac{||P_{i}-P_{i+1}||_F}{\sqrt{len(P_{i})}} \leq tol`, where :math:`i` is the iteration number. Returns ------- res : OptimizeResult A :class:`scipy.optimize.OptimizeResult` containing the following fields. col_ind : 1-D array An array of column indices corresponding with the best permutation of the nodes of `B` found. fun : float The corresponding value of the objective function. nit : int The number of Franke-Wolfe iterations performed. Notes ----- The algorithm may be sensitive to the initial permutation matrix (or search "position") due to the possibility of several local minima within the feasible region. A barycenter initialization is more likely to result in a better solution than a single random initialization. However, ``quadratic_assignment`` calling several times with different random initializations may result in a better optimum at the cost of longer total execution time. Examples -------- As mentioned above, a barycenter initialization often results in a better solution than a single random initialization. >>> np.random.seed(0) >>> n = 15 >>> A = np.random.rand(n, n) >>> B = np.random.rand(n, n) >>> res = quadratic_assignment(A, B) # FAQ is default method >>> print(res.fun) 46.871483385480545 # may vary >>> options = {"P0": "randomized"} # use randomized initialization >>> res = quadratic_assignment(A, B, options=options) >>> print(res.fun) 47.224831071310625 # may vary However, consider running from several randomized initializations and keeping the best result. >>> res = min([quadratic_assignment(A, B, options=options) ... for i in range(30)], key=lambda x: x.fun) >>> print(res.fun) 46.671852533681516 # may vary The '2-opt' method can be used to further refine the results. >>> options = {"partial_guess": np.array([np.arange(n), res.col_ind]).T} >>> res = quadratic_assignment(A, B, method="2opt", options=options) >>> print(res.fun) 46.47160735721583 # may vary References ---------- .. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik, S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and C.E. Priebe, "Fast approximate quadratic programming for graph matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015, :doi:`10.1371/journal.pone.0121002` .. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019): 203-215, :doi:`10.1016/j.patcog.2018.09.014` """ maxiter = operator.index(maxiter) # ValueError check A, B, partial_match = _common_input_validation(A, B, partial_match) msg = None if isinstance(P0, str) and P0 not in {"barycenter", "randomized"}: msg = "Invalid 'P0' parameter string" elif maxiter <= 0: msg = "'maxiter' must be a positive integer" elif tol <= 0: msg = "'tol' must be a positive float" elif S.shape[0] != S.shape[1]: msg = "`S` must be square" elif S.ndim != 2: msg = "`S` must have exactly two dimensions" elif S.shape != A.shape: msg = "`S`, `A`, and `B` matrices must be of equal size" if msg is not None: raise ValueError(msg) rng = check_random_state(rng) n = A.shape[0] # number of vertices in graphs n_seeds = partial_match.shape[0] # number of seeds n_unseed = n - n_seeds # check outlier cases if n == 0 or partial_match.shape[0] == n: score = _calc_score(A, B, S, partial_match[:, 1]) res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0} return OptimizeResult(res) obj_func_scalar = 1 if maximize: obj_func_scalar = -1 nonseed_B = np.setdiff1d(range(n), partial_match[:, 1]) perm_S = np.copy(nonseed_B) if shuffle_input: nonseed_B = rng.permutation(nonseed_B) # shuffle_input to avoid results from inputs that were already matched nonseed_A = np.setdiff1d(range(n), partial_match[:, 0]) perm_A = np.concatenate([partial_match[:, 0], nonseed_A]) perm_B = np.concatenate([partial_match[:, 1], nonseed_B]) S = S[:, perm_B] # definitions according to Seeded Graph Matching [2]. A11, A12, A21, A22 = _split_matrix(A[perm_A][:, perm_A], n_seeds) B11, B12, B21, B22 = _split_matrix(B[perm_B][:, perm_B], n_seeds) S22 = S[perm_S, n_seeds:] # [1] Algorithm 1 Line 1 - choose initialization if isinstance(P0, str): # initialize J, a doubly stochastic barycenter J = np.ones((n_unseed, n_unseed)) / n_unseed if P0 == "barycenter": P = J elif P0 == "randomized": # generate a nxn matrix where each entry is a random number [0, 1] # would use rand, but Generators don't have it # would use random, but old mtrand.RandomStates don't have it K = rng.uniform(size=(n_unseed, n_unseed)) # Sinkhorn balancing K = _doubly_stochastic(K) P = J * 0.5 + K * 0.5 elif isinstance(P0, np.ndarray): P0 = np.atleast_2d(P0) _check_init_input(P0, n_unseed) invert_inds = np.argsort(nonseed_B) perm_nonseed_B = np.argsort(invert_inds) P = P0[:, perm_nonseed_B] else: msg = "`init` must either be of type str or np.ndarray." raise TypeError(msg) const_sum = A21 @ B21.T + A12.T @ B12 + S22 # [1] Algorithm 1 Line 2 - loop while stopping criteria not met for n_iter in range(1, maxiter + 1): # [1] Algorithm 1 Line 3 - compute the gradient of f(P) = -tr(APB^tP^t) grad_fp = const_sum + A22 @ P @ B22.T + A22.T @ P @ B22 # [1] Algorithm 1 Line 4 - get direction Q by solving Eq. 8 _, cols = linear_sum_assignment(grad_fp, maximize=maximize) Q = np.eye(n_unseed)[cols] # [1] Algorithm 1 Line 5 - compute the step size # Noting that e.g. trace(Ax) = trace(A)*x, expand and re-collect # terms as ax**2 + bx + c. c does not affect location of minimum # and can be ignored. Also, note that trace(A@B) = (A.T*B).sum(); # apply where possible for efficiency. R = P - Q b21 = ((R.T @ A21) * B21).sum() b12 = ((R.T @ A12.T) * B12.T).sum() AR22 = A22.T @ R BR22 = B22 @ R.T b22a = (AR22 * B22.T[cols]).sum() b22b = (A22 * BR22[cols]).sum() s = (S22 * R).sum() a = (AR22.T * BR22).sum() b = b21 + b12 + b22a + b22b + s # critical point of ax^2 + bx + c is at x = -d/(2*e) # if a * obj_func_scalar > 0, it is a minimum # if minimum is not in [0, 1], only endpoints need to be considered if a * obj_func_scalar > 0 and 0 <= -b / (2 * a) <= 1: alpha = -b / (2 * a) else: alpha = np.argmin([0, (b + a) * obj_func_scalar]) # [1] Algorithm 1 Line 6 - Update P P_i1 = alpha * P + (1 - alpha) * Q if np.linalg.norm(P - P_i1) / np.sqrt(n_unseed) < tol: P = P_i1 break P = P_i1 # [1] Algorithm 1 Line 7 - end main loop # [1] Algorithm 1 Line 8 - project onto the set of permutation matrices _, col = linear_sum_assignment(-P) perm = np.concatenate((np.arange(n_seeds), col + n_seeds)) unshuffled_perm = np.zeros(n, dtype=int) unshuffled_perm[perm_A] = perm_B[perm] score = _calc_score(A, B, S, unshuffled_perm) res = {"col_ind": unshuffled_perm, "fun": score, "nit": n_iter} return OptimizeResult(res) def _check_init_input(P0, n): row_sum = np.sum(P0, axis=0) col_sum = np.sum(P0, axis=1) tol = 1e-3 msg = None if P0.shape != (n, n): msg = "`P0` matrix must have shape m' x m', where m'=n-m" elif ( (~np.isclose(row_sum, 1, atol=tol)).any() or (~np.isclose(col_sum, 1, atol=tol)).any() or (P0 < 0).any() ): msg = "`P0` matrix must be doubly stochastic" if msg is not None: raise ValueError(msg) def _split_matrix(X, n): # definitions according to Seeded Graph Matching [2]. upper, lower = X[:n], X[n:] return upper[:, :n], upper[:, n:], lower[:, :n], lower[:, n:] def _doubly_stochastic(P, tol=1e-3): # Adapted from @btaba implementation # https://github.com/btaba/sinkhorn_knopp # of Sinkhorn-Knopp algorithm # https://projecteuclid.org/euclid.pjm/1102992505 max_iter = 1000 c = 1 / P.sum(axis=0) r = 1 / (P @ c) P_eps = P for it in range(max_iter): if (np.abs(P_eps.sum(axis=1) - 1) < tol).all() and ( np.abs(P_eps.sum(axis=0) - 1) < tol ).all(): # All column/row sums ~= 1 within threshold break c = 1 / (r @ P) r = 1 / (P @ c) P_eps = r[:, None] * P * c return P_eps
41.949367
82
0.609578
7946b20e92530ddc84221f0e9f2b6c02461e990f
1,035
py
Python
fluxcd_teams_bot/parser.py
binkhq/fluxcd-teams-webhook
617202b003cec7c75e77c691ab002ee056f537d5
[ "Apache-2.0" ]
null
null
null
fluxcd_teams_bot/parser.py
binkhq/fluxcd-teams-webhook
617202b003cec7c75e77c691ab002ee056f537d5
[ "Apache-2.0" ]
1
2021-03-02T09:55:14.000Z
2021-03-02T09:55:14.000Z
fluxcd_teams_bot/parser.py
binkhq/fluxcd-teams-webhook
617202b003cec7c75e77c691ab002ee056f537d5
[ "Apache-2.0" ]
null
null
null
from typing import Any, Dict, Tuple, Union, cast from fluxcd_teams_bot.cards import AutoreleaseCard, Card, ErrorCard def split_workload_id(workload_id: str) -> Tuple[str, str]: return cast(Tuple[str, str], workload_id.split(":", 1)) def parse(data: Dict[str, Any]) -> Union[Card, None]: type_ = data.get("type") if type_ == "sync": if "errors" in data["metadata"]: # Sync Error Card e_card = ErrorCard() for error in data["metadata"]["errors"]: namespace, resource = split_workload_id(error["ID"]) e_card.add_error(namespace, resource, error["Path"], error["Error"]) return e_card elif type_ == "autorelease": a_card = AutoreleaseCard() for change in data["metadata"]["spec"]["Changes"]: namespace, resource = split_workload_id(change["WorkloadID"]) a_card.add_autorelease(namespace, resource, change["Container"]["Image"], change["ImageID"]) return a_card return None
32.34375
104
0.619324
7946b2802b599f2ed89792ed740bb1e3186b9166
3,339
py
Python
src/programy/dynamic/maps/roman.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
null
null
null
src/programy/dynamic/maps/roman.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
null
null
null
src/programy/dynamic/maps/roman.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
4
2019-04-01T15:42:23.000Z
2020-11-05T08:14:27.000Z
""" Copyright (c) 2016-2019 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.dynamic.maps.map import DynamicMap # Code stolen from http://code.activestate.com/recipes/81611-roman-numerals/ NUMERAL_MAP = zip( (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1), ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') ) class MapRomanToDecimal(DynamicMap): NAME = "ROMANTODEC" def __init__(self, config): DynamicMap.__init__(self, config) def map_value(self, client_context, input_value): if not isinstance(input_value, str): raise TypeError("expected string, got %s" % type(input_value)) input_value = input_value.upper() nums = ['M', 'D', 'C', 'L', 'X', 'V', 'I'] ints = [1000, 500, 100, 50, 10, 5, 1] places = [] for char in input_value: if char not in nums: raise ValueError("input_value is not a valid roman numeral: %s" % input_value) charnum = 0 for char in input_value: value = ints[nums.index(char)] # If the next place holds a larger number, this value is negative. try: nextvalue = ints[nums.index(input_value[charnum + 1])] if nextvalue > value: value *= -1 except IndexError: # there is no next place. pass places.append(value) charnum += 1 total = 0 for num in places: total += num return str(total) class MapDecimalToRoman(DynamicMap): NAME = "DECTOROMAN" def __init__(self, config): DynamicMap.__init__(self, config) def map_value(self, client_context, input_value): input_value = int(input_value) if not 0 < input_value < 4000: raise ValueError("Argument must be between 1 and 3999") ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) nums = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') result = "" num = 0 for num_str in nums: count = int(input_value / ints[num]) result += num_str * count input_value -= ints[num] * count num += 1 return result
38.825581
120
0.622342
7946b28f799ad654e97e4b6d307b7ea0b1693f9d
1,517
py
Python
app/libs/utils.py
damnever/2L
35dab73106e5879155a647b31c81ae5dea18b89d
[ "BSD-3-Clause" ]
1
2019-03-11T12:16:30.000Z
2019-03-11T12:16:30.000Z
app/libs/utils.py
damnever/2L
35dab73106e5879155a647b31c81ae5dea18b89d
[ "BSD-3-Clause" ]
1
2017-04-16T02:11:58.000Z
2017-04-16T02:11:58.000Z
app/libs/utils.py
damnever/2L
35dab73106e5879155a647b31c81ae5dea18b89d
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import import re import os import base64 import uuid import importlib import pkgutil import hashlib from app.settings import ROOT_DIR _AT_RE = re.compile(r'@(?P<name>[^ ,\.;:!\?"\':]+)', re.M | re.S) def load_module_attrs(pkg_path, func, recursive=False): """Get attributes from modules, use ``func`` to filter attributes, ``func`` must return a list. """ attrs = list() root_pkg = os.path.basename(ROOT_DIR) pkg_name = root_pkg + pkg_path.split(root_pkg)[1].replace('/', '.') for _, name, ispkg in pkgutil.iter_modules([pkg_path]): if ispkg and recursive: next_path = os.path.join(pkg_path, name) attrs.extend(load_module_attrs(next_path, func, recursive)) continue module = importlib.import_module('.' + name, pkg_name) attr = func(module) if attr: attrs.extend(attr) return attrs def encrypt_password(password): """Yes, I do know what I am thinking...""" mid = ''.join([hex(ord(w))[2:] for w in password]) return hashlib.sha1(mid).hexdigest() def gen_token(): uuid4bytes = lambda: uuid.uuid4().bytes return base64.b64encode(uuid4bytes() + uuid4bytes()) def at_content(content, url='/user/'): """Find all users and convert @someone to [@someone](<url>someone).""" users = _AT_RE.findall(content) val = _AT_RE.sub(r'[@\1]({0}\1)'.format(url), content) return users, val
26.614035
74
0.642716
7946b30fa0a94fcfbd9cc041fc64da87d54e7ce1
3,781
py
Python
configs/foveabox/fovea_align_gn_r50_fpn_2gpu_1x_5cut.py
wangbingo/mmdetection
a1fb7f9d882e8bbf0138aead7a143e88e93d9896
[ "Apache-2.0" ]
null
null
null
configs/foveabox/fovea_align_gn_r50_fpn_2gpu_1x_5cut.py
wangbingo/mmdetection
a1fb7f9d882e8bbf0138aead7a143e88e93d9896
[ "Apache-2.0" ]
null
null
null
configs/foveabox/fovea_align_gn_r50_fpn_2gpu_1x_5cut.py
wangbingo/mmdetection
a1fb7f9d882e8bbf0138aead7a143e88e93d9896
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='FOVEA', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=4, ### style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, num_outs=5, add_extra_convs=True), bbox_head=dict( type='FoveaHead', num_classes=2, ### in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], base_edge_list=[16, 32, 64, 128, 256], scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), sigma=0.4, with_deform=True, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=1.50, alpha=0.4, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) # training and testing settings train_cfg = dict() test_cfg = dict( nms_pre=1000, score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = '/root/docker_mounts_ssd/pap_work/trainset/pos_cocotype_cut_largest_20per_5times_20191115/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1400, 1400), keep_ratio=True), ### dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1100, 1100), ### flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=1, workers_per_gpu=0, train=dict( type=dataset_type, ann_file=data_root + 'annotations/train_80pct.json', img_prefix=data_root + 'images/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/train_20pct.json', img_prefix=data_root + 'images/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.004, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/fovea_align_gn_r50_fpn_2gpu_1x_5cut' load_from = None resume_from = None workflow = [('train', 1)]
31.508333
103
0.604866
7946b4c1492344d18620cf2105e8dc75de3694f0
9,761
py
Python
scripts/cli/parsing/shared.py
scherroman/mvgen
0e79079b3fb71e94c67d48fd5599b6c43602d3b5
[ "MIT" ]
9
2016-11-28T00:54:57.000Z
2016-12-22T21:21:17.000Z
scripts/cli/parsing/shared.py
scherroman/mvgen
0e79079b3fb71e94c67d48fd5599b6c43602d3b5
[ "MIT" ]
null
null
null
scripts/cli/parsing/shared.py
scherroman/mvgen
0e79079b3fb71e94c67d48fd5599b6c43602d3b5
[ "MIT" ]
null
null
null
import argparse from fractions import Fraction from mugen import VideoFilter from mugen.video.filters import DEFAULT_VIDEO_FILTERS from mugen.video.io.VideoWriter import VideoWriter from scripts.cli.events import AudioEventsMode, BeatsMode, OnsetsMode, TargetGroups DEFAULT_MUSIC_VIDEO_NAME = "music_video" def get_audio_parser(): audio_parser = argparse.ArgumentParser(add_help=False) audio_parser.add_argument( "-a", "--audio-source", dest="audio_source", required=True, help="The audio file for the music video. Supports any audio format supported by ffmpeg, such as wav, aiff, flac, ogg, mp3, etc...", ) audio_parser.add_argument( "-uoa", "--use-original-audio", dest="use_original_audio", action="store_true", default=False, help="Whether or not to use the original audio from the video segments for the music video", ) audio_parser.add_argument( "-aem", "--audio-events-mode", dest="audio_events_mode", default=AudioEventsMode.BEATS, help=f"Method of generating events from the audio file. Supported values are {[e.value for e in AudioEventsMode]}", ) audio_parser.add_argument( "-bm", "--beats-mode", dest="beats_mode", default=BeatsMode.BEATS, help=f"Method of generating beat events from the audio file. Supported values are {[e.value for e in BeatsMode]}", ) audio_parser.add_argument( "-om", "--onsets-mode", dest="onsets_mode", default=OnsetsMode.ONSETS, help=f"Method of generating onset events from the audio file. Supported values are {[e.value for e in OnsetsMode]}", ) audio_parser.add_argument( "-ac", "--audio-codec", dest="audio_codec", default=VideoWriter.DEFAULT_AUDIO_CODEC, help="The audio codec for the music video if --use-original-audio is enabled. Supports any codec supported by moviepy.", ) audio_parser.add_argument( "-ab", "--audio-bitrate", dest="audio_bitrate", type=int, default=VideoWriter.DEFAULT_AUDIO_BITRATE, help="The audio bitrate (kbps) for the music video if --use-original-audio is enabled", ) return audio_parser def get_video_parser(): video_parser = argparse.ArgumentParser(add_help=False) video_parser.add_argument( "-vn", "--video-name", dest="video_name", default=DEFAULT_MUSIC_VIDEO_NAME, help="The name for the music video. On subsequent runs, the program will output <music_video_name>_0, <music_video_name>_1, etc...", ) video_parser.add_argument( "-vf", "--video-filters", dest="video_filters", nargs="+", default=DEFAULT_VIDEO_FILTERS, help=f"Video filters that each segment in the music video must pass. Supported values are {[filter.name for filter in VideoFilter]}", ) video_parser.add_argument( "-evf", "--exclude-video-filters", dest="exclude_video_filters", nargs="+", help="Video filters to exclude from the default video filters. See video_filters for supported values", ) video_parser.add_argument( "-ivf", "--include-video-filters", dest="include_video_filters", nargs="+", help="Video filters to include in addition to the default video filters. See video_filters for supported values", ) video_parser.add_argument( "-vpre", "--video-preset", dest="video_preset", default=VideoWriter.DEFAULT_VIDEO_PRESET, help="Tunes the time that FFMPEG will spend optimizing compression while writing the music video to file. See FFMPEG documentation for more info", ) video_parser.add_argument( "-vcod", "--video-codec", dest="video_codec", default=VideoWriter.DEFAULT_VIDEO_CODEC, help="The video codec for the music video. Supports any codec supported by FFMPEG", ) video_parser.add_argument( "-vcrf", "--video-crf", dest="video_crf", type=int, default=VideoWriter.DEFAULT_VIDEO_CRF, help="The crf quality value for the music video. Takes an integer from 0 (lossless) to 51 (lossy)", ) video_parser.add_argument( "-vdim", "--video-dimensions", dest="video_dimensions", type=int, nargs=2, help="""The pixel dimensions for the music video, width and height. All video segments will be resized (cropped and/or scaled) appropriately to match these dimensions. Otherwise, the largest dimensions available are used. Takes width then height integer values separated by spaces e.g., 1920 1080""", ) video_parser.add_argument( "-vasp", "--video-aspect-ratio", dest="video_aspect_ratio", type=Fraction, help="The aspect ratio for the music video (overruled by --dimensions). Takes a fraction. i.e.) 16/9", ) video_parser.add_argument( "-ss", "--save-segments", dest="save_segments", action="store_true", default=False, help="Save all the individual segments that compose the music video.", ) video_parser.add_argument( "-srs", "--save-rejected-segments", dest="save_rejected_segments", action="store_true", default=False, help="Save all rejected segments that did not pass filters.", ) return video_parser def get_event_parser(): event_parser = argparse.ArgumentParser(add_help=False) event_parser.add_argument( "-d", "--duration", dest="duration", type=float, help="Manually set the duration of the music video", ) event_parser.add_argument( "-el", "--event-locations", dest="event_locations", type=float, nargs="+", help="""Manually enter event locations in seconds for the audio file. Usually this corresponds to beats in the music, or any location where one feels there should be a cut between clips in the music video. If this option is specified alongside --audio-events-mode, both will be combined. Takes a list of numerical values separated by spaces""", ) event_parser.add_argument( "-eo", "--events-offset", dest="events_offset", type=float, help="Global offset for event locations in seconds." "If using -es/--events-speed and events are not showing up where desired, try using -eso/--events-speed-offset before this option.", ) event_parser.add_argument( "-es", "--events-speed", dest="events_speed", type=Fraction, help="Global speed up or slow down for events in the music video. " "Should be of the form x or 1/x, where x is a natural number. " "(e.g.) 2 for double speed, or 1/2 for half speed. " "For slowdown multipliers, events are merged towards the left " "(e.g.) Given beat events 1, 2, 3, 4, a slowdown of 1/2 would result in preserving events 1 and 3", ) event_parser.add_argument( "-eso", "--events-speed-offset", dest="events_speed_offset", type=int, help="Offset for the merging of events on a slowdown speed multiplier. Takes an integer, with a max offset of x - 1 for a slowdown of 1/x", ) event_parser.add_argument( "-gebs", "--group-events-by-slices", dest="group_events_by_slices", type=slice, nargs="+", help="""Group events by one or more slices. Must be of the form start,stop or (start,stop). Events will be grouped starting at "start", up to but not including "stop". Groups explicitly specified by slices will become "selected" groups. Any surrounding "unselected" groups will be filled in automatically. e.g.) If there are 40 events, a slice of (20,30) results in three groups (0,20) (20,30) (30,39), with one selected group (20,30)""", ) event_parser.add_argument( "-gebt", "--group-events-by-type", dest="group_events_by_type", nargs="*", help="""Group events by type. Useful for modes like the weak_beats beats mode. e.g.) If our events are: <10 WeakBeat, 20 Beat, 10 WeakBeat>, passing this option with WeakBeat will result in three groups (0,9) (9,29) (29,39), with two selected groups (0,9) (29,39)""", ) event_parser.add_argument( "-tg", "--target-groups", dest="target_groups", default=TargetGroups.SELECTED, help=f"""Which groups --group-by modifiers should apply to. Either all groups, only selected groups, or only unselected groups. Supported values are {[e.value for e in TargetGroups]}""", ) event_parser.add_argument( "-gs", "--group-speeds", dest="group_speeds", type=Fraction, nargs="+", default=[], help=f"""Speed multipliers for event groups created by '--group-by' options. e.g.) 1/2 1/4 1/8 will speed multiply all of (0,20) (20,30) (30,39), in order. But 1/2 with --target-groups {TargetGroups.SELECTED} will speed multiply only (20,30)""", ) event_parser.add_argument( "-gso", "--group-speed-offsets", dest="group_speed_offsets", type=int, default=[], nargs="+", help="Speed multiplier offsets for event group speeds", ) return event_parser
36.151852
154
0.625858
7946b52178c47db508f562dea10453b4b16d4b30
562
py
Python
py3plex/algorithms/infomap/examples/python/example-multiplex.py
awesome-archive/Py3plex
a099acb992441c1630208ba13694acb8e2a38895
[ "BSD-3-Clause" ]
1
2020-02-20T07:37:02.000Z
2020-02-20T07:37:02.000Z
py3plex/algorithms/infomap/examples/python/example-multiplex.py
awesome-archive/Py3plex
a099acb992441c1630208ba13694acb8e2a38895
[ "BSD-3-Clause" ]
null
null
null
py3plex/algorithms/infomap/examples/python/example-multiplex.py
awesome-archive/Py3plex
a099acb992441c1630208ba13694acb8e2a38895
[ "BSD-3-Clause" ]
null
null
null
from infomap import infomap infomapWrapper = infomap.MemInfomap("--two-level --expanded") # from (layer, node) to (layer, node) weight infomapWrapper.addMultiplexLink(2, 1, 1, 2, 1.0) infomapWrapper.addMultiplexLink(1, 2, 2, 1, 1.0) infomapWrapper.addMultiplexLink(3, 2, 2, 3, 1.0) infomapWrapper.run() tree = infomapWrapper.tree print("Found %d modules with codelength: %f" % (tree.numTopModules(), tree.codelength())) print("\n#layer node module:") for node in tree.leafIter(): print("%d %d %d" % (node.stateIndex, node.physIndex, node.moduleIndex()))
28.1
89
0.718861
7946b522adf98416d3c53ee4e38ef273a70082dc
6,399
py
Python
regina_normalizer/ordinal_big_tuples.py
grammatek/regina_normalizer
61ffeafcf1b967b44a3a9f99727013779bfeba13
[ "Apache-2.0" ]
null
null
null
regina_normalizer/ordinal_big_tuples.py
grammatek/regina_normalizer
61ffeafcf1b967b44a3a9f99727013779bfeba13
[ "Apache-2.0" ]
null
null
null
regina_normalizer/ordinal_big_tuples.py
grammatek/regina_normalizer
61ffeafcf1b967b44a3a9f99727013779bfeba13
[ "Apache-2.0" ]
null
null
null
from . import number_patterns as npa from . import tuple_rules as tp ordinal_big_tuples = [(npa.ones_ptrn_no11 + "1\.000\.0([01][1-9]|10)\.$", '.*', 'millions', ' einmilljónasta og'), ("^1\.000\.0([01][1-9]|10)\.$", '.*', 'millions',' milljónasta og'), (npa.ones_ptrn_no11 + "1\.000\.000\.$", '.*', 'millions', ' einmilljónasta'), ("^1\.000\.000\.$", '.*', 'millions', ' milljónasta'), (npa.tns_ptrn + "10\.000\.0([01][1-9]|10)\.$", '.*', 'ten millions', ' tímilljónasta og'), (npa.tns_ptrn + "10\.000\.000\.$", '.*', 'ten millions', ' tímilljónasta'), (npa.hndrds_ptrn + "100\.000\.0([01][1-9]|10)\.$", '.*', 'hundred millions', ' eitt hundraðmilljónasta og'), ("^100\.000\.0([01][1-9]|10)\.$", '.*', 'hundred millions', 'hundraðmilljónasta og'), (npa.hndrds_ptrn + "100(\.000){2}\.$", '.*', 'hundred millions', ' eitt hundraðmilljónasta'), ("^100(\.000){2}\.$", '.*', 'hundred millions', 'hundraðmilljónasta'), (npa.ones_ptrn_no11 + "1(\.000){2}\.0([01][1-9]|10)\.$", '.*', 'billions', ' einmilljarðasta og'), ("^1(\.000){2}\.0([01][1-9]|10)\.$", '.*', 'billions', 'milljarðasta og'), (npa.tns_ptrn + "10(\.000){2}\.0([01][1-9]|10)\.$", '.*', 'ten billions', 'tímilljarðasta og'), (npa.hndrds_ptrn + "100(\.000){2}\.0([01][1-9]|10)\.$", '.*', 'hundred billions', ' eitt hundrað milljarðasta og'), ("^100(\.000){2}\.0([01][1-9]|10)\.$", '.*', 'hundred billions', 'hundraðmilljarðasta og'), (npa.ones_ptrn_no11 + "1(\.000){3}\.$", '.*', 'billions', ' einmilljarðasta'), ("^1(\.000){3}\.$", '.*', 'billions', 'milljarðasta'), (npa.tns_ptrn + "10(\.000){3}\.$", '.*', 'ten billions', 'tímilljarðasta'), (npa.hndrds_ptrn + "100(\.000){3}\.$", '.*', 'hundred billions', ' eitt hundraðmilljarðasta'), ("^100(\.000){3}\.$", '.*', 'hundred billions', 'hundraðmilljarðasta')] for rule, letter in tp.dozens_ordinal_letters: ordinal_big_tuples.append((npa.ones_ptrn_no11 + "1\.000\.0([01][1-9]|10)\.$", rule, 'millions', ' einmilljón' + letter + ' og')) ordinal_big_tuples.append(("^1\.000\.0([01][1-9]|10)\.$", rule, 'millions', ' milljón' + letter + ' og')) ordinal_big_tuples.append((npa.ones_ptrn_no11 + "1(\.000){2}\.$", rule, 'millions', ' einmilljón' + letter)) ordinal_big_tuples.append(("^1(\.000){2}\.$", rule, 'millions', ' milljón' + letter)) ordinal_big_tuples.append((npa.tns_ptrn + "10\.000\.0([01][1-9]|10)\.$", rule, 'ten millions', ' tímilljón'+ letter + ' og')) ordinal_big_tuples.append((npa.tns_ptrn + "10(\.000){2}\.$", rule, 'ten millions', ' tímilljón'+ letter)) ordinal_big_tuples.append((npa.hndrds_ptrn + "100\.000\.0([01][1-9]|10)\.$", rule, 'hundred millions', ' eitt hundraðmilljón' + letter + ' og')) ordinal_big_tuples.append(("^100\.000\.0([01][1-9]|10)\.$", rule, 'hundred millions', 'hundraðmilljón' + letter + ' og')) ordinal_big_tuples.append((npa.hndrds_ptrn + "100(\.000){2}\.$", rule, 'hundred millions', ' eitt hundraðmilljón' + letter)) ordinal_big_tuples.append(("^100(\.000){2}\.$", rule, 'hundred millions', 'hundraðmilljón' + letter)) ordinal_big_tuples.append((npa.ones_ptrn_no11 + "1(\.000){2}\.0([01][1-9]|10)\.$", rule, 'billions', ' einmilljarð' + letter + ' og')) ordinal_big_tuples.append(("^1(\.000){2}\.0([01][1-9]|10)\.$", rule, 'billions', 'milljarð' + letter + ' og')) ordinal_big_tuples.append((npa.tns_ptrn + "10(\.000){2}\.0([01][1-9]|10)\.$", rule, 'ten billions', ' tímilljarð' + letter + ' og')) ordinal_big_tuples.append((npa.hndrds_ptrn + "100(\.000){2}\.0([01][1-9]|10)\.$", rule, 'hundred billions', ' eitt hundraðmilljarð' + letter + ' og')) ordinal_big_tuples.append(("^100(\.000){2}\.0([01][1-9]|10)\.$", rule, 'hundred billions', 'hundraðmilljarð' + letter + ' og')) ordinal_big_tuples.append((npa.ones_ptrn_no11 + "1(\.000){3}\.$", rule, 'billions', ' einmilljarð' + letter)) ordinal_big_tuples.append(("^1(\.000){3}\.$", rule, 'billions', 'milljarð' + letter)) ordinal_big_tuples.append((npa.tns_ptrn + "10(\.000){3}\.$", rule, 'ten billions', 'tímilljarð' + letter)) ordinal_big_tuples.append((npa.hndrds_ptrn + "100(\.000){3}\.$", rule, 'hundred billions', ' eitt hundraðmilljarð' + letter)) ordinal_big_tuples.append(("^100(\.000){3}\.$", rule, 'hundred billions', 'hundrað milljarð' + letter)) for string, number in tp.hundreds_thousands_zip: ordinal_big_tuples.append((npa.hndrds_ptrn + number + "00\.000\.0([01][1-9]|10)\.$", rule, 'hundred millions', string + ' hundruðmilljón' + letter + ' og')) ordinal_big_tuples.append((npa.hndrds_ptrn + number + "00(\.000){2}\.$", rule, 'hundred millions', string + ' hundruðmilljón' + letter)) ordinal_big_tuples.append((npa.hndrds_ptrn + number + "00(\.000){2}\.0([01][1-9]|10)\.$", rule, 'hundred billions', string + ' hundruðmilljarð' + letter + ' og')) ordinal_big_tuples.append((npa.hndrds_ptrn + number + "00(\.000){3}\.$", rule, 'hundred billions', string + ' hundruðmilljarð' + letter)) for string, number in tp.dozens_zip: ordinal_big_tuples.append((npa.tns_ptrn + number + "0\.000\.0([01][1-9]|10)\.$", rule, 'ten millions', string + 'milljón'+ letter + ' og')) ordinal_big_tuples.append((npa.tns_ptrn + number + "0(\.000){2}\.$", rule, 'ten millions', string + 'milljón'+ letter)) ordinal_big_tuples.append((npa.tns_ptrn + number + "0(\.000){2}\.0([01][1-9]|10)\.$", rule, 'ten billions', string + 'milljarð' + letter + ' og')) ordinal_big_tuples.append((npa.tns_ptrn + number + "0(\.000){3}\.$", rule, 'ten billions', string + 'milljarð' + letter)) for string, number in tp.mb_ordinal_zip: ordinal_big_tuples.append((npa.ones_ptrn_11 + number + "\.000\.0([01][1-9]|10)\.$", rule, 'millions', string + 'milljón' + letter + ' og')) ordinal_big_tuples.append((npa.ones_ptrn_11 + number + "(\.000){2}\.$", rule, 'millions', string + 'milljón' + letter)) ordinal_big_tuples.append((npa.ones_ptrn_11 + number + "(\.000){2}\.0([01][1-9]|10)\.$", rule, 'billions', string + 'milljarð' + letter + ' og')) ordinal_big_tuples.append((npa.ones_ptrn_11 + number + "(\.000){3}\.$", rule, 'billions', string + 'milljarð' + letter)) for string, number in tp.tens_zip: ordinal_big_tuples.append(("^[1-9]?" + number + "\.000\.0([01][1-9]|10)\.$", rule, 'millions', string + ' milljón' + letter + ' og'))
95.507463
170
0.601031
7946b548069a1b8eb421340a3baef4bf4cef5db3
843
py
Python
pelayanan/migrations/0002_auto_20200716_1930.py
diaksizz/Adisatya
1b20e523aede6ab3e8effb1ca63adf72016a6839
[ "MIT" ]
null
null
null
pelayanan/migrations/0002_auto_20200716_1930.py
diaksizz/Adisatya
1b20e523aede6ab3e8effb1ca63adf72016a6839
[ "MIT" ]
7
2021-03-30T14:04:35.000Z
2022-01-13T03:07:50.000Z
pelayanan/migrations/0002_auto_20200716_1930.py
diaksizz/Adisatya
1b20e523aede6ab3e8effb1ca63adf72016a6839
[ "MIT" ]
null
null
null
# Generated by Django 3.0.8 on 2020-07-16 12:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('pelayanan', '0001_initial'), ] operations = [ migrations.AddField( model_name='pengaduan', name='oleh', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='pengaduan', name='respon', field=models.TextField(blank=True, max_length=200, null=True), ), migrations.DeleteModel( name='Respon', ), ]
28.1
136
0.628707
7946b6258488efc2b2eadc73559fab954c84dba2
5,561
py
Python
common/trainers/msrvid_trainer.py
karkaroff/castor
881673f3dadb4f757fdfdf5d2ab9031e08512406
[ "Apache-2.0" ]
132
2017-04-02T12:31:55.000Z
2019-03-09T07:53:29.000Z
common/trainers/msrvid_trainer.py
sudipta90/castor
fa2f59535c71a0fb4586afbe543b81ba812c8630
[ "Apache-2.0" ]
111
2017-04-01T23:00:24.000Z
2019-03-10T08:29:20.000Z
common/trainers/msrvid_trainer.py
karkaroff/Castor
881673f3dadb4f757fdfdf5d2ab9031e08512406
[ "Apache-2.0" ]
53
2017-04-06T01:17:18.000Z
2019-02-27T03:10:35.000Z
import math import time import torch import torch.nn.functional as F from torch.optim.lr_scheduler import ReduceLROnPlateau from scipy.stats import pearsonr from .trainer import Trainer from utils.serialization import save_checkpoint class MSRVIDTrainer(Trainer): def train_epoch(self, epoch): self.model.train() total_loss = 0 # since MSRVID doesn't have validation set, we manually leave-out some training data for validation batches = math.ceil(len(self.train_loader.dataset.examples) / self.batch_size) start_val_batch = math.floor(0.8 * batches) left_out_val_a, left_out_val_b = [], [] left_out_val_ext_feats = [] left_out_val_labels = [] for batch_idx, batch in enumerate(self.train_loader): # msrvid does not contain a validation set, we leave out some training data for validation to do model selection if batch_idx >= start_val_batch: left_out_val_a.append(batch.sentence_1) left_out_val_b.append(batch.sentence_2) left_out_val_ext_feats.append(batch.ext_feats) left_out_val_labels.append(batch.label) continue self.optimizer.zero_grad() # Select embedding sent1, sent2 = self.get_sentence_embeddings(batch) output = self.model(sent1, sent2, batch.ext_feats) loss = F.kl_div(output, batch.label, size_average=False) total_loss += loss.item() loss.backward() self.optimizer.step() if batch_idx % self.log_interval == 0: self.logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, min(batch_idx * self.batch_size, len(batch.dataset.examples)), len(batch.dataset.examples), 100. * batch_idx / (len(self.train_loader)), loss.item() / len(batch)) ) self.evaluate(self.train_evaluator, 'train') if self.use_tensorboard: self.writer.add_scalar('msrvid/train/kl_div_loss', total_loss / len(self.train_loader.dataset.examples), epoch) return left_out_val_a, left_out_val_b, left_out_val_ext_feats, left_out_val_labels def train(self, epochs): if self.lr_reduce_factor != 1 and self.lr_reduce_factor != None: scheduler = ReduceLROnPlateau(self.optimizer, mode='max', factor=self.lr_reduce_factor, patience=self.patience) epoch_times = [] prev_loss = -1 best_dev_score = -1 for epoch in range(1, epochs + 1): start = time.time() self.logger.info('Epoch {} started...'.format(epoch)) left_out_a, left_out_b, left_out_ext_feats, left_out_label = self.train_epoch(epoch) # manually evaluating the validating set all_predictions, all_true_labels = [], [] val_kl_div_loss = 0 for i in range(len(left_out_a)): # Select embedding sent1 = self.embedding(left_out_a[i]).transpose(1, 2) sent2 = self.embedding(left_out_b[i]).transpose(1, 2) output = self.model(sent1, sent2, left_out_ext_feats[i]) val_kl_div_loss += F.kl_div(output, left_out_label[i], size_average=False).item() predict_classes = left_out_a[i].new_tensor(torch.arange(0, self.train_loader.dataset.NUM_CLASSES))\ .float().expand(len(left_out_a[i]), self.train_loader.dataset.NUM_CLASSES) predictions = (predict_classes * output.detach().exp()).sum(dim=1) true_labels = (predict_classes * left_out_label[i].detach()).sum(dim=1) all_predictions.append(predictions) all_true_labels.append(true_labels) predictions = torch.cat(all_predictions).cpu().numpy() true_labels = torch.cat(all_true_labels).cpu().numpy() pearson_r = pearsonr(predictions, true_labels)[0] val_kl_div_loss /= len(predictions) if self.use_tensorboard: self.writer.add_scalar('msrvid/dev/pearson_r', pearson_r, epoch) for param_group in self.optimizer.param_groups: self.logger.info('Validation size: %s Pearson\'s r: %s', output.size(0), pearson_r) self.logger.info('Learning rate: %s', param_group['lr']) if self.use_tensorboard: self.writer.add_scalar('msrvid/lr', param_group['lr'], epoch) self.writer.add_scalar('msrvid/dev/kl_div_loss', val_kl_div_loss, epoch) break if scheduler is not None: scheduler.step(pearson_r) end = time.time() duration = end - start self.logger.info('Epoch {} finished in {:.2f} minutes'.format(epoch, duration / 60)) epoch_times.append(duration) if pearson_r > best_dev_score: best_dev_score = pearson_r save_checkpoint(epoch, self.model.arch, self.model.state_dict(), self.optimizer.state_dict(), best_dev_score, self.model_outfile) if abs(prev_loss - val_kl_div_loss) <= 0.0005: self.logger.info('Early stopping. Loss changed by less than 0.0005.') break prev_loss = val_kl_div_loss self.evaluate(self.test_evaluator, 'test') self.logger.info('Training took {:.2f} minutes overall...'.format(sum(epoch_times) / 60))
45.211382
145
0.617335
7946b64b9aae4a515e58772047a42a65db69c0b5
37,753
py
Python
nodebox/gui/mac/__init__.py
nodebox/nodebox-pyobjc
31c7a95ca24fffdc8f4523278d4b68c330adea8e
[ "MIT" ]
47
2015-03-14T01:44:09.000Z
2021-11-10T10:28:14.000Z
nodebox/gui/mac/__init__.py
nodebox/nodebox-pyobjc
31c7a95ca24fffdc8f4523278d4b68c330adea8e
[ "MIT" ]
4
2015-08-20T20:02:32.000Z
2021-02-10T18:39:11.000Z
nodebox/gui/mac/__init__.py
nodebox/nodebox-pyobjc
31c7a95ca24fffdc8f4523278d4b68c330adea8e
[ "MIT" ]
15
2015-03-14T01:44:00.000Z
2020-12-17T16:44:31.000Z
import sys import os import traceback, linecache import re import objc import time import random from Foundation import * from AppKit import * from threading import Thread from nodebox.gui.mac.ValueLadder import MAGICVAR from nodebox.gui.mac import PyDETextView from nodebox.gui.mac.util import errorAlert from nodebox import util from nodebox import graphics # AppleScript enumerator codes for PDF and Quicktime export PDF = 0x70646678 # 'pdfx' QUICKTIME = 0x71747878 # 'qt ' VERY_LIGHT_GRAY = NSColor.blackColor().blendedColorWithFraction_ofColor_(0.95, NSColor.whiteColor()) DARKER_GRAY = NSColor.blackColor().blendedColorWithFraction_ofColor_(0.8, NSColor.whiteColor()) from nodebox.gui.mac.dashboard import * from nodebox.gui.mac.progressbar import ProgressBarController class ExportCommand(NSScriptCommand): pass class OutputFile(object): def __init__(self, data, isErr=False): self.data = data self.isErr = isErr def write(self, data): if isinstance(data, str): try: data = unicode(data, "utf_8", "replace") except UnicodeDecodeError: data = "XXX " + repr(data) self.data.append((self.isErr, data)) # class defined in NodeBoxDocument.xib class NodeBoxDocument(NSDocument): graphicsView = objc.IBOutlet() outputView = objc.IBOutlet() textView = objc.IBOutlet() window = objc.IBOutlet() variablesController = objc.IBOutlet() dashboardController = objc.IBOutlet() animationSpinner = objc.IBOutlet() # The ExportImageAccessory adds: exportImageAccessory = objc.IBOutlet() exportImageFormat = objc.IBOutlet() exportImagePageCount = objc.IBOutlet() # The ExportMovieAccessory adds: exportMovieAccessory = objc.IBOutlet() exportMovieFrames = objc.IBOutlet() exportMovieFps = objc.IBOutlet() # When the PageCount accessory is loaded, we also add: pageCount = objc.IBOutlet() pageCountAccessory = objc.IBOutlet() # When the ExportSheet is loaded, we also add: exportSheet = objc.IBOutlet() exportSheetIndicator = objc.IBOutlet() path = None exportDir = None magicvar = None # Used for value ladders. _code = None vars = [] movie = None def windowNibName(self): return "NodeBoxDocument" def init(self): self = super(NodeBoxDocument, self).init() nc = NSNotificationCenter.defaultCenter() nc.addObserver_selector_name_object_(self, "textFontChanged:", "PyDETextFontChanged", None) self.namespace = {} self.canvas = graphics.Canvas() self.context = graphics.Context(self.canvas, self.namespace) self.animationTimer = None self.__doc__ = {} self._pageNumber = 1 self._frame = 150 self.fullScreen = None self._seed = time.time() self.currentView = self.graphicsView return self def autosavesInPlace(self): return True def close(self): self.stopScript() super(NodeBoxDocument, self).close() def __del__(self): nc = NSNotificationCenter.defaultCenter() nc.removeObserver_name_object_(self, "PyDETextFontChanged", None) # text view has a couple of circular refs, it can let go of them now self.textView._cleanup() def textFontChanged_(self, notification): font = PyDETextView.getBasicTextAttributes()[NSFontAttributeName] self.outputView.setFont_(font) def readFromFile_ofType_(self, path, tp): if self.textView is None: # we're not yet fully loaded self.path = path else: # "revert" self.readFromUTF8(path) return True def writeToFile_ofType_(self, path, tp): f = file(path, "w") text = self.textView.string() f.write(text.encode("utf8")) f.close() return True def windowControllerDidLoadNib_(self, controller): if self.path: self.readFromUTF8(self.path) font = PyDETextView.getBasicTextAttributes()[NSFontAttributeName] self.outputView.setFont_(font) self.textView.window().makeFirstResponder_(self.textView) self.windowControllers()[0].setWindowFrameAutosaveName_("NodeBoxDocumentWindow") def readFromUTF8(self, path): f = file(path) text = unicode(f.read(), "utf_8") f.close() self.textView.setString_(text) self.textView.usesTabs = "\t" in text def cleanRun(self, fn, newSeed = True, buildInterface=True): self.animationSpinner.startAnimation_(None) # Prepare everything for running the script self.prepareRun() # Run the actual script success = self.fastRun(fn, newSeed) self.animationSpinner.stopAnimation_(None) if success and buildInterface: # Build the interface self.vars = self.namespace["_ctx"]._vars if len(self.vars) > 0: self.buildInterface_(None) return success def prepareRun(self): # Compile the script success, output = self._boxedRun(self._compileScript) self._flushOutput(output) if not success: return False # Initialize the namespace self._initNamespace() # Reset the pagenum self._pageNum = 1 # Reset the frame self._frame = 1 self.speed = self.canvas.speed = None def fastRun(self, fn, newSeed = False): # Check if there is code to run if self._code is None: return False # Clear the canvas self.canvas.clear() # Generate a new seed, if needed if newSeed: self._seed = time.time() random.seed(self._seed) # Set the mouse position window = self.currentView.window() pt = window.mouseLocationOutsideOfEventStream() mx, my = window.contentView().convertPoint_toView_(pt, self.currentView) # Hack: mouse coordinates are flipped vertically in FullscreenView. # This flips them back. if isinstance(self.currentView, FullscreenView): my = self.currentView.bounds()[1][1] - my if self.fullScreen is None: mx /= self.currentView.zoom my /= self.currentView.zoom self.namespace["MOUSEX"], self.namespace["MOUSEY"] = mx, my self.namespace["mousedown"] = self.currentView.mousedown self.namespace["keydown"] = self.currentView.keydown self.namespace["key"] = self.currentView.key self.namespace["keycode"] = self.currentView.keycode self.namespace["scrollwheel"] = self.currentView.scrollwheel self.namespace["wheeldelta"] = self.currentView.wheeldelta # Reset the context self.context._resetContext() # Initalize the magicvar self.namespace[MAGICVAR] = self.magicvar # Set the pagenum self.namespace['PAGENUM'] = self._pageNumber # Set the frame self.namespace['FRAME'] = self._frame # Run the script success, output = self._boxedRun(fn) self._flushOutput(output) if not success: return False # Display the output of the script self.currentView.setCanvas(self.canvas) return True @objc.IBAction def runFullscreen_(self, sender): if self.fullScreen is not None: return self.stopScript() self.currentView = FullscreenView.alloc().init() self.currentView.canvas = None fullRect = NSScreen.mainScreen().frame() self.fullScreen = FullscreenWindow.alloc().initWithRect_(fullRect) self.fullScreen.setContentView_(self.currentView) self.fullScreen.makeKeyAndOrderFront_(self) self.fullScreen.makeFirstResponder_(self.currentView) NSMenu.setMenuBarVisible_(False) NSCursor.hide() self._runScript() @objc.IBAction def runScript_(self, sender): self.runScript() def runScript(self, compile=True, newSeed=True): if self.fullScreen is not None: return self.currentView = self.graphicsView self._runScript(compile, newSeed) def _runScript(self, compile=True, newSeed=True): if not self.cleanRun(self._execScript): pass # Check whether we are dealing with animation if self.canvas.speed is not None: if not self.namespace.has_key("draw"): errorAlert("Not a proper NodeBox animation", "NodeBox animations should have at least a draw() method.") return # Check if animationTimer is already running if self.animationTimer is not None: self.stopScript() self.speed = self.canvas.speed # Run setup routine if self.namespace.has_key("setup"): self.fastRun(self.namespace["setup"]) window = self.currentView.window() window.makeFirstResponder_(self.currentView) # Start the timer self.animationTimer = NSTimer.scheduledTimerWithTimeInterval_target_selector_userInfo_repeats_( 1.0 / self.speed, self, objc.selector(self.doFrame, signature="v@:@"), None, True) # Start the spinner self.animationSpinner.startAnimation_(None) def runScriptFast(self): if self.animationTimer is None: self.fastRun(self._execScript) else: # XXX: This can be sped up. We just run _execScript to get the # method with __MAGICVAR__ into the namespace, and execute # that, so it should only be called once for animations. self.fastRun(self._execScript) self.fastRun(self.namespace["draw"]) def doFrame(self): self.fastRun(self.namespace["draw"], newSeed=True) self._frame += 1 def source(self): return self.textView.string() def setSource_(self, source): self.textView.setString_(source) @objc.IBAction def stopScript_(self, sender=None): self.stopScript() def stopScript(self): if self.namespace.has_key("stop"): success, output = self._boxedRun(self.namespace["stop"]) self._flushOutput(output) self.animationSpinner.stopAnimation_(None) if self.animationTimer is not None: self.animationTimer.invalidate() self.animationTimer = None if self.fullScreen is not None: self.currentView = self.graphicsView self.fullScreen = None NSMenu.setMenuBarVisible_(True) NSCursor.unhide() self.textView.hideValueLadder() window = self.textView.window() window.makeFirstResponder_(self.textView) def _compileScript(self, source=None): if source is None: source = self.textView.string() self._code = None self._code = compile(source + "\n\n", self.scriptName.encode('ascii', 'ignore'), "exec") def _initNamespace(self): self.namespace.clear() # Add everything from the namespace for name in graphics.__all__: self.namespace[name] = getattr(graphics, name) for name in util.__all__: self.namespace[name] = getattr(util, name) # Add everything from the context object self.namespace["_ctx"] = self.context for attrName in dir(self.context): self.namespace[attrName] = getattr(self.context, attrName) # Add the document global self.namespace["__doc__"] = self.__doc__ # Add the page number self.namespace["PAGENUM"] = self._pageNumber # Add the frame number self.namespace["FRAME"] = self._frame # Add the magic var self.namespace[MAGICVAR] = self.magicvar # XXX: will be empty after reset. #for var in self.vars: # self.namespace[var.name] = var.value def _execScript(self): exec self._code in self.namespace self.__doc__ = self.namespace.get("__doc__", self.__doc__) def _boxedRun(self, method, args=[]): """ Runs the given method in a boxed environment. Boxed environments: - Have their current directory set to the directory of the file - Have their argument set to the filename - Have their outputs redirect to an output stream. Returns: A tuple containing: - A boolean indicating whether the run was successful - The OutputFile """ self.scriptName = self.fileName() libDir = os.path.join(os.getenv("HOME"), "Library", "Application Support", "NodeBox") if not self.scriptName: curDir = os.getenv("HOME") self.scriptName = "<untitled>" else: curDir = os.path.dirname(self.scriptName) save = sys.stdout, sys.stderr saveDir = os.getcwd() saveArgv = sys.argv sys.argv = [self.scriptName] if os.path.exists(libDir): sys.path.insert(0, libDir) os.chdir(curDir) sys.path.insert(0, curDir) output = [] sys.stdout = OutputFile(output, False) sys.stderr = OutputFile(output, True) self._scriptDone = False try: if self.animationTimer is None: pass # Creating a thread is a heavy operation, # don't install it when animating, where speed is crucial #t = Thread(target=self._userCancelledMonitor, name="UserCancelledMonitor") #t.start() try: method(*args) except KeyboardInterrupt: self.stopScript() except: etype, value, tb = sys.exc_info() if tb.tb_next is not None: tb = tb.tb_next # skip the frame doing the exec traceback.print_exception(etype, value, tb) etype = value = tb = None return False, output finally: self._scriptDone = True sys.stdout, sys.stderr = save os.chdir(saveDir) sys.path.remove(curDir) try: sys.path.remove(libDir) except ValueError: pass sys.argv = saveArgv #self._flushOutput() return True, output # from Mac/Tools/IDE/PyEdit.py def _userCancelledMonitor(self): import time from signal import SIGINT from Carbon import Evt while not self._scriptDone: if Evt.CheckEventQueueForUserCancel(): # Send a SIGINT signal to ourselves. # This gets delivered to the main thread, # cancelling the running script. os.kill(os.getpid(), SIGINT) break time.sleep(0.25) def _flushOutput(self, output): outAttrs = PyDETextView.getBasicTextAttributes() errAttrs = outAttrs.copy() # XXX err color from user defaults... errAttrs[NSForegroundColorAttributeName] = NSColor.redColor() outputView = self.outputView outputView.setSelectedRange_((outputView.textStorage().length(), 0)) lastErr = None for isErr, data in output: if isErr != lastErr: attrs = [outAttrs, errAttrs][isErr] outputView.setTypingAttributes_(attrs) lastErr = isErr outputView.insertText_(data) # del self.output @objc.IBAction def copyImageAsPDF_(self, sender): pboard = NSPasteboard.generalPasteboard() # graphicsView implements the pboard delegate method to provide the data pboard.declareTypes_owner_([NSPDFPboardType,NSPostScriptPboardType,NSTIFFPboardType], self.graphicsView) @objc.IBAction def exportAsImage_(self, sender): exportPanel = NSSavePanel.savePanel() exportPanel.setRequiredFileType_("pdf") exportPanel.setNameFieldLabel_("Export To:") exportPanel.setPrompt_("Export") exportPanel.setCanSelectHiddenExtension_(True) if not NSBundle.loadNibNamed_owner_("ExportImageAccessory", self): NSLog("Error -- could not load ExportImageAccessory.") self.exportImagePageCount.setIntValue_(1) exportPanel.setAccessoryView_(self.exportImageAccessory) path = self.fileName() if path: dirName, fileName = os.path.split(path) fileName, ext = os.path.splitext(fileName) fileName += ".pdf" else: dirName, fileName = None, "Untitled.pdf" # If a file was already exported, use that folder as the default. if self.exportDir is not None: dirName = self.exportDir exportPanel.beginSheetForDirectory_file_modalForWindow_modalDelegate_didEndSelector_contextInfo_( dirName, fileName, NSApp().mainWindow(), self, "exportPanelDidEnd:returnCode:contextInfo:", 0) def exportPanelDidEnd_returnCode_contextInfo_(self, panel, returnCode, context): if returnCode: fname = panel.filename() self.exportDir = os.path.split(fname)[0] # Save the directory we exported to. pages = self.exportImagePageCount.intValue() format = panel.requiredFileType() panel.close() self.doExportAsImage(fname, format, pages) exportPanelDidEnd_returnCode_contextInfo_ = objc.selector(exportPanelDidEnd_returnCode_contextInfo_, signature="v@:@ii") @objc.IBAction def exportImageFormatChanged_(self, sender): image_formats = ('pdf', 'eps', 'png', 'tiff', 'jpg', 'gif') panel = sender.window() panel.setRequiredFileType_(image_formats[sender.indexOfSelectedItem()]) def doExportAsImage(self, fname, format, pages=1): basename, ext = os.path.splitext(fname) # When saving one page (the default), just save the current graphics # context. When generating multiple pages, we run the script again # (so we don't use the current displayed view) for the first page, # and then for every next page. if pages == 1: if self.graphicsView.canvas is None: self.runScript() self.canvas.save(fname, format) elif pages > 1: pb = ProgressBarController.alloc().init() pb.begin("Generating %s images..." % pages, pages) try: if not self.cleanRun(self._execScript): return self._pageNumber = 1 self._frame = 1 # If the speed is set, we are dealing with animation if self.canvas.speed is None: for i in range(pages): if i > 0: # Run has already happened first time self.fastRun(self._execScript, newSeed=True) counterAsString = "-%5d" % self._pageNumber counterAsString = counterAsString.replace(' ', '0') exportName = basename + counterAsString + ext self.canvas.save(exportName, format) self.graphicsView.setNeedsDisplay_(True) self._pageNumber += 1 self._frame += 1 pb.inc() else: if self.namespace.has_key("setup"): self.fastRun(self.namespace["setup"]) for i in range(pages): self.fastRun(self.namespace["draw"], newSeed=True) counterAsString = "-%5d" % self._pageNumber counterAsString = counterAsString.replace(' ', '0') exportName = basename + counterAsString + ext self.canvas.save(exportName, format) self.graphicsView.setNeedsDisplay_(True) self._pageNumber += 1 self._frame += 1 pb.inc() if self.namespace.has_key("stop"): success, output = self._boxedRun(self.namespace["stop"]) self._flushOutput(output) except KeyboardInterrupt: pass pb.end() del pb self._pageNumber = 1 self._frame = 1 @objc.IBAction def exportAsMovie_(self, sender): exportPanel = NSSavePanel.savePanel() exportPanel.setRequiredFileType_("pdf") exportPanel.setNameFieldLabel_("Export To:") exportPanel.setPrompt_("Export") exportPanel.setCanSelectHiddenExtension_(True) exportPanel.setAllowedFileTypes_(["mov"]) if not NSBundle.loadNibNamed_owner_("ExportMovieAccessory", self): NSLog("Error -- could not load ExportMovieAccessory.") self.exportMovieFrames.setIntValue_(150) self.exportMovieFps.setIntValue_(30) exportPanel.setAccessoryView_(self.exportMovieAccessory) path = self.fileName() if path: dirName, fileName = os.path.split(path) fileName, ext = os.path.splitext(fileName) fileName += ".mov" else: dirName, fileName = None, "Untitled.mov" # If a file was already exported, use that folder as the default. if self.exportDir is not None: dirName = self.exportDir exportPanel.beginSheetForDirectory_file_modalForWindow_modalDelegate_didEndSelector_contextInfo_( dirName, fileName, NSApp().mainWindow(), self, "qtPanelDidEnd:returnCode:contextInfo:", 0) def qtPanelDidEnd_returnCode_contextInfo_(self, panel, returnCode, context): if returnCode: fname = panel.filename() self.exportDir = os.path.split(fname)[0] # Save the directory we exported to. frames = self.exportMovieFrames.intValue() fps = self.exportMovieFps.floatValue() panel.close() if frames <= 0 or fps <= 0: return self.doExportAsMovie(fname, frames, fps) qtPanelDidEnd_returnCode_contextInfo_ = objc.selector(qtPanelDidEnd_returnCode_contextInfo_, signature="v@:@ii") def doExportAsMovie(self, fname, frames=60, fps=30): # Only load QTSupport when necessary. # QTSupport loads QTKit, which wants to establish a connection to the window server. # If we load QTSupport before something is on screen, the connection to the window server # cannot be established. from nodebox.util import QTSupport try: os.unlink(fname) except: pass try: fp = open(fname, 'w') fp.close() except: errorAlert("File Error", "Could not create file '%s'. Perhaps it is locked or busy." % fname) return movie = None pb = ProgressBarController.alloc().init() pb.begin("Generating %s frames..." % frames, frames) try: if not self.cleanRun(self._execScript): return self._pageNumber = 1 self._frame = 1 movie = QTSupport.Movie(fname, fps) # If the speed is set, we are dealing with animation if self.canvas.speed is None: for i in range(frames): if i > 0: # Run has already happened first time self.fastRun(self._execScript, newSeed=True) movie.add(self.canvas) self.graphicsView.setNeedsDisplay_(True) pb.inc() self._pageNumber += 1 self._frame += 1 else: if self.namespace.has_key("setup"): self.fastRun(self.namespace["setup"]) for i in range(frames): self.fastRun(self.namespace["draw"], newSeed=True) movie.add(self.canvas) self.graphicsView.setNeedsDisplay_(True) pb.inc() self._pageNumber += 1 self._frame += 1 if self.namespace.has_key("stop"): success, output = self._boxedRun(self.namespace["stop"]) self._flushOutput(output) except KeyboardInterrupt: pass pb.end() del pb movie.save() self._pageNumber = 1 self._frame = 1 @objc.IBAction def printDocument_(self, sender): op = NSPrintOperation.printOperationWithView_printInfo_(self.graphicsView, self.printInfo()) op.runOperationModalForWindow_delegate_didRunSelector_contextInfo_( NSApp().mainWindow(), self, "printOperationDidRun:success:contextInfo:", 0) def printOperationDidRun_success_contextInfo_(self, op, success, info): if success: self.setPrintInfo_(op.printInfo()) printOperationDidRun_success_contextInfo_ = objc.selector(printOperationDidRun_success_contextInfo_, signature="v@:@ci") @objc.IBAction def buildInterface_(self, sender): self.dashboardController.buildInterface(self.vars) def validateMenuItem_(self, menuItem): if menuItem.action() in ("exportAsImage:", "exportAsMovie:"): return self.canvas is not None return True # Zoom commands, forwarding to the graphics view. @objc.IBAction def zoomIn_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomIn_(sender) @objc.IBAction def zoomOut_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomOut_(sender) @objc.IBAction def zoomToTag_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomTo_(sender.tag() / 100.0) @objc.IBAction def zoomToFit_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomToFit_(sender) class FullscreenWindow(NSWindow): def initWithRect_(self, fullRect): super(FullscreenWindow, self).initWithContentRect_styleMask_backing_defer_(fullRect, NSBorderlessWindowMask, NSBackingStoreBuffered, True) return self def canBecomeKeyWindow(self): return True class FullscreenView(NSView): def init(self): super(FullscreenView, self).init() self.mousedown = False self.keydown = False self.key = None self.keycode = None self.scrollwheel = False self.wheeldelta = 0.0 return self def setCanvas(self, canvas): self.canvas = canvas self.setNeedsDisplay_(True) if not hasattr(self, "screenRect"): self.screenRect = NSScreen.mainScreen().frame() cw, ch = self.canvas.size sw, sh = self.screenRect[1] self.scalingFactor = calc_scaling_factor(cw, ch, sw, sh) nw, nh = cw * self.scalingFactor, ch * self.scalingFactor self.scaledSize = nw, nh self.dx = (sw - nw) / 2.0 self.dy = (sh - nh) / 2.0 def drawRect_(self, rect): NSGraphicsContext.currentContext().saveGraphicsState() NSColor.blackColor().set() NSRectFill(rect) if self.canvas is not None: t = NSAffineTransform.transform() t.translateXBy_yBy_(self.dx, self.dy) t.scaleBy_(self.scalingFactor) t.concat() clip = NSBezierPath.bezierPathWithRect_( ((0, 0), (self.canvas.width, self.canvas.height)) ) clip.addClip() self.canvas.draw() NSGraphicsContext.currentContext().restoreGraphicsState() def isFlipped(self): return True def mouseDown_(self, event): self.mousedown = True def mouseUp_(self, event): self.mousedown = False def keyDown_(self, event): self.keydown = True self.key = event.characters() self.keycode = event.keyCode() def keyUp_(self, event): self.keydown = False self.key = event.characters() self.keycode = event.keyCode() def scrollWheel_(self, event): self.scrollwheel = True self.wheeldelta = event.deltaY() def canBecomeKeyView(self): return True def acceptsFirstResponder(self): return True def calc_scaling_factor(width, height, maxwidth, maxheight): return min(float(maxwidth) / width, float(maxheight) / height) class ZoomPanel(NSView): pass # class defined in NodeBoxGraphicsView.xib class NodeBoxGraphicsView(NSView): document = objc.IBOutlet() zoomLevel = objc.IBOutlet() zoomField = objc.IBOutlet() zoomSlider = objc.IBOutlet() # The zoom levels are 10%, 25%, 50%, 75%, 100%, 200% and so on up to 2000%. zoomLevels = [0.1, 0.25, 0.5, 0.75] zoom = 1.0 while zoom <= 20.0: zoomLevels.append(zoom) zoom += 1.0 def awakeFromNib(self): self.canvas = None self._dirty = False self.mousedown = False self.keydown = False self.key = None self.keycode = None self.scrollwheel = False self.wheeldelta = 0.0 self._zoom = 1.0 self.setFrameSize_( (graphics.DEFAULT_WIDTH, graphics.DEFAULT_HEIGHT) ) self.setFocusRingType_(NSFocusRingTypeExterior) if self.superview() is not None: self.superview().setBackgroundColor_(VERY_LIGHT_GRAY) def setCanvas(self, canvas): self.canvas = canvas if canvas is not None: w, h = self.canvas.size self.setFrameSize_([w*self._zoom, h*self._zoom]) self.markDirty() def _get_zoom(self): return self._zoom def _set_zoom(self, zoom): self._zoom = zoom self.zoomLevel.setTitle_("%i%%" % (self._zoom * 100.0)) self.zoomSlider.setFloatValue_(self._zoom * 100.0) self.setCanvas(self.canvas) zoom = property(_get_zoom, _set_zoom) @objc.IBAction def dragZoom_(self, sender): self.zoom = self.zoomSlider.floatValue() / 100.0 self.setCanvas(self.canvas) def findNearestZoomIndex(self, zoom): """Returns the nearest zoom level, and whether we found a direct, exact match or a fuzzy match.""" try: # Search for a direct hit first. idx = self.zoomLevels.index(zoom) return idx, True except ValueError: # Can't find the zoom level, try looking at the indexes. idx = 0 try: while self.zoomLevels[idx] < zoom: idx += 1 except KeyError: # End of the list idx = len(self.zoomLevels) - 1 # Just return the last index. return idx, False @objc.IBAction def zoomIn_(self, sender): idx, direct = self.findNearestZoomIndex(self.zoom) # Direct hits are perfect, but indirect hits require a bit of help. # Because of the way indirect hits are calculated, they are already # rounded up to the upper zoom level; this means we don't need to add 1. if direct: idx += 1 idx = max(min(idx, len(self.zoomLevels)-1), 0) self.zoom = self.zoomLevels[idx] @objc.IBAction def zoomOut_(self, sender): idx, direct = self.findNearestZoomIndex(self.zoom) idx -= 1 idx = max(min(idx, len(self.zoomLevels)-1), 0) self.zoom = self.zoomLevels[idx] @objc.IBAction def resetZoom_(self, sender): self.zoom = 1.0 def zoomTo_(self, zoom): self.zoom = zoom @objc.IBAction def zoomToFit_(self, sender): w, h = self.canvas.size fw, fh = self.superview().frame()[1] factor = min(fw / w, fh / h) self.zoom = factor def markDirty(self, redraw=True): self._dirty = True if redraw: self.setNeedsDisplay_(True) def setFrameSize_(self, size): self._image = None NSView.setFrameSize_(self, size) def isOpaque(self): return False def isFlipped(self): return True def drawRect_(self, rect): if self.canvas is not None: NSGraphicsContext.currentContext().saveGraphicsState() try: if self.zoom != 1.0: t = NSAffineTransform.transform() t.scaleBy_(self.zoom) t.concat() clip = NSBezierPath.bezierPathWithRect_( ((0, 0), (self.canvas.width, self.canvas.height)) ) clip.addClip() self.canvas.draw() except: # A lot of code just to display the error in the output view. etype, value, tb = sys.exc_info() if tb.tb_next is not None: tb = tb.tb_next # skip the frame doing the exec traceback.print_exception(etype, value, tb) data = "".join(traceback.format_exception(etype, value, tb)) attrs = PyDETextView.getBasicTextAttributes() attrs[NSForegroundColorAttributeName] = NSColor.redColor() outputView = self.document.outputView outputView.setSelectedRange_((outputView.textStorage().length(), 0)) outputView.setTypingAttributes_(attrs) outputView.insertText_(data) NSGraphicsContext.currentContext().restoreGraphicsState() def _updateImage(self): if self._dirty: self._image = self.canvas._nsImage self._dirty = False # pasteboard delegate method def pasteboard_provideDataForType_(self, pboard, type): if NSPDFPboardType: pboard.setData_forType_(self.pdfData, NSPDFPboardType) elif NSPostScriptPboardType: pboard.setData_forType_(self.epsData, NSPostScriptPboardType) elif NSTIFFPboardType: pboard.setData_forType_(self.tiffData, NSTIFFPboardType) def _get_pdfData(self): if self.canvas: return self.canvas._getImageData('pdf') pdfData = property(_get_pdfData) def _get_epsData(self): if self.canvas: return self.canvas._getImageData('eps') epsData = property(_get_epsData) def _get_tiffData(self): return self.canvas._getImageData('tiff') tiffData = property(_get_tiffData) def _get_pngData(self): return self.canvas._getImageData('png') pngData = property(_get_pngData) def _get_gifData(self): return self.canvas._getImageData('gif') gifData = property(_get_gifData) def _get_jpegData(self): return self.canvas._getImageData('jpeg') jpegData = property(_get_jpegData) def mouseDown_(self, event): self.mousedown = True def mouseUp_(self, event): self.mousedown = False def keyDown_(self, event): self.keydown = True self.key = event.characters() self.keycode = event.keyCode() def keyUp_(self, event): self.keydown = False self.key = event.characters() self.keycode = event.keyCode() def scrollWheel_(self, event): NSResponder.scrollWheel_(self, event) self.scrollwheel = True self.wheeldelta = event.deltaY() def canBecomeKeyView(self): return True def acceptsFirstResponder(self): return True class NodeBoxAppDelegate(NSObject): def awakeFromNib(self): self._prefsController = None libDir = os.path.join(os.getenv("HOME"), "Library", "Application Support", "NodeBox") try: if not os.path.exists(libDir): os.mkdir(libDir) f = open(os.path.join(libDir, "README"), "w") f.write("In this directory, you can put Python libraries to make them available to your scripts.\n") f.close() except OSError: pass except IOError: pass @objc.IBAction def showPreferencesPanel_(self, sender): if self._prefsController is None: from nodebox.gui.mac.preferences import NodeBoxPreferencesController self._prefsController = NodeBoxPreferencesController.alloc().init() self._prefsController.showWindow_(sender) @objc.IBAction def generateCode_(self, sender): """Generate a piece of NodeBox code using OttoBot""" from nodebox.util.ottobot import genProgram controller = NSDocumentController.sharedDocumentController() doc = controller.newDocument_(sender) doc = controller.currentDocument() doc.textView.setString_(genProgram()) doc.runScript() @objc.IBAction def showHelp_(self, sender): url = NSURL.URLWithString_("http://nodebox.net/code/index.php/Reference") NSWorkspace.sharedWorkspace().openURL_(url) @objc.IBAction def showSite_(self, sender): url = NSURL.URLWithString_("http://nodebox.net/") NSWorkspace.sharedWorkspace().openURL_(url) def applicationWillTerminate_(self, note): import atexit atexit._run_exitfuncs()
36.44112
146
0.606203
7946b709983160600294fd21ecd433e851450ad5
5,998
py
Python
HyperAPI/hdp_api/routes/datasetReshapes.py
WassimAbida/HyperAPI
654a72922148d23158e3e4ea4b105f07626c5c36
[ "BSD-3-Clause" ]
null
null
null
HyperAPI/hdp_api/routes/datasetReshapes.py
WassimAbida/HyperAPI
654a72922148d23158e3e4ea4b105f07626c5c36
[ "BSD-3-Clause" ]
null
null
null
HyperAPI/hdp_api/routes/datasetReshapes.py
WassimAbida/HyperAPI
654a72922148d23158e3e4ea4b105f07626c5c36
[ "BSD-3-Clause" ]
null
null
null
from HyperAPI.hdp_api.base.resource import Resource from HyperAPI.hdp_api.base.route import Route class DatasetReshapes(Resource): name = "datasetReshapes" available_since = "3.0" removed_since = None class _getReshapes(Route): name = "getReshapes" httpMethod = Route.GET path = "/projects/{project_ID}/reshapes" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, } class _createReshape(Route): name = "createReshape" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, } class _getReshape(Route): name = "getReshape" httpMethod = Route.GET path = "/projects/{project_ID}/reshapes/{reshape_ID}" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _updateReshape(Route): name = "updateReshape" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/{reshape_ID}" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _deleteReshape(Route): name = "deleteReshape" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/{reshape_ID}/delete" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _inheritReshape(Route): name = "inheritReshape" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/{reshape_ID}/inherit" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _publishReshapeToEtl(Route): name = "publishReshapeToEtl" available_since = '3.3' httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/{reshape_ID}/etlpublish" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _getReshapeGroups(Route): name = "getReshapeGroups" httpMethod = Route.GET path = "/projects/{project_ID}/reshapes/{reshape_ID}/groups" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _getReshapesGroups(Route): name = "getReshapesGroups" httpMethod = Route.GET path = "/projects/{project_ID}/reshapes/groups" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, } class _createReshapeGroup(Route): name = "createReshapeGroup" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/groups" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, } class _getReshapeGroup(Route): name = "getReshapeGroup" httpMethod = Route.GET path = "/projects/{project_ID}/reshapes/groups/{group_ID}" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'group_ID': Route.VALIDATOR_OBJECTID, } class _updateReshapeGroup(Route): name = "updateReshapeGroup" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/groups/{group_ID}" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'group_ID': Route.VALIDATOR_OBJECTID, } class _deleteReshapeGroup(Route): name = "deleteReshapeGroup" httpMethod = Route.POST path = "/projects/{project_ID}/reshapes/groups/{group_ID}/delete" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'group_ID': Route.VALIDATOR_OBJECTID, } class _describeReshape(Route): name = "describeReshape" httpMethod = Route.POST path = "/projects/{project_ID}/datasets/{dataset_ID}/reshapes/describe" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'dataset_ID': Route.VALIDATOR_OBJECTID, } class _getReshapeDescription(Route): name = "getReshapeDescription" httpMethod = Route.GET path = "/projects/{project_ID}/datasets/{dataset_ID}/reshapes/describe" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'dataset_ID': Route.VALIDATOR_OBJECTID, } class _exportSteps(Route): name = "exportsteps" httpMethod = Route.GET path = "/projects/{project_ID}/datasets/{dataset_ID}/reshapes/exportsteps" available_since = "3.6.1" unavailable_on = ["4.0", "4.2"] _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'dataset_ID': Route.VALIDATOR_OBJECTID, } class _applyReshape(Route): name = "applyReshape" httpMethod = Route.POST path = "/projects/{project_ID}/datasets/{dataset_ID}/reshapes/{reshape_ID}/apply" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'dataset_ID': Route.VALIDATOR_OBJECTID, 'reshape_ID': Route.VALIDATOR_OBJECTID, } class _removeReshape(Route): name = "removeReshape" httpMethod = Route.POST path = "/projects/{project_ID}/datasets/{dataset_ID}/reshapes/remove" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'dataset_ID': Route.VALIDATOR_OBJECTID, } class _proposeAlterations(Route): name = "proposeAlterations" httpMethod = Route.POST path = "/projects/{project_ID}/datasets/{dataset_ID}/reshapes/proposeAlterations" _path_keys = { 'project_ID': Route.VALIDATOR_OBJECTID, 'dataset_ID': Route.VALIDATOR_OBJECTID, }
33.322222
89
0.610037
7946b76c76898d73d3d83f723e8c9d9510318b69
2,280
py
Python
base_agent/dialogue_stack.py
kandluis/droidlet
3851f0bdac7bc63100cfbcf1c206a94658790352
[ "MIT" ]
null
null
null
base_agent/dialogue_stack.py
kandluis/droidlet
3851f0bdac7bc63100cfbcf1c206a94658790352
[ "MIT" ]
null
null
null
base_agent/dialogue_stack.py
kandluis/droidlet
3851f0bdac7bc63100cfbcf1c206a94658790352
[ "MIT" ]
null
null
null
""" Copyright (c) Facebook, Inc. and its affiliates. """ import logging from base_agent.base_util import NextDialogueStep, ErrorWithResponse class DialogueStack(object): """This class organizes and steps DialogueObjects.""" def __init__(self, agent, memory): self.agent = agent self.memory = memory self.stack = [] def __getitem__(self, i): """Get the ith item on the stack """ return self.stack[i] def peek(self): """Get the item on top of the DialogueStack""" if self.stack: return self.stack[-1] else: return None def clear(self): """clear current stack""" self.old_stack = self.stack self.stack = [] def append(self, dialogue_object): """Append a dialogue_object to stack""" self.stack.append(dialogue_object) def append_new(self, cls, *args, **kwargs): """Construct a new DialogueObject and append to stack""" self.stack.append( cls(agent=self.agent, memory=self.memory, dialogue_stack=self, *args, **kwargs) ) def step(self): """Process and step through the top-of-stack dialogue object.""" if len(self.stack) > 0: # WARNING: check_finished increments the DialogueObject's current_step counter while len(self.stack) > 0 and self.stack[-1].check_finished(): del self.stack[-1] if len(self.stack) == 0: return try: output_chat, step_data = self.stack[-1].step() if output_chat: self.agent.send_chat(output_chat) # Update progeny_data of the current DialogueObject if len(self.stack) > 1 and step_data is not None: logging.debug("Update progeny_data={} stack={}".format(step_data, self.stack)) self.stack[-2].update_progeny_data(step_data) except NextDialogueStep: return except ErrorWithResponse as err: self.stack[-1].finished = True self.agent.send_chat(err.chat) return def __len__(self): """Length of stack""" return len(self.stack)
31.232877
98
0.575439
7946b7a6ce73732132cf4d923c9e8538cbf92610
2,913
py
Python
prophy/tests/test_class_helpers.py
florczakraf/prophy
a42a6151a77b31afa05300fc2e1f52cc15a298cf
[ "MIT" ]
14
2015-02-19T22:00:37.000Z
2020-11-30T03:03:55.000Z
prophy/tests/test_class_helpers.py
florczakraf/prophy
a42a6151a77b31afa05300fc2e1f52cc15a298cf
[ "MIT" ]
31
2015-06-22T11:11:10.000Z
2021-05-12T06:35:47.000Z
prophy/tests/test_class_helpers.py
florczakraf/prophy
a42a6151a77b31afa05300fc2e1f52cc15a298cf
[ "MIT" ]
16
2015-06-12T06:48:06.000Z
2019-11-26T22:48:13.000Z
import prophy def get_helper_classes(): class SubStruct(prophy.with_metaclass(prophy.struct_generator, prophy.struct)): _descriptor = [ ("a", prophy.array(prophy.u8, size=2)), ] class OneStruct(prophy.with_metaclass(prophy.struct_generator, prophy.struct)): _descriptor = [ ("x", prophy.u8), ("y", prophy.u32), ("o", prophy.optional(prophy.u32)), ] class SameStruct(prophy.with_metaclass(prophy.struct_generator, prophy.struct)): _descriptor = [ ("x", prophy.u8), ("y", prophy.u32), ("o", prophy.optional(prophy.u32)), ] class DifferentStruct(prophy.with_metaclass(prophy.struct_generator, prophy.struct)): _descriptor = [ ("x", prophy.u8), ("y", prophy.array(prophy.u32, size=1)), ("o", prophy.optional(prophy.u32)), ] class OneEnum(prophy.with_metaclass(prophy.enum_generator, prophy.enum)): _enumerators = [ ("x", 1), ("y", 2), ] class SameEnum(prophy.with_metaclass(prophy.enum_generator, prophy.enum)): _enumerators = [ ("x", 1), ("y", 2), ] class DifferentEnum(prophy.with_metaclass(prophy.enum_generator, prophy.enum)): _enumerators = [ ("x", 1), ("y", 3), ] class OneUnion(prophy.with_metaclass(prophy.union_generator, prophy.union)): _descriptor = [ ("x", prophy.u8, 1), ("s", OneStruct, 2), ] class SameUnion(prophy.with_metaclass(prophy.union_generator, prophy.union)): _descriptor = [ ("x", prophy.u8, 1), ("s", OneStruct, 2), ] class DifferentUnion(prophy.with_metaclass(prophy.union_generator, prophy.union)): _descriptor = [ ("x", prophy.u8, 1), ("s", OneStruct, 3), ] return SubStruct, OneStruct, SameStruct, DifferentStruct, OneEnum, SameEnum, DifferentEnum, OneUnion, SameUnion, \ DifferentUnion def test_prophy_structs_equality(): SubStruct, OneStruct, SameStruct, DifferentStruct, OneEnum, SameEnum, DifferentEnum, OneUnion, SameUnion, \ DifferentUnion = get_helper_classes() check_eq( OneStruct, SameStruct, DifferentStruct, OneEnum, OneUnion, float, object ) check_eq( OneEnum, SameEnum, DifferentEnum, OneStruct, OneUnion, float, object ) check_eq( OneUnion, SameUnion, DifferentUnion, OneStruct, OneEnum, float, object ) def check_eq(one, same, *different_ones): assert one == same assert not one != same assert same == one assert not same != one for different in different_ones: assert one != different assert not one == different assert different != one assert not different == one
30.34375
118
0.58977
7946b7df3c3eedcc089af29067ab4ae7c07477d8
3,290
py
Python
sensor_ui/rotary_encoder.py
mattgrogan/ledmatrix
3a54de98ab107cf1266404400c7eb576007c8b17
[ "MIT" ]
1
2017-10-27T20:27:13.000Z
2017-10-27T20:27:13.000Z
sensor_ui/rotary_encoder.py
mattgrogan/ledmatrix
3a54de98ab107cf1266404400c7eb576007c8b17
[ "MIT" ]
null
null
null
sensor_ui/rotary_encoder.py
mattgrogan/ledmatrix
3a54de98ab107cf1266404400c7eb576007c8b17
[ "MIT" ]
null
null
null
from gpiozero import Button class RotaryEncoder: """ Decode mechanical rotary encoder pulses. The following example will print a Rotary Encoder change direction from gpiozero import RotaryEncoder def change(value): if value == 1: print("clockwise") else # if change == -1 print("counterclockwise") rotary = RotaryEncoder(2, 3) rotary.when_rotated = change Based in http://abyz.co.uk/rpi/pigpio/examples.html#Python_rotary_encoder_py """ gpioA = None gpioB = None levA = 0 levB = 0 lastGpio = None when_rotated = lambda *args : None def __init__(self, pinA, pinB, pull_up=False): """ Uses for dettect rotary encoder changes (set when_rotated attribute) It takes one parameter which is +1 for clockwise and -1 for counterclockwise. :param pinA int : :param pinB int : :pull_up bool : The common contact should be NOT connected to ground? """ self.gpioA = Button(pinA, pull_up) self.gpioB = Button(pinB, pull_up) self.levA = 0 self.levB = 0 self.lastGpio = None self.gpioA.when_pressed = lambda *args : self.pulse(self.gpioA, 1) self.gpioA.when_released = lambda *args : self.pulse(self.gpioA, 0) self.gpioB.when_pressed = lambda *args : self.pulse(self.gpioB, 1) self.gpioB.when_released = lambda *args : self.pulse(self.gpioB, 0) def pulse(self, gpio, level): """ Decode the rotary encoder pulse. +---------+ +---------+ 0 | | | | A | | | | | | | | +---------+ +---------+ +----- 1 +---------+ +---------+ 0 | | | | B | | | | | | | | ----+ +---------+ +---------+ 1 """ if gpio == self.gpioA: self.levA = level else: self.levB = level if gpio != self.lastGpio: self.lastGpio = gpio if gpio == self.gpioA and level == 1: if self.levB == 1: self.when_rotated(1) elif gpio == self.gpioB and level == 1: if self.levA == 1: self.when_rotated(-1) else: if self.levB == 1: self.when_rotated(-1) elif self.levA == 1: self.when_rotated(1) else: if gpio == self.gpioA and level == 1: if self.levB == 1: self.when_rotated(1) elif gpio == self.gpioB and level == 1: if self.levA == 1: self.when_rotated(-1) else: if self.levB == 1: self.when_rotated(-1) elif self.levA == 1: self.when_rotated(1)
31.941748
86
0.427052
7946ba0d437f7d739eac3e2833ad3efb1acfe051
18,623
py
Python
tests/io/test_json.py
Hhx1999/eznlp
9d1397d8e9630c099295712cbcffa495353a3268
[ "Apache-2.0" ]
1
2022-03-08T05:17:52.000Z
2022-03-08T05:17:52.000Z
tests/io/test_json.py
Hhx1999/eznlp
9d1397d8e9630c099295712cbcffa495353a3268
[ "Apache-2.0" ]
null
null
null
tests/io/test_json.py
Hhx1999/eznlp
9d1397d8e9630c099295712cbcffa495353a3268
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import pytest import jieba from eznlp.io import JsonIO, SQuADIO, KarpathyIO, TextClsIO, BratIO from eznlp.utils.chunk import detect_nested, filter_clashed_by_priority class TestJsonIO(object): """ References ---------- [1] Lu and Roth. 2015. Joint Mention Extraction and Classification with Mention Hypergraphs. EMNLP 2015. [2] Eberts and Ulges. 2019. Span-based joint entity and relation extraction with Transformer pre-training. ECAI 2020. [3] Luan et al. 2019. A general framework for information extraction using dynamic span graphs. NAACL 2019. [4] Zhong and Chen. 2020. A frustratingly easy approach for joint entity and relation extraction. NAACL 2020. """ def test_ace2004(self): io = JsonIO(text_key='tokens', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end') train_data = io.read("data/ace-lu2015emnlp/ACE2004/train.json") dev_data = io.read("data/ace-lu2015emnlp/ACE2004/dev.json") test_data = io.read("data/ace-lu2015emnlp/ACE2004/test.json") assert len(train_data) == 6_799 assert sum(len(ex['chunks']) for ex in train_data) == 22_207 assert max(ck[2]-ck[1] for ex in train_data for ck in ex['chunks']) == 57 assert len(dev_data) == 829 assert sum(len(ex['chunks']) for ex in dev_data) == 2_511 assert max(ck[2]-ck[1] for ex in dev_data for ck in ex['chunks']) == 35 assert len(test_data) == 879 assert sum(len(ex['chunks']) for ex in test_data) == 3_031 assert max(ck[2]-ck[1] for ex in test_data for ck in ex['chunks']) == 43 def test_ace2005(self): io = JsonIO(text_key='tokens', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end') train_data = io.read("data/ace-lu2015emnlp/ACE2005/train.json") dev_data = io.read("data/ace-lu2015emnlp/ACE2005/dev.json") test_data = io.read("data/ace-lu2015emnlp/ACE2005/test.json") assert len(train_data) == 7_336 assert sum(len(ex['chunks']) for ex in train_data) == 24_687 assert max(ck[2]-ck[1] for ex in train_data for ck in ex['chunks']) == 49 assert len(dev_data) == 958 assert sum(len(ex['chunks']) for ex in dev_data) == 3_217 assert max(ck[2]-ck[1] for ex in dev_data for ck in ex['chunks']) == 30 assert len(test_data) == 1_047 assert sum(len(ex['chunks']) for ex in test_data) == 3_027 assert max(ck[2]-ck[1] for ex in test_data for ck in ex['chunks']) == 27 def test_genia(self): io = JsonIO(text_key='tokens', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end') train_data = io.read("data/genia/term.train.json") test_data = io.read("data/genia/term.test.json") assert len(train_data) == 16_528 assert sum(len(ex['chunks']) for ex in train_data) == 50_133 assert len(test_data) == 1_836 assert sum(len(ex['chunks']) for ex in test_data) == 5_466 def test_ace2004_rel(self): io = JsonIO(relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail') train_data = io.read("data/ace-luan2019naacl/ace04/cv0.train.json") test_data = io.read("data/ace-luan2019naacl/ace04/cv0.test.json") # #train + #test = 8683 assert len(train_data) == 6_898 assert sum(len(ex['chunks']) for ex in train_data) == 18_065 assert sum(len(ex['relations']) for ex in train_data) == 3_292 assert len(test_data) == 1_785 assert sum(len(ex['chunks']) for ex in test_data) == 4_670 assert sum(len(ex['relations']) for ex in test_data) == 795 def test_ace2005_rel(self): io = JsonIO(relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail') train_data = io.read("data/ace-luan2019naacl/ace05/train.json") dev_data = io.read("data/ace-luan2019naacl/ace05/dev.json") test_data = io.read("data/ace-luan2019naacl/ace05/test.json") assert len(train_data) == 10_051 assert sum(len(ex['chunks']) for ex in train_data) == 26_473 assert sum(len(ex['relations']) for ex in train_data) == 4_788 assert len(dev_data) == 2_424 assert sum(len(ex['chunks']) for ex in dev_data) == 6_338 assert sum(len(ex['relations']) for ex in dev_data) == 1_131 assert len(test_data) == 2_050 assert sum(len(ex['chunks']) for ex in test_data) == 5_476 assert sum(len(ex['relations']) for ex in test_data) == 1_151 def test_conll2004(self): json_io = JsonIO(text_key='tokens', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end', relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail') train_data = json_io.read("data/conll2004/conll04_train.json") dev_data = json_io.read("data/conll2004/conll04_dev.json") test_data = json_io.read("data/conll2004/conll04_test.json") assert len(train_data) == 922 assert sum(len(ex['chunks']) for ex in train_data) == 3_377 assert sum(len(ex['relations']) for ex in train_data) == 1_283 assert len(dev_data) == 231 assert sum(len(ex['chunks']) for ex in dev_data) == 893 assert sum(len(ex['relations']) for ex in dev_data) == 343 assert len(test_data) == 288 assert sum(len(ex['chunks']) for ex in test_data) == 1_079 assert sum(len(ex['relations']) for ex in test_data) == 422 assert not any(detect_nested(ex['chunks']) for data in [train_data, dev_data, test_data] for ex in data) assert all(filter_clashed_by_priority(ex['chunks'], allow_nested=False) == ex['chunks'] for data in [train_data, dev_data, test_data] for ex in data) def test_SciERC(self): json_io = JsonIO(text_key='tokens', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end', relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail') train_data = json_io.read("data/SciERC/scierc_train.json") dev_data = json_io.read("data/SciERC/scierc_dev.json") test_data = json_io.read("data/SciERC/scierc_test.json") assert len(train_data) == 1_861 assert sum(len(ex['chunks']) for ex in train_data) == 5_598 assert sum(len(ex['relations']) for ex in train_data) == 3_215 # 4 duplicated relations dropped here assert len(dev_data) == 275 assert sum(len(ex['chunks']) for ex in dev_data) == 811 assert sum(len(ex['relations']) for ex in dev_data) == 455 assert len(test_data) == 551 assert sum(len(ex['chunks']) for ex in test_data) == 1_685 assert sum(len(ex['relations']) for ex in test_data) == 974 assert any(detect_nested(ex['chunks']) for data in [train_data, dev_data, test_data] for ex in data) assert all(filter_clashed_by_priority(ex['chunks'], allow_nested=True) == ex['chunks'] for data in [train_data, dev_data, test_data] for ex in data) def test_ADE(self): json_io = JsonIO(text_key='tokens', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end', relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail') data = json_io.read("data/ADE/ade_full.json") assert len(data) == 4_272 assert sum(len(ex['chunks']) for ex in data) == 10_839 assert sum(len(ex['relations']) for ex in data) == 6_821 assert any(detect_nested(ex['chunks']) for ex in data) assert all(filter_clashed_by_priority(ex['chunks'], allow_nested=True) == ex['chunks'] for ex in data) def test_yidu_s4k(self): io = JsonIO(is_tokenized=False, tokenize_callback='char', text_key='originalText', chunk_key='entities', chunk_type_key='label_type', chunk_start_key='start_pos', chunk_end_key='end_pos', is_whole_piece=False, encoding='utf-8-sig') train_data1, train_errors1, train_mismatches1 = io.read("data/yidu_s4k/subtask1_training_part1.txt", return_errors=True) train_data2, train_errors2, train_mismatches2 = io.read("data/yidu_s4k/subtask1_training_part2.txt", return_errors=True) train_data, train_errors, train_mismatches = (train_data1 + train_data2, train_errors1 + train_errors2, train_mismatches1 + train_mismatches2) test_data, test_errors, test_mismatches = io.read("data/yidu_s4k/subtask1_test_set_with_answer.json", return_errors=True) assert len(train_data) == 1_000 assert sum(len(ex['chunks']) for ex in train_data) == 17_653 assert len(train_errors) == 0 assert len(train_mismatches) == 0 assert len(test_data) == 379 assert sum(len(ex['chunks']) for ex in test_data) == 6_002 assert len(test_errors) == 0 assert len(test_mismatches) == 0 assert not any(detect_nested(ex['chunks']) for data in [train_data, test_data] for ex in data) assert all(filter_clashed_by_priority(ex['chunks'], allow_nested=False) == ex['chunks'] for data in [train_data, test_data] for ex in data) def test_cmeee(self): io = JsonIO(is_tokenized=False, tokenize_callback='char', text_key='text', chunk_key='entities', chunk_type_key='type', chunk_start_key='start_idx', chunk_end_key='end_idx', encoding='utf-8') train_data, train_errors, train_mismatches = io.read("data/cblue/CMeEE/CMeEE_train_vz.json", return_errors=True) dev_data, dev_errors, dev_mismatches = io.read("data/cblue/CMeEE/CMeEE_dev_vz.json", return_errors=True) test_data = io.read("data/cblue/CMeEE/CMeEE_test_vz.json") assert len(train_data) == 15_000 assert sum(len(ex['chunks']) for ex in train_data) == 61_796 assert len(train_errors) == 0 assert len(train_mismatches) == 0 assert len(dev_data) == 5_000 assert sum(len(ex['chunks']) for ex in dev_data) == 20_300 assert len(dev_errors) == 0 assert len(dev_mismatches) == 0 assert len(test_data) == 3_000 assert any(detect_nested(ex['chunks']) for data in [train_data, dev_data] for ex in data) # TODO: clashed chunks? # assert all(filter_clashed_by_priority(ex['chunks'], allow_nested=True) == ex['chunks'] for data in [train_data, dev_data] for ex in data) def test_cmeie(self): io = JsonIO(is_tokenized=False, tokenize_callback='char', text_key='text', chunk_key='entities', chunk_type_key='type', chunk_start_key='start', chunk_end_key='end', relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail', encoding='utf-8') train_data = io.read("data/cblue/CMeIE/CMeIE_train_vz.json") dev_data = io.read("data/cblue/CMeIE/CMeIE_dev_vz.json") test_data = io.read("data/cblue/CMeIE/CMeIE_test_vz.json") assert len(train_data) == 14_339 assert sum(len(ex['chunks']) for ex in train_data) == 57_880 assert sum(len(ex['relations']) for ex in train_data) == 43_629 assert len(dev_data) == 3_585 assert sum(len(ex['chunks']) for ex in dev_data) == 14_167 assert sum(len(ex['relations']) for ex in dev_data) == 10_613 assert len(test_data) == 4_482 @pytest.mark.parametrize("is_whole_piece", [False, True]) def test_read_write_consistency(is_whole_piece): brat_io = BratIO(tokenize_callback='char', has_ins_space=True, ins_space_tokenize_callback=jieba.cut, max_len=200, parse_attrs=True, parse_relations=True, encoding='utf-8') json_io = JsonIO(is_tokenized=True, attribute_key='attributes', attribute_type_key='type', attribute_chunk_key='entity', relation_key='relations', relation_type_key='type', relation_head_key='head', relation_tail_key='tail', is_whole_piece=is_whole_piece, encoding='utf-8') src_fn = "data/HwaMei/demo.txt" mark = "wp" if is_whole_piece else "nonwp" trg_fn = f"data/HwaMei/demo-write-{mark}.json" data = brat_io.read(src_fn) json_io.write(data, trg_fn) data_retr = json_io.read(trg_fn) assert data_retr == data class TestSQuADIO(object): def test_squad_v2(self, spacy_nlp_en): io = SQuADIO(tokenize_callback=spacy_nlp_en, verbose=False) train_data, train_errors, train_mismatches = io.read("data/SQuAD/train-v2.0.json", return_errors=True) dev_data, dev_errors, dev_mismatches = io.read("data/SQuAD/dev-v2.0.json", return_errors=True) assert len(train_data) == 130_319 assert len(train_errors) == 0 assert len(train_mismatches) == 1_009 assert len(dev_data) == 11873 assert len(dev_errors) == 0 assert len(dev_mismatches) == 208 class TestKarpathyIO(object): """ References ---------- [1] Karpathy, et al. 2015. Deep visual-semantic alignments for generating image descriptions. CVPR 2015. [2] Vinyals, et al. 2015. Show and tell: A neural image caption generator. CVPR 2015. """ def test_flickr8k(self): io = KarpathyIO(img_folder="data/flickr8k/Flicker8k_Dataset") train_data, dev_data, test_data = io.read("data/flickr8k/flickr8k-karpathy2015cvpr.json") assert len(train_data) == 6_000 assert len(dev_data) == 1_000 assert len(test_data) == 1_000 def test_flickr30k(self): io = KarpathyIO(img_folder="data/flickr30k/flickr30k-images") train_data, dev_data, test_data = io.read("data/flickr30k/flickr30k-karpathy2015cvpr.json") assert len(train_data) == 29_000 assert len(dev_data) == 1_014 assert len(test_data) == 1_000 def test_mscoco(self): io = KarpathyIO(img_folder="data/mscoco/data2014") train_data, dev_data, test_data = io.read("data/mscoco/mscoco-karpathy2015cvpr.json") assert len(train_data) == 113_287 assert len(dev_data) == 5_000 assert len(test_data) == 5_000 class TestTextClsIO(object): """ References ---------- [1] Zhang et al. 2021. CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark. [2] https://github.com/CBLUEbenchmark/CBLUE [3] https://tianchi.aliyun.com/dataset/dataDetail?dataId=113223 """ def test_chip_ctc(self): io = TextClsIO(is_tokenized=False, tokenize_callback=jieba.tokenize, text_key='text', mapping={" ": ""}, encoding='utf-8') train_data = io.read("data/cblue/CHIP-CTC/CHIP-CTC_train.json") dev_data = io.read("data/cblue/CHIP-CTC/CHIP-CTC_dev.json") test_data = io.read("data/cblue/CHIP-CTC/CHIP-CTC_test.json") assert len(train_data) == 22_962 assert len(dev_data) == 7_682 assert len(test_data) == 10_192 # 10_000? def test_chip_sts(self): io = TextClsIO(is_tokenized=False, tokenize_callback=jieba.tokenize, text_key='text1', paired_text_key='text2', mapping={" ": ""}, encoding='utf-8') train_data = io.read("data/cblue/CHIP-STS/CHIP-STS_train.json") dev_data = io.read("data/cblue/CHIP-STS/CHIP-STS_dev.json") test_data = io.read("data/cblue/CHIP-STS/CHIP-STS_test.json") assert len(train_data) == 16_000 assert len(dev_data) == 4_000 assert len(test_data) == 10_000 def test_kuake_qic(self): io = TextClsIO(is_tokenized=False, tokenize_callback=jieba.tokenize, text_key='query', mapping={" ": ""}, encoding='utf-8') train_data = io.read("data/cblue/KUAKE-QIC/KUAKE-QIC_train.json") dev_data = io.read("data/cblue/KUAKE-QIC/KUAKE-QIC_dev.json") test_data = io.read("data/cblue/KUAKE-QIC/KUAKE-QIC_test.json") assert len(train_data) == 6_931 assert len(dev_data) == 1_955 assert len(test_data) == 1_994 # 1_944? def test_kuake_qtr(self): io = TextClsIO(is_tokenized=False, tokenize_callback=jieba.tokenize, text_key='query', paired_text_key='title', mapping={" ": ""}, encoding='utf-8') train_data = io.read("data/cblue/KUAKE-QTR/KUAKE-QTR_train.json") dev_data = io.read("data/cblue/KUAKE-QTR/KUAKE-QTR_dev.json") test_data = io.read("data/cblue/KUAKE-QTR/KUAKE-QTR_test.json") assert len(train_data) == 24_174 assert len(dev_data) == 2_913 assert len(test_data) == 5_465 def test_kuake_qqr(self): io = TextClsIO(is_tokenized=False, tokenize_callback=jieba.tokenize, text_key='query1', paired_text_key='query2', mapping={" ": ""}, encoding='utf-8') train_data = io.read("data/cblue/KUAKE-QQR/KUAKE-QQR_train.json") dev_data = io.read("data/cblue/KUAKE-QQR/KUAKE-QQR_dev.json") test_data = io.read("data/cblue/KUAKE-QQR/KUAKE-QQR_test.json") assert len(train_data) == 15_000 assert len(dev_data) == 1_599 # 1_600 assert len(test_data) == 1_596
49.661333
158
0.615529
7946ba39a60ccaa81eb5ebc968f04ba161171ac8
658
py
Python
mayan/apps/autoadmin/apps.py
nattangwiwat/Mayan-EDMS-recitation
fcf16afb56eae812fb99144d65ae1ae6749de0b7
[ "Apache-2.0" ]
343
2015-01-05T14:19:35.000Z
2018-12-10T19:07:48.000Z
mayan/apps/autoadmin/apps.py
nattangwiwat/Mayan-EDMS-recitation
fcf16afb56eae812fb99144d65ae1ae6749de0b7
[ "Apache-2.0" ]
191
2015-01-03T00:48:19.000Z
2018-11-30T09:10:25.000Z
mayan/apps/autoadmin/apps.py
nattangwiwat/Mayan-EDMS-recitation
fcf16afb56eae812fb99144d65ae1ae6749de0b7
[ "Apache-2.0" ]
257
2019-05-14T10:26:37.000Z
2022-03-30T03:37:36.000Z
from django.conf import settings from django.db.models.signals import post_save from django.utils.translation import ugettext_lazy as _ from mayan.apps.common.apps import MayanAppConfig from .handlers import handler_auto_admin_account_password_change class AutoAdminAppConfig(MayanAppConfig): has_tests = True name = 'mayan.apps.autoadmin' verbose_name = _('Auto administrator') def ready(self): super().ready() post_save.connect( dispatch_uid='autoadmin_handler_account_password_change', receiver=handler_auto_admin_account_password_change, sender=settings.AUTH_USER_MODEL )
28.608696
69
0.746201
7946bc15718dd60639f3ac922f82102f9a8cc485
213
py
Python
play.py
AcrobaticPanicc/stocks-manager
f8411c13ce049583bd4fa5b18a9266919f222edd
[ "MIT" ]
93
2020-07-09T23:15:44.000Z
2022-03-30T22:14:22.000Z
play.py
AcrobaticPanicc/stocks-manager
f8411c13ce049583bd4fa5b18a9266919f222edd
[ "MIT" ]
1
2021-12-07T03:17:05.000Z
2021-12-07T03:17:05.000Z
play.py
AcrobaticPanicc/stocks-manager
f8411c13ce049583bd4fa5b18a9266919f222edd
[ "MIT" ]
16
2020-07-10T03:44:07.000Z
2022-03-30T22:14:27.000Z
# from app.table import table # # # from app import data # import csv # # a = [] # # with open('tickers.csv') as csvfile: # res = csv.reader(csvfile) # for i in res: # a.append(i[1]) # # print(a) #
14.2
38
0.56338
7946bd5a4094f4ce5d3536e6d7beb73dab9df4a9
221
py
Python
publications/__init__.py
fusion-flap/flap_nstx
234bc6d482357cde94b36c85819e9a3f292819d5
[ "MIT" ]
null
null
null
publications/__init__.py
fusion-flap/flap_nstx
234bc6d482357cde94b36c85819e9a3f292819d5
[ "MIT" ]
1
2019-10-03T22:25:58.000Z
2021-10-06T10:31:11.000Z
publications/__init__.py
fusion-flap/flap_nstx
234bc6d482357cde94b36c85819e9a3f292819d5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 1 16:05:39 2021 @author: mlampert """ from .read_ahmed_matlab_file import read_ahmed_fit_parameters, read_ahmed_edge_current, read_ahmed_matlab_file
24.555556
110
0.760181
7946bd88ba0b577fb9f4885b80829cec6f26c919
11,059
py
Python
tensorflow/python/estimator/export/export_test.py
xincao79/tensorflow
7fa0cf39f854d5fdaaa19ad6425dfed02f5fea64
[ "Apache-2.0" ]
5
2019-01-17T08:47:31.000Z
2020-05-06T06:10:56.000Z
tensorflow/python/estimator/export/export_test.py
xincao79/tensorflow
7fa0cf39f854d5fdaaa19ad6425dfed02f5fea64
[ "Apache-2.0" ]
3
2020-03-24T18:15:52.000Z
2021-02-02T22:28:38.000Z
tensorflow/python/estimator/export/export_test.py
xincao79/tensorflow
7fa0cf39f854d5fdaaa19ad6425dfed02f5fea64
[ "Apache-2.0" ]
3
2017-06-09T10:39:33.000Z
2021-04-08T16:13:30.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for export.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import time from google.protobuf import text_format from tensorflow.core.example import example_pb2 from tensorflow.python.estimator.export import export from tensorflow.python.estimator.export import export_output from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils class ExportTest(test_util.TensorFlowTestCase): def test_serving_input_receiver_constructor(self): """Tests that no errors are raised when input is expected.""" features = { "feature0": constant_op.constant([0]), u"feature1": constant_op.constant([1]), "feature2": sparse_tensor.SparseTensor( indices=[[0, 0]], values=[1], dense_shape=[1, 1]), } receiver_tensors = { "example0": array_ops.placeholder(dtypes.string, name="example0"), u"example1": array_ops.placeholder(dtypes.string, name="example1"), } export.ServingInputReceiver(features, receiver_tensors) def test_serving_input_receiver_features_invalid(self): receiver_tensors = { "example0": array_ops.placeholder(dtypes.string, name="example0"), u"example1": array_ops.placeholder(dtypes.string, name="example1"), } with self.assertRaisesRegexp(ValueError, "features must be defined"): export.ServingInputReceiver( features=None, receiver_tensors=receiver_tensors) with self.assertRaisesRegexp(ValueError, "feature keys must be strings"): export.ServingInputReceiver( features={1: constant_op.constant([1])}, receiver_tensors=receiver_tensors) with self.assertRaisesRegexp( ValueError, "feature feature1 must be a Tensor or SparseTensor"): export.ServingInputReceiver( features={"feature1": [1]}, receiver_tensors=receiver_tensors) def test_serving_input_receiver_receiver_tensors_invalid(self): features = { "feature0": constant_op.constant([0]), u"feature1": constant_op.constant([1]), "feature2": sparse_tensor.SparseTensor( indices=[[0, 0]], values=[1], dense_shape=[1, 1]), } with self.assertRaisesRegexp( ValueError, "receiver_tensors must be defined"): export.ServingInputReceiver( features=features, receiver_tensors=None) with self.assertRaisesRegexp( ValueError, "receiver_tensors keys must be strings"): export.ServingInputReceiver( features=features, receiver_tensors={ 1: array_ops.placeholder(dtypes.string, name="example0")}) with self.assertRaisesRegexp( ValueError, "receiver_tensor example1 must be a Tensor"): export.ServingInputReceiver( features=features, receiver_tensors={"example1": [1]}) def test_single_feature_single_receiver(self): feature = constant_op.constant(5) receiver_tensor = array_ops.placeholder(dtypes.string) input_receiver = export.ServingInputReceiver( feature, receiver_tensor) # single feature is automatically named feature_key, = input_receiver.features.keys() self.assertEqual("feature", feature_key) # single receiver is automatically named receiver_key, = input_receiver.receiver_tensors.keys() self.assertEqual("input", receiver_key) def test_multi_feature_single_receiver(self): features = {"foo": constant_op.constant(5), "bar": constant_op.constant(6)} receiver_tensor = array_ops.placeholder(dtypes.string) _ = export.ServingInputReceiver(features, receiver_tensor) def test_multi_feature_multi_receiver(self): features = {"foo": constant_op.constant(5), "bar": constant_op.constant(6)} receiver_tensors = {"baz": array_ops.placeholder(dtypes.int64), "qux": array_ops.placeholder(dtypes.float32)} _ = export.ServingInputReceiver(features, receiver_tensors) def test_feature_wrong_type(self): feature = "not a tensor" receiver_tensor = array_ops.placeholder(dtypes.string) with self.assertRaises(ValueError): _ = export.ServingInputReceiver(feature, receiver_tensor) def test_receiver_wrong_type(self): feature = constant_op.constant(5) receiver_tensor = "not a tensor" with self.assertRaises(ValueError): _ = export.ServingInputReceiver(feature, receiver_tensor) def test_build_parsing_serving_input_receiver_fn(self): feature_spec = {"int_feature": parsing_ops.VarLenFeature(dtypes.int64), "float_feature": parsing_ops.VarLenFeature(dtypes.float32)} serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) with ops.Graph().as_default(): serving_input_receiver = serving_input_receiver_fn() self.assertEqual(set(["int_feature", "float_feature"]), set(serving_input_receiver.features.keys())) self.assertEqual(set(["examples"]), set(serving_input_receiver.receiver_tensors.keys())) example = example_pb2.Example() text_format.Parse("features: { " " feature: { " " key: 'int_feature' " " value: { " " int64_list: { " " value: [ 21, 2, 5 ] " " } " " } " " } " " feature: { " " key: 'float_feature' " " value: { " " float_list: { " " value: [ 525.25 ] " " } " " } " " } " "} ", example) with self.test_session() as sess: sparse_result = sess.run( serving_input_receiver.features, feed_dict={ serving_input_receiver.receiver_tensors["examples"].name: [example.SerializeToString()]}) self.assertAllEqual([[0, 0], [0, 1], [0, 2]], sparse_result["int_feature"].indices) self.assertAllEqual([21, 2, 5], sparse_result["int_feature"].values) self.assertAllEqual([[0, 0]], sparse_result["float_feature"].indices) self.assertAllEqual([525.25], sparse_result["float_feature"].values) def test_build_raw_serving_input_receiver_fn(self): features = {"feature_1": constant_op.constant(["hello"]), "feature_2": constant_op.constant([42])} serving_input_receiver_fn = export.build_raw_serving_input_receiver_fn( features) with ops.Graph().as_default(): serving_input_receiver = serving_input_receiver_fn() self.assertEqual(set(["feature_1", "feature_2"]), set(serving_input_receiver.features.keys())) self.assertEqual(set(["feature_1", "feature_2"]), set(serving_input_receiver.receiver_tensors.keys())) self.assertEqual( dtypes.string, serving_input_receiver.receiver_tensors["feature_1"].dtype) self.assertEqual( dtypes.int32, serving_input_receiver.receiver_tensors["feature_2"].dtype) def test_build_all_signature_defs_explicit_default(self): receiver_tensor = constant_op.constant(["11"]) output_1 = constant_op.constant([1.]) output_2 = constant_op.constant(["2"]) output_3 = constant_op.constant(["3"]) export_outputs = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_output.RegressionOutput(value=output_1), "head-2": export_output.ClassificationOutput(classes=output_2), "head-3": export_output.PredictOutput(outputs={ "some_output_3": output_3 }), } signature_defs = export.build_all_signature_defs( receiver_tensor, export_outputs) expected_signature_defs = { "serving_default": signature_def_utils.regression_signature_def(receiver_tensor, output_1), "head-2": signature_def_utils.classification_signature_def(receiver_tensor, output_2, None), "head-3": signature_def_utils.predict_signature_def({ "input": receiver_tensor }, {"output": output_3}) } self.assertDictEqual(expected_signature_defs, signature_defs) def test_build_all_signature_defs_export_outputs_required(self): receiver_tensor = constant_op.constant(["11"]) with self.assertRaises(ValueError) as e: export.build_all_signature_defs(receiver_tensor, None) self.assertEqual("export_outputs must be a dict.", str(e.exception)) def test_get_timestamped_export_dir(self): export_dir_base = tempfile.mkdtemp() + "export/" export_dir_1 = export.get_timestamped_export_dir( export_dir_base) time.sleep(2) export_dir_2 = export.get_timestamped_export_dir( export_dir_base) time.sleep(2) export_dir_3 = export.get_timestamped_export_dir( export_dir_base) # Export directories should be named using a timestamp that is seconds # since epoch. Such a timestamp is 10 digits long. time_1 = os.path.basename(export_dir_1) self.assertEqual(10, len(time_1)) time_2 = os.path.basename(export_dir_2) self.assertEqual(10, len(time_2)) time_3 = os.path.basename(export_dir_3) self.assertEqual(10, len(time_3)) self.assertTrue(int(time_1) < int(time_2)) self.assertTrue(int(time_2) < int(time_3)) if __name__ == "__main__": test.main()
40.214545
80
0.65449
7946c02a7c60824df40e69916d67d2193847d83a
8,085
py
Python
src/cryptography/hazmat/primitives/asymmetric/dsa.py
zapfbandit/pyca-cryptography
577e058798e0e6ae04eac07f958f1072e351e859
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
2
2015-10-08T21:28:42.000Z
2020-08-15T10:03:49.000Z
src/cryptography/hazmat/primitives/asymmetric/dsa.py
zapfbandit/pyca-cryptography
577e058798e0e6ae04eac07f958f1072e351e859
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
68
2015-06-27T00:28:53.000Z
2022-03-31T10:09:13.000Z
src/cryptography/hazmat/primitives/asymmetric/dsa.py
zapfbandit/pyca-cryptography
577e058798e0e6ae04eac07f958f1072e351e859
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
3
2016-04-11T20:22:38.000Z
2018-09-20T20:39:54.000Z
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. import abc import typing from cryptography.hazmat.backends import _get_backend from cryptography.hazmat.primitives import _serialization, hashes from cryptography.hazmat.primitives.asymmetric import ( AsymmetricSignatureContext, AsymmetricVerificationContext, utils as asym_utils, ) class DSAParameters(metaclass=abc.ABCMeta): @abc.abstractmethod def generate_private_key(self) -> "DSAPrivateKey": """ Generates and returns a DSAPrivateKey. """ @abc.abstractmethod def parameter_numbers(self) -> "DSAParameterNumbers": """ Returns a DSAParameterNumbers. """ DSAParametersWithNumbers = DSAParameters class DSAPrivateKey(metaclass=abc.ABCMeta): @abc.abstractproperty def key_size(self) -> int: """ The bit length of the prime modulus. """ @abc.abstractmethod def public_key(self) -> "DSAPublicKey": """ The DSAPublicKey associated with this private key. """ @abc.abstractmethod def parameters(self) -> DSAParameters: """ The DSAParameters object associated with this private key. """ @abc.abstractmethod def signer( self, signature_algorithm: hashes.HashAlgorithm, ) -> AsymmetricSignatureContext: """ Returns an AsymmetricSignatureContext used for signing data. """ @abc.abstractmethod def sign( self, data: bytes, algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm], ) -> bytes: """ Signs the data """ @abc.abstractmethod def private_numbers(self) -> "DSAPrivateNumbers": """ Returns a DSAPrivateNumbers. """ @abc.abstractmethod def private_bytes( self, encoding: _serialization.Encoding, format: _serialization.PrivateFormat, encryption_algorithm: _serialization.KeySerializationEncryption, ) -> bytes: """ Returns the key serialized as bytes. """ DSAPrivateKeyWithSerialization = DSAPrivateKey class DSAPublicKey(metaclass=abc.ABCMeta): @abc.abstractproperty def key_size(self) -> int: """ The bit length of the prime modulus. """ @abc.abstractmethod def parameters(self) -> DSAParameters: """ The DSAParameters object associated with this public key. """ @abc.abstractmethod def verifier( self, signature: bytes, signature_algorithm: hashes.HashAlgorithm, ) -> AsymmetricVerificationContext: """ Returns an AsymmetricVerificationContext used for signing data. """ @abc.abstractmethod def public_numbers(self) -> "DSAPublicNumbers": """ Returns a DSAPublicNumbers. """ @abc.abstractmethod def public_bytes( self, encoding: _serialization.Encoding, format: _serialization.PublicFormat, ) -> bytes: """ Returns the key serialized as bytes. """ @abc.abstractmethod def verify( self, signature: bytes, data: bytes, algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm], ): """ Verifies the signature of the data. """ DSAPublicKeyWithSerialization = DSAPublicKey class DSAParameterNumbers(object): def __init__(self, p: int, q: int, g: int): if ( not isinstance(p, int) or not isinstance(q, int) or not isinstance(g, int) ): raise TypeError( "DSAParameterNumbers p, q, and g arguments must be integers." ) self._p = p self._q = q self._g = g p = property(lambda self: self._p) q = property(lambda self: self._q) g = property(lambda self: self._g) def parameters(self, backend=None) -> DSAParameters: backend = _get_backend(backend) return backend.load_dsa_parameter_numbers(self) def __eq__(self, other): if not isinstance(other, DSAParameterNumbers): return NotImplemented return self.p == other.p and self.q == other.q and self.g == other.g def __ne__(self, other): return not self == other def __repr__(self): return ( "<DSAParameterNumbers(p={self.p}, q={self.q}, " "g={self.g})>".format(self=self) ) class DSAPublicNumbers(object): def __init__(self, y: int, parameter_numbers: DSAParameterNumbers): if not isinstance(y, int): raise TypeError("DSAPublicNumbers y argument must be an integer.") if not isinstance(parameter_numbers, DSAParameterNumbers): raise TypeError( "parameter_numbers must be a DSAParameterNumbers instance." ) self._y = y self._parameter_numbers = parameter_numbers y = property(lambda self: self._y) parameter_numbers = property(lambda self: self._parameter_numbers) def public_key(self, backend=None) -> DSAPublicKey: backend = _get_backend(backend) return backend.load_dsa_public_numbers(self) def __eq__(self, other): if not isinstance(other, DSAPublicNumbers): return NotImplemented return ( self.y == other.y and self.parameter_numbers == other.parameter_numbers ) def __ne__(self, other): return not self == other def __repr__(self): return ( "<DSAPublicNumbers(y={self.y}, " "parameter_numbers={self.parameter_numbers})>".format(self=self) ) class DSAPrivateNumbers(object): def __init__(self, x: int, public_numbers: DSAPublicNumbers): if not isinstance(x, int): raise TypeError("DSAPrivateNumbers x argument must be an integer.") if not isinstance(public_numbers, DSAPublicNumbers): raise TypeError( "public_numbers must be a DSAPublicNumbers instance." ) self._public_numbers = public_numbers self._x = x x = property(lambda self: self._x) public_numbers = property(lambda self: self._public_numbers) def private_key(self, backend=None) -> DSAPrivateKey: backend = _get_backend(backend) return backend.load_dsa_private_numbers(self) def __eq__(self, other): if not isinstance(other, DSAPrivateNumbers): return NotImplemented return ( self.x == other.x and self.public_numbers == other.public_numbers ) def __ne__(self, other): return not self == other def generate_parameters(key_size: int, backend=None) -> DSAParameters: backend = _get_backend(backend) return backend.generate_dsa_parameters(key_size) def generate_private_key(key_size: int, backend=None) -> DSAPrivateKey: backend = _get_backend(backend) return backend.generate_dsa_private_key_and_parameters(key_size) def _check_dsa_parameters(parameters: DSAParameterNumbers): if parameters.p.bit_length() not in [1024, 2048, 3072, 4096]: raise ValueError( "p must be exactly 1024, 2048, 3072, or 4096 bits long" ) if parameters.q.bit_length() not in [160, 224, 256]: raise ValueError("q must be exactly 160, 224, or 256 bits long") if not (1 < parameters.g < parameters.p): raise ValueError("g, p don't satisfy 1 < g < p.") def _check_dsa_private_numbers(numbers: DSAPrivateNumbers): parameters = numbers.public_numbers.parameter_numbers _check_dsa_parameters(parameters) if numbers.x <= 0 or numbers.x >= parameters.q: raise ValueError("x must be > 0 and < q.") if numbers.public_numbers.y != pow(parameters.g, numbers.x, parameters.p): raise ValueError("y must be equal to (g ** x % p).")
28.170732
79
0.635993
7946c10e6b8f4d297de3f705c48872fc8a6a5c72
5,908
py
Python
tensorflow_probability/python/internal/test_combinations.py
bolcom/probability
4a11efad1ecd8a1336e4c9fdb0105efbf2375ad7
[ "Apache-2.0" ]
1
2019-10-10T06:15:42.000Z
2019-10-10T06:15:42.000Z
tensorflow_probability/python/internal/test_combinations.py
bolcom/probability
4a11efad1ecd8a1336e4c9fdb0105efbf2375ad7
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/internal/test_combinations.py
bolcom/probability
4a11efad1ecd8a1336e4c9fdb0105efbf2375ad7
[ "Apache-2.0" ]
1
2019-10-10T06:15:44.000Z
2019-10-10T06:15:44.000Z
# Copyright 2019 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Decorators for testing TFP code under combinations of TF features.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import tensorflow.compat.v2 as tf from tensorflow.python.eager import def_function # pylint: disable=g-direct-tensorflow-import from tensorflow.python.framework import combinations # pylint: disable=g-direct-tensorflow-import from tensorflow.python.framework import test_combinations # pylint: disable=g-direct-tensorflow-import __all__ = [ 'test_all_tf_execution_regimes', 'test_graph_and_eager_modes', ] @contextlib.contextmanager def _tf_function_mode_context(tf_function_mode): """Context manager controlling `tf.function` behavior (enabled/disabled). Before activating, the previously set mode is stored. Then the mode is changed to the given `tf_function_mode` and control yielded back to the caller. Upon exiting the context, the mode is returned to its original state. Args: tf_function_mode: a Python `str`, either 'disabled' or 'enabled'. If 'enabled', `@tf.function`-decorated code behaves as usual (ie, a background graph is created). If 'disabled', `@tf.function`-decorated code will behave as if it had not been `@tf.function`-decorated. Since users will be able to do this (e.g., to debug library code that has been `@tf.function`-decorated), we need to ensure our tests cover the behavior when this is the case. Yields: None """ if tf_function_mode not in ['enabled', 'disabled']: raise ValueError( 'Only allowable values for tf_function_mode_context are `enabled` and ' '`disabled`; but got `{}`'.format(tf_function_mode)) original_mode = def_function.RUN_FUNCTIONS_EAGERLY try: tf.config.experimental_run_functions_eagerly(tf_function_mode == 'disabled') yield finally: tf.config.experimental_run_functions_eagerly(original_mode) class ExecuteFunctionsEagerlyCombination(test_combinations.TestCombination): """A `TestCombinationi` for enabling/disabling `tf.function` execution modes. For more on `TestCombination`, check out 'tensorflow/python/framework/test_combinations.py' in the TensorFlow code base. This `TestCombination` supports two values for the `tf_function` combination argument: 'disabled' and 'enabled'. The mode switching is performed using `tf.experimental_run_functions_eagerly(mode)`. """ def context_managers(self, kwargs): mode = kwargs.pop('tf_function', 'enabled') return [_tf_function_mode_context(mode)] def parameter_modifiers(self): return [test_combinations.OptionalParameter('tf_function')] def test_all_tf_execution_regimes(test_class_or_method=None): """Decorator for generating a collection of tests in various contexts. Must be applied to subclasses of `parameterized.TestCase` (from `absl/testing`), or a method of such a subclass. When applied to a test method, this decorator results in the replacement of that method with a collection of new test methods, each executed under a different set of context managers that control some aspect of the execution model. This decorator generates three test scenario combinations: 1. Eager mode with `tf.function` decorations enabled 2. Eager mode with `tf.function` decorations disabled 3. Graph mode (eveything) When applied to a test class, all the methods in the class are affected. Args: test_class_or_method: the `TestCase` class or method to decorate. Returns: decorator: A generated TF `test_combinations` decorator, or if `test_class_or_method` is not `None`, the generated decorator applied to that function. """ decorator = test_combinations.generate( (test_combinations.combine(mode='graph', tf_function='enabled') + test_combinations.combine(mode='eager', tf_function=['enabled', 'disabled'])), test_combinations=[ combinations.EagerGraphCombination(), ExecuteFunctionsEagerlyCombination(), ]) if test_class_or_method: return decorator(test_class_or_method) return decorator def test_graph_and_eager_modes(test_class_or_method=None): """Decorator for generating graph and eager mode tests from a single test. Must be applied to subclasses of `parameterized.TestCase` (from absl/testing), or a method of such a subclass. When applied to a test method, this decorator results in the replacement of that method with a two new test methods, one executed in graph mode and the other in eager mode. When applied to a test class, all the methods in the class are affected. Args: test_class_or_method: the `TestCase` class or method to decorate. Returns: decorator: A generated TF `test_combinations` decorator, or if `test_class_or_method` is not `None`, the generated decorator applied to that function. """ decorator = test_combinations.generate( test_combinations.combine(mode=['graph', 'eager']), test_combinations=[combinations.EagerGraphCombination()]) if test_class_or_method: return decorator(test_class_or_method) return decorator
38.614379
103
0.741198
7946c18acc1c390c927bfd6ced0b3ab42693e747
4,859
py
Python
mct_json_converter/main_window.py
iorodeo/mct_json_converter
aa7cbb180928868fb8b12e177a793373f6a15191
[ "Apache-2.0" ]
1
2020-07-23T19:04:03.000Z
2020-07-23T19:04:03.000Z
mct_json_converter/main_window.py
iorodeo/mct_json_converter
aa7cbb180928868fb8b12e177a793373f6a15191
[ "Apache-2.0" ]
null
null
null
mct_json_converter/main_window.py
iorodeo/mct_json_converter
aa7cbb180928868fb8b12e177a793373f6a15191
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import sys import os import time import mct_json_converter from PyQt4 import QtCore from PyQt4 import QtGui from converter_ui import Ui_MainWindow USER_HOME = os.getenv('USERPROFILE') if USER_HOME is None: USER_HOME = os.getenv('HOME') DEFAULT_DIRECTORY = os.path.join(USER_HOME,'mct_log') else: DEFAULT_DIRECTORY = USER_HOME class ConverterMainWindow(QtGui.QMainWindow,Ui_MainWindow): def __init__(self,parent=None): super(ConverterMainWindow,self).__init__(parent) self.setupUi(self) self.connectActions() self.initialize() def initialize(self): self.matRadioButton.setChecked(True) self.fileListWidget.setAlternatingRowColors(True) if os.path.isdir(DEFAULT_DIRECTORY): self.directory = DEFAULT_DIRECTORY else: self.directory = USER_HOME self.disableWidgetsOnEmpty() if not mct_json_converter.haveh5py: self.hdf5RadioButton.setEnabled(False) def connectActions(self): self.selectPushButton.clicked.connect(self.selectClicked) self.clearPushButton.clicked.connect(self.clearClicked) self.convertPushButton.clicked.connect(self.convertClicked) def selectClicked(self): if not os.path.isdir(self.directory): self.directory = USER_HOME fileNameList = QtGui.QFileDialog.getOpenFileNames( self, 'Select JSON files for conversion', self.directory, "JSON (*.json)" ) self.fileListWidget.clear() if fileNameList: for name in fileNameList: listItem = QtGui.QListWidgetItem(name) self.fileListWidget.addItem(listItem) self.enableWidgetsOnNonEmpty() else: self.disableWidgetsOnEmpty() def enableWidgetsOnNonEmpty(self): self.convertPushButton.setEnabled(True) self.clearPushButton.setEnabled(True) def disableWidgetsOnEmpty(self): self.convertPushButton.setEnabled(False) self.clearPushButton.setEnabled(False) def enableWidgetsAfterConverting(self): self.selectPushButton.setEnabled(True) self.clearPushButton.setEnabled(True) self.matRadioButton.setEnabled(True) if mct_json_converter.haveh5py: self.hdf5RadioButton.setEnabled(True) self.fileListWidget.setEnabled(True) self.convertPushButton.setEnabled(True) def disableWidgetsWhileConverting(self): self.selectPushButton.setEnabled(False) self.clearPushButton.setEnabled(False) self.matRadioButton.setEnabled(False) self.hdf5RadioButton.setEnabled(False) self.fileListWidget.setEnabled(False) self.convertPushButton.setEnabled(False) def clearClicked(self): self.fileListWidget.clear() def convertClicked(self): self.disableWidgetsWhileConverting() fileFormat = self.getFileFormat() numFiles = self.fileListWidget.count() for i in range(numFiles): item = self.fileListWidget.item(i) fileName = str(item.text()) filePath = os.path.join(self.directory,fileName) statusMessage = ' Converting: {0}/{1}'.format(i+1,numFiles) self.statusbar.showMessage(statusMessage) self.repaint() try: converter = mct_json_converter.JSON_Converter(filePath) except Exception, e: message = 'Unable to convert file: {0}\n\n{1}'.format(fileName,str(e)) QtGui.QMessageBox.critical(self,'Error',message) self.enableWidgetsAfterConverting() return if fileFormat == 'mat': writeFunc = converter.writeMatFile elif fileFormat == 'hdf5': writeFunc = converter.writeH5File else: raise RuntimeError, 'unknown file format' try: writeFunc() except Exception, e: message = 'Unable to convert file: {0}\n\n{1}'.format(fileName,str(e)) QtGui.QMessageBox.critical(self,'Error',message) self.enableWidgetsAfterConverting() return self.statusbar.showMessage(' Done') self.enableWidgetsAfterConverting() def getFileFormat(self): if self.hdf5RadioButton.isChecked(): fileFormat = 'hdf5' else: fileFormat = 'mat' return fileFormat def converterMain(): app = QtGui.QApplication(sys.argv) mainWindow = ConverterMainWindow() mainWindow.show() app.exec_() # ----------------------------------------------------------------------------- if __name__ == '__main__': converterMain()
34.460993
86
0.630582
7946c1a480bac043986cf39ce6ac793ecad9800c
828
py
Python
Rosalind/mrna.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
null
null
null
Rosalind/mrna.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
1
2015-03-25T22:35:52.000Z
2015-03-25T22:35:52.000Z
Rosalind/mrna.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
null
null
null
# Inferring mRNA from Protein # rosalind.info/problems/mrna/ import sys class mrna: codon_freq = {'F':2, 'L':6, 'S':6, 'Y':2, 'A':4, 'C':2, 'W':1, 'P':4, 'H':2, 'Q':2, 'R':6, 'I':3, 'M':1, 'N':2, 'K':2, 'D':2, 'V':4, 'E':2, 'G':4, 'T':4, 'stop':3} def main(self, dna_seq): if not dna_seq: raise Exception('ERROR: File is empty.') res = self.codon_freq['stop'] for i in range(len(dna_seq)): res *= self.codon_freq[dna_seq[i]] return res % 1000000 if __name__ == '__main__': filename = sys.argv[1] if not filename: raise Exception('ERROR: File name should not be empty!') with open(filename, 'r') as seq_file: result = mrna().main(seq_file.read()) print(result)
29.571429
64
0.504831
7946c29d7f5341c8ab9780f4022f686031d18139
459
py
Python
pitchdeck/wsgi.py
rjmackay/pitchdeck
51e5715e95441169af783135cb34c48d6d380f00
[ "MIT" ]
null
null
null
pitchdeck/wsgi.py
rjmackay/pitchdeck
51e5715e95441169af783135cb34c48d6d380f00
[ "MIT" ]
null
null
null
pitchdeck/wsgi.py
rjmackay/pitchdeck
51e5715e95441169af783135cb34c48d6d380f00
[ "MIT" ]
null
null
null
""" WSGI config for pitchdeck project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pitchdeck.settings") os.environ.setdefault("DJANGO_CONFIGURATION", "Dev") from configurations.wsgi import get_wsgi_application # noqa application = get_wsgi_application()
25.5
78
0.786492
7946c2bf55aefa9f8b086ae978865e9b69e24c76
4,533
py
Python
dataset_coco.py
XDong18/dla
063f1facc2bc49b2ca3a6bb9c87977b6f194505e
[ "BSD-3-Clause" ]
null
null
null
dataset_coco.py
XDong18/dla
063f1facc2bc49b2ca3a6bb9c87977b6f194505e
[ "BSD-3-Clause" ]
null
null
null
dataset_coco.py
XDong18/dla
063f1facc2bc49b2ca3a6bb9c87977b6f194505e
[ "BSD-3-Clause" ]
null
null
null
from pycocotools.coco import COCO import os import os.path as osp import sys import torch import torch.utils.data as data import cv2 import numpy as np from PIL import Image import data_transforms as transforms def f_print(*obj): fn='./output.log' # print(obj) with open(fn, 'a+') as f: print(obj, file=f) COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',* 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush') COCO_LABEL_MAP = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 13: 12, 14: 13, 15: 14, 16: 15, 17: 16, 18: 17, 19: 18, 20: 19, 21: 20, 22: 21, 23: 22, 24: 23, 25: 24, 27: 25, 28: 26, 31: 27, 32: 28, 33: 29, 34: 30, 35: 31, 36: 32, 37: 33, 38: 34, 39: 35, 40: 36, 41: 37, 42: 38, 43: 39, 44: 40, 46: 41, 47: 42, 48: 43, 49: 44, 50: 45, 51: 46, 52: 47, 53: 48, 54: 49, 55: 50, 56: 51, 57: 52, 58: 53, 59: 54, 60: 55, 61: 56, 62: 57, 63: 58, 64: 59, 65: 60, 67: 61, 70: 62, 72: 63, 73: 64, 74: 65, 75: 66, 76: 67, 77: 68, 78: 69, 79: 70, 80: 71, 81: 72, 82: 73, 84: 74, 85: 75, 86: 76, 87: 77, 88: 78, 89: 79, 90: 80} class COCOSeg(data.Dataset): def __init__(self, image_path, info_file, transforms=None, is_train=False): self.root = image_path self.coco = COCO(info_file) self.ids = list(self.coco.imgToAnns.keys()) # may be some imaegs don't have labels self.transforms = transforms self.is_train = is_train def __len__(self): return len(self.ids) def __getitem__(self, index): img, mask = self.pull_item(index) if self.is_train: mask_PIL = Image.fromarray(mask) # img = img.resize((1920, 1216)) data = [img] data.append(mask_PIL) data = list(self.transforms(*data)) trans_temp = transforms.ToTensor() tensor_img = trans_temp(data[0])[0] array_mask = np.array(data[1]) return(tuple([tensor_img, torch.from_numpy(array_mask)])) else: # img = img.resize((1920, 1216)) img = np.array(img) img = np.transpose(img, (2,0,1)) if img.max()>1: img = img / 255. return(tuple([torch.from_numpy(img), torch.from_numpy(mask)])) def pull_item(self, index): ''' Return Image, array ''' img_id = self.ids[index] ann_ids = self.coco.getAnnIds(imgIds=img_id) target = self.coco.loadAnns(ann_ids) crowd = [x for x in target if ('iscrowd' in x and x['iscrowd'])] target = [x for x in target if not ('iscrowd' in x and x['iscrowd'])] target = crowd + target file_name = self.coco.loadImgs(img_id)[0]['file_name'] path = osp.join(self.root, file_name) img = Image.open(path) if len(img.split())==1: img_array = np.array(img) img_array = cv2.merge((img_array, img_array, img_array)) img = Image.fromarray(img_array) width, height = img.size mask = np.zeros((height, width)) for obj in target: cat_id = COCO_LABEL_MAP[obj['category_id']] obj_mask = self.coco.annToMask(obj) mask[np.where(obj_mask==1)] = cat_id # mask = np.expand_dims(mask, axis=0) # f_print(mask.min(), mask.max()) return img, mask
41.209091
90
0.521288
7946c2e55b4c68dfc1dfc0b540957a9f648d2f66
3,971
py
Python
WebsiteVisitUserPatternAnalyze.py
syeddabeer/0projects
e132628f3693ed40c5ea9055a6c79f8266196bae
[ "Apache-2.0" ]
null
null
null
WebsiteVisitUserPatternAnalyze.py
syeddabeer/0projects
e132628f3693ed40c5ea9055a6c79f8266196bae
[ "Apache-2.0" ]
null
null
null
WebsiteVisitUserPatternAnalyze.py
syeddabeer/0projects
e132628f3693ed40c5ea9055a6c79f8266196bae
[ "Apache-2.0" ]
null
null
null
class Solution: def mostVisitedPattern(self, username: List[str], timestamp: List[int], website: List[str]) -> List[str]: users = defaultdict(list) for user, time, site in sorted(zip(username, timestamp, website), key = lambda x: (x[0],x[1])): users[user].append(site) patterns = Counter() for user, sites in users.items(): patterns.update(Counter(set(combinations(sites, 3)))) return max(sorted(patterns), key=patterns.get) class Solution2: def mostVisitedPattern(self, username, timestamp, website): # Create tuples as shown in description # The timestamps may not always be pre-ordered (one of the testcases) # Sort first based on user, then time (grouping by user) # This also helps to maintain order of websites visited in the later part of the solution users = defaultdict(list) # It is not necessary to use defaultdict here, we can manually create dictionaries too for user, time, site in sorted(zip(username, timestamp, website), key = lambda x: (x[0],x[1])): users[user].append(site) # defaultdicts simplify and optimize code patterns = Counter() # this can also be replaced with a manually created dictionary of counts # Get unique 3-sequence (note that website order will automatically be maintained) # Note that we take the set of each 3-sequence for each user as they may have repeats # For each 3-sequence, count number of users for user, sites in users.items(): patterns.update(Counter(set(combinations(sites, 3)))) # Re-iterating above step for clarity # 1. first get all possible 3-sequences combinations(sites, 3) # 2. then, count each one once (set) # 3. finally, count the number of times we've seen the 3-sequence for every user (patterns.update(Counter)) # - updating a dictionary will update the value for existing keys accordingly (int in this case) # An expanded version of the above step is given below. # print(patterns) # sanity check # get most frequent 3-sequence sorted lexicographically return max(sorted(patterns), key=patterns.get) class Solution: def mostVisitedPattern(self, username: List[str], timestamp: List[int], website: List[str]) -> List[str]: users = defaultdict(list) for user, time, site in sorted(zip(username, timestamp, website), key = lambda x: (x[0],x[1])): users[user].append(site) patterns = Counter() for user, sites in users.items(): patterns.update(Counter(set(combinations(sites, 3)))) return max(sorted(patterns), key=patterns.get) """ You are given two string arrays username and website and an integer array timestamp. All the given arrays are of the same length and the tuple [username[i], website[i], timestamp[i]] indicates that the user username[i] visited the website website[i] at time timestamp[i]. A pattern is a list of three websites (not necessarily distinct). For example, ["home", "away", "love"], ["leetcode", "love", "leetcode"], and ["luffy", "luffy", "luffy"] are all patterns. The score of a pattern is the number of users that visited all the websites in the pattern in the same order they appeared in the pattern. For example, if the pattern is ["home", "away", "love"], the score is the number of users x such that x visited "home" then visited "away" and visited "love" after that. Similarly, if the pattern is ["leetcode", "love", "leetcode"], the score is the number of users x such that x visited "leetcode" then visited "love" and visited "leetcode" one more time after that. Also, if the pattern is ["luffy", "luffy", "luffy"], the score is the number of users x such that x visited "luffy" three different times at different timestamps. Return the pattern with the largest score. If there is more than one pattern with the same largest score, return the lexicographically smallest such pattern. """
49.6375
271
0.700076
7946c378ee5afcc22d03400f6f322100d8077abe
14,009
py
Python
tests/suite/test_rl_policies_vsr.py
datamachines/kubernetes-ingress
d4629491677daeb3f247774009cff0beaffe0ec6
[ "Apache-2.0" ]
1
2021-06-06T23:51:18.000Z
2021-06-06T23:51:18.000Z
tests/suite/test_rl_policies_vsr.py
datamachines/kubernetes-ingress
d4629491677daeb3f247774009cff0beaffe0ec6
[ "Apache-2.0" ]
null
null
null
tests/suite/test_rl_policies_vsr.py
datamachines/kubernetes-ingress
d4629491677daeb3f247774009cff0beaffe0ec6
[ "Apache-2.0" ]
null
null
null
import pytest, requests, time from kubernetes.client.rest import ApiException from suite.resources_utils import wait_before_test, replace_configmap_from_yaml from suite.custom_resources_utils import ( read_crd, delete_virtual_server, create_virtual_server_from_yaml, patch_virtual_server_from_yaml, patch_v_s_route_from_yaml, create_policy_from_yaml, delete_policy, read_policy, ) from settings import TEST_DATA, DEPLOYMENTS std_vs_src = f"{TEST_DATA}/virtual-server-route/standard/virtual-server.yaml" rl_pol_pri_src = f"{TEST_DATA}/rate-limit/policies/rate-limit-primary.yaml" rl_vsr_pri_src = f"{TEST_DATA}/rate-limit/route-subroute/virtual-server-route-pri-subroute.yaml" rl_pol_sec_src = f"{TEST_DATA}/rate-limit/policies/rate-limit-secondary.yaml" rl_vsr_sec_src = f"{TEST_DATA}/rate-limit/route-subroute/virtual-server-route-sec-subroute.yaml" rl_pol_invalid_src = f"{TEST_DATA}/rate-limit/policies/rate-limit-invalid.yaml" rl_vsr_invalid_src = ( f"{TEST_DATA}/rate-limit/route-subroute/virtual-server-route-invalid-subroute.yaml" ) rl_vsr_override_src = ( f"{TEST_DATA}/rate-limit/route-subroute/virtual-server-route-override-subroute.yaml" ) rl_vsr_override_vs_spec_src = ( f"{TEST_DATA}/rate-limit/route-subroute/virtual-server-vsr-spec-override.yaml" ) rl_vsr_override_vs_route_src = ( f"{TEST_DATA}/rate-limit/route-subroute/virtual-server-vsr-route-override.yaml" ) @pytest.mark.policies @pytest.mark.parametrize( "crd_ingress_controller, v_s_route_setup", [ ( { "type": "complete", "extra_args": [ f"-enable-custom-resources", f"-enable-preview-policies", f"-enable-leader-election=false", ], }, {"example": "virtual-server-route"}, ) ], indirect=True, ) class TestRateLimitingPoliciesVsr: def restore_default_vsr(self, kube_apis, v_s_route_setup) -> None: """ Function to revert vsr deployments to valid state """ patch_src_m = f"{TEST_DATA}/virtual-server-route/route-multiple.yaml" patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, patch_src_m, v_s_route_setup.route_m.namespace, ) wait_before_test() @pytest.mark.smoke @pytest.mark.parametrize("src", [rl_vsr_pri_src]) def test_rl_policy_1rs_vsr( self, kube_apis, crd_ingress_controller, v_s_route_app_setup, v_s_route_setup, test_namespace, src, ): """ Test if rate-limiting policy is working with ~1 rps in vsr:subroute """ req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" print(f"Create rl policy") pol_name = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_pri_src, v_s_route_setup.route_m.namespace ) print(f"Patch vsr with policy: {src}") patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, src, v_s_route_setup.route_m.namespace, ) wait_before_test() policy_info = read_crd( kube_apis.custom_objects, v_s_route_setup.route_m.namespace, "policies", pol_name ) occur = [] t_end = time.perf_counter() + 1 resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) print(resp.status_code) assert resp.status_code == 200 while time.perf_counter() < t_end: resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) occur.append(resp.status_code) delete_policy(kube_apis.custom_objects, pol_name, v_s_route_setup.route_m.namespace) self.restore_default_vsr(kube_apis, v_s_route_setup) assert ( policy_info["status"] and policy_info["status"]["reason"] == "AddedOrUpdated" and policy_info["status"]["state"] == "Valid" ) assert occur.count(200) <= 1 @pytest.mark.parametrize("src", [rl_vsr_sec_src]) def test_rl_policy_10rs_vsr( self, kube_apis, crd_ingress_controller, v_s_route_app_setup, v_s_route_setup, test_namespace, src, ): """ Test if rate-limiting policy is working with ~10 rps in vsr:subroute """ rate_sec = 10 req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" print(f"Create rl policy") pol_name = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_sec_src, v_s_route_setup.route_m.namespace ) print(f"Patch vsr with policy: {src}") patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, src, v_s_route_setup.route_m.namespace, ) wait_before_test() policy_info = read_crd( kube_apis.custom_objects, v_s_route_setup.route_m.namespace, "policies", pol_name ) occur = [] t_end = time.perf_counter() + 1 resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) print(resp.status_code) assert resp.status_code == 200 while time.perf_counter() < t_end: resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) occur.append(resp.status_code) delete_policy(kube_apis.custom_objects, pol_name, v_s_route_setup.route_m.namespace) self.restore_default_vsr(kube_apis, v_s_route_setup) assert ( policy_info["status"] and policy_info["status"]["reason"] == "AddedOrUpdated" and policy_info["status"]["state"] == "Valid" ) assert rate_sec >= occur.count(200) >= (rate_sec - 2) @pytest.mark.parametrize("src", [rl_vsr_override_src]) def test_rl_policy_override_vsr( self, kube_apis, crd_ingress_controller, v_s_route_app_setup, v_s_route_setup, test_namespace, src, ): """ Test if rate-limiting policy with lower rps is used when multiple policies are listed in vsr:subroute And test if the order of policies in vsr:subroute has no effect """ req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" print(f"Create rl policy: 1rps") pol_name_pri = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_pri_src, v_s_route_setup.route_m.namespace ) print(f"Create rl policy: 10rps") pol_name_sec = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_sec_src, v_s_route_setup.route_m.namespace ) print(f"Patch vsr with policy: {src}") patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, src, v_s_route_setup.route_m.namespace, ) wait_before_test() occur = [] t_end = time.perf_counter() + 1 resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) print(resp.status_code) assert resp.status_code == 200 while time.perf_counter() < t_end: resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) occur.append(resp.status_code) delete_policy(kube_apis.custom_objects, pol_name_pri, v_s_route_setup.route_m.namespace) delete_policy(kube_apis.custom_objects, pol_name_sec, v_s_route_setup.route_m.namespace) self.restore_default_vsr(kube_apis, v_s_route_setup) assert occur.count(200) <= 1 @pytest.mark.parametrize("src", [rl_vsr_pri_src]) def test_rl_policy_deleted_vsr( self, kube_apis, crd_ingress_controller, v_s_route_app_setup, v_s_route_setup, test_namespace, src, ): """ Test if deleting a policy results in 500 """ req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" print(f"Create rl policy") pol_name = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_pri_src, v_s_route_setup.route_m.namespace ) print(f"Patch vsr with policy: {src}") patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, src, v_s_route_setup.route_m.namespace, ) wait_before_test() resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) assert resp.status_code == 200 print(resp.status_code) delete_policy(kube_apis.custom_objects, pol_name, v_s_route_setup.route_m.namespace) resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) self.restore_default_vsr(kube_apis, v_s_route_setup) assert resp.status_code == 500 @pytest.mark.parametrize("src", [rl_vsr_invalid_src]) def test_rl_policy_invalid_vsr( self, kube_apis, crd_ingress_controller, v_s_route_app_setup, v_s_route_setup, test_namespace, src, ): """ Test if using an invalid policy in vsr:subroute results in 500 """ req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" print(f"Create rl policy") invalid_pol_name = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_invalid_src, v_s_route_setup.route_m.namespace ) print(f"Patch vsr with policy: {src}") patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, src, v_s_route_setup.route_m.namespace, ) wait_before_test() policy_info = read_crd( kube_apis.custom_objects, v_s_route_setup.route_m.namespace, "policies", invalid_pol_name, ) resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) print(resp.status_code) delete_policy(kube_apis.custom_objects, invalid_pol_name, v_s_route_setup.route_m.namespace) self.restore_default_vsr(kube_apis, v_s_route_setup) assert ( policy_info["status"] and policy_info["status"]["reason"] == "Rejected" and policy_info["status"]["state"] == "Invalid" ) assert resp.status_code == 500 @pytest.mark.parametrize("src", [rl_vsr_override_vs_spec_src, rl_vsr_override_vs_route_src]) def test_override_vs_vsr( self, kube_apis, crd_ingress_controller, v_s_route_app_setup, test_namespace, v_s_route_setup, src, ): """ Test if vsr subroute policy overrides vs spec policy And vsr subroute policy overrides vs route policy """ rate_sec = 10 req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" # policy for virtualserver print(f"Create rl policy: 1rps") pol_name_vs = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_pri_src, v_s_route_setup.route_m.namespace ) # policy for virtualserverroute print(f"Create rl policy: 10rps") pol_name_vsr = create_policy_from_yaml( kube_apis.custom_objects, rl_pol_sec_src, v_s_route_setup.route_m.namespace ) # patch vsr with 10rps policy patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, rl_vsr_sec_src, v_s_route_setup.route_m.namespace, ) # patch vs with 1rps policy patch_virtual_server_from_yaml( kube_apis.custom_objects, v_s_route_setup.vs_name, src, v_s_route_setup.namespace ) wait_before_test() occur = [] t_end = time.perf_counter() + 1 resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) print(resp.status_code) assert resp.status_code == 200 while time.perf_counter() < t_end: resp = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}", headers={"host": v_s_route_setup.vs_host}, ) occur.append(resp.status_code) delete_policy(kube_apis.custom_objects, pol_name_vs, v_s_route_setup.route_m.namespace) delete_policy(kube_apis.custom_objects, pol_name_vsr, v_s_route_setup.route_m.namespace) self.restore_default_vsr(kube_apis, v_s_route_setup) patch_virtual_server_from_yaml( kube_apis.custom_objects, v_s_route_setup.vs_name, std_vs_src, v_s_route_setup.namespace ) assert rate_sec >= occur.count(200) >= (rate_sec - 2)
37.159151
110
0.633022
7946c42bac956164a24ced7f38c27636f661dc2f
10,804
py
Python
ogs5py/tools/script.py
MuellerSeb/ogs5py
752e7bd2298fbd476406d168f6b7d1a85863dccd
[ "MIT" ]
3
2018-05-27T15:39:07.000Z
2018-10-29T17:02:11.000Z
ogs5py/tools/script.py
MuellerSeb/ogs5py
752e7bd2298fbd476406d168f6b7d1a85863dccd
[ "MIT" ]
1
2018-11-12T11:32:12.000Z
2018-11-12T13:07:48.000Z
ogs5py/tools/script.py
MuellerSeb/ogs5py
752e7bd2298fbd476406d168f6b7d1a85863dccd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Script generator for ogs5py. .. currentmodule:: ogs5py.tools.script Generator ^^^^^^^^^ .. autosummary:: :toctree: generated gen_script Helpers ^^^^^^^ .. autosummary:: :toctree: generated formater get_line tab add_block_file add_load_file add_list_file ---- """ import os import shutil from ogs5py.fileclasses.base import BlockFile from ogs5py.tools.types import MULTI_FILES, OGS_EXT, STRTYPE def formater(val): """ Format values as string. Parameters ---------- val : value input value to be formatted """ if isinstance(val, STRTYPE): # add quotes to strings return "'" + val + "'" return str(val) def get_line(cont_line): """ Create content line for the script. Parameters ---------- cont_line : list of values content line from a BlockFile """ return "[" + ", ".join(map(formater, cont_line)) + "]" def tab(num): """ Get tab indentation. Parameters ---------- num : int indentation depth """ return num * 4 * " " def add_block_file(block_file, script, ogs_cls_name="model"): """ Add block-file creation to script. Parameters ---------- block_file : BlockFile BlockFile class to be added to the script script : stream given opened file for the script ogs_cls_name : str name of the model within the script """ block_no = block_file.get_block_no() file_type = block_file.get_file_type().lower() for i in range(block_no): mkey, skeys, cont = block_file.get_block(index=i, as_dict=False) if block_file.is_block_unique(i): print(ogs_cls_name + "." + file_type + ".add_block(", file=script) if "" not in skeys: print(tab(1) + "main_key=" + formater(mkey) + ",", file=script) for j, skey in enumerate(skeys): if skey == "": skey = mkey line_no = len(cont[j]) # empty value if ( line_no == 0 or (line_no == 1 and not cont[j][0]) or ( line_no == 1 and len(cont[j][0]) == 1 and cont[j][0][0] == "" ) ): print(tab(1) + skey + "=[],", file=script) # single value elif line_no == 1 and len(cont[j][0]) == 1: print( tab(1) + skey + "=" + formater(cont[j][0][0]) + ",", file=script, ) # single line elif line_no == 1: print( tab(1) + skey + "=" + get_line(cont[j][0]) + ",", file=script, ) # multiple lines else: print(tab(1) + skey + "=[", file=script) for cont_k in cont[j]: print(tab(2) + get_line(cont_k) + ",", file=script) print(tab(1) + "],", file=script) print(")", file=script) else: print(ogs_cls_name + "." + file_type + ".add_block(", file=script) print(tab(1) + "main_key=" + formater(mkey) + ",", file=script) line_no = len(cont[0]) skey = skeys[0] # empty first value if ( line_no == 0 or (line_no == 1 and not cont[0][0]) or ( line_no == 1 and len(cont[0][0]) == 1 and cont[0][0][0] == "" ) ): print(tab(1) + skey + "=[],", file=script) # single first value elif line_no == 1 and len(cont[0][0]) == 1: print( tab(1) + skey + "=" + formater(cont[0][0][0]) + ",", file=script, ) # single first line elif line_no == 1: print( tab(1) + skey + "=" + get_line(cont[0][0]) + ",", file=script, ) # multiple first lines else: print(tab(1) + skey + "=[", file=script) for cont_k in cont[0]: print(tab(2) + get_line(cont_k) + ",", file=script) print(tab(1) + "],", file=script) print(")", file=script) # additional lines for j, skey in enumerate(skeys[1:]): j += 1 # get the right content print( ogs_cls_name + "." + file_type + ".append_to_block(", file=script, ) line_no = len(cont[j]) # empty value if ( line_no == 0 or (line_no == 1 and not cont[j][0]) or ( line_no == 1 and len(cont[j][0]) == 1 and cont[j][0][0] == "" ) ): print(tab(1) + skey + "=[],", file=script) # single value elif line_no == 1 and len(cont[j][0]) == 1: print( tab(1) + skey + "=" + formater(cont[j][0][0]) + ",", file=script, ) # single line elif line_no == 1: print( tab(1) + skey + "=" + get_line(cont[j][0]) + ",", file=script, ) # multiple lines else: print(tab(1) + skey + "=[", file=script) for cont_k in cont[j]: print(tab(2) + get_line(cont_k) + ",", file=script) print(tab(1) + "],", file=script) print(")", file=script) def add_load_file(load_file, script, ogs_cls_name="model"): """ Add a file to be loaded from a script. Parameters ---------- load_file : OGSFile file that should be saved and then loaded from the script script : stream given opened file for the script ogs_cls_name : str name of the model within the script """ if load_file.is_empty: return load_file.write_file() name = load_file.file_name file_type = load_file.get_file_type().lower() print( ogs_cls_name + "." + file_type + ".read_file(" + formater(name) + ")", file=script, ) def add_list_file(list_file, script, typ, ogs_cls_name="model"): """ Add a listed file to be loaded from a script. Parameters ---------- list_file : File listed file that should be saved and then loaded from the script script : stream given opened file for the script typ : str typ of the list file ogs_cls_name : str name of the model within the script """ list_file.write_file() name = list_file.name file_ext = list_file.file_ext file_name = name + file_ext print(ogs_cls_name + "." + typ + ".add(", file=script) print(tab(1) + "name=" + formater(name) + ",", file=script) print(tab(1) + "file_ext=" + formater(file_ext) + ",", file=script) print(")", file=script) print( ogs_cls_name + "." + typ + ".read_file(" + formater(file_name) + ")", file=script, ) def gen_script( ogs_class, script_dir=os.path.join(os.getcwd(), "ogs_script"), script_name="model.py", ogs_cls_name="model", task_root=None, task_id=None, output_dir=None, separate_files=None, ): """ Generate a python script for the given model. Parameters ---------- ogs_class : OGS model class to be converted to a script script_dir : str target directory for the script script_name : str name for the script file (including .py ending) ogs_cls_name : str name of the model in the script task_root : str used task_root in the script task_id : str used task_id in the script output_dir : str used output_dir in the script separate_files : list of str or None list of files, that should be written to separate files and then loaded from the script Notes ----- This will only create BlockFiles from the script. GLI and MSH files as well as every listed or line-wise file will be stored separately. """ if separate_files is None: separate_files = [] if task_root is None: task_root = ogs_class.task_root if task_id is None: task_id = ogs_class.task_id if not os.path.exists(script_dir): os.makedirs(script_dir) path = os.path.join(script_dir, script_name) # temporarily overwrite the task_root original_root = ogs_class.task_root ogs_class.task_root = script_dir # set the imported classes load = ["OGS"] load = ", ".join(load) # open the script file with open(path, "w") as script: print("# -*- coding: utf-8 -*-", file=script) print("from ogs5py import " + load, file=script) print("", file=script) print(ogs_cls_name + " = OGS(", file=script) print(tab(1) + "task_root=" + formater(task_root) + ",", file=script) print(tab(1) + "task_id=" + formater(task_id) + ",", file=script) if output_dir is not None: print( tab(1) + "output_dir=" + formater(output_dir) + ",", file=script, ) print(")", file=script) for ext in OGS_EXT: ogs_file = getattr(ogs_class, ext[1:]) if ( not isinstance(ogs_file, BlockFile) or ext[1:] in separate_files ): add_load_file(ogs_file, script, ogs_cls_name) else: add_block_file(ogs_file, script, ogs_cls_name) add_load_file(ogs_class.pqcdat, script, ogs_cls_name) for typ in MULTI_FILES: for file in getattr(ogs_class, typ): add_list_file(file, script, typ, ogs_cls_name) for copy_file in ogs_class.copy_files: base = os.path.basename(copy_file) shutil.copyfile(copy_file, os.path.join(script_dir, base)) print(ogs_cls_name + ".add_copy_file(" + base + ")", file=script) print(ogs_cls_name + ".write_input()", file=script) print(ogs_cls_name + ".run_model()", file=script) ogs_class.task_root = original_root
30.780627
79
0.494076
7946c46960ef15fdcaff6b5ad9f0bc2623a84b17
5,077
py
Python
tensorflow/python/keras/_impl/keras/datasets/imdb.py
2392863668/tensorFlow
6743031da633d1ce284a606c49eb00e793c1d729
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/_impl/keras/datasets/imdb.py
2392863668/tensorFlow
6743031da633d1ce284a606c49eb00e793c1d729
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/_impl/keras/datasets/imdb.py
2392863668/tensorFlow
6743031da633d1ce284a606c49eb00e793c1d729
[ "Apache-2.0" ]
1
2020-05-08T22:28:00.000Z
2020-05-08T22:28:00.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """IMDB movie review sentiment classification dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import numpy as np from six.moves import zip # pylint: disable=redefined-builtin from tensorflow.python.keras._impl.keras.utils.data_utils import get_file from tensorflow.python.util.tf_export import tf_export @tf_export('keras.datasets.imdb.load_data') def load_data(path='imdb.npz', num_words=None, skip_top=0, maxlen=None, seed=113, start_char=1, oov_char=2, index_from=3): """Loads the IMDB dataset. Arguments: path: where to cache the data (relative to `~/.keras/dataset`). num_words: max number of words to include. Words are ranked by how often they occur (in the training set) and only the most frequent words are kept skip_top: skip the top N most frequently occurring words (which may not be informative). maxlen: sequences longer than this will be filtered out. seed: random seed for sample shuffling. start_char: The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. oov_char: words that were cut out because of the `num_words` or `skip_top` limit will be replaced with this character. index_from: index actual words with this index and higher. Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. Raises: ValueError: in case `maxlen` is so low that no input sequence could be kept. Note that the 'out of vocabulary' character is only used for words that were present in the training set but are not included because they're not making the `num_words` cut here. Words that were not seen in the training set but are in the test set have simply been skipped. """ path = get_file( path, origin='https://s3.amazonaws.com/text-datasets/imdb.npz', file_hash='599dadb1135973df5b59232a0e9a887c') f = np.load(path) x_train, labels_train = f['x_train'], f['y_train'] x_test, labels_test = f['x_test'], f['y_test'] f.close() np.random.seed(seed) indices = np.arange(len(x_train)) np.random.shuffle(indices) x_train = x_train[indices] labels_train = labels_train[indices] indices = np.arange(len(x_test)) np.random.shuffle(indices) x_test = x_test[indices] labels_test = labels_test[indices] xs = np.concatenate([x_train, x_test]) labels = np.concatenate([labels_train, labels_test]) if start_char is not None: xs = [[start_char] + [w + index_from for w in x] for x in xs] elif index_from: xs = [[w + index_from for w in x] for x in xs] if maxlen: new_xs = [] new_labels = [] for x, y in zip(xs, labels): if len(x) < maxlen: new_xs.append(x) new_labels.append(y) xs = new_xs labels = new_labels if not xs: raise ValueError('After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. ' 'Increase maxlen.') if not num_words: num_words = max([max(x) for x in xs]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: # 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: xs = [[oov_char if (w >= num_words or w < skip_top) else w for w in x] for x in xs] else: new_xs = [] for x in xs: nx = [] for w in x: if skip_top <= w < num_words: nx.append(w) new_xs.append(nx) xs = new_xs x_train = np.array(xs[:len(x_train)]) y_train = np.array(labels[:len(x_train)]) x_test = np.array(xs[len(x_train):]) y_test = np.array(labels[len(x_train):]) return (x_train, y_train), (x_test, y_test) @tf_export('keras.datasets.imdb.get_word_index') def get_word_index(path='imdb_word_index.json'): """Retrieves the dictionary mapping word indices back to words. Arguments: path: where to cache the data (relative to `~/.keras/dataset`). Returns: The word index dictionary. """ path = get_file( path, origin='https://s3.amazonaws.com/text-datasets/imdb_word_index.json') f = open(path) data = json.load(f) f.close() return data
32.754839
80
0.659445
7946c4e03d0d885474fc249354dd123c3ed4da28
3,142
py
Python
contextmonkey/tracelayer/processingfilters/CabspottingLocationModify.py
manojrege/contextmonkey
9974889a726d7f60c6da0d6ccab97113ce635a14
[ "BSD-3-Clause" ]
4
2017-03-17T02:28:12.000Z
2019-04-18T11:25:44.000Z
contextmonkey/tracelayer/processingfilters/CabspottingLocationModify.py
manojrege/contextmonkey
9974889a726d7f60c6da0d6ccab97113ce635a14
[ "BSD-3-Clause" ]
null
null
null
contextmonkey/tracelayer/processingfilters/CabspottingLocationModify.py
manojrege/contextmonkey
9974889a726d7f60c6da0d6ccab97113ce635a14
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2017, Technische Universität Berlin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name of the Technische Universitaet Berlin nor the names # of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Cabspotting location data processing filter.""" __author__ = "Manoj R. Rege" __copyright__ = "Copyright (c) 2017, Technische Universität Berlin" __credits__ = ["Manoj R. Rege"] __version__ = "1.0" __maintainer__ = "Manoj R. Rege" __email__ = "[email protected]" __status__ = "Prototype" import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) sys.path.append('../../../') from zope.interface import implementer from contextmonkey.tracelayer.interfaces.ITraceModify import ITraceModify from contextmonkey.ContextMonkeyLogger import tracelayer @implementer(ITraceModify) class CabspottingLocationModify(object): """Class providing implementation of ITraceModfy for Cabspotting Location traces.""" filterattributes = None def __init__(self): """Initialize.""" self.tracedatalist = [] def filterTrace(self, tracedata, uuid, **kwargs): """Remove unwanted attributes from the tracedata.""" return tracedata def handlefailure(self, dummy=None): """Handle failure of fetching trace, by generating random values.""" pass def processTrace(self,tracedatalist, uuid, **kwargs): """Perform trace processing.""" tracelayer.log("CABSPOTTINGLOCATIONMODIFY-processTrace",str(tracedatalist)) tracedata = tracedatalist[0].split(' ') tempdict={'latitude':float(tracedata[0]), 'longitude':float(tracedata[1]), 'altitude':float(tracedata[2])} return tempdict
41.893333
114
0.744749
7946c643243295ec05241863bf2cdcb237f97700
11,253
py
Python
env/lib/python3.7/site-packages/numpy/doc/basics.py
MarcoMancha/BreastCancerDetector
be0dfdcebd1ae66da6d0cf48e2525c24942ae877
[ "Apache-2.0" ]
99
2019-10-09T16:14:46.000Z
2022-03-17T02:23:47.000Z
env/lib/python3.7/site-packages/numpy/doc/basics.py
MarcoMancha/BreastCancerDetector
be0dfdcebd1ae66da6d0cf48e2525c24942ae877
[ "Apache-2.0" ]
26
2020-03-24T18:07:06.000Z
2022-03-12T00:12:27.000Z
env/lib/python3.7/site-packages/numpy/doc/basics.py
MarcoMancha/BreastCancerDetector
be0dfdcebd1ae66da6d0cf48e2525c24942ae877
[ "Apache-2.0" ]
98
2019-10-17T14:48:28.000Z
2022-01-21T03:33:38.000Z
""" ============ Array basics ============ Array types and conversions between types ========================================= NumPy supports a much greater variety of numerical types than Python does. This section shows which are available, and how to modify an array's data-type. The primitive types supported are tied closely to those in C: .. list-table:: :header-rows: 1 * - Numpy type - C type - Description * - `np.bool` - ``bool`` - Boolean (True or False) stored as a byte * - `np.byte` - ``signed char`` - Platform-defined * - `np.ubyte` - ``unsigned char`` - Platform-defined * - `np.short` - ``short`` - Platform-defined * - `np.ushort` - ``unsigned short`` - Platform-defined * - `np.intc` - ``int`` - Platform-defined * - `np.uintc` - ``unsigned int`` - Platform-defined * - `np.int_` - ``long`` - Platform-defined * - `np.uint` - ``unsigned long`` - Platform-defined * - `np.longlong` - ``long long`` - Platform-defined * - `np.ulonglong` - ``unsigned long long`` - Platform-defined * - `np.half` / `np.float16` - - Half precision float: sign bit, 5 bits exponent, 10 bits mantissa * - `np.single` - ``float`` - Platform-defined single precision float: typically sign bit, 8 bits exponent, 23 bits mantissa * - `np.double` - ``double`` - Platform-defined double precision float: typically sign bit, 11 bits exponent, 52 bits mantissa. * - `np.longdouble` - ``long double`` - Platform-defined extended-precision float * - `np.csingle` - ``float complex`` - Complex number, represented by two single-precision floats (real and imaginary components) * - `np.cdouble` - ``double complex`` - Complex number, represented by two double-precision floats (real and imaginary components). * - `np.clongdouble` - ``long double complex`` - Complex number, represented by two extended-precision floats (real and imaginary components). Since many of these have platform-dependent definitions, a set of fixed-size aliases are provided: .. list-table:: :header-rows: 1 * - Numpy type - C type - Description * - `np.int8` - ``int8_t`` - Byte (-128 to 127) * - `np.int16` - ``int16_t`` - Integer (-32768 to 32767) * - `np.int32` - ``int32_t`` - Integer (-2147483648 to 2147483647) * - `np.int64` - ``int64_t`` - Integer (-9223372036854775808 to 9223372036854775807) * - `np.uint8` - ``uint8_t`` - Unsigned integer (0 to 255) * - `np.uint16` - ``uint16_t`` - Unsigned integer (0 to 65535) * - `np.uint32` - ``uint32_t`` - Unsigned integer (0 to 4294967295) * - `np.uint64` - ``uint64_t`` - Unsigned integer (0 to 18446744073709551615) * - `np.intp` - ``intptr_t`` - Integer used for indexing, typically the same as ``ssize_t`` * - `np.uintp` - ``uintptr_t`` - Integer large enough to hold a pointer * - `np.float32` - ``float`` - * - `np.float64` / `np.float_` - ``double`` - Note that this matches the precision of the builtin python `float`. * - `np.complex64` - ``float complex`` - Complex number, represented by two 32-bit floats (real and imaginary components) * - `np.complex128` / `np.complex_` - ``double complex`` - Note that this matches the precision of the builtin python `complex`. NumPy numerical types are instances of ``dtype`` (data-type) objects, each having unique characteristics. Once you have imported NumPy using :: >>> import numpy as np the dtypes are available as ``np.bool_``, ``np.float32``, etc. Advanced types, not listed in the table above, are explored in section :ref:`structured_arrays`. There are 5 basic numerical types representing booleans (bool), integers (int), unsigned integers (uint) floating point (float) and complex. Those with numbers in their name indicate the bitsize of the type (i.e. how many bits are needed to represent a single value in memory). Some types, such as ``int`` and ``intp``, have differing bitsizes, dependent on the platforms (e.g. 32-bit vs. 64-bit machines). This should be taken into account when interfacing with low-level code (such as C or Fortran) where the raw memory is addressed. Data-types can be used as functions to convert python numbers to array scalars (see the array scalar section for an explanation), python sequences of numbers to arrays of that type, or as arguments to the dtype keyword that many numpy functions or methods accept. Some examples:: >>> import numpy as np >>> x = np.float32(1.0) >>> x 1.0 >>> y = np.int_([1,2,4]) >>> y array([1, 2, 4]) >>> z = np.arange(3, dtype=np.uint8) >>> z array([0, 1, 2], dtype=uint8) Array types can also be referred to by character codes, mostly to retain backward compatibility with older packages such as Numeric. Some documentation may still refer to these, for example:: >>> np.array([1, 2, 3], dtype='f') array([ 1., 2., 3.], dtype=float32) We recommend using dtype objects instead. To convert the type of an array, use the .astype() method (preferred) or the type itself as a function. For example: :: >>> z.astype(float) #doctest: +NORMALIZE_WHITESPACE array([ 0., 1., 2.]) >>> np.int8(z) array([0, 1, 2], dtype=int8) Note that, above, we use the *Python* float object as a dtype. NumPy knows that ``int`` refers to ``np.int_``, ``bool`` means ``np.bool_``, that ``float`` is ``np.float_`` and ``complex`` is ``np.complex_``. The other data-types do not have Python equivalents. To determine the type of an array, look at the dtype attribute:: >>> z.dtype dtype('uint8') dtype objects also contain information about the type, such as its bit-width and its byte-order. The data type can also be used indirectly to query properties of the type, such as whether it is an integer:: >>> d = np.dtype(int) >>> d dtype('int32') >>> np.issubdtype(d, np.integer) True >>> np.issubdtype(d, np.floating) False Array Scalars ============= NumPy generally returns elements of arrays as array scalars (a scalar with an associated dtype). Array scalars differ from Python scalars, but for the most part they can be used interchangeably (the primary exception is for versions of Python older than v2.x, where integer array scalars cannot act as indices for lists and tuples). There are some exceptions, such as when code requires very specific attributes of a scalar or when it checks specifically whether a value is a Python scalar. Generally, problems are easily fixed by explicitly converting array scalars to Python scalars, using the corresponding Python type function (e.g., ``int``, ``float``, ``complex``, ``str``, ``unicode``). The primary advantage of using array scalars is that they preserve the array type (Python may not have a matching scalar type available, e.g. ``int16``). Therefore, the use of array scalars ensures identical behaviour between arrays and scalars, irrespective of whether the value is inside an array or not. NumPy scalars also have many of the same methods arrays do. Overflow Errors =============== The fixed size of NumPy numeric types may cause overflow errors when a value requires more memory than available in the data type. For example, `numpy.power` evaluates ``100 * 10 ** 8`` correctly for 64-bit integers, but gives 1874919424 (incorrect) for a 32-bit integer. >>> np.power(100, 8, dtype=np.int64) 10000000000000000 >>> np.power(100, 8, dtype=np.int32) 1874919424 The behaviour of NumPy and Python integer types differs significantly for integer overflows and may confuse users expecting NumPy integers to behave similar to Python's ``int``. Unlike NumPy, the size of Python's ``int`` is flexible. This means Python integers may expand to accommodate any integer and will not overflow. NumPy provides `numpy.iinfo` and `numpy.finfo` to verify the minimum or maximum values of NumPy integer and floating point values respectively :: >>> np.iinfo(np.int) # Bounds of the default integer on this system. iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64) >>> np.iinfo(np.int32) # Bounds of a 32-bit integer iinfo(min=-2147483648, max=2147483647, dtype=int32) >>> np.iinfo(np.int64) # Bounds of a 64-bit integer iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64) If 64-bit integers are still too small the result may be cast to a floating point number. Floating point numbers offer a larger, but inexact, range of possible values. >>> np.power(100, 100, dtype=np.int64) # Incorrect even with 64-bit int 0 >>> np.power(100, 100, dtype=np.float64) 1e+200 Extended Precision ================== Python's floating-point numbers are usually 64-bit floating-point numbers, nearly equivalent to ``np.float64``. In some unusual situations it may be useful to use floating-point numbers with more precision. Whether this is possible in numpy depends on the hardware and on the development environment: specifically, x86 machines provide hardware floating-point with 80-bit precision, and while most C compilers provide this as their ``long double`` type, MSVC (standard for Windows builds) makes ``long double`` identical to ``double`` (64 bits). NumPy makes the compiler's ``long double`` available as ``np.longdouble`` (and ``np.clongdouble`` for the complex numbers). You can find out what your numpy provides with ``np.finfo(np.longdouble)``. NumPy does not provide a dtype with more precision than C ``long double``\\s; in particular, the 128-bit IEEE quad precision data type (FORTRAN's ``REAL*16``\\) is not available. For efficient memory alignment, ``np.longdouble`` is usually stored padded with zero bits, either to 96 or 128 bits. Which is more efficient depends on hardware and development environment; typically on 32-bit systems they are padded to 96 bits, while on 64-bit systems they are typically padded to 128 bits. ``np.longdouble`` is padded to the system default; ``np.float96`` and ``np.float128`` are provided for users who want specific padding. In spite of the names, ``np.float96`` and ``np.float128`` provide only as much precision as ``np.longdouble``, that is, 80 bits on most x86 machines and 64 bits in standard Windows builds. Be warned that even if ``np.longdouble`` offers more precision than python ``float``, it is easy to lose that extra precision, since python often forces values to pass through ``float``. For example, the ``%`` formatting operator requires its arguments to be converted to standard python types, and it is therefore impossible to preserve extended precision even if many decimal places are requested. It can be useful to test your code with the value ``1 + np.finfo(np.longdouble).eps``. """ from __future__ import division, absolute_import, print_function
32.80758
101
0.674842
7946c6e34069235a2492b459209f6b873cba1deb
82
py
Python
src/pyassets/__init__.py
skillfulhacks/xv
861419a38e955eb841b7a25f0924f5a2dc2816a9
[ "MIT" ]
null
null
null
src/pyassets/__init__.py
skillfulhacks/xv
861419a38e955eb841b7a25f0924f5a2dc2816a9
[ "MIT" ]
null
null
null
src/pyassets/__init__.py
skillfulhacks/xv
861419a38e955eb841b7a25f0924f5a2dc2816a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Program Python Assets # # # # #
9.111111
25
0.54878
7946c7275acf28ea31247cb18685343eab5753d7
4,129
py
Python
mergify_engine/logs.py
nafg/mergify-engine
7fac6f561a0cd3481a89f2aa19cd8d4d0e39d7e8
[ "Apache-2.0" ]
null
null
null
mergify_engine/logs.py
nafg/mergify-engine
7fac6f561a0cd3481a89f2aa19cd8d4d0e39d7e8
[ "Apache-2.0" ]
null
null
null
mergify_engine/logs.py
nafg/mergify-engine
7fac6f561a0cd3481a89f2aa19cd8d4d0e39d7e8
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextvars import logging import os import re import sys import daiquiri import daiquiri.formatter import ddtrace from mergify_engine import config LOG = daiquiri.getLogger(__name__) logging.addLevelName(42, "TEST") LEVEL_COLORS = daiquiri.formatter.ColorFormatter.LEVEL_COLORS.copy() LEVEL_COLORS[42] = "\033[01;35m" WORKER_ID: contextvars.ContextVar[str] = contextvars.ContextVar("worker_id") class CustomFormatter(daiquiri.formatter.ColorExtrasFormatter): # type: ignore[misc] LEVEL_COLORS = LEVEL_COLORS def format(self, record): if hasattr(record, "_daiquiri_extra_keys"): record._daiquiri_extra_keys = sorted(record._daiquiri_extra_keys) return super().format(record) def add_extras(self, record): super().add_extras(record) worker_id = WORKER_ID.get(None) if worker_id is not None: record.extras += " " + self.extras_template.format("worker_id", worker_id) CUSTOM_FORMATTER = CustomFormatter( fmt="%(asctime)s [%(process)d] %(color)s%(levelname)-8.8s %(name)s: \033[1m%(message)s\033[0m%(extras)s%(color_stop)s" ) class HerokuDatadogFormatter(daiquiri.formatter.DatadogFormatter): # type: ignore [misc] HEROKU_LOG_EXTRAS = { envvar: os.environ[envvar] for envvar in ("HEROKU_RELEASE_VERSION", "HEROKU_SLUG_COMMIT") if envvar in os.environ } def add_fields(self, log_record, record, message_dict): super().add_fields(log_record, record, message_dict) log_record.update(self.HEROKU_LOG_EXTRAS) log_record.update(ddtrace.tracer.get_log_correlation_context()) worker_id = WORKER_ID.get(None) if worker_id is not None: log_record.update({"worker_id": worker_id}) def config_log() -> None: LOG.info("##################### CONFIGURATION ######################") for key, value in config.CONFIG.items(): name = str(key) if ( name == "OAUTH_CLIENT_ID" or "PRIVATE_KEY" in name or "TOKEN" in name or "SECRET" in name or "PRIVATE_KEY" in name ) and value is not None: value = "*****" if "URL" in name and value is not None: value = re.sub(r"://[^@]*@", "://*****@", value) LOG.info("* MERGIFYENGINE_%s: %s", name, value) LOG.info("* PATH: %s", os.environ.get("PATH")) LOG.info("##########################################################") def setup_logging(dump_config: bool = True) -> None: outputs = [] if config.LOG_STDOUT: outputs.append( daiquiri.output.Stream( sys.stdout, level=config.LOG_STDOUT_LEVEL, formatter=CUSTOM_FORMATTER ) ) if config.LOG_DATADOG: outputs.append( daiquiri.output.Datadog( level=config.LOG_DATADOG_LEVEL, handler_class=daiquiri.handlers.PlainTextDatagramHandler, formatter=HerokuDatadogFormatter(), ) ) daiquiri.setup( outputs=outputs, level=config.LOG_LEVEL, ) daiquiri.set_default_log_levels( [ ("github.Requester", "WARN"), ("urllib3.connectionpool", "WARN"), ("urllib3.util.retry", "WARN"), ("vcr", "WARN"), ("httpx", "WARN"), ("asyncio", "WARN"), ("uvicorn.access", "WARN"), ] + [(name, "DEBUG") for name in config.LOG_DEBUG_LOGGER_NAMES] ) if dump_config: config_log()
31.045113
122
0.61952
7946c7a80f35957b2770f649439be65d040cdf41
1,205
py
Python
python/encrypt.py
mswdwk/code_test_records
6edda193c8c19607c2021e62b96b8ff0813c7208
[ "MIT" ]
1
2019-06-06T13:34:24.000Z
2019-06-06T13:34:24.000Z
python/encrypt.py
mswdwk/code_test_records
6edda193c8c19607c2021e62b96b8ff0813c7208
[ "MIT" ]
null
null
null
python/encrypt.py
mswdwk/code_test_records
6edda193c8c19607c2021e62b96b8ff0813c7208
[ "MIT" ]
null
null
null
#coding: utf8 import sys from Crypto.Cipher import AES from binascii import b2a_hex, a2b_hex class prpcrypt(): def __init__(self, key): self.key = key self.mode = AES.MODE_CBC #加密函数,如果text不是16的倍数【加密文本text必须为16的倍数!】,那就补足为16的倍数 def encrypt(self, text): cryptor = AES.new(self.key, self.mode, self.key) #这里密钥key 长度必须为16(AES-128)、24(AES-192)、或32(AES-256)Bytes 长度.目前AES-128足够用 length = 16 count = len(text) add = length - (count % length) text = text + ('\0' * add) self.ciphertext = cryptor.encrypt(text) #因为AES加密时候得到的字符串不一定是ascii字符集的,输出到终端或者保存时候可能存在问题 #所以这里统一把加密后的字符串转化为16进制字符串 return b2a_hex(self.ciphertext) #解密后,去掉补足的空格用strip() 去掉 def decrypt(self, text): cryptor = AES.new(self.key, self.mode, self.key) plain_text = cryptor.decrypt(a2b_hex(text)) return plain_text.rstrip('\0') if __name__ == '__main__': pc = prpcrypt('keyskeyskeyskeys') #初始化密钥 e = pc.encrypt("00000") d = pc.decrypt(e) print (e,d) e = pc.encrypt("00000000000000000000000000") d = pc.decrypt(e) print (e,d)
31.710526
79
0.607469
7946c8242c9a52e09c4a4b3f4e9ecaaaa3f96f9e
7,369
py
Python
mautic/api.py
sharon-asana/python-mautic
84e0d81ab223dda91dee72895363b0e86271c113
[ "MIT" ]
3
2020-11-22T00:07:41.000Z
2021-03-02T03:32:24.000Z
mautic/api.py
sharon-asana/python-mautic
84e0d81ab223dda91dee72895363b0e86271c113
[ "MIT" ]
null
null
null
mautic/api.py
sharon-asana/python-mautic
84e0d81ab223dda91dee72895363b0e86271c113
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import import requests from requests_oauthlib import OAuth2Session import json class MauticOauth2Client(object): def __init__( self, base_url, client_id, client_secret=None, scope=None, token=None, token_updater=None ): """ :param base_url: str Base URL for Mautic API E.g. `https://<your-domain>.mautic.net` :param client_id: str Mautic API Public Key :param client_secret: str Mautic API Secret Key - needed to autorefresh token :param scope: list|str :param token: dict with access token data :param token_updater: function used for token autorefresh. """ if scope and not isinstance(scope, (list, tuple)): scope = scope.split(',') self.base_url = base_url.strip(' /') self.access_token_url = base_url + '/oauth/v2/token' self.authorization_base_url = base_url + '/oauth/v2/authorize' if token_updater is not None and client_secret is not None: kwargs = { 'auto_refresh_url': self.access_token_url, 'auto_refresh_kwargs': { 'client_id': client_id, 'client_secret': client_secret }, 'token_updater': token_updater } else: kwargs = {} self.session = OAuth2Session( client_id, scope=scope, token=token, **kwargs ) class MauticBasicAuthClient(object): def __init__( self, base_url, username, password ): """ :param base_url: str Base URL for Mautic API E.g. `https://<your-domain>.mautic.net` :param username: str Mautic Username :param password: str Mautic Password """ self.base_url = base_url.strip(' /') self.session = requests.Session() self.session.auth = (username, password) class API(object): _endpoint = '' def __init__(self, client): self._client = client self.endpoint_url = '{base_url}/api/{endpoint}'.format( base_url=self._client.base_url, endpoint=self._endpoint.strip(' /') ) @staticmethod def process_response(response): if response.ok: return response.json() try: return response.json() except ValueError: # no json object could be decoded return response.content @staticmethod def action_not_supported(action): """ Returns a not supported error :param action: str :return: dict """ return { 'error': { 'code': 500, 'message': '{action} is not supported at this time'.format(action=action) } } def get(self, obj_id): """ Get a single item :param obj_id: int :return: dict|str """ response = self._client.session.get( '{url}/{id}'.format( url=self.endpoint_url, id=obj_id ) ) return self.process_response(response) def get_list( self, search='', where={}, start=0, limit=0, order_by='', order_by_dir='ASC', published_only=False, minimal=False ): """ Get a list of items :param search: str :param start: int :param limit: int :param order_by: str :param order_by_dir: str :param published_only: bool :param minimal: bool :return: dict|str """ parameters = {} args = ['search', 'start', 'limit', 'minimal', 'where'] for arg in args: if arg in locals() and locals()[arg]: if arg == 'where': for key, val in where.items(): parameters[key] = val else: parameters[arg] = locals()[arg] if order_by: parameters['orderBy'] = order_by if order_by_dir: parameters['orderByDir'] = order_by_dir if published_only: parameters['publishedOnly'] = 'true' response = self._client.session.get( self.endpoint_url, params=parameters ) return self.process_response(response) def get_published_list( self, search='', start=0, limit=0, order_by='', order_by_dir='ASC' ): """ Proxy function to get_list with published_only set to True :param search: str :param start: int :param limit: int :param order_by: str :param order_by_dir: str :return: dict|str """ return self.get_list( search=search, start=start, limit=limit, order_by=order_by, order_by_dir=order_by_dir, published_only=True ) def create(self, parameters): """ Create a new item (if supported) :param parameters: dict :return: dict|str """ response = self._client.session.post( '{url}/new'.format(url=self.endpoint_url), data=parameters ) return self.process_response(response) def create_batch(self,parameters): """ Edit using the new/batch option :param paramaters: list|dict (list of dictionaries) """ data = json.dumps(parameters) response = self._client.session.post( '{url}/batch/new'.format(url=self.endpoint_url), data=data ) return self.process_response(response) def edit(self, obj_id, parameters, create_if_not_exists=False): """ Edit an item with option to create if it doesn't exist :param obj_id: int :param create_if_not_exists: bool :param parameters: dict :return: dict|str """ if create_if_not_exists: response = self._client.session.put( '{url}/{id}/edit'.format( url=self.endpoint_url, id=obj_id ), data=parameters ) else: response = self._client.session.patch( '{url}/{id}/edit'.format( url=self.endpoint_url, id=obj_id ), data=parameters ) return self.process_response(response) def edit_batch(self,parameters): """ Edit using the edit/batch option :param paramaters: list|dict (list of dictionaries) """ data = json.dumps(parameters) response = self._client.session.patch( '{url}/batch/edit'.format(url=self.endpoint_url), data=data ) return self.process_response(response) def delete(self, obj_id): """ Delete an item :param obj_id: int :return: dict|str """ response = self._client.session.delete( '{url}/{id}/delete'.format( url=self.endpoint_url, id=obj_id ) ) return self.process_response(response)
27.599251
92
0.535758
7946c9a5ca3d1a4fef50a150f20e6788941010d9
51,767
py
Python
keystone/tests/unit/test_v3_resource.py
whitepages/keystone
7a0874f6f69852584061fa384f75dfb0d5f1c229
[ "Apache-2.0" ]
null
null
null
keystone/tests/unit/test_v3_resource.py
whitepages/keystone
7a0874f6f69852584061fa384f75dfb0d5f1c229
[ "Apache-2.0" ]
null
null
null
keystone/tests/unit/test_v3_resource.py
whitepages/keystone
7a0874f6f69852584061fa384f75dfb0d5f1c229
[ "Apache-2.0" ]
1
2021-03-21T11:38:30.000Z
2021-03-21T11:38:30.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from oslo_config import cfg from six.moves import http_client from six.moves import range from keystone.common import controller from keystone import exception from keystone.tests import unit from keystone.tests.unit import test_v3 CONF = cfg.CONF class ResourceTestCase(test_v3.RestfulTestCase, test_v3.AssignmentTestMixin): """Test domains and projects.""" # Domain CRUD tests def test_create_domain(self): """Call ``POST /domains``.""" ref = unit.new_domain_ref() r = self.post( '/domains', body={'domain': ref}) return self.assertValidDomainResponse(r, ref) def test_create_domain_case_sensitivity(self): """Call `POST /domains`` twice with upper() and lower() cased name.""" ref = unit.new_domain_ref() # ensure the name is lowercase ref['name'] = ref['name'].lower() r = self.post( '/domains', body={'domain': ref}) self.assertValidDomainResponse(r, ref) # ensure the name is uppercase ref['name'] = ref['name'].upper() r = self.post( '/domains', body={'domain': ref}) self.assertValidDomainResponse(r, ref) def test_create_domain_bad_request(self): """Call ``POST /domains``.""" self.post('/domains', body={'domain': {}}, expected_status=http_client.BAD_REQUEST) def test_create_domain_unsafe(self): """Call ``POST /domains with unsafe names``.""" unsafe_name = 'i am not / safe' self.config_fixture.config(group='resource', domain_name_url_safe='off') ref = unit.new_domain_ref(name=unsafe_name) self.post( '/domains', body={'domain': ref}) for config_setting in ['new', 'strict']: self.config_fixture.config(group='resource', domain_name_url_safe=config_setting) ref = unit.new_domain_ref(name=unsafe_name) self.post( '/domains', body={'domain': ref}, expected_status=http_client.BAD_REQUEST) def test_create_domain_unsafe_default(self): """Check default for unsafe names for ``POST /domains``.""" unsafe_name = 'i am not / safe' # By default, we should be able to create unsafe names ref = unit.new_domain_ref(name=unsafe_name) self.post( '/domains', body={'domain': ref}) def test_list_domains(self): """Call ``GET /domains``.""" resource_url = '/domains' r = self.get(resource_url) self.assertValidDomainListResponse(r, ref=self.domain, resource_url=resource_url) def test_get_domain(self): """Call ``GET /domains/{domain_id}``.""" r = self.get('/domains/%(domain_id)s' % { 'domain_id': self.domain_id}) self.assertValidDomainResponse(r, self.domain) def test_update_domain(self): """Call ``PATCH /domains/{domain_id}``.""" ref = unit.new_domain_ref() del ref['id'] r = self.patch('/domains/%(domain_id)s' % { 'domain_id': self.domain_id}, body={'domain': ref}) self.assertValidDomainResponse(r, ref) def test_update_domain_unsafe(self): """Call ``POST /domains/{domain_id} with unsafe names``.""" unsafe_name = 'i am not / safe' self.config_fixture.config(group='resource', domain_name_url_safe='off') ref = unit.new_domain_ref(name=unsafe_name) del ref['id'] self.patch('/domains/%(domain_id)s' % { 'domain_id': self.domain_id}, body={'domain': ref}) unsafe_name = 'i am still not / safe' for config_setting in ['new', 'strict']: self.config_fixture.config(group='resource', domain_name_url_safe=config_setting) ref = unit.new_domain_ref(name=unsafe_name) del ref['id'] self.patch('/domains/%(domain_id)s' % { 'domain_id': self.domain_id}, body={'domain': ref}, expected_status=http_client.BAD_REQUEST) def test_update_domain_unsafe_default(self): """Check default for unsafe names for ``POST /domains``.""" unsafe_name = 'i am not / safe' # By default, we should be able to create unsafe names ref = unit.new_domain_ref(name=unsafe_name) del ref['id'] self.patch('/domains/%(domain_id)s' % { 'domain_id': self.domain_id}, body={'domain': ref}) def test_disable_domain(self): """Call ``PATCH /domains/{domain_id}`` (set enabled=False).""" # Create a 2nd set of entities in a 2nd domain domain2 = unit.new_domain_ref() self.resource_api.create_domain(domain2['id'], domain2) project2 = unit.new_project_ref(domain_id=domain2['id']) self.resource_api.create_project(project2['id'], project2) user2 = unit.create_user(self.identity_api, domain_id=domain2['id'], project_id=project2['id']) self.assignment_api.add_user_to_project(project2['id'], user2['id']) # First check a user in that domain can authenticate.. body = { 'auth': { 'passwordCredentials': { 'userId': user2['id'], 'password': user2['password'] }, 'tenantId': project2['id'] } } self.admin_request( path='/v2.0/tokens', method='POST', body=body) auth_data = self.build_authentication_request( user_id=user2['id'], password=user2['password'], project_id=project2['id']) self.v3_create_token(auth_data) # Now disable the domain domain2['enabled'] = False r = self.patch('/domains/%(domain_id)s' % { 'domain_id': domain2['id']}, body={'domain': {'enabled': False}}) self.assertValidDomainResponse(r, domain2) # Make sure the user can no longer authenticate, via # either API body = { 'auth': { 'passwordCredentials': { 'userId': user2['id'], 'password': user2['password'] }, 'tenantId': project2['id'] } } self.admin_request( path='/v2.0/tokens', method='POST', body=body, expected_status=http_client.UNAUTHORIZED) # Try looking up in v3 by name and id auth_data = self.build_authentication_request( user_id=user2['id'], password=user2['password'], project_id=project2['id']) self.v3_create_token(auth_data, expected_status=http_client.UNAUTHORIZED) auth_data = self.build_authentication_request( username=user2['name'], user_domain_id=domain2['id'], password=user2['password'], project_id=project2['id']) self.v3_create_token(auth_data, expected_status=http_client.UNAUTHORIZED) def test_delete_enabled_domain_fails(self): """Call ``DELETE /domains/{domain_id}`` (when domain enabled).""" # Try deleting an enabled domain, which should fail self.delete('/domains/%(domain_id)s' % { 'domain_id': self.domain['id']}, expected_status=exception.ForbiddenAction.code) def test_delete_domain(self): """Call ``DELETE /domains/{domain_id}``. The sample data set up already has a user and project that is part of self.domain. Additionally we will create a group and a credential within it. Since the user we will authenticate with is in this domain, we create a another set of entities in a second domain. Deleting this second domain should delete all these new entities. In addition, all the entities in the regular self.domain should be unaffected by the delete. Test Plan: - Create domain2 and a 2nd set of entities - Disable domain2 - Delete domain2 - Check entities in domain2 have been deleted - Check entities in self.domain are unaffected """ # Create a group and a credential in the main domain group = unit.new_group_ref(domain_id=self.domain_id) group = self.identity_api.create_group(group) credential = unit.new_credential_ref(user_id=self.user['id'], project_id=self.project_id) self.credential_api.create_credential(credential['id'], credential) # Create a 2nd set of entities in a 2nd domain domain2 = unit.new_domain_ref() self.resource_api.create_domain(domain2['id'], domain2) project2 = unit.new_project_ref(domain_id=domain2['id']) self.resource_api.create_project(project2['id'], project2) user2 = unit.new_user_ref(domain_id=domain2['id'], project_id=project2['id']) user2 = self.identity_api.create_user(user2) group2 = unit.new_group_ref(domain_id=domain2['id']) group2 = self.identity_api.create_group(group2) credential2 = unit.new_credential_ref(user_id=user2['id'], project_id=project2['id']) self.credential_api.create_credential(credential2['id'], credential2) # Now disable the new domain and delete it domain2['enabled'] = False r = self.patch('/domains/%(domain_id)s' % { 'domain_id': domain2['id']}, body={'domain': {'enabled': False}}) self.assertValidDomainResponse(r, domain2) self.delete('/domains/%(domain_id)s' % {'domain_id': domain2['id']}) # Check all the domain2 relevant entities are gone self.assertRaises(exception.DomainNotFound, self.resource_api.get_domain, domain2['id']) self.assertRaises(exception.ProjectNotFound, self.resource_api.get_project, project2['id']) self.assertRaises(exception.GroupNotFound, self.identity_api.get_group, group2['id']) self.assertRaises(exception.UserNotFound, self.identity_api.get_user, user2['id']) self.assertRaises(exception.CredentialNotFound, self.credential_api.get_credential, credential2['id']) # ...and that all self.domain entities are still here r = self.resource_api.get_domain(self.domain['id']) self.assertDictEqual(self.domain, r) r = self.resource_api.get_project(self.project['id']) self.assertDictEqual(self.project, r) r = self.identity_api.get_group(group['id']) self.assertDictEqual(group, r) r = self.identity_api.get_user(self.user['id']) self.user.pop('password') self.assertDictEqual(self.user, r) r = self.credential_api.get_credential(credential['id']) self.assertDictEqual(credential, r) def test_delete_default_domain(self): # Need to disable it first. self.patch('/domains/%(domain_id)s' % { 'domain_id': CONF.identity.default_domain_id}, body={'domain': {'enabled': False}}) self.delete( '/domains/%(domain_id)s' % { 'domain_id': CONF.identity.default_domain_id}) def test_token_revoked_once_domain_disabled(self): """Test token from a disabled domain has been invalidated. Test that a token that was valid for an enabled domain becomes invalid once that domain is disabled. """ domain = unit.new_domain_ref() self.resource_api.create_domain(domain['id'], domain) user2 = unit.create_user(self.identity_api, domain_id=domain['id']) # build a request body auth_body = self.build_authentication_request( user_id=user2['id'], password=user2['password']) # sends a request for the user's token token_resp = self.post('/auth/tokens', body=auth_body) subject_token = token_resp.headers.get('x-subject-token') # validates the returned token and it should be valid. self.head('/auth/tokens', headers={'x-subject-token': subject_token}, expected_status=http_client.OK) # now disable the domain domain['enabled'] = False url = "/domains/%(domain_id)s" % {'domain_id': domain['id']} self.patch(url, body={'domain': {'enabled': False}}) # validates the same token again and it should be 'not found' # as the domain has already been disabled. self.head('/auth/tokens', headers={'x-subject-token': subject_token}, expected_status=http_client.NOT_FOUND) def test_delete_domain_hierarchy(self): """Call ``DELETE /domains/{domain_id}``.""" domain = unit.new_domain_ref() self.resource_api.create_domain(domain['id'], domain) root_project = unit.new_project_ref(domain_id=domain['id']) self.resource_api.create_project(root_project['id'], root_project) leaf_project = unit.new_project_ref( domain_id=domain['id'], parent_id=root_project['id']) self.resource_api.create_project(leaf_project['id'], leaf_project) # Need to disable it first. self.patch('/domains/%(domain_id)s' % { 'domain_id': domain['id']}, body={'domain': {'enabled': False}}) self.delete( '/domains/%(domain_id)s' % { 'domain_id': domain['id']}) self.assertRaises(exception.DomainNotFound, self.resource_api.get_domain, domain['id']) self.assertRaises(exception.ProjectNotFound, self.resource_api.get_project, root_project['id']) self.assertRaises(exception.ProjectNotFound, self.resource_api.get_project, leaf_project['id']) def test_forbid_operations_on_federated_domain(self): """Make sure one cannot operate on federated domain. This includes operations like create, update, delete on domain identified by id and name where difference variations of id 'Federated' are used. """ def create_domains(): for variation in ('Federated', 'FEDERATED', 'federated', 'fEderated'): domain = unit.new_domain_ref() domain['id'] = variation yield domain for domain in create_domains(): self.assertRaises( AssertionError, self.resource_api.create_domain, domain['id'], domain) self.assertRaises( AssertionError, self.resource_api.update_domain, domain['id'], domain) self.assertRaises( exception.DomainNotFound, self.resource_api.delete_domain, domain['id']) # swap 'name' with 'id' and try again, expecting the request to # gracefully fail domain['id'], domain['name'] = domain['name'], domain['id'] self.assertRaises( AssertionError, self.resource_api.create_domain, domain['id'], domain) self.assertRaises( AssertionError, self.resource_api.update_domain, domain['id'], domain) self.assertRaises( exception.DomainNotFound, self.resource_api.delete_domain, domain['id']) def test_forbid_operations_on_defined_federated_domain(self): """Make sure one cannot operate on a user-defined federated domain. This includes operations like create, update, delete. """ non_default_name = 'beta_federated_domain' self.config_fixture.config(group='federation', federated_domain_name=non_default_name) domain = unit.new_domain_ref(name=non_default_name) self.assertRaises(AssertionError, self.resource_api.create_domain, domain['id'], domain) self.assertRaises(exception.DomainNotFound, self.resource_api.delete_domain, domain['id']) self.assertRaises(AssertionError, self.resource_api.update_domain, domain['id'], domain) # Project CRUD tests def test_list_projects(self): """Call ``GET /projects``.""" resource_url = '/projects' r = self.get(resource_url) self.assertValidProjectListResponse(r, ref=self.project, resource_url=resource_url) def test_create_project(self): """Call ``POST /projects``.""" ref = unit.new_project_ref(domain_id=self.domain_id) r = self.post( '/projects', body={'project': ref}) self.assertValidProjectResponse(r, ref) def test_create_project_bad_request(self): """Call ``POST /projects``.""" self.post('/projects', body={'project': {}}, expected_status=http_client.BAD_REQUEST) def test_create_project_invalid_domain_id(self): """Call ``POST /projects``.""" ref = unit.new_project_ref(domain_id=uuid.uuid4().hex) self.post('/projects', body={'project': ref}, expected_status=http_client.BAD_REQUEST) def test_create_project_unsafe(self): """Call ``POST /projects with unsafe names``.""" unsafe_name = 'i am not / safe' self.config_fixture.config(group='resource', project_name_url_safe='off') ref = unit.new_project_ref(name=unsafe_name) self.post( '/projects', body={'project': ref}) for config_setting in ['new', 'strict']: self.config_fixture.config(group='resource', project_name_url_safe=config_setting) ref = unit.new_project_ref(name=unsafe_name) self.post( '/projects', body={'project': ref}, expected_status=http_client.BAD_REQUEST) def test_create_project_unsafe_default(self): """Check default for unsafe names for ``POST /projects``.""" unsafe_name = 'i am not / safe' # By default, we should be able to create unsafe names ref = unit.new_project_ref(name=unsafe_name) self.post( '/projects', body={'project': ref}) def test_create_project_is_domain_not_allowed(self): """Call ``POST /projects``. Setting is_domain=True is not supported yet and should raise NotImplemented. """ ref = unit.new_project_ref(domain_id=self.domain_id, is_domain=True) self.post('/projects', body={'project': ref}, expected_status=http_client.NOT_IMPLEMENTED) def test_create_project_with_parent_id_none_and_domain_id_none(self): """Call ``POST /projects``.""" # Grant a domain role for the user collection_url = ( '/domains/%(domain_id)s/users/%(user_id)s/roles' % { 'domain_id': self.domain_id, 'user_id': self.user['id']}) member_url = '%(collection_url)s/%(role_id)s' % { 'collection_url': collection_url, 'role_id': self.role_id} self.put(member_url) # Create an authentication request for a domain scoped token auth = self.build_authentication_request( user_id=self.user['id'], password=self.user['password'], domain_id=self.domain_id) # Without parent_id and domain_id passed as None, the domain_id should # be normalized to the domain on the token, when using a domain # scoped token. ref = unit.new_project_ref() r = self.post( '/projects', auth=auth, body={'project': ref}) ref['domain_id'] = self.domain['id'] self.assertValidProjectResponse(r, ref) def test_create_project_without_parent_id_and_without_domain_id(self): """Call ``POST /projects``.""" # Grant a domain role for the user collection_url = ( '/domains/%(domain_id)s/users/%(user_id)s/roles' % { 'domain_id': self.domain_id, 'user_id': self.user['id']}) member_url = '%(collection_url)s/%(role_id)s' % { 'collection_url': collection_url, 'role_id': self.role_id} self.put(member_url) # Create an authentication request for a domain scoped token auth = self.build_authentication_request( user_id=self.user['id'], password=self.user['password'], domain_id=self.domain_id) # Without domain_id and parent_id, the domain_id should be # normalized to the domain on the token, when using a domain # scoped token. ref = unit.new_project_ref() r = self.post( '/projects', auth=auth, body={'project': ref}) ref['domain_id'] = self.domain['id'] self.assertValidProjectResponse(r, ref) def test_create_project_with_parent_id_and_no_domain_id(self): """Call ``POST /projects``.""" # With only the parent_id, the domain_id should be # normalized to the parent's domain_id ref_child = unit.new_project_ref(parent_id=self.project['id']) r = self.post( '/projects', body={'project': ref_child}) self.assertEqual(r.result['project']['domain_id'], self.project['domain_id']) ref_child['domain_id'] = self.domain['id'] self.assertValidProjectResponse(r, ref_child) def _create_projects_hierarchy(self, hierarchy_size=1): """Creates a single-branched project hierarchy with the specified size. :param hierarchy_size: the desired hierarchy size, default is 1 - a project with one child. :returns projects: a list of the projects in the created hierarchy. """ new_ref = unit.new_project_ref(domain_id=self.domain_id) resp = self.post('/projects', body={'project': new_ref}) projects = [resp.result] for i in range(hierarchy_size): new_ref = unit.new_project_ref( domain_id=self.domain_id, parent_id=projects[i]['project']['id']) resp = self.post('/projects', body={'project': new_ref}) self.assertValidProjectResponse(resp, new_ref) projects.append(resp.result) return projects def test_list_projects_filtering_by_parent_id(self): """Call ``GET /projects?parent_id={project_id}``.""" projects = self._create_projects_hierarchy(hierarchy_size=2) # Add another child to projects[1] - it will be projects[3] new_ref = unit.new_project_ref( domain_id=self.domain_id, parent_id=projects[1]['project']['id']) resp = self.post('/projects', body={'project': new_ref}) self.assertValidProjectResponse(resp, new_ref) projects.append(resp.result) # Query for projects[0] immediate children - it will # be only projects[1] r = self.get( '/projects?parent_id=%(project_id)s' % { 'project_id': projects[0]['project']['id']}) self.assertValidProjectListResponse(r) projects_result = r.result['projects'] expected_list = [projects[1]['project']] # projects[0] has projects[1] as child self.assertEqual(expected_list, projects_result) # Query for projects[1] immediate children - it will # be projects[2] and projects[3] r = self.get( '/projects?parent_id=%(project_id)s' % { 'project_id': projects[1]['project']['id']}) self.assertValidProjectListResponse(r) projects_result = r.result['projects'] expected_list = [projects[2]['project'], projects[3]['project']] # projects[1] has projects[2] and projects[3] as children self.assertEqual(expected_list, projects_result) # Query for projects[2] immediate children - it will be an empty list r = self.get( '/projects?parent_id=%(project_id)s' % { 'project_id': projects[2]['project']['id']}) self.assertValidProjectListResponse(r) projects_result = r.result['projects'] expected_list = [] # projects[2] has no child, projects_result must be an empty list self.assertEqual(expected_list, projects_result) def test_create_hierarchical_project(self): """Call ``POST /projects``.""" self._create_projects_hierarchy() def test_get_project(self): """Call ``GET /projects/{project_id}``.""" r = self.get( '/projects/%(project_id)s' % { 'project_id': self.project_id}) self.assertValidProjectResponse(r, self.project) def test_get_project_with_parents_as_list_with_invalid_id(self): """Call ``GET /projects/{project_id}?parents_as_list``.""" self.get('/projects/%(project_id)s?parents_as_list' % { 'project_id': None}, expected_status=http_client.NOT_FOUND) self.get('/projects/%(project_id)s?parents_as_list' % { 'project_id': uuid.uuid4().hex}, expected_status=http_client.NOT_FOUND) def test_get_project_with_subtree_as_list_with_invalid_id(self): """Call ``GET /projects/{project_id}?subtree_as_list``.""" self.get('/projects/%(project_id)s?subtree_as_list' % { 'project_id': None}, expected_status=http_client.NOT_FOUND) self.get('/projects/%(project_id)s?subtree_as_list' % { 'project_id': uuid.uuid4().hex}, expected_status=http_client.NOT_FOUND) def test_get_project_with_parents_as_ids(self): """Call ``GET /projects/{project_id}?parents_as_ids``.""" projects = self._create_projects_hierarchy(hierarchy_size=2) # Query for projects[2] parents_as_ids r = self.get( '/projects/%(project_id)s?parents_as_ids' % { 'project_id': projects[2]['project']['id']}) self.assertValidProjectResponse(r, projects[2]['project']) parents_as_ids = r.result['project']['parents'] # Assert parents_as_ids is a structured dictionary correctly # representing the hierarchy. The request was made using projects[2] # id, hence its parents should be projects[1] and projects[0]. It # should have the following structure: # { # projects[1]: { # projects[0]: None # } # } expected_dict = { projects[1]['project']['id']: { projects[0]['project']['id']: None } } self.assertDictEqual(expected_dict, parents_as_ids) # Query for projects[0] parents_as_ids r = self.get( '/projects/%(project_id)s?parents_as_ids' % { 'project_id': projects[0]['project']['id']}) self.assertValidProjectResponse(r, projects[0]['project']) parents_as_ids = r.result['project']['parents'] # projects[0] has no parents, parents_as_ids must be None self.assertIsNone(parents_as_ids) def test_get_project_with_parents_as_list_with_full_access(self): """``GET /projects/{project_id}?parents_as_list`` with full access. Test plan: - Create 'parent', 'project' and 'subproject' projects; - Assign a user a role on each one of those projects; - Check that calling parents_as_list on 'subproject' returns both 'project' and 'parent'. """ # Create the project hierarchy parent, project, subproject = self._create_projects_hierarchy(2) # Assign a role for the user on all the created projects for proj in (parent, project, subproject): self.put(self.build_role_assignment_link( role_id=self.role_id, user_id=self.user_id, project_id=proj['project']['id'])) # Make the API call r = self.get('/projects/%(project_id)s?parents_as_list' % {'project_id': subproject['project']['id']}) self.assertValidProjectResponse(r, subproject['project']) # Assert only 'project' and 'parent' are in the parents list self.assertIn(project, r.result['project']['parents']) self.assertIn(parent, r.result['project']['parents']) self.assertEqual(2, len(r.result['project']['parents'])) def test_get_project_with_parents_as_list_with_partial_access(self): """``GET /projects/{project_id}?parents_as_list`` with partial access. Test plan: - Create 'parent', 'project' and 'subproject' projects; - Assign a user a role on 'parent' and 'subproject'; - Check that calling parents_as_list on 'subproject' only returns 'parent'. """ # Create the project hierarchy parent, project, subproject = self._create_projects_hierarchy(2) # Assign a role for the user on parent and subproject for proj in (parent, subproject): self.put(self.build_role_assignment_link( role_id=self.role_id, user_id=self.user_id, project_id=proj['project']['id'])) # Make the API call r = self.get('/projects/%(project_id)s?parents_as_list' % {'project_id': subproject['project']['id']}) self.assertValidProjectResponse(r, subproject['project']) # Assert only 'parent' is in the parents list self.assertIn(parent, r.result['project']['parents']) self.assertEqual(1, len(r.result['project']['parents'])) def test_get_project_with_parents_as_list_and_parents_as_ids(self): """Attempt to list a project's parents as both a list and as IDs. This uses ``GET /projects/{project_id}?parents_as_list&parents_as_ids`` which should fail with a Bad Request due to the conflicting query strings. """ projects = self._create_projects_hierarchy(hierarchy_size=2) self.get( '/projects/%(project_id)s?parents_as_list&parents_as_ids' % { 'project_id': projects[1]['project']['id']}, expected_status=http_client.BAD_REQUEST) def test_get_project_with_subtree_as_ids(self): """Call ``GET /projects/{project_id}?subtree_as_ids``. This test creates a more complex hierarchy to test if the structured dictionary returned by using the ``subtree_as_ids`` query param correctly represents the hierarchy. The hierarchy contains 5 projects with the following structure:: +--A--+ | | +--B--+ C | | D E """ projects = self._create_projects_hierarchy(hierarchy_size=2) # Add another child to projects[0] - it will be projects[3] new_ref = unit.new_project_ref( domain_id=self.domain_id, parent_id=projects[0]['project']['id']) resp = self.post('/projects', body={'project': new_ref}) self.assertValidProjectResponse(resp, new_ref) projects.append(resp.result) # Add another child to projects[1] - it will be projects[4] new_ref = unit.new_project_ref( domain_id=self.domain_id, parent_id=projects[1]['project']['id']) resp = self.post('/projects', body={'project': new_ref}) self.assertValidProjectResponse(resp, new_ref) projects.append(resp.result) # Query for projects[0] subtree_as_ids r = self.get( '/projects/%(project_id)s?subtree_as_ids' % { 'project_id': projects[0]['project']['id']}) self.assertValidProjectResponse(r, projects[0]['project']) subtree_as_ids = r.result['project']['subtree'] # The subtree hierarchy from projects[0] should have the following # structure: # { # projects[1]: { # projects[2]: None, # projects[4]: None # }, # projects[3]: None # } expected_dict = { projects[1]['project']['id']: { projects[2]['project']['id']: None, projects[4]['project']['id']: None }, projects[3]['project']['id']: None } self.assertDictEqual(expected_dict, subtree_as_ids) # Now query for projects[1] subtree_as_ids r = self.get( '/projects/%(project_id)s?subtree_as_ids' % { 'project_id': projects[1]['project']['id']}) self.assertValidProjectResponse(r, projects[1]['project']) subtree_as_ids = r.result['project']['subtree'] # The subtree hierarchy from projects[1] should have the following # structure: # { # projects[2]: None, # projects[4]: None # } expected_dict = { projects[2]['project']['id']: None, projects[4]['project']['id']: None } self.assertDictEqual(expected_dict, subtree_as_ids) # Now query for projects[3] subtree_as_ids r = self.get( '/projects/%(project_id)s?subtree_as_ids' % { 'project_id': projects[3]['project']['id']}) self.assertValidProjectResponse(r, projects[3]['project']) subtree_as_ids = r.result['project']['subtree'] # projects[3] has no subtree, subtree_as_ids must be None self.assertIsNone(subtree_as_ids) def test_get_project_with_subtree_as_list_with_full_access(self): """``GET /projects/{project_id}?subtree_as_list`` with full access. Test plan: - Create 'parent', 'project' and 'subproject' projects; - Assign a user a role on each one of those projects; - Check that calling subtree_as_list on 'parent' returns both 'parent' and 'subproject'. """ # Create the project hierarchy parent, project, subproject = self._create_projects_hierarchy(2) # Assign a role for the user on all the created projects for proj in (parent, project, subproject): self.put(self.build_role_assignment_link( role_id=self.role_id, user_id=self.user_id, project_id=proj['project']['id'])) # Make the API call r = self.get('/projects/%(project_id)s?subtree_as_list' % {'project_id': parent['project']['id']}) self.assertValidProjectResponse(r, parent['project']) # Assert only 'project' and 'subproject' are in the subtree self.assertIn(project, r.result['project']['subtree']) self.assertIn(subproject, r.result['project']['subtree']) self.assertEqual(2, len(r.result['project']['subtree'])) def test_get_project_with_subtree_as_list_with_partial_access(self): """``GET /projects/{project_id}?subtree_as_list`` with partial access. Test plan: - Create 'parent', 'project' and 'subproject' projects; - Assign a user a role on 'parent' and 'subproject'; - Check that calling subtree_as_list on 'parent' returns 'subproject'. """ # Create the project hierarchy parent, project, subproject = self._create_projects_hierarchy(2) # Assign a role for the user on parent and subproject for proj in (parent, subproject): self.put(self.build_role_assignment_link( role_id=self.role_id, user_id=self.user_id, project_id=proj['project']['id'])) # Make the API call r = self.get('/projects/%(project_id)s?subtree_as_list' % {'project_id': parent['project']['id']}) self.assertValidProjectResponse(r, parent['project']) # Assert only 'subproject' is in the subtree self.assertIn(subproject, r.result['project']['subtree']) self.assertEqual(1, len(r.result['project']['subtree'])) def test_get_project_with_subtree_as_list_and_subtree_as_ids(self): """Attempt to get a project subtree as both a list and as IDs. This uses ``GET /projects/{project_id}?subtree_as_list&subtree_as_ids`` which should fail with a bad request due to the conflicting query strings. """ projects = self._create_projects_hierarchy(hierarchy_size=2) self.get( '/projects/%(project_id)s?subtree_as_list&subtree_as_ids' % { 'project_id': projects[1]['project']['id']}, expected_status=http_client.BAD_REQUEST) def test_update_project(self): """Call ``PATCH /projects/{project_id}``.""" ref = unit.new_project_ref(domain_id=self.domain_id) del ref['id'] r = self.patch( '/projects/%(project_id)s' % { 'project_id': self.project_id}, body={'project': ref}) self.assertValidProjectResponse(r, ref) def test_update_project_unsafe(self): """Call ``POST /projects/{project_id} with unsafe names``.""" unsafe_name = 'i am not / safe' self.config_fixture.config(group='resource', project_name_url_safe='off') ref = unit.new_project_ref(name=unsafe_name, domain_id=self.domain_id) del ref['id'] self.patch( '/projects/%(project_id)s' % { 'project_id': self.project_id}, body={'project': ref}) unsafe_name = 'i am still not / safe' for config_setting in ['new', 'strict']: self.config_fixture.config(group='resource', project_name_url_safe=config_setting) ref = unit.new_project_ref(name=unsafe_name, domain_id=self.domain_id) del ref['id'] self.patch( '/projects/%(project_id)s' % { 'project_id': self.project_id}, body={'project': ref}, expected_status=http_client.BAD_REQUEST) def test_update_project_unsafe_default(self): """Check default for unsafe names for ``POST /projects``.""" unsafe_name = 'i am not / safe' # By default, we should be able to create unsafe names ref = unit.new_project_ref(name=unsafe_name, domain_id=self.domain_id) del ref['id'] self.patch( '/projects/%(project_id)s' % { 'project_id': self.project_id}, body={'project': ref}) def test_update_project_domain_id(self): """Call ``PATCH /projects/{project_id}`` with domain_id.""" project = unit.new_project_ref(domain_id=self.domain['id']) self.resource_api.create_project(project['id'], project) project['domain_id'] = CONF.identity.default_domain_id r = self.patch('/projects/%(project_id)s' % { 'project_id': project['id']}, body={'project': project}, expected_status=exception.ValidationError.code) self.config_fixture.config(domain_id_immutable=False) project['domain_id'] = self.domain['id'] r = self.patch('/projects/%(project_id)s' % { 'project_id': project['id']}, body={'project': project}) self.assertValidProjectResponse(r, project) def test_update_project_parent_id(self): """Call ``PATCH /projects/{project_id}``.""" projects = self._create_projects_hierarchy() leaf_project = projects[1]['project'] leaf_project['parent_id'] = None self.patch( '/projects/%(project_id)s' % { 'project_id': leaf_project['id']}, body={'project': leaf_project}, expected_status=http_client.FORBIDDEN) def test_update_project_is_domain_not_allowed(self): """Call ``PATCH /projects/{project_id}`` with is_domain. The is_domain flag is immutable. """ project = unit.new_project_ref(domain_id=self.domain['id']) resp = self.post('/projects', body={'project': project}) self.assertFalse(resp.result['project']['is_domain']) project['is_domain'] = True self.patch('/projects/%(project_id)s' % { 'project_id': resp.result['project']['id']}, body={'project': project}, expected_status=http_client.BAD_REQUEST) def test_disable_leaf_project(self): """Call ``PATCH /projects/{project_id}``.""" projects = self._create_projects_hierarchy() leaf_project = projects[1]['project'] leaf_project['enabled'] = False r = self.patch( '/projects/%(project_id)s' % { 'project_id': leaf_project['id']}, body={'project': leaf_project}) self.assertEqual( leaf_project['enabled'], r.result['project']['enabled']) def test_disable_not_leaf_project(self): """Call ``PATCH /projects/{project_id}``.""" projects = self._create_projects_hierarchy() root_project = projects[0]['project'] root_project['enabled'] = False self.patch( '/projects/%(project_id)s' % { 'project_id': root_project['id']}, body={'project': root_project}, expected_status=http_client.FORBIDDEN) def test_delete_project(self): """Call ``DELETE /projects/{project_id}`` As well as making sure the delete succeeds, we ensure that any credentials that reference this projects are also deleted, while other credentials are unaffected. """ credential = unit.new_credential_ref(user_id=self.user['id'], project_id=self.project_id) self.credential_api.create_credential(credential['id'], credential) # First check the credential for this project is present r = self.credential_api.get_credential(credential['id']) self.assertDictEqual(credential, r) # Create a second credential with a different project project2 = unit.new_project_ref(domain_id=self.domain['id']) self.resource_api.create_project(project2['id'], project2) credential2 = unit.new_credential_ref(user_id=self.user['id'], project_id=project2['id']) self.credential_api.create_credential(credential2['id'], credential2) # Now delete the project self.delete( '/projects/%(project_id)s' % { 'project_id': self.project_id}) # Deleting the project should have deleted any credentials # that reference this project self.assertRaises(exception.CredentialNotFound, self.credential_api.get_credential, credential_id=credential['id']) # But the credential for project2 is unaffected r = self.credential_api.get_credential(credential2['id']) self.assertDictEqual(credential2, r) def test_delete_not_leaf_project(self): """Call ``DELETE /projects/{project_id}``.""" projects = self._create_projects_hierarchy() self.delete( '/projects/%(project_id)s' % { 'project_id': projects[0]['project']['id']}, expected_status=http_client.FORBIDDEN) class ResourceV3toV2MethodsTestCase(unit.TestCase): """Test domain V3 to V2 conversion methods.""" def _setup_initial_projects(self): self.project_id = uuid.uuid4().hex self.domain_id = CONF.identity.default_domain_id self.parent_id = uuid.uuid4().hex # Project with only domain_id in ref self.project1 = unit.new_project_ref(id=self.project_id, name=self.project_id, domain_id=self.domain_id) # Project with both domain_id and parent_id in ref self.project2 = unit.new_project_ref(id=self.project_id, name=self.project_id, domain_id=self.domain_id, parent_id=self.parent_id) # Project with no domain_id and parent_id in ref self.project3 = unit.new_project_ref(id=self.project_id, name=self.project_id, domain_id=self.domain_id, parent_id=self.parent_id) # Expected result with no domain_id and parent_id self.expected_project = {'id': self.project_id, 'name': self.project_id} def test_v2controller_filter_domain_id(self): # V2.0 is not domain aware, ensure domain_id is popped off the ref. other_data = uuid.uuid4().hex domain_id = CONF.identity.default_domain_id ref = {'domain_id': domain_id, 'other_data': other_data} ref_no_domain = {'other_data': other_data} expected_ref = ref_no_domain.copy() updated_ref = controller.V2Controller.filter_domain_id(ref) self.assertIs(ref, updated_ref) self.assertDictEqual(expected_ref, ref) # Make sure we don't error/muck up data if domain_id isn't present updated_ref = controller.V2Controller.filter_domain_id(ref_no_domain) self.assertIs(ref_no_domain, updated_ref) self.assertDictEqual(expected_ref, ref_no_domain) def test_v3controller_filter_domain_id(self): # No data should be filtered out in this case. other_data = uuid.uuid4().hex domain_id = uuid.uuid4().hex ref = {'domain_id': domain_id, 'other_data': other_data} expected_ref = ref.copy() updated_ref = controller.V3Controller.filter_domain_id(ref) self.assertIs(ref, updated_ref) self.assertDictEqual(expected_ref, ref) def test_v2controller_filter_domain(self): other_data = uuid.uuid4().hex domain_id = uuid.uuid4().hex non_default_domain_ref = {'domain': {'id': domain_id}, 'other_data': other_data} default_domain_ref = {'domain': {'id': 'default'}, 'other_data': other_data} updated_ref = controller.V2Controller.filter_domain(default_domain_ref) self.assertNotIn('domain', updated_ref) self.assertNotIn( 'domain', controller.V2Controller.filter_domain(non_default_domain_ref)) def test_v2controller_filter_project_parent_id(self): # V2.0 is not project hierarchy aware, ensure parent_id is popped off. other_data = uuid.uuid4().hex parent_id = uuid.uuid4().hex ref = {'parent_id': parent_id, 'other_data': other_data} ref_no_parent = {'other_data': other_data} expected_ref = ref_no_parent.copy() updated_ref = controller.V2Controller.filter_project_parent_id(ref) self.assertIs(ref, updated_ref) self.assertDictEqual(expected_ref, ref) # Make sure we don't error/muck up data if parent_id isn't present updated_ref = controller.V2Controller.filter_project_parent_id( ref_no_parent) self.assertIs(ref_no_parent, updated_ref) self.assertDictEqual(expected_ref, ref_no_parent) def test_v3_to_v2_project_method(self): self._setup_initial_projects() # TODO(shaleh): these optional fields are not handled well by the # v3_to_v2 code. Manually remove them for now. Eventually update # new_project_ref to not return optional values del self.project1['enabled'] del self.project1['description'] del self.project2['enabled'] del self.project2['description'] del self.project3['enabled'] del self.project3['description'] updated_project1 = controller.V2Controller.v3_to_v2_project( self.project1) self.assertIs(self.project1, updated_project1) self.assertDictEqual(self.expected_project, self.project1) updated_project2 = controller.V2Controller.v3_to_v2_project( self.project2) self.assertIs(self.project2, updated_project2) self.assertDictEqual(self.expected_project, self.project2) updated_project3 = controller.V2Controller.v3_to_v2_project( self.project3) self.assertIs(self.project3, updated_project3) self.assertDictEqual(self.expected_project, self.project2) def test_v3_to_v2_project_method_list(self): self._setup_initial_projects() project_list = [self.project1, self.project2, self.project3] # TODO(shaleh): these optional fields are not handled well by the # v3_to_v2 code. Manually remove them for now. Eventually update # new_project_ref to not return optional values for p in project_list: del p['enabled'] del p['description'] updated_list = controller.V2Controller.v3_to_v2_project(project_list) self.assertEqual(len(updated_list), len(project_list)) for i, ref in enumerate(updated_list): # Order should not change. self.assertIs(ref, project_list[i]) self.assertDictEqual(self.expected_project, self.project1) self.assertDictEqual(self.expected_project, self.project2) self.assertDictEqual(self.expected_project, self.project3)
40.442969
79
0.594259
7946c9b296a95e1feefc6cb19ee0841dc646637d
4,374
py
Python
src/wheel/vendored/packaging/_musllinux.py
hugovk/wheel
0e07002ac82efa883061ac91c476d057b8d4d20d
[ "MIT" ]
null
null
null
src/wheel/vendored/packaging/_musllinux.py
hugovk/wheel
0e07002ac82efa883061ac91c476d057b8d4d20d
[ "MIT" ]
null
null
null
src/wheel/vendored/packaging/_musllinux.py
hugovk/wheel
0e07002ac82efa883061ac91c476d057b8d4d20d
[ "MIT" ]
null
null
null
"""PEP 656 support. This module implements logic to detect if the currently running Python is linked against musl, and what musl version is used. """ from __future__ import annotations import contextlib import functools import operator import os import re import struct import subprocess import sys from typing import IO, Iterator, NamedTuple def _read_unpacked(f: IO[bytes], fmt: str) -> tuple[int, ...]: return struct.unpack(fmt, f.read(struct.calcsize(fmt))) def _parse_ld_musl_from_elf(f: IO[bytes]) -> str | None: """Detect musl libc location by parsing the Python executable. Based on: https://gist.github.com/lyssdod/f51579ae8d93c8657a5564aefc2ffbca ELF header: https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html """ f.seek(0) try: ident = _read_unpacked(f, "16B") except struct.error: return None if ident[:4] != tuple(b"\x7fELF"): # Invalid magic, not ELF. return None f.seek(struct.calcsize("HHI"), 1) # Skip file type, machine, and version. try: # e_fmt: Format for program header. # p_fmt: Format for section header. # p_idx: Indexes to find p_type, p_offset, and p_filesz. e_fmt, p_fmt, p_idx = { 1: ("IIIIHHH", "IIIIIIII", (0, 1, 4)), # 32-bit. 2: ("QQQIHHH", "IIQQQQQQ", (0, 2, 5)), # 64-bit. }[ident[4]] except KeyError: return None else: p_get = operator.itemgetter(*p_idx) # Find the interpreter section and return its content. try: _, e_phoff, _, _, _, e_phentsize, e_phnum = _read_unpacked(f, e_fmt) except struct.error: return None for i in range(e_phnum + 1): f.seek(e_phoff + e_phentsize * i) try: p_type, p_offset, p_filesz = p_get(_read_unpacked(f, p_fmt)) except struct.error: return None if p_type != 3: # Not PT_INTERP. continue f.seek(p_offset) interpreter = os.fsdecode(f.read(p_filesz)).strip("\0") if "musl" not in interpreter: return None return interpreter return None class _MuslVersion(NamedTuple): major: int minor: int def _parse_musl_version(output: str) -> _MuslVersion | None: lines = [n for n in (n.strip() for n in output.splitlines()) if n] if len(lines) < 2 or lines[0][:4] != "musl": return None m = re.match(r"Version (\d+)\.(\d+)", lines[1]) if not m: return None return _MuslVersion(major=int(m.group(1)), minor=int(m.group(2))) @functools.lru_cache() def _get_musl_version(executable: str) -> _MuslVersion | None: """Detect currently-running musl runtime version. This is done by checking the specified executable's dynamic linking information, and invoking the loader to parse its output for a version string. If the loader is musl, the output would be something like:: musl libc (x86_64) Version 1.2.2 Dynamic Program Loader """ with contextlib.ExitStack() as stack: try: f = stack.enter_context(open(executable, "rb")) except OSError: return None ld = _parse_ld_musl_from_elf(f) if not ld: return None proc = subprocess.run([ld], stderr=subprocess.PIPE, text=True) return _parse_musl_version(proc.stderr) def platform_tags(arch: str) -> Iterator[str]: """Generate musllinux tags compatible to the current platform. :param arch: Should be the part of platform tag after the ``linux_`` prefix, e.g. ``x86_64``. The ``linux_`` prefix is assumed as a prerequisite for the current platform to be musllinux-compatible. :returns: An iterator of compatible musllinux tags. """ sys_musl = _get_musl_version(sys.executable) if sys_musl is None: # Python not dynamically linked against musl. return for minor in range(sys_musl.minor, -1, -1): yield f"musllinux_{sys_musl.major}_{minor}_{arch}" if __name__ == "__main__": # pragma: no cover import sysconfig plat = sysconfig.get_platform() assert plat.startswith("linux-"), "not linux" print("plat:", plat) print("musl:", _get_musl_version(sys.executable)) print("tags:", end=" ") for t in platform_tags(re.sub(r"[.-]", "_", plat.split("-", 1)[-1])): print(t, end="\n ")
31.467626
80
0.638775
7946ca15306944b2acf91f6d480518c20dd6059e
1,302
py
Python
assignment/assignment2/python/preprocess.py
maple1eaf/data_mining_inf553
fba0c19f46aac5882e103dbe53155e7128a9290f
[ "MIT" ]
1
2021-05-04T05:17:57.000Z
2021-05-04T05:17:57.000Z
assignment/assignment2/python/preprocess.py
maple1eaf/data_mining_inf553
fba0c19f46aac5882e103dbe53155e7128a9290f
[ "MIT" ]
null
null
null
assignment/assignment2/python/preprocess.py
maple1eaf/data_mining_inf553
fba0c19f46aac5882e103dbe53155e7128a9290f
[ "MIT" ]
1
2021-09-24T08:17:23.000Z
2021-09-24T08:17:23.000Z
""" spark-submit preprocess.py <business_file_path> <review_file_path> <output_file_path> spark-submit preprocess.py "file:///Users/markduan/duan/USC_course/USC_APDS/INF553/homework/hw2/dataset/business.json" "file:///Users/markduan/duan/USC_course/USC_APDS/INF553/homework/hw2/dataset/review.json" "/Users/markduan/duan/USC_course/USC_APDS/INF553/homework/hw2/dataset/task2_data.csv" """ import csv import json import sys import time from pyspark import SparkConf, SparkContext business_file = sys.argv[1] review_file = sys.argv[2] output_file = sys.argv[3] time0 = time.time() # define spark env conf = SparkConf() \ .setAppName("task1") \ .setMaster("local[*]") sc = SparkContext(conf=conf) business_data = sc.textFile(business_file) \ .map(json.loads) \ .map(lambda x: (x["business_id"], x["state"])) \ .filter(lambda x: x[1] == "NV") review_data = sc.textFile(review_file) \ .map(json.loads) \ .map(lambda x: (x["business_id"], x["user_id"])) user_business = review_data.join(business_data) \ .map(lambda x: (x[1][0], x[0])) \ .collect() header = ["user_id", "business_id"] with open(output_file, 'w') as fp: wr = csv.writer(fp) wr.writerow(header) wr.writerows(user_business) time1 = time.time() print("consume %fs." % (time1-time0))
28.304348
294
0.698925
7946ca368e2daf9fbe8215ecd41671c24f448289
22,327
py
Python
utils/raw_data_utils.py
cogito233/text-autoaugment
cae3cfddaba9da01cf291f975e5cf4f734634b51
[ "MIT" ]
1
2021-09-08T12:00:11.000Z
2021-09-08T12:00:11.000Z
utils/raw_data_utils.py
cogito233/text-autoaugment
cae3cfddaba9da01cf291f975e5cf4f734634b51
[ "MIT" ]
null
null
null
utils/raw_data_utils.py
cogito233/text-autoaugment
cae3cfddaba9da01cf291f975e5cf4f734634b51
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn.model_selection import StratifiedShuffleSplit, KFold import torchtext import csv import os import numpy as np import random import pandas as pd import re from theconf import Config as C from common import get_logger import logging logger = get_logger('Text AutoAugment') logger.setLevel(logging.INFO) class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, raw_data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, raw_data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() def get_train_size(self): raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None, delimiter="\t"): """Reads a tab separated value file.""" with open(input_file, "r", encoding='utf-8') as f: reader = csv.reader(f, delimiter=delimiter, quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines def clean_web_text(st): """clean text.""" st = st.replace("<br />", " ") st = st.replace("&quot;", "\"") st = st.replace("<p>", " ") if "<a href=" in st: # print("before:\n", st) while "<a href=" in st: start_pos = st.find("<a href=") end_pos = st.find(">", start_pos) if end_pos != -1: st = st[:start_pos] + st[end_pos + 1:] else: print("incomplete href") print("before", st) st = st[:start_pos] + st[start_pos + len("<a href=")] print("after", st) st = st.replace("</a>", "") # print("after\n", st) # print("") st = st.replace("\\n", " ") st = st.replace("\\", " ") # while " " in st: # st = st.replace(" ", " ") return st def subsample_by_classes(all_examples, labels, tag): if C.get()['ir'] == 1: return all_examples num_per_class = {label: sum([e.label == label for e in all_examples]) for label in labels} logger.info("{}_num_per_class before: {}".format(tag, num_per_class)) num_per_class[labels[0]] = round(num_per_class[labels[0]] * C.get()['ir']) logger.info("{}_num_per_class after: {}".format(tag, num_per_class)) examples = {label: [] for label in labels} for example in all_examples: examples[example.label].append(example) selected_examples = [] for label in labels: random.seed(C.get()['seed']) random.shuffle(examples[label]) num_in_class = num_per_class[label] selected_examples = selected_examples + examples[label][:num_in_class] return selected_examples class IMDbProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, raw_data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(raw_data_dir, "train.csv"), quotechar='"'), "train") def get_test_examples(self, raw_data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(raw_data_dir, "test.csv"), quotechar='"'), "test") def get_unsup_examples(self, raw_data_dir, unsup_set): """See base class.""" if unsup_set == "unsup_ext": return self._create_examples(self._read_tsv(os.path.join(raw_data_dir, "unsup_ext.csv"), quotechar='"'), "unsup_ext", skip_unsup=False) elif unsup_set == "unsup_in": return self._create_examples(self._read_tsv(os.path.join(raw_data_dir, "train.csv"), quotechar='"'), "unsup_in", skip_unsup=False) def get_labels(self): """See base class.""" return ["pos", "neg"] def _create_examples(self, lines, set_type, skip_unsup=True): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue if skip_unsup and line[1] == "unsup": continue if line[1] == "unsup" and len(line[0]) < 500: # tf.logging.info("skipping short samples:{:s}".format(line[0])) continue guid = "%s-%s" % (set_type, line[2]) text_a = line[0] label = line[1] text_a = clean_web_text(text_a) examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples def get_train_size(self): return 25000 def get_test_size(self): return 25000 def split(self, examples, test_size, train_size, n_splits=2, split_idx=0): label_map = {"pos": 0, "neg": 1} labels = [label_map[e.label] for e in examples] kf = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples))), labels) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class STSProcessor(DataProcessor): def get_train_examples(self, raw_data_dir): return self._create_examples( pd.read_csv(os.path.join(raw_data_dir, 'sts-train-dev.csv'), header=None, sep='\t', quoting=csv.QUOTE_NONE, encoding='utf-8', usecols=[3, 4, 5, 6]), "train") def get_test_examples(self, raw_data_dir): return self._create_examples( pd.read_csv(os.path.join(raw_data_dir, 'sts-test.csv'), header=None, sep='\t', quoting=csv.QUOTE_NONE, encoding='utf-8', usecols=[3, 4, 5, 6]), "test") def _create_examples(self, lines, set_type, skip_unsup=True): examples = [] for (i, line) in lines.iterrows(): guid = "%s-%s" % (set_type, line[3]) text_a = line[5] text_b = line[6] label = line[4] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): return [] # from 0.0 to 5.0 def get_train_size(self): return 7249 def get_test_size(self): return 1379 def split(self, examples, n_splits=None, split=None, split_idx=None): # TODO control size kf = KFold(n_splits=n_splits, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples)))) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class MRPCProcessor(DataProcessor): def get_train_examples(self, raw_data_dir): return self._create_examples(self._read_tsv(os.path.join(raw_data_dir, 'msr_paraphrase_train.txt')), "train") def get_test_examples(self, raw_data_dir): return self._create_examples(self._read_tsv(os.path.join(raw_data_dir, 'msr_paraphrase_test.txt')), "test") def get_labels(self): return [0, 1] def _create_examples(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = int(line[0]) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_train_size(self): return 4076 # label_0:1323; label_1:2753 def get_test_size(self): return 1725 # label_0:578; label_1:1147 def split(self, examples, test_size, train_size, n_splits=2, split_idx=0): labels = [e.label for e in examples] kf = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples))), labels) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class SST2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, raw_data_dir): train_e = self._create_examples(os.path.join(raw_data_dir, 'stsa.binary.train'), "train") dev_e = self._create_examples(os.path.join(raw_data_dir, 'stsa.binary.dev'), "dev") train_e.extend(dev_e) return train_e def get_test_examples(self, raw_data_dir): return self._create_examples(os.path.join(raw_data_dir, 'stsa.binary.test'), "test") def get_labels(self): """See base class.""" return [0, 1] def _create_examples(self, dataroot, set_type): examples = [] with open(dataroot, 'r', encoding='utf-8') as f: for i, line in enumerate(f): guid = "%s-%s" % (set_type, i) parts = line.strip().split() label = int(parts[0]) text_a = ' '.join(parts[1:]) text_a = self.clean_sst_text(text_a) examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples def clean_sst_text(self, text): """Cleans tokens in the SST data, which has already been tokenized. """ text = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", text) text = re.sub(r"\s{2,}", " ", text) return text.strip().lower() def get_train_size(self): return 7791 # 6919+872 def get_test_size(self): return 1821 def split(self, examples, test_size, train_size, n_splits=2, split_idx=0): labels = [e.label for e in examples] kf = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples))), labels) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class SST5Processor(DataProcessor): def __init__(self): self.TEXT = torchtext.data.Field() self.LABEL = torchtext.data.Field(sequential=False) def get_train_examples(self, raw_data_dir): train_e = torchtext.datasets.SST(os.path.join(raw_data_dir, 'train.txt'), self.TEXT, self.LABEL, fine_grained=True).examples dev_e = torchtext.datasets.SST(os.path.join(raw_data_dir, 'dev.txt'), self.TEXT, self.LABEL, fine_grained=True).examples train_e.extend(dev_e) return self._create_examples(train_e, "train") def get_test_examples(self, raw_data_dir): test_e = torchtext.datasets.SST(os.path.join(raw_data_dir, 'test.txt'), self.TEXT, self.LABEL, fine_grained=True).examples return self._create_examples(test_e, "test") def get_labels(self): return ['negative', 'very positive', 'neutral', 'positive', 'very negative'] def _create_examples(self, lines, set_type, skip_unsup=True): examples = [] for i, line in enumerate(lines): guid = "%s-%s" % (set_type, i) examples.append(InputExample(guid=guid, text_a=' '.join(line.text), text_b=None, label=line.label)) return examples def get_train_size(self): return 9643 # 8542+1101 def get_test_size(self): return 2210 def split(self, examples, test_size, train_size, n_splits=2, split_idx=0): label_map = {"negative": 0, "very positive": 1, 'neutral': 2, 'positive': 3, 'very negative': 4} labels = [label_map[e.label] for e in examples] kf = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples))), labels) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class TRECProcessor(DataProcessor): def __init__(self): self.TEXT = torchtext.data.Field() self.LABEL = torchtext.data.Field(sequential=False) def get_train_examples(self, raw_data_dir): train_e = torchtext.datasets.TREC(os.path.join(raw_data_dir, 'train_5500.label'), self.TEXT, self.LABEL, fine_grained=False).examples return self._create_examples(train_e, "train") def get_test_examples(self, raw_data_dir): test_e = torchtext.datasets.TREC(os.path.join(raw_data_dir, 'TREC_10.label'), self.TEXT, self.LABEL, fine_grained=False).examples return self._create_examples(test_e, "test") def get_labels(self): return ['ENTY', 'DESC', 'LOC', 'ABBR', 'NUM', 'HUM'] def _create_examples(self, lines, set_type, skip_unsup=True): examples = [] for i, line in enumerate(lines): guid = "%s-%s" % (set_type, i) examples.append(InputExample(guid=guid, text_a=' '.join(line.text), text_b=None, label=line.label)) return examples def get_train_size(self): return 5452 def get_test_size(self): return 500 def split(self, examples, test_size, train_size, n_splits=2, split_idx=0): label_map = {"ENTY": 0, "DESC": 1, 'LOC': 2, 'ABBR': 3, 'NUM': 4, 'HUM': 5} labels = [label_map[e.label] for e in examples] kf = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples))), labels) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class TextClassProcessor(DataProcessor): def get_train_examples(self, raw_data_dir): """See base class.""" examples = self._create_examples( self._read_tsv(os.path.join(raw_data_dir, "train.csv"), quotechar="\"", delimiter=","), "train") assert len(examples) == self.get_train_size() return examples def get_test_examples(self, raw_data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(raw_data_dir, "test.csv"), quotechar="\"", delimiter=","), "test") def get_unsup_examples(self, raw_data_dir, unsup_set): """See base class.""" if unsup_set == "unsup_in": return self._create_examples( self._read_tsv(os.path.join(raw_data_dir, "train.csv"), quotechar="\"", delimiter=","), "unsup_in", skip_unsup=False) else: return self._create_examples( self._read_tsv(os.path.join(raw_data_dir, "{:s}.csv".format(unsup_set)), quotechar="\"", delimiter=","), unsup_set, skip_unsup=False) def _create_examples(self, lines, set_type, skip_unsup=True, only_unsup=False): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if skip_unsup and line[0] == "unsup": continue if only_unsup and line[0] != "unsup": continue guid = "%s-%d" % (set_type, i) if self.has_title: text_a = line[2] text_b = line[1] else: text_a = line[1] text_b = None label = int(line[0]) - 1 # TODO right for all datasets?? text_a = clean_web_text(text_a) if text_b is not None: text_b = clean_web_text(text_b) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def split(self, examples, test_size, train_size, n_splits=2, split_idx=0): labels = [e.label for e in examples] kf = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=C.get()['seed']) kf = kf.split(list(range(len(examples))), labels) for _ in range(split_idx + 1): # split_idx equal to cv_fold. this loop is used to get i-th fold train_idx, valid_idx = next(kf) train_dev_set = np.array(examples) return list(train_dev_set[train_idx]), list(train_dev_set[valid_idx]) class YELP2Processor(TextClassProcessor): def __init__(self): self.has_title = False def get_labels(self): """See base class.""" return [0, 1] def get_train_size(self): return 560000 def get_dev_size(self): return 38000 class YELP5Processor(TextClassProcessor): def __init__(self): self.has_title = False def get_labels(self): """See base class.""" return [i for i in range(0, 5)] def get_train_size(self): return 650000 def get_dev_size(self): return 50000 class AMAZON2Processor(TextClassProcessor): def __init__(self): self.has_title = True def get_labels(self): """See base class.""" return [0, 1] def get_train_size(self): return 3600000 def get_dev_size(self): return 400000 def get_unsup_examples(self, raw_data_dir, unsup_set): """See base class.""" if unsup_set == "unsup_in": return self._create_examples( self._read_tsv( os.path.join(raw_data_dir, "train.csv"), quotechar="\"", delimiter=","), "unsup_in", skip_unsup=False) else: dir_cell = raw_data_dir[5:7] unsup_dir = None # update this path if you use unsupervised data return self._create_examples( self._read_tsv( os.path.join(unsup_dir, "{:s}.csv".format(unsup_set)), quotechar="\"", delimiter=","), unsup_set, skip_unsup=False) class AMAZON5Processor(TextClassProcessor): def __init__(self): self.has_title = True def get_labels(self): """See base class.""" return [str(i) for i in range(1, 6)] # TODO why range(0,5)? def get_unsup_examples(self, raw_data_dir, unsup_set): """See base class.""" if unsup_set == "unsup_in": return self._create_examples( self._read_tsv(os.path.join(raw_data_dir, "train.csv"), quotechar="\"", delimiter=","), "unsup_in", skip_unsup=False) else: dir_cell = raw_data_dir[5:7] unsup_dir = None # update this path if you use unsupervised data return self._create_examples( self._read_tsv(os.path.join(unsup_dir, "{:s}.csv".format(unsup_set)), quotechar="\"", delimiter=","), unsup_set, skip_unsup=False) def get_train_size(self): return 3000000 def get_dev_size(self): return 650000 class DBPediaProcessor(TextClassProcessor): def __init__(self): self.has_title = True def get_labels(self): """See base class.""" return [str(i) for i in range(1, 15)] def get_train_size(self): return 560000 def get_dev_size(self): return 70000 def get_processor(task_name): """get processor.""" task_name = task_name.lower() processors = { "imdb": IMDbProcessor, "dbpedia": DBPediaProcessor, "yelp2": YELP2Processor, "yelp5": YELP5Processor, "amazon2": AMAZON2Processor, "amazon5": AMAZON5Processor, 'sts': STSProcessor, 'mrpc': MRPCProcessor, 'sst2': SST2Processor, 'sst5': SST5Processor, 'trec': TRECProcessor } processor = processors[task_name]() return processor if __name__ == '__main__': pc = get_processor('yelp5') pc.get_train_examples('/home/andyren/fast-autoaugment/FastAutoAugment/data/yelp_review_full_csv')
37.650927
120
0.604783
7946caf07a3f1ad50ee2264463b15dd64ab1ed02
167
py
Python
Py_lab/Lab 1,2/matrix.py
veterinarian-5300/Genious-Python-Code-Generator
d78cd5f4b64221e8e4dc80d6e1f5ba0a4c613bcd
[ "Apache-2.0" ]
1
2021-09-27T06:24:21.000Z
2021-09-27T06:24:21.000Z
Py_lab/Lab 1,2/matrix.py
veterinarian-5300/Genious-Python-Code-Generator
d78cd5f4b64221e8e4dc80d6e1f5ba0a4c613bcd
[ "Apache-2.0" ]
null
null
null
Py_lab/Lab 1,2/matrix.py
veterinarian-5300/Genious-Python-Code-Generator
d78cd5f4b64221e8e4dc80d6e1f5ba0a4c613bcd
[ "Apache-2.0" ]
null
null
null
# importing numpy import numpy as np matrix = np.array([[2,4,6,10], [5,10,15,20], [7,14,21,28]]) print(matrix.shape) print(matrix.size) print(matrix.ndim)
15.181818
31
0.640719
7946cb641be9226b28a29f244355bb4c48eb2304
3,121
py
Python
app/app/settings.py
BINAYKUMAR943/recipe-app-api
ce70ba8df09ac4df76250a26a9a2950f8044abf2
[ "MIT" ]
null
null
null
app/app/settings.py
BINAYKUMAR943/recipe-app-api
ce70ba8df09ac4df76250a26a9a2950f8044abf2
[ "MIT" ]
null
null
null
app/app/settings.py
BINAYKUMAR943/recipe-app-api
ce70ba8df09ac4df76250a26a9a2950f8044abf2
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.15. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=vp-0z7j-u#kw5n+!!z2q843*@tpw8rpi_5=rn02co5kz0*u_q' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL='core.User'
24.968
91
0.69497
7946cbcfaf3c637be4fdc13d7b4bb36ec9ff0f8d
5,285
py
Python
travels/views.py
adrianboratyn/TripRecommendations
d3e5a10d80c405d5ac22f028be54c8198bc10410
[ "MIT" ]
null
null
null
travels/views.py
adrianboratyn/TripRecommendations
d3e5a10d80c405d5ac22f028be54c8198bc10410
[ "MIT" ]
null
null
null
travels/views.py
adrianboratyn/TripRecommendations
d3e5a10d80c405d5ac22f028be54c8198bc10410
[ "MIT" ]
2
2021-06-26T13:03:22.000Z
2021-06-27T10:47:59.000Z
from django.contrib import messages from .models import Trip, TripPicture, TripDates, Polling, TripReservation from django.views.generic.edit import CreateView from .forms import TripReservationForm, PollingForm from django.views.generic.list import ListView from django.views.generic import DetailView from django.views.generic.edit import FormMixin from django.urls import reverse_lazy from django.urls import reverse from django.contrib.auth.mixins import LoginRequiredMixin import travels.content_based_recommendation as cbr from travels.helper import Helper import travels.memory_based_collaborative_filtering as mbcf class SelectedForYouListView(ListView): model = Trip template_name = 'travels/trip_list.html' paginate_by = 12 context_object_name = "trips" ankieta = None def get_context_data(self, **kwargs): context = super(SelectedForYouListView, self).get_context_data(**kwargs) context['pictures'] = TripPicture.objects.all().filter(default=True, trip__in=self.get_queryset()[:50]) if self.request.user.is_authenticated: context['polling'] = self.ankieta return context def get_queryset(self): if self.request.user.is_authenticated: user_reservations = TripReservation.manager_objects.user_reservations(self.request.user) result_set = set() for reservation in user_reservations: try: result_set.update(cbr.get_result(reservation.trip.title)) except IndexError: print("Brak wycieczki w V2csv.csv") except Exception: print("Error") self.ankieta = Polling.objects.filter(user=self.request.user).last() if self.ankieta is not None: polling_query = Helper.get_polling_query(self.ankieta) for trip in polling_query: if not result_set.__contains__(trip.title): result_set.add(trip.title) query = Trip.objects.filter(title__in=result_set).order_by('-rating') return query return Trip.objects.none() class PopularListView(ListView): model = Trip paginate_by = 12 context_object_name = "trips" template_name = "travels/trip_list.html" def get_context_data(self, **kwargs): context = super(PopularListView, self).get_context_data(**kwargs) context['pictures'] = TripPicture.objects.all().filter(default=True, trip__in=self.get_queryset()[:50]) if self.request.user.is_authenticated: context['polling'] = Polling.objects.filter(user=self.request.user).last() return context def get_queryset(self): return Helper.popular class OthersChooseListView(ListView): model = Trip paginate_by = 12 context_object_name = "trips" def get_context_data(self, **kwargs): context = super(OthersChooseListView, self).get_context_data(**kwargs) context['pictures'] = TripPicture.objects.all().filter(default=True, trip__in=self.get_queryset()[:50]) if self.request.user.is_authenticated: context['polling'] = Polling.objects.filter(user=self.request.user).last() return context def get_queryset(self): if self.request.user.is_authenticated: return mbcf.get_result(self.request.user) return Trip.objects.none() class TripDetailView(FormMixin, DetailView): model = Trip context_object_name = "trip" form_class = TripReservationForm def get_context_data(self, **kwargs): context = super(TripDetailView, self).get_context_data(**kwargs) context['pictures'] = TripPicture.objects.all().filter(trip=context['trip']) context['dates'] = TripDates.objects.filter(trip=context['trip']) TripReservationForm.select_dates=self.get_data(context['dates']) context['form'] = self.form_class(initial={'user': self.request.user, 'trip': self.object}) return context def get_success_url(self): return reverse("travels:details", kwargs={"slug": self.object.slug}) def post(self, request, *args, **kwargs): self.object = self.get_object() form = self.get_form() if form.is_valid(): messages.success(request, f'Rezerwacja została złożona') return self.form_valid(form) else: print(form.cleaned_data) return self.form_invalid(form) def form_valid(self, form): form.save(False) print(form.cleaned_data) form.save() return super(TripDetailView, self).form_valid(form) def get_data(self, data): choices = list(data) select_dates = [] for value in choices: select_dates.append((value.pk, value.start_date)) return select_dates class QuestionnaireView(LoginRequiredMixin, CreateView): model = Polling form_class = PollingForm success_url = reverse_lazy('travels:selected_for_you') def get_initial(self): return {'user': self.request.user} def form_valid(self, form): result = super().form_valid(form) messages.success(self.request, f'Dziękujemy za wypełnienie ankiety') return result
36.958042
111
0.674551
7946cc394fc1966e217460a5675b0c3d76ec4447
2,483
py
Python
lib/flowbber/args.py
simiolabs/flowbber
f306d9ade30a807d0b5c61620bbb528830e4bd8f
[ "Apache-2.0" ]
null
null
null
lib/flowbber/args.py
simiolabs/flowbber
f306d9ade30a807d0b5c61620bbb528830e4bd8f
[ "Apache-2.0" ]
1
2019-02-21T19:26:34.000Z
2019-02-21T19:26:34.000Z
lib/flowbber/args.py
simiolabs/flowbber
f306d9ade30a807d0b5c61620bbb528830e4bd8f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2017 KuraLabs S.R.L # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Argument management module. """ from pathlib import Path from . import __version__ from .logging import get_logger, setup_logging log = get_logger(__name__) def validate_args(args): """ Validate that arguments are valid. :param args: An arguments namespace. :type args: :py:class:`argparse.Namespace` :return: The validated namespace. :rtype: :py:class:`argparse.Namespace` """ setup_logging(args.verbose) log.debug('Raw arguments:\n{}'.format(args)) # Check if pipeline file exists args.pipeline = Path(args.pipeline) if not args.pipeline.is_file(): log.error('No such file {}'.format(args.pipeline)) exit(1) args.pipeline = args.pipeline.resolve() return args def parse_args(argv=None): """ Argument parsing routine. :param argv: A list of argument strings. :type argv: list :return: A parsed and verified arguments namespace. :rtype: :py:class:`argparse.Namespace` """ from argparse import ArgumentParser parser = ArgumentParser( description=( 'Flowbber is a generic tool and framework that allows to execute ' 'custom pipelines for data gathering, publishing and analysis.' ) ) parser.add_argument( '-v', '--verbose', help='Increase verbosity level', default=0, action='count' ) parser.add_argument( '--version', action='version', version='Flowbber v{}'.format(__version__) ) parser.add_argument( '-d', '--dry-run', help='Dry run the pipeline', default=False, action='store_true' ) parser.add_argument( 'pipeline', help='Pipeline definition file' ) args = parser.parse_args(argv) args = validate_args(args) return args __all__ = ['parse_args']
24.106796
78
0.653645
7946ccf65fb3c95db7e70c25021c9e6569e68a68
3,320
py
Python
benchmarks/benchmarks/bench_ufunc.py
leifdenby/numpy
4750c2810c5e0943cbea8e2acc0337c4e66a9bb2
[ "BSD-3-Clause" ]
1
2021-01-06T21:28:45.000Z
2021-01-06T21:28:45.000Z
benchmarks/benchmarks/bench_ufunc.py
leifdenby/numpy
4750c2810c5e0943cbea8e2acc0337c4e66a9bb2
[ "BSD-3-Clause" ]
null
null
null
benchmarks/benchmarks/bench_ufunc.py
leifdenby/numpy
4750c2810c5e0943cbea8e2acc0337c4e66a9bb2
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, division, print_function from .common import Benchmark, squares_ import numpy as np ufuncs = ['abs', 'absolute', 'add', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_not', 'bitwise_or', 'bitwise_xor', 'cbrt', 'ceil', 'conj', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees', 'divide', 'equal', 'exp', 'exp2', 'expm1', 'fabs', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', 'frexp', 'greater', 'greater_equal', 'hypot', 'invert', 'isfinite', 'isinf', 'isnan', 'ldexp', 'left_shift', 'less', 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'maximum', 'minimum', 'mod', 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'power', 'rad2deg', 'radians', 'reciprocal', 'remainder', 'right_shift', 'rint', 'sign', 'signbit', 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh', 'true_divide', 'trunc'] for name in dir(np): if isinstance(getattr(np, name, None), np.ufunc) and name not in ufuncs: print("Missing ufunc %r" % (name,)) class Broadcast(Benchmark): def setup(self): self.d = np.ones((50000, 100), dtype=np.float64) self.e = np.ones((100,), dtype=np.float64) def time_broadcast(self): self.d - self.e class UFunc(Benchmark): params = [ufuncs] param_names = ['ufunc'] timeout = 2 def setup(self, ufuncname): np.seterr(all='ignore') try: self.f = getattr(np, ufuncname) except AttributeError: raise NotImplementedError() self.args = [] for t, a in squares_.items(): arg = (a,) * self.f.nin try: self.f(*arg) except TypeError: continue self.args.append(arg) def time_ufunc_types(self, ufuncname): [self.f(*arg) for arg in self.args] class Custom(Benchmark): def setup(self): self.b = np.ones(20000, dtype=np.bool) def time_nonzero(self): np.nonzero(self.b) def time_count_nonzero(self): np.count_nonzero(self.b) def time_not_bool(self): (~self.b) def time_and_bool(self): (self.b & self.b) def time_or_bool(self): (self.b | self.b) class CustomScalar(Benchmark): params = [np.float32, np.float64] param_names = ['dtype'] def setup(self, dtype): self.d = np.ones(20000, dtype=dtype) def time_add_scalar2(self, dtype): np.add(self.d, 1) def time_divide_scalar2(self, dtype): np.divide(self.d, 1) def time_divide_scalar2_inplace(self, dtype): np.divide(self.d, 1, out=self.d) def time_less_than_scalar2(self, dtype): (self.d < 1) class Scalar(Benchmark): def setup(self): self.x = np.asarray(1.0) self.y = np.asarray((1.0 + 1j)) self.z = complex(1.0, 1.0) def time_add_scalar(self): (self.x + self.x) def time_add_scalar_conv(self): (self.x + 1.0) def time_add_scalar_conv_complex(self): (self.y + self.z)
28.376068
76
0.569578
7946cd4ad6664caeba3a1f92dd7e55d2cdc87a72
12,167
py
Python
salt/cli/caller.py
JesseRhoads/salt
bd5395ea85956e064970710aae03398cbd1b20f5
[ "Apache-2.0" ]
1
2020-10-02T02:29:25.000Z
2020-10-02T02:29:25.000Z
salt/cli/caller.py
JesseRhoads/salt
bd5395ea85956e064970710aae03398cbd1b20f5
[ "Apache-2.0" ]
null
null
null
salt/cli/caller.py
JesseRhoads/salt
bd5395ea85956e064970710aae03398cbd1b20f5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' The caller module is used as a front-end to manage direct calls to the salt minion modules. ''' # Import python libs from __future__ import print_function import os import sys import logging import datetime import traceback # Import salt libs import salt.exitcodes import salt.loader import salt.minion import salt.output import salt.payload import salt.transport import salt.utils.args from salt._compat import string_types from salt.log import LOG_LEVELS from salt.utils import print_cli from salt.utils import kinds log = logging.getLogger(__name__) try: from raet import raeting, nacling from raet.lane.stacking import LaneStack from raet.lane.yarding import RemoteYard except ImportError: # Don't die on missing transport libs since only one transport is required pass # Custom exceptions from salt.exceptions import ( SaltClientError, CommandNotFoundError, CommandExecutionError, SaltInvocationError, ) class Caller(object): ''' Factory class to create salt-call callers for different transport ''' @staticmethod def factory(opts, **kwargs): # Default to ZeroMQ for now ttype = 'zeromq' # determine the ttype if 'transport' in opts: ttype = opts['transport'] elif 'transport' in opts.get('pillar', {}).get('master', {}): ttype = opts['pillar']['master']['transport'] # switch on available ttypes if ttype == 'zeromq': return ZeroMQCaller(opts, **kwargs) elif ttype == 'raet': return RAETCaller(opts, **kwargs) else: raise Exception('Callers are only defined for ZeroMQ and raet') # return NewKindOfCaller(opts, **kwargs) class ZeroMQCaller(object): ''' Object to wrap the calling of local salt modules for the salt-call command ''' def __init__(self, opts): ''' Pass in the command line options ''' self.opts = opts self.opts['caller'] = True self.serial = salt.payload.Serial(self.opts) # Handle this here so other deeper code which might # be imported as part of the salt api doesn't do a # nasty sys.exit() and tick off our developer users try: self.minion = salt.minion.SMinion(opts) except SaltClientError as exc: raise SystemExit(str(exc)) def call(self): ''' Call the module ''' ret = {} fun = self.opts['fun'] ret['jid'] = '{0:%Y%m%d%H%M%S%f}'.format(datetime.datetime.now()) proc_fn = os.path.join( salt.minion.get_proc_dir(self.opts['cachedir']), ret['jid'] ) if fun not in self.minion.functions: sys.stderr.write('Function {0} is not available.'.format(fun)) mod_name = fun.split('.')[0] if mod_name in self.minion.function_errors: sys.stderr.write(' Possible reasons: {0}\n'.format(self.minion.function_errors[mod_name])) else: sys.stderr.write('\n') sys.exit(-1) try: sdata = { 'fun': fun, 'pid': os.getpid(), 'jid': ret['jid'], 'tgt': 'salt-call'} args, kwargs = salt.minion.load_args_and_kwargs( self.minion.functions[fun], salt.utils.args.parse_input(self.opts['arg']), data=sdata) try: with salt.utils.fopen(proc_fn, 'w+b') as fp_: fp_.write(self.serial.dumps(sdata)) except NameError: # Don't require msgpack with local pass except IOError: sys.stderr.write( 'Cannot write to process directory. ' 'Do you have permissions to ' 'write to {0} ?\n'.format(proc_fn)) func = self.minion.functions[fun] try: ret['return'] = func(*args, **kwargs) except TypeError as exc: trace = traceback.format_exc() sys.stderr.write('Passed invalid arguments: {0}\n'.format(exc)) active_level = LOG_LEVELS.get( self.opts['log_level'].lower(), logging.ERROR) if active_level <= logging.DEBUG: sys.stderr.write(trace) sys.exit(salt.exitcodes.EX_GENERIC) try: ret['retcode'] = sys.modules[ func.__module__].__context__.get('retcode', 0) except AttributeError: ret['retcode'] = 1 except (CommandExecutionError) as exc: msg = 'Error running \'{0}\': {1}\n' active_level = LOG_LEVELS.get( self.opts['log_level'].lower(), logging.ERROR) if active_level <= logging.DEBUG: sys.stderr.write(traceback.format_exc()) sys.stderr.write(msg.format(fun, str(exc))) sys.exit(salt.exitcodes.EX_GENERIC) except CommandNotFoundError as exc: msg = 'Command required for \'{0}\' not found: {1}\n' sys.stderr.write(msg.format(fun, str(exc))) sys.exit(salt.exitcodes.EX_GENERIC) try: os.remove(proc_fn) except (IOError, OSError): pass if hasattr(self.minion.functions[fun], '__outputter__'): oput = self.minion.functions[fun].__outputter__ if isinstance(oput, string_types): ret['out'] = oput is_local = self.opts['local'] or self.opts.get( 'file_client', False) == 'local' returners = self.opts.get('return', '').split(',') if (not is_local) or returners: ret['id'] = self.opts['id'] ret['fun'] = fun ret['fun_args'] = self.opts['arg'] for returner in returners: try: ret['success'] = True self.minion.returners['{0}.returner'.format(returner)](ret) except Exception: pass # return the job infos back up to the respective minion's master if not is_local: try: mret = ret.copy() mret['jid'] = 'req' self.return_pub(mret) except Exception: pass # close raet channel here return ret def return_pub(self, ret): ''' Return the data up to the master ''' channel = salt.transport.Channel.factory(self.opts, usage='salt_call') load = {'cmd': '_return', 'id': self.opts['id']} for key, value in ret.items(): load[key] = value channel.send(load) def print_docs(self): ''' Pick up the documentation for all of the modules and print it out. ''' docs = {} for name, func in self.minion.functions.items(): if name not in docs: if func.__doc__: docs[name] = func.__doc__ for name in sorted(docs): if name.startswith(self.opts.get('fun', '')): print_cli('{0}:\n{1}\n'.format(name, docs[name])) def print_grains(self): ''' Print out the grains ''' grains = salt.loader.grains(self.opts) salt.output.display_output({'local': grains}, 'grains', self.opts) def run(self): ''' Execute the salt call logic ''' try: ret = self.call() out = ret.get('out', 'nested') if self.opts['metadata']: print_ret = ret out = 'nested' else: print_ret = ret.get('return', {}) salt.output.display_output( {'local': print_ret}, out, self.opts) if self.opts.get('retcode_passthrough', False): sys.exit(ret['retcode']) except SaltInvocationError as err: raise SystemExit(err) class RAETCaller(ZeroMQCaller): ''' Object to wrap the calling of local salt modules for the salt-call command when transport is raet ''' def __init__(self, opts): ''' Pass in the command line options ''' stack, estatename, yardname = self._setup_caller_stack(opts) self.stack = stack salt.transport.jobber_stack = self.stack #salt.transport.jobber_estate_name = estatename #salt.transport.jobber_yard_name = yardname super(RAETCaller, self).__init__(opts) def run(self): ''' Execute the salt call logic ''' try: ret = self.call() self.stack.server.close() salt.transport.jobber_stack = None if self.opts['metadata']: print_ret = ret else: print_ret = ret.get('return', {}) salt.output.display_output( {'local': print_ret}, ret.get('out', 'nested'), self.opts) if self.opts.get('retcode_passthrough', False): sys.exit(ret['retcode']) except SaltInvocationError as err: raise SystemExit(err) def _setup_caller_stack(self, opts): ''' Setup and return the LaneStack and Yard used by by channel when global not already setup such as in salt-call to communicate to-from the minion ''' role = opts.get('id') if not role: emsg = ("Missing role required to setup RAETChannel.") log.error(emsg + "\n") raise ValueError(emsg) kind = opts.get('__role') # application kind 'master', 'minion', etc if kind not in kinds.APPL_KINDS: emsg = ("Invalid application kind = '{0}' for RAETChannel.".format(kind)) log.error(emsg + "\n") raise ValueError(emsg) if kind in [kinds.APPL_KIND_NAMES[kinds.applKinds.minion], kinds.APPL_KIND_NAMES[kinds.applKinds.caller]]: lanename = "{0}_{1}".format(role, kind) else: emsg = ("Unsupported application kind '{0}' for RAETChannel.".format(kind)) log.error(emsg + '\n') raise ValueError(emsg) sockdirpath = opts['sock_dir'] stackname = 'caller' + nacling.uuid(size=18) stack = LaneStack(name=stackname, lanename=lanename, sockdirpath=sockdirpath) stack.Pk = raeting.packKinds.pack stack.addRemote(RemoteYard(stack=stack, name='manor', lanename=lanename, dirpath=sockdirpath)) log.debug("Created Caller Jobber Stack {0}\n".format(stack.name)) # name of Road Estate for this caller estatename = "{0}_{1}".format(role, kind) # name of Yard for this caller yardname = stack.local.name # return identifiers needed to route back to this callers master return (stack, estatename, yardname) def _setup_caller(self, opts): ''' Setup up RaetCaller stacks and behaviors Essentially a subset of a minion whose only function is to perform Salt-calls with raet as the transport The essentials: A RoadStack whose local estate name is of the form "role_kind" where: role is the minion id opts['id'] kind is opts['__role'] which should be 'caller' APPL_KIND_NAMES The RoadStack if for communication to/from a master A LaneStack with manor yard so that RaetChannels created by the func Jobbers can communicate through this manor yard then through the RoadStack to/from a master A Router to route between the stacks (Road and Lane) These are all managed via a FloScript named caller.flo ''' pass
34.370056
106
0.552396
7946cd55b64e51763b83ef66b394e961275ca224
579
py
Python
src/multilingual/context_processors.py
daniel-werner/stelagifts
809cb70f98a1ead3acbc2fd6aea99a87fdfd9435
[ "MIT" ]
null
null
null
src/multilingual/context_processors.py
daniel-werner/stelagifts
809cb70f98a1ead3acbc2fd6aea99a87fdfd9435
[ "MIT" ]
null
null
null
src/multilingual/context_processors.py
daniel-werner/stelagifts
809cb70f98a1ead3acbc2fd6aea99a87fdfd9435
[ "MIT" ]
null
null
null
from multilingual.languages import get_language_code_list, get_default_language_code from multilingual.settings import LANG_DICT from django.conf import settings def multilingual(request): """ Returns context variables containing information about available languages. """ codes = sorted(get_language_code_list()) return {'LANGUAGE_CODES': codes, 'LANGUAGE_CODES_AND_NAMES': [(c, LANG_DICT.get(c, c)) for c in codes], 'DEFAULT_LANGUAGE_CODE': get_default_language_code(), 'ADMIN_MEDIA_URL': settings.ADMIN_MEDIA_PREFIX}
38.6
84
0.740933
7946cd9e3c1d170db9f3c449fc30a4c10ff631e4
3,458
py
Python
dcnow.py
sairuk/dreampi
8aba6801059433b93bb2fc44e29fc4e0b44e03e9
[ "MIT" ]
null
null
null
dcnow.py
sairuk/dreampi
8aba6801059433b93bb2fc44e29fc4e0b44e03e9
[ "MIT" ]
null
null
null
dcnow.py
sairuk/dreampi
8aba6801059433b93bb2fc44e29fc4e0b44e03e9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import threading import os import json import time import logging import sh # python3 first then python2 try: import urllib2 as urlh except ImportError: import urllib.request as urlh try: import urllib.parse as urlp except: import urllib as urlp from hashlib import sha256 from uuid import getnode as get_mac logger = logging.getLogger('dcnow') API_ROOT = "https://dcnow-2016.appspot.com" UPDATE_END_POINT = "/api/update/{mac_address}/" UPDATE_INTERVAL = 15 CONFIGURATION_FILE = os.path.expanduser("~/.dreampi.json") def scan_mac_address(): mac = get_mac() return sha256(':'.join(("%012X" % mac)[i:i+2] for i in range(0, 12, 2)).encode('utf-8')).hexdigest() class DreamcastNowThread(threading.Thread): def __init__(self, service): self._service = service self._running = True super(DreamcastNowThread, self).__init__() def run(self): def post_update(): if not self._service._enabled: return lines = [ x for x in sh.tail("/var/log/syslog", "-n", "10", _iter=True) ] dns_query = None for line in lines[::-1]: if "CONNECT" in line and "dreampi" in line: # Don't seek back past connection break if "query[A]" in line: # We did a DNS lookup, what was it? remainder = line[line.find("query[A]") + len("query[A]"):].strip() domain = remainder.split(" ", 1)[0].strip() dns_query = sha256(domain).hexdigest() break user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT), Dreamcast Now' header = { 'User-Agent' : user_agent } mac_address = self._service._mac_address data = {} if dns_query: data["dns_query"] = dns_query data = urlp.urlencode(data) req = Request(API_ROOT + UPDATE_END_POINT.format(mac_address=mac_address), data, header) urlh.urlopen(req) # Send POST update while self._running: try: post_update() except: logger.exception("Couldn't update Dreamcast Now!") time.sleep(UPDATE_INTERVAL) def stop(self): self._running = False self.join() class DreamcastNowService(object): def __init__(self): self._thread = None self._mac_address = None self._enabled = True self.reload_settings() logger.setLevel(logging.INFO) handler = logging.handlers.SysLogHandler(address='/dev/log') logger.addHandler(handler) def update_mac_address(self, dreamcast_ip): self._mac_address = scan_mac_address() logger.info("MAC address: {}".format(self._mac_address)) def reload_settings(self): settings_file = CONFIGURATION_FILE if os.path.exists(settings_file): with open(settings_file, "r") as settings: content = json.loads(settings.read()) self._enabled = content["enabled"] def go_online(self, dreamcast_ip): if not self._enabled: return self.update_mac_address(dreamcast_ip) self._thread = DreamcastNowThread(self) self._thread.start() def go_offline(self): self._thread.stop() self._thread = None
28.578512
104
0.593985
7946ce3f7f98959e1db957cffd5879b5c089d44e
1,963
py
Python
tmt/steps/prepare/shell.py
pkis/tmt
66fa6417bb5483fd3a432f008e863f6ad9003501
[ "MIT" ]
2
2022-03-04T05:57:48.000Z
2022-03-09T18:49:02.000Z
tmt/steps/prepare/shell.py
pkis/tmt
66fa6417bb5483fd3a432f008e863f6ad9003501
[ "MIT" ]
91
2022-02-15T14:09:03.000Z
2022-03-31T16:05:28.000Z
tmt/steps/prepare/shell.py
pkis/tmt
66fa6417bb5483fd3a432f008e863f6ad9003501
[ "MIT" ]
5
2022-02-21T08:02:23.000Z
2022-03-26T16:43:46.000Z
import click import fmf import tmt import tmt.utils class PrepareShell(tmt.steps.prepare.PreparePlugin): """ Prepare guest using shell scripts Example config: prepare: how: shell script: - sudo dnf install -y 'dnf-command(copr)' - sudo dnf copr enable -y psss/tmt - sudo dnf install -y tmt Use 'order' attribute to select in which order preparation should happen if there are multiple configs. Default order is '50'. Default order of required packages installation is '70'. """ # Supported methods _methods = [tmt.steps.Method(name='shell', doc=__doc__, order=50)] # Supported keys _keys = ["script"] @classmethod def options(cls, how=None): """ Prepare command line options """ return [ click.option( '-s', '--script', metavar='SCRIPT', help='Shell script to be executed.') ] + super().options(how) def default(self, option, default=None): """ Return default data for given option """ if option == 'script': return [] return default def wake(self, keys=None): """ Wake up the plugin, process data, apply options """ super().wake(keys=keys) # Convert to list if single script provided tmt.utils.listify(self.data, keys=['script']) def go(self, guest): """ Prepare the guests """ super().go(guest) # Give a short summary scripts = self.get('script') overview = fmf.utils.listed(scripts, 'script') self.info('overview', f'{overview} found', 'green') # Execute each script on the guest (with default shell options) for script in scripts: self.verbose('script', script, 'green') script_with_options = f'{tmt.utils.SHELL_OPTIONS}; {script}' guest.execute(script_with_options, cwd=self.step.plan.worktree)
28.867647
75
0.599083
7946ce633331354ca9497b9f24c80f10a3b1734d
213
py
Python
c-series/c015.py
TheLurkingCat/ZeroJudge
6fc49c54a45e2b4b3a8d04b7a5a1fc81a2ff4eee
[ "MIT" ]
1
2018-10-21T10:03:42.000Z
2018-10-21T10:03:42.000Z
c-series/c015.py
TheLurkingCat/ZeroJudge
6fc49c54a45e2b4b3a8d04b7a5a1fc81a2ff4eee
[ "MIT" ]
null
null
null
c-series/c015.py
TheLurkingCat/ZeroJudge
6fc49c54a45e2b4b3a8d04b7a5a1fc81a2ff4eee
[ "MIT" ]
2
2018-10-12T16:40:11.000Z
2021-04-05T12:05:36.000Z
a = int(input()) for _ in range(a): x = input() y = x[::-1] counter = 0 while x != y or not counter: x = str(int(x) + int(y)) y = x[::-1] counter += 1 print(counter, x)
19.363636
32
0.43662
7946cf7921705a2305b6f5a228f1cf14353b33ba
3,811
py
Python
14A-235/HI/imaging/ebhis_regrid_m31.py
Astroua/LocalGroup-VLA
4920341c9e25343d724fb4a2e37cdcd234201047
[ "MIT" ]
1
2019-04-11T00:37:56.000Z
2019-04-11T00:37:56.000Z
14A-235/HI/imaging/ebhis_regrid_m31.py
Astroua/LocalGroup-VLA
4920341c9e25343d724fb4a2e37cdcd234201047
[ "MIT" ]
null
null
null
14A-235/HI/imaging/ebhis_regrid_m31.py
Astroua/LocalGroup-VLA
4920341c9e25343d724fb4a2e37cdcd234201047
[ "MIT" ]
null
null
null
''' Regrid the EBHIS data to match the 14A footprint. ''' from astropy.io import fits from astropy.wcs import WCS from spectral_cube import SpectralCube from astropy.utils.console import ProgressBar import numpy as np import os import astropy.units as u from cube_analysis.io_utils import create_huge_fits from paths import (fourteenA_HI_data_path, ebhis_m31_HI_data_path, m31_data_path) from constants import hi_freq osjoin = os.path.join def vel_to_freq(vel_or_freq, rest_freq=hi_freq, unit=u.Hz): ''' Using radio velocity here. ''' equiv = u.doppler_radio(rest_freq) return vel_or_freq.to(unit, equiv) run_04kms = True ebhis_outpath = ebhis_m31_HI_data_path('14A-235_items', no_check=True) if not os.path.exists(ebhis_outpath): os.mkdir(ebhis_outpath) ebhis_name = "CAR_C01.fits" cube = SpectralCube.read(ebhis_m31_HI_data_path(ebhis_name)) if run_04kms: out_name = "CAR_C01_14A235_match_04kms.fits" out_name_specregrid = "CAR_C01_14A235_match_04kms_spectralregrid.fits" # We require the spatial pb mask and a saved FITS header that defines the # spatial WCS information of the VLA cube vla_pbmask = fits.getdata(fourteenA_HI_data_path("14A_spatial_pbmask.fits")) > 0 vla_spat_hdr = fits.Header.fromtextfile(fourteenA_HI_data_path("14A_spatial_header.txt")) # Hard code in properties to make the spectral axis # Define axis in frequency. Then convert to V_rad freq_0 = 1420433643.3212132 * u.Hz # This cube averages over 5 channels del_freq = 1952.9365057945251 * u.Hz nchan = 1526 freq_axis = np.arange(nchan) * del_freq + freq_0 vel_axis = vel_to_freq(freq_axis, unit=u.m / u.s) save_name = osjoin(ebhis_outpath, out_name_specregrid) # Spectral interpolation, followed by reprojection. if not os.path.exists(save_name): cube = cube.spectral_interpolate(vel_axis) if cube._is_huge: output_fits = create_huge_fits(save_name, cube.header, return_hdu=True) for chan in ProgressBar(cube.shape[0]): output_fits[0].data[chan] = cube[chan].value output_fits.flush() output_fits.close() else: cube.write(save_name, overwrite=True) else: cube = SpectralCube.read(save_name) # Make the reprojected header new_header = cube.header.copy() new_header["NAXIS"] = 3 new_header["NAXIS1"] = vla_pbmask.shape[1] new_header["NAXIS2"] = vla_pbmask.shape[0] new_header["NAXIS3"] = nchan new_header['CRVAL3'] = vel_axis[0].value # COMMENT is in here b/c casa adds an illegal comment format kwarg_skip = ['TELESCOP', 'BUNIT', 'INSTRUME', 'COMMENT'] for key in cube.header: if key == 'HISTORY': continue if key in vla_spat_hdr: if "NAXIS" in key: continue if key in kwarg_skip: continue new_header[key] = vla_spat_hdr[key] new_header.update(cube.beam.to_header_keywords()) new_header["BITPIX"] = -32 # Build up the reprojected cube per channel save_name = osjoin(ebhis_outpath, out_name) output_fits = create_huge_fits(save_name, new_header, return_hdu=True) targ_header = WCS(vla_spat_hdr).celestial.to_header() targ_header["NAXIS"] = 2 targ_header["NAXIS1"] = vla_pbmask.shape[1] targ_header["NAXIS2"] = vla_pbmask.shape[0] for chan in ProgressBar(cube.shape[0]): reproj_chan = \ cube[chan].reproject(targ_header).value.astype(np.float32) output_fits[0].data[chan] = reproj_chan if chan % 100 == 0: output_fits.flush() output_fits.close() del output_fits del cube
29.773438
93
0.672264
7946cf8c7f3eb96ef44a8f0c9536655228aabbf3
6,629
py
Python
.modules/.CMSeeK/cmsbrute/joom.py
termux-one/EasY_HaCk
0a8d09ca4b126b027b6842e02fa0c29d8250e090
[ "Apache-2.0" ]
1,103
2018-04-20T14:08:11.000Z
2022-03-29T06:22:43.000Z
.modules/.CMSeeK/cmsbrute/joom.py
sshourya948/EasY_HaCk
0a8d09ca4b126b027b6842e02fa0c29d8250e090
[ "Apache-2.0" ]
29
2019-04-03T14:52:38.000Z
2022-03-24T12:33:05.000Z
.modules/.CMSeeK/cmsbrute/joom.py
sshourya948/EasY_HaCk
0a8d09ca4b126b027b6842e02fa0c29d8250e090
[ "Apache-2.0" ]
161
2018-04-20T15:57:12.000Z
2022-03-15T19:16:16.000Z
#!/usr/bin/python3 # -*- coding: utf-8 -*- # This is a part of CMSeeK, check the LICENSE file for more information # Copyright (c) 2018 Tuhinshubhra ### Joomla Bruteforce module ### Version 1.3 ### This thing took a whole freaking night to build... apperently i was dealing with the cookies in a not so "Wise" manner! ### cmseekbruteforcemodule <- make sure you include this comment in any custom modules you create so that cmseek can recognize it as a part of it's module import cmseekdb.basic as cmseek import cmseekdb.sc as source # Contains function to detect cms from source code import cmseekdb.header as header # Contains function to detect CMS from gathered http headers import cmseekdb.generator as generator import multiprocessing ## Let's speed things up a lil bit (actually a hell lot faster) shell we? from functools import partial ## needed somewhere :/ import sys import cmseekdb.generator as generator import re import urllib.request, urllib.error, urllib.parse import http.cookiejar from html.parser import HTMLParser class extInpTags(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.return_array = {} def handle_starttag(self, tag, attrs): if tag == "input": name = None value = None for nm,val in attrs: if nm == "name": name = val if nm == "value": value = val if name is not None and value is not None: self.return_array.update({name:value}) def testlogin(url,user,passw): url = url + '/administrator/index.php' cj = http.cookiejar.FileCookieJar("cookieszz") opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj)) joomloginsrc = opener.open(url).read().decode() parser = extInpTags() post_array = parser.feed(joomloginsrc) main_param = {'username':user, 'passwd':passw} other_param = parser.return_array post_data = main_param.copy() post_data.update(other_param) post_datad = urllib.parse.urlencode(post_data).encode("utf-8") ua = cmseek.randomua('generatenewuaeverytimetobesafeiguess') try: with opener.open(url, post_datad) as response: scode = response.read().decode() headers = str(response.info()) rurl = response.geturl() r = ['1', scode, headers, rurl] ## 'success code', 'source code', 'http headers', 'redirect url' return r except Exception as e: e = str(e) r = ['2', e, '', ''] ## 'error code', 'error message', 'empty' return r print('hola') def start(): cmseek.clearscreen() cmseek.banner("Joomla Bruteforce Module") url = cmseek.targetinp("") # input('Enter Url: ') cmseek.info("Checking for Joomla") bsrc = cmseek.getsource(url, cmseek.randomua('foodislove')) joomcnf = '0' if bsrc[0] != '1': cmseek.error("Could not get target source, CMSeek is quitting") cmseek.handle_quit() else: ## Parse generator meta tag parse_generator = generator.parse(bsrc[1]) ga = parse_generator[0] ga_content = parse_generator[1] try1 = generator.scan(ga_content) if try1[0] == '1' and try1[1] == 'joom': joomcnf = '1' else: try2 = source.check(bsrc[1], url) if try2[0] == '1' and try2[1] == 'joom': joomcnf = '1' else: try3 = header.check(bsrc[2]) # Headers Check! if try3[0] == '1' and try3[1] == 'joom': joomcnf = '1' else: joomcnf = '0' if joomcnf != '1': cmseek.error('Could not confirm Joomla... CMSeek is quitting') cmseek.handle_quit() else: cmseek.success("Joomla Confirmed... Confirming form and getting token...") joomloginsrc = cmseek.getsource(url + '/administrator/index.php', cmseek.randomua('thatsprettygay')) if joomloginsrc[0] == '1' and '<form' in joomloginsrc[1]: # joomtoken = re.findall(r'type=\"hidden\" name=\"(.*?)\" value=\"1\"', joomloginsrc[1]) # if len(joomtoken) == 0: # cmseek.error('Unable to get token... CMSeek is quitting!') # cmseek.handle_quit() # cmseek.success("Token grabbed successfully: " + cmseek.bold + joomtoken[0] + cmseek.cln) # token = joomtoken[0] joomparamuser = [] rawuser = input("[~] Enter Usernames with coma as separation without any space (example: cris,harry): ").split(',') for rusr in rawuser: joomparamuser.append(rusr) joombruteusers = set(joomparamuser) ## Strip duplicate usernames in case any smartass didn't read the full thing and entered admin as well for user in joombruteusers: passfound = '0' print('\n') cmseek.info("Bruteforcing User: " + cmseek.bold + user + cmseek.cln) pwd_file = open("wordlist/passwords.txt", "r") passwords = pwd_file.read().split('\n') passwords.insert(0, user) for password in passwords: if password != '' and password != '\n': sys.stdout.write('[*] Testing Password: ') sys.stdout.write('%s\r\r' % password) sys.stdout.flush() # print("Testing Pass: " + password) cursrc = testlogin(url, user, password) # print('Token: ' + token) # print("Ret URL: " + str(cursrc[3])) if 'logout' in str(cursrc[1]): print('\n') cmseek.success('Password found!') print(" |\n |--[username]--> " + cmseek.bold + user + cmseek.cln + "\n |\n |--[password]--> " + cmseek.bold + password + cmseek.cln + "\n |") cmseek.success('Enjoy The Hunt!') cmseek.savebrute(url,url + '/administrator/index.php',user,password) passfound = '1' break else: continue break if passfound == '0': cmseek.error('\n\nCould Not find Password!') print('\n\n') else: cmseek.error("Couldn't find login form... CMSeeK is quitting") cmseek.handle_quit()
44.193333
169
0.559964
7946d095939bc8bd45fc2c84022a1475a3f77ace
2,071
py
Python
krux_redis/sentinel.py
krux/python-krux-redis
a7b1723a21001ec5d67271f170bc6b1ea6e7f98e
[ "MIT" ]
null
null
null
krux_redis/sentinel.py
krux/python-krux-redis
a7b1723a21001ec5d67271f170bc6b1ea6e7f98e
[ "MIT" ]
null
null
null
krux_redis/sentinel.py
krux/python-krux-redis
a7b1723a21001ec5d67271f170bc6b1ea6e7f98e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # © 2017 Krux, A Salesforce Company # from __future__ import absolute_import from redis.sentinel import ConnectionError, Sentinel from krux.cli import Application from krux_redis.cli import add_sentinel_cli_arguments SEPARATOR = ':' SOCKET_TIMEOUT = 0.1 def hostport_from_string(spec): """ Given SPEC, a string specifying a HOST:PORT pair, return a tuple of (HOST, PORT). """ return tuple(spec.split(SEPARATOR)) def hostports_from_args(args): """ Given a Namespace object (parsed CLI options), return a list of (HOST, PORT) pairs specified by the Namespace. """ return [hostport_from_string(s) for s in getattr(args, 'sentinel', [])] class TestApplication(Application): def __init__(self): # Call to the superclass to bootstrap. super(TestApplication, self).__init__(name='krux-redis-sentinel') self.logger.debug('Parsing sentinels from args: %r', self.args.sentinel) sentinels = hostports_from_args(self.args) self.logger.debug('Parsed sentinel host, port pairs: %r', sentinels) self.logger.debug('Initializing Sentinel instance...') self.sentinel = Sentinel(sentinels, socket_timeout=SOCKET_TIMEOUT) self.logger.debug('Initialized Sentinel instance: %r', self.sentinel) def add_cli_arguments(self, parser): add_sentinel_cli_arguments(parser) def run(self): master = self.sentinel.master_for(self.name) slave = self.sentinel.slave_for(self.name) try: self.logger.info('Ping master: %s', master.ping()) except ConnectionError as err: self.logger.warning('Could not connect to master!') self.logger.error(err) try: self.logger.info('Ping slave: %s', slave.ping()) except ConnectionError as err: self.logger.warning('Could not connect to slave!') self.logger.error(err) def main(): TestApplication().run() # Run the application stand alone if __name__ == '__main__': main()
27.986486
80
0.668759
7946d0ca8d02f13664bad960a24f0f16e4be5b1b
1,583
py
Python
fn_pastebin/fn_pastebin/util/customize.py
lmahoney1/resilient-community-apps
1f60fb100e6a697df7b901d7a4aad707fea3dfee
[ "MIT" ]
null
null
null
fn_pastebin/fn_pastebin/util/customize.py
lmahoney1/resilient-community-apps
1f60fb100e6a697df7b901d7a4aad707fea3dfee
[ "MIT" ]
null
null
null
fn_pastebin/fn_pastebin/util/customize.py
lmahoney1/resilient-community-apps
1f60fb100e6a697df7b901d7a4aad707fea3dfee
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Generate the Resilient customizations required for fn_pastebin""" import base64 import os import io try: from resilient import ImportDefinition except ImportError: # Support Apps running on resilient-circuits < v35.0.195 from resilient_circuits.util import ImportDefinition RES_FILE = "data/export.res" def codegen_reload_data(): """ Parameters required reload codegen for the fn_pastebin package """ return { "package": u"fn_pastebin", "message_destinations": [u"fn_pastebin"], "functions": [u"fn_create_pastebin"], "workflows": [u"example_create_pastebin"], "actions": [u"Create Pastebin"], "incident_fields": [], "incident_artifact_types": [], "datatables": [], "automatic_tasks": [], "scripts": [] } def customization_data(client=None): """ Returns a Generator of ImportDefinitions (Customizations). Install them using `resilient-circuits customize` IBM Resilient Platform Version: 36.0.5634 Contents: - Message Destinations: - fn_pastebin - Functions: - fn_create_pastebin - Workflows: - example_create_pastebin - Rules: - Create Pastebin """ res_file = os.path.join(os.path.dirname(__file__), RES_FILE) if not os.path.isfile(res_file): raise FileNotFoundError("{} not found".format(RES_FILE)) with io.open(res_file, mode='rt') as f: b64_data = base64.b64encode(f.read().encode('utf-8')) yield ImportDefinition(b64_data)
26.830508
68
0.651927
7946d18dc48b97ddd1a993a15f718ef34f18fa6c
4,816
py
Python
tests/unit/preprocessor/_regrid/test__stock_cube.py
markelg/ESMValCore
b2f7ffc3232f174dd5ebc50ad20b4a02d3517c2c
[ "Apache-2.0" ]
26
2019-06-07T07:50:07.000Z
2022-03-22T21:04:01.000Z
tests/unit/preprocessor/_regrid/test__stock_cube.py
markelg/ESMValCore
b2f7ffc3232f174dd5ebc50ad20b4a02d3517c2c
[ "Apache-2.0" ]
1,370
2019-06-06T09:03:07.000Z
2022-03-31T04:37:20.000Z
tests/unit/preprocessor/_regrid/test__stock_cube.py
zklaus/ESMValCore
5656fb8b546eeb4d750a424de7ed56a237edfabb
[ "Apache-2.0" ]
26
2019-07-03T13:08:48.000Z
2022-03-02T16:08:47.000Z
""" Unit tests for the :func:`esmvalcore.preprocessor.regrid._stock_cube` function. """ import unittest from unittest import mock import iris import numpy as np import tests from esmvalcore.preprocessor._regrid import (_LAT_MAX, _LAT_MIN, _LAT_RANGE, _LON_MAX, _LON_MIN, _LON_RANGE) from esmvalcore.preprocessor._regrid import _global_stock_cube class Test(tests.Test): def _check(self, dx, dy, lat_off=True, lon_off=True): # Generate the expected stock cube coordinate points. dx, dy = float(dx), float(dy) mid_dx, mid_dy = dx / 2, dy / 2 if lat_off and lon_off: expected_lat_points = np.linspace( _LAT_MIN + mid_dy, _LAT_MAX - mid_dy, int(_LAT_RANGE / dy)) expected_lon_points = np.linspace( _LON_MIN + mid_dx, _LON_MAX - mid_dx, int(_LON_RANGE / dx)) else: expected_lat_points = np.linspace(_LAT_MIN, _LAT_MAX, int(_LAT_RANGE / dy) + 1) expected_lon_points = np.linspace(_LON_MIN, _LON_MAX - dx, int(_LON_RANGE / dx)) # Check the stock cube coordinates. self.assertEqual(self.mock_DimCoord.call_count, 2) call_lats, call_lons = self.mock_DimCoord.call_args_list # Check the latitude coordinate creation. [args], kwargs = call_lats self.assert_array_equal(args, expected_lat_points) expected_lat_kwargs = dict(standard_name='latitude', units='degrees_north', var_name='lat', circular=False) self.assertEqual(kwargs, expected_lat_kwargs) # Check the longitude coordinate creation. [args], kwargs = call_lons self.assert_array_equal(args, expected_lon_points) expected_lon_kwargs = dict(standard_name='longitude', units='degrees_east', var_name='lon', circular=False) self.assertEqual(kwargs, expected_lon_kwargs) # Check that the coordinate guess_bounds method has been called. expected_calls = [mock.call.guess_bounds()] * 2 self.assertEqual(self.mock_coord.mock_calls, expected_calls) # Check the stock cube creation. self.mock_Cube.assert_called_once() _, kwargs = self.mock_Cube.call_args spec = [(self.mock_coord, 0), (self.mock_coord, 1)] expected_cube_kwargs = dict(dim_coords_and_dims=spec) self.assertEqual(kwargs, expected_cube_kwargs) # Reset the mocks to enable multiple calls per test-case. for mocker in self.mocks: mocker.reset_mock() def setUp(self): self.Cube = mock.sentinel.Cube self.mock_Cube = self.patch('iris.cube.Cube', return_value=self.Cube) self.mock_coord = mock.Mock(spec=iris.coords.DimCoord) self.mock_DimCoord = self.patch( 'iris.coords.DimCoord', return_value=self.mock_coord) self.mocks = [self.mock_Cube, self.mock_coord, self.mock_DimCoord] def test_invalid_cell_spec__alpha(self): emsg = 'Invalid MxN cell specification' with self.assertRaisesRegex(ValueError, emsg): _global_stock_cube('Ax1') def test_invalid_cell_spec__separator(self): emsg = 'Invalid MxN cell specification' with self.assertRaisesRegex(ValueError, emsg): _global_stock_cube('1y1') def test_invalid_cell_spec__longitude(self): emsg = 'Invalid longitude delta in MxN cell specification' with self.assertRaisesRegex(ValueError, emsg): _global_stock_cube('1.3x1') def test_invalid_cell_spec__latitude(self): emsg = 'Invalid latitude delta in MxN cell specification' with self.assertRaisesRegex(ValueError, emsg): _global_stock_cube('1x2.3') def test_specs(self): specs = ['0.5x0.5', '1x1', '2.5x2.5', '5x5', '10x10'] for spec in specs: result = _global_stock_cube(spec) self.assertEqual(result, self.Cube) self._check(*list(map(float, spec.split('x')))) def test_specs_no_offset(self): specs = ['0.5x0.5', '1x1', '2.5x2.5', '5x5', '10x10'] for spec in specs: result = _global_stock_cube(spec, lat_offset=False, lon_offset=False) self.assertEqual(result, self.Cube) self._check( *list(map(float, spec.split('x'))), lat_off=False, lon_off=False) if __name__ == '__main__': unittest.main()
39.47541
77
0.603405
7946d21359bfccd19b277796022012201f672ce9
1,943
py
Python
avwx_account/views/token.py
flyinactor91/AVWX-Account
29f3b9226699243966f9c7b041e94773c79d0314
[ "MIT" ]
1
2019-09-14T02:20:04.000Z
2019-09-14T02:20:04.000Z
avwx_account/views/token.py
flyinactor91/AVWX-Account
29f3b9226699243966f9c7b041e94773c79d0314
[ "MIT" ]
null
null
null
avwx_account/views/token.py
flyinactor91/AVWX-Account
29f3b9226699243966f9c7b041e94773c79d0314
[ "MIT" ]
1
2019-03-23T09:34:50.000Z
2019-03-23T09:34:50.000Z
""" Token management views """ # library from flask import flash, redirect, render_template, request, url_for from flask_user import login_required, current_user # app from avwx_account import app @app.route("/token/new") @login_required def new_token(): if current_user.new_token(): current_user.save() else: flash("Your account has been disabled. Contact [email protected]", "error") return redirect(url_for("manage")) @app.route("/token/edit", methods=["GET", "POST"]) @login_required def edit_token(): token = current_user.get_token(request.args.get("value")) if token is None: flash("Token not found in your account", "error") return redirect(url_for("manage")) if request.method == "POST": if current_user.update_token( token.value, name=request.form.get("name", "App"), active=bool(request.form.get("active")), ): current_user.save() return redirect(url_for("manage")) flash("Your token was not able to be updated", "error") return render_template("edit_token.html", token=token) @app.route("/token/refresh") @login_required def refresh_token(): token = current_user.get_token(request.args.get("value")) if token is None: flash("Token not found in your account", "error") return redirect(url_for("manage")) current_user.refresh_token(token.value) current_user.save() return redirect(url_for("manage")) @app.route("/token/delete") @login_required def delete_token(): token = current_user.get_token(request.args.get("value")) if token is None: flash("Token not found in your account", "error") elif token.type == "dev": flash("Cannot delete a development token. Disable instead", "error") else: current_user.remove_token_by(value=token.value) current_user.save() return redirect(url_for("manage"))
29.439394
81
0.664951
7946d24dccf22d442eae14407c544ec50c0e0e8c
4,306
py
Python
core/pycopia/OS/Linux/sequencer.py
kdart/pycopia3
8a7c820f096245411eabbb72345e4f30a35988b6
[ "Apache-2.0" ]
3
2018-11-26T15:00:20.000Z
2022-01-28T23:17:58.000Z
core/pycopia/OS/Linux/sequencer.py
kdart/pycopia3
8a7c820f096245411eabbb72345e4f30a35988b6
[ "Apache-2.0" ]
null
null
null
core/pycopia/OS/Linux/sequencer.py
kdart/pycopia3
8a7c820f096245411eabbb72345e4f30a35988b6
[ "Apache-2.0" ]
1
2018-11-26T15:00:21.000Z
2018-11-26T15:00:21.000Z
#!/usr/bin/python3.4 # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A sequencer for running various object at different time periods, starts, and durations. """ from time import monotonic from heapq import heappop, heappush from pycopia.timers import FDTimer, CLOCK_MONOTONIC from pycopia import asyncio class PeriodicTask(asyncio.PollerInterface): def __init__(self, callback, period=0.0, delay=0.0, callback_args=()): self._callback = callback self._args = callback_args self._period = period self._timer = timer = FDTimer() if delay: timer.settime(delay, period) else: timer.settime(period, period) def __del__(self): self.close() def fileno(self): return self._timer.fileno() def close(self): self._timer.close() def stop(self): self._timer.settime(0.0, 0.0) def start(self): self._timer.settime(self._period, self._period) def readable(self): if self._timer.closed: return False value, interval = self._timer.gettime() return not (value == 0.0 and interval == 0.0) def read_handler(self): count = self._timer.read() while count > 0: self._callback(*self._args) count -= 1 if self._period == 0.0: fd = self._timer.fileno() self._timer.close() raise asyncio.UnregisterFDNow(fd) class Sequencer(object): def __init__(self, poller=None): self._expireq = [] self._poller = poller or asyncio.Poll() self._duration_timer = FDTimer(CLOCK_MONOTONIC, nonblocking=1) self._poller.register_fd(self._duration_timer.fileno(), asyncio.EPOLLIN, self._duration_timeout) def __del__(self): self.close() def fileno(self): return self._poller.fileno() poller = property(lambda self: self._poller) def close(self): if self._poller is not None: self._poller.unregister_all() self._duration_timer.close() for expire, task in self._expireq: task.close() self._poller = None self._duration_timer = None self._expireq = [] def add_task(self, callback, period=0.0, delay=0.0, duration=None, callback_args=()): task = PeriodicTask(callback, period, delay, callback_args) self._poller.register(task) if duration: expire = monotonic() + duration + delay heappush(self._expireq, (expire, task)) self._duration_timer.settime(self._expireq[0][0], 0.0, absolute=True) def _duration_timeout(self): count = self._duration_timer.read() expire, task = heappop(self._expireq) task.stop() self._poller.unregister(task) task.close() if self._expireq: self._duration_timer.settime(self._expireq[0][0], 0.0, absolute=True) else: self._duration_timer.settime(0.0, 0.0) #self._poller.unregister_fd(self._duration_timer.fileno()) def run(self, progress_cb=None): poller = self._poller while self._expireq: poller.poll(5.0) if progress_cb is not None: progress_cb(len(self._expireq)) if __name__ == "__main__": def task1(): print("task1 called") def task2(): print("task2 called") def task3(): print("task3 called") s = Sequencer() s.add_task(task1, 2.0, duration=10.0) s.add_task(task2, 2.0, delay=5.0, duration=10.0) start = monotonic() s.run() s.add_task(task3, 2.0, delay=16.0, duration=5.0) s.run() s.close() print("Duration:", monotonic()-start)
29.696552
104
0.627497
7946d2b66ed76d196e36b1a6b37ca2f7c96baabe
2,685
py
Python
example.py
andrew-ld/async_worker.py
013b95e8a2f763c62fcc53d11e9c5dc330aec81d
[ "MIT" ]
1
2020-02-06T18:00:04.000Z
2020-02-06T18:00:04.000Z
example.py
andrew-ld/async_worker.py
013b95e8a2f763c62fcc53d11e9c5dc330aec81d
[ "MIT" ]
null
null
null
example.py
andrew-ld/async_worker.py
013b95e8a2f763c62fcc53d11e9c5dc330aec81d
[ "MIT" ]
null
null
null
# This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org/> import asyncio from multiprocessing import cpu_count from async_worker import AsyncTaskScheduler, AsyncTask, OneLoopAsyncTask class Test1(AsyncTask): _pause: int def __init__(self, pause: int): super().__init__() self._pause = pause async def process(self) -> int: print(id(self), self.__class__.__name__, self._pause) return self._pause class Test2(AsyncTask): _after: int _bootstrapped = False def __init__(self, after: int): super().__init__() self._after = after async def process(self) -> int: if not self._bootstrapped: self._bootstrapped = True return self._after for i in range(50): task = Test3(i) await self.future(task) return False class Test3(OneLoopAsyncTask): _i: int async def process(self): await asyncio.sleep(self._i) print("sleep", self._i) async def setup(self): print("setup triggered") def __init__(self, i: int): super().__init__() self._i = i async def main(): scheduler = AsyncTaskScheduler() for i in range(6, 12): await scheduler.submit(Test1(i)) await scheduler.submit(Test2(6)) await asyncio.gather(*(scheduler.loop() for _ in range(cpu_count()))) if __name__ == "__main__": _loop = asyncio.get_event_loop() _loop.run_until_complete(main())
29.184783
73
0.6946
7946d2c9f7c2c62f417f9c97900d44f5cf2d7411
75,989
py
Python
tests/python/proton_tests/engine.py
Azure/qpid-proton
fa784b1f3c4f3dbd6b143d5cceda10bf76da23a5
[ "Apache-2.0" ]
2
2020-04-28T13:33:06.000Z
2020-06-01T14:51:05.000Z
tests/python/proton_tests/engine.py
Azure/qpid-proton
fa784b1f3c4f3dbd6b143d5cceda10bf76da23a5
[ "Apache-2.0" ]
null
null
null
tests/python/proton_tests/engine.py
Azure/qpid-proton
fa784b1f3c4f3dbd6b143d5cceda10bf76da23a5
[ "Apache-2.0" ]
4
2015-10-17T20:44:45.000Z
2021-06-08T19:00:56.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import absolute_import import os, gc import sys from . import common from time import time, sleep from proton import * from .common import pump, Skipped from proton.reactor import Reactor from proton._compat import str2bin # older versions of gc do not provide the garbage list if not hasattr(gc, "garbage"): gc.garbage=[] # future test areas # + different permutations of setup # - creating deliveries and calling input/output before opening the session/link # + shrinking output_size down to something small? should the enginge buffer? # + resuming # - locally and remotely created deliveries with the same tag # Jython 2.5 needs this: try: bytes() except: bytes = str # and this... try: bytearray() except: def bytearray(x): return str2bin('\x00') * x OUTPUT_SIZE = 10*1024 class Test(common.Test): def __init__(self, *args): common.Test.__init__(self, *args) self._wires = [] def connection(self): c1 = Connection() c2 = Connection() t1 = Transport() t1.bind(c1) t2 = Transport() t2.bind(c2) self._wires.append((c1, t1, c2, t2)) mask1 = 0 mask2 = 0 for cat in ("TRACE_FRM", "TRACE_RAW"): trc = os.environ.get("PN_%s" % cat) if trc and trc.lower() in ("1", "2", "yes", "true"): mask1 = mask1 | getattr(Transport, cat) if trc == "2": mask2 = mask2 | getattr(Transport, cat) t1.trace(mask1) t2.trace(mask2) return c1, c2 def link(self, name, max_frame=None, idle_timeout=None): c1, c2 = self.connection() if max_frame: c1.transport.max_frame_size = max_frame[0] c2.transport.max_frame_size = max_frame[1] if idle_timeout: # idle_timeout in seconds expressed as float c1.transport.idle_timeout = idle_timeout[0] c2.transport.idle_timeout = idle_timeout[1] c1.open() c2.open() ssn1 = c1.session() ssn1.open() self.pump() ssn2 = c2.session_head(Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE) ssn2.open() self.pump() snd = ssn1.sender(name) rcv = ssn2.receiver(name) return snd, rcv def cleanup(self): self._wires = [] def pump(self, buffer_size=OUTPUT_SIZE): for c1, t1, c2, t2 in self._wires: pump(t1, t2, buffer_size) class ConnectionTest(Test): def setUp(self): gc.enable() self.c1, self.c2 = self.connection() def cleanup(self): # release resources created by this class super(ConnectionTest, self).cleanup() self.c1 = None self.c2 = None def tearDown(self): self.cleanup() gc.collect() assert not gc.garbage def test_open_close(self): assert self.c1.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT assert self.c2.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT self.c1.open() self.pump() assert self.c1.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT assert self.c2.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE self.c2.open() self.pump() assert self.c1.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.c1.close() self.pump() assert self.c1.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED self.c2.close() self.pump() assert self.c1.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert self.c2.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED def test_simultaneous_open_close(self): assert self.c1.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT assert self.c2.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT self.c1.open() self.c2.open() self.pump() assert self.c1.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.c1.close() self.c2.close() self.pump() assert self.c1.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert self.c2.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED def test_capabilities(self): self.c1.offered_capabilities = Array(UNDESCRIBED, Data.SYMBOL, symbol("O_one"), symbol("O_two"), symbol("O_three")) self.c1.desired_capabilities = Array(UNDESCRIBED, Data.SYMBOL, symbol("D_one"), symbol("D_two"), symbol("D_three")) self.c1.open() assert self.c2.remote_offered_capabilities is None assert self.c2.remote_desired_capabilities is None self.pump() assert self.c2.remote_offered_capabilities == self.c1.offered_capabilities, \ (self.c2.remote_offered_capabilities, self.c1.offered_capabilities) assert self.c2.remote_desired_capabilities == self.c1.desired_capabilities, \ (self.c2.remote_desired_capabilities, self.c1.desired_capabilities) def test_condition(self): self.c1.open() self.c2.open() self.pump() assert self.c1.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE cond = Condition("blah:bleh", "this is a description", {symbol("foo"): "bar"}) self.c1.condition = cond self.c1.close() self.pump() assert self.c1.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED rcond = self.c2.remote_condition assert rcond == cond, (rcond, cond) def test_properties(self, p1={symbol("key"): symbol("value")}, p2=None): self.c1.properties = p1 self.c2.properties = p2 self.c1.open() self.c2.open() self.pump() assert self.c2.remote_properties == p1, (self.c2.remote_properties, p1) assert self.c1.remote_properties == p2, (self.c2.remote_properties, p2) # The proton implementation limits channel_max to 32767. # If I set the application's limit lower than that, I should # get my wish. If I set it higher -- not. def test_channel_max_low(self, value=1234): self.c1.transport.channel_max = value self.c1.open() self.pump() assert self.c1.transport.channel_max == value, (self.c1.transport.channel_max, value) def test_channel_max_high(self, value=65535): self.c1.transport.channel_max = value self.c1.open() self.pump() if "java" in sys.platform: assert self.c1.transport.channel_max == 65535, (self.c1.transport.channel_max, value) else: assert self.c1.transport.channel_max == 32767, (self.c1.transport.channel_max, value) def test_channel_max_raise_and_lower(self): if "java" in sys.platform: upper_limit = 65535 else: upper_limit = 32767 # It's OK to lower the max below upper_limit. self.c1.transport.channel_max = 12345 assert self.c1.transport.channel_max == 12345 # But it won't let us raise the limit above PN_IMPL_CHANNEL_MAX. self.c1.transport.channel_max = 65535 assert self.c1.transport.channel_max == upper_limit # send the OPEN frame self.c1.open() self.pump() # Now it's too late to make any change, because # we have already sent the OPEN frame. try: self.c1.transport.channel_max = 666 assert False, "expected session exception" except: pass assert self.c1.transport.channel_max == upper_limit def test_channel_max_limits_sessions(self): return # This is an index -- so max number of channels should be 1. self.c1.transport.channel_max = 0 self.c1.open() self.c2.open() ssn_0 = self.c2.session() assert ssn_0 != None ssn_0.open() self.pump() try: ssn_1 = self.c2.session() assert False, "expected session exception" except SessionException: pass def test_cleanup(self): self.c1.open() self.c2.open() self.pump() assert self.c1.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE t1 = self.c1.transport t2 = self.c2.transport c2 = self.c2 self.c1.close() # release all references to C1, except that held by the transport self.cleanup() gc.collect() # transport should flush last state from C1: pump(t1, t2) assert c2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED def test_user_config(self): if "java" in sys.platform: raise Skipped("Unsupported API") self.c1.user = "vindaloo" self.c1.password = "secret" self.c1.open() self.pump() self.c2.user = "leela" self.c2.password = "trustno1" self.c2.open() self.pump() assert self.c1.user == "vindaloo", self.c1.user assert self.c1.password == None, self.c1.password assert self.c2.user == "leela", self.c2.user assert self.c2.password == None, self.c2.password class SessionTest(Test): def setUp(self): gc.enable() self.c1, self.c2 = self.connection() self.ssn = self.c1.session() self.c1.open() self.c2.open() def cleanup(self): # release resources created by this class super(SessionTest, self).cleanup() self.c1 = None self.c2 = None self.ssn = None def tearDown(self): self.cleanup() gc.collect() assert not gc.garbage def test_open_close(self): assert self.ssn.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT self.ssn.open() assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT self.pump() assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT ssn = self.c2.session_head(Endpoint.REMOTE_ACTIVE | Endpoint.LOCAL_UNINIT) assert ssn != None assert ssn.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT ssn.open() assert ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT self.pump() assert ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE ssn.close() assert ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.pump() assert ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED self.ssn.close() assert ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED self.pump() assert ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert self.ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED def test_simultaneous_close(self): self.ssn.open() self.pump() ssn = self.c2.session_head(Endpoint.REMOTE_ACTIVE | Endpoint.LOCAL_UNINIT) assert ssn != None ssn.open() self.pump() assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.ssn.close() ssn.close() assert self.ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE self.pump() assert self.ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED def test_closing_connection(self): self.ssn.open() self.pump() self.c1.close() self.pump() self.ssn.close() self.pump() def test_condition(self): self.ssn.open() self.pump() ssn = self.c2.session_head(Endpoint.REMOTE_ACTIVE | Endpoint.LOCAL_UNINIT) assert ssn != None ssn.open() self.pump() assert self.ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE cond = Condition("blah:bleh", "this is a description", {symbol("foo"): "bar"}) self.ssn.condition = cond self.ssn.close() self.pump() assert self.ssn.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED rcond = ssn.remote_condition assert rcond == cond, (rcond, cond) def test_cleanup(self): snd, rcv = self.link("test-link") snd.open() rcv.open() self.pump() snd_ssn = snd.session rcv_ssn = rcv.session assert rcv_ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.ssn = None snd_ssn.close() snd_ssn.free() del snd_ssn gc.collect() self.pump() assert rcv_ssn.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED def test_reopen_on_same_session_without_free(self): """ confirm that a link is correctly opened when attaching to a previously closed link *that has not been freed yet* on the same session """ self.ssn.open() self.pump() ssn2 = self.c2.session_head(Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE) ssn2.open() self.pump() snd = self.ssn.sender("test-link") rcv = ssn2.receiver("test-link") assert snd.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT assert rcv.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT snd.open() rcv.open() self.pump() assert snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE snd.close() rcv.close() self.pump() assert snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert rcv.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED snd = self.ssn.sender("test-link") rcv = ssn2.receiver("test-link") assert snd.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT assert rcv.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT snd.open() rcv.open() self.pump() assert snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE def test_set_get_outgoing_window(self): assert self.ssn.outgoing_window == 2147483647 self.ssn.outgoing_window = 1024 assert self.ssn.outgoing_window == 1024 class LinkTest(Test): def setUp(self): gc.enable() self.snd, self.rcv = self.link("test-link") def cleanup(self): # release resources created by this class super(LinkTest, self).cleanup() self.snd = None self.rcv = None def tearDown(self): self.cleanup() gc.collect() assert not gc.garbage, gc.garbage def test_open_close(self): assert self.snd.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT assert self.rcv.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT self.snd.open() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT assert self.rcv.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT self.pump() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT assert self.rcv.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE self.rcv.open() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.pump() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.snd.close() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.pump() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED self.rcv.close() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED self.pump() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert self.rcv.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED def test_simultaneous_open_close(self): assert self.snd.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT assert self.rcv.state == Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_UNINIT self.snd.open() self.rcv.open() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_UNINIT self.pump() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.snd.close() self.rcv.close() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE self.pump() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED assert self.rcv.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_CLOSED def test_multiple(self): rcv = self.snd.session.receiver("second-rcv") assert rcv.name == "second-rcv" self.snd.open() rcv.open() self.pump() c2 = self.rcv.session.connection l = c2.link_head(Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE) while l: l.open() l = l.next(Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE) self.pump() assert self.snd assert rcv self.snd.close() rcv.close() ssn = rcv.session conn = ssn.connection ssn.close() conn.close() self.pump() def test_closing_session(self): self.snd.open() self.rcv.open() ssn1 = self.snd.session self.pump() ssn1.close() self.pump() self.snd.close() self.pump() def test_closing_connection(self): self.snd.open() self.rcv.open() ssn1 = self.snd.session c1 = ssn1.connection self.pump() c1.close() self.pump() self.snd.close() self.pump() def assertEqualTermini(self, t1, t2): assert t1.type == t2.type, (t1.type, t2.type) assert t1.address == t2.address, (t1.address, t2.address) assert t1.durability == t2.durability, (t1.durability, t2.durability) assert t1.expiry_policy == t2.expiry_policy, (t1.expiry_policy, t2.expiry_policy) assert t1.timeout == t2.timeout, (t1.timeout, t2.timeout) assert t1.dynamic == t2.dynamic, (t1.dynamic, t2.dynamic) for attr in ["properties", "capabilities", "outcomes", "filter"]: d1 = getattr(t1, attr) d2 = getattr(t2, attr) assert d1.format() == d2.format(), (attr, d1.format(), d2.format()) def _test_source_target(self, config_source, config_target): if config_source is None: self.snd.source.type = Terminus.UNSPECIFIED else: config_source(self.snd.source) if config_target is None: self.snd.target.type = Terminus.UNSPECIFIED else: config_target(self.snd.target) self.snd.open() self.pump() self.assertEqualTermini(self.rcv.remote_source, self.snd.source) self.assertEqualTermini(self.rcv.remote_target, self.snd.target) self.rcv.target.copy(self.rcv.remote_target) self.rcv.source.copy(self.rcv.remote_source) self.rcv.open() self.pump() self.assertEqualTermini(self.snd.remote_target, self.snd.target) self.assertEqualTermini(self.snd.remote_source, self.snd.source) def test_source_target(self): self._test_source_target(TerminusConfig(address="source"), TerminusConfig(address="target")) def test_source(self): self._test_source_target(TerminusConfig(address="source"), None) def test_target(self): self._test_source_target(None, TerminusConfig(address="target")) def test_coordinator(self): self._test_source_target(None, TerminusConfig(type=Terminus.COORDINATOR)) def test_source_target_full(self): self._test_source_target(TerminusConfig(address="source", timeout=3, dist_mode=Terminus.DIST_MODE_MOVE, filter=[("int", 1), ("symbol", "two"), ("string", "three")], capabilities=["one", "two", "three"]), TerminusConfig(address="source", timeout=7, capabilities=[])) def test_distribution_mode(self): self._test_source_target(TerminusConfig(address="source", dist_mode=Terminus.DIST_MODE_COPY), TerminusConfig(address="target")) assert self.rcv.remote_source.distribution_mode == Terminus.DIST_MODE_COPY assert self.rcv.remote_target.distribution_mode == Terminus.DIST_MODE_UNSPECIFIED def test_dynamic_link(self): self._test_source_target(TerminusConfig(address=None, dynamic=True), None) assert self.rcv.remote_source.dynamic assert self.rcv.remote_source.address is None def test_condition(self): self.snd.open() self.rcv.open() self.pump() assert self.snd.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE cond = Condition("blah:bleh", "this is a description", {symbol("foo"): "bar"}) self.snd.condition = cond self.snd.close() self.pump() assert self.snd.state == Endpoint.LOCAL_CLOSED | Endpoint.REMOTE_ACTIVE assert self.rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED rcond = self.rcv.remote_condition assert rcond == cond, (rcond, cond) def test_settle_mode(self): self.snd.snd_settle_mode = Link.SND_UNSETTLED assert self.snd.snd_settle_mode == Link.SND_UNSETTLED self.rcv.rcv_settle_mode = Link.RCV_SECOND assert self.rcv.rcv_settle_mode == Link.RCV_SECOND assert self.snd.remote_rcv_settle_mode != Link.RCV_SECOND assert self.rcv.remote_snd_settle_mode != Link.SND_UNSETTLED self.snd.open() self.rcv.open() self.pump() assert self.snd.remote_rcv_settle_mode == Link.RCV_SECOND assert self.rcv.remote_snd_settle_mode == Link.SND_UNSETTLED def test_cleanup(self): snd, rcv = self.link("test-link") snd.open() rcv.open() self.pump() assert rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE snd.close() snd.free() del snd gc.collect() self.pump() assert rcv.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED class TerminusConfig: def __init__(self, type=None, address=None, timeout=None, durability=None, filter=None, capabilities=None, dynamic=False, dist_mode=None): self.address = address self.timeout = timeout self.durability = durability self.filter = filter self.capabilities = capabilities self.dynamic = dynamic self.dist_mode = dist_mode self.type = type def __call__(self, terminus): if self.type is not None: terminus.type = self.type if self.address is not None: terminus.address = self.address if self.timeout is not None: terminus.timeout = self.timeout if self.durability is not None: terminus.durability = self.durability if self.capabilities is not None: terminus.capabilities.put_array(False, Data.SYMBOL) terminus.capabilities.enter() for c in self.capabilities: terminus.capabilities.put_symbol(c) if self.filter is not None: terminus.filter.put_map() terminus.filter.enter() for (t, v) in self.filter: setter = getattr(terminus.filter, "put_%s" % t) setter(v) if self.dynamic: terminus.dynamic = True if self.dist_mode is not None: terminus.distribution_mode = self.dist_mode class TransferTest(Test): def setUp(self): gc.enable() self.snd, self.rcv = self.link("test-link") self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() def cleanup(self): # release resources created by this class super(TransferTest, self).cleanup() self.c1 = None self.c2 = None self.snd = None self.rcv = None def tearDown(self): self.cleanup() gc.collect() assert not gc.garbage def test_work_queue(self): assert self.c1.work_head is None self.snd.delivery("tag") assert self.c1.work_head is None self.rcv.flow(1) self.pump() d = self.c1.work_head assert d is not None tag = d.tag assert tag == "tag", tag assert d.writable n = self.snd.send(str2bin("this is a test")) assert self.snd.advance() assert self.c1.work_head is None self.pump() d = self.c2.work_head assert d.tag == "tag" assert d.readable def test_multiframe(self): self.rcv.flow(1) self.snd.delivery("tag") msg = str2bin("this is a test") n = self.snd.send(msg) assert n == len(msg) self.pump() d = self.rcv.current assert d assert d.tag == "tag", repr(d.tag) assert d.readable binary = self.rcv.recv(1024) assert binary == msg, (binary, msg) binary = self.rcv.recv(1024) assert binary == str2bin("") msg = str2bin("this is more") n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump() binary = self.rcv.recv(1024) assert binary == msg, (binary, msg) binary = self.rcv.recv(1024) assert binary is None def test_disposition(self): self.rcv.flow(1) self.pump() sd = self.snd.delivery("tag") msg = str2bin("this is a test") n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump() rd = self.rcv.current assert rd is not None assert rd.tag == sd.tag rmsg = self.rcv.recv(1024) assert rmsg == msg rd.update(Delivery.ACCEPTED) self.pump() rdisp = sd.remote_state ldisp = rd.local_state assert rdisp == ldisp == Delivery.ACCEPTED, (rdisp, ldisp) assert sd.updated sd.update(Delivery.ACCEPTED) self.pump() assert sd.local_state == rd.remote_state == Delivery.ACCEPTED sd.settle() def test_delivery_id_ordering(self): self.rcv.flow(1024) self.pump(buffer_size=64*1024) #fill up delivery buffer on sender for m in range(1024): sd = self.snd.delivery("tag%s" % m) msg = ("message %s" % m).encode('ascii') n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump(buffer_size=64*1024) #receive a session-windows worth of messages and accept them for m in range(1024): rd = self.rcv.current assert rd is not None, m assert rd.tag == ("tag%s" % m), (rd.tag, m) msg = self.rcv.recv(1024) assert msg == ("message %s" % m).encode('ascii'), (msg, m) rd.update(Delivery.ACCEPTED) rd.settle() self.pump(buffer_size=64*1024) #add some new deliveries for m in range(1024, 1450): sd = self.snd.delivery("tag%s" % m) msg = ("message %s" % m).encode('ascii') n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() #handle all disposition changes to sent messages d = self.c1.work_head while d: next_d = d.work_next if d.updated: d.update(Delivery.ACCEPTED) d.settle() d = next_d #submit some more deliveries for m in range(1450, 1500): sd = self.snd.delivery("tag%s" % m) msg = ("message %s" % m).encode('ascii') n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump(buffer_size=64*1024) self.rcv.flow(1024) self.pump(buffer_size=64*1024) #verify remaining messages can be received and accepted for m in range(1024, 1500): rd = self.rcv.current assert rd is not None, m assert rd.tag == ("tag%s" % m), (rd.tag, m) msg = self.rcv.recv(1024) assert msg == ("message %s" % m).encode('ascii'), (msg, m) rd.update(Delivery.ACCEPTED) rd.settle() def test_cleanup(self): self.rcv.flow(10) self.pump() for x in range(10): self.snd.delivery("tag%d" % x) msg = str2bin("this is a test") n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.snd.close() self.snd.free() self.snd = None gc.collect() self.pump() for x in range(10): rd = self.rcv.current assert rd is not None assert rd.tag == "tag%d" % x rmsg = self.rcv.recv(1024) assert self.rcv.advance() assert rmsg == msg # close of snd should've settled: assert rd.settled rd.settle() class MaxFrameTransferTest(Test): def setUp(self): pass def cleanup(self): # release resources created by this class super(MaxFrameTransferTest, self).cleanup() self.c1 = None self.c2 = None self.snd = None self.rcv = None def tearDown(self): self.cleanup() def message(self, size): parts = [] for i in range(size): parts.append(str(i)) return "/".join(parts)[:size].encode("utf-8") def testMinFrame(self): """ Configure receiver to support minimum max-frame as defined by AMQP-1.0. Verify transfer of messages larger than 512. """ self.snd, self.rcv = self.link("test-link", max_frame=[0,512]) self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() assert self.rcv.session.connection.transport.max_frame_size == 512 assert self.snd.session.connection.transport.remote_max_frame_size == 512 self.rcv.flow(1) self.snd.delivery("tag") msg = self.message(513) n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump() binary = self.rcv.recv(513) assert binary == msg binary = self.rcv.recv(1024) assert binary == None def testOddFrame(self): """ Test an odd sized max limit with data that will require multiple frames to be transfered. """ self.snd, self.rcv = self.link("test-link", max_frame=[0,521]) self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() assert self.rcv.session.connection.transport.max_frame_size == 521 assert self.snd.session.connection.transport.remote_max_frame_size == 521 self.rcv.flow(2) self.snd.delivery("tag") msg = ("X" * 1699).encode('utf-8') n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump() binary = self.rcv.recv(1699) assert binary == msg binary = self.rcv.recv(1024) assert binary == None self.rcv.advance() self.snd.delivery("gat") msg = self.message(1426) n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump() binary = self.rcv.recv(1426) assert binary == msg self.pump() binary = self.rcv.recv(1024) assert binary == None def testBigMessage(self): """ Test transfering a big message. """ self.snd, self.rcv = self.link("test-link") self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() self.rcv.flow(2) self.snd.delivery("tag") msg = self.message(1024*256) n = self.snd.send(msg) assert n == len(msg) assert self.snd.advance() self.pump() binary = self.rcv.recv(1024*256) assert binary == msg binary = self.rcv.recv(1024) assert binary == None class IdleTimeoutTest(Test): def setUp(self): pass def cleanup(self): # release resources created by this class super(IdleTimeoutTest, self).cleanup() self.snd = None self.rcv = None self.c1 = None self.c2 = None def tearDown(self): self.cleanup() def message(self, size): parts = [] for i in range(size): parts.append(str(i)) return "/".join(parts)[:size] def testGetSet(self): """ Verify the configuration and negotiation of the idle timeout. """ self.snd, self.rcv = self.link("test-link", idle_timeout=[1.0,2.0]) self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() # proton advertises 1/2 the configured timeout to the peer: assert self.rcv.session.connection.transport.idle_timeout == 2.0 assert self.rcv.session.connection.transport.remote_idle_timeout == 0.5 assert self.snd.session.connection.transport.idle_timeout == 1.0 assert self.snd.session.connection.transport.remote_idle_timeout == 1.0 def testTimeout(self): """ Verify the AMQP Connection idle timeout. """ # snd will timeout the Connection if no frame is received within 1000 ticks self.snd, self.rcv = self.link("test-link", idle_timeout=[1.0,0]) self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() t_snd = self.snd.session.connection.transport t_rcv = self.rcv.session.connection.transport assert t_rcv.idle_timeout == 0.0 # proton advertises 1/2 the timeout (see spec) assert t_rcv.remote_idle_timeout == 0.5 assert t_snd.idle_timeout == 1.0 assert t_snd.remote_idle_timeout == 0.0 sndr_frames_in = t_snd.frames_input rcvr_frames_out = t_rcv.frames_output # at t+1msec, nothing should happen: clock = 0.001 assert t_snd.tick(clock) == 1.001, "deadline for remote timeout" assert t_rcv.tick(clock) == 0.251, "deadline to send keepalive" self.pump() assert sndr_frames_in == t_snd.frames_input, "unexpected received frame" # at one tick from expected idle frame send, nothing should happen: clock = 0.250 assert t_snd.tick(clock) == 1.001, "deadline for remote timeout" assert t_rcv.tick(clock) == 0.251, "deadline to send keepalive" self.pump() assert sndr_frames_in == t_snd.frames_input, "unexpected received frame" # this should cause rcvr to expire and send a keepalive clock = 0.251 assert t_snd.tick(clock) == 1.001, "deadline for remote timeout" assert t_rcv.tick(clock) == 0.501, "deadline to send keepalive" self.pump() sndr_frames_in += 1 rcvr_frames_out += 1 assert sndr_frames_in == t_snd.frames_input, "unexpected received frame" assert rcvr_frames_out == t_rcv.frames_output, "unexpected frame" # since a keepalive was received, sndr will rebase its clock against this tick: # and the receiver should not change its deadline clock = 0.498 assert t_snd.tick(clock) == 1.498, "deadline for remote timeout" assert t_rcv.tick(clock) == 0.501, "deadline to send keepalive" self.pump() assert sndr_frames_in == t_snd.frames_input, "unexpected received frame" # now expire sndr clock = 1.499 t_snd.tick(clock) self.pump() assert self.c2.state & Endpoint.REMOTE_CLOSED assert self.c2.remote_condition.name == "amqp:resource-limit-exceeded" class CreditTest(Test): def setUp(self): self.snd, self.rcv = self.link("test-link", max_frame=(16*1024, 16*1024)) self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() def cleanup(self): # release resources created by this class super(CreditTest, self).cleanup() self.c1 = None self.snd = None self.c2 = None self.rcv2 = None self.snd2 = None def tearDown(self): self.cleanup() def testCreditSender(self, count=1024): credit = self.snd.credit assert credit == 0, credit self.rcv.flow(10) self.pump() credit = self.snd.credit assert credit == 10, credit self.rcv.flow(count) self.pump() credit = self.snd.credit assert credit == 10 + count, credit def testCreditReceiver(self): self.rcv.flow(10) self.pump() assert self.rcv.credit == 10, self.rcv.credit d = self.snd.delivery("tag") assert d assert self.snd.advance() self.pump() assert self.rcv.credit == 10, self.rcv.credit assert self.rcv.queued == 1, self.rcv.queued c = self.rcv.current assert c.tag == "tag", c.tag assert self.rcv.advance() assert self.rcv.credit == 9, self.rcv.credit assert self.rcv.queued == 0, self.rcv.queued def _testBufferingOnClose(self, a, b): for i in range(10): d = self.snd.delivery("tag-%s" % i) assert d d.settle() self.pump() assert self.snd.queued == 10 endpoints = {"connection": (self.c1, self.c2), "session": (self.snd.session, self.rcv.session), "link": (self.snd, self.rcv)} local_a, remote_a = endpoints[a] local_b, remote_b = endpoints[b] remote_b.close() self.pump() assert local_b.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED local_a.close() self.pump() assert remote_a.state & Endpoint.REMOTE_CLOSED assert self.snd.queued == 10 def testBufferingOnCloseLinkLink(self): self._testBufferingOnClose("link", "link") def testBufferingOnCloseLinkSession(self): self._testBufferingOnClose("link", "session") def testBufferingOnCloseLinkConnection(self): self._testBufferingOnClose("link", "connection") def testBufferingOnCloseSessionLink(self): self._testBufferingOnClose("session", "link") def testBufferingOnCloseSessionSession(self): self._testBufferingOnClose("session", "session") def testBufferingOnCloseSessionConnection(self): self._testBufferingOnClose("session", "connection") def testBufferingOnCloseConnectionLink(self): self._testBufferingOnClose("connection", "link") def testBufferingOnCloseConnectionSession(self): self._testBufferingOnClose("connection", "session") def testBufferingOnCloseConnectionConnection(self): self._testBufferingOnClose("connection", "connection") def testFullDrain(self): assert self.rcv.credit == 0 assert self.snd.credit == 0 self.rcv.drain(10) assert self.rcv.draining() assert self.rcv.credit == 10 assert self.snd.credit == 0 self.pump() assert self.rcv.credit == 10 assert self.snd.credit == 10 assert self.rcv.draining() self.snd.drained() assert self.rcv.credit == 10 assert self.snd.credit == 0 assert self.rcv.draining() self.pump() assert self.rcv.credit == 0 assert self.snd.credit == 0 assert not self.rcv.draining() drained = self.rcv.drained() assert drained == 10, drained def testPartialDrain(self): self.rcv.drain(2) assert self.rcv.draining() self.pump() d = self.snd.delivery("tag") assert d assert self.snd.advance() self.snd.drained() assert self.rcv.draining() self.pump() assert not self.rcv.draining() c = self.rcv.current assert self.rcv.queued == 1, self.rcv.queued assert c.tag == d.tag, c.tag assert self.rcv.advance() assert not self.rcv.current assert self.rcv.credit == 0, self.rcv.credit assert not self.rcv.draining() drained = self.rcv.drained() assert drained == 1, drained def testDrainFlow(self): assert self.rcv.credit == 0 assert self.snd.credit == 0 self.rcv.drain(10) assert self.rcv.credit == 10 assert self.snd.credit == 0 self.pump() assert self.rcv.credit == 10 assert self.snd.credit == 10 self.snd.drained() assert self.rcv.credit == 10 assert self.snd.credit == 0 self.pump() assert self.rcv.credit == 0 assert self.snd.credit == 0 self.rcv.flow(10) assert self.rcv.credit == 10 assert self.snd.credit == 0 self.pump() assert self.rcv.credit == 10 assert self.snd.credit == 10 self.snd.drained() assert self.rcv.credit == 10 assert self.snd.credit == 10 self.pump() assert self.rcv.credit == 10 assert self.snd.credit == 10 drained = self.rcv.drained() assert drained == 10, drained def testNegative(self): assert self.snd.credit == 0 d = self.snd.delivery("tag") assert d assert self.snd.advance() self.pump() assert self.rcv.credit == 0 assert self.rcv.queued == 0 self.rcv.flow(1) assert self.rcv.credit == 1 assert self.rcv.queued == 0 self.pump() assert self.rcv.credit == 1 assert self.rcv.queued == 1, self.rcv.queued c = self.rcv.current assert c assert c.tag == "tag" assert self.rcv.advance() assert self.rcv.credit == 0 assert self.rcv.queued == 0 def testDrainZero(self): assert self.snd.credit == 0 assert self.rcv.credit == 0 assert self.rcv.queued == 0 drained = self.rcv.drained() assert drained == 0 self.rcv.flow(10) self.pump() assert self.snd.credit == 10 assert self.rcv.credit == 10 assert self.rcv.queued == 0 self.snd.drained() self.pump() assert self.snd.credit == 10 assert self.rcv.credit == 10 assert self.rcv.queued == 0 drained = self.rcv.drained() assert drained == 0 self.rcv.drain(0) assert self.snd.credit == 10 assert self.rcv.credit == 10 assert self.rcv.queued == 0 self.pump() assert self.snd.credit == 10 assert self.rcv.credit == 10 assert self.rcv.queued == 0 self.snd.drained() assert self.snd.credit == 0 assert self.rcv.credit == 10 assert self.rcv.queued == 0 drained = self.rcv.drained() assert drained == 0 self.pump() assert self.snd.credit == 0 assert self.rcv.credit == 0 assert self.rcv.queued == 0 drained = self.rcv.drained() assert drained == 10 def testDrainOrder(self): """ Verify drain/drained works regardless of ordering. See PROTON-401 """ assert self.snd.credit == 0 assert self.rcv.credit == 0 assert self.rcv.queued == 0 #self.rcv.session.connection.transport.trace(Transport.TRACE_FRM) #self.snd.session.connection.transport.trace(Transport.TRACE_FRM) ## verify that a sender that has reached the drain state will respond ## promptly to a drain issued by the peer. self.rcv.flow(10) self.pump() assert self.snd.credit == 10, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit sd = self.snd.delivery("tagA") assert sd n = self.snd.send(str2bin("A")) assert n == 1 self.pump() self.snd.advance() # done sending, so signal that we are drained: self.snd.drained() self.pump() assert self.snd.credit == 9, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit self.rcv.drain(0) self.pump() assert self.snd.credit == 9, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit data = self.rcv.recv(10) assert data == str2bin("A"), data self.rcv.advance() self.pump() assert self.snd.credit == 9, self.snd.credit assert self.rcv.credit == 9, self.rcv.credit self.snd.drained() self.pump() assert self.snd.credit == 0, self.snd.credit assert self.rcv.credit == 0, self.rcv.credit # verify that a drain requested by the peer is not "acknowledged" until # after the sender has completed sending its pending messages self.rcv.flow(10) self.pump() assert self.snd.credit == 10, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit sd = self.snd.delivery("tagB") assert sd n = self.snd.send(str2bin("B")) assert n == 1 self.snd.advance() self.pump() assert self.snd.credit == 9, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit self.rcv.drain(0) self.pump() assert self.snd.credit == 9, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit sd = self.snd.delivery("tagC") assert sd n = self.snd.send(str2bin("C")) assert n == 1 self.snd.advance() self.pump() assert self.snd.credit == 8, self.snd.credit assert self.rcv.credit == 10, self.rcv.credit # now that the sender has finished sending everything, it can signal # drained self.snd.drained() self.pump() assert self.snd.credit == 0, self.snd.credit assert self.rcv.credit == 2, self.rcv.credit data = self.rcv.recv(10) assert data == str2bin("B"), data self.rcv.advance() data = self.rcv.recv(10) assert data == str2bin("C"), data self.rcv.advance() self.pump() assert self.snd.credit == 0, self.snd.credit assert self.rcv.credit == 0, self.rcv.credit def testPushback(self, count=10): assert self.snd.credit == 0 assert self.rcv.credit == 0 self.rcv.flow(count) self.pump() for i in range(count): d = self.snd.delivery("tag%s" % i) assert d self.snd.advance() assert self.snd.queued == count assert self.rcv.queued == 0 self.pump() assert self.snd.queued == 0 assert self.rcv.queued == count d = self.snd.delivery("extra") self.snd.advance() assert self.snd.queued == 1 assert self.rcv.queued == count self.pump() assert self.snd.queued == 1 assert self.rcv.queued == count def testHeadOfLineBlocking(self): self.snd2 = self.snd.session.sender("link-2") self.rcv2 = self.rcv.session.receiver("link-2") self.snd2.open() self.rcv2.open() self.pump() assert self.snd2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE assert self.rcv2.state == Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE self.rcv.flow(5) self.rcv2.flow(10) self.pump() assert self.snd.credit == 5 assert self.snd2.credit == 10 for i in range(10): tag = "test %d" % i self.snd.delivery( tag ) self.snd.send( tag.encode("ascii") ) assert self.snd.advance() self.snd2.delivery( tag ) self.snd2.send( tag.encode("ascii") ) assert self.snd2.advance() self.pump() for i in range(5): b = self.rcv.recv( 512 ) assert self.rcv.advance() b = self.rcv2.recv( 512 ) assert self.rcv2.advance() for i in range(5): b = self.rcv2.recv( 512 ) assert self.rcv2.advance() class SessionCreditTest(Test): def tearDown(self): self.cleanup() def testBuffering(self, count=32, size=1024, capacity=16*1024, max_frame=1024): snd, rcv = self.link("test-link", max_frame=(max_frame, max_frame)) rcv.session.incoming_capacity = capacity snd.open() rcv.open() rcv.flow(count) self.pump() assert count > 0 total_bytes = count * size assert snd.session.outgoing_bytes == 0, snd.session.outgoing_bytes assert rcv.session.incoming_bytes == 0, rcv.session.incoming_bytes assert snd.queued == 0, snd.queued assert rcv.queued == 0, rcv.queued data = bytes(bytearray(size)) idx = 0 while snd.credit: d = snd.delivery("tag%s" % idx) assert d n = snd.send(data) assert n == size, (n, size) assert snd.advance() self.pump() idx += 1 assert idx == count, (idx, count) assert snd.session.outgoing_bytes < total_bytes, (snd.session.outgoing_bytes, total_bytes) assert rcv.session.incoming_bytes < capacity, (rcv.session.incoming_bytes, capacity) assert snd.session.outgoing_bytes + rcv.session.incoming_bytes == total_bytes, \ (snd.session.outgoing_bytes, rcv.session.incoming_bytes, total_bytes) if snd.session.outgoing_bytes > 0: available = rcv.session.incoming_capacity - rcv.session.incoming_bytes assert available < max_frame, (available, max_frame) for i in range(count): d = rcv.current assert d, i pending = d.pending before = rcv.session.incoming_bytes assert rcv.advance() after = rcv.session.incoming_bytes assert before - after == pending, (before, after, pending) snd_before = snd.session.incoming_bytes self.pump() snd_after = snd.session.incoming_bytes assert rcv.session.incoming_bytes < capacity if snd_before > 0: assert capacity - after <= max_frame assert snd_before > snd_after if snd_after > 0: available = rcv.session.incoming_capacity - rcv.session.incoming_bytes assert available < max_frame, available def testBufferingSize16(self): self.testBuffering(size=16) def testBufferingSize256(self): self.testBuffering(size=256) def testBufferingSize512(self): self.testBuffering(size=512) def testBufferingSize2048(self): self.testBuffering(size=2048) def testBufferingSize1025(self): self.testBuffering(size=1025) def testBufferingSize1023(self): self.testBuffering(size=1023) def testBufferingSize989(self): self.testBuffering(size=989) def testBufferingSize1059(self): self.testBuffering(size=1059) def testCreditWithBuffering(self): snd, rcv = self.link("test-link", max_frame=(1024, 1024)) rcv.session.incoming_capacity = 64*1024 snd.open() rcv.open() rcv.flow(128) self.pump() assert snd.credit == 128, snd.credit assert rcv.queued == 0, rcv.queued idx = 0 while snd.credit: d = snd.delivery("tag%s" % idx) snd.send(("x"*1024).encode('ascii')) assert d assert snd.advance() self.pump() idx += 1 assert idx == 128, idx assert rcv.queued < 128, rcv.queued rcv.flow(1) self.pump() assert snd.credit == 1, snd.credit class SettlementTest(Test): def setUp(self): self.snd, self.rcv = self.link("test-link") self.c1 = self.snd.session.connection self.c2 = self.rcv.session.connection self.snd.open() self.rcv.open() self.pump() def cleanup(self): # release resources created by this class super(SettlementTest, self).cleanup() self.c1 = None self.snd = None self.c2 = None self.rcv2 = None self.snd2 = None def tearDown(self): self.cleanup() def testSettleCurrent(self): self.rcv.flow(10) self.pump() assert self.snd.credit == 10, self.snd.credit d = self.snd.delivery("tag") e = self.snd.delivery("tag2") assert d assert e c = self.snd.current assert c.tag == "tag", c.tag c.settle() c = self.snd.current assert c.tag == "tag2", c.tag c.settle() c = self.snd.current assert not c self.pump() c = self.rcv.current assert c assert c.tag == "tag", c.tag assert c.settled c.settle() c = self.rcv.current assert c assert c.tag == "tag2", c.tag assert c.settled c.settle() c = self.rcv.current assert not c def testUnsettled(self): self.rcv.flow(10) self.pump() assert self.snd.unsettled == 0, self.snd.unsettled assert self.rcv.unsettled == 0, self.rcv.unsettled d = self.snd.delivery("tag") assert d assert self.snd.unsettled == 1, self.snd.unsettled assert self.rcv.unsettled == 0, self.rcv.unsettled assert self.snd.advance() self.pump() assert self.snd.unsettled == 1, self.snd.unsettled assert self.rcv.unsettled == 1, self.rcv.unsettled c = self.rcv.current assert c c.settle() assert self.snd.unsettled == 1, self.snd.unsettled assert self.rcv.unsettled == 0, self.rcv.unsettled def testMultipleUnsettled(self, count=1024, size=1024): self.rcv.flow(count) self.pump() assert self.snd.unsettled == 0, self.snd.unsettled assert self.rcv.unsettled == 0, self.rcv.unsettled unsettled = [] for i in range(count): sd = self.snd.delivery("tag%s" % i) assert sd n = self.snd.send(("x"*size).encode('ascii')) assert n == size, n assert self.snd.advance() self.pump() rd = self.rcv.current assert rd, "did not receive delivery %s" % i n = rd.pending b = self.rcv.recv(n) assert len(b) == n, (b, n) rd.update(Delivery.ACCEPTED) assert self.rcv.advance() self.pump() unsettled.append(rd) assert self.rcv.unsettled == count for rd in unsettled: rd.settle() def testMultipleUnsettled2K1K(self): self.testMultipleUnsettled(2048, 1024) def testMultipleUnsettled4K1K(self): self.testMultipleUnsettled(4096, 1024) def testMultipleUnsettled1K2K(self): self.testMultipleUnsettled(1024, 2048) def testMultipleUnsettled2K2K(self): self.testMultipleUnsettled(2048, 2048) def testMultipleUnsettled4K2K(self): self.testMultipleUnsettled(4096, 2048) class PipelineTest(Test): def setUp(self): self.c1, self.c2 = self.connection() def cleanup(self): # release resources created by this class super(PipelineTest, self).cleanup() self.c1 = None self.c2 = None def tearDown(self): self.cleanup() def test(self): ssn = self.c1.session() snd = ssn.sender("sender") self.c1.open() ssn.open() snd.open() for i in range(10): d = snd.delivery("delivery-%s" % i) snd.send(str2bin("delivery-%s" % i)) d.settle() snd.close() ssn.close() self.c1.close() self.pump() state = self.c2.state assert state == (Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE), "%x" % state ssn2 = self.c2.session_head(Endpoint.LOCAL_UNINIT) assert ssn2 state == ssn2.state assert state == (Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE), "%x" % state rcv = self.c2.link_head(Endpoint.LOCAL_UNINIT) assert rcv state = rcv.state assert state == (Endpoint.LOCAL_UNINIT | Endpoint.REMOTE_ACTIVE), "%x" % state self.c2.open() ssn2.open() rcv.open() rcv.flow(10) assert rcv.queued == 0, rcv.queued self.pump() assert rcv.queued == 10, rcv.queued state = rcv.state assert state == (Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED), "%x" % state state = ssn2.state assert state == (Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED), "%x" % state state = self.c2.state assert state == (Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_CLOSED), "%x" % state for i in range(rcv.queued): d = rcv.current assert d assert d.tag == "delivery-%s" % i d.settle() assert rcv.queued == 0, rcv.queued class ServerTest(Test): def testKeepalive(self): """ Verify that idle frames are sent to keep a Connection alive """ if "java" in sys.platform: raise Skipped() idle_timeout = self.delay server = common.TestServer() server.start() class Program: def on_reactor_init(self, event): self.conn = event.reactor.connection() self.conn.hostname = "%s:%s" % (server.host, server.port) self.conn.open() self.old_count = None event.reactor.schedule(3 * idle_timeout, self) def on_connection_bound(self, event): event.transport.idle_timeout = idle_timeout def on_connection_remote_open(self, event): self.old_count = event.transport.frames_input def on_timer_task(self, event): assert self.conn.state == (Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE), "Connection terminated" assert self.conn.transport.frames_input > self.old_count, "No idle frames received" self.conn.close() Reactor(Program()).run() server.stop() def testIdleTimeout(self): """ Verify that a Connection is terminated properly when Idle frames do not arrive in a timely manner. """ if "java" in sys.platform: raise Skipped() idle_timeout = self.delay server = common.TestServer(idle_timeout=idle_timeout) server.start() class Program: def on_reactor_init(self, event): self.conn = event.reactor.connection() self.conn.hostname = "%s:%s" % (server.host, server.port) self.conn.open() self.remote_condition = None self.old_count = None # verify the connection stays up even if we don't explicitly send stuff # wait up to 3x the idle timeout event.reactor.schedule(3 * idle_timeout, self) def on_connection_bound(self, event): self.transport = event.transport def on_connection_remote_open(self, event): self.old_count = event.transport.frames_output def on_connection_remote_close(self, event): assert self.conn.remote_condition assert self.conn.remote_condition.name == "amqp:resource-limit-exceeded" self.remote_condition = self.conn.remote_condition def on_timer_task(self, event): assert self.conn.state == (Endpoint.LOCAL_ACTIVE | Endpoint.REMOTE_ACTIVE), "Connection terminated" assert self.conn.transport.frames_output > self.old_count, "No idle frames sent" # now wait to explicitly cause the other side to expire: sleep(3 * idle_timeout) p = Program() Reactor(p).run() assert p.remote_condition assert p.remote_condition.name == "amqp:resource-limit-exceeded" server.stop() class NoValue: def __init__(self): pass def apply(self, dlv): pass def check(self, dlv): assert dlv.data == None assert dlv.section_number == 0 assert dlv.section_offset == 0 assert dlv.condition == None assert dlv.failed == False assert dlv.undeliverable == False assert dlv.annotations == None class RejectValue: def __init__(self, condition): self.condition = condition def apply(self, dlv): dlv.condition = self.condition def check(self, dlv): assert dlv.data == None, dlv.data assert dlv.section_number == 0 assert dlv.section_offset == 0 assert dlv.condition == self.condition, (dlv.condition, self.condition) assert dlv.failed == False assert dlv.undeliverable == False assert dlv.annotations == None class ReceivedValue: def __init__(self, section_number, section_offset): self.section_number = section_number self.section_offset = section_offset def apply(self, dlv): dlv.section_number = self.section_number dlv.section_offset = self.section_offset def check(self, dlv): assert dlv.data == None, dlv.data assert dlv.section_number == self.section_number, (dlv.section_number, self.section_number) assert dlv.section_offset == self.section_offset assert dlv.condition == None assert dlv.failed == False assert dlv.undeliverable == False assert dlv.annotations == None class ModifiedValue: def __init__(self, failed, undeliverable, annotations): self.failed = failed self.undeliverable = undeliverable self.annotations = annotations def apply(self, dlv): dlv.failed = self.failed dlv.undeliverable = self.undeliverable dlv.annotations = self.annotations def check(self, dlv): assert dlv.data == None, dlv.data assert dlv.section_number == 0 assert dlv.section_offset == 0 assert dlv.condition == None assert dlv.failed == self.failed assert dlv.undeliverable == self.undeliverable assert dlv.annotations == self.annotations, (dlv.annotations, self.annotations) class CustomValue: def __init__(self, data): self.data = data def apply(self, dlv): dlv.data = self.data def check(self, dlv): assert dlv.data == self.data, (dlv.data, self.data) assert dlv.section_number == 0 assert dlv.section_offset == 0 assert dlv.condition == None assert dlv.failed == False assert dlv.undeliverable == False assert dlv.annotations == None class DeliveryTest(Test): def tearDown(self): self.cleanup() def testDisposition(self, count=1, tag="tag%i", type=Delivery.ACCEPTED, value=NoValue()): snd, rcv = self.link("test-link") snd.open() rcv.open() snd_deliveries = [] for i in range(count): d = snd.delivery(tag % i) snd_deliveries.append(d) snd.advance() rcv.flow(count) self.pump() rcv_deliveries = [] for i in range(count): d = rcv.current assert d.tag == (tag % i) rcv_deliveries.append(d) rcv.advance() for d in rcv_deliveries: value.apply(d.local) d.update(type) self.pump() for d in snd_deliveries: assert d.remote_state == type assert d.remote.type == type value.check(d.remote) value.apply(d.local) d.update(type) self.pump() for d in rcv_deliveries: assert d.remote_state == type assert d.remote.type == type value.check(d.remote) for d in snd_deliveries: d.settle() self.pump() for d in rcv_deliveries: assert d.settled, d.settled d.settle() def testReceived(self): self.testDisposition(type=Disposition.RECEIVED, value=ReceivedValue(1, 2)) def testRejected(self): self.testDisposition(type=Disposition.REJECTED, value=RejectValue(Condition(symbol("foo")))) def testReleased(self): self.testDisposition(type=Disposition.RELEASED) def testModified(self): self.testDisposition(type=Disposition.MODIFIED, value=ModifiedValue(failed=True, undeliverable=True, annotations={"key": "value"})) def testCustom(self): self.testDisposition(type=0x12345, value=CustomValue([1, 2, 3])) class CollectorTest(Test): def setUp(self): self.collector = Collector() def drain(self): result = [] while True: e = self.collector.peek() if e: result.append(e) self.collector.pop() else: break return result def expect(self, *types): return self.expect_oneof(types) def expect_oneof(self, *sequences): events = self.drain() types = tuple([e.type for e in events]) for alternative in sequences: if types == alternative: if len(events) == 1: return events[0] elif len(events) > 1: return events else: return assert False, "actual events %s did not match any of the expected sequences: %s" % (events, sequences) def expect_until(self, *types): events = self.drain() etypes = tuple([e.type for e in events[-len(types):]]) assert etypes == types, "actual events %s did not end in expect sequence: %s" % (events, types) class EventTest(CollectorTest): def tearDown(self): self.cleanup() def testEndpointEvents(self): c1, c2 = self.connection() c1.collect(self.collector) self.expect(Event.CONNECTION_INIT) self.pump() self.expect() c2.open() self.pump() self.expect(Event.CONNECTION_REMOTE_OPEN) self.pump() self.expect() ssn = c2.session() snd = ssn.sender("sender") ssn.open() snd.open() self.expect() self.pump() self.expect(Event.SESSION_INIT, Event.SESSION_REMOTE_OPEN, Event.LINK_INIT, Event.LINK_REMOTE_OPEN) c1.open() ssn2 = c1.session() ssn2.open() rcv = ssn2.receiver("receiver") rcv.open() self.pump() self.expect(Event.CONNECTION_LOCAL_OPEN, Event.TRANSPORT, Event.SESSION_INIT, Event.SESSION_LOCAL_OPEN, Event.TRANSPORT, Event.LINK_INIT, Event.LINK_LOCAL_OPEN, Event.TRANSPORT) rcv.close() self.expect(Event.LINK_LOCAL_CLOSE, Event.TRANSPORT) self.pump() rcv.free() del rcv self.expect(Event.LINK_FINAL) ssn2.free() del ssn2 self.pump() c1.free() c1.transport.unbind() self.expect_oneof((Event.SESSION_FINAL, Event.LINK_FINAL, Event.SESSION_FINAL, Event.CONNECTION_UNBOUND, Event.CONNECTION_FINAL), (Event.CONNECTION_UNBOUND, Event.SESSION_FINAL, Event.LINK_FINAL, Event.SESSION_FINAL, Event.CONNECTION_FINAL)) def testConnectionINIT_FINAL(self): c = Connection() c.collect(self.collector) self.expect(Event.CONNECTION_INIT) c.free() self.expect(Event.CONNECTION_FINAL) def testSessionINIT_FINAL(self): c = Connection() c.collect(self.collector) self.expect(Event.CONNECTION_INIT) s = c.session() self.expect(Event.SESSION_INIT) s.free() self.expect(Event.SESSION_FINAL) c.free() self.expect(Event.CONNECTION_FINAL) def testLinkINIT_FINAL(self): c = Connection() c.collect(self.collector) self.expect(Event.CONNECTION_INIT) s = c.session() self.expect(Event.SESSION_INIT) r = s.receiver("asdf") self.expect(Event.LINK_INIT) r.free() self.expect(Event.LINK_FINAL) c.free() self.expect(Event.SESSION_FINAL, Event.CONNECTION_FINAL) def testFlowEvents(self): snd, rcv = self.link("test-link") snd.session.connection.collect(self.collector) rcv.open() rcv.flow(10) self.pump() self.expect(Event.CONNECTION_INIT, Event.SESSION_INIT, Event.LINK_INIT, Event.LINK_REMOTE_OPEN, Event.LINK_FLOW) rcv.flow(10) self.pump() self.expect(Event.LINK_FLOW) return snd, rcv def testDeliveryEvents(self): snd, rcv = self.link("test-link") rcv.session.connection.collect(self.collector) rcv.open() rcv.flow(10) self.pump() self.expect(Event.CONNECTION_INIT, Event.SESSION_INIT, Event.LINK_INIT, Event.LINK_LOCAL_OPEN, Event.TRANSPORT) snd.delivery("delivery") snd.send(str2bin("Hello World!")) snd.advance() self.pump() self.expect() snd.open() self.pump() self.expect(Event.LINK_REMOTE_OPEN, Event.DELIVERY) rcv.session.connection.transport.unbind() rcv.session.connection.free() self.expect(Event.CONNECTION_UNBOUND, Event.TRANSPORT, Event.LINK_FINAL, Event.SESSION_FINAL, Event.CONNECTION_FINAL) def testDeliveryEventsDisp(self): snd, rcv = self.testFlowEvents() snd.open() dlv = snd.delivery("delivery") snd.send(str2bin("Hello World!")) assert snd.advance() self.expect(Event.LINK_LOCAL_OPEN, Event.TRANSPORT) self.pump() self.expect(Event.LINK_FLOW) rdlv = rcv.current assert rdlv != None assert rdlv.tag == "delivery" rdlv.update(Delivery.ACCEPTED) self.pump() event = self.expect(Event.DELIVERY) assert event.context == dlv, (dlv, event.context) def testConnectionBOUND_UNBOUND(self): c = Connection() c.collect(self.collector) self.expect(Event.CONNECTION_INIT) t = Transport() t.bind(c) self.expect(Event.CONNECTION_BOUND) t.unbind() self.expect(Event.CONNECTION_UNBOUND, Event.TRANSPORT) def testTransportERROR_CLOSE(self): c = Connection() c.collect(self.collector) self.expect(Event.CONNECTION_INIT) t = Transport() t.bind(c) self.expect(Event.CONNECTION_BOUND) assert t.condition is None t.push(str2bin("asdf")) self.expect(Event.TRANSPORT_ERROR, Event.TRANSPORT_TAIL_CLOSED) assert t.condition is not None assert t.condition.name == "amqp:connection:framing-error" assert "AMQP header mismatch" in t.condition.description p = t.pending() assert p > 0 t.pop(p) self.expect(Event.TRANSPORT_HEAD_CLOSED, Event.TRANSPORT_CLOSED) def testTransportCLOSED(self): c = Connection() c.collect(self.collector) self.expect(Event.CONNECTION_INIT) t = Transport() t.bind(c) c.open() self.expect(Event.CONNECTION_BOUND, Event.CONNECTION_LOCAL_OPEN, Event.TRANSPORT) c2 = Connection() t2 = Transport() t2.bind(c2) c2.open() c2.close() pump(t, t2) self.expect(Event.CONNECTION_REMOTE_OPEN, Event.CONNECTION_REMOTE_CLOSE, Event.TRANSPORT_TAIL_CLOSED) c.close() pump(t, t2) self.expect(Event.CONNECTION_LOCAL_CLOSE, Event.TRANSPORT, Event.TRANSPORT_HEAD_CLOSED, Event.TRANSPORT_CLOSED) def testLinkDetach(self): c1 = Connection() c1.collect(self.collector) t1 = Transport() t1.bind(c1) c1.open() s1 = c1.session() s1.open() l1 = s1.sender("asdf") l1.open() l1.detach() self.expect_until(Event.LINK_LOCAL_DETACH, Event.TRANSPORT) c2 = Connection() c2.collect(self.collector) t2 = Transport() t2.bind(c2) pump(t1, t2) self.expect_until(Event.LINK_REMOTE_DETACH) class PeerTest(CollectorTest): def setUp(self): CollectorTest.setUp(self) self.connection = Connection() self.connection.collect(self.collector) self.transport = Transport() self.transport.bind(self.connection) self.peer = Connection() self.peer_transport = Transport() self.peer_transport.bind(self.peer) self.peer_transport.trace(Transport.TRACE_OFF) def pump(self): pump(self.transport, self.peer_transport) class TeardownLeakTest(PeerTest): def doLeak(self, local, remote): self.connection.open() self.expect(Event.CONNECTION_INIT, Event.CONNECTION_BOUND, Event.CONNECTION_LOCAL_OPEN, Event.TRANSPORT) ssn = self.connection.session() ssn.open() self.expect(Event.SESSION_INIT, Event.SESSION_LOCAL_OPEN, Event.TRANSPORT) snd = ssn.sender("sender") snd.open() self.expect(Event.LINK_INIT, Event.LINK_LOCAL_OPEN, Event.TRANSPORT) self.pump() self.peer.open() self.peer.session_head(0).open() self.peer.link_head(0).open() self.pump() self.expect_oneof((Event.CONNECTION_REMOTE_OPEN, Event.SESSION_REMOTE_OPEN, Event.LINK_REMOTE_OPEN, Event.LINK_FLOW), (Event.CONNECTION_REMOTE_OPEN, Event.SESSION_REMOTE_OPEN, Event.LINK_REMOTE_OPEN)) if local: snd.close() # ha!! self.expect(Event.LINK_LOCAL_CLOSE, Event.TRANSPORT) ssn.close() self.expect(Event.SESSION_LOCAL_CLOSE, Event.TRANSPORT) self.connection.close() self.expect(Event.CONNECTION_LOCAL_CLOSE, Event.TRANSPORT) if remote: self.peer.link_head(0).close() # ha!! self.peer.session_head(0).close() self.peer.close() self.pump() if remote: self.expect(Event.TRANSPORT_HEAD_CLOSED, Event.LINK_REMOTE_CLOSE, Event.SESSION_REMOTE_CLOSE, Event.CONNECTION_REMOTE_CLOSE, Event.TRANSPORT_TAIL_CLOSED, Event.TRANSPORT_CLOSED) else: self.expect(Event.TRANSPORT_HEAD_CLOSED, Event.SESSION_REMOTE_CLOSE, Event.CONNECTION_REMOTE_CLOSE, Event.TRANSPORT_TAIL_CLOSED, Event.TRANSPORT_CLOSED) self.connection.free() self.expect(Event.LINK_FINAL, Event.SESSION_FINAL) self.transport.unbind() self.expect(Event.CONNECTION_UNBOUND, Event.CONNECTION_FINAL) def testLocalRemoteLeak(self): self.doLeak(True, True) def testLocalLeak(self): self.doLeak(True, False) def testRemoteLeak(self): self.doLeak(False, True) def testLeak(self): self.doLeak(False, False) class IdleTimeoutEventTest(PeerTest): def half_pump(self): p = self.transport.pending() if p>0: self.transport.pop(p) def testTimeoutWithZombieServer(self, expectOpenCloseFrames=True): self.transport.idle_timeout = self.delay self.connection.open() self.half_pump() self.transport.tick(time()) sleep(self.delay*2) self.transport.tick(time()) self.expect(Event.CONNECTION_INIT, Event.CONNECTION_BOUND, Event.CONNECTION_LOCAL_OPEN, Event.TRANSPORT, Event.TRANSPORT_ERROR, Event.TRANSPORT_TAIL_CLOSED) assert self.transport.capacity() < 0 if expectOpenCloseFrames: assert self.transport.pending() > 0 self.half_pump() self.expect(Event.TRANSPORT_HEAD_CLOSED, Event.TRANSPORT_CLOSED) assert self.transport.pending() < 0 def testTimeoutWithZombieServerAndSASL(self): sasl = self.transport.sasl() self.testTimeoutWithZombieServer(expectOpenCloseFrames=False) class DeliverySegFaultTest(Test): def testDeliveryAfterUnbind(self): conn = Connection() t = Transport() ssn = conn.session() snd = ssn.sender("sender") dlv = snd.delivery("tag") dlv.settle() del dlv t.bind(conn) t.unbind() dlv = snd.delivery("tag") class SaslEventTest(CollectorTest): def testAnonymousNoInitialResponse(self): if "java" in sys.platform: raise Skipped() conn = Connection() conn.collect(self.collector) transport = Transport(Transport.SERVER) transport.bind(conn) self.expect(Event.CONNECTION_INIT, Event.CONNECTION_BOUND) transport.push(str2bin('AMQP\x03\x01\x00\x00\x00\x00\x00 \x02\x01\x00\x00\x00SA' '\xd0\x00\x00\x00\x10\x00\x00\x00\x02\xa3\tANONYMOUS@' 'AMQP\x00\x01\x00\x00')) self.expect(Event.TRANSPORT) for i in range(1024): p = transport.pending() self.drain() p = transport.pending() self.expect() def testPipelinedServerReadFirst(self): if "java" in sys.platform: raise Skipped() conn = Connection() conn.collect(self.collector) transport = Transport(Transport.CLIENT) s = transport.sasl() s.allowed_mechs("ANONYMOUS PLAIN") transport.bind(conn) self.expect(Event.CONNECTION_INIT, Event.CONNECTION_BOUND) transport.push(str2bin('AMQP\x03\x01\x00\x00\x00\x00\x00\x1c\x02\x01\x00\x00\x00S@' '\xc0\x0f\x01\xe0\x0c\x01\xa3\tANONYMOUS\x00\x00\x00\x10' '\x02\x01\x00\x00\x00SD\xc0\x03\x01P\x00AMQP\x00\x01\x00' '\x00')) self.expect(Event.TRANSPORT) p = transport.pending() bytes = transport.peek(p) transport.pop(p) server = Transport(Transport.SERVER) server.push(bytes) assert server.sasl().outcome == SASL.OK def testPipelinedServerWriteFirst(self): if "java" in sys.platform: raise Skipped() conn = Connection() conn.collect(self.collector) transport = Transport(Transport.CLIENT) s = transport.sasl() s.allowed_mechs("ANONYMOUS") transport.bind(conn) p = transport.pending() bytes = transport.peek(p) transport.pop(p) self.expect(Event.CONNECTION_INIT, Event.CONNECTION_BOUND, Event.TRANSPORT) transport.push(str2bin('AMQP\x03\x01\x00\x00\x00\x00\x00\x1c\x02\x01\x00\x00\x00S@' '\xc0\x0f\x01\xe0\x0c\x01\xa3\tANONYMOUS\x00\x00\x00\x10' '\x02\x01\x00\x00\x00SD\xc0\x03\x01P\x00AMQP\x00\x01\x00' '\x00')) self.expect(Event.TRANSPORT) p = transport.pending() bytes = transport.peek(p) transport.pop(p) # XXX: the bytes above appear to be correct, but we don't get any # sort of event indicating that the transport is authenticated
28.816458
107
0.660332
7946d30e82212c9e486fe9a21d659274868ebddb
587
py
Python
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_max_exclusive_2_xsd/nistschema_sv_iv_atomic_g_year_month_max_exclusive_2.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_max_exclusive_2_xsd/nistschema_sv_iv_atomic_g_year_month_max_exclusive_2.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_max_exclusive_2_xsd/nistschema_sv_iv_atomic_g_year_month_max_exclusive_2.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import Optional from xsdata.models.datatype import XmlPeriod __NAMESPACE__ = "NISTSchema-SV-IV-atomic-gYearMonth-maxExclusive-2-NS" @dataclass class NistschemaSvIvAtomicGYearMonthMaxExclusive2: class Meta: name = "NISTSchema-SV-IV-atomic-gYearMonth-maxExclusive-2" namespace = "NISTSchema-SV-IV-atomic-gYearMonth-maxExclusive-2-NS" value: Optional[XmlPeriod] = field( default=None, metadata={ "required": True, "max_exclusive": XmlPeriod("1983-06"), } )
27.952381
74
0.696763
7946d74dda46d11ef61b21b248bd176363c3b8dd
6,268
py
Python
pymc3/step_methods/hmc/trajectory.py
vpolisky/pymc3
87cdd712c86321121c2ed3150764f3d847f5083c
[ "Apache-2.0" ]
null
null
null
pymc3/step_methods/hmc/trajectory.py
vpolisky/pymc3
87cdd712c86321121c2ed3150764f3d847f5083c
[ "Apache-2.0" ]
null
null
null
pymc3/step_methods/hmc/trajectory.py
vpolisky/pymc3
87cdd712c86321121c2ed3150764f3d847f5083c
[ "Apache-2.0" ]
1
2021-04-13T10:31:26.000Z
2021-04-13T10:31:26.000Z
from collections import namedtuple from pymc3.theanof import join_nonshared_inputs, gradient, CallableTensor import theano import theano.tensor as tt Hamiltonian = namedtuple("Hamiltonian", "logp, dlogp, pot") def _theano_hamiltonian(model_vars, shared, logpt, potential): """Creates a Hamiltonian with shared inputs. Parameters ---------- model_vars : array of variables to be sampled shared : theano tensors that are already shared logpt : model log probability potential : hamiltonian potential Returns ------- Hamiltonian : namedtuple with log pdf, gradient of log pdf, and potential functions q : Starting position variable. """ dlogp = gradient(logpt, model_vars) (logp, dlogp), q = join_nonshared_inputs([logpt, dlogp], model_vars, shared) dlogp_func = theano.function(inputs=[q], outputs=dlogp) dlogp_func.trust_input = True logp = CallableTensor(logp) dlogp = CallableTensor(dlogp) return Hamiltonian(logp, dlogp, potential), q, dlogp_func def _theano_energy_function(H, q, **theano_kwargs): """Creates a Hamiltonian with shared inputs. Parameters ---------- H : Hamiltonian namedtuple q : theano variable, starting position theano_kwargs : passed to theano.function Returns ------- energy_function : theano function that computes the energy at a point (p, q) in phase space p : Starting momentum variable. """ p = tt.vector('p') p.tag.test_value = q.tag.test_value total_energy = H.pot.energy(p) - H.logp(q) energy_function = theano.function(inputs=[q, p], outputs=total_energy, **theano_kwargs) energy_function.trust_input = True return energy_function, p def _theano_leapfrog_integrator(H, q, p, **theano_kwargs): """Computes a theano function that computes one leapfrog step and the energy at the end of the trajectory. Parameters ---------- H : Hamiltonian q : theano.tensor p : theano.tensor theano_kwargs : passed to theano.function Returns ------- theano function which returns q_new, p_new, energy_new """ epsilon = tt.scalar('epsilon') epsilon.tag.test_value = 1 n_steps = tt.iscalar('n_steps') n_steps.tag.test_value = 2 q_new, p_new = leapfrog(H, q, p, epsilon, n_steps) energy_new = energy(H, q_new, p_new) f = theano.function([q, p, epsilon, n_steps], [q_new, p_new, energy_new], **theano_kwargs) f.trust_input = True return f def get_theano_hamiltonian_functions(model_vars, shared, logpt, potential, use_single_leapfrog=False, **theano_kwargs): """Construct theano functions for the Hamiltonian, energy, and leapfrog integrator. Parameters ---------- model_vars : array of variables to be sampled shared : theano tensors that are already shared logpt : model log probability potential : Hamiltonian potential theano_kwargs : dictionary of keyword arguments to pass to theano functions use_single_leapfrog : Boolean, if only 1 integration step is done at a time (as in NUTS), this provides a ~2x speedup Returns ------- H : Hamiltonian namedtuple energy_function : theano function computing energy at a point in phase space leapfrog_integrator : theano function integrating the Hamiltonian from a point in phase space theano_variables : dictionary of variables used in the computation graph which may be useful """ H, q, dlogp = _theano_hamiltonian(model_vars, shared, logpt, potential) energy_function, p = _theano_energy_function(H, q, **theano_kwargs) if use_single_leapfrog: leapfrog_integrator = _theano_single_leapfrog(H, q, p, H.dlogp(q), **theano_kwargs) else: leapfrog_integrator = _theano_leapfrog_integrator(H, q, p, **theano_kwargs) return H, energy_function, leapfrog_integrator, dlogp def energy(H, q, p): """Compute the total energy for the Hamiltonian at a given position/momentum""" return H.pot.energy(p) - H.logp(q) def leapfrog(H, q, p, epsilon, n_steps): """Leapfrog integrator. Estimates `p(t)` and `q(t)` at time :math:`t = n \cdot e`, by integrating the Hamiltonian equations .. math:: \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} \frac{dp_i}{dt} = \frac{\partial H}{\partial q_i} with :math:`p(0) = p`, :math:`q(0) = q` Parameters ---------- H : Hamiltonian instance. Tuple of `logp, dlogp, potential`. q : Theano.tensor initial position vector p : Theano.tensor initial momentum vector epsilon : float, step size n_steps : int, number of iterations Returns ------- position : Theano.tensor position estimate at time :math:`n \cdot e`. momentum : Theano.tensor momentum estimate at time :math:`n \cdot e`. """ def full_update(p, q): p = p + epsilon * H.dlogp(q) q += epsilon * H.pot.velocity(p) return p, q # This first line can't be +=, possibly because of theano p = p + 0.5 * epsilon * H.dlogp(q) # half momentum update q += epsilon * H.pot.velocity(p) # full position update if tt.gt(n_steps, 1): (p_seq, q_seq), _ = theano.scan(full_update, outputs_info=[p, q], n_steps=n_steps - 1) p, q = p_seq[-1], q_seq[-1] p += 0.5 * epsilon * H.dlogp(q) # half momentum update return q, p def _theano_single_leapfrog(H, q, p, q_grad, **theano_kwargs): """Leapfrog integrator for a single step. See above for documentation. This is optimized for the case where only a single step is needed, in case of, for example, a recursive algorithm. """ epsilon = tt.scalar('epsilon') epsilon.tag.test_value = 1. p_new = p + 0.5 * epsilon * q_grad # half momentum update q_new = q + epsilon * H.pot.velocity(p_new) # full position update q_new_grad = H.dlogp(q_new) p_new += 0.5 * epsilon * q_new_grad # half momentum update energy_new = energy(H, q_new, p_new) f = theano.function(inputs=[q, p, q_grad, epsilon], outputs=[q_new, p_new, q_new_grad, energy_new], **theano_kwargs) f.trust_input = True return f
33.164021
97
0.662093
7946d8141892428550b4cf2a571578307e8dcfdd
1,643
py
Python
setup.py
catalystneuro/ndx-labmetadata-giocomo
0371ef86be78eb017fcdaf28cc908d7a6b6c1a1f
[ "BSD-3-Clause" ]
null
null
null
setup.py
catalystneuro/ndx-labmetadata-giocomo
0371ef86be78eb017fcdaf28cc908d7a6b6c1a1f
[ "BSD-3-Clause" ]
1
2019-11-05T10:45:52.000Z
2019-11-19T04:56:49.000Z
setup.py
catalystneuro/ndx-labmetadata-giocomo
0371ef86be78eb017fcdaf28cc908d7a6b6c1a1f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import os from setuptools import setup, find_packages from shutil import copy2 # Get the long description from the README file with open('README.md', 'r') as f: long_description = f.read() # Get requirements with open('requirements.txt') as f: install_requires = f.read().strip().split('\n') setup_args = dict( name='ndx-labmetadata-giocomo', version='0.1.0', description='NWB extension for storing metadata for Giocomo lab', author='Luiz Tauffer, Szonja Weigl and Ben Dichter', author_email='[email protected]', url='https://github.com/catalystneuro/ndx-labmetadata-giocomo', packages=find_packages('src/pynwb'), package_dir={'': 'src/pynwb'}, include_package_data=True, package_data={'ndx_labmetadata_giocomo': ['spec/ndx-labmetadata-giocomo.namespace.yaml', 'spec/ndx-labmetadata-giocomo.extensions.yaml']}, classifiers=["Intended Audience :: Developers", "Intended Audience :: Science/Research"], zip_safe=False, install_requires=install_requires, ) def _copy_spec_files(project_dir): ns_path = os.path.join(project_dir, 'spec', 'ndx-labmetadata-giocomo.namespace.yaml') ext_path = os.path.join(project_dir, 'spec', 'ndx-labmetadata-giocomo.extensions.yaml') dst_dir = os.path.join(project_dir, 'src', 'pynwb', 'ndx_labmetadata_giocomo', 'spec') if not os.path.exists(dst_dir): os.mkdir(dst_dir) copy2(ns_path, dst_dir) copy2(ext_path, dst_dir) if __name__ == '__main__': _copy_spec_files(os.path.dirname(__file__)) setup(**setup_args)
32.215686
95
0.684723
7946d958ce438a2697165fcb4c6b74fbf665ad86
2,883
py
Python
examples/ExecutionPools/Remote/tasks.py
kelliott55/testplan
05d20033ac64a1dd6673ab6f70208b22ce17c545
[ "Apache-2.0" ]
null
null
null
examples/ExecutionPools/Remote/tasks.py
kelliott55/testplan
05d20033ac64a1dd6673ab6f70208b22ce17c545
[ "Apache-2.0" ]
null
null
null
examples/ExecutionPools/Remote/tasks.py
kelliott55/testplan
05d20033ac64a1dd6673ab6f70208b22ce17c545
[ "Apache-2.0" ]
null
null
null
"""TCP connections tests to be executed in parallel in a remote pool.""" import os import time from testplan.testing.multitest import MultiTest, testsuite, testcase from testplan.common.utils.context import context from testplan.testing.multitest.driver.tcp import TCPServer, TCPClient def after_start(env): """ Called right after MultiTest starts. """ # Server accepts connection request made by client. env.server.accept_connection() @testsuite class TCPTestsuite(object): """TCP communication tests.""" def __init__(self, files): self._process_id = os.getpid() self._files = files def setup(self, env, result): result.log("LOCAL_USER: {}".format(os.environ["LOCAL_USER"])) for _file in self._files: with open(_file) as fobj: result.log("Source file contents: {}".format(fobj.read())) @testcase def send_and_receive_msg(self, env, result): """ Server client communication with a sleep in the middle that represents processing time by the server before respond. """ # Client sends a message. msg = env.client.cfg.name result.log( "Client with process id {} is sending: {}".format( self._process_id, msg ) ) bytes_sent = env.client.send_text(msg) received = env.server.receive_text(size=bytes_sent) result.equal(received, msg, "Server received") start_time = time.time() # Sleeping here to represent a time consuming processing # of the message received by the server before replying back. time.sleep(1) result.log( "Server was processing message for {}s".format( round(time.time() - start_time, 1) ) ) response = "Hello {}".format(received) result.log( "Server with process id {} is responding: {}".format( self._process_id, response ) ) # Server sends the reply. bytes_sent = env.server.send_text(response) received = env.client.receive_text(size=bytes_sent) result.equal(received, response, "Client received") def make_multitest(index=0, files=None): """ Creates a new MultiTest that runs TCP connection tests. This will be created inside a remote worker. """ print("Creating a MultiTest on process id {}.".format(os.getpid())) test = MultiTest( name="TCPMultiTest_{}".format(index), suites=[TCPTestsuite(files)], environment=[ TCPServer(name="server"), TCPClient( name="client", host=context("server", "{{host}}"), port=context("server", "{{port}}"), ), ], after_start=after_start, ) return test
30.670213
74
0.602151
7946d98924c3b6ea4269463247b8b55d968a3282
409
py
Python
main/migrations/0002_activity_age_grade.py
cablespaghetti/running-club-challenge
46bc289084c5c089154f456ac2b8901924653ead
[ "MIT" ]
null
null
null
main/migrations/0002_activity_age_grade.py
cablespaghetti/running-club-challenge
46bc289084c5c089154f456ac2b8901924653ead
[ "MIT" ]
null
null
null
main/migrations/0002_activity_age_grade.py
cablespaghetti/running-club-challenge
46bc289084c5c089154f456ac2b8901924653ead
[ "MIT" ]
null
null
null
# Generated by Django 4.0 on 2021-12-17 22:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0001_initial'), ] operations = [ migrations.AddField( model_name='activity', name='age_grade', field=models.FloatField(default=50.0), preserve_default=False, ), ]
20.45
50
0.584352
7946da2979f14377d08c1c1b154b71552f08e332
3,456
py
Python
docusign_esign/models/credential.py
pivotal-energy-solutions/docusign-python-client
f3edd0b82e57999bc8848a63a0477712714ee437
[ "MIT" ]
null
null
null
docusign_esign/models/credential.py
pivotal-energy-solutions/docusign-python-client
f3edd0b82e57999bc8848a63a0477712714ee437
[ "MIT" ]
null
null
null
docusign_esign/models/credential.py
pivotal-energy-solutions/docusign-python-client
f3edd0b82e57999bc8848a63a0477712714ee437
[ "MIT" ]
1
2021-04-26T20:52:45.000Z
2021-04-26T20:52:45.000Z
# coding: utf-8 """ DocuSign REST API The DocuSign REST API provides you with a powerful, convenient, and simple Web services API for interacting with DocuSign. OpenAPI spec version: v2 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class Credential(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, type=None, value=None): """ Credential - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'type': 'str', 'value': 'str' } self.attribute_map = { 'type': 'type', 'value': 'value' } self._type = type self._value = value @property def type(self): """ Gets the type of this Credential. :return: The type of this Credential. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this Credential. :param type: The type of this Credential. :type: str """ self._type = type @property def value(self): """ Gets the value of this Credential. Specifies the value of the tab. :return: The value of this Credential. :rtype: str """ return self._value @value.setter def value(self, value): """ Sets the value of this Credential. Specifies the value of the tab. :param value: The value of this Credential. :type: str """ self._value = value def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
24.510638
126
0.520255
7946db4208ecec6801584c7458f2f5294d3c9166
9,246
py
Python
pyrolite/comp/codata.py
JustinGOSSES/pyrolite
21eb5b28d9295625241b73b820fc8892b00fc6b0
[ "BSD-3-Clause" ]
1
2020-03-13T07:11:47.000Z
2020-03-13T07:11:47.000Z
pyrolite/comp/codata.py
JustinGOSSES/pyrolite
21eb5b28d9295625241b73b820fc8892b00fc6b0
[ "BSD-3-Clause" ]
null
null
null
pyrolite/comp/codata.py
JustinGOSSES/pyrolite
21eb5b28d9295625241b73b820fc8892b00fc6b0
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import pandas as pd import scipy.stats as scpstats import scipy.special as scpspec # from .renorm import renormalise, close from ..util.math import orthogonal_basis_default, orthogonal_basis_from_array import logging logging.getLogger(__name__).addHandler(logging.NullHandler()) logger = logging.getLogger(__name__) def close(X: np.ndarray, sumf=np.sum): """ Closure operator for compositional data. Parameters ----------- X : :class:`numpy.ndarray` Array to close. sumf : :class:`callable`, :func:`numpy.sum` Sum function to use for closure. Returns -------- :class:`numpy.ndarray` Closed array. Notes ------ * Does not check for non-positive entries. """ if X.ndim == 2: return np.divide(X, sumf(X, axis=1)[:, np.newaxis]) else: return np.divide(X, sumf(X, axis=0)) def renormalise(df: pd.DataFrame, components: list = [], scale=100.0): """ Renormalises compositional data to ensure closure. Parameters ------------ df : :class:`pandas.DataFrame` Dataframe to renomalise. components : :class:`list` Option subcompositon to renormalise to 100. Useful for the use case where compostional data and non-compositional data are stored in the same dataframe. scale : :class:`float`, :code:`100.` Closure parameter. Typically either 100 or 1. Returns -------- :class:`pandas.DataFrame` Renormalized dataframe. """ dfc = df.copy(deep=True) if components: cmpnts = [c for c in components if c in dfc.columns] dfc.loc[:, cmpnts] = scale * dfc.loc[:, cmpnts].divide( dfc.loc[:, cmpnts].sum(axis=1).replace(0, np.nan), axis=0 ) return dfc else: dfc = dfc.divide(dfc.sum(axis=1).replace(0, 100.0), axis=0) * scale return dfc def alr(X: np.ndarray, ind: int = -1, null_col=False): """ Additive Log Ratio transformation. Parameters --------------- X: :class:`numpy.ndarray` Array on which to perform the transformation, of shape :code:`(N, D)`. ind: :class:`int` Index of column used as denominator. null_col : :class:`bool` Whether to keep the redundant column. Returns --------- :class:`numpy.ndarray` ALR-transformed array, of shape :code:`(N, D-1)`. """ Y = X.copy() assert Y.ndim in [1, 2] dimensions = Y.shape[Y.ndim - 1] if ind < 0: ind += dimensions if Y.ndim == 2: Y = np.divide(Y, Y[:, ind][:, np.newaxis]) if not null_col: Y = Y[:, [i for i in range(dimensions) if not i == ind]] else: Y = np.divide(X, X[ind]) if not null_col: Y = Y[[i for i in range(dimensions) if not i == ind]] return np.log(Y) def inverse_alr(Y: np.ndarray, ind=-1, null_col=False): """ Inverse Centred Log Ratio transformation. Parameters --------------- Y : :class:`numpy.ndarray` Array on which to perform the inverse transformation, of shape :code:`(N, D-1)`. ind : :class:`int` Index of column used as denominator. null_col : :class:`bool`, :code:`False` Whether the array contains an extra redundant column (i.e. shape is :code:`(N, D)`). Returns -------- :class:`numpy.ndarray` Inverse-ALR transformed array, of shape :code:`(N, D)`. """ assert Y.ndim in [1, 2] X = Y.copy() dimensions = X.shape[X.ndim - 1] if not null_col: idx = np.arange(0, dimensions + 1) if ind != -1: idx = np.array(list(idx[idx < ind]) + [-1] + list(idx[idx >= ind + 1] - 1)) # Add a zero-column and reorder columns if Y.ndim == 2: X = np.concatenate((X, np.zeros((X.shape[0], 1))), axis=1) X = X[:, idx] else: X = np.append(X, np.array([0])) X = X[idx] # Inverse log and closure operations X = np.exp(X) X = close(X) return X def clr(X: np.ndarray): """ Centred Log Ratio transformation. Parameters --------------- X : :class:`numpy.ndarray` Array on which to perform the transformation, of shape :code:`(N, D)`. Returns --------- :class:`numpy.ndarray` CLR-transformed array, of shape :code:`(N, D)`. """ X = np.divide(X, np.sum(X, axis=1)[:, np.newaxis]) # Closure operation Y = np.log(X) # Log operation Y -= 1 / X.shape[1] * np.nansum(Y, axis=1)[:, np.newaxis] return Y def inverse_clr(Y: np.ndarray): """ Inverse Centred Log Ratio transformation. Parameters --------------- Y : :class:`numpy.ndarray` Array on which to perform the inverse transformation, of shape :code:`(N, D)`. Returns --------- :class:`numpy.ndarray` Inverse-CLR transformed array, of shape :code:`(N, D)`. """ # Inverse of log operation X = np.exp(Y) # Closure operation X = np.divide(X, np.nansum(X, axis=1)[:, np.newaxis]) return X def ilr(X: np.ndarray): """ Isometric Log Ratio transformation. Parameters --------------- X : :class:`numpy.ndarray` Array on which to perform the transformation, of shape :code:`(N, D)`. Returns -------- :class:`numpy.ndarray` ILR-transformed array, of shape :code:`(N, D-1)`. """ d = X.shape[1] Y = clr(X) psi = orthogonal_basis_from_array(X) # Get a basis assert np.allclose(psi @ psi.T, np.eye(d - 1)) return Y @ psi.T def inverse_ilr(Y: np.ndarray, X: np.ndarray = None): """ Inverse Isometric Log Ratio transformation. Parameters --------------- Y : :class:`numpy.ndarray` Array on which to perform the inverse transformation, of shape :code:`(N, D-1)`. X : :class:`numpy.ndarray`, :code:`None` Optional specification for an array from which to derive the orthonormal basis, with shape :code:`(N, D)`. Returns -------- :class:`numpy.ndarray` Inverse-ILR transformed array, of shape :code:`(N, D)`. """ if X is None: psi = orthogonal_basis_default(D=Y.shape[1] + 1) else: psi = orthogonal_basis_from_array(X) C = Y @ psi X = inverse_clr(C) # Inverse log operation return X def boxcox( X: np.ndarray, lmbda=None, lmbda_search_space=(-1, 5), search_steps=100, return_lmbda=False, ): """ Box-Cox transformation. Parameters --------------- X : :class:`numpy.ndarray` Array on which to perform the transformation. lmbda : :class:`numpy.number`, :code:`None` Lambda value used to forward-transform values. If none, it will be calculated using the mean lmbda_search_space : :class:`tuple` Range tuple (min, max). search_steps : :class:`int` Steps for lambda search range. return_lmbda : :class:`bool` Whether to also return the lambda value. Returns ------- :class:`numpy.ndarray` | :class:`numpy.ndarray`(:class:`float`) Box-Cox transformed array. If `return_lmbda` is true, tuple contains data and lambda value. """ if isinstance(X, pd.DataFrame) or isinstance(X, pd.Series): _X = X.values else: _X = X.copy() if lmbda is None: l_search = np.linspace(*lmbda_search_space, search_steps) llf = np.apply_along_axis(scpstats.boxcox_llf, 0, np.array([l_search]), _X.T) if llf.shape[0] == 1: mean_llf = llf[0] else: mean_llf = np.nansum(llf, axis=0) lmbda = l_search[mean_llf == np.nanmax(mean_llf)] if _X.ndim < 2: out = scpstats.boxcox(_X, lmbda) elif _X.shape[0] == 1: out = scpstats.boxcox(np.squeeze(_X), lmbda) else: out = np.apply_along_axis(scpstats.boxcox, 0, _X, lmbda) if isinstance(_X, pd.DataFrame) or isinstance(_X, pd.Series): _out = X.copy() _out.loc[:, :] = out out = _out if return_lmbda: return out, lmbda else: return out def inverse_boxcox(Y: np.ndarray, lmbda): """ Inverse Box-Cox transformation. Parameters --------------- Y : :class:`numpy.ndarray` Array on which to perform the transformation. lmbda : :class:`float` Lambda value used to forward-transform values. Returns ------- :class:`numpy.ndarray` Inverse Box-Cox transformed array. """ return scpspec.inv_boxcox(Y, lmbda) def logratiomean(df, transform=clr, inverse_transform=inverse_clr): """ Take a mean of log-ratios along the index of a dataframe. Parameters ----------- df : :class:`pandas.DataFrame` Dataframe from which to compute a mean along the index. transform : :class:`callable` Log transform to use. inverse_transform : :class:`callable` Inverse of log transform. Returns --------- :class:`pandas.Series` Mean values as a pandas series. """ return pd.Series( inverse_transform(np.mean(transform(df.values), axis=0)[np.newaxis, :])[0], index=df.columns, )
26.8
88
0.578953
7946dc1f42a18eb7e6cefea59ca3edb384bf7eca
27,016
py
Python
tf_quant_finance/models/hjm/swaption_pricing.py
slowy07/tf-quant-finance
0976f720fb58a2d7bfd863640c12a2425cd2f94f
[ "Apache-2.0" ]
3,138
2019-07-24T21:43:17.000Z
2022-03-30T12:11:09.000Z
tf_quant_finance/models/hjm/swaption_pricing.py
slowy07/tf-quant-finance
0976f720fb58a2d7bfd863640c12a2425cd2f94f
[ "Apache-2.0" ]
63
2019-09-07T19:16:03.000Z
2022-03-29T19:29:40.000Z
tf_quant_finance/models/hjm/swaption_pricing.py
slowy07/tf-quant-finance
0976f720fb58a2d7bfd863640c12a2425cd2f94f
[ "Apache-2.0" ]
423
2019-07-26T21:28:05.000Z
2022-03-26T13:07:44.000Z
# Lint as: python3 # Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pricing of the Interest rate Swaption using the HJM model.""" from typing import Callable, Union import tensorflow.compat.v2 as tf from tf_quant_finance import types from tf_quant_finance.math import pde from tf_quant_finance.math import random from tf_quant_finance.models import utils from tf_quant_finance.models import valuation_method as vm from tf_quant_finance.models.hjm import gaussian_hjm from tf_quant_finance.models.hjm import quasi_gaussian_hjm from tf_quant_finance.models.hjm import swaption_util __all__ = [ 'price' ] # Points smaller than this are merged together in FD time grid _PDE_TIME_GRID_TOL = 1e-7 def price( *, expiries: types.RealTensor, fixed_leg_payment_times: types.RealTensor, fixed_leg_daycount_fractions: types.RealTensor, fixed_leg_coupon: types.RealTensor, reference_rate_fn: Callable[..., types.RealTensor], num_hjm_factors: int, mean_reversion: types.RealTensor, volatility: Union[types.RealTensor, Callable[..., types.RealTensor]], times: types.RealTensor = None, time_step: types.RealTensor = None, num_time_steps: types.IntTensor = None, curve_times: types.RealTensor = None, corr_matrix: types.RealTensor = None, notional: types.RealTensor = None, is_payer_swaption: types.BoolTensor = None, valuation_method: vm.ValuationMethod = vm.ValuationMethod.MONTE_CARLO, num_samples: types.IntTensor = 1, random_type: random.RandomType = None, seed: types.IntTensor = None, skip: types.IntTensor = 0, time_step_finite_difference: types.IntTensor = None, num_time_steps_finite_difference: types.IntTensor = None, num_grid_points_finite_difference: types.IntTensor = 101, dtype: tf.DType = None, name: str = None) -> types.RealTensor: """Calculates the price of European swaptions using the HJM model. A European Swaption is a contract that gives the holder an option to enter a swap contract at a future date at a prespecified fixed rate. A swaption that grants the holder the right to pay fixed rate and receive floating rate is called a payer swaption while the swaption that grants the holder the right to receive fixed and pay floating payments is called the receiver swaption. Typically the start date (or the inception date) of the swap coincides with the expiry of the swaption. Mid-curve swaptions are currently not supported (b/160061740). This implementation uses the HJM model to numerically value European swaptions. For more information on the formulation of the HJM model, see quasi_gaussian_hjm.py. #### Example ````python import numpy as np import tensorflow.compat.v2 as tf import tf_quant_finance as tff dtype = tf.float64 # Price 1y x 1y swaption with quarterly payments using Monte Carlo # simulations. expiries = np.array([1.0]) fixed_leg_payment_times = np.array([1.25, 1.5, 1.75, 2.0]) fixed_leg_daycount_fractions = 0.25 * np.ones_like(fixed_leg_payment_times) fixed_leg_coupon = 0.011 * np.ones_like(fixed_leg_payment_times) zero_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) mean_reversion = [0.03] volatility = [0.02] price = tff.models.hjm.swaption_price( expiries=expiries, fixed_leg_payment_times=fixed_leg_payment_times, fixed_leg_daycount_fractions=fixed_leg_daycount_fractions, fixed_leg_coupon=fixed_leg_coupon, reference_rate_fn=zero_rate_fn, notional=100., num_hjm_factors=1, mean_reversion=mean_reversion, volatility=volatility, valuation_method=tff.model.ValuationMethod.MONTE_CARLO, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, seed=[1, 2]) # Expected value: [[0.716]] ```` #### References: [1]: D. Brigo, F. Mercurio. Interest Rate Models-Theory and Practice. Second Edition. 2007. Section 6.7, page 237. Args: expiries: A real `Tensor` of any shape and dtype. The time to expiration of the swaptions. The shape of this input along with the batch shape of the HJM model determines the number (and shape) of swaptions to be priced and the shape of the output. If the batch shape of HJM models is `model_batch_shape`, then the leading dimensions of `expiries` must be broadcastable to `model_batch_shape`. For example, if the rank of `model_batch_shape` is `n` and the rank of `expiries.shape` is `m`, then `m>=n` and the leading `n` dimensions of `expiries.shape` must be broadcastable to `model_batch_shape`. fixed_leg_payment_times: A real `Tensor` of the same dtype as `expiries`. The payment times for each payment in the fixed leg. The shape of this input should be `expiries.shape + [n]` where `n` denotes the number of fixed payments in each leg. The `fixed_leg_payment_times` should be greater-than or equal-to the corresponding expiries. fixed_leg_daycount_fractions: A real `Tensor` of the same dtype and compatible shape as `fixed_leg_payment_times`. The daycount fractions for each payment in the fixed leg. fixed_leg_coupon: A real `Tensor` of the same dtype and compatible shape as `fixed_leg_payment_times`. The fixed rate for each payment in the fixed leg. reference_rate_fn: A Python callable that accepts expiry time as a real `Tensor` and returns a `Tensor` of shape `model_batch_shape + input_shape`. Returns the continuously compounded zero rate at the present time for the input expiry time. num_hjm_factors: A Python scalar which corresponds to the number of factors in the batch of HJM models to be used for pricing. mean_reversion: A real positive `Tensor` of shape `model_batch_shape + [num_hjm_factors]`. Corresponds to the mean reversion rate of each factor in the batch. volatility: A real positive `Tensor` of the same `dtype` and shape as `mean_reversion` or a callable with the following properties: (a) The callable should accept a scalar `Tensor` `t` and a `Tensor` `r(t)` of shape `batch_shape + [num_samples]` and returns a `Tensor` of shape compatible with `batch_shape + [num_samples, dim]`. The variable `t` stands for time and `r(t)` is the short rate at time `t`. The function returns instantaneous volatility `sigma(t) = sigma(t, r(t))`. When `volatility` is specified as a real `Tensor`, each factor is assumed to have a constant instantaneous volatility and the model is effectively a Gaussian HJM model. Corresponds to the instantaneous volatility of each factor. times: An optional rank 1 `Tensor` of increasing positive real values. The times at which Monte Carlo simulations are performed. Relevant when swaption valuation is done using Monte Calro simulations. Default value: `None` in which case simulation times are computed based on either `time_step` or `num_time_steps` inputs. time_step: Optional scalar real `Tensor`. Maximal distance between time grid points in Euler scheme. Relevant when Euler scheme is used for simulation. This input or `num_time_steps` are required when valuation method is Monte Carlo. Default Value: `None`. num_time_steps: An optional scalar integer `Tensor` - a total number of time steps during Monte Carlo simulations. The maximal distance betwen points in grid is bounded by `times[-1] / (num_time_steps - times.shape[0])`. Either this or `time_step` should be supplied when the valuation method is Monte Carlo. Default value: `None`. curve_times: An optional rank 1 `Tensor` of positive and increasing real values. The maturities at which spot discount curve is computed during simulations. Default value: `None` in which case `curve_times` is computed based on swaption expiries and `fixed_leg_payments_times` inputs. corr_matrix: A `Tensor` of shape `[num_hjm_factors, num_hjm_factors]` and the same `dtype` as `mean_reversion`. Specifies the correlation between HJM factors. Default value: `None` in which case the factors are assumed to be uncorrelated. notional: An optional `Tensor` of same dtype and compatible shape as `strikes`specifying the notional amount for the underlying swaps. Default value: None in which case the notional is set to 1. is_payer_swaption: A boolean `Tensor` of a shape compatible with `expiries`. Indicates whether the swaption is a payer (if True) or a receiver (if False) swaption. If not supplied, payer swaptions are assumed. valuation_method: An enum of type `ValuationMethod` specifying the method to be used for swaption valuation. Currently the valuation is supported using `MONTE_CARLO` and `FINITE_DIFFERENCE` methods. Valuation using finite difference is only supported for Gaussian HJM models, i.e. for models with constant mean-reversion rate and time-dependent volatility. Default value: `ValuationMethod.MONTE_CARLO`, in which case swaption valuation is done using Monte Carlo simulations. num_samples: Positive scalar `int32` `Tensor`. The number of simulation paths during Monte-Carlo valuation. This input is ignored during analytic valuation. Default value: The default value is 1. random_type: Enum value of `RandomType`. The type of (quasi)-random number generator to use to generate the simulation paths. This input is relevant only for Monte-Carlo valuation and ignored during analytic valuation. Default value: `None` which maps to the standard pseudo-random numbers. seed: Seed for the random number generator. The seed is only relevant if `random_type` is one of `[STATELESS, PSEUDO, HALTON_RANDOMIZED, PSEUDO_ANTITHETIC, STATELESS_ANTITHETIC]`. For `PSEUDO`, `PSEUDO_ANTITHETIC` and `HALTON_RANDOMIZED` the seed should be an Python integer. For `STATELESS` and `STATELESS_ANTITHETIC` must be supplied as an integer `Tensor` of shape `[2]`. This input is relevant only for Monte-Carlo valuation and ignored during analytic valuation. Default value: `None` which means no seed is set. skip: `int32` 0-d `Tensor`. The number of initial points of the Sobol or Halton sequence to skip. Used only when `random_type` is 'SOBOL', 'HALTON', or 'HALTON_RANDOMIZED', otherwise ignored. Default value: `0`. time_step_finite_difference: Optional scalar real `Tensor`. Spacing between time grid points in finite difference discretization. This input is only relevant for valuation using finite difference. Default value: `None`. If `num_time_steps_finite_difference` is also unspecified then a `time_step` corresponding to 100 discretization steps is used. num_time_steps_finite_difference: Optional scalar real `Tensor`. Number of time grid points in finite difference discretization. This input is only relevant for valuation using finite difference. Default value: `None`. If `time_step_finite_difference` is also unspecified, then 100 time steps are used. num_grid_points_finite_difference: Optional scalar real `Tensor`. Number of spatial grid points per dimension. Currently, we construct an uniform grid for spatial discretization. This input is only relevant for valuation using finite difference. Default value: 101. dtype: The default dtype to use when converting values to `Tensor`s. Default value: `None` which means that default dtypes inferred by TensorFlow are used. name: Python string. The name to give to the ops created by this function. Default value: `None` which maps to the default name `hjm_swaption_price`. Returns: A `Tensor` of real dtype and shape derived from `model_batch_shape` and expiries.shape containing the computed swaption prices. The shape of the output is as follows: * If the `model_batch_shape` is [], then the shape of the output is expiries.shape * Otherwise, the shape of the output is `model_batch_shape + expiries.shape[model_batch_shape.rank:]` For swaptions that have reset in the past (expiries<0), the function sets the corresponding option prices to 0.0. """ # TODO(b/160061740): Extend the functionality to support mid-curve swaptions. name = name or 'hjm_swaption_price' with tf.name_scope(name): expiries = tf.convert_to_tensor(expiries, dtype=dtype, name='expiries') dtype = dtype or expiries.dtype fixed_leg_payment_times = tf.convert_to_tensor( fixed_leg_payment_times, dtype=dtype, name='fixed_leg_payment_times') fixed_leg_daycount_fractions = tf.convert_to_tensor( fixed_leg_daycount_fractions, dtype=dtype, name='fixed_leg_daycount_fractions') fixed_leg_coupon = tf.convert_to_tensor( fixed_leg_coupon, dtype=dtype, name='fixed_leg_coupon') notional = tf.convert_to_tensor(notional, dtype=dtype, name='notional') if is_payer_swaption is None: is_payer_swaption = True is_payer_swaption = tf.convert_to_tensor( is_payer_swaption, dtype=tf.bool, name='is_payer_swaption') if expiries.shape.rank < fixed_leg_payment_times.shape.rank - 1: raise ValueError('Swaption expiries not specified for all swaptions ' 'in the batch. Expected rank {} but received {}.'.format( fixed_leg_payment_times.shape.rank - 1, expiries.shape.rank)) # Add a dimension corresponding to multiple cashflows in a swap expiries = tf.expand_dims(expiries, axis=-1) # Expected shape: batch_shape + [m], where m is the number of fixed leg # payments per underlying swap. This is the same as # fixed_leg_payment_times.shape # # We need to explicitly use tf.repeat because we need to price # batch_shape + [m] bond options with different strikes along the last # dimension. expiries = tf.repeat( expiries, tf.shape(fixed_leg_payment_times)[-1], axis=-1) if valuation_method == vm.ValuationMethod.FINITE_DIFFERENCE: model = gaussian_hjm.GaussianHJM( num_hjm_factors, mean_reversion=mean_reversion, volatility=volatility, initial_discount_rate_fn=reference_rate_fn, corr_matrix=corr_matrix, dtype=dtype) # TODO(b/192294347): Enable pricing using batch of HJM models. if reference_rate_fn(tf.constant([0.0], dtype=dtype)).shape.rank > 1: raise ValueError('Pricing swaptions using a batch of HJM models with ' 'finite differences is not currently supported.') instrument_batch_shape = expiries.shape.as_list()[:-1] or [1] return _european_swaption_fd( instrument_batch_shape, model, # Add a dimension to denote ONE exercise date tf.expand_dims(expiries, axis=-2), fixed_leg_payment_times, fixed_leg_daycount_fractions, fixed_leg_coupon, notional, is_payer_swaption, time_step_finite_difference, num_time_steps_finite_difference, num_grid_points_finite_difference, name + '_fd', dtype) elif valuation_method == vm.ValuationMethod.MONTE_CARLO: # Monte-Carlo pricing model = quasi_gaussian_hjm.QuasiGaussianHJM( num_hjm_factors, mean_reversion=mean_reversion, volatility=volatility, initial_discount_rate_fn=reference_rate_fn, corr_matrix=corr_matrix, dtype=dtype) return _european_swaption_mc( model, expiries, fixed_leg_payment_times, fixed_leg_daycount_fractions, fixed_leg_coupon, notional, is_payer_swaption, times, time_step, num_time_steps, curve_times, num_samples, random_type, skip, seed, dtype, name + '_mc') else: raise ValueError('Swaption Valuation using {} is not supported'.format( str(valuation_method))) def _european_swaption_mc(model, expiries, fixed_leg_payment_times, fixed_leg_daycount_fractions, fixed_leg_coupon, notional, is_payer_swaption, times, time_step, num_time_steps, curve_times, num_samples, random_type, skip, seed, dtype, name): """Price European swaptions using Monte-Carlo.""" with tf.name_scope(name): if (times is None) and (time_step is None) and (num_time_steps is None): raise ValueError( 'One of `times`, `time_step` or `num_time_steps` must be ' 'provided for simulation based swaption valuation.') def _sample_discount_curve_path_fn(times, curve_times, num_samples): p_t_tau, r_t, df = model.sample_discount_curve_paths( times=times, curve_times=curve_times, num_samples=num_samples, random_type=random_type, time_step=time_step, num_time_steps=num_time_steps, seed=seed, skip=skip) p_t_tau = tf.expand_dims(p_t_tau, axis=-1) r_t = tf.expand_dims(r_t, axis=-1) df = tf.expand_dims(df, axis=-1) return p_t_tau, r_t, df payoff_discount_factors, payoff_bond_price = ( swaption_util.discount_factors_and_bond_prices_from_samples( expiries=expiries, payment_times=fixed_leg_payment_times, sample_discount_curve_paths_fn=_sample_discount_curve_path_fn, num_samples=num_samples, times=times, curve_times=curve_times, dtype=dtype)) # Add an axis corresponding to `dim` fixed_leg_pv = tf.expand_dims( fixed_leg_coupon * fixed_leg_daycount_fractions, axis=-1) * payoff_bond_price # Sum fixed coupon payments within each swap. # Here, axis=-2 is the payments axis - i.e. summing over all payments; and # the last axis is the `dim` axis, as explained in comment above # `fixed_leg_pv` (Note that for HJM the dim of this axis is 1 always). fixed_leg_pv = tf.math.reduce_sum(fixed_leg_pv, axis=-2) float_leg_pv = 1.0 - payoff_bond_price[..., -1, :] payoff_swap = payoff_discount_factors[..., -1, :] * ( float_leg_pv - fixed_leg_pv) payoff_swap = tf.where(is_payer_swaption, payoff_swap, -1.0 * payoff_swap) payoff_swaption = tf.math.maximum(payoff_swap, 0.0) # Average over all simulation paths option_value = tf.math.reduce_mean(payoff_swaption, axis=0) return notional * tf.squeeze(option_value, axis=-1) def _european_swaption_fd(batch_shape, model, exercise_times, fixed_leg_payment_times, fixed_leg_daycount_fractions, fixed_leg_coupon, notional, is_payer_swaption, time_step_fd, num_time_steps_fd, num_grid_points_fd, name, dtype): """Price European swaptions using finite difference.""" with tf.name_scope(name): dim = model.dim() x_min = -0.5 x_max = 0.5 # grid.shape = (num_grid_points,2) grid = pde.grids.uniform_grid( minimums=[x_min] * dim, maximums=[x_max] * dim, sizes=[num_grid_points_fd] * dim, dtype=dtype) # TODO(b/186876306): Remove dynamic shapes. pde_time_grid, pde_time_grid_dt = _create_pde_time_grid( exercise_times, time_step_fd, num_time_steps_fd, dtype) maturities, unique_maturities, maturities_shape = ( _create_term_structure_maturities(fixed_leg_payment_times)) num_maturities = tf.shape(unique_maturities)[-1] x_meshgrid = _coord_grid_to_mesh_grid(grid) meshgrid_shape = tf.shape(x_meshgrid) broadcasted_maturities = tf.expand_dims(unique_maturities, axis=0) num_grid_points = tf.math.reduce_prod(meshgrid_shape[1:]) shape_to_broadcast = tf.concat([meshgrid_shape, [num_maturities]], axis=0) # Reshape `state_x`, `maturities` to (num_grid_points, num_maturities) state_x = tf.expand_dims(x_meshgrid, axis=-1) state_x = tf.broadcast_to(state_x, shape_to_broadcast) broadcasted_maturities = tf.broadcast_to(broadcasted_maturities, shape_to_broadcast[1:]) def _get_swap_payoff(payoff_time): broadcasted_exercise_times = tf.broadcast_to(payoff_time, shape_to_broadcast[1:]) # Zero-coupon bond curve zcb_curve = model.discount_bond_price( tf.transpose( tf.reshape(state_x, [dim, num_grid_points * num_maturities])), tf.reshape(broadcasted_exercise_times, [-1]), tf.reshape(broadcasted_maturities, [-1])) zcb_curve = tf.reshape(zcb_curve, [num_grid_points, num_maturities]) maturities_index = tf.searchsorted(unique_maturities, tf.reshape(maturities, [-1])) zcb_curve = tf.gather(zcb_curve, maturities_index, axis=-1) # zcb_curve.shape = [num_grid_points] + [maturities_shape] zcb_curve = tf.reshape( zcb_curve, tf.concat([[num_grid_points], maturities_shape], axis=0)) # Shape after reduce_sum = # (num_grid_points, batch_shape) fixed_leg = tf.math.reduce_sum( fixed_leg_coupon * fixed_leg_daycount_fractions * zcb_curve, axis=-1) float_leg = 1.0 - zcb_curve[..., -1] payoff_swap = float_leg - fixed_leg payoff_swap = tf.where(is_payer_swaption, payoff_swap, -payoff_swap) return tf.reshape( tf.transpose(payoff_swap), tf.concat([batch_shape, meshgrid_shape[1:]], axis=0)) def _get_index(t, tensor_to_search): t = tf.expand_dims(t, axis=-1) index = tf.searchsorted(tensor_to_search, t - _PDE_TIME_GRID_TOL, 'right') y = tf.gather(tensor_to_search, index) return tf.where(tf.math.abs(t - y) < _PDE_TIME_GRID_TOL, index, -1)[0] sum_x_meshgrid = tf.math.reduce_sum(x_meshgrid, axis=0) def _is_exercise_time(t): return tf.reduce_any( tf.where( tf.math.abs(exercise_times[..., -1] - t) < _PDE_TIME_GRID_TOL, True, False), axis=-1) def _discounting_fn(t, grid): del grid f_0_t = (model._instant_forward_rate_fn(t)) # pylint: disable=protected-access return sum_x_meshgrid + f_0_t def _final_value(): t = pde_time_grid[-1] payoff_swap = tf.nn.relu(_get_swap_payoff(t)) is_ex_time = _is_exercise_time(t) return tf.where( tf.reshape(is_ex_time, tf.concat([batch_shape, [1] * dim], axis=0)), payoff_swap, 0.0) def _values_transform_fn(t, grid, value_grid): zero = tf.zeros_like(value_grid) is_ex_time = _is_exercise_time(t) def _at_least_one_swaption_pays(): payoff_swap = tf.nn.relu(_get_swap_payoff(t)) return tf.where( tf.reshape(is_ex_time, tf.concat([batch_shape, [1] * dim], axis=0)), payoff_swap, zero) v_star = tf.cond( tf.math.reduce_any(is_ex_time), _at_least_one_swaption_pays, lambda: zero) return grid, tf.maximum(value_grid, v_star) def _pde_time_step(t): index = _get_index(t, pde_time_grid) return pde_time_grid_dt[index] # Use default boundary conditions, d^2V/dx_i^2 = 0 boundary_conditions = [(None, None) for i in range(dim)] # res[0] contains the swaption prices. # res[0].shape = batch_shape + [num_grid_points] * dim res = model.fd_solver_backward( pde_time_grid[-1], 0.0, grid, values_grid=_final_value(), time_step=_pde_time_step, boundary_conditions=boundary_conditions, values_transform_fn=_values_transform_fn, discounting=_discounting_fn, dtype=dtype) idx = tf.searchsorted( tf.convert_to_tensor(grid), tf.expand_dims(tf.convert_to_tensor([0.0] * dim, dtype=dtype), axis=-1)) # idx.shape = (dim, 1) idx = tf.squeeze(idx) if dim > 1 else tf.reshape(idx, shape=[1]) slices = [slice(None)] + [slice(i, i + 1) for i in tf.unstack(idx)] # shape = batch_shape + [1] * dim option_value = res[0][slices] # shape = batch_shape option_value = tf.squeeze(option_value, axis=list(range(-dim, 0))) # output_shape = batch_shape return notional * tf.reshape(option_value, batch_shape) def _coord_grid_to_mesh_grid(coord_grid): if len(coord_grid) == 1: return tf.expand_dims(coord_grid[0], 0) x_meshgrid = tf.stack(values=tf.meshgrid(*coord_grid, indexing='ij'), axis=-1) perm = [len(coord_grid)] + list(range(len(coord_grid))) return tf.transpose(x_meshgrid, perm=perm) def _create_pde_time_grid(exercise_times, time_step_fd, num_time_steps_fd, dtype): """Create PDE time grid.""" with tf.name_scope('create_pde_time_grid'): exercise_times, _ = tf.unique(tf.reshape(exercise_times, shape=[-1])) if num_time_steps_fd is not None: num_time_steps_fd = tf.convert_to_tensor( num_time_steps_fd, dtype=tf.int32, name='num_time_steps_fd') time_step_fd = tf.math.reduce_max(exercise_times) / tf.cast( num_time_steps_fd, dtype=dtype) if time_step_fd is None and num_time_steps_fd is None: num_time_steps_fd = 100 pde_time_grid, _, _ = utils.prepare_grid( times=exercise_times, time_step=time_step_fd, dtype=dtype, num_time_steps=num_time_steps_fd) pde_time_grid_dt = pde_time_grid[1:] - pde_time_grid[:-1] pde_time_grid_dt = tf.concat([[100.0], pde_time_grid_dt], axis=-1) return pde_time_grid, pde_time_grid_dt def _create_term_structure_maturities(fixed_leg_payment_times): """Create maturities needed for termstructure simulations.""" with tf.name_scope('create_termstructure_maturities'): maturities = fixed_leg_payment_times maturities_shape = tf.shape(maturities) # We should eventually remove tf.unique, but keeping it for now because # PDE solvers are not xla compatible in TFF currently. unique_maturities, _ = tf.unique(tf.reshape(maturities, shape=[-1])) unique_maturities = tf.sort(unique_maturities, name='sort_maturities') return maturities, unique_maturities, maturities_shape
45.867572
85
0.700733
7946dc203416f2713d1e67e1424d11f3493629b1
35
py
Python
rhsa_mapper/__init__.py
programmerchad/rhsa_mapper
94fedb215697bcbfea5a262bdba471a4de5dce07
[ "MIT" ]
null
null
null
rhsa_mapper/__init__.py
programmerchad/rhsa_mapper
94fedb215697bcbfea5a262bdba471a4de5dce07
[ "MIT" ]
null
null
null
rhsa_mapper/__init__.py
programmerchad/rhsa_mapper
94fedb215697bcbfea5a262bdba471a4de5dce07
[ "MIT" ]
null
null
null
from rhsa_mapper.main import rhsam
17.5
34
0.857143
7946dc89cbc40d038684841b6e14631bc54aff7a
5,545
py
Python
backends/ebpf/targets/ebpfstf.py
anasyrmia/p4c-1
2bf2f615fdaaf4efed1f2f8ab0b3f3261cface60
[ "Apache-2.0" ]
487
2016-12-22T03:33:27.000Z
2022-03-29T06:36:45.000Z
backends/ebpf/targets/ebpfstf.py
anasyrmia/p4c-1
2bf2f615fdaaf4efed1f2f8ab0b3f3261cface60
[ "Apache-2.0" ]
2,114
2016-12-18T11:36:27.000Z
2022-03-31T22:33:23.000Z
backends/ebpf/targets/ebpfstf.py
anasyrmia/p4c-1
2bf2f615fdaaf4efed1f2f8ab0b3f3261cface60
[ "Apache-2.0" ]
456
2016-12-20T14:01:11.000Z
2022-03-30T19:26:05.000Z
#!/usr/bin/env python3 # Copyright 2018 VMware, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Converts the commands in an stf file which populate tables into a C program that manipulates ebpf tables. """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)) + '/../../tools') from testutils import * from stf.stf_parser import STFParser class eBPFCommand(object): """ Defines a match-action command for eBPF programs""" def __init__(self, a_type, table, action, priority="", match=[], extra=""): self.a_type = a_type # dir in which all files are stored self.table = table # contains meta information self.action = action # contains meta information self.priority = priority # template to generate a filter self.match = match # contains standard and error output self.extra = extra # could also be "pcapng" def _generate_control_actions(cmds): """ Generates the actual control plane commands. This function inserts C code for all the "add" commands that have been parsed. """ generated = "" for index, cmd in enumerate(cmds): key_name = "key_%s%d" % (cmd.table, index) value_name = "value_%s%d" % (cmd.table, index) if cmd.a_type == "setdefault": tbl_name = cmd.table + "_defaultAction" generated += "u32 %s = 0;\n\t" % (key_name) else: generated += "struct %s_key %s = {};\n\t" % (cmd.table, key_name) tbl_name = cmd.table for key_num, key_field in enumerate(cmd.match): field = key_field[0].split('.')[1] generated += ("%s.%s = %s;\n\t" % (key_name, field, key_field[1])) generated += ("tableFileDescriptor = " "BPF_OBJ_GET(MAP_PATH \"/%s\");\n\t" % tbl_name) generated += ("if (tableFileDescriptor < 0) {" "fprintf(stderr, \"map %s not loaded\");" " exit(1); }\n\t" % tbl_name) generated += ("struct %s_value %s = {\n\t\t" % ( cmd.table, value_name)) generated += ".action = %s,\n\t\t" % (cmd.action[0]) generated += ".u = {.%s = {" % cmd.action[0] for val_num, val_field in enumerate(cmd.action[1]): generated += "%s," % val_field[1] generated += "}},\n\t" generated += "};\n\t" generated += ("ok = BPF_USER_MAP_UPDATE_ELEM" "(tableFileDescriptor, &%s, &%s, BPF_ANY);\n\t" % (key_name, value_name)) generated += ("if (ok != 0) { perror(\"Could not write in %s\");" "exit(1); }\n" % tbl_name) return generated def create_table_file(actions, tmpdir, file_name): """ Create the control plane file. The control commands are provided by the stf parser. This generated file is required by ebpf_runtime.c to initialize the control plane. """ err = "" try: with open(tmpdir + "/" + file_name, "w+") as control_file: control_file.write("#include \"test.h\"\n\n") control_file.write("static inline void setup_control_plane() {") control_file.write("\n\t") control_file.write("int ok;\n\t") control_file.write("int tableFileDescriptor;\n\t") generated_cmds = _generate_control_actions(actions) control_file.write(generated_cmds) control_file.write("}\n") except OSError as e: err = e return FAILURE, err return SUCCESS, err def parse_stf_file(raw_stf): """ Uses the .stf parsing tool to acquire a pre-formatted list. Processing entries according to their specified cmd. """ parser = STFParser() stf_str = raw_stf.read() stf_map, errs = parser.parse(stf_str) input_pkts = {} cmds = [] expected = {} for stf_entry in stf_map: if stf_entry[0] == "packet": input_pkts.setdefault(stf_entry[1], []).append(bytes.fromhex(''.join(stf_entry[2].split()))) elif stf_entry[0] == "expect": interface = int(stf_entry[1]) pkt_data = stf_entry[2] expected.setdefault(interface, {}) if pkt_data != '': expected[interface]["any"] = False expected[interface].setdefault( "pkts", []).append(pkt_data) else: expected[interface]["any"] = True elif stf_entry[0] == "add": cmd = eBPFCommand( a_type=stf_entry[0], table=stf_entry[1], priority=stf_entry[2], match=stf_entry[3], action=stf_entry[4], extra=stf_entry[5]) cmds.append(cmd) elif stf_entry[0] == "setdefault": cmd = eBPFCommand( a_type=stf_entry[0], table=stf_entry[1], action=stf_entry[2]) cmds.append(cmd) return input_pkts, cmds, expected
41.380597
104
0.581785
7946dd5489f1c2f18f785031a6574bb3a67cfa97
5,703
py
Python
bindings/python/ensmallen_graph/datasets/networkrepository/sw10040d2trial3.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/networkrepository/sw10040d2trial3.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/networkrepository/sw10040d2trial3.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph SW-100-4-0d2-trial3. The graph is automatically retrieved from the NetworkRepository repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-06 09:31:06.488016 The undirected graph SW-100-4-0d2-trial3 has 100 nodes and 200 unweighted edges, of which none are self-loops. The graph is dense as it has a density of 0.04040 and is connected, as it has a single component. The graph median node degree is 4, the mean node degree is 4.00, and the node degree mode is 4. The top 5 most central nodes are 83 (degree 6), 62 (degree 6), 12 (degree 6), 94 (degree 5) and 96 (degree 5). References --------------------- Please cite the following if you use the data: @inproceedings{nr, title = {The Network Data Repository with Interactive Graph Analytics and Visualization}, author={Ryan A. Rossi and Nesreen K. Ahmed}, booktitle = {AAAI}, url={http://networkrepository.com}, year={2015} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.networkrepository import Sw10040d2Trial3 # Then load the graph graph = Sw10040d2Trial3() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def Sw10040d2Trial3( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/networkrepository", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the SW-100-4-0d2-trial3 graph. The graph is automatically retrieved from the NetworkRepository repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of SW-100-4-0d2-trial3 graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-06 09:31:06.488016 The undirected graph SW-100-4-0d2-trial3 has 100 nodes and 200 unweighted edges, of which none are self-loops. The graph is dense as it has a density of 0.04040 and is connected, as it has a single component. The graph median node degree is 4, the mean node degree is 4.00, and the node degree mode is 4. The top 5 most central nodes are 83 (degree 6), 62 (degree 6), 12 (degree 6), 94 (degree 5) and 96 (degree 5). References --------------------- Please cite the following if you use the data: @inproceedings{nr, title = {The Network Data Repository with Interactive Graph Analytics and Visualization}, author={Ryan A. Rossi and Nesreen K. Ahmed}, booktitle = {AAAI}, url={http://networkrepository.com}, year={2015} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.networkrepository import Sw10040d2Trial3 # Then load the graph graph = Sw10040d2Trial3() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="Sw10040d2Trial3", dataset="networkrepository", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
31.860335
94
0.682799
7946dedb29967a5ff96a8d7cd312b2fd2bc51b15
6,859
py
Python
notebooks/02_crash_severity.py
jennan/crash_prediction
498b59704ed2aca61c78e4eb7c5558abe9edaffc
[ "MIT" ]
3
2020-12-07T04:07:04.000Z
2021-08-19T10:41:08.000Z
notebooks/02_crash_severity.py
jennan/crash_prediction
498b59704ed2aca61c78e4eb7c5558abe9edaffc
[ "MIT" ]
2
2020-12-10T19:12:02.000Z
2020-12-10T19:12:08.000Z
notebooks/02_crash_severity.py
jennan/crash_prediction
498b59704ed2aca61c78e4eb7c5558abe9edaffc
[ "MIT" ]
2
2021-04-14T14:32:39.000Z
2021-12-10T10:36:59.000Z
# # Exploration of the crash severity information in CAS data # # In this notebook, we will explore the severity of crashes, as it will be the # target of our predictive models. from pathlib import Path import numpy as np import pandas as pd import scipy.stats as st import matplotlib.pyplot as plt import seaborn as sb from crash_prediction import cas_data # set seaborn default style sb.set() # But first, we ensure we have the data or download it if needed dset_path = Path("..") / "data" / "cas_dataset.csv" if not dset_path.exists(): dset_path.parent.mkdir(parents=True, exist_ok=True) cas_data.download(dset_path) # and load it. dset = pd.read_csv(dset_path) dset.head() # The CAS dataset has 4 features that can be associated with the crash severity: # # - `crashSeverity`, severity of a crash, determined by the worst injury # sustained in the crash at time of entry, # - `fatalCount`, count of the number of fatal casualties associated with this # crash, # - `minorInjuryCount`, count of the number of minor injuries associated with # this crash, # - `seriousInjuryCount`, count of the number of serious injuries associated # with this crash. severity_features = [ "fatalCount", "seriousInjuryCount", "minorInjuryCount", "crashSeverity", ] fig, axes = plt.subplots(2, 2, figsize=(15, 12)) for ax, feat in zip(axes.flat, severity_features): counts = dset[feat].value_counts(dropna=False) counts.plot.bar(ylabel="# crashes", title=feat, ax=ax) ax.set(yscale="log") fig.tight_layout() # To check the geographical distribution, we will focus on Auckland and replace # discrete levels of `crashSeverity` with number to ease plotting. dset_auckland = dset[dset["X"].between(174.7, 174.9) & dset["Y"].between(-37, -36.8)] mapping = { "Non-Injury Crash": 1, "Minor Crash": 2, "Serious Crash": 3, "Fatal Crash": 4, } dset_auckland = dset_auckland.replace({"crashSeverity": mapping}) # Given the data set imbalance, we plot the local maxima to better see the # location of more severe car crashes. fig, axes = plt.subplots(2, 2, figsize=(15, 15)) for ax, feat in zip(axes.flat, severity_features): dset_auckland.plot.hexbin( "X", "Y", feat, gridsize=500, reduce_C_function=np.max, cmap="BuPu", title=feat, ax=ax, sharex=False, ) ax.set_xticklabels([]) ax.set_yticklabels([]) fig.tight_layout() # Few remarks coming from these plots: # # - fatal counts are (hopefully) very low, # - crashes with serious injuries are also very sparse, # - crashes with minor injuries are denser and seem to follow major axes, # - the crash severity feature looks like the most homogeneous feature, yet # highlighting some roads more than others. # # The crash severity is probably a good go-to target, as it's quite # interpretable and actionable. The corresponding ML problem is a supervised # multi-class prediction problem. # To simplify the problem, we can also just try to predict if a crash is going # to involve an injury (minor, severe or fatal) or none. Here is how it would # look like in Auckland dset_auckland["injuryCrash"] = (dset_auckland["crashSeverity"] > 1) * 1.0 dset_auckland.plot.hexbin( "X", "Y", "injuryCrash", gridsize=500, cmap="BuPu", title="Crash with injury", sharex=False, figsize=(10, 10), ) # Interestingly, the major axes do not pop up as saliently here, as we are # averaging instead of taking the local maxima. # This brings us to to the another question: is the fraction of crash with # injuries constant fraction of the number of crashes in an area? This would # imply that a simple binomial model can model locally binned data. # We first discretize space into 0.01° wide cells and count the total number of # crashes in each cell as well as the number of crashes with injuries. # + dset["X_bin"] = pd.cut( dset["X"], pd.interval_range(dset.X.min(), dset.X.max(), freq=0.01) ) dset["Y_bin"] = pd.cut( dset["Y"], pd.interval_range(dset.Y.min(), dset.Y.max(), freq=0.01) ) counts = ( dset.groupby(["X_bin", "Y_bin"], observed=True).size().reset_index(name="crash") ) injury_counts = ( dset.groupby(["X_bin", "Y_bin"], observed=True) .apply(lambda x: (x["crashSeverity"] != "Non-Injury Crash").sum()) .reset_index(name="injury") ) counts = counts.merge(injury_counts) # - # For each number of crashes in cells, we can check the fraction of crashes with # injuries. Here we see that cells with 1 or few crashes have a nearly 50/50 # chance of injuries, compared to cells with a larger number of accidents, where # it goes down to about 20%. injury_fraction = counts.groupby("crash").apply( lambda x: x["injury"].sum() / x["crash"].sum() ) ax = injury_fraction.plot(style=".", ylabel="fraction of injuries", figsize=(10, 7)) ax.set_xscale("log") # Then we can also check how good is a binomial distribution at modeling binned # data, using it to derive a 95% predictive interval. ratio = counts["injury"].sum() / counts["crash"].sum() xs = np.arange(1, counts["crash"].max() + 1) pred_intervals = st.binom(xs, ratio).ppf([[0.025], [0.975]]) # + fig, axes = plt.subplots(1, 2, figsize=(15, 7)) counts.plot.scatter(x="crash", y="injury", alpha=0.3, c="b", s=2, ax=axes[0]) axes[0].fill_between( xs, pred_intervals[0], pred_intervals[1], alpha=0.3, color="r", label="95% equal-tail interval for binomial", ) axes[0].legend() counts.plot.scatter(x="crash", y="injury", alpha=0.3, c="b", s=2, ax=axes[1]) axes[1].fill_between( xs, pred_intervals[0], pred_intervals[1], alpha=0.3, color="r", label="95% equal-tail interval for binomial", ) axes[1].legend() axes[1].set_xscale("log") axes[1].set_yscale("log") # - # The predictive interval seems to have a poor coverage, overshooting the high # counts regions and being to narrow for the regions with hundreds of crashes. # We can compute the empirical coverage of these interval to check this. counts["covered"] = counts["injury"].between( pred_intervals[0, counts["crash"] - 1], pred_intervals[1, counts["crash"] - 1] ) print(f"95% predictive interval has {counts['covered'].mean() * 100:.2f}%.") print("95% predictive interval coverage per quartile of crash counts:") mask = counts["crash"] > 1 counts[mask].groupby(pd.qcut(counts.loc[mask, "crash"], 4))["covered"].mean() # So it turns out that on a macro scale, the coverage of this simple model is # quite good, but if we split by number of crashes, the coverage isn't so good # anymore for the cells with higher number of crashes. # # Hence, including the number of crashes in a vicinity could be an relevant # predictor for the probability of crash with injury. # --- # ## Original computing environment # !date -R # !uname -a # !pip freeze
30.896396
85
0.697478
7946e12304748268eca61f0a6ae06157e1488ec4
2,394
py
Python
wagtail/contrib/wagtailstyleguide/views.py
hanpama/wagtail
e0e3cdc824b1acd9f9daa6d80b5455c969b385dd
[ "BSD-3-Clause" ]
null
null
null
wagtail/contrib/wagtailstyleguide/views.py
hanpama/wagtail
e0e3cdc824b1acd9f9daa6d80b5455c969b385dd
[ "BSD-3-Clause" ]
null
null
null
wagtail/contrib/wagtailstyleguide/views.py
hanpama/wagtail
e0e3cdc824b1acd9f9daa6d80b5455c969b385dd
[ "BSD-3-Clause" ]
1
2019-03-05T15:37:22.000Z
2019-03-05T15:37:22.000Z
from django import forms from django.shortcuts import render from django.utils.translation import ugettext as _ from django.core.paginator import Paginator from wagtail.wagtailadmin import messages from wagtail.wagtailadmin.forms import SearchForm from wagtail.wagtailadmin.widgets import AdminPageChooser, AdminDateInput, AdminTimeInput, AdminDateTimeInput from wagtail.wagtailimages.widgets import AdminImageChooser from wagtail.wagtaildocs.widgets import AdminDocumentChooser class ExampleForm(forms.Form): def __init__(self, *args, **kwargs): super(ExampleForm, self).__init__(*args, **kwargs) self.fields['page_chooser'].widget = AdminPageChooser() self.fields['image_chooser'].widget = AdminImageChooser() self.fields['document_chooser'].widget = AdminDocumentChooser() self.fields['date'].widget = AdminDateInput() self.fields['time'].widget = AdminTimeInput() self.fields['datetime'].widget = AdminDateTimeInput() CHOICES = ( ('choice1', 'choice 1'), ('choice2', 'choice 2'), ) text = forms.CharField(required=True, help_text="help text") url = forms.URLField(required=True) email = forms.EmailField(max_length=254) date = forms.DateField() time = forms.TimeField() datetime = forms.DateTimeField() select = forms.ChoiceField(choices=CHOICES) boolean = forms.BooleanField(required=False) page_chooser = forms.BooleanField(required=True) image_chooser = forms.BooleanField(required=True) document_chooser = forms.BooleanField(required=True) def index(request): form = SearchForm(placeholder=_("Search something")) example_form = ExampleForm() messages.success(request, _("Success message"), buttons=[ messages.button('', _('View live')), messages.button('', _('Edit')) ]) messages.warning(request, _("Warning message"), buttons=[ messages.button('', _('View live')), messages.button('', _('Edit')) ]) messages.error(request, _("Error message"), buttons=[ messages.button('', _('View live')), messages.button('', _('Edit')) ]) paginator = Paginator(list(range(100)), 10) page = paginator.page(2) return render(request, 'wagtailstyleguide/base.html', { 'search_form': form, 'example_form': example_form, 'example_page': page, })
35.205882
109
0.688805
7946e1da26e31003cfd09c19b3079fe28995bc79
1,539
py
Python
statement_parser/validators/total.py
jamiehannaford/statement-parser
93925b5903a4570f66f3e7b7d5d839412bde1da0
[ "MIT" ]
5
2021-09-01T03:27:02.000Z
2022-03-31T16:31:23.000Z
statement_parser/validators/total.py
jamiehannaford/statement-parser
93925b5903a4570f66f3e7b7d5d839412bde1da0
[ "MIT" ]
null
null
null
statement_parser/validators/total.py
jamiehannaford/statement-parser
93925b5903a4570f66f3e7b7d5d839412bde1da0
[ "MIT" ]
null
null
null
import math from xbrl.instance import NumericFact class TotalValidator: def __init__(self, instance): self.instance = instance def isclose(self, a, b, sf=None): if sf: return math.isclose(a, b, abs_tol=10**-sf) else: return math.isclose(a, b) def check_list_sums_to_n(self, elems, n): elem_sum = sum(elem.value for elem in elems) return self.isclose(n.value, elem_sum, n.decimals) def process(self, elements): concept_map = {} concept_val = {} for elem in elements: concept_id = elem.concept.xml_id if concept_id not in concept_map: concept_map[concept_id] = [] concept_val[concept_id] = [] if elem.value in concept_val[concept_id]: continue concept_map[concept_id].append(elem) concept_val[concept_id].append(elem.value) output = [] for concept, elems in concept_map.items(): elems.sort(key=lambda elem: elem.value) # check highest if isinstance(elems[-1], NumericFact) and self.check_list_sums_to_n(elems[:-1], elems[-1]): output.append(elems[-1]) continue # check lowest if isinstance(elems[0], NumericFact) and self.check_list_sums_to_n(elems[1:], elems[0]): output.append(elems[0]) continue output.extend(elems) return output
30.78
103
0.564003
7946e3e6bb1b2c2257bc3ddbd58b9908807462ce
1,501
py
Python
tests/spot/mining/test_mining_worker.py
fossabot/binance-connector-python
bab18df22ba57b407b15dd0a9147cd75e6389b9e
[ "MIT" ]
1
2021-08-05T03:36:24.000Z
2021-08-05T03:36:24.000Z
tests/spot/mining/test_mining_worker.py
fossabot/binance-connector-python
bab18df22ba57b407b15dd0a9147cd75e6389b9e
[ "MIT" ]
2
2021-07-12T11:18:55.000Z
2021-07-12T11:28:19.000Z
tests/spot/mining/test_mining_worker.py
fossabot/binance-connector-python
bab18df22ba57b407b15dd0a9147cd75e6389b9e
[ "MIT" ]
1
2021-07-10T20:50:04.000Z
2021-07-10T20:50:04.000Z
import responses from urllib.parse import urlencode from tests.util import random_str from tests.util import mock_http_response from binance.spot import Spot as Client from binance.error import ParameterRequiredError, ClientError mock_item = {"key_1": "value_1", "key_2": "value_2"} key = random_str() secret = random_str() def test_mining_worker_without_algo(): """Tests the API endpoint to get worker without algo""" client = Client(key, secret) client.mining_worker.when.called_with("", "test_name", "worker_name").should.throw( ParameterRequiredError ) def test_mining_worker_without_username(): """Tests the API endpoint to get worker without username""" client = Client(key, secret) client.mining_worker.when.called_with("sha256", "", "worker_name").should.throw( ParameterRequiredError ) def test_mining_worker_without_workername(): """Tests the API endpoint to get worker without workername""" client = Client(key, secret) client.mining_worker.when.called_with("sha256", "test_name", "").should.throw( ParameterRequiredError ) @mock_http_response( responses.GET, "/sapi/v1/mining/worker/detail\\?algo=sha256&userName=user_name&workerName=worker_name", mock_item, 200, ) def test_mining_worker(): """Tests the API endpoint to get coin list""" client = Client(key, secret) response = client.mining_worker("sha256", "user_name", "worker_name") response.should.equal(mock_item)
27.796296
92
0.726849
7946e5482b750680a3cad702affab9514421a401
2,936
py
Python
paramak/parametric_components/center_column_circular.py
billingsley-john/paramak
127d064f7bc0fd26305b4d83776d66b0e12aeeb0
[ "MIT" ]
null
null
null
paramak/parametric_components/center_column_circular.py
billingsley-john/paramak
127d064f7bc0fd26305b4d83776d66b0e12aeeb0
[ "MIT" ]
null
null
null
paramak/parametric_components/center_column_circular.py
billingsley-john/paramak
127d064f7bc0fd26305b4d83776d66b0e12aeeb0
[ "MIT" ]
null
null
null
from typing import Optional, Tuple from paramak import RotateMixedShape class CenterColumnShieldCircular(RotateMixedShape): """A center column shield volume with a circular outer profile and constant cylindrical inner profile. Args: height: height of the center column shield (cm). inner_radius: the inner radius of the center column shield (cm). mid_radius: the inner radius of the outer hyperbolic profile of the center colunn shield (cm). outer_radius: the outer radius of the center column shield. stp_filename: Defaults to "CenterColumnShieldCircular.stp". stl_filename: Defaults to "CenterColumnShieldCircular.stl". name: Defaults to "center_column_shield". material_tag: Defaults to "center_column_shield_mat". """ def __init__( self, height: float, inner_radius: float, mid_radius: float, outer_radius: float, stp_filename: Optional[str] = "CenterColumnShieldCircular.stp", stl_filename: Optional[str] = "CenterColumnShieldCircular.stl", material_tag: Optional[str] = "center_column_shield_mat", color: Optional[Tuple[float, float, float, Optional[float]]] = (0., 0.333, 0.), **kwargs ) -> None: super().__init__( material_tag=material_tag, stp_filename=stp_filename, stl_filename=stl_filename, color=color, **kwargs ) self.height = height self.inner_radius = inner_radius self.mid_radius = mid_radius self.outer_radius = outer_radius @property def height(self): return self._height @height.setter def height(self, height): self._height = height @property def inner_radius(self): return self._inner_radius @inner_radius.setter def inner_radius(self, inner_radius): self._inner_radius = inner_radius @property def mid_radius(self): return self._mid_radius @mid_radius.setter def mid_radius(self, mid_radius): self._mid_radius = mid_radius @property def outer_radius(self): return self._outer_radius @outer_radius.setter def outer_radius(self, outer_radius): self._outer_radius = outer_radius def find_points(self): """Finds the XZ points and connection types (straight and circle) that describe the 2D profile of the center column shield shape.""" points = [ (self.inner_radius, 0, "straight"), (self.inner_radius, self.height / 2, "straight"), (self.outer_radius, self.height / 2, "circle"), (self.mid_radius, 0, "circle"), (self.outer_radius, -self.height / 2, "straight"), (self.inner_radius, -self.height / 2, "straight") ] self.points = points
30.905263
82
0.633515
7946e605e141a38b13ce9411d114e04308c8a19f
460
py
Python
StringMe.py
akey7/supreme-enigma
a724c1cd26f6fc82d7c3f988a62d9bfefed6f750
[ "MIT" ]
null
null
null
StringMe.py
akey7/supreme-enigma
a724c1cd26f6fc82d7c3f988a62d9bfefed6f750
[ "MIT" ]
6
2019-08-30T04:08:52.000Z
2019-08-30T15:23:48.000Z
StringMe.py
akey7/supreme-enigma
a724c1cd26f6fc82d7c3f988a62d9bfefed6f750
[ "MIT" ]
null
null
null
class StringMe: def __init__(self, source): self.source = source def is_palindrome(self, test_me=None): if test_me is None: test_me = self.source if len(test_me) < 2: return True elif test_me[0] != test_me[-1]: return False else: return self.is_palindrome(test_me[1:-1]) def isBalanced(self): pass def reflect(self): return self.source
21.904762
52
0.552174
7946e64f2ee649e2b91285c3654eb78ff026e7ce
2,201
py
Python
run.py
semihcanturk/PyTorch-VAE
ee881337f75cc47f54e164142073714eed43dd0a
[ "Apache-2.0" ]
null
null
null
run.py
semihcanturk/PyTorch-VAE
ee881337f75cc47f54e164142073714eed43dd0a
[ "Apache-2.0" ]
null
null
null
run.py
semihcanturk/PyTorch-VAE
ee881337f75cc47f54e164142073714eed43dd0a
[ "Apache-2.0" ]
null
null
null
import yaml import argparse import numpy as np from models import * from experiment import VAEXperiment import torch.backends.cudnn as cudnn from pytorch_lightning import Trainer from pytorch_lightning.loggers import TestTubeLogger from pytorch_lightning.callbacks import ModelCheckpoint if __name__ == '__main__': torch.manual_seed(0) np.random.seed(0) parser = argparse.ArgumentParser(description='Generic runner for VAE models') parser.add_argument('--config', '-c', dest="filename", metavar='FILE', help='path to the config file', default='./configs/cvae.yaml') args = parser.parse_args() with open(args.filename, 'r') as file: try: config = yaml.safe_load(file) except yaml.YAMLError as exc: print(exc) tt_logger = TestTubeLogger( save_dir=config['logging_params']['save_dir'], name=config['logging_params']['name'], debug=False, create_git_tag=False, ) # For reproducibility torch.manual_seed(config['logging_params']['manual_seed']) np.random.seed(config['logging_params']['manual_seed']) cudnn.deterministic = True cudnn.benchmark = False model = vae_models[config['model_params']['name']](**config['model_params']) experiment = VAEXperiment(model, config['exp_params']) checkpoint_callback = ModelCheckpoint(monitor='val_loss', filename=config['exp_params']['dataset'] + '-{epoch:02d}-{val_loss:.2f}', save_top_k=-1) runner = Trainer(default_root_dir=f"{tt_logger.save_dir}", checkpoint_callback=True, min_epochs=1, logger=tt_logger, log_every_n_steps=100, limit_train_batches=1., val_check_interval=1., num_sanity_val_steps=5, callbacks=[checkpoint_callback], **config['trainer_params']) print(f"======= Training {config['model_params']['name']} =======") print(config['exp_params']['LR']) runner.fit(experiment)
34.390625
150
0.606542
7946e6ed355d68d1b718da4578a4d9ae9ff16584
458
py
Python
models/dummynet.py
LendelTheGreat/weak-segmentation
0ff6015f1af741cfb50ef8fb6f55cea822f68f7a
[ "MIT" ]
1
2020-11-04T03:00:44.000Z
2020-11-04T03:00:44.000Z
models/dummynet.py
LendelTheGreat/weak-segmentation
0ff6015f1af741cfb50ef8fb6f55cea822f68f7a
[ "MIT" ]
null
null
null
models/dummynet.py
LendelTheGreat/weak-segmentation
0ff6015f1af741cfb50ef8fb6f55cea822f68f7a
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F class DummyNet(nn.Module): def __init__(self): super(DummyNet, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5, padding=2) self.conv2 = nn.Conv2d(10, 5, kernel_size=5, padding=2) self.softmax = nn.Softmax2d() def forward(self, x): x = F.relu(self.conv1(x)) x = self.conv2(x) x = self.softmax(x) return x
26.941176
63
0.60917
7946e9e1061e7f3c202f7300dd0bf44dc923b516
520
py
Python
day2/netmikox/collateral/netmiko_example1.py
austind/pyplus-ons
f0fcd6b2a980f75968ab54cd2ae39b42c1f68302
[ "Apache-2.0" ]
null
null
null
day2/netmikox/collateral/netmiko_example1.py
austind/pyplus-ons
f0fcd6b2a980f75968ab54cd2ae39b42c1f68302
[ "Apache-2.0" ]
null
null
null
day2/netmikox/collateral/netmiko_example1.py
austind/pyplus-ons
f0fcd6b2a980f75968ab54cd2ae39b42c1f68302
[ "Apache-2.0" ]
5
2019-11-19T18:41:41.000Z
2020-06-18T14:58:09.000Z
#!/usr/bin/env python from getpass import getpass from netmiko import ConnectHandler if __name__ == "__main__": password = getpass("Enter password: ") cisco3 = { "device_type": "cisco_ios", "host": "cisco3.lasthop.io", "username": "pyclass", "password": password, "session_log": "my_session.txt", } net_connect = ConnectHandler(**cisco3) print(net_connect.find_prompt()) print(net_connect.send_command("show ip int brief")) net_connect.disconnect()
26
56
0.648077
7946eaa0e993062333c4d08e262c3bf3da8fac09
4,237
py
Python
stubs.min/System/Windows/Forms/__init___parts/Cursor.py
ricardyn/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2021-02-02T13:39:16.000Z
2021-02-02T13:39:16.000Z
stubs.min/System/Windows/Forms/__init___parts/Cursor.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/System/Windows/Forms/__init___parts/Cursor.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class Cursor(object,IDisposable,ISerializable): """ Represents the image used to paint the mouse pointer. Cursor(handle: IntPtr) Cursor(stream: Stream) Cursor(fileName: str) Cursor(type: Type,resource: str) """ def CopyHandle(self): """ CopyHandle(self: Cursor) -> IntPtr Copies the handle of this System.Windows.Forms.Cursor. Returns: An System.IntPtr that represents the cursor's handle. """ pass def Dispose(self): """ Dispose(self: Cursor) Releases all resources used by the System.Windows.Forms.Cursor. """ pass def Draw(self,g,targetRect): """ Draw(self: Cursor,g: Graphics,targetRect: Rectangle) Draws the cursor on the specified surface,within the specified bounds. g: The System.Drawing.Graphics surface on which to draw the System.Windows.Forms.Cursor. targetRect: The System.Drawing.Rectangle that represents the bounds of the System.Windows.Forms.Cursor. """ pass def DrawStretched(self,g,targetRect): """ DrawStretched(self: Cursor,g: Graphics,targetRect: Rectangle) Draws the cursor in a stretched format on the specified surface,within the specified bounds. g: The System.Drawing.Graphics surface on which to draw the System.Windows.Forms.Cursor. targetRect: The System.Drawing.Rectangle that represents the bounds of the System.Windows.Forms.Cursor. """ pass def Equals(self,obj): """ Equals(self: Cursor,obj: object) -> bool Returns a value indicating whether this cursor is equal to the specified System.Windows.Forms.Cursor. obj: The System.Windows.Forms.Cursor to compare. Returns: true if this cursor is equal to the specified System.Windows.Forms.Cursor; otherwise,false. """ pass def GetHashCode(self): """ GetHashCode(self: Cursor) -> int Retrieves the hash code for the current System.Windows.Forms.Cursor. Returns: A hash code for the current System.Windows.Forms.Cursor. """ pass @staticmethod def Hide(): """ Hide() Hides the cursor. """ pass @staticmethod def Show(): """ Show() Displays the cursor. """ pass def ToString(self): """ ToString(self: Cursor) -> str Retrieves a human readable string representing this System.Windows.Forms.Cursor. Returns: A System.String that represents this System.Windows.Forms.Cursor. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __eq__(self,*args): """ x.__eq__(y) <==> x==y """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,handle: IntPtr) __new__(cls: type,fileName: str) __new__(cls: type,type: Type,resource: str) __new__(cls: type,stream: Stream) """ pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass def __str__(self,*args): pass Handle=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the handle of the cursor. Get: Handle(self: Cursor) -> IntPtr """ HotSpot=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the cursor hot spot. Get: HotSpot(self: Cursor) -> Point """ Size=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the size of the cursor object. Get: Size(self: Cursor) -> Size """ Tag=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets the object that contains data about the System.Windows.Forms.Cursor. Get: Tag(self: Cursor) -> object Set: Tag(self: Cursor)=value """ Clip=None Current=None Position=None
26.987261
215
0.661317
7946eb9845b5bd62949017b4a02a2372adad6700
1,599
py
Python
Car.py
Researchnix/Taco
4946fa996638f7fd6704d14ab029c208bf625707
[ "MIT" ]
null
null
null
Car.py
Researchnix/Taco
4946fa996638f7fd6704d14ab029c208bf625707
[ "MIT" ]
null
null
null
Car.py
Researchnix/Taco
4946fa996638f7fd6704d14ab029c208bf625707
[ "MIT" ]
null
null
null
# # Car.py # Taco --- SPH Innovation Challenge # # Created by Mat, Kon and Len on 2017-03-11. # Copyright 2016 Researchnix. All rights reserved. # import collections class Car: # ID of the car ID = "" # starting point of the car start = 0 # departure and arrival time stamps startTime = 0 endTime = 0 # total travel time totalTime = 0 # destinatino of the car destination = 0 # This should be a list of vertices that the needs to visit to reach # its desitination InterRoute = [] # From the InterRoute one can simply obtain the StreetRoute, # by replacing the i and i+1 entry by the unique street leading # from i to i+1 StreetRoute = [] StreetQueue = collections.deque(StreetRoute) # nextStreet = StreetRoute[0] # record of actual roads visited history = [] def __init__ (self, ID, start, destination, timestamp=0, route = None): self.ID = ID self.start = start self.destination = destination self.startTime = timestamp self.history = list([]) if route is not None: self.StreetRoute = route self.StreetQueue = collections.deque(self.StreetRoute) def dequeueNextSt(self): try: return self.StreetQueue.popleft() except: return None def peekNextSt(self): try: return self.StreetQueue[0] except: return None def arrive(self, timestamp): self.endTime = timestamp self.totalTime = self.endTime - self.startTime
23.173913
75
0.614134