hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a25f58d9111ba38b578740fd6a1a04f9c5f586d
331
py
Python
238_Product of Array Except Self.py
carryking1988/carryleetcode
9d6b353e8f235219d0b9e4feb131bfea6fe3ef21
[ "MIT" ]
null
null
null
238_Product of Array Except Self.py
carryking1988/carryleetcode
9d6b353e8f235219d0b9e4feb131bfea6fe3ef21
[ "MIT" ]
null
null
null
238_Product of Array Except Self.py
carryking1988/carryleetcode
9d6b353e8f235219d0b9e4feb131bfea6fe3ef21
[ "MIT" ]
null
null
null
# Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i]. # # The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer. # # You must write an algorithm that runs in O(n) time and without using the division operation. #
47.285714
141
0.755287
4a25f5ec915d33af3684612cdc50a825841213d3
18,716
py
Python
ddsp/spectral_ops.py
NiklasWan/ddsp
dda0320a7f5b8bc080623333c8be63ffb35500c9
[ "Apache-2.0" ]
null
null
null
ddsp/spectral_ops.py
NiklasWan/ddsp
dda0320a7f5b8bc080623333c8be63ffb35500c9
[ "Apache-2.0" ]
null
null
null
ddsp/spectral_ops.py
NiklasWan/ddsp
dda0320a7f5b8bc080623333c8be63ffb35500c9
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The DDSP Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Library of FFT operations for loss functions and conditioning.""" import crepe from ddsp.core import safe_log from ddsp.core import tf_float32 import gin import librosa import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp CREPE_SAMPLE_RATE = 16000 _CREPE_FRAME_SIZE = 1024 F0_RANGE = 127.0 # MIDI LD_RANGE = 120.0 # dB def stft(audio, frame_size=2048, overlap=0.75, pad_end=True): """Differentiable stft in tensorflow, computed in batch.""" assert frame_size * overlap % 2.0 == 0.0 # Remove channel dim if present. audio = tf_float32(audio) if len(audio.shape) == 3: audio = tf.squeeze(audio, axis=-1) s = tf.signal.stft( signals=audio, frame_length=int(frame_size), frame_step=int(frame_size * (1.0 - overlap)), fft_length=int(frame_size), pad_end=pad_end) return s def stft_np(audio, frame_size=2048, overlap=0.75, pad_end=True): """Non-differentiable stft using librosa, one example at a time.""" assert frame_size * overlap % 2.0 == 0.0 hop_size = int(frame_size * (1.0 - overlap)) is_2d = (len(audio.shape) == 2) if pad_end: n_samples_initial = int(audio.shape[-1]) n_frames = int(np.ceil(n_samples_initial / hop_size)) n_samples_final = (n_frames - 1) * hop_size + frame_size pad = n_samples_final - n_samples_initial padding = ((0, 0), (0, pad)) if is_2d else ((0, pad),) audio = np.pad(audio, padding, 'constant') def stft_fn(y): return librosa.stft(y=y, n_fft=int(frame_size), hop_length=hop_size, center=False).T s = np.stack([stft_fn(a) for a in audio]) if is_2d else stft_fn(audio) return s @gin.register def compute_mag(audio, size=2048, overlap=0.75, pad_end=True): mag = tf.abs(stft(audio, frame_size=size, overlap=overlap, pad_end=pad_end)) return tf_float32(mag) @gin.register def compute_mel(audio, lo_hz=0.0, hi_hz=8000.0, bins=64, fft_size=2048, overlap=0.75, pad_end=True, sample_rate=16000): """Calculate Mel Spectrogram.""" mag = compute_mag(audio, fft_size, overlap, pad_end) num_spectrogram_bins = int(mag.shape[-1]) linear_to_mel_matrix = tf.signal.linear_to_mel_weight_matrix( bins, num_spectrogram_bins, sample_rate, lo_hz, hi_hz) mel = tf.tensordot(mag, linear_to_mel_matrix, 1) mel.set_shape(mag.shape[:-1].concatenate(linear_to_mel_matrix.shape[-1:])) return mel @gin.register def compute_logmag(audio, size=2048, overlap=0.75, pad_end=True): return safe_log(compute_mag(audio, size, overlap, pad_end)) @gin.register def compute_logmel(audio, lo_hz=80.0, hi_hz=7600.0, bins=64, fft_size=2048, overlap=0.75, pad_end=True, sample_rate=16000): """Logarithmic amplitude of mel-scaled spectrogram.""" mel = compute_mel(audio, lo_hz, hi_hz, bins, fft_size, overlap, pad_end, sample_rate) return safe_log(mel) @gin.register def compute_mfcc(audio, lo_hz=20.0, hi_hz=8000.0, fft_size=1024, mel_bins=128, mfcc_bins=13, overlap=0.75, pad_end=True, sample_rate=16000): """Calculate Mel-frequency Cepstral Coefficients.""" logmel = compute_logmel( audio, lo_hz=lo_hz, hi_hz=hi_hz, bins=mel_bins, fft_size=fft_size, overlap=overlap, pad_end=pad_end, sample_rate=sample_rate) mfccs = tf.signal.mfccs_from_log_mel_spectrograms(logmel) return mfccs[..., :mfcc_bins] def diff(x, axis=-1): """Take the finite difference of a tensor along an axis. Args: x: Input tensor of any dimension. axis: Axis on which to take the finite difference. Returns: d: Tensor with size less than x by 1 along the difference dimension. Raises: ValueError: Axis out of range for tensor. """ shape = x.shape.as_list() ndim = len(shape) if axis >= ndim: raise ValueError('Invalid axis index: %d for tensor with only %d axes.' % (axis, ndim)) begin_back = [0 for _ in range(ndim)] begin_front = [0 for _ in range(ndim)] begin_front[axis] = 1 shape[axis] -= 1 slice_front = tf.slice(x, begin_front, shape) slice_back = tf.slice(x, begin_back, shape) d = slice_front - slice_back return d def amplitude_to_db(amplitude, use_tf=False): """Converts amplitude to decibels.""" lib = tf if use_tf else np log10 = (lambda x: tf.math.log(x) / tf.math.log(10.0)) if use_tf else np.log10 amin = 1e-20 # Avoid log(0) instabilities. db = log10(lib.maximum(amin, amplitude)) db *= 20.0 return db def db_to_amplitude(db): """Converts decibels to amplitude.""" return 10.0**(db / 20.0) @gin.register def compute_loudness(audio, sample_rate=16000, frame_rate=250, n_fft=2048, range_db=LD_RANGE, ref_db=20.7, use_tf=False, pad_end=True): """Perceptual loudness in dB, relative to white noise, amplitude=1. Function is differentiable if use_tf=True. Args: audio: Numpy ndarray or tensor. Shape [batch_size, audio_length] or [batch_size,]. sample_rate: Audio sample rate in Hz. frame_rate: Rate of loudness frames in Hz. n_fft: Fft window size. range_db: Sets the dynamic range of loudness in decibles. The minimum loudness (per a frequency bin) corresponds to -range_db. ref_db: Sets the reference maximum perceptual loudness as given by (A_weighting + 10 * log10(abs(stft(audio))**2.0). The default value corresponds to white noise with amplitude=1.0 and n_fft=2048. There is a slight dependence on fft_size due to different granularity of perceptual weighting. use_tf: Make function differentiable by using tensorflow. pad_end: Add zero padding at end of audio (like `same` convolution). Returns: Loudness in decibels. Shape [batch_size, n_frames] or [n_frames,]. """ if sample_rate % frame_rate != 0: raise ValueError( 'frame_rate: {} must evenly divide sample_rate: {}.' 'For default frame_rate: 250Hz, suggested sample_rate: 16kHz or 48kHz' .format(frame_rate, sample_rate)) # Pick tensorflow or numpy. lib = tf if use_tf else np # Make inputs tensors for tensorflow. audio = tf_float32(audio) if use_tf else audio # Temporarily a batch dimension for single examples. is_1d = (len(audio.shape) == 1) audio = audio[lib.newaxis, :] if is_1d else audio # Take STFT. hop_size = sample_rate // frame_rate overlap = 1 - hop_size / n_fft stft_fn = stft if use_tf else stft_np s = stft_fn(audio, frame_size=n_fft, overlap=overlap, pad_end=pad_end) # Compute power. amplitude = lib.abs(s) power_db = amplitude_to_db(amplitude, use_tf=use_tf) # Perceptual weighting. frequencies = librosa.fft_frequencies(sr=sample_rate, n_fft=n_fft) a_weighting = librosa.A_weighting(frequencies)[lib.newaxis, lib.newaxis, :] loudness = power_db + a_weighting # Set dynamic range. loudness -= ref_db loudness = lib.maximum(loudness, -range_db) mean = tf.reduce_mean if use_tf else np.mean # Average over frequency bins. loudness = mean(loudness, axis=-1) # Remove temporary batch dimension. loudness = loudness[0] if is_1d else loudness audio_len = tf.cast(tf.shape(audio)[-1], dtype=tf.float32) if use_tf else audio.shape[-1] # Compute expected length of loudness vector n_secs = audio_len / float( sample_rate) # `n_secs` can have milliseconds expected_len = int(n_secs * frame_rate) # Pad with `-range_db` noise floor or trim vector loudness = pad_or_trim_to_expected_length( loudness, expected_len, -range_db, use_tf=use_tf) return loudness @gin.register def compute_f0(audio, sample_rate, frame_rate, viterbi=True): """Fundamental frequency (f0) estimate using CREPE. This function is non-differentiable and takes input as a numpy array. Args: audio: Numpy ndarray of single audio example. Shape [audio_length,]. sample_rate: Sample rate in Hz. frame_rate: Rate of f0 frames in Hz. viterbi: Use Viterbi decoding to estimate f0. Returns: f0_hz: Fundamental frequency in Hz. Shape [n_frames,]. f0_confidence: Confidence in Hz estimate (scaled [0, 1]). Shape [n_frames,]. """ n_secs = len(audio) / float(sample_rate) # `n_secs` can have milliseconds crepe_step_size = 1000 / frame_rate # milliseconds expected_len = int(n_secs * frame_rate) audio = np.asarray(audio) # Compute f0 with crepe. _, f0_hz, f0_confidence, _ = crepe.predict( audio, sr=sample_rate, viterbi=viterbi, step_size=crepe_step_size, center=False, verbose=0) # Postprocessing on f0_hz f0_hz = pad_or_trim_to_expected_length(f0_hz, expected_len, 0) # pad with 0 f0_hz = f0_hz.astype(np.float32) # Postprocessing on f0_confidence f0_confidence = pad_or_trim_to_expected_length(f0_confidence, expected_len, 1) f0_confidence = np.nan_to_num(f0_confidence) # Set nans to 0 in confidence f0_confidence = f0_confidence.astype(np.float32) return f0_hz, f0_confidence def compute_rms_energy(audio, sample_rate=16000, frame_rate=250, frame_size=2048, pad_end=True): """Compute root mean squared energy of audio.""" audio = tf_float32(audio) hop_size = sample_rate // frame_rate audio_frames = tf.signal.frame(audio, frame_size, hop_size, pad_end=pad_end) rms_energy = tf.reduce_mean(audio_frames**2.0, axis=-1)**0.5 if pad_end: n_samples = audio.shape[0] if len(audio.shape) == 1 else audio.shape[1] n_secs = n_samples / float(sample_rate) # `n_secs` can have milliseconds expected_len = int(n_secs * frame_rate) return pad_or_trim_to_expected_length(rms_energy, expected_len, use_tf=True) else: return rms_energy def compute_power(audio, sample_rate=16000, frame_rate=250, frame_size=1024, range_db=LD_RANGE, ref_db=20.7, pad_end=True): """Compute power of audio in dB.""" # TODO(hanoih@): enable `use_tf` to be True or False like `compute_loudness` rms_energy = compute_rms_energy( audio, sample_rate, frame_rate, frame_size, pad_end) power_db = amplitude_to_db(rms_energy**2, use_tf=True) # Set dynamic range. power_db -= ref_db power_db = tf.maximum(power_db, -range_db) return power_db def pad_or_trim_to_expected_length(vector, expected_len, pad_value=0, len_tolerance=20, use_tf=False): """Make vector equal to the expected length. Feature extraction functions like `compute_loudness()` or `compute_f0` produce feature vectors that vary in length depending on factors such as `sample_rate` or `hop_size`. This function corrects vectors to the expected length, warning the user if the difference between the vector and expected length was unusually high to begin with. Args: vector: Numpy 1D ndarray. Shape [vector_length,] expected_len: Expected length of vector. pad_value: Value to pad at end of vector. len_tolerance: Tolerance of difference between original and desired vector length. use_tf: Make function differentiable by using tensorflow. Returns: vector: Vector with corrected length. Raises: ValueError: if `len(vector)` is different from `expected_len` beyond `len_tolerance` to begin with. """ expected_len = int(expected_len) vector_len = int(tf.shape(vector)[-1]) if use_tf else int(vector.shape[-1]) if not use_tf and abs(vector_len - expected_len) > len_tolerance: # Ensure vector was close to expected length to begin with raise ValueError('Vector length: {} differs from expected length: {} ' 'beyond tolerance of : {}'.format(vector_len, expected_len, len_tolerance)) # Pick tensorflow or numpy. lib = tf if use_tf else np is_1d = tf.size(tf.shape(vector)) if use_tf else (len(vector.shape) == 1) vector = vector[lib.newaxis, :] if is_1d else vector # Pad missing samples if vector_len < expected_len: n_padding = expected_len - vector_len vector = lib.pad( vector, ((0, 0), (0, n_padding)), mode='constant', constant_values=pad_value) # Trim samples elif vector_len > expected_len: vector = vector[..., :expected_len] # Remove temporary batch dimension. vector = vector[0] if is_1d else vector return vector def reset_crepe(): """Reset the global state of CREPE to force model re-building.""" for k in crepe.core.models: crepe.core.models[k] = None class PretrainedCREPE(tf.keras.Model): """A wrapper around a pretrained CREPE model, for pitch prediction. Enables predicting pitch and confidence entirely in TF for running in batch on accelerators. For [full,large,small,tiny] crepe models, reads h5 models from installed pip package. Other saved models """ def __init__(self, model_size_or_path, hop_size=160, **kwargs): super().__init__(**kwargs) self.hop_size = hop_size self.frame_size = 1024 self.sample_rate = 16000 # Load the crepe model. if model_size_or_path in ['full', 'large', 'small', 'tiny']: self.core_model = crepe.core.build_and_load_model(model_size_or_path) else: self.core_model = tf.keras.models.load_model(model_size_or_path) self.model_size_or_path = model_size_or_path @classmethod def activations_to_f0_and_confidence(cls, activations, centers=None): """Convert network outputs (activations) to f0 predictions.""" cent_mapping = tf.cast( tf.linspace(0, 7180, 360) + 1997.3794084376191, tf.float32) # The confidence of voicing activity and the argmax bin. confidence = tf.reduce_max(activations, axis=-1, keepdims=True) if centers is None: centers = tf.math.argmax(activations, axis=-1) centers = tf.cast(centers, tf.int32) # Slice the local neighborhood around the argmax bin. start = centers - 4 idx_list = tf.range(0, 10) idx_list = start[:, None] + idx_list[None, :] # Bound to [0, 359]. idx_list = tf.where(idx_list > 0, idx_list, 0) idx_list = tf.where(idx_list < 359, idx_list, 359) # Gather and weight activations. weights = tf.gather(activations, idx_list, batch_dims=1) cents = tf.gather(cent_mapping, idx_list, batch_dims=0) f0_cent = tf.reduce_sum(weights * cents, axis=-1) / tf.reduce_sum( weights, axis=-1) f0_hz = 10 * 2**(f0_cent / 1200.) return f0_hz, confidence def batch_frames(self, audio): """Chop audio into overlapping frames, and push to batch dimension.""" if audio.shape[-1] == self.frame_size: return audio else: frames = tf.signal.frame(audio, self.frame_size, self.hop_size) frames = tf.reshape(frames, [-1, self.frame_size]) return frames def normalize_frames(self, frames): """Normalize each frame -- this is expected by the model.""" mu, var = tf.nn.moments(frames, axes=[-1]) std = tf.where(tf.abs(var) > 0, tf.sqrt(var), 1e-8) frames -= mu[:, None] frames /= std[:, None] return frames def predict_f0_and_confidence(self, audio, viterbi=False): audio = audio[None, :] if len(audio.shape) == 1 else audio batch_size = audio.shape[0] frames = self.batch_frames(audio) frames = self.normalize_frames(frames) acts = self.core_model(frames, training=False) if viterbi: acts_viterbi = tf.reshape(acts, [batch_size, -1, 360]) centers = self.viterbi_decode(acts_viterbi) centers = tf.reshape(centers, [-1]) else: centers = None f0_hz, confidence = self.activations_to_f0_and_confidence(acts, centers) f0_hz = tf.reshape(f0_hz, [batch_size, -1]) confidence = tf.reshape(confidence, [batch_size, -1]) return f0_hz, confidence def create_hmm(self, num_steps): """Same as the original CREPE viterbi decdoding, but in TF.""" # Initial distribution is uniform. initial_distribution = tfp.distributions.Categorical( probs=tf.ones([360]) / 360) # Transition probabilities inducing continuous pitch. bins = tf.range(360, dtype=tf.float32) xx, yy = tf.meshgrid(bins, bins) min_transition = 1e-5 # For training stabiity. transition = tf.maximum(12 - abs(xx - yy), min_transition) transition = transition / tf.reduce_sum(transition, axis=1)[:, None] transition = tf.cast(transition, tf.float32) transition_distribution = tfp.distributions.Categorical( probs=transition) # Emission probability = fixed probability for self, evenly distribute the # others. self_emission = 0.1 emission = ( tf.eye(360) * self_emission + tf.ones(shape=(360, 360)) * ((1 - self_emission) / 360.) ) emission = tf.cast(emission, tf.float32)[None, ...] observation_distribution = tfp.distributions.Multinomial( total_count=1, probs=emission) return tfp.distributions.HiddenMarkovModel( initial_distribution=initial_distribution, transition_distribution=transition_distribution, observation_distribution=observation_distribution, num_steps=num_steps, ) def viterbi_decode(self, acts): """Adapted from original CREPE viterbi decdoding, but in TF.""" num_steps = acts.shape[1] hmm = self.create_hmm(num_steps) centers = hmm.posterior_mode(acts) return centers
33.905797
91
0.666008
4a25f6088b0ac27e5cdbf3cfe37d691460b2f097
2,747
py
Python
src/main.py
seaniedan/enviroplus-mqtt
f4e877b4301fc026c73f96cc85993f62d9143bba
[ "MIT" ]
null
null
null
src/main.py
seaniedan/enviroplus-mqtt
f4e877b4301fc026c73f96cc85993f62d9143bba
[ "MIT" ]
null
null
null
src/main.py
seaniedan/enviroplus-mqtt
f4e877b4301fc026c73f96cc85993f62d9143bba
[ "MIT" ]
null
null
null
import argparse, time, sys from logger import EnvLogger def parse_args(): ap = argparse.ArgumentParser(add_help=False) ap.add_argument("-h", "--host", required=True, help="the MQTT host to connect to") ap.add_argument("-p", "--port", type=int, default=1883, help="the port on the MQTT host to connect to") ap.add_argument("-U", "--username", default=None, help="the MQTT username to connect with") ap.add_argument("-P", "--password", default=None, help="the password to connect with") ap.add_argument("--prefix", default="", help="the topic prefix to use when publishing readings, i.e. 'lounge/enviroplus'") ap.add_argument("--client-id", default="", help="the MQTT client identifier to use when connecting") ap.add_argument("--interval", type=int, default=5, help="the duration in seconds between updates") ap.add_argument("--delay", type=int, default=15, help="the duration in seconds to allow the sensors to stabilise before starting to publish readings") ap.add_argument("--use-pms5003", action="store_true", help="if set, PM readings will be taken from the PMS5003 sensor") ap.add_argument("-r", "--retain", action='store_true', help="tell MQTT broker to retain the last message") ap.add_argument("--help", action="help", help="print this help message and exit") return vars(ap.parse_args()) def main(): args = parse_args() # Initialise the logger logger = EnvLogger( client_id=args["client_id"], host=args["host"], port=args["port"], username=args["username"], password=args["password"], prefix=args["prefix"], use_pms5003=args["use_pms5003"], num_samples=args["interval"], retain=args["retain"], ) # Take readings without publishing them for the specified delay period, # to allow the sensors time to warm up and stabilise publish_start_time = time.time() + args["delay"] while time.time() < publish_start_time: logger.update(publish_readings=False) time.sleep(1) # Start taking readings and publishing them at the specified interval next_sample_time = time.time() next_publish_time = time.time() + args["interval"] while True: if logger.connection_error is not None: sys.exit(f"Connecting to the MQTT server failed: {logger.connection_error}") should_publish = time.time() >= next_publish_time if should_publish: next_publish_time += args["interval"] logger.update(publish_readings=should_publish) next_sample_time += 1 sleep_duration = max(next_sample_time - time.time(), 0) time.sleep(sleep_duration) if __name__ == "__main__": main()
41.621212
154
0.67055
4a25f6cc7059df1fa928495d77d2ab3be8355c51
11,999
py
Python
tests/python/pants_test/backend/jvm/tasks/test_checkstyle_integration.py
viktortnk/pants
54c98206de5ac9aadfe26d83175f472941be6c7d
[ "Apache-2.0" ]
1
2020-06-13T22:01:39.000Z
2020-06-13T22:01:39.000Z
tests/python/pants_test/backend/jvm/tasks/test_checkstyle_integration.py
viktortnk/pants
54c98206de5ac9aadfe26d83175f472941be6c7d
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/backend/jvm/tasks/test_checkstyle_integration.py
viktortnk/pants
54c98206de5ac9aadfe26d83175f472941be6c7d
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import json import os import shutil from contextlib import contextmanager from textwrap import dedent from pants.base.build_environment import get_buildroot from pants.testutil.pants_run_integration_test import PantsRunIntegrationTest, ensure_cached from pants.util.contextutil import temporary_dir class CheckstyleIntegrationTest(PantsRunIntegrationTest): def _create_config_file(self, filepath, rules_xml=""): with open(filepath, "w") as f: f.write( dedent( """<?xml version="1.0"?> <!DOCTYPE module PUBLIC "-//Puppy Crawl//DTD Check Configuration 1.3//EN" "http://www.puppycrawl.com/dtds/configuration_1_3.dtd"> <module name="Checker"> {rules_xml} </module>""".format( rules_xml=rules_xml ) ) ) @ensure_cached(expected_num_artifacts=2) def test_config_invalidates_targets(self, cache_args): with self.temporary_workdir() as workdir: with temporary_dir(root_dir=get_buildroot()) as tmp: configs = [ dedent( """ <module name="TreeWalker"> <property name="tabWidth" value="2"/> </module>""" ), dedent( """ <module name="TreeWalker"> <module name="LineLength"> <property name="max" value="100"/> </module> </module>""" ), ] for config in configs: # Ensure that even though the config files have the same name, their # contents will invalidate the targets. config_file = os.path.join(tmp, "config.xml") self._create_config_file(config_file, config) args = [ "clean-all", f"--checkstyle-config={config_file}", "lint.checkstyle", cache_args, "examples/src/java/org/pantsbuild/example/hello/simple", ] pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) @ensure_cached(expected_num_artifacts=2) def test_config_name_invalidates_targets(self, cache_args): with self.temporary_workdir() as workdir: with temporary_dir(root_dir=get_buildroot()) as tmp: config_names = ["one.xml", "two.xml"] config = dedent( """ <module name="TreeWalker"> <property name="tabWidth" value="2"/> </module>""" ) for config_name in config_names: # Ensure that even though the config files have the same name, their contents will # invalidate the targets. config_file = os.path.join(tmp, config_name) self._create_config_file(config_file, config) args = [ f"--checkstyle-config={config_file}", "lint.checkstyle", cache_args, "examples/src/java/org/pantsbuild/example/hello/simple", ] pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) @contextmanager def _temporary_buildroot(self, files_to_copy, current_root=None): if current_root is None: current_root = get_buildroot() files_to_copy = set(files_to_copy) files_to_copy.update( f for f in os.listdir(current_root) if f.endswith(".toml") or f.startswith("BUILD") ) files_to_copy.update( ("pants", "3rdparty", "build-support", "src", ".isort.cfg", "pyproject.toml") ) with temporary_dir() as temp_root: temp_root = os.path.normpath(temp_root) for path in files_to_copy: src = os.path.join(current_root, path) dst = os.path.join(temp_root, path) if os.path.isdir(path): shutil.copytree(src, dst) else: shutil.copyfile(src, dst) current = os.getcwd() try: os.chdir(temp_root) temp_root = os.getcwd() yield temp_root finally: os.chdir(current) def _temporary_buildroots(self, files_to_copy=None, current_root=None, iterations=2): while iterations: with self._temporary_buildroot(files_to_copy, current_root) as root: yield root iterations -= 1 @ensure_cached(expected_num_artifacts=1) def test_config_buildroot_does_not_invalidate_targets(self, cache_args): previous_names = set() for buildroot in self._temporary_buildroots(["examples"]): with temporary_dir(root_dir=buildroot, prefix=".pants.d", suffix=".pants.d") as workdir: tmp = os.path.join(buildroot, "tmp") os.mkdir(tmp) config = dedent( """ <module name="TreeWalker"> <property name="tabWidth" value="2"/> </module>""" ) # Ensure that even though the config files have the same name, their # contents will invalidate the targets. config_file = os.path.join(tmp, "one.xml") self.assertNotIn(config_file, previous_names) previous_names.add(config_file) self._create_config_file(config_file, config) args = [ f"--checkstyle-config={config_file}", "lint.checkstyle", cache_args, "examples/src/java/org/pantsbuild/example/hello/simple", ] pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) @ensure_cached(expected_num_artifacts=1) def test_properties_file_names_does_not_invalidates_targets(self, cache_args): with self.temporary_workdir() as workdir: with temporary_dir(root_dir=get_buildroot()) as tmp: suppression_names = ["one-suppress.xml", "two-suppress.xml"] suppression_data = dedent( """ <?xml version="1.0"?> <!DOCTYPE suppressions PUBLIC "-//Puppy Crawl//DTD Suppressions 1.1//EN" "http://www.puppycrawl.com/dtds/suppressions_1_1.dtd"> <suppressions> <suppress files=".*/bad-files/.*\\.java" checks=".*"/> </suppressions> """ ).strip() for suppression_name in suppression_names: suppression_file = os.path.join(tmp, suppression_name) self._create_config_file(suppression_file, suppression_data) properties = { "checkstyle.suppression.files": suppression_file, } args = [ "lint.checkstyle", cache_args, "examples/src/java/org/pantsbuild/example/hello/simple", f"--lint-checkstyle-properties={json.dumps(properties)}", ] pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) @ensure_cached(expected_num_artifacts=2) def test_properties_file_contents_invalidates_targets(self, cache_args): with self.temporary_workdir() as workdir: with temporary_dir(root_dir=get_buildroot()) as tmp: suppression_files = [ dedent( """ <?xml version="1.0"?> <!DOCTYPE suppressions PUBLIC "-//Puppy Crawl//DTD Suppressions 1.1//EN" "http://www.puppycrawl.com/dtds/suppressions_1_1.dtd"> <suppressions> <suppress files=".*/bad-files/.*\\.java" checks=".*"/> </suppressions> """ ).strip(), dedent( """ <?xml version="1.0"?> <!DOCTYPE suppressions PUBLIC "-//Puppy Crawl//DTD Suppressions 1.1//EN" "http://www.puppycrawl.com/dtds/suppressions_1_1.dtd"> <suppressions> <suppress files=".*/bad-files/.*\\.java" checks=".*"/> <suppress files=".*/really-bad-files/.*\\.java" checks=".*"/> </suppressions> """ ).strip(), ] for suppressions in suppression_files: suppression_file = os.path.join(tmp, "suppressions.xml") self._create_config_file(suppression_file, suppressions) properties = { "checkstyle.suppression.files": suppression_file, } args = [ "lint.checkstyle", cache_args, "examples/src/java/org/pantsbuild/example/hello/simple", f"--lint-checkstyle-properties={json.dumps(properties)}", ] pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) @ensure_cached(expected_num_artifacts=2) def test_properties_nonfile_values_invalidates_targets(self, cache_args): with self.temporary_workdir() as workdir: with temporary_dir(root_dir=get_buildroot()): values = ["this-is-not-a-file", "37"] for value in values: properties = { "my.value": value, } args = [ "lint.checkstyle", cache_args, "examples/src/java/org/pantsbuild/example/hello/simple", f"--lint-checkstyle-properties={json.dumps(properties)}", ] pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) @ensure_cached(expected_num_artifacts=2) def test_jvm_tool_changes_invalidate_targets(self, cache_args): with self.temporary_workdir() as workdir: # Ensure that only the second use of the default checkstyle will not invalidate anything. for checkstyle_jar in (None, "testprojects/3rdparty/checkstyle", None): args = [ "lint.checkstyle", cache_args, f"--checkstyle={checkstyle_jar}" if checkstyle_jar else "", "examples/src/java/org/pantsbuild/example/hello/simple", ] pants_run = self.run_pants_with_workdir(args, workdir) print(pants_run.stdout_data) self.assert_success(pants_run)
44.440741
102
0.506376
4a25f820b9e1ba7aeed022d658eada72c8e765e8
1,616
py
Python
addons/account/models/digest.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/account/models/digest.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/account/models/digest.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import fields, models, _ from odoo.exceptions import AccessError class Digest(models.Model): _inherit = 'digest.digest' kpi_account_total_revenue = fields.Boolean('Revenue') kpi_account_total_revenue_value = fields.Monetary(compute='_compute_kpi_account_total_revenue_value') def _compute_kpi_account_total_revenue_value(self): if not self.env.user.has_group('account.group_account_invoice'): raise AccessError(_("Do not have access, skip this data for user's digest email")) for record in self: start, end, company = record._get_kpi_compute_parameters() self._cr.execute(''' SELECT -SUM(line.balance) FROM account_move_line line JOIN account_move move ON move.id = line.move_id JOIN account_account account ON account.id = line.account_id WHERE line.company_id = %s AND line.date >= %s AND line.date < %s AND account.internal_group = 'income' AND move.state = 'posted' ''', [company.id, start, end]) query_res = self._cr.fetchone() record.kpi_account_total_revenue_value = query_res and query_res[0] or 0.0 def _compute_kpis_actions(self, company, user): res = super(Digest, self)._compute_kpis_actions(company, user) res['kpi_account_total_revenue'] = 'account.action_move_out_invoice_type&menu_id=%s' % self.env.ref('account.menu_finance').id return res
46.171429
134
0.668936
4a25f993a94138e68ea0906b7283f5c3a07de516
4,023
py
Python
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/ns/nssurgeq.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/ns/nssurgeq.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/ns/nssurgeq.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2008-2016 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class nssurgeq(base_resource) : """ Configuration for surge queue resource. """ def __init__(self) : self._name = None self._servername = None self._port = None @property def name(self) : r"""Name of a virtual server, service or service group for which the SurgeQ must be flushed. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""Name of a virtual server, service or service group for which the SurgeQ must be flushed. """ try : self._name = name except Exception as e: raise e @property def servername(self) : r"""Name of a service group member. This argument is needed when you want to flush the SurgeQ of a service group. """ try : return self._servername except Exception as e: raise e @servername.setter def servername(self, servername) : r"""Name of a service group member. This argument is needed when you want to flush the SurgeQ of a service group. """ try : self._servername = servername except Exception as e: raise e @property def port(self) : r"""port on which server is bound to the entity(Servicegroup).<br/>Range 1 - 65535<br/>* in CLI is represented as 65535 in NITRO API. """ try : return self._port except Exception as e: raise e @port.setter def port(self, port) : r"""port on which server is bound to the entity(Servicegroup).<br/>Range 1 - 65535<br/>* in CLI is represented as 65535 in NITRO API """ try : self._port = port except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(nssurgeq_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.nssurgeq except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : return 0 except Exception as e : raise e @classmethod def flush(cls, client, resource) : r""" Use this API to flush nssurgeq. """ try : if type(resource) is not list : flushresource = nssurgeq() flushresource.name = resource.name flushresource.servername = resource.servername flushresource.port = resource.port return flushresource.perform_operation(client,"flush") except Exception as e : raise e class nssurgeq_response(base_response) : def __init__(self, length=1) : self.nssurgeq = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.nssurgeq = [nssurgeq() for _ in range(length)]
29.8
135
0.717127
4a25fa3c9889a515690312af4bd98726d0c0308a
21,915
py
Python
homeassistant/components/zha/light.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
1
2021-01-27T08:47:19.000Z
2021-01-27T08:47:19.000Z
homeassistant/components/zha/light.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
48
2020-10-11T08:00:05.000Z
2022-03-31T06:02:23.000Z
homeassistant/components/zha/light.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
2
2017-10-13T21:54:28.000Z
2018-02-24T23:48:21.000Z
"""Lights on Zigbee Home Automation networks.""" from collections import Counter from datetime import timedelta import functools import itertools import logging import random from typing import Any, Dict, List, Optional, Tuple from zigpy.zcl.clusters.general import Identify, LevelControl, OnOff from zigpy.zcl.clusters.lighting import Color from zigpy.zcl.foundation import Status from homeassistant.components import light from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_EFFECT_LIST, ATTR_HS_COLOR, ATTR_MAX_MIREDS, ATTR_MIN_MIREDS, ATTR_WHITE_VALUE, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_FLASH, SUPPORT_TRANSITION, SUPPORT_WHITE_VALUE, ) from homeassistant.const import ATTR_SUPPORTED_FEATURES, STATE_ON, STATE_UNAVAILABLE from homeassistant.core import State, callback from homeassistant.helpers.debounce import Debouncer from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.event import async_track_time_interval import homeassistant.util.color as color_util from .core import discovery, helpers from .core.const import ( CHANNEL_COLOR, CHANNEL_LEVEL, CHANNEL_ON_OFF, DATA_ZHA, DATA_ZHA_DISPATCHERS, EFFECT_BLINK, EFFECT_BREATHE, EFFECT_DEFAULT_VARIANT, SIGNAL_ADD_ENTITIES, SIGNAL_ATTR_UPDATED, SIGNAL_SET_LEVEL, ) from .core.helpers import LogMixin from .core.registries import ZHA_ENTITIES from .core.typing import ZhaDeviceType from .entity import ZhaEntity, ZhaGroupEntity _LOGGER = logging.getLogger(__name__) CAPABILITIES_COLOR_LOOP = 0x4 CAPABILITIES_COLOR_XY = 0x08 CAPABILITIES_COLOR_TEMP = 0x10 UPDATE_COLORLOOP_ACTION = 0x1 UPDATE_COLORLOOP_DIRECTION = 0x2 UPDATE_COLORLOOP_TIME = 0x4 UPDATE_COLORLOOP_HUE = 0x8 FLASH_EFFECTS = {light.FLASH_SHORT: EFFECT_BLINK, light.FLASH_LONG: EFFECT_BREATHE} UNSUPPORTED_ATTRIBUTE = 0x86 STRICT_MATCH = functools.partial(ZHA_ENTITIES.strict_match, light.DOMAIN) GROUP_MATCH = functools.partial(ZHA_ENTITIES.group_match, light.DOMAIN) PARALLEL_UPDATES = 0 SIGNAL_LIGHT_GROUP_STATE_CHANGED = "zha_light_group_state_changed" SUPPORT_GROUP_LIGHT = ( SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_EFFECT | SUPPORT_FLASH | SUPPORT_COLOR | SUPPORT_TRANSITION | SUPPORT_WHITE_VALUE ) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the Zigbee Home Automation light from config entry.""" entities_to_create = hass.data[DATA_ZHA][light.DOMAIN] unsub = async_dispatcher_connect( hass, SIGNAL_ADD_ENTITIES, functools.partial( discovery.async_add_entities, async_add_entities, entities_to_create ), ) hass.data[DATA_ZHA][DATA_ZHA_DISPATCHERS].append(unsub) class BaseLight(LogMixin, light.LightEntity): """Operations common to all light entities.""" def __init__(self, *args, **kwargs): """Initialize the light.""" super().__init__(*args, **kwargs) self._available: bool = False self._brightness: Optional[int] = None self._off_brightness: Optional[int] = None self._hs_color: Optional[Tuple[float, float]] = None self._color_temp: Optional[int] = None self._min_mireds: Optional[int] = 153 self._max_mireds: Optional[int] = 500 self._white_value: Optional[int] = None self._effect_list: Optional[List[str]] = None self._effect: Optional[str] = None self._supported_features: int = 0 self._state: bool = False self._on_off_channel = None self._level_channel = None self._color_channel = None self._identify_channel = None @property def device_state_attributes(self) -> Dict[str, Any]: """Return state attributes.""" attributes = {"off_brightness": self._off_brightness} return attributes @property def is_on(self) -> bool: """Return true if entity is on.""" if self._state is None: return False return self._state @property def brightness(self): """Return the brightness of this light.""" return self._brightness @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return self._min_mireds @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return self._max_mireds def set_level(self, value): """Set the brightness of this light between 0..254. brightness level 255 is a special value instructing the device to come on at `on_level` Zigbee attribute value, regardless of the last set level """ value = max(0, min(254, value)) self._brightness = value self.async_write_ha_state() @property def hs_color(self): """Return the hs color value [int, int].""" return self._hs_color @property def color_temp(self): """Return the CT color value in mireds.""" return self._color_temp @property def effect_list(self): """Return the list of supported effects.""" return self._effect_list @property def effect(self): """Return the current effect.""" return self._effect @property def supported_features(self): """Flag supported features.""" return self._supported_features async def async_turn_on(self, **kwargs): """Turn the entity on.""" transition = kwargs.get(light.ATTR_TRANSITION) duration = transition * 10 if transition else 1 brightness = kwargs.get(light.ATTR_BRIGHTNESS) effect = kwargs.get(light.ATTR_EFFECT) flash = kwargs.get(light.ATTR_FLASH) if brightness is None and self._off_brightness is not None: brightness = self._off_brightness t_log = {} if ( brightness is not None or transition ) and self._supported_features & light.SUPPORT_BRIGHTNESS: if brightness is not None: level = min(254, brightness) else: level = self._brightness or 254 result = await self._level_channel.move_to_level_with_on_off( level, duration ) t_log["move_to_level_with_on_off"] = result if not isinstance(result, list) or result[1] is not Status.SUCCESS: self.debug("turned on: %s", t_log) return self._state = bool(level) if level: self._brightness = level if brightness is None or brightness: # since some lights don't always turn on with move_to_level_with_on_off, # we should call the on command on the on_off cluster if brightness is not 0. result = await self._on_off_channel.on() t_log["on_off"] = result if not isinstance(result, list) or result[1] is not Status.SUCCESS: self.debug("turned on: %s", t_log) return self._state = True if ( light.ATTR_COLOR_TEMP in kwargs and self.supported_features & light.SUPPORT_COLOR_TEMP ): temperature = kwargs[light.ATTR_COLOR_TEMP] result = await self._color_channel.move_to_color_temp(temperature, duration) t_log["move_to_color_temp"] = result if not isinstance(result, list) or result[1] is not Status.SUCCESS: self.debug("turned on: %s", t_log) return self._color_temp = temperature self._hs_color = None if ( light.ATTR_HS_COLOR in kwargs and self.supported_features & light.SUPPORT_COLOR ): hs_color = kwargs[light.ATTR_HS_COLOR] xy_color = color_util.color_hs_to_xy(*hs_color) result = await self._color_channel.move_to_color( int(xy_color[0] * 65535), int(xy_color[1] * 65535), duration ) t_log["move_to_color"] = result if not isinstance(result, list) or result[1] is not Status.SUCCESS: self.debug("turned on: %s", t_log) return self._hs_color = hs_color self._color_temp = None if ( effect == light.EFFECT_COLORLOOP and self.supported_features & light.SUPPORT_EFFECT ): result = await self._color_channel.color_loop_set( UPDATE_COLORLOOP_ACTION | UPDATE_COLORLOOP_DIRECTION | UPDATE_COLORLOOP_TIME, 0x2, # start from current hue 0x1, # only support up transition if transition else 7, # transition 0, # no hue ) t_log["color_loop_set"] = result self._effect = light.EFFECT_COLORLOOP elif ( self._effect == light.EFFECT_COLORLOOP and effect != light.EFFECT_COLORLOOP and self.supported_features & light.SUPPORT_EFFECT ): result = await self._color_channel.color_loop_set( UPDATE_COLORLOOP_ACTION, 0x0, 0x0, 0x0, 0x0, # update action only, action off, no dir, time, hue ) t_log["color_loop_set"] = result self._effect = None if flash is not None and self._supported_features & light.SUPPORT_FLASH: result = await self._identify_channel.trigger_effect( FLASH_EFFECTS[flash], EFFECT_DEFAULT_VARIANT ) t_log["trigger_effect"] = result self._off_brightness = None self.debug("turned on: %s", t_log) self.async_write_ha_state() async def async_turn_off(self, **kwargs): """Turn the entity off.""" duration = kwargs.get(light.ATTR_TRANSITION) supports_level = self.supported_features & light.SUPPORT_BRIGHTNESS if duration and supports_level: result = await self._level_channel.move_to_level_with_on_off( 0, duration * 10 ) else: result = await self._on_off_channel.off() self.debug("turned off: %s", result) if not isinstance(result, list) or result[1] is not Status.SUCCESS: return self._state = False if duration and supports_level: # store current brightness so that the next turn_on uses it. self._off_brightness = self._brightness self.async_write_ha_state() @STRICT_MATCH(channel_names=CHANNEL_ON_OFF, aux_channels={CHANNEL_COLOR, CHANNEL_LEVEL}) class Light(BaseLight, ZhaEntity): """Representation of a ZHA or ZLL light.""" _REFRESH_INTERVAL = (45, 75) def __init__(self, unique_id, zha_device: ZhaDeviceType, channels, **kwargs): """Initialize the ZHA light.""" super().__init__(unique_id, zha_device, channels, **kwargs) self._on_off_channel = self.cluster_channels.get(CHANNEL_ON_OFF) self._state = bool(self._on_off_channel.on_off) self._level_channel = self.cluster_channels.get(CHANNEL_LEVEL) self._color_channel = self.cluster_channels.get(CHANNEL_COLOR) self._identify_channel = self.zha_device.channels.identify_ch if self._color_channel: self._min_mireds: Optional[int] = self._color_channel.min_mireds self._max_mireds: Optional[int] = self._color_channel.max_mireds self._cancel_refresh_handle = None effect_list = [] if self._level_channel: self._supported_features |= light.SUPPORT_BRIGHTNESS self._supported_features |= light.SUPPORT_TRANSITION self._brightness = self._level_channel.current_level if self._color_channel: color_capabilities = self._color_channel.color_capabilities if color_capabilities & CAPABILITIES_COLOR_TEMP: self._supported_features |= light.SUPPORT_COLOR_TEMP self._color_temp = self._color_channel.color_temperature if color_capabilities & CAPABILITIES_COLOR_XY: self._supported_features |= light.SUPPORT_COLOR curr_x = self._color_channel.current_x curr_y = self._color_channel.current_y if curr_x is not None and curr_y is not None: self._hs_color = color_util.color_xy_to_hs( float(curr_x / 65535), float(curr_y / 65535) ) else: self._hs_color = (0, 0) if color_capabilities & CAPABILITIES_COLOR_LOOP: self._supported_features |= light.SUPPORT_EFFECT effect_list.append(light.EFFECT_COLORLOOP) if self._color_channel.color_loop_active == 1: self._effect = light.EFFECT_COLORLOOP if self._identify_channel: self._supported_features |= light.SUPPORT_FLASH if effect_list: self._effect_list = effect_list @callback def async_set_state(self, attr_id, attr_name, value): """Set the state.""" self._state = bool(value) if value: self._off_brightness = None self.async_write_ha_state() async def async_added_to_hass(self): """Run when about to be added to hass.""" await super().async_added_to_hass() self.async_accept_signal( self._on_off_channel, SIGNAL_ATTR_UPDATED, self.async_set_state ) if self._level_channel: self.async_accept_signal( self._level_channel, SIGNAL_SET_LEVEL, self.set_level ) refresh_interval = random.randint(*[x * 60 for x in self._REFRESH_INTERVAL]) self._cancel_refresh_handle = async_track_time_interval( self.hass, self._refresh, timedelta(seconds=refresh_interval) ) self.async_accept_signal( None, SIGNAL_LIGHT_GROUP_STATE_CHANGED, self._maybe_force_refresh, signal_override=True, ) async def async_will_remove_from_hass(self) -> None: """Disconnect entity object when removed.""" self._cancel_refresh_handle() await super().async_will_remove_from_hass() @callback def async_restore_last_state(self, last_state): """Restore previous state.""" self._state = last_state.state == STATE_ON if "brightness" in last_state.attributes: self._brightness = last_state.attributes["brightness"] if "off_brightness" in last_state.attributes: self._off_brightness = last_state.attributes["off_brightness"] if "color_temp" in last_state.attributes: self._color_temp = last_state.attributes["color_temp"] if "hs_color" in last_state.attributes: self._hs_color = last_state.attributes["hs_color"] if "effect" in last_state.attributes: self._effect = last_state.attributes["effect"] async def async_get_state(self): """Attempt to retrieve the state from the light.""" if not self.available: return self.debug("polling current state") if self._on_off_channel: state = await self._on_off_channel.get_attribute_value( "on_off", from_cache=False ) if state is not None: self._state = state if self._level_channel: level = await self._level_channel.get_attribute_value( "current_level", from_cache=False ) if level is not None: self._brightness = level if self._color_channel: attributes = [ "color_temperature", "current_x", "current_y", "color_loop_active", ] results = await self._color_channel.get_attributes( attributes, from_cache=False ) color_temp = results.get("color_temperature") if color_temp is not None: self._color_temp = color_temp color_x = results.get("current_x") color_y = results.get("current_y") if color_x is not None and color_y is not None: self._hs_color = color_util.color_xy_to_hs( float(color_x / 65535), float(color_y / 65535) ) color_loop_active = results.get("color_loop_active") if color_loop_active is not None: if color_loop_active == 1: self._effect = light.EFFECT_COLORLOOP else: self._effect = None async def async_update(self): """Update to the latest state.""" await self.async_get_state() async def _refresh(self, time): """Call async_get_state at an interval.""" await self.async_get_state() self.async_write_ha_state() async def _maybe_force_refresh(self, signal): """Force update the state if the signal contains the entity id for this entity.""" if self.entity_id in signal["entity_ids"]: await self.async_get_state() self.async_write_ha_state() @STRICT_MATCH( channel_names=CHANNEL_ON_OFF, aux_channels={CHANNEL_COLOR, CHANNEL_LEVEL}, manufacturers="Philips", ) class HueLight(Light): """Representation of a HUE light which does not report attributes.""" _REFRESH_INTERVAL = (3, 5) @GROUP_MATCH() class LightGroup(BaseLight, ZhaGroupEntity): """Representation of a light group.""" def __init__( self, entity_ids: List[str], unique_id: str, group_id: int, zha_device, **kwargs ) -> None: """Initialize a light group.""" super().__init__(entity_ids, unique_id, group_id, zha_device, **kwargs) group = self.zha_device.gateway.get_group(self._group_id) self._on_off_channel = group.endpoint[OnOff.cluster_id] self._level_channel = group.endpoint[LevelControl.cluster_id] self._color_channel = group.endpoint[Color.cluster_id] self._identify_channel = group.endpoint[Identify.cluster_id] self._debounced_member_refresh = None async def async_added_to_hass(self): """Run when about to be added to hass.""" await super().async_added_to_hass() if self._debounced_member_refresh is None: force_refresh_debouncer = Debouncer( self.hass, _LOGGER, cooldown=3, immediate=True, function=self._force_member_updates, ) self._debounced_member_refresh = force_refresh_debouncer async def async_turn_on(self, **kwargs): """Turn the entity on.""" await super().async_turn_on(**kwargs) await self._debounced_member_refresh.async_call() async def async_turn_off(self, **kwargs): """Turn the entity off.""" await super().async_turn_off(**kwargs) await self._debounced_member_refresh.async_call() async def async_update(self) -> None: """Query all members and determine the light group state.""" all_states = [self.hass.states.get(x) for x in self._entity_ids] states: List[State] = list(filter(None, all_states)) on_states = [state for state in states if state.state == STATE_ON] self._state = len(on_states) > 0 self._available = any(state.state != STATE_UNAVAILABLE for state in states) self._brightness = helpers.reduce_attribute(on_states, ATTR_BRIGHTNESS) self._hs_color = helpers.reduce_attribute( on_states, ATTR_HS_COLOR, reduce=helpers.mean_tuple ) self._white_value = helpers.reduce_attribute(on_states, ATTR_WHITE_VALUE) self._color_temp = helpers.reduce_attribute(on_states, ATTR_COLOR_TEMP) self._min_mireds = helpers.reduce_attribute( states, ATTR_MIN_MIREDS, default=153, reduce=min ) self._max_mireds = helpers.reduce_attribute( states, ATTR_MAX_MIREDS, default=500, reduce=max ) self._effect_list = None all_effect_lists = list(helpers.find_state_attributes(states, ATTR_EFFECT_LIST)) if all_effect_lists: # Merge all effects from all effect_lists with a union merge. self._effect_list = list(set().union(*all_effect_lists)) self._effect = None all_effects = list(helpers.find_state_attributes(on_states, ATTR_EFFECT)) if all_effects: # Report the most common effect. effects_count = Counter(itertools.chain(all_effects)) self._effect = effects_count.most_common(1)[0][0] self._supported_features = 0 for support in helpers.find_state_attributes(states, ATTR_SUPPORTED_FEATURES): # Merge supported features by emulating support for every feature # we find. self._supported_features |= support # Bitwise-and the supported features with the GroupedLight's features # so that we don't break in the future when a new feature is added. self._supported_features &= SUPPORT_GROUP_LIGHT async def _force_member_updates(self): """Force the update of member entities to ensure the states are correct for bulbs that don't report their state.""" async_dispatcher_send( self.hass, SIGNAL_LIGHT_GROUP_STATE_CHANGED, {"entity_ids": self._entity_ids}, )
36.956155
123
0.641387
4a25fafcc599f1262061a69b88cd86294cb752df
4,028
py
Python
prody/apps/prody_apps/prody_contacts.py
grandevelia/ProDy
7c725640a94c16543423c0756388998cb86a97ae
[ "MIT" ]
210
2015-01-26T08:17:56.000Z
2022-03-30T01:40:34.000Z
prody/apps/prody_apps/prody_contacts.py
grandevelia/ProDy
7c725640a94c16543423c0756388998cb86a97ae
[ "MIT" ]
555
2015-01-05T21:51:54.000Z
2022-03-31T16:51:41.000Z
prody/apps/prody_apps/prody_contacts.py
grandevelia/ProDy
7c725640a94c16543423c0756388998cb86a97ae
[ "MIT" ]
99
2015-02-09T18:00:39.000Z
2022-03-07T12:52:51.000Z
# -*- coding: utf-8 -*- """This module defines a routine for contact identification.""" from ..apptools import * __all__ = ['prody_contacts'] def prody_contacts(**kwargs): """Identify contacts of a target structure with one or more ligands. Contacting atoms (or extended subset of atoms, such as residues) are outputted in PDB file format. :arg target: target PDB identifier or filename :arg ligand: ligand PDB identifier(s) or filename(s) :arg select: atom selection string for target structure :arg radius: contact radius (Å), default is ``4.0`` :arg extend: output same ``'residue'``, ``'chain'``, or ``'segment'`` along with contacting atoms :arg prefix: prefix for output file, default is *target* filename :arg suffix: output filename suffix, default is *ligand* filename""" import prody LOGGER = prody.LOGGER target = prody.parsePDB(kwargs['target']) title = kwargs.get('prefix') or target.getTitle() selstr = kwargs.get('select') if selstr: target = target.select(selstr) contacts = prody.Contacts(target) suffix = kwargs.get('suffix', '_contacts') extend = kwargs.get('extend') radius = float(kwargs.get('radius', 4.0)) ligands = kwargs.get('ligand') if len(ligands) > 1: outfn = lambda fn: title + suffix + '_' + fn + '.pdb' else: outfn = lambda fn: title + suffix + '.pdb' for pdb in ligands: ligand = prody.parsePDB(pdb) sel = contacts(radius, ligand) if sel: LOGGER.info('{0} atoms from {1} contact {2}.' .format(len(sel), pdb, str(target))) if extend: sel = target.select('same ' + extend + ' as sel', sel=sel) LOGGER.info('Selection is extended to {0} atoms of the same ' '{1}(s).'.format(len(sel), extend)) pdbfn = outfn(ligand.getTitle()) LOGGER.info('Writing contacts into ' + pdbfn) prody.writePDB(pdbfn, sel) def addCommand(commands): subparser = commands.add_parser('contacts', help='identify contacts between a target and ligand(s)') subparser.add_argument('--quiet', help="suppress info messages to stderr", action=Quiet, nargs=0) subparser.add_argument('--examples', action=UsageExample, nargs=0, help='show usage examples and exit') subparser.set_defaults(usage_example= """Identify contacts of a target structure with one or more ligands. Fetch PDB structure 1zz2, save PDB files for individual ligands, and identify \ contacting residues of the target protein: $ prody select -o B11 "resname B11" 1zz2 $ prody select -o BOG "resname BOG" 1zz2 $ prody contacts -r 4.0 -t residue -s protein 1zz2 B11.pdb BOG.pdb """, test_examples=[(0,1,2)] ) subparser.add_argument('-s', '--select', dest='select', type=str, metavar='SELSTR', help='selection string for target') subparser.add_argument('-r', '--radius', dest='radius', type=float, default=4.0, metavar='FLOAT', help='contact radius (default: %(default)s)') subparser.add_argument('-t', '--extend', dest='extend', type=str, metavar='STR', choices=set(['residue', 'chain', 'segment']), help=('output same residue, chain, or segment as contacting atoms')) subparser.add_argument('-p', '--prefix', dest='prefix', type=str, metavar='STR', help=('output filename prefix (default: target filename)')) subparser.add_argument('-x', '--suffix', dest='suffix', type=str, default='_contacts', metavar='STR', help=('output filename suffix (default: %(default)s)')) subparser.add_argument('target', help='target PDB identifier or filename') subparser.add_argument('ligand', nargs='+', help='ligand PDB identifier(s) or filename(s)') subparser.set_defaults(func=lambda opt: prody_contacts(**opt.__dict__)) subparser.set_defaults(subparser=subparser)
35.646018
79
0.635303
4a25fbc2b2f4701edd14f859c6f644cc7fa7c24e
1,875
py
Python
game.py
bdupau/wordsnake
7d8be2048412990ffa850d86bece3687dcfe24c8
[ "Apache-2.0" ]
null
null
null
game.py
bdupau/wordsnake
7d8be2048412990ffa850d86bece3687dcfe24c8
[ "Apache-2.0" ]
null
null
null
game.py
bdupau/wordsnake
7d8be2048412990ffa850d86bece3687dcfe24c8
[ "Apache-2.0" ]
null
null
null
__author__ = 'Bastiaan' class Game: def __init__(self, fn_get_current_word, fn_add_word, fn_score): self._scores_per_player = {} self._get_current_word = fn_get_current_word self._add_word = fn_add_word self._score = fn_score self._is_started = False def game_finished(self): return max(self._scores_per_player.values()) > 25 def start_game(self, players): if len(self._scores_per_player) > 0: return "Het is niet mogelijk het spel te starten. Het spel is al gestart." if len(set(players)) < len(players): return "Het is niet mogelijk een spel te starten. Er spelers zijn met dezelfde naam." self._scores_per_player = { player : 0 for player in players } self._is_started = True return "Nieuw spel is gestart." def add_word(self, player, word): if not self._is_started: return "Het is niet mogelijk een woord toe te voegen. Het spel is nog niet begonnen." if self.game_finished(): return "Het is niet mogelijk een woord toe te voegen. Het spel is al afgelopen." if player not in self._scores_per_player: return "Het is niet mogelijk een woord toe te voegen. {} is geen deelnemer aan het spel.".format(player) current_word = self._get_current_word() if self._add_word(word): score = self._score(current_word, word) self._scores_per_player[player] += score bot_text = "{0} heeft \'{1}\' aan de wordsnake toegevoegd voor {2} punten. {0} heeft nu {3} punten.".format(player, word, score, self._scores_per_player[player]) if self.game_finished(): bot_text += " {} heeft het spel gewonnen !".format(player) return bot_text return "Het woord \'{}\' is niet valide.".format(word)
44.642857
173
0.639467
4a25fc17b7fc6ad585df47befc0bb9bfac54467f
1,706
py
Python
source/file_writter.py
noltron000-coursework/adventure
744cc0b16e76dee7e1ba617c7153d90fca37718e
[ "MIT" ]
1
2019-12-13T14:31:21.000Z
2019-12-13T14:31:21.000Z
source/file_writter.py
noltron000-coursework/adventure
744cc0b16e76dee7e1ba617c7153d90fca37718e
[ "MIT" ]
1
2019-12-13T19:17:40.000Z
2019-12-13T19:17:40.000Z
source/file_writter.py
noltron000/adventure
744cc0b16e76dee7e1ba617c7153d90fca37718e
[ "MIT" ]
1
2022-01-10T20:21:37.000Z
2022-01-10T20:21:37.000Z
import os class FileWritter: def __init__(self, story): self.story = story self.dir = input('What folder-name do you want your output files to be in? ') if self.dir == '': self.dir = 'story' if os.path.isdir(f'./{self.dir}'): raise # ValueError('This folder already exists! Please try again.') else: os.mkdir(f'./{self.dir}') os.mkdir(f'./{self.dir}/pages') def main(self): story = self.story self.write_cover() self.write_event(story.root) def write_cover(self): story = self.story markdown = ( f'{story.title.title()}\n' f'{len(story.title) * "="}\n\n' f'{story.subtitle.title()}\n' f'{len(story.subtitle) * "-"}\n\n' f'> {story.synopsis}\n\n' '---\n\n' '### [*click here to start reading*]' f'(./pages/{id(story.root)}.md)\n' ) # then create the file with open(f'./{self.dir}/START.md', 'w+') as file: file.write(markdown) def write_event(self, event): # compile event path event_path = f'./{self.dir}/pages/{id(event)}.md' # check if the compiled markdown file exists. if os.path.isfile(event_path): return # first create the list of options. option_list = '' for index, choice in enumerate(event.choices): outcome = event.outcomes[index] # compile event path outcome_path = f'./{id(outcome)}.md' option_list += f'1. [{choice}]({outcome_path})\n' if option_list != '': option_list = '\n---\n\n' + option_list # next compile the markdown markdown = ( f'{event.content}\n' f'{option_list}' ) # then create the file with open(event_path, 'w+') as file: file.write(markdown) # finally repeat for child events for outcome in event.outcomes: self.write_event(outcome)
24.724638
79
0.635404
4a25fec3ad8ffa3d00b2180b2bacebf5e670eeb0
480
py
Python
PYTHON/python-datastructures/algorithms/algorithms/arrays/missing_ranges.py
Web-Dev-Collaborative/DS-ALGO-OFFICIAL
6d7195d33c28a0fe22f12231efffb39f4bf05c97
[ "Apache-2.0" ]
11
2021-02-18T04:53:44.000Z
2022-01-16T10:57:39.000Z
PYTHON/python-datastructures/algorithms/algorithms/arrays/missing_ranges.py
Web-Dev-Collaborative/DS-ALGO-OFFICIAL
6d7195d33c28a0fe22f12231efffb39f4bf05c97
[ "Apache-2.0" ]
162
2021-03-09T01:52:11.000Z
2022-03-12T01:09:07.000Z
PYTHON/python-datastructures/algorithms/algorithms/arrays/missing_ranges.py
Web-Dev-Collaborative/DS-ALGO-OFFICIAL
6d7195d33c28a0fe22f12231efffb39f4bf05c97
[ "Apache-2.0" ]
8
2021-02-18T05:12:34.000Z
2022-03-06T19:02:14.000Z
""" Find missing ranges between low and high in the given array. Ex) [3, 5] lo=1 hi=10 => answer: [(1, 2), (4, 4), (6, 10)] """ def missing_ranges(arr, lo, hi): res = [] start = lo for n in arr: if n == start: start += 1 elif n > start: res.append((start, n - 1)) start = n + 1 if start <= hi: # after done iterating thru array, res.append((start, hi)) # append remainder to list return res
20
60
0.510417
4a25fefdc109991ae3c152cf1b28621469514b63
2,821
py
Python
projects/scale_hyperprior_lightning/vimeo.py
tallamjr/NeuralCompression
21d05ec0d9f8c52d8742fde36f569b4dad2842a5
[ "MIT" ]
233
2021-07-19T18:50:21.000Z
2022-03-30T22:06:40.000Z
projects/scale_hyperprior_lightning/vimeo.py
tallamjr/NeuralCompression
21d05ec0d9f8c52d8742fde36f569b4dad2842a5
[ "MIT" ]
79
2021-07-22T13:33:45.000Z
2022-02-09T16:38:42.000Z
projects/scale_hyperprior_lightning/vimeo.py
tallamjr/NeuralCompression
21d05ec0d9f8c52d8742fde36f569b4dad2842a5
[ "MIT" ]
21
2021-07-29T18:27:59.000Z
2022-02-28T02:32:53.000Z
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional, Sequence, Union from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader from torchvision import transforms from neuralcompression.data import Vimeo90kSeptuplet class Vimeo90kSeptupletLightning(LightningDataModule): """ PyTorch Lightning data module version of ``Vimeo90kSeptuplet``. Args: data_dir: root directory of Vimeo dataset. train_batch_size: the batch size to use during training. val_batch_size: the batch size to use during validation. patch_size: the size of the crop to take from the original images. num_workers: the number of parallel workers to create to load data items (see PyTorch's Dataloader documentation for more details). pin_memory: whether prepared items should be loaded into pinned memory or not. This improves performance on GPUs. """ def __init__( self, data_dir: str, train_batch_size: int = 8, val_batch_size: int = 8, patch_size: Union[int, Sequence[int]] = (256, 256), num_workers: int = 0, pin_memory: bool = False, ): super().__init__() self.data_dir = data_dir self.train_batch_size = train_batch_size self.val_batch_size = val_batch_size self.patch_size = patch_size self.num_workers = num_workers self.pin_memory = pin_memory def setup(self, stage: Optional[str] = None) -> None: train_transforms = transforms.Compose( [transforms.RandomCrop(self.patch_size), transforms.ToTensor()] ) val_transforms = transforms.Compose( [transforms.CenterCrop(self.patch_size), transforms.ToTensor()] ) self.train_dataset = Vimeo90kSeptuplet( self.data_dir, pil_transform=train_transforms, split="train", ) self.val_dataset = Vimeo90kSeptuplet( self.data_dir, pil_transform=val_transforms, split="test", ) def train_dataloader(self) -> DataLoader: return DataLoader( self.train_dataset, batch_size=self.train_batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=self.pin_memory, ) def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return DataLoader( self.val_dataset, batch_size=self.val_batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=self.pin_memory, )
32.802326
78
0.649061
4a25ff119f06e33c1cd8e0332802c77847ff5fa3
3,180
py
Python
helios/pipeViewer/pipe_view/gui/widgets/transaction_list.py
debjyoti0891/map
abdae67964420d7d36255dcbf83e4240a1ef4295
[ "MIT" ]
44
2019-12-13T06:39:13.000Z
2022-03-29T23:09:28.000Z
helios/pipeViewer/pipe_view/gui/widgets/transaction_list.py
debjyoti0891/map
abdae67964420d7d36255dcbf83e4240a1ef4295
[ "MIT" ]
222
2020-01-14T21:58:56.000Z
2022-03-31T20:05:12.000Z
helios/pipeViewer/pipe_view/gui/widgets/transaction_list.py
debjyoti0891/map
abdae67964420d7d36255dcbf83e4240a1ef4295
[ "MIT" ]
19
2020-01-03T19:03:22.000Z
2022-01-09T08:36:20.000Z
import wx from gui.font_utils import GetMonospaceFont # # This class is a GUI list control element that shows transactions. class TransactionList(wx.ListCtrl): def __init__(self, parent, id, canvas, name = '', style = wx.LC_REPORT | wx.SUNKEN_BORDER): wx.ListCtrl.__init__(self, parent = parent, id = wx.NewId(), name = name, style = style) self.SetFont(GetMonospaceFont(canvas.GetSettings().layout_font_size)) # used for coloring self.__canvas = canvas # list of dictionary of properties self.__transactions = [] # properties to show. self.__properties = ['start', 'location', 'annotation'] # must have at least 1 # insertion point for elements at end self.__current_new_idx = 0 self.__colorize = True self.RefreshAll() def GetProperties(self): return tuple(self.__properties) def SetProperties(self, properties): self.__properties = properties[:] self.RefreshAll() def Clear(self): self.__transactions = [] def Colorize(self, colorize): self.__colorize = colorize # # Destroy all graphical elements and recreate them def RefreshAll(self): self.ClearAll() # make header width = int(self.GetClientSize()[0] / len(self.__properties)) if width < 100: width = 100 for col_idx, column in enumerate(self.__properties): self.InsertColumn(col_idx, column) self.SetColumnWidth(col_idx, width) self.__current_new_idx = 0 for transaction in self.__transactions: self.__AddGraphicalTransaction(transaction) def RefreshTransaction(self, index): transaction = self.__transactions[index] for col_idx, prop in enumerate(self.__properties): self.SetItem(index, col_idx, str(transaction.get(prop))) annotation = transaction.get('annotation') if self.__colorize and annotation: color = self.__canvas.GetAutocolorColor(annotation) else: color = (255, 255, 255) self.SetItemBackgroundColour(index, color) def GetTransaction(self, index): return self.__transactions[index] def __AddGraphicalTransaction(self, transaction): self.InsertItem(self.__current_new_idx, str(transaction.get(self.__properties[0]))) self.RefreshTransaction(self.__current_new_idx) self.__current_new_idx += 1 # # Add a new element to bottom of list. New item must be dictionary of properties. def Add(self, transaction_properties): self.__transactions.append(transaction_properties) self.__AddGraphicalTransaction(transaction_properties) return self.__current_new_idx - 1 def Remove(self, index): del self.__transactions[index] self.DeleteItem(index) self.__current_new_idx -= 1 # # Attempts to resize the columns based on size # @pre All content should be added before this is called (once) def FitColumns(self): for idx, _ in enumerate(self.__properties): self.SetColumnWidth(idx, wx.LIST_AUTOSIZE) self.Layout()
36.976744
96
0.66478
4a25ff80ca81de3d80b18cf54a848c6870885e31
1,042
py
Python
picam.py
hxydebug/FR
dfb54acc8eab79204ee55f7eb1cdc547566c6466
[ "MIT" ]
1
2021-12-08T03:22:46.000Z
2021-12-08T03:22:46.000Z
picam.py
hxydebug/FR
dfb54acc8eab79204ee55f7eb1cdc547566c6466
[ "MIT" ]
null
null
null
picam.py
hxydebug/FR
dfb54acc8eab79204ee55f7eb1cdc547566c6466
[ "MIT" ]
null
null
null
""" Pi camera device capture class for OpenCV. This class allows you to capture a single image from the pi camera as an OpenCV image. """ import io import time import cv2 import numpy as np import picamera import config class OpenCVCapture(object): def read(self): """Read a single frame from the camera and return the data as an OpenCV image (which is a numpy array). """ # This code is based on the picamera example at: # http://picamera.readthedocs.org/en/release-1.0/recipes1.html#capturing-to-an-opencv-object # Capture a frame from the camera. data = io.BytesIO() with picamera.PiCamera() as camera: camera.capture(data, format='jpeg') data = np.fromstring(data.getvalue(), dtype=np.uint8) # Decode the image data and return an OpenCV image. image = cv2.imdecode(data, 1) # Save captured image for debugging. cv2.imwrite(config.DEBUG_IMAGE, image) # Return the captured image data. return image
31.575758
100
0.661228
4a25ff8b2fa182faaf4f4ce8909c9ec2e9b55ccc
4,334
py
Python
ppocr/utils/utility.py
chccc1994/PaddleOCR
03e768b26ff769a8af1adfec062c472fe54bb640
[ "Apache-2.0" ]
null
null
null
ppocr/utils/utility.py
chccc1994/PaddleOCR
03e768b26ff769a8af1adfec062c472fe54bb640
[ "Apache-2.0" ]
null
null
null
ppocr/utils/utility.py
chccc1994/PaddleOCR
03e768b26ff769a8af1adfec062c472fe54bb640
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import imghdr import cv2 import random import numpy as np import paddle def print_dict(d, logger, delimiter=0): """ Recursively visualize a dict and indenting acrrording by the relationship of keys. """ for k, v in sorted(d.items()): if isinstance(v, dict): logger.info("{}{} : ".format(delimiter * " ", str(k))) print_dict(v, logger, delimiter + 4) elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict): logger.info("{}{} : ".format(delimiter * " ", str(k))) for value in v: print_dict(value, logger, delimiter + 4) else: logger.info("{}{} : {}".format(delimiter * " ", k, v)) def get_check_global_params(mode): check_params = ['use_gpu', 'max_text_length', 'image_shape', \ 'image_shape', 'character_type', 'loss_type'] if mode == "train_eval": check_params = check_params + [ \ 'train_batch_size_per_card', 'test_batch_size_per_card'] elif mode == "test": check_params = check_params + ['test_batch_size_per_card'] return check_params def _check_image_file(path): img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'} return any([path.lower().endswith(e) for e in img_end]) def get_image_file_list(img_file): imgs_lists = [] if img_file is None or not os.path.exists(img_file): raise Exception("not found any img file in {}".format(img_file)) img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'} if os.path.isfile(img_file) and _check_image_file(img_file): imgs_lists.append(img_file) elif os.path.isdir(img_file): for single_file in os.listdir(img_file): file_path = os.path.join(img_file, single_file) if os.path.isfile(file_path) and _check_image_file(file_path): imgs_lists.append(file_path) if len(imgs_lists) == 0: raise Exception("not found any img file in {}".format(img_file)) imgs_lists = sorted(imgs_lists) return imgs_lists def check_and_read_gif(img_path): if os.path.basename(img_path)[-3:] in ['gif', 'GIF']: gif = cv2.VideoCapture(img_path) ret, frame = gif.read() if not ret: logger = logging.getLogger('ppocr') logger.info("Cannot read {}. This gif image maybe corrupted.") return None, False if len(frame.shape) == 2 or frame.shape[-1] == 1: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) imgvalue = frame[:, :, ::-1] return imgvalue, True return None, False def load_vqa_bio_label_maps(label_map_path): with open(label_map_path, "r", encoding='utf-8') as fin: lines = fin.readlines() lines = [line.strip() for line in lines] if "O" not in lines: lines.insert(0, "O") labels = [] for line in lines: if line == "O": labels.append("O") else: labels.append("B-" + line) labels.append("I-" + line) label2id_map = {label: idx for idx, label in enumerate(labels)} id2label_map = {idx: label for idx, label in enumerate(labels)} return label2id_map, id2label_map def set_seed(seed=1024): random.seed(seed) np.random.seed(seed) paddle.seed(seed) class AverageMeter: def __init__(self): self.reset() def reset(self): """reset""" self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """update""" self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
32.833333
76
0.617213
4a25ff8be9712851407ab150e1c31fa4487b4d8e
330
py
Python
script.py
likelion/script.tubecast
33c6bd7f87dfdca3e86a0dc2239a31d3f43a0450
[ "MIT" ]
83
2018-03-16T21:42:59.000Z
2022-03-13T20:51:41.000Z
script.py
likelion/script.tubecast
33c6bd7f87dfdca3e86a0dc2239a31d3f43a0450
[ "MIT" ]
52
2018-03-29T01:35:10.000Z
2022-03-01T15:48:24.000Z
script.py
likelion/script.tubecast
33c6bd7f87dfdca3e86a0dc2239a31d3f43a0450
[ "MIT" ]
34
2018-03-28T13:58:46.000Z
2021-12-06T11:13:48.000Z
# -*- coding: utf-8 -*- from resources.lib.kodi.utils import get_string, yes_no from resources.lib.tubecast.youtube.pairing import generate_pairing_code if __name__ == "__main__": dg = yes_no(get_string(32008), yeslabel=get_string(32009), nolabel=get_string(32010)) if dg: generate_pairing_code()
33
72
0.706061
4a2600ded2ff6b7b2a3d8935d83407f524008e07
9,897
py
Python
web_console_v2/api/fedlearner_webconsole/k8s/models.py
duanbing/fedlearner
5cce3c1fe09abe66879274a0ad3dc8e2f25a322d
[ "Apache-2.0" ]
null
null
null
web_console_v2/api/fedlearner_webconsole/k8s/models.py
duanbing/fedlearner
5cce3c1fe09abe66879274a0ad3dc8e2f25a322d
[ "Apache-2.0" ]
null
null
null
web_console_v2/api/fedlearner_webconsole/k8s/models.py
duanbing/fedlearner
5cce3c1fe09abe66879274a0ad3dc8e2f25a322d
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The FedLearner Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import logging from abc import ABCMeta, abstractmethod from datetime import datetime, timezone from enum import Enum, unique from typing import Optional, List # Please keep the value consistent with operator's definition @unique class PodType(Enum): UNKNOWN = 'UNKNOWN' # Parameter server PS = 'PS' # Master worker MASTER = 'MASTER' WORKER = 'WORKER' @staticmethod def from_value(value: str) -> 'PodType': try: if isinstance(value, str): value = value.upper() return PodType(value) except ValueError: logging.error(f'Unexpected value of PodType: {value}') return PodType.UNKNOWN @unique class PodState(Enum): UNKNOWN = 'UNKNOWN' RUNNING = 'RUNNING' SUCCEEDED = 'SUCCEEDED' # Succeeded and resource released SUCCEEDED_AND_FREED = 'SUCCEEDED_AND_FREED' FAILED = 'FAILED' # Failed and resource released FAILED_AND_FREED = 'FAILED_AND_FREED' PENDING = 'PENDING' @staticmethod def from_value(value: str) -> 'PodState': try: if isinstance(value, str): value = value.upper() return PodState(value) except ValueError: logging.error(f'Unexpected value of PodState: {value}') return PodState.UNKNOWN class MessageProvider(metaclass=ABCMeta): @abstractmethod def get_message(self, private: bool = False) -> Optional[str]: pass class ContainerState(MessageProvider): def __init__(self, state: str, message: Optional[str] = None, reason: Optional[str] = None): self.state = state self.message = message self.reason = reason def get_message(self, private: bool = False) -> Optional[str]: if private: if self.message is not None: return f'{self.state}:{self.message}' if self.reason is not None: return f'{self.state}:{self.reason}' return None def __eq__(self, other): if not isinstance(other, ContainerState): return False return self.state == other.state and \ self.message == other.message and \ self.reason == other.reason class PodCondition(MessageProvider): def __init__(self, cond_type: str, message: Optional[str] = None, reason: Optional[str] = None): self.cond_type = cond_type self.message = message self.reason = reason def get_message(self, private: bool = False) -> Optional[str]: if private: if self.message is not None: return f'{self.cond_type}:{self.message}' if self.reason is not None: return f'{self.cond_type}:{self.reason}' return None def __eq__(self, other): if not isinstance(other, PodCondition): return False return self.cond_type == other.cond_type and \ self.message == other.message and \ self.reason == other.reason class Pod(object): def __init__(self, name: str, state: PodState, pod_type: PodType, container_states: List[ContainerState] = None, pod_conditions: List[PodCondition] = None): self.name = name self.state = state or PodState.UNKNOWN self.pod_type = pod_type self.container_states = container_states or [] self.pod_conditions = pod_conditions or [] def __eq__(self, other): if not isinstance(other, Pod): return False if len(self.container_states) != len(other.container_states): return False for index, state in enumerate(self.container_states): if state != other.container_states[index]: return False if len(self.pod_conditions or []) != len(self.pod_conditions or []): return False for index, cond in enumerate(self.pod_conditions): if cond != other.pod_conditions[index]: return False return self.name == other.name and \ self.state == other.state and \ self.pod_type == other.pod_type def to_dict(self, include_private_info: bool = False): # TODO: to reuse to_dict from db.py messages = [] for container_state in self.container_states: message = container_state.get_message(include_private_info) if message is not None: messages.append(message) for pod_condition in self.pod_conditions: message = pod_condition.get_message(include_private_info) if message is not None: messages.append(message) return { 'name': self.name, 'pod_type': self.pod_type.name, 'state': self.state.name, 'message': ', '.join(messages) } @classmethod def from_json(cls, p: dict) -> 'Pod': """Extracts information from original K8S pod info. Schema ref: https://github.com/garethr/kubernetes-json-schema/blob/ master/v1.6.5-standalone/pod.json""" container_states: List[ContainerState] = [] pod_conditions: List[PodCondition] = [] if 'containerStatuses' in p['status'] and \ isinstance(p['status']['containerStatuses'], list) and \ len(p['status']['containerStatuses']) > 0: for state, detail in \ p['status']['containerStatuses'][0]['state'].items(): container_states.append(ContainerState( state=state, message=detail.get('message'), reason=detail.get('reason') )) if 'conditions' in p['status'] and \ isinstance(p['status']['conditions'], list): for cond in p['status']['conditions']: pod_conditions.append(PodCondition( cond_type=cond['type'], message=cond.get('message'), reason=cond.get('reason') )) return cls( name=p['metadata']['name'], pod_type=PodType.from_value( p['metadata']['labels']['fl-replica-type']), state=PodState.from_value(p['status']['phase']), container_states=container_states, pod_conditions=pod_conditions) # Please keep the value consistent with operator's definition @unique class FlAppState(Enum): UNKNOWN = 'Unknown' NEW = 'FLStateNew' BOOTSTRAPPED = 'FLStateBootstrapped' SYNC_SENT = 'FLStateSyncSent' RUNNING = 'FLStateRunning' COMPLETED = 'FLStateComplete' FAILING = 'FLStateFailing' SHUTDOWN = 'FLStateShutDown' FAILED = 'FLStateFailed' @staticmethod def from_value(value: str) -> 'FlAppState': try: return FlAppState(value) except ValueError: logging.error(f'Unexpected value of FlAppState: {value}') return FlAppState.UNKNOWN class FlApp(object): def __init__(self, state: FlAppState = FlAppState.UNKNOWN, pods: Optional[List[Pod]] = None, completed_at: Optional[int] = None): self.state = state self.pods = pods or [] self.completed_at = completed_at def __eq__(self, other): if not isinstance(other, FlApp): return False if len(self.pods) != len(other.pods): return False for index, pod in enumerate(self.pods): if pod != other.pods[index]: return False return self.state == other.state and \ self.completed_at == other.completed_at @classmethod def from_json(cls, flapp: dict) -> 'FlApp': if flapp is None \ or 'status' not in flapp \ or not isinstance(flapp['status'], dict): return cls() pods: List[Pod] = [] completed_at: Optional[int] = None # Parses pod related info replicas = flapp['status'].get('flReplicaStatus', {}) for pod_type in replicas: for state in ['failed', 'succeeded']: for pod_name in replicas[pod_type].get(state, {}): if state == 'failed': pod_state = PodState.FAILED_AND_FREED else: pod_state = PodState.SUCCEEDED_AND_FREED pods.append(Pod( name=pod_name, pod_type=PodType.from_value(pod_type), state=pod_state)) state = flapp['status'].get('appState') if flapp['status'].get('completionTime', None): # Completion time is a iso formatted datetime in UTC timezone completed_at = int(datetime.strptime( flapp['status']['completionTime'], '%Y-%m-%dT%H:%M:%SZ').replace(tzinfo=timezone.utc) .timestamp()) return cls(state=FlAppState.from_value(state), pods=pods, completed_at=completed_at)
35.346429
76
0.582197
4a2600f6a0ad09c6dfc7df50333e70dbcb04fe17
6,115
py
Python
shoogie/admin.py
counterjack/django-shoogie
96f0b1178a7f08b1a980274d610b131ca1fc0f89
[ "MIT" ]
null
null
null
shoogie/admin.py
counterjack/django-shoogie
96f0b1178a7f08b1a980274d610b131ca1fc0f89
[ "MIT" ]
null
null
null
shoogie/admin.py
counterjack/django-shoogie
96f0b1178a7f08b1a980274d610b131ca1fc0f89
[ "MIT" ]
1
2021-04-03T07:31:49.000Z
2021-04-03T07:31:49.000Z
from django.contrib import admin from django.contrib.admin.views.main import ChangeList try: from django.conf.urls import url except ImportError: from django.conf.urls import url from django.core.urlresolvers import reverse from django.http import HttpResponse from . import models, utils, views def get_name(user): return user.get_full_name() or user.username class Truncate(object): max_length = 50 def __init__(self, attrname, max_length=None): self.attrname = attrname self.__name__ = attrname if max_length is not None: self.max_length = max_length def __call__(self, instance): val = getattr(instance, self.attrname, '') return utils.truncate(val, self.max_length) class FasterChangeList(ChangeList): "Defers large fields we don't use" defer_fields = ( 'post_data', 'cookie_data', 'session_data', 'technical_response', ) # get_query_set() was renamed to get_queryset() in Django 1.6 def get_queryset(self, *args, **kwargs): changelist = super(FasterChangeList, self) if hasattr(changelist, 'get_queryset'): qset = changelist.get_queryset(*args, **kwargs) else: qset = changelist.get_query_set(*args, **kwargs) return qset.defer(*self.defer_fields) get_query_set = get_queryset class ServerErrorAdmin(admin.ModelAdmin): list_display = (Truncate('exception_type', 40), Truncate('exception_str', 80), 'path_link', 'error_date_format', 'user_link', 'technicalresponse_link', 'resolved',) date_hierarchy = 'timestamp' search_fields = ('request_path', 'exception_type', 'exception_str', 'source_file', 'source_function', 'source_text') actions = ('get_email_list', 'resolve_servererror', 'unresolve_servererror') exclude = ('technical_response',) readonly_fields = ( 'timestamp', 'hostname', 'request_method', 'request_path', 'query_string', 'post_data', 'cookie_data', 'session_id', 'session_data', 'user', 'exception_type', 'exception_str', 'source_file', 'source_line_num', 'source_function', 'source_text', ) # queryset() was renamed to get_queryset() in Django 1.6 def get_queryset(self, request): model_admin = super(ServerErrorAdmin, self) if hasattr(model_admin, 'get_queryset'): qset = model_admin.get_queryset(request) else: qset = model_admin.queryset(request) return qset.select_related('user') queryset = get_queryset def get_changelist(self, request, **kwargs): return FasterChangeList def error_date_format(self, instance): return instance.timestamp.strftime('%Y-%b-%d %H:%M') error_date_format.admin_order_field = 'timestamp' error_date_format.short_description = 'timestamp' get_request_path = Truncate('request_path', 40) def path_link(self, instance): request_path = self.get_request_path(instance) if 'GET' != instance.request_method: if instance.request_method: return u'%s (%s)' % (request_path, instance.request_method) else: return request_path url = u'http://%s%s?%s' % (instance.hostname, instance.request_path, instance.query_string) return u'<a href="{0}" title="{0}">{1}</a>'.format(url, request_path) path_link.admin_order_field = 'request_path' path_link.allow_tags = True path_link.short_description = 'path' def user_link(self, instance): if not instance.user: return u'(None)' user = instance.user url = reverse('admin:auth_user_change', args=(user.id,)) templ = u'<a href="{url}" title="{name}">{username}</a>' return templ.format(url=url, username=user.username, name=get_name(user)) user_link.admin_order_field = 'user' user_link.allow_tags = True user_link.short_description = 'user' def get_email_list(self, request, queryset): emails = set() for se in queryset.select_related('user'): user = se.user if user and user.email: name = get_name(user) emails.add('"%s" <%s>' % (name, user.email)) return HttpResponse(',\n'.join(emails), mimetype='text/plain') get_email_list.short_description = 'Get user email addresses for selected errors' def technicalresponse_link(self, instance): tr_url = reverse('admin:shoogie_technicalresponse', kwargs={'pk':instance.pk}) return '<a href="%s"><b>debug</b></a>' % tr_url technicalresponse_link.allow_tags = True technicalresponse_link.short_description = 'Debug' def resolve_servererror(self, request, queryset): update_count = queryset.update(resolved=True) plural = 's' if update_count != 1 else '' self.message_user(request, "Marked %d error%s as resolved" % (update_count, plural)) resolve_servererror.short_description = "Mark selected errors as resolved" def unresolve_servererror(self, request, queryset): update_count = queryset.update(resolved=False) plural = 's' if update_count != 1 else '' self.message_user(request, "Marked %d error%s as not resolved" % (update_count, plural)) unresolve_servererror.short_description = "Mark selected errors as NOT resolved" def get_urls(self): myview = views.TechnicalResponseView.as_view() myurls = ['', url(r'(?P<pk>\d+)/technicalresponse/$', self.admin_site.admin_view(myview, cacheable=True), name='shoogie_technicalresponse', ), ] return myurls + super(ServerErrorAdmin, self).get_urls() admin.site.register(models.ServerError, ServerErrorAdmin)
38.21875
121
0.628618
4a2601226669c55c36c016a5a9ef915b3224757b
3,410
py
Python
sdk/cognitivelanguage/azure-ai-language-conversations/samples/sample_analyze_orchestration_app_qna_response.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-01-24T08:54:57.000Z
2022-01-24T08:54:57.000Z
sdk/cognitivelanguage/azure-ai-language-conversations/samples/sample_analyze_orchestration_app_qna_response.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
sdk/cognitivelanguage/azure-ai-language-conversations/samples/sample_analyze_orchestration_app_qna_response.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """ FILE: sample_analyze_orchestration_app_qna_response.py DESCRIPTION: This sample demonstrates how to analyze user query using an orchestration project. In this sample, orchestration project's top intent will map to a Qna project. For more info about how to setup a CLU orchestration project, see the README. USAGE: python sample_analyze_orchestration_app_qna_response.py Set the environment variables with your own values before running the sample: 1) AZURE_CONVERSATIONS_ENDPOINT - endpoint for your CLU resource. 2) AZURE_CONVERSATIONS_KEY - API key for your CLU resource. 3) AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME - project name for your CLU orchestration project. 4) AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME - deployment name for your CLU orchestration project. """ def sample_analyze_orchestration_app_qna_response(): # [START analyze_orchestration_app_qna_response] # import libraries import os from azure.core.credentials import AzureKeyCredential from azure.ai.language.conversations import ConversationAnalysisClient from azure.ai.language.conversations.models import ( CustomConversationalTask, ConversationAnalysisOptions, CustomConversationTaskParameters, TextConversationItem ) # get secrets clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"] clu_key = os.environ["AZURE_CONVERSATIONS_KEY"] project_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME"] deployment_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME"] # analyze query client = ConversationAnalysisClient(clu_endpoint, AzureKeyCredential(clu_key)) with client: query = "How are you?" result = client.analyze_conversation( task=CustomConversationalTask( analysis_input=ConversationAnalysisOptions( conversation_item=TextConversationItem( text=query ) ), parameters=CustomConversationTaskParameters( project_name=project_name, deployment_name=deployment_name ) ) ) # view result print("query: {}".format(result.results.query)) print("project kind: {}\n".format(result.results.prediction.project_kind)) # top intent top_intent = result.results.prediction.top_intent print("top intent: {}".format(top_intent)) top_intent_object = result.results.prediction.intents[top_intent] print("confidence score: {}".format(top_intent_object.confidence)) print("project kind: {}".format(top_intent_object.target_kind)) if top_intent_object.target_kind == "question_answering": print("\nview qna result:") qna_result = top_intent_object.result for answer in qna_result.answers: print("\nanswer: {}".format(answer.answer)) print("answer: {}".format(answer.confidence)) # [END analyze_orchestration_app_qna_response] if __name__ == '__main__': sample_analyze_orchestration_app_qna_response()
40.117647
106
0.676833
4a2603845d35b4b4dc36e6ae25c9ad0bb815f71e
867
py
Python
var/spack/repos/builtin/packages/dnstracer/package.py
robertodr/spack
9b809e01b47d48f01b3d257912fe1b752943cd3d
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
9
2018-04-18T07:51:40.000Z
2021-09-10T03:56:57.000Z
var/spack/repos/builtin/packages/dnstracer/package.py
robertodr/spack
9b809e01b47d48f01b3d257912fe1b752943cd3d
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
907
2018-04-18T11:17:57.000Z
2022-03-31T13:20:25.000Z
var/spack/repos/builtin/packages/dnstracer/package.py
robertodr/spack
9b809e01b47d48f01b3d257912fe1b752943cd3d
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
29
2018-11-05T16:14:23.000Z
2022-02-03T16:07:09.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Dnstracer(Package): """Dnstracer determines where a given Domain Name Server gets its information from, and follows the chain of DNS servers back to the servers which know the data.""" homepage = "https://github.com/Orc/dnstracer" git = "https://github.com/Orc/dnstracer.git" version('master', branch='master') phases = ['configure', 'build', 'install'] def configure(self, spec, prefix): configure = Executable('./configure.sh') configure('--prefix={0}'.format(prefix)) def build(self, spec, prefix): make() def install(self, spec, prefix): make('install')
28.9
73
0.672434
4a260391c23291acb9ce469940ae518e2e90b45c
2,626
py
Python
square__heisenberg__static/square_heisenberg_linearoperator.py
ryuikaneko/quspin_example
931ca2ea5e6bbe02ebdd6d6a22d90db24d6c760c
[ "BSD-3-Clause" ]
null
null
null
square__heisenberg__static/square_heisenberg_linearoperator.py
ryuikaneko/quspin_example
931ca2ea5e6bbe02ebdd6d6a22d90db24d6c760c
[ "BSD-3-Clause" ]
null
null
null
square__heisenberg__static/square_heisenberg_linearoperator.py
ryuikaneko/quspin_example
931ca2ea5e6bbe02ebdd6d6a22d90db24d6c760c
[ "BSD-3-Clause" ]
null
null
null
## http://weinbe58.github.io/QuSpin/generated/quspin.basis.spin_basis_general.html#quspin.basis.spin_basis_general ## http://weinbe58.github.io/QuSpin/generated/quspin.operators.quantum_LinearOperator.html from __future__ import print_function, division #from quspin.operators import hamiltonian # operators from quspin.operators import quantum_LinearOperator # Hamiltonians and operators from quspin.basis import spin_basis_general # spin basis constructor import numpy as np # general math functions import scipy.sparse.linalg # ###### define model parameters ###### J = 1.0 # spin-spin interaction Lx, Ly = 4, 4 # linear dimension of 2d lattice #Lx, Ly = 6, 6 # linear dimension of 2d lattice N_2d = Lx*Ly # number of sites # ###### setting up user-defined symmetry transformations for 2d lattice ###### s = np.arange(N_2d) # sites [0,1,2,....] x = s%Lx # x positions for sites y = s//Lx # y positions for sites T_x = (x+1)%Lx + Lx*y # translation along x-direction T_y = x +Lx*((y+1)%Ly) # translation along y-direction P_x = x + Lx*(Ly-y-1) # reflection about x-axis P_y = (Lx-x-1) + Lx*y # reflection about y-axis Z = -(s+1) # spin inversion # ###### setting up bases ###### basis_2d = spin_basis_general(N=N_2d,Nup=N_2d//2,S="1/2",pauli=0,kxblock=(T_x,0),kyblock=(T_y,0),pxblock=(P_x,0),pyblock=(P_y,0),zblock=(Z,0)) #basis_2d = spin_basis_general(N=N_2d,Nup=N_2d//2,S="1/2",pauli=0) # ###### setting up hamiltonian ###### # setting up site-coupling lists Jzzs = [[J,i,T_x[i]] for i in range(N_2d)]+[[J,i,T_y[i]] for i in range(N_2d)] Jpms = [[0.5*J,i,T_x[i]] for i in range(N_2d)]+[[0.5*J,i,T_y[i]] for i in range(N_2d)] Jmps = [[0.5*J,i,T_x[i]] for i in range(N_2d)]+[[0.5*J,i,T_y[i]] for i in range(N_2d)] # static = [["zz",Jzzs],["+-",Jpms],["-+",Jmps]] # build hamiltonian #H = hamiltonian(static,[],static_fmt="csr",basis=basis_2d,dtype=np.float64) #H = quantum_LinearOperator(static,basis=basis_2d,dtype=np.float64) no_checks = dict(check_symm=False, check_pcon=False, check_herm=False) #H = hamiltonian(static,[],static_fmt="csr",basis=basis_2d,dtype=np.float64,**no_checks) H = quantum_LinearOperator(static,basis=basis_2d,dtype=np.float64,**no_checks) # diagonalise H #ene,vec = H.eigsh(time=0.0,which="SA",k=2) #ene,vec = H.eigsh(which="SA",k=2) #ene = H.eigsh(which="SA",k=2,return_eigenvectors=False); ene = np.sort(ene) ## https://weinbe58.github.io/QuSpin/parallelization.html#parallel-support-in-the-operator-module-hamiltonian-quantum-operator-and-quantum-linearoperator ene = scipy.sparse.linalg.eigsh(H,which="SA",k=2,return_eigenvectors=False); ene = np.sort(ene) print(J,ene[0]/N_2d,ene[1]/N_2d)
52.52
153
0.714014
4a26053aff24417fd2b56efd74ae8de312b64ecf
23,683
py
Python
src/twisted/conch/scripts/tkconch.py
apjanke/twisted
22f949f7ce187513f0c218b73186c8a73baa00b4
[ "Unlicense", "MIT" ]
1
2021-01-03T01:54:14.000Z
2021-01-03T01:54:14.000Z
src/twisted/conch/scripts/tkconch.py
zerospam/twisted
e23b5e2040a4d643bc6a43785621358569886a0d
[ "MIT", "Unlicense" ]
null
null
null
src/twisted/conch/scripts/tkconch.py
zerospam/twisted
e23b5e2040a4d643bc6a43785621358569886a0d
[ "MIT", "Unlicense" ]
null
null
null
# -*- test-case-name: twisted.conch.test.test_scripts -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Implementation module for the `tkconch` command. """ from twisted.conch import error from twisted.conch.ui import tkvt100 from twisted.conch.ssh import transport, userauth, connection, common, keys from twisted.conch.ssh import session, forwarding, channel from twisted.conch.client.default import isInKnownHosts from twisted.internet import reactor, defer, protocol, tksupport from twisted.python import usage, log import base64 import getpass import os import signal import struct import sys from typing import List, Tuple import tkinter as Tkinter import tkinter.filedialog as tkFileDialog import tkinter.messagebox as tkMessageBox class TkConchMenu(Tkinter.Frame): def __init__(self, *args, **params): ## Standard heading: initialization Tkinter.Frame.__init__(self, *args, **params) self.master.title("TkConch") self.localRemoteVar = Tkinter.StringVar() self.localRemoteVar.set("local") Tkinter.Label(self, anchor="w", justify="left", text="Hostname").grid( column=1, row=1, sticky="w" ) self.host = Tkinter.Entry(self) self.host.grid(column=2, columnspan=2, row=1, sticky="nesw") Tkinter.Label(self, anchor="w", justify="left", text="Port").grid( column=1, row=2, sticky="w" ) self.port = Tkinter.Entry(self) self.port.grid(column=2, columnspan=2, row=2, sticky="nesw") Tkinter.Label(self, anchor="w", justify="left", text="Username").grid( column=1, row=3, sticky="w" ) self.user = Tkinter.Entry(self) self.user.grid(column=2, columnspan=2, row=3, sticky="nesw") Tkinter.Label(self, anchor="w", justify="left", text="Command").grid( column=1, row=4, sticky="w" ) self.command = Tkinter.Entry(self) self.command.grid(column=2, columnspan=2, row=4, sticky="nesw") Tkinter.Label(self, anchor="w", justify="left", text="Identity").grid( column=1, row=5, sticky="w" ) self.identity = Tkinter.Entry(self) self.identity.grid(column=2, row=5, sticky="nesw") Tkinter.Button(self, command=self.getIdentityFile, text="Browse").grid( column=3, row=5, sticky="nesw" ) Tkinter.Label(self, text="Port Forwarding").grid(column=1, row=6, sticky="w") self.forwards = Tkinter.Listbox(self, height=0, width=0) self.forwards.grid(column=2, columnspan=2, row=6, sticky="nesw") Tkinter.Button(self, text="Add", command=self.addForward).grid(column=1, row=7) Tkinter.Button(self, text="Remove", command=self.removeForward).grid( column=1, row=8 ) self.forwardPort = Tkinter.Entry(self) self.forwardPort.grid(column=2, row=7, sticky="nesw") Tkinter.Label(self, text="Port").grid(column=3, row=7, sticky="nesw") self.forwardHost = Tkinter.Entry(self) self.forwardHost.grid(column=2, row=8, sticky="nesw") Tkinter.Label(self, text="Host").grid(column=3, row=8, sticky="nesw") self.localForward = Tkinter.Radiobutton( self, text="Local", variable=self.localRemoteVar, value="local" ) self.localForward.grid(column=2, row=9) self.remoteForward = Tkinter.Radiobutton( self, text="Remote", variable=self.localRemoteVar, value="remote" ) self.remoteForward.grid(column=3, row=9) Tkinter.Label(self, text="Advanced Options").grid( column=1, columnspan=3, row=10, sticky="nesw" ) Tkinter.Label(self, anchor="w", justify="left", text="Cipher").grid( column=1, row=11, sticky="w" ) self.cipher = Tkinter.Entry(self, name="cipher") self.cipher.grid(column=2, columnspan=2, row=11, sticky="nesw") Tkinter.Label(self, anchor="w", justify="left", text="MAC").grid( column=1, row=12, sticky="w" ) self.mac = Tkinter.Entry(self, name="mac") self.mac.grid(column=2, columnspan=2, row=12, sticky="nesw") Tkinter.Label(self, anchor="w", justify="left", text="Escape Char").grid( column=1, row=13, sticky="w" ) self.escape = Tkinter.Entry(self, name="escape") self.escape.grid(column=2, columnspan=2, row=13, sticky="nesw") Tkinter.Button(self, text="Connect!", command=self.doConnect).grid( column=1, columnspan=3, row=14, sticky="nesw" ) # Resize behavior(s) self.grid_rowconfigure(6, weight=1, minsize=64) self.grid_columnconfigure(2, weight=1, minsize=2) self.master.protocol("WM_DELETE_WINDOW", sys.exit) def getIdentityFile(self): r = tkFileDialog.askopenfilename() if r: self.identity.delete(0, Tkinter.END) self.identity.insert(Tkinter.END, r) def addForward(self): port = self.forwardPort.get() self.forwardPort.delete(0, Tkinter.END) host = self.forwardHost.get() self.forwardHost.delete(0, Tkinter.END) if self.localRemoteVar.get() == "local": self.forwards.insert(Tkinter.END, "L:%s:%s" % (port, host)) else: self.forwards.insert(Tkinter.END, "R:%s:%s" % (port, host)) def removeForward(self): cur = self.forwards.curselection() if cur: self.forwards.remove(cur[0]) def doConnect(self): finished = 1 options["host"] = self.host.get() options["port"] = self.port.get() options["user"] = self.user.get() options["command"] = self.command.get() cipher = self.cipher.get() mac = self.mac.get() escape = self.escape.get() if cipher: if cipher in SSHClientTransport.supportedCiphers: SSHClientTransport.supportedCiphers = [cipher] else: tkMessageBox.showerror("TkConch", "Bad cipher.") finished = 0 if mac: if mac in SSHClientTransport.supportedMACs: SSHClientTransport.supportedMACs = [mac] elif finished: tkMessageBox.showerror("TkConch", "Bad MAC.") finished = 0 if escape: if escape == "none": options["escape"] = None elif escape[0] == "^" and len(escape) == 2: options["escape"] = chr(ord(escape[1]) - 64) elif len(escape) == 1: options["escape"] = escape elif finished: tkMessageBox.showerror("TkConch", "Bad escape character '%s'." % escape) finished = 0 if self.identity.get(): options.identitys.append(self.identity.get()) for line in self.forwards.get(0, Tkinter.END): if line[0] == "L": options.opt_localforward(line[2:]) else: options.opt_remoteforward(line[2:]) if "@" in options["host"]: options["user"], options["host"] = options["host"].split("@", 1) if (not options["host"] or not options["user"]) and finished: tkMessageBox.showerror("TkConch", "Missing host or username.") finished = 0 if finished: self.master.quit() self.master.destroy() if options["log"]: realout = sys.stdout log.startLogging(sys.stderr) sys.stdout = realout else: log.discardLogs() log.deferr = handleError # HACK if not options.identitys: options.identitys = ["~/.ssh/id_rsa", "~/.ssh/id_dsa"] host = options["host"] port = int(options["port"] or 22) log.msg((host, port)) reactor.connectTCP(host, port, SSHClientFactory()) frame.master.deiconify() frame.master.title("%s@%s - TkConch" % (options["user"], options["host"])) else: self.focus() class GeneralOptions(usage.Options): synopsis = """Usage: tkconch [options] host [command] """ optParameters = [ ["user", "l", None, "Log in using this user name."], ["identity", "i", "~/.ssh/identity", "Identity for public key authentication"], ["escape", "e", "~", "Set escape character; ``none'' = disable"], ["cipher", "c", None, "Select encryption algorithm."], ["macs", "m", None, "Specify MAC algorithms for protocol version 2."], ["port", "p", None, "Connect to this port. Server must be on the same port."], [ "localforward", "L", None, "listen-port:host:port Forward local port to remote address", ], [ "remoteforward", "R", None, "listen-port:host:port Forward remote port to local address", ], ] optFlags = [ ["tty", "t", "Tty; allocate a tty even if command is given."], ["notty", "T", "Do not allocate a tty."], ["version", "V", "Display version number only."], ["compress", "C", "Enable compression."], ["noshell", "N", "Do not execute a shell or command."], ["subsystem", "s", "Invoke command (mandatory) as SSH2 subsystem."], ["log", "v", "Log to stderr"], ["ansilog", "a", "Print the received data to stdout"], ] _ciphers = transport.SSHClientTransport.supportedCiphers _macs = transport.SSHClientTransport.supportedMACs compData = usage.Completions( mutuallyExclusive=[("tty", "notty")], optActions={ "cipher": usage.CompleteList(_ciphers), "macs": usage.CompleteList(_macs), "localforward": usage.Completer(descr="listen-port:host:port"), "remoteforward": usage.Completer(descr="listen-port:host:port"), }, extraActions=[ usage.CompleteUserAtHost(), usage.Completer(descr="command"), usage.Completer(descr="argument", repeat=True), ], ) identitys = [] # type: List[str] localForwards = [] # type: List[Tuple[int, Tuple[int, int]]] remoteForwards = [] # type: List[Tuple[int, Tuple[int, int]]] def opt_identity(self, i): self.identitys.append(i) def opt_localforward(self, f): localPort, remoteHost, remotePort = f.split(":") # doesn't do v6 yet localPort = int(localPort) remotePort = int(remotePort) self.localForwards.append((localPort, (remoteHost, remotePort))) def opt_remoteforward(self, f): remotePort, connHost, connPort = f.split(":") # doesn't do v6 yet remotePort = int(remotePort) connPort = int(connPort) self.remoteForwards.append((remotePort, (connHost, connPort))) def opt_compress(self): SSHClientTransport.supportedCompressions[0:1] = ["zlib"] def parseArgs(self, *args): if args: self["host"] = args[0] self["command"] = " ".join(args[1:]) else: self["host"] = "" self["command"] = "" # Rest of code in "run" options = None menu = None exitStatus = 0 frame = None def deferredAskFrame(question, echo): if frame.callback: raise ValueError("can't ask 2 questions at once!") d = defer.Deferred() resp = [] def gotChar(ch, resp=resp): if not ch: return if ch == "\x03": # C-c reactor.stop() if ch == "\r": frame.write("\r\n") stresp = "".join(resp) del resp frame.callback = None d.callback(stresp) return elif 32 <= ord(ch) < 127: resp.append(ch) if echo: frame.write(ch) elif ord(ch) == 8 and resp: # BS if echo: frame.write("\x08 \x08") resp.pop() frame.callback = gotChar frame.write(question) frame.canvas.focus_force() return d def run(): global menu, options, frame args = sys.argv[1:] if "-l" in args: # cvs is an idiot i = args.index("-l") args = args[i : i + 2] + args del args[i + 2 : i + 4] for arg in args[:]: try: i = args.index(arg) if arg[:2] == "-o" and args[i + 1][0] != "-": args[i : i + 2] = [] # suck on it scp except ValueError: pass root = Tkinter.Tk() root.withdraw() top = Tkinter.Toplevel() menu = TkConchMenu(top) menu.pack(side=Tkinter.TOP, fill=Tkinter.BOTH, expand=1) options = GeneralOptions() try: options.parseOptions(args) except usage.UsageError as u: print("ERROR: %s" % u) options.opt_help() sys.exit(1) for k, v in options.items(): if v and hasattr(menu, k): getattr(menu, k).insert(Tkinter.END, v) for (p, (rh, rp)) in options.localForwards: menu.forwards.insert(Tkinter.END, "L:%s:%s:%s" % (p, rh, rp)) options.localForwards = [] for (p, (rh, rp)) in options.remoteForwards: menu.forwards.insert(Tkinter.END, "R:%s:%s:%s" % (p, rh, rp)) options.remoteForwards = [] frame = tkvt100.VT100Frame(root, callback=None) root.geometry( "%dx%d" % (tkvt100.fontWidth * frame.width + 3, tkvt100.fontHeight * frame.height + 3) ) frame.pack(side=Tkinter.TOP) tksupport.install(root) root.withdraw() if (options["host"] and options["user"]) or "@" in options["host"]: menu.doConnect() else: top.mainloop() reactor.run() sys.exit(exitStatus) def handleError(): from twisted.python import failure global exitStatus exitStatus = 2 log.err(failure.Failure()) reactor.stop() raise class SSHClientFactory(protocol.ClientFactory): noisy = True def stopFactory(self): reactor.stop() def buildProtocol(self, addr): return SSHClientTransport() def clientConnectionFailed(self, connector, reason): tkMessageBox.showwarning( "TkConch", "Connection Failed, Reason:\n %s: %s" % (reason.type, reason.value), ) class SSHClientTransport(transport.SSHClientTransport): def receiveError(self, code, desc): global exitStatus exitStatus = ( "conch:\tRemote side disconnected with error code %i\nconch:\treason: %s" % (code, desc) ) def sendDisconnect(self, code, reason): global exitStatus exitStatus = ( "conch:\tSending disconnect with error code %i\nconch:\treason: %s" % (code, reason) ) transport.SSHClientTransport.sendDisconnect(self, code, reason) def receiveDebug(self, alwaysDisplay, message, lang): global options if alwaysDisplay or options["log"]: log.msg("Received Debug Message: %s" % message) def verifyHostKey(self, pubKey, fingerprint): # d = defer.Deferred() # d.addCallback(lambda x:defer.succeed(1)) # d.callback(2) # return d goodKey = isInKnownHosts(options["host"], pubKey, {"known-hosts": None}) if goodKey == 1: # good key return defer.succeed(1) elif goodKey == 2: # AAHHHHH changed return defer.fail(error.ConchError("bad host key")) else: if options["host"] == self.transport.getPeer().host: host = options["host"] khHost = options["host"] else: host = "%s (%s)" % (options["host"], self.transport.getPeer().host) khHost = "%s,%s" % (options["host"], self.transport.getPeer().host) keyType = common.getNS(pubKey)[0] ques = """The authenticity of host '%s' can't be established.\r %s key fingerprint is %s.""" % ( host, {b"ssh-dss": "DSA", b"ssh-rsa": "RSA"}[keyType], fingerprint, ) ques += "\r\nAre you sure you want to continue connecting (yes/no)? " return deferredAskFrame(ques, 1).addCallback( self._cbVerifyHostKey, pubKey, khHost, keyType ) def _cbVerifyHostKey(self, ans, pubKey, khHost, keyType): if ans.lower() not in ("yes", "no"): return deferredAskFrame("Please type 'yes' or 'no': ", 1).addCallback( self._cbVerifyHostKey, pubKey, khHost, keyType ) if ans.lower() == "no": frame.write("Host key verification failed.\r\n") raise error.ConchError("bad host key") try: frame.write( "Warning: Permanently added '%s' (%s) to the list of " "known hosts.\r\n" % (khHost, {b"ssh-dss": "DSA", b"ssh-rsa": "RSA"}[keyType]) ) with open(os.path.expanduser("~/.ssh/known_hosts"), "a") as known_hosts: encodedKey = base64.b64encode(pubKey) known_hosts.write("\n%s %s %s" % (khHost, keyType, encodedKey)) except BaseException: log.deferr() raise error.ConchError def connectionSecure(self): if options["user"]: user = options["user"] else: user = getpass.getuser() self.requestService(SSHUserAuthClient(user, SSHConnection())) class SSHUserAuthClient(userauth.SSHUserAuthClient): usedFiles = [] # type: List[str] def getPassword(self, prompt=None): if not prompt: prompt = "%s@%s's password: " % (self.user, options["host"]) return deferredAskFrame(prompt, 0) def getPublicKey(self): files = [x for x in options.identitys if x not in self.usedFiles] if not files: return None file = files[0] log.msg(file) self.usedFiles.append(file) file = os.path.expanduser(file) file += ".pub" if not os.path.exists(file): return try: return keys.Key.fromFile(file).blob() except: return self.getPublicKey() # try again def getPrivateKey(self): file = os.path.expanduser(self.usedFiles[-1]) if not os.path.exists(file): return None try: return defer.succeed(keys.Key.fromFile(file).keyObject) except keys.BadKeyError as e: if e.args[0] == "encrypted key with no password": prompt = "Enter passphrase for key '%s': " % self.usedFiles[-1] return deferredAskFrame(prompt, 0).addCallback(self._cbGetPrivateKey, 0) def _cbGetPrivateKey(self, ans, count): file = os.path.expanduser(self.usedFiles[-1]) try: return keys.Key.fromFile(file, password=ans).keyObject except keys.BadKeyError: if count == 2: raise prompt = "Enter passphrase for key '%s': " % self.usedFiles[-1] return deferredAskFrame(prompt, 0).addCallback( self._cbGetPrivateKey, count + 1 ) class SSHConnection(connection.SSHConnection): def serviceStarted(self): if not options["noshell"]: self.openChannel(SSHSession()) if options.localForwards: for localPort, hostport in options.localForwards: reactor.listenTCP( localPort, forwarding.SSHListenForwardingFactory( self, hostport, forwarding.SSHListenClientForwardingChannel ), ) if options.remoteForwards: for remotePort, hostport in options.remoteForwards: log.msg( "asking for remote forwarding for %s:%s" % (remotePort, hostport) ) data = forwarding.packGlobal_tcpip_forward(("0.0.0.0", remotePort)) self.sendGlobalRequest("tcpip-forward", data) self.remoteForwards[remotePort] = hostport class SSHSession(channel.SSHChannel): name = b"session" def channelOpen(self, foo): # global globalSession # globalSession = self # turn off local echo self.escapeMode = 1 c = session.SSHSessionClient() if options["escape"]: c.dataReceived = self.handleInput else: c.dataReceived = self.write c.connectionLost = self.sendEOF frame.callback = c.dataReceived frame.canvas.focus_force() if options["subsystem"]: self.conn.sendRequest(self, b"subsystem", common.NS(options["command"])) elif options["command"]: if options["tty"]: term = os.environ.get("TERM", "xterm") # winsz = fcntl.ioctl(fd, tty.TIOCGWINSZ, '12345678') winSize = (25, 80, 0, 0) # struct.unpack('4H', winsz) ptyReqData = session.packRequest_pty_req(term, winSize, "") self.conn.sendRequest(self, b"pty-req", ptyReqData) self.conn.sendRequest(self, "exec", common.NS(options["command"])) else: if not options["notty"]: term = os.environ.get("TERM", "xterm") # winsz = fcntl.ioctl(fd, tty.TIOCGWINSZ, '12345678') winSize = (25, 80, 0, 0) # struct.unpack('4H', winsz) ptyReqData = session.packRequest_pty_req(term, winSize, "") self.conn.sendRequest(self, b"pty-req", ptyReqData) self.conn.sendRequest(self, b"shell", b"") self.conn.transport.transport.setTcpNoDelay(1) def handleInput(self, char): # log.msg('handling %s' % repr(char)) if char in ("\n", "\r"): self.escapeMode = 1 self.write(char) elif self.escapeMode == 1 and char == options["escape"]: self.escapeMode = 2 elif self.escapeMode == 2: self.escapeMode = 1 # so we can chain escapes together if char == ".": # disconnect log.msg("disconnecting from escape") reactor.stop() return elif char == "\x1a": # ^Z, suspend # following line courtesy of Erwin@freenode os.kill(os.getpid(), signal.SIGSTOP) return elif char == "R": # rekey connection log.msg("rekeying connection") self.conn.transport.sendKexInit() return self.write("~" + char) else: self.escapeMode = 0 self.write(char) def dataReceived(self, data): data = data.decode("utf-8") if options["ansilog"]: print(repr(data)) frame.write(data) def extReceived(self, t, data): if t == connection.EXTENDED_DATA_STDERR: log.msg("got %s stderr data" % len(data)) sys.stderr.write(data) sys.stderr.flush() def eofReceived(self): log.msg("got eof") sys.stdin.close() def closed(self): log.msg("closed %s" % self) if len(self.conn.channels) == 1: # just us left reactor.stop() def request_exit_status(self, data): global exitStatus exitStatus = int(struct.unpack(">L", data)[0]) log.msg("exit status: %s" % exitStatus) def sendEOF(self): self.conn.sendEOF(self) if __name__ == "__main__": run()
35.667169
88
0.564793
4a2605eeb99af01df307854567dadef8bd6860a5
5,159
py
Python
sdk/python/pulumi_aws_native/iotcoredeviceadvisor/get_suite_definition.py
pulumi/pulumi-aws-native
1ae4a4d9c2256b2a79ca536f8d8497b28d10e4c3
[ "Apache-2.0" ]
29
2021-09-30T19:32:07.000Z
2022-03-22T21:06:08.000Z
sdk/python/pulumi_aws_native/iotcoredeviceadvisor/get_suite_definition.py
pulumi/pulumi-aws-native
1ae4a4d9c2256b2a79ca536f8d8497b28d10e4c3
[ "Apache-2.0" ]
232
2021-09-30T19:26:26.000Z
2022-03-31T23:22:06.000Z
sdk/python/pulumi_aws_native/iotcoredeviceadvisor/get_suite_definition.py
pulumi/pulumi-aws-native
1ae4a4d9c2256b2a79ca536f8d8497b28d10e4c3
[ "Apache-2.0" ]
4
2021-11-10T19:42:01.000Z
2022-02-05T10:15:49.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetSuiteDefinitionResult', 'AwaitableGetSuiteDefinitionResult', 'get_suite_definition', 'get_suite_definition_output', ] @pulumi.output_type class GetSuiteDefinitionResult: def __init__(__self__, suite_definition_arn=None, suite_definition_configuration=None, suite_definition_id=None, suite_definition_version=None, tags=None): if suite_definition_arn and not isinstance(suite_definition_arn, str): raise TypeError("Expected argument 'suite_definition_arn' to be a str") pulumi.set(__self__, "suite_definition_arn", suite_definition_arn) if suite_definition_configuration and not isinstance(suite_definition_configuration, dict): raise TypeError("Expected argument 'suite_definition_configuration' to be a dict") pulumi.set(__self__, "suite_definition_configuration", suite_definition_configuration) if suite_definition_id and not isinstance(suite_definition_id, str): raise TypeError("Expected argument 'suite_definition_id' to be a str") pulumi.set(__self__, "suite_definition_id", suite_definition_id) if suite_definition_version and not isinstance(suite_definition_version, str): raise TypeError("Expected argument 'suite_definition_version' to be a str") pulumi.set(__self__, "suite_definition_version", suite_definition_version) if tags and not isinstance(tags, list): raise TypeError("Expected argument 'tags' to be a list") pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="suiteDefinitionArn") def suite_definition_arn(self) -> Optional[str]: """ The Amazon Resource name for the suite definition. """ return pulumi.get(self, "suite_definition_arn") @property @pulumi.getter(name="suiteDefinitionConfiguration") def suite_definition_configuration(self) -> Optional['outputs.SuiteDefinitionConfigurationProperties']: return pulumi.get(self, "suite_definition_configuration") @property @pulumi.getter(name="suiteDefinitionId") def suite_definition_id(self) -> Optional[str]: """ The unique identifier for the suite definition. """ return pulumi.get(self, "suite_definition_id") @property @pulumi.getter(name="suiteDefinitionVersion") def suite_definition_version(self) -> Optional[str]: """ The suite definition version of a test suite. """ return pulumi.get(self, "suite_definition_version") @property @pulumi.getter def tags(self) -> Optional[Sequence['outputs.SuiteDefinitionTag']]: """ An array of key-value pairs to apply to this resource. """ return pulumi.get(self, "tags") class AwaitableGetSuiteDefinitionResult(GetSuiteDefinitionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSuiteDefinitionResult( suite_definition_arn=self.suite_definition_arn, suite_definition_configuration=self.suite_definition_configuration, suite_definition_id=self.suite_definition_id, suite_definition_version=self.suite_definition_version, tags=self.tags) def get_suite_definition(suite_definition_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSuiteDefinitionResult: """ An example resource schema demonstrating some basic constructs and validation rules. :param str suite_definition_id: The unique identifier for the suite definition. """ __args__ = dict() __args__['suiteDefinitionId'] = suite_definition_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:iotcoredeviceadvisor:getSuiteDefinition', __args__, opts=opts, typ=GetSuiteDefinitionResult).value return AwaitableGetSuiteDefinitionResult( suite_definition_arn=__ret__.suite_definition_arn, suite_definition_configuration=__ret__.suite_definition_configuration, suite_definition_id=__ret__.suite_definition_id, suite_definition_version=__ret__.suite_definition_version, tags=__ret__.tags) @_utilities.lift_output_func(get_suite_definition) def get_suite_definition_output(suite_definition_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetSuiteDefinitionResult]: """ An example resource schema demonstrating some basic constructs and validation rules. :param str suite_definition_id: The unique identifier for the suite definition. """ ...
41.943089
159
0.721845
4a2605f4d05f23ddf75b147f827fb14199d03569
4,627
py
Python
rlalgos/a2c/agent.py
ludc/rlstructures
99fa91bb4e955d31348bed007f25b41641c9fa73
[ "MIT" ]
null
null
null
rlalgos/a2c/agent.py
ludc/rlstructures
99fa91bb4e955d31348bed007f25b41641c9fa73
[ "MIT" ]
null
null
null
rlalgos/a2c/agent.py
ludc/rlstructures
99fa91bb4e955d31348bed007f25b41641c9fa73
[ "MIT" ]
null
null
null
# # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import rlstructures.logging as logging from rlstructures import DictTensor from rlstructures import Agent import time class NNAgent(Agent): """ Describes a discrete agent based on a model that produces a score for each possible action, and an estimation of the value function in the current state. """ def __init__(self,model=None, n_actions=None): """ Args: model (nn.Module): a module producing a tuple: (actions scores, value) n_actions (int): the number of possible actions """ super().__init__() self.model = model self.n_actions = n_actions self.z_size = self.model.initial_state(1).size()[1] def update(self, state_dict): self.model.load_state_dict(state_dict) def __call__(self, state, observation,agent_info=None,history=None): """ Executing one step of the agent """ # Verify that the batch size is 1 initial_state = observation["initial_state"] B = observation.n_elems() if agent_info is None: agent_info=DictTensor({"stochastic":torch.tensor([True]).repeat(B)}) model_initial_state = self.model.initial_state(B) agent_state = None agent_step = None if state is None: assert initial_state.all() agent_state = model_initial_state agent_step = torch.zeros(B).long() else: _is = ( initial_state.float() .unsqueeze(-1) .repeat(1, model_initial_state.size()[1]) ) agent_state = _is * model_initial_state + (1 - _is) * state["agent_state"] agent_step = ( initial_state.float() * torch.zeros(B) + (1 - initial_state.float()) * state["agent_step"] ).long() score_action, value, next_state = self.model( agent_state, observation["frame"], observation["last_action"] ) action_proba = torch.softmax(score_action, dim=1) dist = torch.distributions.Categorical(action_proba) action_sampled = dist.sample() action_max = action_proba.max(1)[1] smask=agent_info["stochastic"].float() action=(action_sampled*smask+(1-smask)*action_max).long() new_state = DictTensor( {"agent_state": next_state, "agent_step": agent_step + 1} ) agent_do = DictTensor( {"action": action, "action_probabilities": action_proba} ) state = DictTensor({"agent_state": agent_state, "agent_step": agent_step}) return state, agent_do, new_state class MLPAgentModel(nn.Module): def __init__(self, n_observations, n_actions, n_hidden): super().__init__() self.linear = nn.Linear(n_observations, n_hidden) self.linear2 = nn.Linear(n_hidden, n_actions) self.linear_v = nn.Linear(n_hidden, 1) def initial_state(self, batch_size): d = next(self.parameters()).device return torch.zeros(batch_size, 1).to(d) def forward(self, state, frame, last_action): z = torch.tanh(self.linear(frame)) score_actions = self.linear2(z) value = self.linear_v(z) return score_actions, value, self.initial_state(frame.size()[0]) + 1.0 class GRUAgentModel(nn.Module): def __init__(self, n_observations, n_actions, n_hidden): super().__init__() self.linear = nn.Linear(n_hidden, n_actions) self.linear_obs = nn.Linear(n_observations, n_hidden) self.linear_action = nn.Linear(n_actions, n_hidden) self.gru = nn.GRUCell(2 * n_hidden, n_hidden) self.linear_v = nn.Linear(n_hidden, 1) self.n_hidden = n_hidden self.n_actions = n_actions def initial_state(self, batch_size): d = next(self.parameters()).device return torch.zeros(batch_size, self.n_hidden).to(d) def forward(self, state, frame, last_action): frame = torch.relu(self.linear_obs(frame)) B = frame.size()[0] oh = torch.zeros(B, self.n_actions).to(frame.device) oh[torch.arange(B).to(frame.device), last_action] = 1.0 oh = self.linear_action(oh) z = self.gru(torch.cat([frame, oh], dim=1), state) score_actions = self.linear(z) value = self.linear_v(z) return score_actions, value, z
34.529851
86
0.625027
4a26064f977d8d8a2be39a6137e9775d9a18824f
1,133
py
Python
www/www/wsgi.py
mattvenn/cursivedata
43e43263bef6f01698166d87bcff00b246957277
[ "CC-BY-4.0" ]
1
2015-12-31T01:46:09.000Z
2015-12-31T01:46:09.000Z
www/www/wsgi.py
mattvenn/cursivedata
43e43263bef6f01698166d87bcff00b246957277
[ "CC-BY-4.0" ]
5
2015-04-06T19:15:15.000Z
2015-07-25T21:45:16.000Z
www/www/wsgi.py
mattvenn/cursivedata
43e43263bef6f01698166d87bcff00b246957277
[ "CC-BY-4.0" ]
null
null
null
""" WSGI config for testsite project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "www.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
39.068966
79
0.806708
4a260669bb4f6aac0cfacd80645cfe8f299f0e1d
572
py
Python
034-factorialsum.py
johnsonZhaoxin/ProjectEuler
74f3755d5f0e305897556b46515babe55429a834
[ "MIT" ]
null
null
null
034-factorialsum.py
johnsonZhaoxin/ProjectEuler
74f3755d5f0e305897556b46515babe55429a834
[ "MIT" ]
null
null
null
034-factorialsum.py
johnsonZhaoxin/ProjectEuler
74f3755d5f0e305897556b46515babe55429a834
[ "MIT" ]
null
null
null
from functools import lru_cache @lru_cache(maxsize=None) def factorial(n): if n == 1 or n == 0: return 1 else: return n*factorial(n-1) def seperate_num(num): digits = [] [digits.append(int(i)) for i in str(num)] return digits def get_digit_factorial(num): digits = seperate_num(num) sum = 0 for i in digits: sum += factorial(i) return sum # 主程序 # todo 需要明确到多少位就不可能了 仅有145 40585这两个数字 for i in range(3,int(1e5)): digit_factorial_sum = get_digit_factorial(i) if digit_factorial_sum == i: print(i)
22
48
0.63986
4a2607283fda685daf05574ba370eefd33a66826
459
py
Python
cli/maestro_cli/settings.py
Farfetch/maestro
837d93866123aea8b90ad0e2aaf3f13bf3ef6907
[ "MIT" ]
21
2022-02-02T11:52:14.000Z
2022-02-06T02:44:16.000Z
cli/maestro_cli/settings.py
Farfetch/maestro
837d93866123aea8b90ad0e2aaf3f13bf3ef6907
[ "MIT" ]
78
2022-02-02T12:13:12.000Z
2022-03-29T08:10:42.000Z
cli/maestro_cli/settings.py
Farfetch/maestro
837d93866123aea8b90ad0e2aaf3f13bf3ef6907
[ "MIT" ]
null
null
null
import os import pathlib from dotenv import load_dotenv from maestro_cli.enums import LogLevel load_dotenv() def parse_bool(str_value): return str_value.lower() in ["true", "1"] APP_NAME = "maestro_cli" LOG_LEVEL = os.environ.get("LOG_LEVEL", LogLevel.INFO.value) ROOT_DIRECTORY = pathlib.Path().absolute() MAESTRO_API_HOST = os.environ.get("MAESTRO_API_HOST", "http://localhost:5000") MAESTRO_API_TOKEN = os.environ.get("MAESTRO_API_TOKEN", "")
20.863636
78
0.75817
4a26079bd9655c1e57ba0b77f14ba00682a7bdc2
193
py
Python
code/backend/src/api/blueprints/__init__.py
tobiasclaas/semantic-data-lake
16fc25a74918c9ac4d95f14bf3c15af053cee53e
[ "MIT" ]
1
2022-02-23T14:32:38.000Z
2022-02-23T14:32:38.000Z
code/backend/src/api/blueprints/__init__.py
tobiasclaas/semantic-data-lake
16fc25a74918c9ac4d95f14bf3c15af053cee53e
[ "MIT" ]
null
null
null
code/backend/src/api/blueprints/__init__.py
tobiasclaas/semantic-data-lake
16fc25a74918c9ac4d95f14bf3c15af053cee53e
[ "MIT" ]
null
null
null
from .user import USER_BLUEPRINT from .auth import AUTH_BLUEPRINT from .datamarts import DATAMARTS_BLUEPRINT from .workspace import WORKSPACE_BLUEPRINT from .ontology import ONTOLOGY_BLUEPRINT
32.166667
42
0.870466
4a260885931cefdd544dfb83f58a6a8fa6577a51
1,605
py
Python
base_extractors.py
leondz/entity_recognition
f5ef5aafc259139b20c2d54dd54dc1f6f239b605
[ "Apache-2.0" ]
63
2015-11-11T16:03:21.000Z
2022-02-23T08:23:59.000Z
base_extractors.py
leondz/entity_recognition
f5ef5aafc259139b20c2d54dd54dc1f6f239b605
[ "Apache-2.0" ]
14
2015-11-09T19:03:12.000Z
2015-11-12T08:29:26.000Z
base_extractors.py
leondz/entity-recognition
f5ef5aafc259139b20c2d54dd54dc1f6f239b605
[ "Apache-2.0" ]
15
2015-11-06T12:35:30.000Z
2020-06-28T06:47:52.000Z
#!/usr/bin/env python3 # X : list of lists of instances, each instance is a list of feature reprs # y : list of lists of labels def word2features(sent, i): word = sent[i] features = [ 'bias', 'word.lower=' + word.lower(), 'word[-3:]=' + word[-3:], 'word[-2:]=' + word[-2:], 'word.isupper=%s' % word.isupper(), 'word.istitle=%s' % word.istitle(), 'word.isdigit=%s' % word.isdigit(), ] if i > 0: word1 = sent[i-1] features.extend([ '-1word.lower=' + word1.lower(), '-1word.istitle=%s' % word1.istitle(), '-1word.isupper=%s' % word1.isupper(), ]) else: features.append('BOS') if i < len(sent)-1: word1 = sent[i+1] features.extend([ '+1word.lower=' + word1.lower(), '+1word.istitle=%s' % word1.istitle(), '+1word.isupper=%s' % word1.isupper(), ]) else: features.append('EOS') return features # takes a list of token/label pairs; returns a list of [feature]/label pairs def featurise(sentence, brown_cluster = {}): sentence_repr = [] for i in range(len(sentence)): features = [] # add brown features word = sentence[i] if word in brown_cluster: for j in range(1,len(brown_cluster[word])+1): features.append('p' + str(j) + 'b' + brown_cluster[word][0:j]) # add per-word features features += word2features(sentence, i) sentence_repr.append(features) return(sentence_repr)
26.75
78
0.530841
4a2608f0806ed0157b74005f4f99da8b0d13c33f
1,494
py
Python
acme/agents/jax/sqil/builder_test.py
wookayin/acme
71b2ab8577a118c103718f034fa62c5ad2c0fd97
[ "Apache-2.0" ]
null
null
null
acme/agents/jax/sqil/builder_test.py
wookayin/acme
71b2ab8577a118c103718f034fa62c5ad2c0fd97
[ "Apache-2.0" ]
null
null
null
acme/agents/jax/sqil/builder_test.py
wookayin/acme
71b2ab8577a118c103718f034fa62c5ad2c0fd97
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SQIL iterator.""" from acme import types from acme.agents.jax.sqil import builder import numpy as np import reverb from absl.testing import absltest class BuilderTest(absltest.TestCase): def test_sqil_iterator(self): demonstrations = [ types.Transition(np.array([[1], [2], [3]]), (), (), (), ()) ] replay = [ reverb.ReplaySample( info=(), data=types.Transition(np.array([[4], [5], [6]]), (), (), (), ())) ] sqil_it = builder._generate_sqil_samples(iter(demonstrations), iter(replay)) np.testing.assert_array_equal( next(sqil_it).data.observation, np.array([[1], [3], [5]])) np.testing.assert_array_equal( next(sqil_it).data.observation, np.array([[2], [4], [6]])) self.assertRaises(StopIteration, lambda: next(sqil_it)) if __name__ == '__main__': absltest.main()
33.2
80
0.685408
4a2609448c3d77719addc4bbbefed8f1e23e538f
3,097
py
Python
config/settings.py
Kimkykie/elite-tracker
78e5da38e4eaaf0855946aeb8b0fa9cd36d8e2d3
[ "MIT" ]
null
null
null
config/settings.py
Kimkykie/elite-tracker
78e5da38e4eaaf0855946aeb8b0fa9cd36d8e2d3
[ "MIT" ]
null
null
null
config/settings.py
Kimkykie/elite-tracker
78e5da38e4eaaf0855946aeb8b0fa9cd36d8e2d3
[ "MIT" ]
null
null
null
""" Django settings for config project. Generated by 'django-admin startproject' using Django 1.11.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'qboflb)a8mkl%yca^d+6#=47@-jw*g73&y(ly2c-wkr-!8k@&h' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
25.595041
91
0.695512
4a2609bcc1187b6e84d10ddc4e5b7da3e337791b
4,664
py
Python
feedforward_cuda.py
abhishekbhakat/pyML
44bc9915e0b42a8cc440d6f9ec3e5d7c4635bb3e
[ "MIT" ]
null
null
null
feedforward_cuda.py
abhishekbhakat/pyML
44bc9915e0b42a8cc440d6f9ec3e5d7c4635bb3e
[ "MIT" ]
null
null
null
feedforward_cuda.py
abhishekbhakat/pyML
44bc9915e0b42a8cc440d6f9ec3e5d7c4635bb3e
[ "MIT" ]
null
null
null
import torch import torchvision import numpy as np import torch.nn as nn import torch.nn.functional as F from torchvision.datasets import MNIST from torchvision.transforms import ToTensor from torch.utils.data.dataloader import DataLoader from torch.utils.data import random_split class MnistModel(nn.Module): """Feedfoward neural network with 1 hidden layer""" def __init__(self, in_size, hidden_size, out_size): super().__init__() # hidden layer self.linear1 = nn.Linear(in_size, hidden_size) # output layer self.linear2 = nn.Linear(hidden_size, out_size) def forward(self, xb): # Flatten the image tensors xb = xb.view(xb.size(0), -1) # Get intermediate outputs using hidden layer out = self.linear1(xb) # Apply activation function out = F.relu(out) # Get predictions using output layer out = self.linear2(out) return out def training_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss return loss def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = accuracy(out, labels) # Calculate accuracy return {'val_loss': loss, 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): print("Epoch [{}], val_loss: {:.4f}, val_acc: {:.4f}".format(epoch, result['val_loss'], result['val_acc'])) class DeviceDataLoader(): """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list,tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def evaluate(model, val_loader): outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): # Training Phase for batch in train_loader: loss = model.training_step(batch) loss.backward() optimizer.step() optimizer.zero_grad() # Validation phase result = evaluate(model, val_loader) model.epoch_end(epoch, result) history.append(result) return history if __name__ == "__main__": dataset = MNIST(root='data/', download=True, transform=ToTensor()) val_size = 10000 train_size = len(dataset) - val_size train_ds, val_ds = random_split(dataset, [train_size, val_size]) len(train_ds), len(val_ds) batch_size=128 input_size = 784 hidden_size = 32 # you can change this num_classes = 10 train_loader = DataLoader(train_ds, batch_size, shuffle=True, num_workers=4, pin_memory=True) val_loader = DataLoader(val_ds, batch_size*2, num_workers=4, pin_memory=True) device = get_default_device() train_loader = DeviceDataLoader(train_loader, device) val_loader = DeviceDataLoader(val_loader, device) model = MnistModel(input_size, hidden_size=hidden_size, out_size=num_classes) to_device(model, device) history = [evaluate(model, val_loader)] history += fit(5, 0.5, model, train_loader, val_loader) history += fit(5, 0.1, model, train_loader, val_loader)
36.4375
115
0.647727
4a2609f7f049eca3c9e481e6a1bf212f6b2164c8
142
py
Python
pkg/__init__.py
bruce30262/idapkg
5d6af9bd59c5dc886d68335119fae41491f06ea7
[ "MIT" ]
125
2019-04-04T22:54:53.000Z
2021-12-15T02:13:12.000Z
pkg/__init__.py
bruce30262/idapkg
5d6af9bd59c5dc886d68335119fae41491f06ea7
[ "MIT" ]
19
2019-04-02T15:56:37.000Z
2022-03-17T09:12:52.000Z
pkg/__init__.py
Jinmo/pm
5d6af9bd59c5dc886d68335119fae41491f06ea7
[ "MIT" ]
14
2019-05-29T17:31:08.000Z
2021-09-26T01:34:42.000Z
__version__ = '0.1.4' import sys from .commands import * # expose 'pkg' in global namespace __builtins__[__name__] = sys.modules[__name__]
15.777778
46
0.739437
4a260a7e799b9c56ad641a198b80501941eae2c2
165
py
Python
matrixscreener/__init__.py
arve0/matrixscreener
48789576b51e7c35539b6bca9c80c130ea339425
[ "MIT" ]
6
2015-02-09T08:52:41.000Z
2021-07-09T02:24:13.000Z
matrixscreener/__init__.py
arve0/matrixscreener
48789576b51e7c35539b6bca9c80c130ea339425
[ "MIT" ]
2
2015-02-19T19:03:47.000Z
2016-05-25T12:32:41.000Z
matrixscreener/__init__.py
arve0/matrixscreener
48789576b51e7c35539b6bca9c80c130ea339425
[ "MIT" ]
4
2015-02-09T08:52:49.000Z
2016-08-04T07:51:19.000Z
""" Interfacing with Leica LAS AF MatrixScreener. """ __all__ = [ 'cam', 'experiment', 'utils'] from matrixscreener import cam, experiment, utils VERSION = '0.6.1'
20.625
49
0.70303
4a260aed1dfbee812a569601f1e6689347df9c79
125
py
Python
ex029.1.py
zWillsz/exsvscode
ba507dca6de748e3c82c306731137bb5f6f0c918
[ "MIT" ]
null
null
null
ex029.1.py
zWillsz/exsvscode
ba507dca6de748e3c82c306731137bb5f6f0c918
[ "MIT" ]
null
null
null
ex029.1.py
zWillsz/exsvscode
ba507dca6de748e3c82c306731137bb5f6f0c918
[ "MIT" ]
null
null
null
n = str(input('Digite seu nome todo: ')).split() print('Seu primeiro nome é {} e seu ultimo nome é {}.'.format(n[0], n[-1]))
41.666667
75
0.616
4a260bd6dcb973e165c9e154b8b9e914d44aea31
497
py
Python
tests/tools/test_rules.py
a5kin/xentica
ca08fac9f85af71c9d6d98545a33d50323f851b3
[ "MIT" ]
23
2018-02-24T23:38:54.000Z
2022-02-16T15:20:46.000Z
tests/tools/test_rules.py
a5kin/xentica
ca08fac9f85af71c9d6d98545a33d50323f851b3
[ "MIT" ]
39
2017-11-20T21:54:30.000Z
2020-09-01T12:43:57.000Z
tests/tools/test_rules.py
a5kin/xentica
ca08fac9f85af71c9d6d98545a33d50323f851b3
[ "MIT" ]
4
2019-04-23T03:56:44.000Z
2021-05-14T11:12:54.000Z
"""Tests for ``xentica.tools.rules`` module.""" import unittest from xentica.tools.rules import LifeLike class TestLifelike(unittest.TestCase): """Tests for Lifelike rules helpers.""" def test_golly(self): """Test conversion from Golly and vice versa.""" rule_str = "B3/S23" rule_int = LifeLike.golly2int(rule_str) self.assertEqual(rule_int, 6152) rule_converted = LifeLike.int2golly(rule_int) self.assertEqual(rule_converted, rule_str)
29.235294
56
0.688129
4a260c66f84c6098563e847bbd8c75979483888b
429
py
Python
confirmation/migrations/0011_alter_confirmation_expiry_date.py
dumpmemory/zulip
496273ddbc567330a0022699d6d6eb5c646e5da5
[ "Apache-2.0" ]
4
2021-09-16T16:46:55.000Z
2022-02-06T13:00:21.000Z
confirmation/migrations/0011_alter_confirmation_expiry_date.py
dumpmemory/zulip
496273ddbc567330a0022699d6d6eb5c646e5da5
[ "Apache-2.0" ]
null
null
null
confirmation/migrations/0011_alter_confirmation_expiry_date.py
dumpmemory/zulip
496273ddbc567330a0022699d6d6eb5c646e5da5
[ "Apache-2.0" ]
1
2022-02-04T05:15:12.000Z
2022-02-04T05:15:12.000Z
# Generated by Django 3.2.9 on 2021-11-30 17:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("confirmation", "0010_alter_confirmation_expiry_date"), ] operations = [ migrations.AlterField( model_name="confirmation", name="expiry_date", field=models.DateTimeField(db_index=True, null=True), ), ]
22.578947
65
0.631702
4a260c67b4d050d44f02c8c51668e4f5f979459e
6,454
py
Python
kubernetes/client/models/v1_network_policy.py
Scalr/kubernetes-client-python
07442bdb76f0876ec96c0b0da6f9c4b06d7e5e38
[ "Apache-2.0" ]
3
2019-05-19T05:05:37.000Z
2020-03-20T04:56:20.000Z
kubernetes/client/models/v1_network_policy.py
Scalr/kubernetes-client-python
07442bdb76f0876ec96c0b0da6f9c4b06d7e5e38
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_network_policy.py
Scalr/kubernetes-client-python
07442bdb76f0876ec96c0b0da6f9c4b06d7e5e38
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.13.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1NetworkPolicy(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'spec': 'V1NetworkPolicySpec' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'metadata': 'metadata', 'spec': 'spec' } def __init__(self, api_version=None, kind=None, metadata=None, spec=None): """ V1NetworkPolicy - a model defined in Swagger """ self._api_version = None self._kind = None self._metadata = None self._spec = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata if spec is not None: self.spec = spec @property def api_version(self): """ Gets the api_version of this V1NetworkPolicy. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this V1NetworkPolicy. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this V1NetworkPolicy. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this V1NetworkPolicy. :type: str """ self._api_version = api_version @property def kind(self): """ Gets the kind of this V1NetworkPolicy. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this V1NetworkPolicy. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this V1NetworkPolicy. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this V1NetworkPolicy. :type: str """ self._kind = kind @property def metadata(self): """ Gets the metadata of this V1NetworkPolicy. Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :return: The metadata of this V1NetworkPolicy. :rtype: V1ObjectMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this V1NetworkPolicy. Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :param metadata: The metadata of this V1NetworkPolicy. :type: V1ObjectMeta """ self._metadata = metadata @property def spec(self): """ Gets the spec of this V1NetworkPolicy. Specification of the desired behavior for this NetworkPolicy. :return: The spec of this V1NetworkPolicy. :rtype: V1NetworkPolicySpec """ return self._spec @spec.setter def spec(self, spec): """ Sets the spec of this V1NetworkPolicy. Specification of the desired behavior for this NetworkPolicy. :param spec: The spec of this V1NetworkPolicy. :type: V1NetworkPolicySpec """ self._spec = spec def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1NetworkPolicy): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
30.587678
281
0.605981
4a260e4b9ba93bd40c7fd67a4ee6fc79ae7d65da
5,621
py
Python
hypertrainer/htplatform.py
mpelchat04/hypertrainer
0a6aa3a20c222c0280101ab5a6d72e7b0afddc29
[ "MIT" ]
1
2019-07-08T13:28:47.000Z
2019-07-08T13:28:47.000Z
hypertrainer/htplatform.py
mpelchat04/hypertrainer
0a6aa3a20c222c0280101ab5a6d72e7b0afddc29
[ "MIT" ]
null
null
null
hypertrainer/htplatform.py
mpelchat04/hypertrainer
0a6aa3a20c222c0280101ab5a6d72e7b0afddc29
[ "MIT" ]
4
2019-02-27T15:59:04.000Z
2019-09-18T19:39:30.000Z
import time from pathlib import Path from typing import List, Iterable, Dict import redis.exceptions from redis import Redis from rq import Queue from rq.job import Job, cancel_job as cancel_rq_job from hypertrainer.computeplatform import ComputePlatform from hypertrainer.computeplatformtype import ComputePlatformType from hypertrainer.htplatform_worker import run, get_jobs_info, get_logs, ping, raise_exception, delete_job, \ cancel_job from hypertrainer.utils import TaskStatus, get_python_env_command, config_context ConnectionError = redis.exceptions.ConnectionError def check_connection(redis_conn): try: redis_conn.ping() except redis.exceptions.ConnectionError as e: msg = e.args[0] msg += '\nPlease make sure redis-server is running, and accessible.' e.args = (msg,) + e.args[1:] raise e class HtPlatform(ComputePlatform): """The HT (HyperTrainer) Platform allows to send jobs to one or more Linux machines. Each participating worker consumes jobs from a global queue. There can be several workers per machine. """ def __init__(self, same_thread=False): with config_context() as config: self.worker_hostnames = config['ht_platform']['worker_hostnames'] redis_conn = Redis(port=config['ht_platform']['redis_port']) check_connection(redis_conn) self.redis_conn = redis_conn self.jobs_queue = Queue(name='jobs', connection=redis_conn, is_async=not same_thread) self.worker_queues: Dict[str, Queue] = {h: Queue(name=h, connection=redis_conn, is_async=not same_thread) for h in self.worker_hostnames} def submit(self, task, resume=False): output_path = Path(task.output_root) / str(task.uuid) task.output_path = str(output_path) python_env_command = get_python_env_command(Path(task.project_path), ComputePlatformType.HT.value) job = self.jobs_queue.enqueue(run, job_timeout=-1, kwargs=dict( script_file=Path(task.script_file), output_path=output_path, python_env_command=python_env_command, config_dump=task.dump_config(), resume=resume)) # At this point, we only know the rq job id. No pid since the job might have to wait. return job.id def fetch_logs(self, task, keys=None): if task.hostname == '': # The job hasn't been consumed yet return {} rq_job = self.worker_queues[task.hostname].enqueue(get_logs, args=(task.output_path,), ttl=2, result_ttl=2) logs = wait_for_result(rq_job) return logs def cancel(self, task): cancel_rq_job(task.job_id, connection=self.redis_conn) # This ensures the job will not start if task.hostname == '': print(f'Cannot send cancellation for {task.uuid}: no assigned worker hostname') else: self.worker_queues[task.hostname].enqueue(cancel_job, args=(task.job_id,), ttl=4) def update_tasks(self, tasks): # TODO only check requested ids for t in tasks: assert t.status.is_active if t.status != TaskStatus.Waiting: # Waiting will not be found until they are picked up t.status = TaskStatus.Unknown # State is unknown, unless we find the task in a worker db job_id_to_task = {t.job_id: t for t in tasks} info_dicts = self._get_info_dict_for_each_worker() for hostname, local_db in zip(self.worker_hostnames, info_dicts): if local_db is None: continue # Did not receive an answer from worker for job_id in set(local_db.keys()).intersection(job_id_to_task.keys()): # For each task in the intersection of (tasks to update) and (tasks in worker db) t = job_id_to_task[job_id] job_info = local_db[job_id] t.status = TaskStatus(job_info['status']) t.hostname = hostname def delete(self, task): if task.hostname == '': print(f'Cannot perform worker deletion for {task.uuid}: no assigned worker hostname') else: self.worker_queues[task.hostname].enqueue(delete_job, args=(task.job_id, task.output_path), ttl=4) def _get_info_dict_for_each_worker(self): rq_jobs = [q.enqueue(get_jobs_info, ttl=2, result_ttl=2) for q in self.worker_queues.values()] results = wait_for_results(rq_jobs, raise_exc=False) return results def ping_workers(self): rq_jobs = [q.enqueue(ping, ttl=2, result_ttl=2, args=(h,)) for h, q in self.worker_queues.items()] results = wait_for_results(rq_jobs) return results def raise_exception_in_worker(self, exc_type, queue_name): self.worker_queues[queue_name].enqueue(raise_exception, ttl=2, result_ttl=2, args=(exc_type,)) def wait_for_result(rq_job: Job, interval_secs=1, tries=4, raise_exc=True): for i in range(tries): if rq_job.result is not None: return rq_job.result else: time.sleep(interval_secs) if raise_exc: raise TimeoutError return None def wait_for_results(rq_jobs: Iterable[Job], interval_secs=1, tries=4, raise_exc=True): assert tries >= 1 for i in range(tries): results = [j.result for j in rq_jobs] if any(r is None for r in results): time.sleep(interval_secs) else: return results if raise_exc: raise TimeoutError # noinspection PyUnboundLocalVariable return results
40.438849
115
0.666785
4a260ebb52a6c33c681b12bffaf71925cc9bedf7
1,177
py
Python
demos/disassembler_special_ins.py
IOsipov/androguard
13df1b45e93706eb20231626b0cd6bf15390f844
[ "Apache-2.0" ]
24
2018-10-09T02:08:17.000Z
2021-08-03T21:39:16.000Z
demos/disassembler_special_ins.py
IOsipov/androguard
13df1b45e93706eb20231626b0cd6bf15390f844
[ "Apache-2.0" ]
3
2019-06-21T12:05:39.000Z
2021-11-09T07:23:37.000Z
demos/disassembler_special_ins.py
IOsipov/androguard
13df1b45e93706eb20231626b0cd6bf15390f844
[ "Apache-2.0" ]
4
2018-12-12T21:34:37.000Z
2021-09-03T19:42:10.000Z
#!/usr/bin/env python import sys, hashlib PATH_INSTALL = "./" sys.path.append(PATH_INSTALL) from androguard.core.androgen import AndroguardS from androguard.core.analysis import analysis TEST = 'examples/android/TestsAndroguard/bin/classes.dex' a = AndroguardS( TEST ) x = analysis.VMAnalysis( a.get_vm() ) for method in a.get_methods() : g = x.get_method( method ) if method.get_code() == None : continue idx = 0 for i in g.basic_blocks.get() : for ins in i.get_instructions() : op_value = ins.get_op_value() # packed/sparse if op_value == 0x2b or op_value == 0x2c : special_ins = i.get_special_ins(idx) if special_ins != None : print "\t %x" % idx, ins, special_ins, ins.get_name(), ins.get_output(), special_ins.get_values() # fill if op_value == 0x26 : special_ins = i.get_special_ins(idx) if special_ins != None : print "\t %x" % idx, ins, special_ins, ins.get_name(), ins.get_output(), repr( special_ins.get_data() ) idx += ins.get_length()
30.973684
123
0.587086
4a260fc343794a37486e10aae0aa364ca3f95dd4
184
py
Python
Darlington/phase1/python Basic 1/day 3 solution/qtn4.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
6
2020-05-23T19:53:25.000Z
2021-05-08T20:21:30.000Z
Darlington/phase1/python Basic 1/day 3 solution/qtn4.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
8
2020-05-14T18:53:12.000Z
2020-07-03T00:06:20.000Z
Darlington/phase1/python Basic 1/day 3 solution/qtn4.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
39
2020-05-10T20:55:02.000Z
2020-09-12T17:40:59.000Z
#differences in date of the day import datetime #import timedelta from datetime import date first = date(2014, 7, 2) second = date(2014, 7, 11) diff = second - first print(diff.days)
18.4
31
0.73913
4a260ff1ca3f3b1fda1e6b3071781605756d0281
12,122
py
Python
lib/MotorPDE.py
youngmp/NoisyMotors
a2c860e0be3ff298a48685a48b0d29e5c53384b8
[ "MIT" ]
null
null
null
lib/MotorPDE.py
youngmp/NoisyMotors
a2c860e0be3ff298a48685a48b0d29e5c53384b8
[ "MIT" ]
2
2021-07-14T18:22:33.000Z
2021-07-14T18:22:50.000Z
lib/MotorPDE.py
youngmp/NoisyMotors
a2c860e0be3ff298a48685a48b0d29e5c53384b8
[ "MIT" ]
1
2021-07-28T04:26:38.000Z
2021-07-28T04:26:38.000Z
""" TODO: -add ground truth steady-state distribution in phi -determine correct boudnary condition Trying to apply upwind/downwind to our problem. The equation I derived is ...see below """ import time #import matplotlib #import matplotlib.pyplot as plt import numpy as np from scipy.integrate import solve_ivp #from scipy.interpolate import interp1d #from cumsumb import cumsum import lib.libMotorPDE as lib #matplotlib.use('TkAgg') class MotorPDE(object): def __init__(self,**kwargs): defaults = {'N':100, 'N2':100, 'dt':.0005, 'U':None, 'alpha':14, 'beta':126, 'zeta':1, 'A0':0, 'A':5, 'B':5.1, 'T':10, 'fn_test_option':'root_cos', 'fn_vel':50, 'store_position':False, 'ivp_method':'euler', 'source':True, 'regularized':False, 'testing_ss':False, 'init_pars':None, 'domain':None, 'irregular':False} # define defaults if not defined in kwargs for (prop, default) in defaults.items(): setattr(self, prop, kwargs.get(prop, default)) #print('source type',self.source) assert(self.A <= self.B) assert(self.A0 <= self.A) #assert(self.U is not None) #self.dx = (self.B-self.A0)/self.N # center an index at z=A and build from there. if self.irregular: x_left = np.linspace(self.A0,self.A,self.N) x_right = np.linspace(self.A,self.B,self.N2) #print('xleft,xright',x_left,x_right) self.x = np.append(x_left,x_right[1:]) self.dx = np.diff(self.x) #self.dx = np.append(self.dx[-1],self.dx[0]) #self.dx = np.append(self.dx,self.dx[-1]) # note that A_idx is chosen just right of z=A # this is because the mesh is finer on the right and # easier to manage. self.A_idx = len(x_left) self.B_idx = len(self.x)-1 #print(self.x[self.A_idx]) else: self.x,self.dx = np.linspace(self.A0,self.B,self.N, endpoint=False,retstep=True) # index of A self.A_idx = np.argmin(np.abs(self.x-(self.A))) # index of position B self.B_idx = np.argmin(np.abs(self.x-self.B)) self.idx_full = np.arange(len(self.x)) # indices of all points except appropriate boundary # [0,1,2,3,4,5,6,7] to [0,1,2,3,4,5,6] self.idx_except_last = self.idx_full[:-1] # [0,1,2,3,4,5,6,7] to [1,2,3,4,5,6,7] self.idx_except_first = self.idx_full[1:] #self.idx_A2B = self.idx_full[self.A_idx:self.B_idx] # [0,1,2,3,4,5,6,7] to [1,2,3,4,5,6,7] self.roll_next = np.roll(self.idx_full,-1)[:-1] # [0,1,2,3,4,5,6,7] to [0,1,2,3,4,5,6] self.roll_prev = np.roll(self.idx_full,1)[1:] self.TN = int(self.T/self.dt) # time discretization # preallocate output array for upwinding scheme here for efficiency. self.out = np.zeros_like(self.x) if not self.store_position and self.ivp_method == 'euler': TN = 1 else: TN = self.TN self.t = np.linspace(0,self.T,TN) self.sol = np.zeros((TN,len(self.x))) self.U_arr = np.zeros(TN) if self.regularized: # regularized delta function s = (self.A-self.A0)/self.dx i = np.floor(s) # floor index of A r = s-i # distance from floor in index self.delta_idxs = np.mod(np.arange(i-2,i+1+1,1),self.N)+1 self.delta_idxs = self.delta_idxs.astype(int) q = np.sqrt(1+4*r*(1-r)) self.ws = np.array([(3-2*r-q)/8, (3-2*r+q)/8, (1+2*r+q)/8, (1+2*r-q)/8]) def boundary_left(self,U,sol): """ left boundary condition changes depending on sign of U U < 0: Dirichlet or do nothing U > 0: Dirichlet +self.alpha*(1-self.theta)/U """ if U < 0: return 0 elif U > 0: return self.alpha*(1-self.theta_n)/U def boundary_right(self,U,sol): """ Right boundary condition changes depending on sign of U U < 0: -self.alpha*(1-self.theta_n)/U U > 0: phi_x = phi_t """ if U < 0: return -self.alpha*(1-self.theta_n)/U elif U > 0: return sol def run(self): """ decides on which integration scheme to use based on user option (self.ivp_method) """ # initial condition if self.init_pars is None: self.init = np.zeros_like(self.x) elif self.init_pars['type'] == 'gaussian': self.init = lib.gauss(self.x-(self.A0+self.B)/2, sig=self.init_pars['pars']) self.sol[0,:] = self.init if self.ivp_method == 'euler': self.sol = self.run_euler() else: obj_integrated = solve_ivp(self.upwind,[0,self.T], self.init,args=(self.U,), t_eval=self.t, method=self.ivp_method) self.sol = obj_integrated.y.T def run_euler(self): #assert (self.CFL < 1), "CFL condition not met for Euler method" self.i = 0 while self.i < (self.TN-1): if self.U == 'dynamic': # generate population distribution from sol # draw from population distribution if np.add.reduce(self.sol[self.i,:]) != 0: xs = lib.inverse_transform_sampling(self, self.sol[self.i,:],100) else: xs = np.zeros(100) # get total force f_up = np.add.reduce(lib.force_position(xs))*self.dx #print(f_up) f_down = 0 Uval = (-f_up + f_down)/(self.zeta) # update velocity #Uval = self.update_velocity(f_up,f_down,Uval) #print(Uval) else: Uval = self.U k_next, k_now = lib.get_time_index(self.store_position,self.i) sol_now = self.sol[k_now,:] self.sol[k_next,:] = sol_now + self.dt*(self.upwind(self.t[k_now], sol_now, Uval)) self.i += 1 return self.sol def upwind(self,t,sol,U): """ Implementation of upwinding scheme to be used in Euler loop method of lines """ if False: import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['text.usetex'] = False mpl.rcParams['text.latex.preamble'] = r'\usepackage{amsmath}' fig = plt.figure(figsize=(4, 5)) ax1 = fig.add_subplot(111) ax1.set_title('input sol to upwind') ax1.plot(sol) plt.show() plt.close() time.sleep(2) if callable(U): Uval = U(t,vel=self.fn_vel,option=self.fn_test_option) elif isinstance(U,float) or isinstance(U,int): Uval = U if self.ivp_method == 'euler' and self.store_position: self.U_arr[self.i] = Uval if Uval > 0: # boundaries idx_update = self.idx_except_first if self.irregular: dx = self.dx[0] else: dx = self.dx self.out[0] = -self.beta*sol[0]-sol[0]*Uval/dx else: # boundaries idx_update = self.idx_except_last if self.irregular: dx = self.dx[-1] else: dx = self.dx self.out[-1] = -self.beta*sol[-1]+sol[-1]*Uval/dx if Uval <= 0: U_minus = Uval U_plus = 0 else: U_minus = 0 U_plus = Uval if self.irregular: dx = self.dx else: dx = self.dx p_plus = (sol[self.roll_next]-sol[self.idx_except_last])/dx p_minus = (sol[self.idx_except_first]-sol[self.roll_prev])/dx #if Uval > 0: # print('p_plus',p_plus[-5:]) #print('p_plus',p_plus[-5:]) # update derivatives wind = p_plus*U_minus + p_minus*U_plus #print(self.i,'plus,minus',wind,U_minus,U_plus) self.out[idx_update] = -self.beta*(sol[idx_update]) - wind #print(dx,self.dx,self.irregular,self.alpha*(1-self.theta_n)/dx) #print() #print(self.out[self.A_idx]) if self.irregular: self.theta_n = np.add.reduce(sol[:-1]*self.dx) else: self.theta_n = np.add.reduce(sol)*self.dx #assert((self.theta_n <= 1) and (self.theta_n >= 0)) #print('thetan',self.theta_n) # update input if (self.source == True or self.source == 'motor')\ and self.regularized == False: if self.irregular: dx = self.dx[self.A_idx] else: dx = self.dx #print(dx,self.dx,self.irregular,self.alpha*(1-self.theta_n)/dx) #print() #print(self.out[self.A_idx]) self.out[self.A_idx] += self.alpha*(1-self.theta_n)/dx #print('out@A_idx',self.out[self.A_idx]) #print(self.out[self.A_idx],dx,self.alpha,(1-self.theta_n)) elif (self.source == True or self.source == 'motor')\ and self.regularized == True: if self.irregular: dx = self.dx[self.delta_idxs] else: dx = self.dx self.out[self.delta_idxs] += self.ws*self.alpha*(1-self.theta_n)/dx # Gaussian source #sig = .3 #k = self.alpha*(1-self.theta_n)/(sig*np.sqrt(2*np.pi)) #out[self.idx_full] += k*np.exp(-0.5*(self.x-self.A)**2/sig**2) elif callable(self.source) and self.regularized == True: if self.irregular: dx = self.dx[self.A_idx] else: dx = self.dx self.out[self.delta_idxs] += self.ws*self.source(t)/dx elif callable(self.source) and self.regularized == False: if self.irregular: dx = self.dx[self.A_idx] else: dx = self.dx self.out[self.A_idx] += self.source(t)/dx elif self.source == False: pass else: raise ValueError('Unrecognized source option',self.source, self.regularized) #elif self.source == 'regularized_custom': # #print(self.source(t)) # out[self.delta_idxs] += self.ws*self.source(t)/self.dx #if Uval > 0: # print('out',self.out[-5:]) return self.out def main(): pass if __name__ == "__main__": main()
29.857143
79
0.46824
4a26114321a7344825a88a254bdb94f121bdf846
6,200
bzl
Python
bazel/closure_grpc_web_library.bzl
zhouqiangWang/grpc-web
a470a75000c7b0789adc38028ff8d2cf491405eb
[ "Apache-2.0" ]
null
null
null
bazel/closure_grpc_web_library.bzl
zhouqiangWang/grpc-web
a470a75000c7b0789adc38028ff8d2cf491405eb
[ "Apache-2.0" ]
null
null
null
bazel/closure_grpc_web_library.bzl
zhouqiangWang/grpc-web
a470a75000c7b0789adc38028ff8d2cf491405eb
[ "Apache-2.0" ]
null
null
null
# This rule was inspired by rules_closure`s implementation of # |closure_proto_library|, licensed under Apache 2. # https://github.com/bazelbuild/rules_closure/blob/3555e5ba61fdcc17157dd833eaf7d19b313b1bca/closure/protobuf/closure_proto_library.bzl load( "@io_bazel_rules_closure//closure/compiler:closure_js_library.bzl", "create_closure_js_library", ) load( "@io_bazel_rules_closure//closure/private:defs.bzl", "CLOSURE_JS_TOOLCHAIN_ATTRS", "unfurl", ) load( "@io_bazel_rules_closure//closure/protobuf:closure_proto_library.bzl", "closure_proto_aspect", ) # This was borrowed from Rules Go, licensed under Apache 2. # https://github.com/bazelbuild/rules_go/blob/67f44035d84a352cffb9465159e199066ecb814c/proto/compiler.bzl#L72 def _proto_path(proto): path = proto.path root = proto.root.path ws = proto.owner.workspace_root if path.startswith(root): path = path[len(root):] if path.startswith("/"): path = path[1:] if path.startswith(ws): path = path[len(ws):] if path.startswith("/"): path = path[1:] return path def _proto_include_path(proto): path = proto.path[:-len(_proto_path(proto))] if not path: return "." if path.endswith("/"): path = path[:-1] return path def _proto_include_paths(protos): return depset([_proto_include_path(proto) for proto in protos]) def _generate_closure_grpc_web_src_progress_message(name): # TODO(yannic): Add a better message? return "Generating GRPC Web %s" % name def _generate_closure_grpc_web_srcs( actions, protoc, protoc_gen_grpc_web, import_style, mode, sources, transitive_sources): all_sources = [src for src in sources] + [src for src in transitive_sources] proto_include_paths = [ "-I%s" % p for p in _proto_include_paths( [f for f in all_sources], ) ] grpc_web_out_common_options = ",".join([ "import_style={}".format(import_style), "mode={}".format(mode), ]) files = [] for src in sources: name = "{}.grpc.js".format( ".".join(src.path.split("/")[-1].split(".")[:-1]), ) js = actions.declare_file(name) files.append(js) args = proto_include_paths + [ "--plugin=protoc-gen-grpc-web={}".format(protoc_gen_grpc_web.path), "--grpc-web_out={options},out={out_file}:{path}".format( options = grpc_web_out_common_options, out_file = name, path = js.path[:js.path.rfind("/")], ), src.path, ] actions.run( tools = [protoc_gen_grpc_web], inputs = all_sources, outputs = [js], executable = protoc, arguments = args, progress_message = _generate_closure_grpc_web_src_progress_message(name), ) return files _error_multiple_deps = "".join([ "'deps' attribute must contain exactly one label ", "(we didn't name it 'dep' for consistency). ", "We may revisit this restriction later.", ]) def _closure_grpc_web_library_impl(ctx): if len(ctx.attr.deps) > 1: # TODO(yannic): Revisit this restriction. fail(_error_multiple_deps, "deps") dep = ctx.attr.deps[0] srcs = _generate_closure_grpc_web_srcs( actions = ctx.actions, protoc = ctx.executable._protoc, protoc_gen_grpc_web = ctx.executable._protoc_gen_grpc_web, import_style = ctx.attr.import_style, mode = ctx.attr.mode, sources = dep[ProtoInfo].direct_sources, transitive_sources = dep[ProtoInfo].transitive_imports, ) deps = unfurl(ctx.attr.deps, provider = "closure_js_library") deps += [ ctx.attr._grpc_web_abstractclientbase, ctx.attr._grpc_web_clientreadablestream, ctx.attr._grpc_web_error, ctx.attr._grpc_web_grpcwebclientbase, ] suppress = [ "misplacedTypeAnnotation", "unusedPrivateMembers", "reportUnknownTypes", "strictDependencies", "extraRequire", ] library = create_closure_js_library( ctx = ctx, srcs = srcs, deps = deps, suppress = suppress, lenient = False, ) return struct( exports = library.exports, closure_js_library = library.closure_js_library, # The usual suspects are exported as runfiles, in addition to raw source. runfiles = ctx.runfiles(files = srcs), ) closure_grpc_web_library = rule( implementation = _closure_grpc_web_library_impl, attrs = dict({ "deps": attr.label_list( mandatory = True, providers = [ProtoInfo, "closure_js_library"], # The files generated by this aspect are required dependencies. aspects = [closure_proto_aspect], ), "import_style": attr.string( default = "closure", values = ["closure"], ), "mode": attr.string( default = "grpcwebtext", values = ["grpcwebtext", "grpcweb"], ), # internal only # TODO(yannic): Convert to toolchain. "_protoc": attr.label( default = Label("@com_google_protobuf//:protoc"), executable = True, cfg = "host", ), "_protoc_gen_grpc_web": attr.label( default = Label("//javascript/net/grpc/web:protoc-gen-grpc-web"), executable = True, cfg = "host", ), "_grpc_web_abstractclientbase": attr.label( default = Label("//javascript/net/grpc/web:abstractclientbase"), ), "_grpc_web_clientreadablestream": attr.label( default = Label("//javascript/net/grpc/web:clientreadablestream"), ), "_grpc_web_error": attr.label( default = Label("//javascript/net/grpc/web:error"), ), "_grpc_web_grpcwebclientbase": attr.label( default = Label("//javascript/net/grpc/web:grpcwebclientbase"), ), }, **CLOSURE_JS_TOOLCHAIN_ATTRS), )
31.313131
134
0.610484
4a2611610d569dba39326a12ccb6ec967cc90111
6,291
py
Python
tagger-ds-temp/tagger/message_retriever.py
filchyboy/TaggerMail
4166a49842817ad999a8fbb6262de7cb7e765a5a
[ "MIT" ]
null
null
null
tagger-ds-temp/tagger/message_retriever.py
filchyboy/TaggerMail
4166a49842817ad999a8fbb6262de7cb7e765a5a
[ "MIT" ]
6
2021-01-28T21:23:23.000Z
2022-01-22T13:06:54.000Z
tagger-ds-temp/tagger/message_retriever.py
filchyboy/TaggerMail
4166a49842817ad999a8fbb6262de7cb7e765a5a
[ "MIT" ]
null
null
null
# Module imports / focused on Google API import base64 from bs4 import BeautifulSoup import json import re import pandas as pd from collections import Counter from googleapiclient.discovery import build from gensim.corpora import Dictionary from gensim.models.ldamulticore import LdaMulticore import spacy import nltk from spacy.lang.en.stop_words import STOP_WORDS from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer # If modifying these scopes user will be forced to re-auth SCOPES = ['https://www.googleapis.com/auth/gmail.readonly'] previous_email_pull = '172317ca92683d33' def user_emails(creds): """ Pulls user emails """ service = build('gmail', 'v1', credentials=creds) # Call the Gmail API emails = service.users().messages().list(userId='me').execute() return emails def recent_id(emails): # Find most recent message recent_msg_id = emails['messages'][0]['id'] return recent_msg_id def message(recent_msg_id): """ Pulls and cleans the most recent email """ # Call message content message_content = service.users().messages().get( userId='me', id=recent_msg_id).execute() # Call message body message_payload = message_content['payload'] if "parts" in message_payload: message_body = message_content['payload']['parts'] message_body_dict = dict(message_body[0]) else: message_body = message_content['payload']['body']['data'] message_body_dict = dict(message_body[0]) # Decode base64 encoding decode = message_body_dict['body']['data'] decodedContents = base64.urlsafe_b64decode(decode.encode('utf-8')) # Clean the text text = BeautifulSoup(decodedContents, 'html.parser') text = str(text.text) text = re.sub(r"http\S+", "", text) text = [text] # Shape text df = pd.DataFrame(text, columns=['email_body']) # Remove whitespace df['email_body'] = df['email_body'].str.strip().str.lower() # Start with date df['email_body'].str.match('\d?\d/\d?\d/\d{4}').all() # Replace all non-overlapping matches df['email_body'] = df['email_body'].str.replace( '[^a-zA-Z\s]', '').str.replace('\s+', ' ') # Prepare df to return email_body = df['email_body'] return(email_body) def tag_recent(email_body): """ Generates tags on the most recent email """ # Load spacy model nlp = spacy.load('en_core_web_md') my_stop_words = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't", "unsubscribe", "st"] STOP_WORDS = nlp.Defaults.stop_words.union(my_stop_words) # Generate NLP model tokens = [] for doc in nlp.pipe(email_body, batch_size=500): doc_tokens = [] for token in doc: if (token.is_stop is False) & (token.is_punct is False): doc_tokens.append(token.lemma_.lower()) tokens.append(doc_tokens) df['tokens'] = tokens # Topic Modelling id2word = Dictionary(df['tokens']) corpus = [id2word.doc2bow(d) for d in df['tokens']] model = LdaMulticore(corpus=corpus, id2word=id2word, random_state=42, num_topics=10, passes=8, workers=(-2)) # Generate topics from model words = [re.findall(r'"([^"]*)"', t[1]) for t in model.print_topics()] # Count instances of each word seeking weight of dupes wordcount = Counter(words[0] + words[1] + words[2] + words[3] + words[4]) # Generate dataframe of results, # drop those found less than twice, # sort descending tags = pd.DataFrame.from_dict(wordcount, orient='index', columns=['number']) tags.drop(tags[tags.number <= 1].index, inplace=True) tags.sort_values(by=['number'], ascending=False, inplace=True) tags['length'] = range(len(tags)) tags = tags.T tags_list = tags.columns # Return sorted smart tag list return(tags_list) # # Recent messages list # message_tally = [] # for _ in range(len(message['messages'])): # message_tally.append(message['messages'][_]['id']) # if message['messages'][_]['id'] == previous_email_pull: # break
37.005882
78
0.545382
4a26119341e4a8c3c36794f6c8993b9ae0af5fb8
21,112
py
Python
stable_baselines/logger.py
yfletberliac/Actor-with-Variance-Estimated-Critic
294ef39d05f31067907bb6ff9405183d4a530244
[ "MIT" ]
4
2020-10-04T02:15:47.000Z
2020-10-13T15:24:22.000Z
stable_baselines/logger.py
yfletberliac/actor-with-variance-estimated-critic
294ef39d05f31067907bb6ff9405183d4a530244
[ "MIT" ]
null
null
null
stable_baselines/logger.py
yfletberliac/actor-with-variance-estimated-critic
294ef39d05f31067907bb6ff9405183d4a530244
[ "MIT" ]
1
2021-05-06T08:55:24.000Z
2021-05-06T08:55:24.000Z
import os import sys import shutil import json import time import datetime import tempfile import warnings from collections import defaultdict from typing import Optional import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.core.util import event_pb2 from tensorflow.python.util import compat from stable_baselines.common.misc_util import mpi_rank_or_zero DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): """ Key Value writer """ def writekvs(self, kvs): """ write a dictionary to file :param kvs: (dict) """ raise NotImplementedError class SeqWriter(object): """ sequence writer """ def writeseq(self, seq): """ write an array to file :param seq: (list) """ raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): """ log to a file, in a human readable format :param filename_or_file: (str or File) the file to write the log to """ if isinstance(filename_or_file, str): self.file = open(filename_or_file, 'wt') self.own_file = True else: assert hasattr(filename_or_file, 'write'), 'Expected file or str, got {}'.format(filename_or_file) self.file = filename_or_file self.own_file = False def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if isinstance(val, float): valstr = '%-8.3g' % (val,) else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths if len(key2str) == 0: warnings.warn('Tried to write empty key-value dict') return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = '-' * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items()): lines.append('| %s%s | %s%s |' % ( key, ' ' * (keywidth - len(key)), val, ' ' * (valwidth - len(val)), )) lines.append(dashes) self.file.write('\n'.join(lines) + '\n') # Flush the output to the file self.file.flush() @classmethod def _truncate(cls, string): return string[:20] + '...' if len(string) > 23 else string def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: # add space unless this is the last one self.file.write(' ') self.file.write('\n') self.file.flush() def close(self): """ closes the file """ if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): """ log to a file, in the JSON format :param filename: (str) the file to write the log to """ self.file = open(filename, 'wt') def writekvs(self, kvs): for key, value in sorted(kvs.items()): if hasattr(value, 'dtype'): if value.shape == () or len(value) == 1: # if value is a dimensionless numpy array or of length 1, serialize as a float kvs[key] = float(value) else: # otherwise, a value is a numpy array, serialize as a list or nested lists kvs[key] = value.tolist() self.file.write(json.dumps(kvs) + '\n') self.file.flush() def close(self): """ closes the file """ self.file.close() class CSVOutputFormat(KVWriter): def __init__(self, filename): """ log to a file, in a CSV format :param filename: (str) the file to write the log to """ self.file = open(filename, 'w+t') self.keys = [] self.sep = ',' def writekvs(self, kvs): # Add our current row to the history extra_keys = kvs.keys() - self.keys if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, key) in enumerate(self.keys): if i > 0: self.file.write(',') self.file.write(key) self.file.write('\n') for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write('\n') for i, key in enumerate(self.keys): if i > 0: self.file.write(',') value = kvs.get(key) if value is not None: self.file.write(str(value)) self.file.write('\n') self.file.flush() def close(self): """ closes the file """ self.file.close() def summary_val(key, value): """ :param key: (str) :param value: (float) """ kwargs = {'tag': key, 'simple_value': float(value)} return tf.compat.v1.Summary.Value(**kwargs) def valid_float_value(value): """ Returns True if the value can be successfully cast into a float :param value: (Any) the value to check :return: (bool) """ try: float(value) return True except TypeError: return False class TensorBoardOutputFormat(KVWriter): def __init__(self, folder): """ Dumps key/value pairs into TensorBoard's numeric format. :param folder: (str) the folder to write the log to """ os.makedirs(folder, exist_ok=True) self.dir = folder self.step = 1 prefix = 'events' path = os.path.join(os.path.abspath(folder), prefix) self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) # type: pywrap_tensorflow.EventsWriter def writekvs(self, kvs): summary = tf.compat.v1.Summary(value=[summary_val(k, v) for k, v in kvs.items() if valid_float_value(v)]) event = event_pb2.Event(wall_time=time.time(), summary=summary) event.step = self.step # is there any reason why you'd want to specify the step? self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): """ closes the file """ if self.writer: self.writer.Close() self.writer = None def make_output_format(_format, ev_dir, log_suffix=''): """ return a logger for the requested format :param _format: (str) the requested format to log to ('stdout', 'log', 'json', 'csv' or 'tensorboard') :param ev_dir: (str) the logging directory :param log_suffix: (str) the suffix for the log file :return: (KVWrite) the logger """ os.makedirs(ev_dir, exist_ok=True) if _format == 'stdout': return HumanOutputFormat(sys.stdout) elif _format == 'log': return HumanOutputFormat(os.path.join(ev_dir, 'log%s.txt' % log_suffix)) elif _format == 'json': return JSONOutputFormat(os.path.join(ev_dir, 'progress%s.json' % log_suffix)) elif _format == 'csv': return CSVOutputFormat(os.path.join(ev_dir, 'progress%s.csv' % log_suffix)) elif _format == 'tensorboard': return TensorBoardOutputFormat(os.path.join(ev_dir, 'tb%s' % log_suffix)) else: raise ValueError('Unknown format specified: %s' % (_format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many times, last value will be used. :param key: (Any) save to log this key :param val: (Any) save to log this value """ Logger.CURRENT.logkv(key, val) def logkv_mean(key, val): """ The same as logkv(), but if called many times, values averaged. :param key: (Any) save to log this key :param val: (Number) save to log this value """ Logger.CURRENT.logkv_mean(key, val) def logkvs(key_values): """ Log a dictionary of key-value pairs :param key_values: (dict) the list of keys and values to save to log """ for key, value in key_values.items(): logkv(key, value) def dumpkvs(): """ Write all of the diagnostics from the current iteration """ Logger.CURRENT.dumpkvs() def getkvs(): """ get the key values logs :return: (dict) the logged values """ return Logger.CURRENT.name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). level: int. (see logger.py docs) If the global logger level is higher than the level argument here, don't print to stdout. :param args: (list) log the arguments :param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50) """ Logger.CURRENT.log(*args, level=level) def debug(*args): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). Using the DEBUG level. :param args: (list) log the arguments """ log(*args, level=DEBUG) def info(*args): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). Using the INFO level. :param args: (list) log the arguments """ log(*args, level=INFO) def warn(*args): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). Using the WARN level. :param args: (list) log the arguments """ log(*args, level=WARN) def error(*args): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). Using the ERROR level. :param args: (list) log the arguments """ log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. :param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50) """ Logger.CURRENT.set_level(level) def get_level(): """ Get logging threshold on current logger. :return: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50) """ return Logger.CURRENT.level def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) :return: (str) the logging directory """ return Logger.CURRENT.get_dir() record_tabular = logkv dump_tabular = dumpkvs class ProfileKV: def __init__(self, name): """ Usage: with logger.ProfileKV("interesting_scope"): code :param name: (str) the profiling name """ self.name = "wait_" + name def __enter__(self): self.start_time = time.time() def __exit__(self, _type, value, traceback): Logger.CURRENT.name2val[self.name] += time.time() - self.start_time def profile(name): """ Usage: @profile("my_func") def my_func(): code :param name: (str) the profiling name :return: (function) the wrapped function """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with ProfileKV(name): return func(*args, **kwargs) return func_wrapper return decorator_with_name # ================================================================ # Backend # ================================================================ class Logger(object): # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files DEFAULT = None # type: Optional["Logger"] # Current logger being used by the free functions above CURRENT = None # type: Optional["Logger"] def __init__(self, folder, output_formats): """ the logger class :param folder: (str) the logging location :param output_formats: ([str]) the list of output format """ self.name2val = defaultdict(float) # values this iteration self.name2cnt = defaultdict(int) self.level = INFO self.dir = folder self.output_formats = output_formats # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many times, last value will be used. :param key: (Any) save to log this key :param val: (Any) save to log this value """ self.name2val[key] = val def logkv_mean(self, key, val): """ The same as logkv(), but if called many times, values averaged. :param key: (Any) save to log this key :param val: (Number) save to log this value """ if val is None: self.name2val[key] = None return oldval, cnt = self.name2val[key], self.name2cnt[key] self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): """ Write all of the diagnostics from the current iteration """ if self.level == DISABLED: return for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(self.name2val) self.name2val.clear() self.name2cnt.clear() def log(self, *args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). level: int. (see logger.py docs) If the global logger level is higher than the level argument here, don't print to stdout. :param args: (list) log the arguments :param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50) """ if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): """ Set logging threshold on current logger. :param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50) """ self.level = level def get_dir(self): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) :return: (str) the logging directory """ return self.dir def close(self): """ closes the file """ for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): """ log to the requested format outputs :param args: (list) the arguments to log """ for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) Logger.DEFAULT = Logger.CURRENT = Logger(folder=None, output_formats=[HumanOutputFormat(sys.stdout)]) def configure(folder=None, format_strs=None): """ configure the current logger :param folder: (str) the save location (if None, $OPENAI_LOGDIR, if still None, tempdir/openai-[date & time]) :param format_strs: (list) the output logging format (if None, $OPENAI_LOG_FORMAT, if still None, ['stdout', 'log', 'csv']) """ if folder is None: folder = os.getenv('OPENAI_LOGDIR') if folder is None: folder = os.path.join(tempfile.gettempdir(), datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f")) assert isinstance(folder, str) os.makedirs(folder, exist_ok=True) rank = mpi_rank_or_zero() log_suffix = '' if format_strs is None: if rank == 0: format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',') else: log_suffix = "-rank%03i" % rank format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',') format_strs = filter(None, format_strs) output_formats = [make_output_format(f, folder, log_suffix) for f in format_strs] Logger.CURRENT = Logger(folder=folder, output_formats=output_formats) log('Logging to %s' % folder) def reset(): """ reset the current logger """ if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log('Reset logger') class ScopedConfigure(object): def __init__(self, folder=None, format_strs=None): """ Class for using context manager while logging usage: with ScopedConfigure(folder=None, format_strs=None): {code} :param folder: (str) the logging folder :param format_strs: ([str]) the list of output logging format """ self.dir = folder self.format_strs = format_strs self.prevlogger = None def __enter__(self): self.prevlogger = Logger.CURRENT configure(folder=self.dir, format_strs=self.format_strs) def __exit__(self, *args): Logger.CURRENT.close() Logger.CURRENT = self.prevlogger # ================================================================ def _demo(): """ tests for the logger module """ info("hi") debug("shouldn't appear") set_level(DEBUG) debug("should appear") folder = "/tmp/testlogging" if os.path.exists(folder): shutil.rmtree(folder) configure(folder=folder) logkv("a", 3) logkv("b", 2.5) dumpkvs() logkv("b", -2.5) logkv("a", 5.5) dumpkvs() info("^^^ should see a = 5.5") logkv_mean("b", -22.5) logkv_mean("b", -44.4) logkv("a", 5.5) dumpkvs() with ScopedConfigure(None, None): info("^^^ should see b = 33.3") with ScopedConfigure("/tmp/test-logger/", ["json"]): logkv("b", -2.5) dumpkvs() reset() logkv("a", "longasslongasslongasslongasslongasslongassvalue") dumpkvs() warn("hey") error("oh") logkvs({"test": 1}) # ================================================================ # Readers # ================================================================ def read_json(fname): """ read a json file using pandas :param fname: (str) the file path to read :return: (pandas DataFrame) the data in the json """ import pandas data = [] with open(fname, 'rt') as file_handler: for line in file_handler: data.append(json.loads(line)) return pandas.DataFrame(data) def read_csv(fname): """ read a csv file using pandas :param fname: (str) the file path to read :return: (pandas DataFrame) the data in the csv """ import pandas return pandas.read_csv(fname, index_col=None, comment='#') def read_tb(path): """ read a tensorboard output :param path: (str) a tensorboard file OR a directory, where we will find all TB files of the form events. :return: (pandas DataFrame) the tensorboad data """ import pandas import numpy as np from glob import glob # from collections import defaultdict import tensorflow as tf if os.path.isdir(path): fnames = glob(os.path.join(path, "events.*")) elif os.path.basename(path).startswith("events."): fnames = [path] else: raise NotImplementedError("Expected tensorboard file or directory containing them. Got %s" % path) tag2pairs = defaultdict(list) maxstep = 0 for fname in fnames: for summary in tf.compat.v1.train.summary_iterator(fname): if summary.step > 0: for value in summary.summary.value: pair = (summary.step, value.simple_value) tag2pairs[value.tag].append(pair) maxstep = max(summary.step, maxstep) data = np.empty((maxstep, len(tag2pairs))) data[:] = np.nan tags = sorted(tag2pairs.keys()) for (colidx, tag) in enumerate(tags): pairs = tag2pairs[tag] for (step, value) in pairs: data[step - 1, colidx] = value return pandas.DataFrame(data, columns=tags) if __name__ == "__main__": _demo()
28.376344
117
0.575881
4a26119c2990d982aee640d62ea718e71873636b
11,486
py
Python
airflow/secrets/local_filesystem.py
shashijangra/airflow-1
c3e340584bf1892c4f73aa9e7495b5823dab0c40
[ "Apache-2.0" ]
1
2020-09-15T02:32:55.000Z
2020-09-15T02:32:55.000Z
airflow/secrets/local_filesystem.py
shashijangra/airflow-1
c3e340584bf1892c4f73aa9e7495b5823dab0c40
[ "Apache-2.0" ]
14
2019-12-03T02:54:42.000Z
2020-02-27T16:08:10.000Z
airflow/secrets/local_filesystem.py
shashijangra/airflow-1
c3e340584bf1892c4f73aa9e7495b5823dab0c40
[ "Apache-2.0" ]
1
2020-11-04T03:10:24.000Z
2020-11-04T03:10:24.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Objects relating to retrieving connections and variables from local file """ import json import logging import os import warnings from collections import defaultdict from inspect import signature from json import JSONDecodeError from typing import Any, Dict, List, Optional, Set, Tuple import yaml from airflow.exceptions import ( AirflowException, AirflowFileParseException, ConnectionNotUnique, FileSyntaxError, ) from airflow.secrets.base_secrets import BaseSecretsBackend from airflow.utils.file import COMMENT_PATTERN from airflow.utils.log.logging_mixin import LoggingMixin log = logging.getLogger(__name__) def get_connection_parameter_names() -> Set[str]: """Returns :class:`airflow.models.connection.Connection` constructor parameters.""" from airflow.models.connection import Connection return {k for k in signature(Connection.__init__).parameters.keys() if k != "self"} def _parse_env_file(file_path: str) -> Tuple[Dict[str, List[str]], List[FileSyntaxError]]: """ Parse a file in the ``.env '' format. .. code-block:: text MY_CONN_ID=my-conn-type://my-login:my-pa%2Fssword@my-host:5432/my-schema?param1=val1&param2=val2 :param file_path: The location of the file that will be processed. :type file_path: str :return: Tuple with mapping of key and list of values and list of syntax errors """ with open(file_path) as f: content = f.read() secrets: Dict[str, List[str]] = defaultdict(list) errors: List[FileSyntaxError] = [] for line_no, line in enumerate(content.splitlines(), 1): if not line: # Ignore empty line continue if COMMENT_PATTERN.match(line): # Ignore comments continue var_parts: List[str] = line.split("=", 2) if len(var_parts) != 2: errors.append( FileSyntaxError( line_no=line_no, message='Invalid line format. The line should contain at least one equal sign ("=").', ) ) continue key, value = var_parts if not key: errors.append(FileSyntaxError(line_no=line_no, message="Invalid line format. Key is empty.",)) secrets[key].append(value) return secrets, errors def _parse_yaml_file(file_path: str) -> Tuple[Dict[str, List[str]], List[FileSyntaxError]]: """ Parse a file in the YAML format. :param file_path: The location of the file that will be processed. :type file_path: str :return: Tuple with mapping of key and list of values and list of syntax errors """ with open(file_path) as f: content = f.read() if not content: return {}, [FileSyntaxError(line_no=1, message="The file is empty.")] try: secrets = yaml.safe_load(content) except yaml.MarkedYAMLError as e: return {}, [FileSyntaxError(line_no=e.problem_mark.line, message=str(e))] if not isinstance(secrets, dict): return {}, [FileSyntaxError(line_no=1, message="The file should contain the object.")] return secrets, [] def _parse_json_file(file_path: str) -> Tuple[Dict[str, Any], List[FileSyntaxError]]: """ Parse a file in the JSON format. :param file_path: The location of the file that will be processed. :type file_path: str :return: Tuple with mapping of key and list of values and list of syntax errors """ with open(file_path) as f: content = f.read() if not content: return {}, [FileSyntaxError(line_no=1, message="The file is empty.")] try: secrets = json.loads(content) except JSONDecodeError as e: return {}, [FileSyntaxError(line_no=int(e.lineno), message=e.msg)] if not isinstance(secrets, dict): return {}, [FileSyntaxError(line_no=1, message="The file should contain the object.")] return secrets, [] FILE_PARSERS = { "env": _parse_env_file, "json": _parse_json_file, "yaml": _parse_yaml_file, } def _parse_secret_file(file_path: str) -> Dict[str, Any]: """ Based on the file extension format, selects a parser, and parses the file. :param file_path: The location of the file that will be processed. :type file_path: str :return: Map of secret key (e.g. connection ID) and value. """ if not os.path.exists(file_path): raise AirflowException( f"File {file_path} was not found. Check the configuration of your Secrets backend." ) log.debug("Parsing file: %s", file_path) ext = file_path.rsplit(".", 2)[-1].lower() if ext not in FILE_PARSERS: raise AirflowException("Unsupported file format. The file must have the extension .env or .json") secrets, parse_errors = FILE_PARSERS[ext](file_path) log.debug("Parsed file: len(parse_errors)=%d, len(secrets)=%d", len(parse_errors), len(secrets)) if parse_errors: raise AirflowFileParseException( "Failed to load the secret file.", file_path=file_path, parse_errors=parse_errors ) return secrets def _create_connection(conn_id: str, value: Any): """ Creates a connection based on a URL or JSON object. """ from airflow.models.connection import Connection if isinstance(value, str): return Connection(conn_id=conn_id, uri=value) if isinstance(value, dict): connection_parameter_names = get_connection_parameter_names() | {"extra_dejson"} current_keys = set(value.keys()) if not current_keys.issubset(connection_parameter_names): illegal_keys = current_keys - connection_parameter_names illegal_keys_list = ", ".join(illegal_keys) raise AirflowException( f"The object have illegal keys: {illegal_keys_list}. " f"The dictionary can only contain the following keys: {connection_parameter_names}" ) if "extra" in value and "extra_dejson" in value: raise AirflowException( "The extra and extra_dejson parameters are mutually exclusive. " "Please provide only one parameter." ) if "extra_dejson" in value: value["extra"] = json.dumps(value["extra_dejson"]) del value["extra_dejson"] if "conn_id" in current_keys and conn_id != value["conn_id"]: raise AirflowException( f"Mismatch conn_id. " f"The dictionary key has the value: {value['conn_id']}. " f"The item has the value: {conn_id}." ) value["conn_id"] = conn_id return Connection(**value) raise AirflowException( f"Unexpected value type: {type(value)}. The connection can only be defined using a string or object." ) def load_variables(file_path: str) -> Dict[str, str]: """ Load variables from a text file. Both ``JSON`` and ``.env`` files are supported. :param file_path: The location of the file that will be processed. :type file_path: str :rtype: Dict[str, List[str]] """ log.debug("Loading variables from a text file") secrets = _parse_secret_file(file_path) invalid_keys = [key for key, values in secrets.items() if isinstance(values, list) and len(values) != 1] if invalid_keys: raise AirflowException(f'The "{file_path}" file contains multiple values for keys: {invalid_keys}') variables = {key: values[0] if isinstance(values, list) else values for key, values in secrets.items()} log.debug("Loaded %d variables: ", len(variables)) return variables def load_connections(file_path) -> Dict[str, List[Any]]: """ This function is deprecated. Please use `airflow.secrets.local_filesystem.load_connections_dict`.", """ warnings.warn( "This function is deprecated. Please use `airflow.secrets.local_filesystem.load_connections_dict`.", DeprecationWarning, stacklevel=2 ) return {k: [v] for k, v in load_connections_dict(file_path).values()} def load_connections_dict(file_path: str) -> Dict[str, Any]: """ Load connection from text file. Both ``JSON`` and ``.env`` files are supported. :return: A dictionary where the key contains a connection ID and the value contains a list of connections. :rtype: Dict[str, airflow.models.connection.Connection] """ log.debug("Loading connection") secrets: Dict[str, Any] = _parse_secret_file(file_path) connection_by_conn_id = {} for key, secret_values in list(secrets.items()): if isinstance(secret_values, list): if len(secret_values) > 1: raise ConnectionNotUnique(f"Found multiple values for {key} in {file_path}.") for secret_value in secret_values: connection_by_conn_id[key] = _create_connection(key, secret_value) else: connection_by_conn_id[key] = _create_connection(key, secret_values) num_conn = len(connection_by_conn_id) log.debug("Loaded %d connections", num_conn) return connection_by_conn_id class LocalFilesystemBackend(BaseSecretsBackend, LoggingMixin): """ Retrieves Connection objects and Variables from local files Both ``JSON`` and ``.env`` files are supported. :param variables_file_path: File location with variables data. :type variables_file_path: str :param connections_file_path: File location with connection data. :type connections_file_path: str """ def __init__( self, variables_file_path: Optional[str] = None, connections_file_path: Optional[str] = None ): super().__init__() self.variables_file = variables_file_path self.connections_file = connections_file_path @property def _local_variables(self) -> Dict[str, str]: if not self.variables_file: self.log.debug("The file for variables is not specified. Skipping") # The user may not specify any file. return {} secrets = load_variables(self.variables_file) return secrets @property def _local_connections(self) -> Dict[str, List[Any]]: if not self.connections_file: self.log.debug("The file for connection is not specified. Skipping") # The user may not specify any file. return {} return load_connections_dict(self.connections_file) def get_connections(self, conn_id: str) -> List[Any]: if conn_id in self._local_connections: return [self._local_connections[conn_id]] return [] def get_variable(self, key: str) -> Optional[str]: return self._local_variables.get(key)
35.670807
110
0.670643
4a2611a8d3d41b8f8cc3849b8bf1324d7cba3a07
3,248
py
Python
bin/eoIngestPd.py
lsst-camera-dh/eotask-gen3
41e7de97c607c5a8b21c4f7164b3852e7d07359a
[ "BSD-3-Clause-LBNL" ]
null
null
null
bin/eoIngestPd.py
lsst-camera-dh/eotask-gen3
41e7de97c607c5a8b21c4f7164b3852e7d07359a
[ "BSD-3-Clause-LBNL" ]
33
2021-04-23T17:43:34.000Z
2022-01-17T19:15:14.000Z
bin/eoIngestPd.py
lsst-camera-dh/eotask-gen3
41e7de97c607c5a8b21c4f7164b3852e7d07359a
[ "BSD-3-Clause-LBNL" ]
null
null
null
#! /usr/bin/env python import os import argparse from astropy.table import Table from lsst.daf.butler import Butler, DatasetType def getDataIdRecords(butler, filename): tokens = os.path.splitext(os.path.basename(filename))[0].split('_') dayObs = int(tokens[2]) seqNum = int(tokens[3]) where = "exposure.day_obs = dayobs and exposure.seq_num = seqnum" records = list(butler.registry.queryDimensionRecords("exposure", where=where, bind={"dayobs": dayObs, "seqnum": seqNum}, dataId={"instrument": "LSSTCam"})) if records: return records[0] raise KeyError("Failed to find exposure ID for %s %06i" % (dayObs, seqNum)) def setTableMetaData(table, dataIdRecords): table.columns[0].name = 'Time' table.columns[1].name = 'Current' table.columns[0].unit = 's' table.columns[1].unit = 'A' table.meta['OBSTYPE'] = dataIdRecords.observation_type table.meta['INSTRUME'] = 'LSSTCam' table.meta['CALIBDATE'] = dataIdRecords.timespan.end.isot table.meta['CALIB_ID'] = 'calibDate=%s' % dataIdRecords.timespan.end.isot table.meta['PD_SCEHMA'] = 'Simple' table.meta['PD_SCHEMA_VERSION'] = 1 table.meta['DATE'] = dataIdRecords.timespan.end.isot table.meta['CALIB_CREATION_DATE'] \ = dataIdRecords.timespan.end.strftime('%Y-%M-%d') table.meta['CALIB_CREATION_TIME'] \ = dataIdRecords.timespan.end.strftime('%H:%m:%S') def ingest_pd_files(repo, pd_files, output_run='LSSTCam/photodiode/all'): butler = Butler(repo, writeable=True, run=output_run) datasetType = DatasetType("photodiode", ("instrument", "exposure"), "AstropyTable", universe=butler.registry.dimensions) try: butler.registry.registerDatasetType(datasetType) except Exception: pass print("Found %i photodiode files" % len(pd_files)) for i, aFile in enumerate(pd_files): print(i, len(pd_files), os.path.basename(aFile))\ try: dataIdRecords = getDataIdRecords(butler, aFile) except KeyError as msg: print(msg) continue table = Table.read(aFile, format='ascii') setTableMetaData(table, dataIdRecords) # dataId = dict(instrument=dataIdRecords.instrument, # exposure=dataIdRecords.id) dataId = dataIdRecords.dataId with butler.transaction(): butler.put(table, "photodiode", dataId=dataId) print("Done!") def main(): # argument parser parser = argparse.ArgumentParser(prog='eoIngestPd.py') parser.add_argument('-b', '--butler', type=str, help='Butler Repo') parser.add_argument('--output-run', type=str, help="The name of the run datasets should be output to", default="LSSTCam/photodiode/all") parser.add_argument('files', type=str, nargs='+', help='Files to import') # unpack options args = parser.parse_args() ingest_pd_files(args.butler, args.files, args.output_run) if __name__ == '__main__': main()
33.142857
99
0.615148
4a2612813fa6bd5a4d162fe061fbc0c123b91355
21,578
py
Python
Projects/Parameter Estimation and Bayesian Statistics/_2_Exercise_2.py
aleixlopezpascual/aleixlopezpascual.github.io
89b7449cf7f358d53a2b8f4030b88cbaf8884ef6
[ "MIT" ]
null
null
null
Projects/Parameter Estimation and Bayesian Statistics/_2_Exercise_2.py
aleixlopezpascual/aleixlopezpascual.github.io
89b7449cf7f358d53a2b8f4030b88cbaf8884ef6
[ "MIT" ]
null
null
null
Projects/Parameter Estimation and Bayesian Statistics/_2_Exercise_2.py
aleixlopezpascual/aleixlopezpascual.github.io
89b7449cf7f358d53a2b8f4030b88cbaf8884ef6
[ "MIT" ]
null
null
null
import numpy as np from scipy import stats, special import matplotlib.pyplot as plt from math import sqrt, factorial exercise = 15 ################################################################# # exercise 2.2 if exercise == 2: x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="black") plt.xlabel(r"$\hat{\nu}$") plt.ylabel(r"f($\hat{\nu}$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.show() ################################################################# # exercise 2.3 if exercise == 3: q = 150 # estimator from the first experiment, we use it as "true" value for the following MC's # we now genetare 10^6 MC experiments from a Poisson pdf. There is # a module, so-called numpy.random, which implements pseudo-random number generators for various distributions. # since we want to generate numbers Poisson distributed, we can directly use this module. poisson_data = np.random.poisson(q, 10**6) print(poisson_data) print(len(poisson_data)) # the obtained values are directly N_i. # Now we compute the estimator for each one, which in fact corresponds to q_i = N_i # so we don't have to make any change plt.hist(poisson_data, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (150,150)$") # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(poisson_data) variance_estimator = np.var(poisson_data, ddof=1) print(mean_estimator, variance_estimator) plt.xlabel(r"$\hat{\nu}$") plt.ylabel(r"N($\hat{\nu}$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.4 if exercise == 4: N = 150 nu = np.linspace(100,200,100000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**(N/2))*(np.exp(-nu))*(nu**(N/2)))/special.gamma(N+1) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|150)") plt.plot(nu, stats.norm.pdf(nu, 150, sqrt(150)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (150,150)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|150)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.5 if exercise == 5: N_obs=150 nu = np.random.uniform(0.0, N_obs + 10.0*sqrt(N_obs), size=10**7) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (150,150)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) # mean = 150.91 variance 150.56 # 151.06,151.09 # 150.95,152.57 # 151.04,151.19 # revise exercise 2.4: find mode and verify if its 150 o 151 plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (151,151)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.6 (if 6 -> repeat ex 2.4. if 7 ex -> 7 repeat ex 2.5) if exercise == 6: N = 10 nu = np.linspace(0,50,100000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**(N/2))*(np.exp(-nu))*(nu**(N/2)))/special.gamma(N+1) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|10)") plt.plot(nu, stats.norm.pdf(nu, 10, sqrt(10)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (10,10)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|10)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 7: N_obs=10 nu = np.random.uniform(0.0, N_obs + 10.0*sqrt(N_obs), size=10**7) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 10, sqrt(10)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (10,10)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (11,11)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.7 (if 8 -> repeat ex 2.4. if 9 ex -> 7 repeat ex 2.5) if exercise == 8: N = 1 nu = np.linspace(0,10,10000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**(N/2))*(np.exp(-nu))*(nu**(N/2)))/special.gamma(N+1) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|1)") plt.plot(nu, stats.norm.pdf(nu, 1, sqrt(1)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (1,1)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|1)") plt.xlim(0,5) plt.ylim(0, 0.45) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 9: N_obs=1 nu = np.random.uniform(0.0, N_obs + 10.0*sqrt(N_obs), size=10**7) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 1, sqrt(1)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.45) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.45) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# ################################################################# ################################################################# # exercise 2.8 if exercise == 10: N = 150 nu = np.linspace(100,200,100000) posterior_pdf = ((nu**((N-1)/2))*(np.exp(-nu))*(nu**((N-1)/2)))/special.gamma(N) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|150)") plt.plot(nu, stats.norm.pdf(nu, 150, sqrt(150)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (150,150)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|150)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# if exercise == 11: N_obs=150 # we generate nu that satisfies our prior. # we have used the inv transformation MC method # remember that we always use r = U[0,1] in this method nu = np.exp(np.random.uniform(0.0, np.log(N_obs + 10.0*sqrt(N_obs)), size=10**7)) # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count, nu_i) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (150,150)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (151,151)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.6 (if 6 -> repeat ex 2.4. if 7 ex -> 7 repeat ex 2.5) if exercise == 12: N = 10 nu = np.linspace(0,50,100000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**((N-1)/2))*(np.exp(-nu))*(nu**((N-1)/2)))/special.gamma(N) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|10)") plt.plot(nu, stats.norm.pdf(nu, 10, sqrt(10)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (10,10)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|10)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 13: N_obs=10 nu = np.exp(np.random.uniform(0.0, np.log(N_obs + 10.0*sqrt(N_obs)), size=10**7)) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 10, sqrt(10)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (10,10)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (11,11)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.7 (if 8 -> repeat ex 2.4. if 9 ex -> 7 repeat ex 2.5) if exercise == 14: N = 1 nu = np.linspace(0,10,10000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**((N-1)/2))*(np.exp(-nu))*(nu**((N-1)/2)))/special.gamma(N) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|1)") plt.plot(nu, stats.norm.pdf(nu, 1, sqrt(1)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (1,1)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|1)") plt.xlim(0,5) plt.ylim(0, 1) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 15: N_obs=1 nu = np.exp(np.random.uniform(-100., np.log(N_obs + 10.0*sqrt(N_obs)), size=10**7)) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 40, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 1, sqrt(1)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.60) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 50, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 1.0) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() np.savetxt("nu_accepted", nu_accepted) if exercise == 16: nu_accepted=np.loadtxt("nu_accepted") plt.figure(1) plt.hist(nu_accepted, bins= 40, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 1, sqrt(1)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.60) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 50, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (2,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 1.0) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show()
34.469649
130
0.577579
4a2612c2df1749b8637876f31226895e87bc86e3
1,906
py
Python
M.py
Hassan0072/CP_HS99
365ecd119e19fcf2c69ccaef42b278a1a9256741
[ "MIT" ]
null
null
null
M.py
Hassan0072/CP_HS99
365ecd119e19fcf2c69ccaef42b278a1a9256741
[ "MIT" ]
3
2019-05-05T16:30:58.000Z
2019-05-11T00:23:02.000Z
M.py
Hassan0072/CP_HS99
365ecd119e19fcf2c69ccaef42b278a1a9256741
[ "MIT" ]
1
2019-04-21T18:46:01.000Z
2019-04-21T18:46:01.000Z
# server2.py import socket from threading import Thread from socketserver import ThreadingMixIn TCP_IP = 'localhost' TCP_PORT = 9001 BUFFER_SIZE = 1024 class ClientThread(Thread): def __init__(self,ip,port,sock): Thread.__init__(self) self.ip = ip self.port = port self.sock = sock print (" New thread started for "+ip+":"+str(port)) def run(self): filename='mytext.txt' f = open(filename,'rb') while True: l = f.read(BUFFER_SIZE) while (l): self.sock.send(l) #print('Sent ',repr(l)) l = f.read(BUFFER_SIZE) if not l: f.close() self.sock.close() break tcpsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcpsock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) tcpsock.bind((TCP_IP, TCP_PORT)) threads = [] while True: tcpsock.listen(5) print ("Waiting for incoming connections...") (conn, (ip,port)) = tcpsock.accept() print ('Got connection from ', (ip,port)) newthread = ClientThread(ip,port,conn) newthread.start() threads.append(newthread) for t in threads: t.join() # client2.py #!/usr/bin/env python import socket TCP_IP = 'localhost' TCP_PORT = 9001 BUFFER_SIZE = 1024 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((TCP_IP, TCP_PORT)) with open('received_file', 'wb') as f: print ('file opened') while True: #print('receiving data...') data = s.recv(BUFFER_SIZE) print('data=%s', (data)) if not data: f.close() print ('file close()') break # write data to a file f.write(data) print('Successfully get the file') s.close() print('connection closed')
24.435897
62
0.570829
4a26132a2e3e7309e9f2a865b8a0fa72267cf888
27,428
py
Python
seleniumbase/fixtures/js_utils.py
hyahiaoui/SeleniumBase
8c7fc30cadf289731767953f22eeab3c92271760
[ "MIT" ]
null
null
null
seleniumbase/fixtures/js_utils.py
hyahiaoui/SeleniumBase
8c7fc30cadf289731767953f22eeab3c92271760
[ "MIT" ]
null
null
null
seleniumbase/fixtures/js_utils.py
hyahiaoui/SeleniumBase
8c7fc30cadf289731767953f22eeab3c92271760
[ "MIT" ]
null
null
null
""" This module contains useful Javascript utility methods for base_case.py These helper methods SHOULD NOT be called directly from tests. """ import re import requests import time from selenium.common.exceptions import WebDriverException from seleniumbase import config as sb_config from seleniumbase.common import decorators from seleniumbase.config import settings from seleniumbase.core import style_sheet from seleniumbase.fixtures import constants from seleniumbase.fixtures import shared_utils def wait_for_ready_state_complete(driver, timeout=settings.EXTREME_TIMEOUT): """ The DOM (Document Object Model) has a property called "readyState". When the value of this becomes "complete", page resources are considered fully loaded (although AJAX and other loads might still be happening). This method will wait until document.readyState == "complete". """ start_ms = time.time() * 1000.0 stop_ms = start_ms + (timeout * 1000.0) for x in range(int(timeout * 10)): shared_utils.check_if_time_limit_exceeded() try: ready_state = driver.execute_script("return document.readyState") except WebDriverException: # Bug fix for: [Permission denied to access property "document"] time.sleep(0.03) return True if ready_state == u"complete": time.sleep(0.01) # Better be sure everything is done loading return True else: now_ms = time.time() * 1000.0 if now_ms >= stop_ms: break time.sleep(0.1) raise Exception("Page elements never fully loaded after %s seconds!" % timeout) def execute_async_script(driver, script, timeout=settings.EXTREME_TIMEOUT): driver.set_script_timeout(timeout) return driver.execute_async_script(script) def wait_for_angularjs(driver, timeout=settings.LARGE_TIMEOUT, **kwargs): if not settings.WAIT_FOR_ANGULARJS: return NG_WRAPPER = ( "%(prefix)s" "var $elm=document.querySelector(" "'[data-ng-app],[ng-app],.ng-scope')||document;" "if(window.angular && angular.getTestability){" "angular.getTestability($elm).whenStable(%(handler)s)" "}else{" "var $inj;try{$inj=angular.element($elm).injector()||" "angular.injector(['ng'])}catch(ex){" "$inj=angular.injector(['ng'])};$inj.get=$inj.get||" "$inj;$inj.get('$browser')." "notifyWhenNoOutstandingRequests(%(handler)s)}" "%(suffix)s" ) def_pre = "var cb=arguments[arguments.length-1];if(window.angular){" prefix = kwargs.pop("prefix", def_pre) handler = kwargs.pop("handler", "function(){cb(true)}") suffix = kwargs.pop("suffix", "}else{cb(false)}") script = NG_WRAPPER % {"prefix": prefix, "handler": handler, "suffix": suffix} try: execute_async_script(driver, script, timeout=timeout) except Exception: time.sleep(0.05) def is_html_inspector_activated(driver): try: driver.execute_script("HTMLInspector") # Fails if not defined return True except Exception: return False def is_jquery_activated(driver): try: driver.execute_script("jQuery('html')") # Fails if jq is not defined return True except Exception: return False def wait_for_jquery_active(driver, timeout=None): if not timeout: timeout = int(settings.MINI_TIMEOUT * 10.0) else: timeout = int(timeout * 10.0) for x in range(timeout): # jQuery needs a small amount of time to activate. try: driver.execute_script("jQuery('html')") wait_for_ready_state_complete(driver) wait_for_angularjs(driver) return except Exception: time.sleep(0.1) def raise_unable_to_load_jquery_exception(driver): """ The most-likely reason for jQuery not loading on web pages. """ raise Exception( """Unable to load jQuery on "%s" due to a possible violation """ """of the website's Content Security Policy directive. """ """To override this policy, add "--disable-csp" on the """ """command-line when running your tests.""" % driver.current_url ) def activate_jquery(driver): """ If "jQuery is not defined", use this method to activate it for use. This happens because jQuery is not always defined on web sites. """ try: # Let's first find out if jQuery is already defined. driver.execute_script("jQuery('html')") # Since that command worked, jQuery is defined. Let's return. return except Exception: # jQuery is not currently defined. Let's proceed by defining it. pass jquery_js = constants.JQuery.MIN_JS activate_jquery_script = ( """var script = document.createElement('script');""" """script.src = "%s";document.getElementsByTagName('head')[0]""" """.appendChild(script);""" % jquery_js ) driver.execute_script(activate_jquery_script) for x in range(int(settings.MINI_TIMEOUT * 10.0)): # jQuery needs a small amount of time to activate. try: driver.execute_script("jQuery('html')") return except Exception: time.sleep(0.1) # Since jQuery still isn't activating, give up and raise an exception raise_unable_to_load_jquery_exception(driver) def are_quotes_escaped(string): if string.count("\\'") != string.count("'") or (string.count('\\"') != string.count('"')): return True return False def escape_quotes_if_needed(string): """ re.escape() works differently in Python 3.7.0 than earlier versions: Python 3.6.5: >>> import re >>> re.escape('"') '\\"' Python 3.7.0: >>> import re >>> re.escape('"') '"' SeleniumBase needs quotes to be properly escaped for Javascript calls. """ if are_quotes_escaped(string): if string.count("'") != string.count("\\'"): string = string.replace("'", "\\'") if string.count('"') != string.count('\\"'): string = string.replace('"', '\\"') return string def safe_execute_script(driver, script): """ When executing a script that contains a jQuery command, it's important that the jQuery library has been loaded first. This method will load jQuery if it wasn't already loaded. """ try: driver.execute_script(script) except Exception: # The likely reason this fails is because: "jQuery is not defined" activate_jquery(driver) # It's a good thing we can define it here driver.execute_script(script) def wait_for_css_query_selector(driver, selector, timeout=settings.SMALL_TIMEOUT): element = None start_ms = time.time() * 1000.0 stop_ms = start_ms + (timeout * 1000.0) for x in range(int(timeout * 10)): try: selector = re.escape(selector) selector = escape_quotes_if_needed(selector) element = driver.execute_script("""return document.querySelector('%s')""" % selector) if element: return element except Exception: element = None if not element: now_ms = time.time() * 1000.0 if now_ms >= stop_ms: break time.sleep(0.1) raise Exception("Element {%s} was not present after %s seconds!" % (selector, timeout)) def highlight_with_js(driver, selector, loops, o_bs): script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(128, 128, 128, 0.5)';""" % selector ) driver.execute_script(script) for n in range(loops): script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(255, 0, 0, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(128, 0, 128, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(0, 0, 255, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(0, 255, 0, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(128, 128, 0, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(128, 0, 128, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = """document.querySelector('%s').style.boxShadow = '%s';""" % ( selector, o_bs, ) driver.execute_script(script) def highlight_with_jquery(driver, selector, loops, o_bs): script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(128, 128, 128, 0.5)');""" % selector ) safe_execute_script(driver, script) for n in range(loops): script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(255, 0, 0, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(128, 0, 128, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(0, 0, 255, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(0, 255, 0, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(128, 128, 0, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(128, 0, 128, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = """jQuery('%s').css('box-shadow', '%s');""" % (selector, o_bs) driver.execute_script(script) def add_css_link(driver, css_link): script_to_add_css = """function injectCSS(css) { var head = document.getElementsByTagName("head")[0]; var link = document.createElement("link"); link.rel = "stylesheet"; link.type = "text/css"; link.href = css; link.crossorigin = "anonymous"; head.appendChild(link); } injectCSS("%s");""" css_link = escape_quotes_if_needed(css_link) driver.execute_script(script_to_add_css % css_link) def add_js_link(driver, js_link): script_to_add_js = """function injectJS(link) { var body = document.getElementsByTagName("body")[0]; var script = document.createElement("script"); script.src = link; script.defer; script.type="text/javascript"; script.crossorigin = "anonymous"; script.onload = function() { null }; body.appendChild(script); } injectJS("%s");""" js_link = escape_quotes_if_needed(js_link) driver.execute_script(script_to_add_js % js_link) def add_css_style(driver, css_style): add_css_style_script = """function injectStyle(css) { var head = document.getElementsByTagName("head")[0]; var style = document.createElement("style"); style.type = "text/css"; style.appendChild(document.createTextNode(css)); head.appendChild(style); } injectStyle("%s");""" css_style = css_style.replace("\n", "") css_style = escape_quotes_if_needed(css_style) driver.execute_script(add_css_style_script % css_style) def add_js_code_from_link(driver, js_link): if js_link.startswith("//"): js_link = "http:" + js_link js_code = requests.get(js_link).text add_js_code_script = ( """var body = document.getElementsByTagName('body').item(0);""" """var script = document.createElement("script");""" """script.type = "text/javascript";""" """script.onload = function() { null };""" """script.appendChild(document.createTextNode("%s"));""" """body.appendChild(script);""" ) js_code = js_code.replace("\n", " ") js_code = escape_quotes_if_needed(js_code) driver.execute_script(add_js_code_script % js_code) def add_js_code(driver, js_code): add_js_code_script = ( """var body = document.getElementsByTagName('body').item(0);""" """var script = document.createElement("script");""" """script.type = "text/javascript";""" """script.onload = function() { null };""" """script.appendChild(document.createTextNode("%s"));""" """body.appendChild(script);""" ) js_code = js_code.replace("\n", " ") js_code = escape_quotes_if_needed(js_code) driver.execute_script(add_js_code_script % js_code) def add_meta_tag(driver, http_equiv=None, content=None): if http_equiv is None: http_equiv = "Content-Security-Policy" if content is None: content = ( "default-src *; style-src 'self' 'unsafe-inline'; " "script-src: 'self' 'unsafe-inline' 'unsafe-eval'" ) script_to_add_meta = """function injectMeta() { var meta = document.createElement('meta'); meta.httpEquiv = "%s"; meta.content = "%s"; document.getElementsByTagName('head')[0].appendChild(meta); } injectMeta();""" % ( http_equiv, content, ) driver.execute_script(script_to_add_meta) def is_jquery_confirm_activated(driver): try: driver.execute_script("jconfirm") # Fails if jq_confirm is not defined return True except Exception: return False def activate_jquery_confirm(driver): jquery_js = constants.JQuery.MIN_JS jq_confirm_css = constants.JqueryConfirm.MIN_CSS jq_confirm_js = constants.JqueryConfirm.MIN_JS if not is_jquery_activated(driver): add_js_link(driver, jquery_js) wait_for_jquery_active(driver, timeout=0.9) add_css_link(driver, jq_confirm_css) add_js_link(driver, jq_confirm_js) for x in range(15): # jQuery-Confirm needs a small amount of time to load & activate. try: driver.execute_script("jconfirm") wait_for_ready_state_complete(driver) wait_for_angularjs(driver) return except Exception: time.sleep(0.1) def activate_html_inspector(driver): jquery_js = constants.JQuery.MIN_JS html_inspector_js = constants.HtmlInspector.MIN_JS if is_html_inspector_activated(driver): return if not is_jquery_activated(driver): add_js_link(driver, jquery_js) wait_for_ready_state_complete(driver) wait_for_angularjs(driver) wait_for_jquery_active(driver, timeout=1.5) add_js_link(driver, html_inspector_js) wait_for_ready_state_complete(driver) wait_for_angularjs(driver) for x in range(15): # HTML-Inspector needs a small amount of time to load & activate. try: driver.execute_script("HTMLInspector") wait_for_ready_state_complete(driver) wait_for_angularjs(driver) return except Exception: time.sleep(0.1) wait_for_ready_state_complete(driver) wait_for_angularjs(driver) def activate_messenger(driver): jquery_js = constants.JQuery.MIN_JS messenger_css = constants.Messenger.MIN_CSS messenger_js = constants.Messenger.MIN_JS msgr_theme_flat_js = constants.Messenger.THEME_FLAT_JS msgr_theme_future_js = constants.Messenger.THEME_FUTURE_JS msgr_theme_flat_css = constants.Messenger.THEME_FLAT_CSS msgr_theme_future_css = constants.Messenger.THEME_FUTURE_CSS msgr_theme_block_css = constants.Messenger.THEME_BLOCK_CSS msgr_theme_air_css = constants.Messenger.THEME_AIR_CSS msgr_theme_ice_css = constants.Messenger.THEME_ICE_CSS spinner_css = constants.Messenger.SPINNER_CSS underscore_js = constants.Underscore.MIN_JS backbone_js = constants.Backbone.MIN_JS msg_style = ( "Messenger.options = {'maxMessages': 8, " "extraClasses: 'messenger-fixed " "messenger-on-bottom messenger-on-right', " "theme: 'future'}" ) add_js_link(driver, jquery_js) wait_for_jquery_active(driver, timeout=0.2) add_css_link(driver, messenger_css) add_css_link(driver, msgr_theme_flat_css) add_css_link(driver, msgr_theme_future_css) add_css_link(driver, msgr_theme_block_css) add_css_link(driver, msgr_theme_air_css) add_css_link(driver, msgr_theme_ice_css) add_js_link(driver, underscore_js) add_js_link(driver, backbone_js) add_css_link(driver, spinner_css) add_js_link(driver, messenger_js) add_js_link(driver, msgr_theme_flat_js) add_js_link(driver, msgr_theme_future_js) add_css_style(driver, style_sheet.messenger_style) for x in range(int(settings.MINI_TIMEOUT * 10.0)): # Messenger needs a small amount of time to load & activate. try: driver.execute_script(msg_style) wait_for_ready_state_complete(driver) wait_for_angularjs(driver) return except Exception: time.sleep(0.1) def set_messenger_theme(driver, theme="default", location="default", max_messages="default"): if theme == "default": theme = "future" if location == "default": location = "bottom_right" if max_messages == "default": max_messages = "8" valid_themes = ["flat", "future", "block", "air", "ice"] if theme not in valid_themes: raise Exception("Theme: %s is not in %s!" % (theme, valid_themes)) valid_locations = [ "top_left", "top_center", "top_right" "bottom_left", "bottom_center", "bottom_right", ] if location not in valid_locations: raise Exception("Location: %s is not in %s!" % (location, valid_locations)) if location == "top_left": messenger_location = "messenger-on-top messenger-on-left" elif location == "top_center": messenger_location = "messenger-on-top" elif location == "top_right": messenger_location = "messenger-on-top messenger-on-right" elif location == "bottom_left": messenger_location = "messenger-on-bottom messenger-on-left" elif location == "bottom_center": messenger_location = "messenger-on-bottom" elif location == "bottom_right": messenger_location = "messenger-on-bottom messenger-on-right" msg_style = ( "Messenger.options = {'maxMessages': %s, " "extraClasses: 'messenger-fixed %s', theme: '%s'}" % (max_messages, messenger_location, theme) ) try: driver.execute_script(msg_style) except Exception: activate_messenger(driver) driver.execute_script(msg_style) time.sleep(0.1) def post_message(driver, message, msg_dur, style="info"): """ A helper method to post a message on the screen with Messenger. (Should only be called from post_message() in base_case.py) """ if not msg_dur: msg_dur = settings.DEFAULT_MESSAGE_DURATION msg_dur = float(msg_dur) message = re.escape(message) message = escape_quotes_if_needed(message) messenger_script = ( """Messenger().post({message: "%s", type: "%s", """ """hideAfter: %s, hideOnNavigate: true});""" % (message, style, msg_dur) ) try: driver.execute_script(messenger_script) except Exception: activate_messenger(driver) set_messenger_theme(driver) try: driver.execute_script(messenger_script) except Exception: time.sleep(0.2) activate_messenger(driver) time.sleep(0.2) set_messenger_theme(driver) time.sleep(0.5) driver.execute_script(messenger_script) def post_messenger_success_message(driver, message, msg_dur): if not msg_dur: msg_dur = settings.DEFAULT_MESSAGE_DURATION msg_dur = float(msg_dur) try: theme = "future" location = "bottom_right" if sb_config.mobile_emulator: theme = "block" location = "top_center" set_messenger_theme(driver, theme=theme, location=location) post_message(driver, message, msg_dur, style="success") time.sleep(msg_dur + 0.07) except Exception: pass def post_messenger_error_message(driver, message, msg_dur): if not msg_dur: msg_dur = settings.DEFAULT_MESSAGE_DURATION msg_dur = float(msg_dur) try: set_messenger_theme(driver, theme="block", location="top_center") post_message(driver, message, msg_dur, style="error") time.sleep(msg_dur + 0.07) except Exception: pass def highlight_with_js_2(driver, message, selector, o_bs, msg_dur): if selector == "html": selector = "body" script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(128, 128, 128, 0.5)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(205, 30, 0, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(128, 0, 128, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(50, 50, 128, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """document.querySelector('%s').style.boxShadow = '0px 0px 6px 6px rgba(50, 205, 50, 1)';""" % selector ) driver.execute_script(script) time.sleep(0.0181) post_messenger_success_message(driver, message, msg_dur) script = """document.querySelector('%s').style.boxShadow = '%s';""" % ( selector, o_bs, ) driver.execute_script(script) def highlight_with_jquery_2(driver, message, selector, o_bs, msg_dur): if selector == "html": selector = "body" script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(128, 128, 128, 0.5)');""" % selector ) safe_execute_script(driver, script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(205, 30, 0, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(128, 0, 128, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(50, 50, 200, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) script = ( """jQuery('%s').css('box-shadow', '0px 0px 6px 6px rgba(50, 205, 50, 1)');""" % selector ) driver.execute_script(script) time.sleep(0.0181) post_messenger_success_message(driver, message, msg_dur) script = """jQuery('%s').css('box-shadow', '%s');""" % (selector, o_bs) driver.execute_script(script) def scroll_to_element(driver, element): element_location = None try: element_location = element.location["y"] except Exception: # element.location_once_scrolled_into_view # Old hack return False element_location = element_location - 130 if element_location < 0: element_location = 0 scroll_script = "window.scrollTo(0, %s);" % element_location # The old jQuery scroll_script required by=By.CSS_SELECTOR # scroll_script = "jQuery('%s')[0].scrollIntoView()" % selector try: driver.execute_script(scroll_script) return True except Exception: return False def slow_scroll_to_element(driver, element, browser): if browser == "ie": # IE breaks on slow-scrolling. Do a fast scroll instead. scroll_to_element(driver, element) return scroll_position = driver.execute_script("return window.scrollY;") element_location = None try: element_location = element.location["y"] except Exception: element.location_once_scrolled_into_view return element_location = element_location - 130 if element_location < 0: element_location = 0 distance = element_location - scroll_position if distance != 0: total_steps = int(abs(distance) / 50.0) + 2.0 step_value = float(distance) / total_steps new_position = scroll_position for y in range(int(total_steps)): time.sleep(0.0114) new_position += step_value scroll_script = "window.scrollTo(0, %s);" % new_position driver.execute_script(scroll_script) time.sleep(0.01) scroll_script = "window.scrollTo(0, %s);" % element_location driver.execute_script(scroll_script) time.sleep(0.01) if distance > 430 or distance < -300: # Add small recovery time for long-distance slow-scrolling time.sleep(0.162) @decorators.deprecated("Use re.escape() instead, which does what you want!") def _jq_format(code): """ DEPRECATED - Use re.escape() instead, which performs the intended action. Use before throwing raw code such as 'div[tab="advanced"]' into jQuery. Selectors with quotes inside of quotes would otherwise break jQuery. If you just want to escape quotes, there's escape_quotes_if_needed(). This is similar to "json.dumps(value)", but with one less layer of quotes. """ code = code.replace("\\", "\\\\").replace("\t", "\\t").replace("\n", "\\n") code = code.replace('"', '\\"').replace("'", "\\'") code = code.replace("\v", "\\v").replace("\a", "\\a").replace("\f", "\\f") code = code.replace("\b", "\\b").replace(r"\u", "\\u").replace("\r", "\\r") return code
34.500629
102
0.615575
4a26146997532734ab2746ca6f76c97f8535393c
4,545
py
Python
api/tests/test_run_kubeseal.py
UiP9AV6Y/kubeseal-webgui
36f1460ff5bb74497f186d8655db018bf87bfe73
[ "Apache-2.0" ]
null
null
null
api/tests/test_run_kubeseal.py
UiP9AV6Y/kubeseal-webgui
36f1460ff5bb74497f186d8655db018bf87bfe73
[ "Apache-2.0" ]
null
null
null
api/tests/test_run_kubeseal.py
UiP9AV6Y/kubeseal-webgui
36f1460ff5bb74497f186d8655db018bf87bfe73
[ "Apache-2.0" ]
null
null
null
import pytest from app.kubeseal import decode_base64_string, run_kubeseal, valid_k8s_name @pytest.mark.parametrize( "value", [ "abc", "l" + "o" * 60 + "ng", "some-1-too-check", "ends-on-digit-1", "1starts-with-it", "some.dots.or_underscore", "long-" + "a" * 248, ], ) def test_valid_k8s_name(value): # given a valid k8s-label-name # when valid_k8s_name is called on the label-name # then the label-name is returned unchanged assert valid_k8s_name(value) == value @pytest.mark.parametrize( "value", [ "", "-something", "too-l" + "o" * 247 + "ng", "ähm", "_not-valid", "with spaces", " not-trimmed ", "no-special-chars-like/,#+%", "ends-on-dash-", "Uppercase", "U", "uPPer", ], ) def test_invalid_k8s_name(value): # given an invalid k8s-label-name # when valid_k8s_name is called on the label-name # then a ValueError is raised with pytest.raises(ValueError, match="Invalid k8s name"): valid_k8s_name(value) def test_run_kubeseal_with_with_empty_string_namespace(): # given an empty string secretNamespace # when run_kubeseal is called # then raise ValueError with pytest.raises(ValueError, match="secret_namespace was not given"): run_kubeseal([{"key": "foo", "value": "YmFy"}], "", "secretName") def test_run_kubeseal_with_with_none_namespace(): # given a None secretNamespace # when run_kubeseal is called # then raise ValueError with pytest.raises(ValueError, match="secret_namespace was not given"): run_kubeseal([{"key": "foo", "value": "YmFy"}], None, "secretName") def test_run_kubeseal_with_with_empty_string_secret_name(): # given an empty string secretName # when run_kubeseal is called # then raise ValueError with pytest.raises(ValueError, match="secret_name was not given"): run_kubeseal([{"key": "foo", "value": "YmFy"}], "secretNamespace", "") def test_run_kubeseal_with_with_none_secret_name(): # given a None secretName # when run_kubeseal is called # then raise ValueError with pytest.raises(ValueError, match="secret_name was not given"): run_kubeseal([{"key": "foo", "value": "YmFy"}], "secretNamespace", None) def test_run_kubeseal_with_with_empty_secrets_list_but_otherwise_valid_inputs(): # given an empty list # when run_kubeseal is called sealed_secrets = run_kubeseal([], "secretNamespace", "secretName") # then return empty list assert sealed_secrets == [] @pytest.mark.container() @pytest.mark.cluster() def test_run_kubeseal_with_cli(): # given run test against cli with test cluster # when run_kubeseal is called # then return valid encrypted secret pass @pytest.mark.cluster() def test_run_kubeseal_without_cli(): # given k8s cluster but no kubeseal cli # when run_kubeseal is called # then raise RuntimeError with pytest.raises(RuntimeError): run_kubeseal([{"key": "foo", "value": "YmFy"}], "secretNamespace", "secretName") def test_run_kubeseal_with_invalid_secrets_list_but_otherwise_valid_inputs(): # given a secret list with string element # when run_kubeseal is called # then raise ValueError with pytest.raises( ValueError, match="Input of cleartext_secrets was not a list of dicts." ): run_kubeseal(["this-should-be-a-dict-object"], "secretNamespace", "secretName") @pytest.mark.container() def test_run_kubeseal_without_k8s_cluster(): # given kubeseal cli but no k8s cluster # when run_kubeseal is called # then raise RuntimeError with pytest.raises(RuntimeError) as error_cert_missing: run_kubeseal([{"key": "foo", "value": "YmFy"}], "secretNamespace", "secretName") assert "/kubeseal-webgui/cert/kubeseal-cert.pem: no such file or directory" in str( error_cert_missing ) @pytest.mark.parametrize( ("base64_input", "expected_output"), [("YWJjZGVm", "abcdef"), ("w6TDtsO8", "äöü"), ("LV8jIT8kwqc=", "-_#!?$§")], ) def test_decode_base64_string(base64_input, expected_output): """ Test decode_base64_string. Given a tuple with a Base64 input string and the corresponding output string. When calling decode_base64_string on input string. Then return the corresponding output string. """ base64_encoded_string = decode_base64_string(base64_input) assert base64_encoded_string == expected_output
31.5625
88
0.677668
4a261475bfd1809707105daaea185010bc5c754e
782
py
Python
Weighted_Strings.py
nabiharaza/LeetCode_Practise
eca35722ea671870c4d65a28df7b8d66184c6217
[ "Apache-2.0" ]
null
null
null
Weighted_Strings.py
nabiharaza/LeetCode_Practise
eca35722ea671870c4d65a28df7b8d66184c6217
[ "Apache-2.0" ]
null
null
null
Weighted_Strings.py
nabiharaza/LeetCode_Practise
eca35722ea671870c4d65a28df7b8d66184c6217
[ "Apache-2.0" ]
null
null
null
dict_alphabets = dict() def smallestString(weight): ascii_value = 66 final_string = '' sum = 1 dict_alphabets[1] = sum for index in range(1, 26): sum = (index + 1) * sum + sum dict_alphabets[index + 1] = sum ascii_value += 1 print(dict_alphabets) while weight != 0: largest_alphabet_index = find_largest_alphabet(weight) final_string = chr(largest_alphabet_index + 65 - 1) + final_string weight = weight - dict_alphabets[largest_alphabet_index] print(final_string) def find_largest_alphabet(weight): for key, value in dict_alphabets.items(): if value > weight: return previous else: previous = key if __name__ == '__main__': smallestString(4)
24.4375
74
0.626598
4a261541c2dc52ce08ff7e3252994195ba9340dc
986
py
Python
python3/koans/triangle.py
Dawn0fTime/python-koans-solutions
76a3d292e541c26313aa50d837ff73e21c10d581
[ "MIT" ]
null
null
null
python3/koans/triangle.py
Dawn0fTime/python-koans-solutions
76a3d292e541c26313aa50d837ff73e21c10d581
[ "MIT" ]
null
null
null
python3/koans/triangle.py
Dawn0fTime/python-koans-solutions
76a3d292e541c26313aa50d837ff73e21c10d581
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Triangle Project Code. # Triangle analyzes the lengths of the sides of a triangle # (represented by a, b and c) and returns the type of triangle. # # It returns: # 'equilateral' if all sides are equal # 'isosceles' if exactly 2 sides are equal # 'scalene' if no sides are equal # # The tests for this method can be found in # about_triangle_project.py # and # about_triangle_project_2.py # def triangle(a, b, c): # DELETE 'PASS' AND WRITE THIS CODE if a <= 0 or b <= 0 or c <= 0: raise TriangleError('No sides less than zero') if (a + b < c) or (a + c < b) or (b + c < a): raise TriangleError('The sum of any two sides must be greater than the third') if a == b == c: return 'equilateral' elif a == b or b == c or c == a: return 'isosceles' else: return 'scalene' # Error class used in part 2. No need to change this code. class TriangleError(Exception): pass
26.648649
83
0.633874
4a261860f5ba1f5e30d2ef1a5af48a102c280f62
4,838
py
Python
docs/conf.py
wuchaochen/ai-flow
811029f05a6d192f91a738b15d1eba090bfaed4b
[ "Apache-2.0" ]
null
null
null
docs/conf.py
wuchaochen/ai-flow
811029f05a6d192f91a738b15d1eba090bfaed4b
[ "Apache-2.0" ]
null
null
null
docs/conf.py
wuchaochen/ai-flow
811029f05a6d192f91a738b15d1eba090bfaed4b
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import sys import sphinx_rtd_theme import myst_parser import subprocess sys.path.insert(0, os.path.abspath('../ai_flow/api')) sys.path.insert(0, os.path.abspath('../ai_flow/context')) sys.path.insert(0, os.path.abspath('../ai_flow/ai_graph')) sys.path.insert(0, os.path.abspath('../ai_flow/endpoint/server')) sys.path.insert(0, os.path.abspath('../ai_flow/workflow')) sys.path.insert(0, os.path.abspath('../ai_flow/client')) sys.path.insert(0, os.path.abspath('../ai_flow/common')) sys.path.insert(0, os.path.abspath('../ai_flow/meta')) sys.path.insert(0, os.path.abspath('../ai_flow_plugins')) # -- Project information ----------------------------------------------------- project = 'AI Flow' author = 'flink-extended' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'myst_parser', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # Following modules will be excluded as they are not public API exclude_rst = [ '**ai_flow.metadata_store.test.rst', '**ai_flow.runtime.rst', '**ai_flow.metric.service.rst', '**ai_flow.exception.rst', '**ai_flow.model_center.entity.rst', '**ai_flow.metadata_store.test.sbin.rst', '**ai_flow.translator.rst', '**ai_flow.model_center.rst', '**ai_flow.model_center.service.rst', '**ai_flow.scheduler.rst', '**ai_flow.endpoint.client.rst', '**ai_flow.util.rst', '**ai_flow.metadata_store.rst', '**ai_flow.store.rst', '**ai_flow.log.rst', '**ai_flow.protobuf.rst', '**ai_flow.metadata_store.utils.rst', '**ai_flow.util.model_util.rst', '**ai_flow.metric.rst', '**ai_flow.metadata_store.service.rst', '**ai_flow.util.file_util.rst', '**ai_flow_plugins.scheduler_plugins.airflow.rst', '**ai_flow_plugins.job_plugins.utils.rst', '**modules.rst', ] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. # We will not show any documents for API in genrated API doc exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**test**'] + exclude_rst # Look at the first line of the docstring for function and method signatures. autodoc_docstring_signature = True # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' source_suffix = ['.rst', '.md', '.MD'] source_parsers = { '.md': myst_parser # noqa } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] autodoc_mock_imports = ['bs4', 'requests'] autoclass_content = 'both' # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # Output file base name for HTML help builder. htmlhelp_basename = 'flinkaiflowdoc' def autodoc_skip_member(app, what, name, obj, skip, options): exclusions = ('__doc__', '__module__', '__dict__') exclude = name in exclusions # return True if (skip or exclude) else None # Can interfere with subsequent skip functions. return True if exclude else None def setup(app): app.connect('autodoc-skip-member', autodoc_skip_member) dir=os.path.dirname(os.path.abspath(__file__)) subprocess.call(['bash', dir+'/docgen.sh'])
35.837037
97
0.696982
4a2618a51286fd1113255fde9ead50419cbe2d2e
6,663
py
Python
vod_converter/voc.py
supernlogn/vod-converter
d39b2357f5742fe347daaddc8584292b4c983a26
[ "MIT" ]
null
null
null
vod_converter/voc.py
supernlogn/vod-converter
d39b2357f5742fe347daaddc8584292b4c983a26
[ "MIT" ]
null
null
null
vod_converter/voc.py
supernlogn/vod-converter
d39b2357f5742fe347daaddc8584292b4c983a26
[ "MIT" ]
1
2018-07-10T08:34:14.000Z
2018-07-10T08:34:14.000Z
""" Ingestor and egestor for VOC formats. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html """ import os import shutil from converter import Ingestor, Egestor import xml.etree.ElementTree as ET class VOCIngestor(Ingestor): def validate(self, root): path = "{}/VOC2012".format(root) for subdir in ["ImageSets", "JPEGImages", "Annotations"]: if not os.path.isdir("{}/{}".format(path, subdir)): return False, "Expected subdirectory {} within {}".format(subdir, path) if not os.path.isfile("{}/ImageSets/Main/trainval.txt".format(path)): return False, "Expected main image set ImageSets/Main/trainval.txt to exist within {}".format(path) return True, None def ingest(self, path): image_names = self._get_image_ids(path) return [self._get_image_detection(path, image_name) for image_name in image_names] def _get_image_ids(self, root): path = "{}/VOC2012".format(root) with open("{}/ImageSets/Main/trainval.txt".format(path)) as f: fnames = [] for line in f.read().strip().split('\n'): cols = line.split() if len(cols) > 1: score = cols[1] if score != '1': continue fnames.append(cols[0]) return fnames def _get_image_detection(self, root, image_id): path = "{}/VOC2012".format(root) image_path = "{}/JPEGImages/{}.jpg".format(path, image_id) if not os.path.isfile(image_path): raise Exception("Expected {} to exist.".format(image_path)) annotation_path = "{}/Annotations/{}.xml".format(path, image_id) if not os.path.isfile(annotation_path): raise Exception("Expected annotation file {} to exist.".format(annotation_path)) tree = ET.parse(annotation_path) xml_root = tree.getroot() size = xml_root.find('size') segmented = xml_root.find('segmented').text == '1' segmented_path = None if segmented: segmented_path = "{}/SegmentationObject/{}.png".format(path, image_id) if not os.path.isfile(segmented_path): raise Exception("Expected segmentation file {} to exist.".format(segmented_path)) image_width = int(size.find('width').text) image_height = int(size.find('height').text) return { 'image': { 'id': image_id, 'path': image_path, 'segmented_path': segmented_path, 'width': image_width, 'height': image_height }, 'detections': [self._get_detection(node) for node in xml_root.findall('object')] } def _get_detection(self, node): bndbox = node.find('bndbox') return { 'label': node.find('name').text, 'top': float(bndbox.find('ymin').text) - 1, 'left': float(bndbox.find('xmin').text) - 1, 'right': float(bndbox.find('xmax').text) - 1, 'bottom': float(bndbox.find('ymax').text) - 1, } class VOCEgestor(Egestor): def expected_labels(self): return { 'aeroplane': [], 'bicycle': [], 'bird': [], 'boat': [], 'bottle': [], 'bus': [], 'car': [], 'cat': [], 'chair': [], 'cow': [], 'diningtable': [], 'dog': [], 'horse': [], 'motorbike': [], 'person': ['pedestrian'], 'pottedplant': [], 'sheep': [], 'sofa': [], 'train': [], 'tvmonitor': [] } def egest(self, *, image_detections, root): image_sets_path = "{}/VOC2012/ImageSets/Main".format(root) images_path = "{}/VOC2012/JPEGImages".format(root) annotations_path = "{}/VOC2012/Annotations".format(root) segmentations_path = "{}/VOC2012/SegmentationObject".format(root) segmentations_dir_created = False for to_create in [image_sets_path, images_path, annotations_path]: os.makedirs(to_create, exist_ok=True) for image_detection in image_detections: image = image_detection['image'] image_id = image['id'] src_extension = image['path'].split('.')[-1] shutil.copyfile(image['path'], "{}/{}.{}".format(images_path, image_id, src_extension)) with open("{}/trainval.txt".format(image_sets_path), 'a') as out_image_index_file: out_image_index_file.write('{}\n'.format(image_id)) if image['segmented_path'] is not None: if not segmentations_dir_created: os.makedirs(segmentations_path) segmentations_dir_created = True shutil.copyfile(image['segmented_path'], "{}/{}.png".format(segmentations_path, image_id)) xml_root = ET.Element('annotation') add_text_node(xml_root, 'filename', "{}.{}".format(image_id, src_extension)) add_text_node(xml_root, 'folder', 'VOC2012') add_text_node(xml_root, 'segmented', int(segmentations_dir_created)) add_sub_node(xml_root, 'size', { 'depth': 3, 'width': image['width'], 'height': image['height'] }) add_sub_node(xml_root, 'source', { 'annotation': 'Dummy', 'database': 'Dummy', 'image': 'Dummy' }) for detection in image_detection['detections']: x_object = add_sub_node(xml_root, 'object', { 'name': detection['label'], 'difficult': 0, 'occluded': 0, 'truncated': 0, 'pose': 'Unspecified' }) add_sub_node(x_object, 'bndbox', { 'xmin': detection['left'] + 1, 'xmax': detection['right'] + 1, 'ymin': detection['top'] + 1, 'ymax': detection['bottom'] + 1 }) ET.ElementTree(xml_root).write("{}/{}.xml".format(annotations_path, image_id)) def add_sub_node(node, name, kvs): subnode = ET.SubElement(node, name) for k, v in kvs.items(): add_text_node(subnode, k, v) return subnode def add_text_node(node, name, text): subnode = ET.SubElement(node, name) subnode.text = "{}".format(text) return subnode
36.016216
115
0.535194
4a261971638981c03ec8985ddde35748bb14296a
1,948
py
Python
app/models/util/join_token.py
bunchiestudios/schedulr
996ae5c4d51d5df17946f65515adf5fdb2a468ab
[ "Apache-2.0" ]
2
2019-01-20T09:37:40.000Z
2019-02-03T09:15:50.000Z
app/models/util/join_token.py
bunchiestudios/schedulr
996ae5c4d51d5df17946f65515adf5fdb2a468ab
[ "Apache-2.0" ]
19
2019-01-10T05:39:13.000Z
2019-02-06T01:31:45.000Z
app/models/util/join_token.py
bunchiestudios/schedulr
996ae5c4d51d5df17946f65515adf5fdb2a468ab
[ "Apache-2.0" ]
null
null
null
from typing import Optional from app import db from app.models import JoinToken, Team def team_by_join_token(join_token_str: str) -> Optional[Team]: """ Returns the team associated with a given join token. :param join_token_str: The join token to search over :return: Returns a Team if the join token exists, or None otherwise """ session = db.get_session() join_token = ( session.query(JoinToken) .filter(JoinToken.token_str == join_token_str) .one_or_none() ) if not join_token: return None return join_token.team def by_team_id(team_id: int) -> Optional[JoinToken]: """ Returns existing join token for a given team. :param team_id: ID of the team to look for a join token of. :return: Returns a JoinToken object if the team exists and has one, or None otherwise. """ session = db.get_session() team: Team = session.query(Team).filter(Team.id == team_id).one_or_none() if not team: return None return team.join_tokens[0] if team.join_tokens else None def add_to_team(team_id: int, join_token_str: str) -> Optional[JoinToken]: """ Adds a given join token to the team, replacing any existing join token. :param team_id: Team to which to add the join_token :param join_token_str: Join token string to add to the team. :return: Returns a JoinToken object if the team exists, or None otherwise. """ session = db.get_session() team: Team = session.query(Team).filter(Team.id == team_id).one_or_none() if not team: return None # This gets rid of the tokens and deletes the relationship as well if team.join_tokens: for join_token in team.join_tokens: session.delete(join_token) join_token = JoinToken(token_str=join_token_str) team.join_tokens = [join_token] session.add(join_token) session.commit() return join_token
29.969231
78
0.682238
4a261a9f24616625acd1c92dd6b66c82c5c8f064
3,610
py
Python
ultimate_hosts_blacklist/test_launcher/defaults/pyfunceble.py
Ultimate-Hosts-Blacklist/test-launcher
8b120b3ee844918866d7a15d4015ee3664bfee55
[ "MIT" ]
2
2021-03-11T08:05:16.000Z
2021-05-03T09:37:09.000Z
ultimate_hosts_blacklist/test_launcher/defaults/pyfunceble.py
Ultimate-Hosts-Blacklist/test-launcher
8b120b3ee844918866d7a15d4015ee3664bfee55
[ "MIT" ]
null
null
null
ultimate_hosts_blacklist/test_launcher/defaults/pyfunceble.py
Ultimate-Hosts-Blacklist/test-launcher
8b120b3ee844918866d7a15d4015ee3664bfee55
[ "MIT" ]
1
2021-05-03T09:30:24.000Z
2021-05-03T09:30:24.000Z
""" The test launcher of the Ultimate-Hosts-Blacklist project. This is the module that will provides all our pyfunceble related settings or defaults. Author: Nissar Chababy, @funilrys, contactTATAfunilrysTODTODcom License: :: MIT License Copyright (c) 2019, 2020, 2021 Ultimate-Hosts-Blacklist Copyright (c) 2019, 2020, 2021 Nissar Chababy Copyright (c) 2019, 2020, 2021 Mitchell Krog Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from PyFunceble.cli.continuous_integration.github_actions import GitHubActions from PyFunceble.cli.continuous_integration.jenkins import Jenkins LINKS_STABLE: dict = { "license": { "link": "https://raw.githubusercontent.com/funilrys/PyFunceble/master/LICENSE", "destination": "LICENSE_PyFunceble", }, } LINKS_DEV: dict = { "license": { "link": "https://raw.githubusercontent.com/funilrys/PyFunceble/dev/LICENSE", "destination": "LICENSE_PyFunceble", }, } LINKS: dict = dict(LINKS_DEV) CONFIGURATION = { "lookup": { "timeout": 5.0, "reputation": False, "collection": True, }, "share_logs": False, "cli_testing": { "whois_db": True, "autocontinue": True, "preload_file": False, "cooldown_time": 0.09, "ci": { "active": Jenkins().guess_all_settings().authorized or GitHubActions().guess_all_settings().authorized, "commit_message": "[Autosave] Testing for Ultimate Hosts Blacklist", "end_commit_message": "[Results] Testing for Ultimate Hosts Blacklist", "max_exec_minutes": 15, }, "file_generation": {"hosts": True, "plain": True}, "display_mode": { "all": False, "dots": True, "execution_time": True, "less": True, "percentage": True, "quiet": False, "simple": False, "status": "ALL", }, "testing_mode": { "availability": True, "syntax": False, "reputation": False, }, "max_workers": None if not Jenkins().guess_all_settings().authorized and not GitHubActions().guess_all_settings().authorized else 1, }, "collection": { "push": True, "url_base": "https://collection.dead-hosts.funilrys.com", }, "dns": { "server": ["9.9.9.10", "149.112.112.10", "2620:fe::10"], "protocol": "UDP", "follow_server_order": False, "trust_server": True, }, }
32.818182
87
0.638504
4a261b2840aa333dea5bb87b531702f9ce7598a2
639
py
Python
languages/python/networking_email1.py
Andilyn/learntosolveit
fd15345c74ef543e4e26f4691bf91cb6dac568a4
[ "BSD-3-Clause" ]
136
2015-03-06T18:11:21.000Z
2022-03-10T22:31:40.000Z
languages/python/networking_email1.py
Andilyn/learntosolveit
fd15345c74ef543e4e26f4691bf91cb6dac568a4
[ "BSD-3-Clause" ]
27
2015-01-07T01:38:03.000Z
2021-12-22T19:20:15.000Z
languages/python/networking_email1.py
Andilyn/learntosolveit
fd15345c74ef543e4e26f4691bf91cb6dac568a4
[ "BSD-3-Clause" ]
1,582
2015-01-01T20:37:06.000Z
2022-03-30T12:29:24.000Z
# Import smtplib for the actual sending function import smtplib # Import the email modules we'll need from email.mime.text import MIMEText # Open a plain text file for reading. For this example, assume that # the text file contains only ASCII characters. fp = open('content.txt', 'rb') # Create a text/plain message msg = MIMEText(fp.read()) fp.close() me = '[email protected]' you = '[email protected]' msg['Subject'] = 'Hello' msg['From'] = me msg['To'] = you # Send the message via our own SMTP server, but don't include the # envelope header. s = smtplib.SMTP('smtp.gmail.com') s.sendmail(me, [you], msg.as_string()) s.quit()
25.56
68
0.716745
4a261bb60fd461e3a7fbdf1fb6df238bc12510ab
785
py
Python
monitor.py
spring520/fpeg
dac8164d793eb65e41f2a11e425f3f8a9f676864
[ "RSA-MD" ]
null
null
null
monitor.py
spring520/fpeg
dac8164d793eb65e41f2a11e425f3f8a9f676864
[ "RSA-MD" ]
null
null
null
monitor.py
spring520/fpeg
dac8164d793eb65e41f2a11e425f3f8a9f676864
[ "RSA-MD" ]
null
null
null
class Monitor: """ Monitor of pipes in a pipeline. Monitor gathers the data recieved and sended by pipes. When monitor is not waking, do not send data to it. """ def __init__(self): self.data = [] self.logs = [] self.params = [] self.waking = False def gather(self, name, data, log, params): if not self.waking: raise RuntimeError("Monitor is sleeping. Do not send message to the monitor.") self.data[-1][name] = data self.logs[-1][name] = log self.params[-1][name] = params self.sleep() def report(self): return self.data, self.logs def wake(self): self.waking = True def sleep(self): self.waking = False def prepare(self): self.data.append({}) self.logs.append({}) self.params.append({})
22.428571
108
0.626752
4a261c39361ebbbd674ab448ede0a56e30ca1731
2,144
py
Python
homeassistant/components/lightwave/light.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
4
2021-07-11T09:11:00.000Z
2022-02-27T14:43:50.000Z
homeassistant/components/lightwave/light.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
277
2021-10-04T06:39:33.000Z
2021-12-28T22:04:17.000Z
homeassistant/components/lightwave/light.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
3
2022-01-02T18:49:54.000Z
2022-01-25T02:03:54.000Z
"""Support for LightwaveRF lights.""" from __future__ import annotations from homeassistant.components.light import ( ATTR_BRIGHTNESS, SUPPORT_BRIGHTNESS, LightEntity, ) from homeassistant.const import CONF_NAME from homeassistant.core import HomeAssistant from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType from . import LIGHTWAVE_LINK MAX_BRIGHTNESS = 255 async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Find and return LightWave lights.""" if not discovery_info: return lights = [] lwlink = hass.data[LIGHTWAVE_LINK] for device_id, device_config in discovery_info.items(): name = device_config[CONF_NAME] lights.append(LWRFLight(name, device_id, lwlink)) async_add_entities(lights) class LWRFLight(LightEntity): """Representation of a LightWaveRF light.""" _attr_supported_features = SUPPORT_BRIGHTNESS _attr_should_poll = False def __init__(self, name, device_id, lwlink): """Initialize LWRFLight entity.""" self._attr_name = name self._device_id = device_id self._attr_brightness = MAX_BRIGHTNESS self._lwlink = lwlink async def async_turn_on(self, **kwargs): """Turn the LightWave light on.""" self._attr_is_on = True if ATTR_BRIGHTNESS in kwargs: self._attr_brightness = kwargs[ATTR_BRIGHTNESS] if self._attr_brightness != MAX_BRIGHTNESS: self._lwlink.turn_on_with_brightness( self._device_id, self._attr_name, self._attr_brightness ) else: self._lwlink.turn_on_light(self._device_id, self._attr_name) self.async_write_ha_state() async def async_turn_off(self, **kwargs): """Turn the LightWave light off.""" self._attr_is_on = False self._lwlink.turn_off(self._device_id, self._attr_name) self.async_write_ha_state()
29.369863
72
0.702425
4a261dc0a6703bcb051dddce61e369aad167aa6e
4,812
py
Python
neural_field.py
brianjsl/ndf_mnist
936b6616c5aca2d555cf88c134ff92f3ff57c08b
[ "MIT" ]
1
2022-03-15T04:32:40.000Z
2022-03-15T04:32:40.000Z
neural_field.py
brianjsl/ndf_mnist
936b6616c5aca2d555cf88c134ff92f3ff57c08b
[ "MIT" ]
null
null
null
neural_field.py
brianjsl/ndf_mnist
936b6616c5aca2d555cf88c134ff92f3ff57c08b
[ "MIT" ]
null
null
null
import torch from dataloader_ndf import OverlapMNISTNDF import torchvision.transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import torch.optim as optim import time from tqdm import tqdm from constants import IMG_DIR import torchvision.models as models import copy batch_size = 1 num_epochs = 10 learning_rate = 1e-4 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def initialize_encoder(num_classes, feature_extract, use_pretrained = True): ''' Initializes a ResNet model with a given number of classes. params: @num_classes: defines number of classes to use for the model @use_pretrained: defines whether or not to use pretrained weights in training phase. Defaults to True. ''' #fine-tuned model model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 128) model_ft.conv1 = nn.Conv2d(1, 64, (7,7), (2,2), (3,3), bias = False) model_ft.maxpool = nn.Identity() return model_ft class NeuralField(nn.Module): def __init__(self, encoder): super(NeuralField, self).__init__() self.linear_relu_stack = nn.Sequential( nn.Linear(130, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512,1), nn.Sigmoid() ) self.encoder = encoder def forward(self, x): z = self.encoder(x[0]) coords = x[1].view(batch_size, 2) input = torch.cat((z,coords), 1) intensity = self.linear_relu_stack(input) return intensity def train_model(model, dataloaders, criterion, optimizer, num_epochs): ''' Trains the model for given number of epochs. params: @ model: model to train @ dataloaders: dictionary of dataloaders @ criterion: loss function/criterion @ optimizer: optimizer used @ num_epochs: number of epochs to train for ''' since = time.time() #weights of best model best_model_wts = copy.deepcopy(model.state_dict()) for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch+31, num_epochs+30)) print('_'*10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval() #keep track of losses and corrects running_loss = 0.0 #Iterate over data for inputs, labels in tqdm(dataloaders[phase]): labels = labels.to(device).view(batch_size,-1) #zero the parameter gradients optimizer.zero_grad() #forward and track history if train with torch.set_grad_enabled(phase == 'train'): outputs = model((inputs[0].to(device), inputs[1].to(device))) loss = criterion(outputs, labels.float()) if phase == 'train': loss.backward() optimizer.step() #statistics to keep track of running_loss += loss.item() epoch_loss = running_loss print('{} Loss: {:.4f}'.format(phase, epoch_loss)) torch.save(model, './checkpoints/chkpt_{}.pt'.format(epoch+30)) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) # load best model weights model.load_state_dict(best_model_wts) return model if __name__ == '__main__': encoder = initialize_encoder(128, False, True) model = torch.load('./checkpoints/chkpt_39.pt').to(device) print('Initializing Datasets and Dataloaders...') data_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5],[0.5]) ]) #create training and validation datasets image_datasets = {x: OverlapMNISTNDF(IMG_DIR, data_transforms, x) for x in ['train', 'val']} #create training and validation dataloaders dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size = batch_size, shuffle = True, num_workers = 2) for x in ['train', 'val']} print("Done Initializing Data.") #Initilaize Optimizer optimizer_ft = optim.Adam(model.parameters(), lr = learning_rate) criterion = nn.MSELoss() model = train_model(model, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs) torch.save(model, 'neural_field.pt')
32.513514
98
0.612219
4a261e3d6ad5c2780bf7610a256c7bcae8e89e13
1,156
py
Python
scatter_squares.py
CowryGolden/matplotlib-test
1ecaf7f2bbb3ef77f81958dc4272dd528c20a7f3
[ "Apache-2.0" ]
null
null
null
scatter_squares.py
CowryGolden/matplotlib-test
1ecaf7f2bbb3ef77f81958dc4272dd528c20a7f3
[ "Apache-2.0" ]
null
null
null
scatter_squares.py
CowryGolden/matplotlib-test
1ecaf7f2bbb3ef77f81958dc4272dd528c20a7f3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- r''' 绘制自然数平方数列的简单散点图 ''' import matplotlib.pyplot as plt # x_values = [1, 2, 3, 4, 5] # y_values = [1, 4, 9, 16, 25] x_values = list(range(1, 1001)) y_values = [x ** 2 for x in x_values] # plt.scatter(x_values, y_values, s=40) # s表示绘制点的尺寸 # plt.scatter(x_values, y_values, edgecolor='none', s=40) # s表示绘制点的尺寸,散点默认为蓝色点和黑色轮廓;但绘制很多点时,黑色轮廓可能会粘连在一起。要删除数据点的轮廓,使用属性:edgecolor='none' # plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40) # c表示数据点的颜色 # plt.scatter(x_values, y_values, c=(0, 0, 0.8), edgecolor='none', s=40) # c可以用RGB表示颜色,(红,绿,蓝)三个分量使用元组表示,其中包含三个0~1之间的小数【值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅】;(0, 0, 0.8)为淡蓝色表示 plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolor='none', s=40) # 使用颜色映射,从开始颜色渐变到结束颜色,从而突出数据规律;如:数值小颜色浅,数值大颜色深 # 设置图表标题,并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) # 设置每个坐标的取值范围 plt.axis([0, 1100, 0, 1100000]) # 保存图表 plt.savefig('images/squares_plot.png', bbox_inches='tight') # 显示图形 plt.show()
39.862069
169
0.704152
4a261ea55672a663569b72325a91eebecbb3429a
2,594
py
Python
bloom/ll/models/application.py
A5rocks/bloom
c5426bf1a8070187736fca8fea3a487cafb76bda
[ "Apache-2.0" ]
7
2021-05-01T03:55:54.000Z
2022-02-02T02:02:16.000Z
bloom/ll/models/application.py
A5rocks/bloom
c5426bf1a8070187736fca8fea3a487cafb76bda
[ "Apache-2.0" ]
13
2021-05-05T01:10:43.000Z
2021-09-02T00:21:52.000Z
bloom/ll/models/application.py
A5rocks/bloom
c5426bf1a8070187736fca8fea3a487cafb76bda
[ "Apache-2.0" ]
null
null
null
from __future__ import annotations import enum import typing import attr from bloom.ll.models.base import UNKNOWN, Snowflake, Unknownish from bloom.ll.models.teams import Team # docs in this module are copied from the Discord Documentation @attr.frozen(kw_only=True) class Application: #: the id of the app id: Snowflake #: the name of the app name: str #: the icon hash of the app icon: typing.Optional[str] #: the description of the app description: str #: when false only app owner can join the app's bot to guilds bot_public: bool #: when true the app's bot will only join upon completion of the full #: oauth2 code grant flow bot_require_code_grant: bool #: if this application is a game sold on Discord, this field will be the #: summary field for the store page of its primary sku summary: str #: the hex encoded key for verification in interactions and the GameSDK's #: GetTicket verify_key: str #: if the application belongs to a team, this will be a list of the #: members of that team team: typing.Optional[Team] #: an array of rpc origin urls, if rpc is enabled rpc_origins: Unknownish[typing.List[str]] = UNKNOWN #: the url of the app's terms of service terms_of_service_url: Unknownish[str] = UNKNOWN #: the url of the app's privacy policy privacy_policy_url: Unknownish[str] = UNKNOWN #: partial user object containing info on the owner of the application owner: Unknownish[typing.Dict[str, typing.Any]] = UNKNOWN #: if this application is a game sold on Discord, this field will be the #: guild to which it has been linked guild_id: Unknownish[Snowflake] = UNKNOWN #: if this application is a game sold on Discord, this field will be the #: id of the "Game SKU" that is created, if exists primary_sku_id: Unknownish[Snowflake] = UNKNOWN #: if this application is a game sold on Discord, this field will be the #: URL slug that links to the store page slug: Unknownish[str] = UNKNOWN #: the application's default rich presence invite cover image hash cover_image: Unknownish[str] = UNKNOWN #: the application's public flags flags: Unknownish[int] = UNKNOWN class ApplicationFlags(enum.IntFlag): GATEWAY_PRESENCE = 1 << 12 GATEWAY_PRESENCE_LIMITED = 1 << 13 GATEWAY_GUILD_MEMBERS = 1 << 14 GATEWAY_GUILD_MEMBERS_LIMITED = 1 << 15 VERIFICATION_PENDING_GUILD_LIMIT = 1 << 16 EMBEDDED = 1 << 17 GATEWAY_MESSAGE_CONTENT = 1 << 18 GATEWAY_MESSAGE_CONTENT_LIMITED = 1 << 19
37.057143
77
0.708558
4a26205b724fe9926e8bd6eba65649f1bf7c9268
381
py
Python
edd/wsgi.py
TeselaGen/jbei-edd
92792fb30bbd504143b2f75bf08d05b141a7ef6f
[ "BSD-3-Clause-LBNL" ]
null
null
null
edd/wsgi.py
TeselaGen/jbei-edd
92792fb30bbd504143b2f75bf08d05b141a7ef6f
[ "BSD-3-Clause-LBNL" ]
null
null
null
edd/wsgi.py
TeselaGen/jbei-edd
92792fb30bbd504143b2f75bf08d05b141a7ef6f
[ "BSD-3-Clause-LBNL" ]
null
null
null
""" WSGI config for edd project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "edd.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
25.4
78
0.784777
4a26208847cd2086cb93fe3ed53665f0dece96d8
15,760
py
Python
bokeh/util/compiler.py
kinghows/bokeh
aeb7abc1dbe2b67ce0f4422838a96fb8362c52c7
[ "BSD-3-Clause" ]
null
null
null
bokeh/util/compiler.py
kinghows/bokeh
aeb7abc1dbe2b67ce0f4422838a96fb8362c52c7
[ "BSD-3-Clause" ]
null
null
null
bokeh/util/compiler.py
kinghows/bokeh
aeb7abc1dbe2b67ce0f4422838a96fb8362c52c7
[ "BSD-3-Clause" ]
null
null
null
''' Provide functions and classes to help with various JS and CSS compilation. ''' from __future__ import absolute_import import logging logger = logging.getLogger(__name__) import io import re import os import sys import six import json import hashlib from os.path import dirname, join, abspath, exists, isabs from subprocess import Popen, PIPE from ..model import Model from ..settings import settings from .string import snakify _plugin_umd = \ """\ (function(root, factory) { // if(typeof exports === 'object' && typeof module === 'object') // factory(require("Bokeh")); // else if(typeof define === 'function' && define.amd) // define(["Bokeh"], factory); // else if(typeof exports === 'object') // factory(require("Bokeh")); // else factory(root["Bokeh"]); })(this, function(Bokeh) { var define; return %(content)s; }); """ # XXX: this is the same as bokehjs/src/js/plugin-prelude.js _plugin_prelude = \ """\ (function outer(modules, entry) { if (Bokeh != null) { return Bokeh.register_plugin(modules, {}, entry); } else { throw new Error("Cannot find Bokeh. You have to load it prior to loading plugins."); } }) """ _plugin_template = \ """\ %(prelude)s\ ({ "custom/main": function(require, module, exports) { var models = { %(exports)s }; require("base").register_models(models); module.exports = models; }, %(modules)s }, "custom/main"); """ _style_template = \ """\ (function() { var head = document.getElementsByTagName('head')[0]; var style = document.createElement('style'); style.type = 'text/css'; var css = %(css)s; if (style.styleSheet) { style.styleSheet.cssText = css; } else { style.appendChild(document.createTextNode(css)); } head.appendChild(style); }()); """ _export_template = \ """"%(name)s": require("%(module)s").%(name)s""" _module_template = \ """"%(module)s": function(require, module, exports) {\n%(source)s\n}""" class AttrDict(dict): ''' Provide a dict subclass that supports access by named attributes. ''' def __getattr__(self, key): return self[key] class CompilationError(RuntimeError): ''' A ``RuntimeError`` subclass for reporting JS compilation errors. ''' def __init__(self, error): super(CompilationError, self).__init__() self.line = error.get("line") self.column = error.get("column") self.message = error.get("message") self.text = error.get("text") self.annotated = error.get("annotated") def __str__(self): return self.text bokehjs_dir = settings.bokehjsdir() nodejs_min_version = (6, 10, 0) def _detect_nodejs(): if settings.nodejs_path() is not None: nodejs_paths = [settings.nodejs_path()] else: nodejs_paths = ["nodejs", "node"] for nodejs_path in nodejs_paths: try: proc = Popen([nodejs_path, "--version"], stdout=PIPE, stderr=PIPE) (stdout, _) = proc.communicate() except OSError: continue if proc.returncode != 0: continue match = re.match(r"^v(\d+)\.(\d+)\.(\d+).*$", stdout.decode("utf-8")) if match is not None: version = tuple(int(v) for v in match.groups()) if version >= nodejs_min_version: return nodejs_path # if we've reached here, no valid version was found version = ".".join(map(str, nodejs_min_version)) raise RuntimeError('node.js v%s or higher is needed to allow compilation of custom models ' % version + '("conda install nodejs" or follow https://nodejs.org/en/download/)') _nodejs = None _npmjs = None def _nodejs_path(): global _nodejs if _nodejs is None: _nodejs = _detect_nodejs() return _nodejs def _npmjs_path(): global _npmjs if _npmjs is None: _npmjs = join(dirname(_nodejs_path()), "npm") if sys.platform == "win32": _npmjs += '.cmd' return _npmjs def _crlf_cr_2_lf(s): return re.sub(r"\\r\\n|\\r|\\n", r"\\n", s) def _run(app, argv, input=None): proc = Popen([app] + argv, stdout=PIPE, stderr=PIPE, stdin=PIPE) (stdout, errout) = proc.communicate(input=None if input is None else json.dumps(input).encode()) if proc.returncode != 0: raise RuntimeError(errout) else: return _crlf_cr_2_lf(stdout.decode('utf-8')) def _run_nodejs(argv, input=None): return _run(_nodejs_path(), argv, input) def _run_npmjs(argv, input=None): return _run(_npmjs_path(), argv, input) def _version(run_app): try: version = run_app(["--version"]) except RuntimeError: return None else: return version.strip() def nodejs_version(): return _version(_run_nodejs) def npmjs_version(): return _version(_run_npmjs) def nodejs_compile(code, lang="javascript", file=None): compilejs_script = join(bokehjs_dir, "js", "compiler.js") output = _run_nodejs([compilejs_script], dict(code=code, lang=lang, file=file)) return AttrDict(json.loads(output)) class Implementation(object): ''' Base class for representing Bokeh custom model implementations. ''' file = None class Inline(Implementation): ''' Base class for representing Bokeh custom model implementations that may be given as inline code in some language. Args: code (str) : The source code for the implementation file (str, optional) A file path to a file containing the source text (default: None) ''' def __init__(self, code, file=None): self.code = code self.file = file class CoffeeScript(Inline): ''' An implementation for a Bokeh custom model in CoffeeScript. Example: .. code-block:: python class MyExt(Model): __implementation__ = CoffeeScript(""" <CoffeeScript code> """) Note that ``CoffeeScript`` is the default implementation language for custom model implementations. The following is equivalent to example above: .. code-block:: python class MyExt(Model): __implementation__ == """ <some coffeescript code> """ ''' @property def lang(self): return "coffeescript" class TypeScript(Inline): ''' An implementation for a Bokeh custom model in TypeScript Example: .. code-block:: python class MyExt(Model): __implementation__ = TypeScript(""" <TypeScript code> """) ''' @property def lang(self): return "typescript" class JavaScript(Inline): ''' An implementation for a Bokeh custom model in JavaScript Example: .. code-block:: python class MyExt(Model): __implementation__ = Javacript(""" <JavaScript code> """) ''' @property def lang(self): return "javascript" class Less(Inline): ''' An implementation of a Less CSS style sheet. ''' @property def lang(self): return "less" class FromFile(Implementation): ''' A custom model implementation read from a separate source file. Args: path (str) : The path to the file containing the extension source code ''' def __init__(self, path): with io.open(path, encoding="utf-8") as f: self.code = f.read() self.file = path @property def lang(self): if self.file.endswith(".coffee"): return "coffeescript" if self.file.endswith(".ts"): return "typescript" if self.file.endswith(".js"): return "javascript" if self.file.endswith((".css", ".less")): return "less" #: recognized extensions that can be compiled exts = (".coffee", ".ts", ".js", ".css", ".less") class CustomModel(object): ''' Represent a custom (user-defined) Bokeh model. ''' def __init__(self, cls): self.cls = cls @property def name(self): return self.cls.__name__ @property def full_name(self): name = self.cls.__module__ + "." + self.name return name.replace("__main__.", "") @property def file(self): module = sys.modules[self.cls.__module__] if hasattr(module, "__file__"): return abspath(module.__file__) else: return None @property def path(self): path = getattr(self.cls, "__base_path__", None) if path is not None: return path elif self.file is not None: return dirname(self.file) else: return os.getcwd() @property def implementation(self): impl = self.cls.__implementation__ if isinstance(impl, six.string_types): if "\n" not in impl and impl.endswith(exts): impl = FromFile(impl if isabs(impl) else join(self.path, impl)) else: impl = CoffeeScript(impl) if isinstance(impl, Inline) and impl.file is None: impl = impl.__class__(impl.code, (self.file or "<string>") + ":" + self.name) return impl @property def dependencies(self): return getattr(self.cls, "__dependencies__", {}) @property def module(self): return "custom/%s" % snakify(self.full_name) def _model_cache_no_op(model, implementation): """Return cached compiled implementation""" return None _CACHING_IMPLEMENTATION = _model_cache_no_op def get_cache_hook(): '''Returns the current cache hook used to look up the compiled code given the CustomModel and Implementation''' return _CACHING_IMPLEMENTATION def set_cache_hook(hook): '''Sets a compiled model cache hook used to look up the compiled code given the CustomModel and Implementation''' global _CACHING_IMPLEMENTATION _CACHING_IMPLEMENTATION = hook def _get_custom_models(models): """Returns CustomModels for models with a custom `__implementation__`""" custom_models = {} for cls in models: impl = getattr(cls, "__implementation__", None) if impl is not None: model = CustomModel(cls) custom_models[model.full_name] = model if not custom_models: return None return custom_models def _compile_models(custom_models): """Returns the compiled implementation of supplied `models`. """ ordered_models = sorted(custom_models.values(), key=lambda model: model.full_name) custom_impls = {} dependencies = [] for model in ordered_models: dependencies.extend(list(model.dependencies.items())) if dependencies: dependencies = sorted(dependencies, key=lambda name_version: name_version[0]) _run_npmjs(["install", "--no-progress"] + [ name + "@" + version for (name, version) in dependencies ]) for model in ordered_models: impl = model.implementation compiled = _CACHING_IMPLEMENTATION(model, impl) if compiled is None: compiled = nodejs_compile(impl.code, lang=impl.lang, file=impl.file) if "error" in compiled: raise CompilationError(compiled.error) custom_impls[model.full_name] = compiled return custom_impls def bundle_models(models): """Create a bundle of `models`. """ custom_models = _get_custom_models(models) if custom_models is None: return exports = [] modules = [] def read_json(name): with io.open(join(bokehjs_dir, "js", name + ".json"), encoding="utf-8") as f: return json.loads(f.read()) bundles = ["bokeh", "bokeh-api", "bokeh-widgets", "bokeh-tables", "bokeh-gl"] known_modules = set(sum([ read_json(name) for name in bundles ], [])) custom_impls = _compile_models(custom_models) extra_modules = {} def resolve_modules(to_resolve, root): resolved = {} for module in to_resolve: if module.startswith(("./", "../")): def mkpath(module, ext=""): return abspath(join(root, *module.split("/")) + ext) if module.endswith(exts): path = mkpath(module) if not exists(path): raise RuntimeError("no such module: %s" % module) else: for ext in exts: path = mkpath(module, ext) if exists(path): break else: raise RuntimeError("no such module: %s" % module) impl = FromFile(path) compiled = nodejs_compile(impl.code, lang=impl.lang, file=impl.file) if "error" in compiled: raise CompilationError(compiled.error) if impl.lang == "less": code = _style_template % dict(css=json.dumps(compiled.code)) deps = [] else: code = compiled.code deps = compiled.deps sig = hashlib.sha256(code.encode('utf-8')).hexdigest() resolved[module] = sig deps_map = resolve_deps(deps, dirname(path)) if sig not in extra_modules: extra_modules[sig] = True modules.append((sig, code, deps_map)) else: raise RuntimeError("no such module: %s" % module) return resolved def resolve_deps(deps, root): custom_modules = set(model.module for model in custom_models.values()) missing = set(deps) - known_modules - custom_modules return resolve_modules(missing, root) for model in custom_models.values(): compiled = custom_impls[model.full_name] deps_map = resolve_deps(compiled.deps, model.path) exports.append((model.name, model.module)) modules.append((model.module, compiled.code, deps_map)) # sort everything by module name exports = sorted(exports, key=lambda spec: spec[1]) modules = sorted(modules, key=lambda spec: spec[0]) for i, (module, code, deps) in enumerate(modules): for name, ref in deps.items(): code = code.replace("""require("%s")""" % name, """require("%s")""" % ref) code = code.replace("""require('%s')""" % name, """require('%s')""" % ref) modules[i] = (module, code) sep = ",\n" exports = sep.join(_export_template % dict(name=name, module=module) for (name, module) in exports) modules = sep.join(_module_template % dict(module=module, source=code) for (module, code) in modules) content = _plugin_template % dict(prelude=_plugin_prelude, exports=exports, modules=modules) return _plugin_umd % dict(content=content) def calc_cache_key(): ''' Generate a key to cache a custom extension implementation with. There is no metadata other than the Model classes, so this is the only base to generate a cache key. We build the model keys from the list of ``model.full_name``. This is not ideal but possibly a better solution can be found found later. ''' models = Model.model_class_reverse_map.values() custom_model_names = "" for cls in models: impl = getattr(cls, "__implementation__", None) if impl is not None: model = CustomModel(cls) custom_model_names += model.full_name key = hashlib.sha256(custom_model_names.encode('utf-8')).hexdigest() return key _bundle_cache = {} def bundle_all_models(): key = calc_cache_key() bundle = _bundle_cache.get(key, None) if bundle is None: _bundle_cache[key] = bundle = bundle_models(Model.model_class_reverse_map.values()) or "" return bundle
28.602541
111
0.614467
4a2621943873c3202b949b62a414d552f4d74978
1,597
py
Python
reinvent-2019/rhythm-cloud/lambda/Greengrass_startSong/boto3/compat.py
kienpham2000/aws-builders-fair-projects
6c4075c0945a6318b217355a6fc663e35ffb9dba
[ "Apache-2.0" ]
1,738
2017-09-21T10:59:12.000Z
2022-03-31T21:05:46.000Z
reinvent-2019/rhythm-cloud/lambda/Greengrass_startSong/boto3/compat.py
kienpham2000/aws-builders-fair-projects
6c4075c0945a6318b217355a6fc663e35ffb9dba
[ "Apache-2.0" ]
427
2017-09-29T22:54:36.000Z
2022-02-15T19:26:50.000Z
reinvent-2019/rhythm-cloud/lambda/Greengrass_startSong/boto3/compat.py
kienpham2000/aws-builders-fair-projects
6c4075c0945a6318b217355a6fc663e35ffb9dba
[ "Apache-2.0" ]
671
2017-09-21T08:04:01.000Z
2022-03-29T14:30:07.000Z
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import sys import os import errno import socket from botocore.vendored import six if six.PY3: # In python3, socket.error is OSError, which is too general # for what we want (i.e FileNotFoundError is a subclass of OSError). # In py3 all the socket related errors are in a newly created # ConnectionError SOCKET_ERROR = ConnectionError else: SOCKET_ERROR = socket.error if six.PY3: import collections.abc as collections_abc else: import collections as collections_abc if sys.platform.startswith('win'): def rename_file(current_filename, new_filename): try: os.remove(new_filename) except OSError as e: if not e.errno == errno.ENOENT: # We only want to a ignore trying to remove # a file that does not exist. If it fails # for any other reason we should be propagating # that exception. raise os.rename(current_filename, new_filename) else: rename_file = os.rename
32.591837
73
0.693175
4a2621a1d2b14a1a8061e23944cb15c113b03b36
3,949
py
Python
official/vision/gan/megengine_mimicry/metrics/fid/fid_utils.py
pepperonibo/Models
abc32993529e70cb019ab5ee2f1022ac01ba2398
[ "Apache-2.0" ]
294
2020-03-23T05:55:04.000Z
2022-03-31T01:31:17.000Z
official/vision/gan/megengine_mimicry/metrics/fid/fid_utils.py
pepperonibo/Models
abc32993529e70cb019ab5ee2f1022ac01ba2398
[ "Apache-2.0" ]
83
2020-03-24T12:06:25.000Z
2021-12-13T10:43:26.000Z
official/vision/gan/megengine_mimicry/metrics/fid/fid_utils.py
pepperonibo/Models
abc32993529e70cb019ab5ee2f1022ac01ba2398
[ "Apache-2.0" ]
103
2020-03-24T07:31:18.000Z
2022-03-23T01:46:18.000Z
# Copyright (c) 2020 Kwot Sin Lee # This code is licensed under MIT license # (https://github.com/kwotsin/mimicry/blob/master/LICENSE) # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ """ Helper functions for calculating FID as adopted from the official FID code: https://github.com/kwotsin/dissertation/blob/master/eval/TTUR/fid.py """ import numpy as np from scipy import linalg from ..inception_model import inception_utils def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """ Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Args: mu1 : Numpy array containing the activations of the pool_3 layer of the inception net ( like returned by the function 'get_predictions') for generated samples. mu2: The sample mean over activations of the pool_3 layer, precalcualted on an representive data set. sigma1 (ndarray): The covariance matrix over activations of the pool_3 layer for generated samples. sigma2: The covariance matrix over activations of the pool_3 layer, precalcualted on an representive data set. Returns: np.float64: The Frechet Distance. """ if mu1.shape != mu2.shape or sigma1.shape != sigma2.shape: raise ValueError( "(mu1, sigma1) should have exactly the same shape as (mu2, sigma2)." ) mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): print( "WARNING: fid calculation produces singular product; adding {} to diagonal of cov estimates" .format(eps)) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError("Imaginary component {}".format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return diff.dot(diff) + np.trace(sigma1) + np.trace( sigma2) - 2 * tr_covmean def calculate_activation_statistics(images, sess, batch_size=50, verbose=True): """ Calculation of the statistics used by the FID. Args: images (ndarray): Numpy array of shape (N, H, W, 3) and values in the range [0, 255]. sess (Session): TensorFlow session object. batch_size (int): Batch size for inference. verbose (bool): If True, prints out logging information. Returns: ndarray: Mean of inception features from samples. ndarray: Covariance of inception features from samples. """ act = inception_utils.get_activations(images, sess, batch_size, verbose) mu = np.mean(act, axis=0) sigma = np.cov(act, rowvar=False) return mu, sigma
37.609524
104
0.646493
4a262337fd6f86f8f696ba205e79abf77c753d9c
910
py
Python
ezerase/source/ataeraser.py
ebangin127/nstools
2a0bb4e6fd3688afd74afd4c7d69eeb46f096a99
[ "MIT" ]
15
2016-02-12T14:55:53.000Z
2021-08-17T09:44:12.000Z
ezerase/source/ataeraser.py
ebangin127/nstools
2a0bb4e6fd3688afd74afd4c7d69eeb46f096a99
[ "MIT" ]
1
2020-10-28T12:19:56.000Z
2020-10-28T12:19:56.000Z
ezerase/source/ataeraser.py
ebangin127/nstools
2a0bb4e6fd3688afd74afd4c7d69eeb46f096a99
[ "MIT" ]
7
2016-08-21T23:57:47.000Z
2022-02-14T03:26:21.000Z
import passwordSetter import atahdparmeraser import passwordCleaner import defroster import confirmView import completeView import eraseType import freezeType class ATAEraser: def erase(self, selected, model, serial): erasestate = eraseType.EraseType.failed passwordcleared = False laststate = defroster.Defroster().defrost(selected) if selected == freezeType.FreezeType.defrosting: return True try: passwordset = passwordSetter.PasswordSetter().set(selected, laststate) confirm = confirmView.ConfirmView(passwordset, model, serial).agree() erasestate = atahdparmeraser.ATAHDParmEraser().erase(selected, confirm) passwordcleared = passwordCleaner.PasswordCleaner().clean(selected, erasestate) finally: completeView.CompleteView(erasestate, model, serial) return passwordcleared
37.916667
91
0.717582
4a2623575dd03c724745511d6e0aa64047877828
2,039
py
Python
banner/tests/__init__.py
praekelt/jmbo-banner
f8eed0f28b989a8d5d305e95f6e6661b328cad0b
[ "BSD-3-Clause" ]
null
null
null
banner/tests/__init__.py
praekelt/jmbo-banner
f8eed0f28b989a8d5d305e95f6e6661b328cad0b
[ "BSD-3-Clause" ]
4
2017-10-30T15:00:42.000Z
2017-11-09T09:11:32.000Z
banner/tests/__init__.py
praekelt/jmbo-banner
f8eed0f28b989a8d5d305e95f6e6661b328cad0b
[ "BSD-3-Clause" ]
null
null
null
# import os # # from django.test import TestCase as BaseTestCase # from django.test.client import Client as BaseClient, RequestFactory # from django.contrib.auth.models import User # from django.template import RequestContext, loader # from django.core.files.base import ContentFile # # from banner.models import ImageBanner # # RES_DIR = os.path.join(os.path.dirname(__file__), "res") # IMAGE_PATH = os.path.join(RES_DIR, "image.jpg") # # # def set_image(obj): # obj.image.save( # os.path.basename(IMAGE_PATH), # ContentFile(open(IMAGE_PATH, "rb").read()) # ) # # # class TestCase(BaseTestCase): # # @classmethod # def setUpClass(cls): # cls.request = RequestFactory() # cls.client = BaseClient() # # # Editor # cls.editor, dc = User.objects.get_or_create( # username='editor', # email='[email protected]' # ) # cls.editor.set_password("password") # cls.editor.save() # # # Image banner # obj, dc = ImageBanner.objects.get_or_create( # title='ImageBanner', # owner=cls.editor, state='published', # ) # obj.sites = [1] # set_image(obj) # obj.save() # cls.imagebanner = obj # # def test_imagebanner_detail(self): # response = self.client.get(self.imagebanner.get_absolute_url()) # self.assertEqual(response.status_code, 200) # self.failUnless( # """<a href="" rel="nofollow"><img src="" alt="ImageBanner" \ # alt="ImageBanner" /></a>""" in response.content # ) # # def test_imagebanner_list_item(self): # t = loader.get_template( # "banner/inclusion_tags/imagebanner_list_item.html" # ) # context = RequestContext(self.request) # context["object"] = self.imagebanner # html = t.render(context) # self.failUnless( # """<a href="" rel="nofollow"><img src="" alt="ImageBanner" \ # alt="ImageBanner" /></a>""" in html # )
30.893939
74
0.594899
4a26238a530d846f51771f92375edca99471cda4
318
py
Python
birp/__version__.py
evtn/birp
fe54669f296ca99eb8cc5296ab3ec4896ad8cfc0
[ "MIT" ]
21
2021-10-09T07:30:12.000Z
2022-01-04T12:15:14.000Z
birp/__version__.py
evtn/birp
fe54669f296ca99eb8cc5296ab3ec4896ad8cfc0
[ "MIT" ]
1
2021-10-18T10:49:59.000Z
2021-10-18T10:49:59.000Z
birp/__version__.py
evtn/birp
fe54669f296ca99eb8cc5296ab3ec4896ad8cfc0
[ "MIT" ]
null
null
null
""" __version__.py ~~~~~~~~~~~~~~ Information about the current version of birp package. """ __title__ = "birp" __description__ = "birp — большой русский питон (BIg Russian Python)" __version__ = "0.1.8" __author__ = "evtn" __author_email__ = "[email protected]" __license__ = "MIT" __url__ = "https://github.com/evtn/birp"
21.2
69
0.691824
4a2624270e9eae9cd68d80eb4a7df6143d859eae
342
py
Python
fluidlab/_version.py
fluiddyn/fluidlab
77e7ae3129788089814e38eba93802026a07fcf6
[ "CECILL-B" ]
4
2020-01-19T04:12:12.000Z
2021-11-09T08:30:25.000Z
fluidlab/_version.py
fluiddyn/fluidlab
77e7ae3129788089814e38eba93802026a07fcf6
[ "CECILL-B" ]
null
null
null
fluidlab/_version.py
fluiddyn/fluidlab
77e7ae3129788089814e38eba93802026a07fcf6
[ "CECILL-B" ]
null
null
null
""" Module where the version is written. It is executed in setup.py and imported in fluiddyn/__init__.py. See: http://en.wikipedia.org/wiki/Software_versioning http://legacy.python.org/dev/peps/pep-0386/ 'a' or 'alpha' means alpha version (internal testing), 'b' or 'beta' means beta version (external testing). """ __version__ = "0.1.0"
22.8
64
0.733918
4a26243c1ad4e67759aa8fdd4e35b25d250e8df8
668
py
Python
beautifulsoup.py
Smartproxy/BeautifulSoup
f4a1d91cb3c018a2eb7fa5e40a84d4c36c7b6350
[ "MIT" ]
6
2019-07-09T15:30:45.000Z
2020-12-31T18:29:41.000Z
beautifulsoup/beautifulsoup.py
Kiofo/Smartproxy
29685fa0f09e03597bf6474d3ba3f452f5143ecf
[ "MIT" ]
null
null
null
beautifulsoup/beautifulsoup.py
Kiofo/Smartproxy
29685fa0f09e03597bf6474d3ba3f452f5143ecf
[ "MIT" ]
2
2020-11-24T17:08:19.000Z
2021-07-15T09:52:25.000Z
import requests from bs4 import BeautifulSoup url = 'https://www.whatismyip.com/' headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'} proxies = {'https': 'https://gate.smartproxy.com:7000'} # Your desired endpoint within punctuation marks ('') auth = requests.auth.HTTPProxyAuth('username','password') # Your username and password for proxy authentication soup = BeautifulSoup(requests.get(url, headers=headers, proxies=proxies, auth=auth).text, 'lxml') info_box = soup.find('div', attrs={'class': 'card-body'}) ip = info_box.findAll('li')[0] print(ip.get_text())
37.111111
148
0.730539
4a2624bfe03df9435e8a1fd87b0f7f0253dc0b47
21,390
py
Python
cir/doc_views.py
xsunfeng/cir
03790384c160276652fd87b614c719c6363f1802
[ "MIT" ]
null
null
null
cir/doc_views.py
xsunfeng/cir
03790384c160276652fd87b614c719c6363f1802
[ "MIT" ]
null
null
null
cir/doc_views.py
xsunfeng/cir
03790384c160276652fd87b614c719c6363f1802
[ "MIT" ]
1
2018-06-23T21:11:53.000Z
2018-06-23T21:11:53.000Z
import json from django.template.loader import render_to_string from django.http import HttpResponse from django.utils import timezone from cir.models import * def api_doc(request): response = {} action = request.REQUEST.get('action') forum = Forum.objects.get(id=request.session['forum_id']) if action == 'get-categories': context = {} # try: context['forum_name'] = forum.full_name # retrieve docs in a folder folders = EntryCategory.objects.filter(forum_id=request.session['forum_id'], category_type='doc') context['folders'] = [] for folder in folders: folder_info = folder.getAttr() folder_info['docs'] = [] docs = Doc.objects.filter(folder=folder) for doc in docs: folder_info['docs'].append(doc.getAttr()) context['folders'].append(folder_info) # retrieve docs not in any folder context['root_docs'] = [] root_docs = Doc.objects.filter(forum_id=request.session['forum_id'], folder__isnull=True).order_by("order") for doc in root_docs: context['root_docs'].append(doc.getAttr()) # retrieve aggregated tags tags_count = {} context['tags'] = [] all_sections = DocSection.objects.filter(forum_id=request.session['forum_id']) for section in all_sections: for tag in Tag.objects.filter(context=section): if tag.content in tags_count: tags_count[tag.content] += 1 else: tags_count[tag.content] = 1 tags = sorted(tags_count, key=tags_count.get, reverse=True) for tag in tags: context['tags'].append({'content': tag, 'count': tags_count[tag]}) response['html'] = render_to_string("doc/doc-category.html", context) return HttpResponse(json.dumps(response), mimetype='application/json') # except: # return HttpResponse('Unknown error.', status=403) if action == 'get-document': doc_id = request.REQUEST.get('doc_id') try: doc = Doc.objects.get(id=doc_id) context = {} context['forum_phase'] = forum.phase context['title'] = doc.title context['sections'] = [] ordered_sections = doc.sections.filter(order__isnull=False).order_by('order') for section in ordered_sections: context['sections'].append(section.getAttr(forum)) unordered_sections = doc.sections.filter(order__isnull=True).order_by('updated_at') for section in unordered_sections: context['sections'].append(section.getAttr(forum)) response['html'] = render_to_string("doc/doc-content.html", context) return HttpResponse(json.dumps(response), mimetype='application/json') except: return HttpResponse('The document does not exist.', status=403) def api_highlight(request): response = {} action = request.REQUEST.get('action') now = timezone.now() if action == 'create': nugget_status = request.REQUEST.get('nugget_status') if (nugget_status == 'new'): if not request.user.is_authenticated(): return HttpResponse("Please log in first.", status=403) content = request.REQUEST.get('content') content_type = request.REQUEST.get('type') start = request.REQUEST.get('start') end = request.REQUEST.get('end') context_id = request.REQUEST.get('contextId') text = request.REQUEST.get('text') # create highlight object context = Entry.objects.get(id=context_id) hl_type = request.REQUEST.get('hl_type') if (hl_type == "question"): highlight = Highlight(start_pos=start, end_pos=end, context=context, author=request.user, text=text, created_at = now, is_nugget = False) else: # real nugget highlight = Highlight(start_pos=start, end_pos=end, context=context, author=request.user, text=text, created_at = now, is_nugget = True) if (request.REQUEST.get('theme_id')): theme_id = request.REQUEST.get('theme_id') highlight.theme = ClaimTheme.objects.get(id = theme_id) highlight.save() response['highlight_id'] = highlight.id # then create the content if 'actual_user_id' in request.session: actual_author = User.objects.get(id=request.session['actual_user_id']) else: actual_author = None if content_type == 'comment': if actual_author: Post.objects.create(forum_id=request.session['forum_id'], author=actual_author, delegator=request.user, content=content, created_at=now, updated_at=now, highlight=highlight, content_type='comment') else: Post.objects.create(forum_id=request.session['forum_id'], author=request.user, content=content, created_at=now, updated_at=now, highlight=highlight, content_type='comment') elif content_type == 'question': if actual_author: Post.objects.create(forum_id=request.session['forum_id'], author=actual_author, delegator=request.user, content=content, created_at=now, updated_at=now, highlight=highlight, content_type='question') else: Post.objects.create(forum_id=request.session['forum_id'], author=request.user, content=content, created_at=now, updated_at=now, highlight=highlight, content_type='question') elif content_type == 'claim': print "" # 2016/11/30: now a nugget is directly converted to a claim category = request.REQUEST.get('category') now = timezone.now() newClaim = Claim(forum_id=request.session['forum_id'], author=request.user, created_at=now, updated_at=now, content=content, claim_category=category) newClaim.save() claim_version = ClaimVersion(forum_id=request.session['forum_id'], author=request.user, content=text, created_at=now, updated_at=now, claim=newClaim, is_adopted=True) claim_version.save() newHighlightClaim = HighlightClaim(claim_id=newClaim.id, highlight_id=highlight.id) newHighlightClaim.save() claim = newClaim else: # if (nugget_status == 'exist'): nugget_id = request.REQUEST['nugget_id'].split(" ")[0] claim = HighlightClaim.objects.filter(highlight_id= Highlight.objects.get(id=nugget_id))[0].claim slot = Claim.objects.get(id=request.REQUEST['slot_id']) if not ClaimReference.objects.filter(refer_type='stmt', from_claim=claim, to_claim=slot).exists(): ClaimReference.objects.create(refer_type='stmt', from_claim=claim, to_claim=slot) if 'actual_user_id' in request.session: actual_author = User.objects.get(id=request.session['actual_user_id']) SlotAssignment.objects.create(forum_id=request.session['forum_id'], user=actual_author, delegator=request.user, entry=claim, created_at=now, slot=slot, event_type='add') else: SlotAssignment.objects.create(forum_id=request.session['forum_id'], user=request.user, entry=claim, created_at=now, slot=slot, event_type='add') response["slot_id"] = slot.id response["slot_order"] = slot.stmt_order return HttpResponse(json.dumps(response), mimetype='application/json') if action == 'load-doc': doc_id = request.REQUEST.get('doc_id') doc = Doc.objects.get(id=doc_id) response['highlights'] = [] mytags = set() alltags = set() for section in doc.sections.all(): highlights = section.highlights.all() for highlight in highlights: highlight_info = highlight.getAttr() response['highlights'].append(highlight_info) if highlight_info['type'] == 'tag': if highlight_info['author_id'] == request.user.id: mytags.add(highlight_info['content']) alltags.add(highlight_info['content']) response['html'] = render_to_string('doc/doc-tag-area.html', {'mytags': mytags, 'alltags': alltags}) return HttpResponse(json.dumps(response), mimetype='application/json') def api_annotation(request): response = {} action = request.REQUEST.get('action') forum = Forum.objects.get(id=request.session['forum_id']) if action == 'load-thread': context = {} highlight_id = request.REQUEST.get('highlight_id') highlight = Highlight.objects.get(id=highlight_id) if (highlight.is_nugget): context['theme'] = highlight.theme context['author'] = highlight.author context['forum_phase'] = forum.phase context['source'] = 'highlight' context['entries'] = [] posts = highlight.posts_of_highlight.all() for post in posts: for comment in post.getTree(exclude_root=False): context['entries'].append(comment.getAttr(forum)) claims = highlight.claim_set.all() for claim in claims: context['entries'].append(claim.getAttr(forum)) context['entries'] = sorted(context['entries'], key=lambda en: en['created_at_full'], reverse=True) response['html'] = render_to_string("feed/activity-feed-doc.html", context) return HttpResponse(json.dumps(response), mimetype='application/json') if action == 'create': if not request.user.is_authenticated(): return HttpResponse("Please log in first.", status=403) now = timezone.now() newPost = Post(forum_id=request.session['forum_id'], content_type='comment', created_at=now, updated_at=now) if 'actual_user_id' in request.session: newPost.author = User.objects.get(id=request.session['actual_user_id']) newPost.delegator = request.user else: newPost.author = request.user newPost.content = request.REQUEST.get('content') # depending on whether this post is a reply, decide who are to be notified request_action = request.REQUEST.get('request_action', 'false') request_action_bool = False if request_action == 'true': request_action_bool = True reply_type = request.REQUEST.get('reply_type') if reply_type: # replying another post, or event reply_id = request.REQUEST.get('reply_id') if request_action_bool: message_type = 'reply-action' else: message_type = 'reply' if reply_type == 'event': event = Event.objects.get(id=reply_id) newPost.target_event = event receiver = event.user elif reply_type == 'entry': entry = Entry.objects.get(id=reply_id) newPost.target_entry = entry receiver = entry.author newPost.save() Message.objects.create( forum=forum, sender=newPost.author, receiver=receiver, content=newPost.content, created_at=now, content_type=message_type, target_entry=newPost ) else: # targeting at a highlight or a claim source = request.REQUEST.get('type') if source == 'highlight': highlight = Highlight.objects.get(id=request.REQUEST.get('highlight_id')) newPost.highlight = highlight elif source == 'claim': slot = Claim.objects.get(id=request.REQUEST.get('slot_id')) newPost.target_entry = slot collective = request.REQUEST.get('collective', 'false') if collective == 'true': newPost.collective = True else: newPost.collective = False newPost.save() if not reply_type: # notify everyone message_type = 'post' if request_action_bool: message_type = 'post-action' for panelist in forum.members.filter(role='panelist'): Message.objects.create( forum=forum, sender=newPost.author, receiver=panelist.user, content=newPost.content, created_at=now, content_type=message_type, target_entry=newPost ) return HttpResponse(json.dumps(response), mimetype='application/json') if action == 'delete': entry_id = request.REQUEST.get('entry_id') now = timezone.now() post = Post.objects.get(id=entry_id) post.is_deleted = True post.updated_at = now post.save() return HttpResponse(json.dumps(response), mimetype='application/json') def api_qa(request): response = {} forum = Forum.objects.get(id=request.session['forum_id']) action = request.REQUEST.get('action') if action == 'load-thread': # given a question, load its discussions question = ClaimComment.objects.get(id=request.REQUEST.get('question_id')) context = { 'entries': [], 'source': 'qa' } comments = question.get_descendants(include_self=True) context["comments"] = question.get_descendants(include_self=True) response['html'] = render_to_string("qa/question-expand.html", context) if action == 'raise-question': author = request.user forum = Forum.objects.get(id=request.session['forum_id']) comment_type = "question" text = request.REQUEST.get('text') created_at = timezone.now() nugget_id = request.REQUEST.get('nugget_id') if (nugget_id == ""): newClaimComment = ClaimComment(author = author, text = text, created_at = created_at, comment_type = comment_type, forum = forum) else: newClaimComment = ClaimComment(author = author, text = text, created_at = created_at, comment_type = comment_type, forum = forum, nugget_id = nugget_id) newClaimComment.save() if action == 'get-question-list' or action == 'raise-question': author = request.user context = { 'questions': [] } questions = ClaimComment.objects.filter(forum = forum, comment_type='question', parent__isnull = True) context['questions'] = context['questions'] for question in questions: entry = {} entry["reply_count"] = question.get_descendant_count() if (entry["reply_count"] > 0): entry["last_reply_pretty"] = utils.pretty_date(question.get_descendants(include_self=True).order_by("-created_at")[0].created_at) entry["text"] = question.text entry["id"] = question.id entry["is_answered"] = question.is_answered entry["created_at"] = question.created_at entry['comments'] = question.get_descendants(include_self=True) entry["entry_type"] = "claim_" + str(question.comment_type) entry["author_name"] = question.author.first_name + " " + question.author.last_name entry["author_id"] = question.author.id entry["is_author"] = (question.author == request.user) if (Role.objects.filter(user_id = request.user.id, forum =forum).count == 0): entry["is_facilitator"] = (Role.objects.get(user = request.user, forum =forum).role) == "facilitator" entry["author_role"] = Role.objects.get(user = question.author, forum =forum).role entry["author_intro"] = UserInfo.objects.get(user = question.author).description entry["created_at_pretty"] = utils.pretty_date(question.created_at) # vote for importance entry["vote_count"] = ClaimQuestionVote.objects.filter(question_id = question.id).count() if (entry["vote_count"] > 0): tmp = [] for vote in ClaimQuestionVote.objects.filter(question_id = question.id): tmp.append(vote.voter.last_name + " " + vote.voter.first_name) entry["voted_authors"] = ", ".join(tmp) # vote for experts entry["expert_vote_count"] = QuestionNeedExpertVote.objects.filter(question_id = question.id).count() entry["has_facilitator_vote"] = False if (entry["expert_vote_count"] > 0): tmp = [] for vote in QuestionNeedExpertVote.objects.filter(question_id = question.id): tmp.append(vote.voter.last_name + " " + vote.voter.first_name) if (Role.objects.get(user = vote.voter, forum =forum).role == "facilitator"): entry["has_facilitator_vote"] = True entry["expert_voted_authors"] = ", ".join(tmp) if (ClaimQuestionVote.objects.filter(voter_id = author.id, question_id = question.id).count() > 0): entry["voted"] = True if (QuestionNeedExpertVote.objects.filter(voter_id = author.id, question_id = question.id).count() > 0): entry["expert_voted"] = True try: claimVersion = ClaimVersion.objects.filter(claim = question.claim, is_adopted = True).order_by("-created_at")[0] entry['claim_id'] = question.claim.id entry['claim_content'] = claimVersion.content entry['claim_author'] = question.claim.author.first_name + " " + question.claim.author.last_name entry['claim_created_at'] = utils.pretty_date(question.claim.created_at) except: pass if (question.nugget): docsection = DocSection.objects.get(id=question.nugget.context.id) entry['doc_id'] = docsection.doc.id entry['nugget_id'] = question.nugget.id context['questions'].append(entry) context['questions'] = sorted(context['questions'], key=lambda en: (en['is_answered'], en['created_at']), reverse=True) response['html'] = render_to_string('qa/question-list.html', context) return HttpResponse(json.dumps(response), mimetype='application/json') # def api_qa_backup(request): # response = {} # forum = Forum.objects.get(id=request.session['forum_id']) # action = request.REQUEST.get('action') # if action == 'load-thread': # # given a question, load its discussions # question = Post.objects.get(id=request.REQUEST.get('question_id')) # context = { # 'entries': [], # 'source': 'qa' # } # for post in question.getTree(exclude_root=True): # don't include root # context['entries'].append(post.getAttr(forum)) # context['entries'] = sorted(context['entries'], key=lambda en: en['created_at_full'], reverse=True) # response['html'] = render_to_string("feed/activity-feed-doc.html", context) # if action == 'raise-question': # now = timezone.now() # content = request.REQUEST.get('content') # Post.objects.create(forum_id=request.session['forum_id'], author=request.user, content=content, # created_at=now, updated_at=now, content_type='question') # if action == 'get-all-questions' or action == 'raise-question': # context = { # 'questions': [] # } # questions = Post.objects.filter(forum=forum, content_type='question', is_deleted=False) # for question in questions: # question_info = question.getAttr(forum) # all_replies = question.getTree(exclude_root=True) # question_info['treesize'] = len(all_replies) # if question_info['treesize'] > 0: # last_reply = sorted(all_replies, key=lambda en: en.created_at, reverse=True)[0] # last_reply_info = last_reply.getAttr(forum) # question_info['last_reply'] = last_reply_info['updated_at'] # question_info['last_reply_full'] = last_reply_info['updated_at_full'] # else: # question_info['last_reply_full'] = question_info['created_at_full'] # try: # docsection = DocSection.objects.get(id=question.highlight.context.id) # question_info['doc_name'] = docsection.doc.title # question_info['doc_id'] = docsection.doc.id # question_info['highlight_id'] = question.highlight.id # except: # pass # context['questions'].append(question_info) # context['questions'] = sorted(context['questions'], key=lambda en: (en['last_reply_full'], en['created_at_full']), reverse=True) # response['html'] = render_to_string('doc/qa-panel.html', context) # return HttpResponse(json.dumps(response), mimetype='application/json')
52.814815
178
0.60561
4a2624eb6f811e1664aa8d54e894814659c3cabf
819
py
Python
tests/test_requests.py
libero/search
f13c7fe2aa5f3cd1e2f62234995788bed7147b91
[ "MIT" ]
null
null
null
tests/test_requests.py
libero/search
f13c7fe2aa5f3cd1e2f62234995788bed7147b91
[ "MIT" ]
14
2019-01-31T08:34:30.000Z
2019-11-21T10:06:13.000Z
tests/test_requests.py
libero/search
f13c7fe2aa5f3cd1e2f62234995788bed7147b91
[ "MIT" ]
3
2019-01-30T10:49:01.000Z
2019-06-11T14:42:03.000Z
import logging from search.requests import request_data def test_request_data_returns_response(requests_mock): url = 'http://some-url.com' response_text = 'response received' requests_mock.get(url, text=response_text) response = request_data(url) assert response.status_code == 200 assert response.text == response_text def test_request_data_logs_errors_and_returns_none(requests_mock, caplog): caplog.set_level(logging.ERROR, logger='search') url = 'http://some-url.com' reason = 'Not Found' status_code = 404 requests_mock.get(url, reason=reason, status_code=status_code) response = request_data(url) assert response is None expected_log = f'{reason} {status_code}: Unable to retrieve content from {url}.' assert caplog.messages[-1] == expected_log
29.25
84
0.737485
4a2628394093227b6adb7e6d3afbed3ad99adbb2
1,291
py
Python
ccontrol/model.py
ThomasLecat/udacity-continuous-control
fa63aef00abc4446c860160ef17ef28c32ec71d8
[ "MIT" ]
null
null
null
ccontrol/model.py
ThomasLecat/udacity-continuous-control
fa63aef00abc4446c860160ef17ef28c32ec71d8
[ "MIT" ]
null
null
null
ccontrol/model.py
ThomasLecat/udacity-continuous-control
fa63aef00abc4446c860160ef17ef28c32ec71d8
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F class Actor(nn.Module): """MultiLayer perceptron. Approximates \argmax_a{Q(s,a)}""" def __init__(self, state_size, num_actions): super().__init__() self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, 64) self.fc4 = nn.Linear(64, num_actions) self.batch_norm = nn.BatchNorm1d(128) def forward(self, observations): x = F.relu(self.batch_norm(self.fc1(observations))) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) return F.tanh(self.fc4(x)) class Critic(nn.Module): """Q-network model""" def __init__(self, state_size, action_size): super(Critic, self).__init__() self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128 + action_size, 128) self.fc3 = nn.Linear(128, 64) self.fc4 = nn.Linear(64, 1) self.batch_norm = nn.BatchNorm1d(128) def forward(self, observations, actions): """Get Q(s,a) for all agents.""" x = F.relu(self.batch_norm(self.fc1(observations))) x = torch.cat((x, actions), dim=1) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) return self.fc4(x)
29.340909
63
0.60031
4a262850658056b2f99c0bd0225c1f7e5593496e
188
py
Python
Radius.py
Dhiviani/python-program
30f1a84ff8888987ecb7fb5e25543305a9f93984
[ "MIT" ]
null
null
null
Radius.py
Dhiviani/python-program
30f1a84ff8888987ecb7fb5e25543305a9f93984
[ "MIT" ]
null
null
null
Radius.py
Dhiviani/python-program
30f1a84ff8888987ecb7fb5e25543305a9f93984
[ "MIT" ]
null
null
null
#area of circle r=1.1 A=3.14*r**2 Print("Area of circle:", A) #file extension File=input("enter the file:") Extension=File.spilt(".") Print("Extension of file:",repr(Extension[-1]))
18.8
48
0.664894
4a262934201bb00c171ab64c91ae79223b4f5314
2,210
py
Python
training/misc.py
hedscan/stylegan2-ada
d6142988f6301cd7089833c4793e83a42ea03682
[ "BSD-Source-Code" ]
null
null
null
training/misc.py
hedscan/stylegan2-ada
d6142988f6301cd7089833c4793e83a42ea03682
[ "BSD-Source-Code" ]
null
null
null
training/misc.py
hedscan/stylegan2-ada
d6142988f6301cd7089833c4793e83a42ea03682
[ "BSD-Source-Code" ]
null
null
null
import glob import os import re from pathlib import Path def get_parent_dir(run_dir): out_dir = Path(run_dir).parent return out_dir def locate_latest_pkl(out_dir): all_pickle_names = sorted(glob.glob(os.path.join(out_dir, '0*', 'network-*.pkl'))) try: latest_pickle_name = all_pickle_names[-1] except IndexError: latest_pickle_name = None return latest_pickle_name def parse_kimg_from_network_name(network_pickle_name): if network_pickle_name is not None: resume_run_id = os.path.basename(os.path.dirname(network_pickle_name)) RE_KIMG = re.compile(r'network-snapshot-(\d+).pkl') try: kimg = int(RE_KIMG.match(os.path.basename(network_pickle_name)).group(1)) except AttributeError: kimg = 0.0 else: kimg = 0.0 return float(kimg) def locate_latest_log_file(out_dir): all_runs = sorted(glob.glob(os.path.join(out_dir, '0*'))) try: last_run = all_runs[-2] # last dir is the current run except IndexError: raise ValueError("Could not find dir for last run") try: latest_log_file = glob.glob(os.path.join(last_run, 'log.txt'))[0] except IndexError: raise ValueError("log.txt from last run not found") return latest_log_file def parse_resume_augment_val_from_log_file(logfile, kimg): # Open log file with open(logfile) as f: # read training tick summaries from log file into list ticklines = [line.rstrip('\n') for line in f if 'tick' in line] if not ticklines: raise ValueError( f"{os.path.basename(logfile)} does not contain training ticks" " did you specify the right out_dir?" ) # Create a dict of param: value pairs per tick ticks = [ {i.split(maxsplit=1)[0]: i.split(maxsplit=1)[1].strip() for i in splitline} # Regex splits on whitespace followed by char a-z for splitline in [re.split(r'\s(?=[a-z])', line) for line in ticklines]] # Get actual tick we are resuming from (not necessarily last) resume_tick = next(tick for tick in ticks if float(tick['kimg']) == kimg) return float(resume_tick['augment'])
32.985075
86
0.659729
4a26295bf7ff3eae5912aa9b90e5266f6ad03d39
805
py
Python
core/showlist.py
plonibarploni/DarkSpiritz
f4c63db82e0785dc7f4594dca44891a1bd359d4e
[ "MIT" ]
null
null
null
core/showlist.py
plonibarploni/DarkSpiritz
f4c63db82e0785dc7f4594dca44891a1bd359d4e
[ "MIT" ]
null
null
null
core/showlist.py
plonibarploni/DarkSpiritz
f4c63db82e0785dc7f4594dca44891a1bd359d4e
[ "MIT" ]
1
2019-02-01T14:37:05.000Z
2019-02-01T14:37:05.000Z
# -*- coding: utf-8 -*- import glob def showlist(): print(""" Categories: =========== """) for d in glob.iglob('*'): if "LICENSE" not in d: if "README.md" not in d: if "config" not in d: if "core" not in d: if "install" not in d: if "storage" not in d: if "CODE_OF_CONDUCT.md" not in d: if "modules" not in d: if "start.py" not in d: if "requirements.txt" not in d: print("""%s""" % (d.upper()))
38.333333
85
0.295652
4a262976f54eb54dbe27c6170cc784a8ab0beb9b
91,097
py
Python
tests/test_50_server.py
geops/pysaml2
b2335fc07d6feeaa9a05fd6f9c84f5137a48b040
[ "Apache-2.0" ]
null
null
null
tests/test_50_server.py
geops/pysaml2
b2335fc07d6feeaa9a05fd6f9c84f5137a48b040
[ "Apache-2.0" ]
null
null
null
tests/test_50_server.py
geops/pysaml2
b2335fc07d6feeaa9a05fd6f9c84f5137a48b040
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import base64 import copy import os from contextlib import closing from six.moves.urllib.parse import parse_qs import uuid from saml2.cert import OpenSSLWrapper from saml2.sigver import make_temp, DecryptError, EncryptError, CertificateError from saml2.assertion import Policy from saml2.authn_context import INTERNETPROTOCOLPASSWORD from saml2.saml import NameID, NAMEID_FORMAT_TRANSIENT from saml2.samlp import response_from_string from saml2.server import Server from saml2 import samlp from saml2 import saml from saml2 import client from saml2 import config from saml2 import extension_elements_to_elements from saml2 import s_utils from saml2 import sigver from saml2 import time_util from saml2.s_utils import OtherError from saml2.s_utils import do_attribute_statement from saml2.s_utils import factory from saml2.soap import make_soap_enveloped_saml_thingy from saml2 import BINDING_HTTP_POST from saml2 import BINDING_HTTP_REDIRECT from pytest import raises from pathutils import full_path import saml2.xmldsig as ds nid = NameID(name_qualifier="foo", format=NAMEID_FORMAT_TRANSIENT, text="123456") AUTHN = { "class_ref": INTERNETPROTOCOLPASSWORD, "authn_auth": "http://www.example.com/login" } def _eq(l1, l2): return set(l1) == set(l2) BASEDIR = os.path.abspath(os.path.dirname(__file__)) def get_ava(assertion): ava = {} for statement in assertion.attribute_statement: for attr in statement.attribute: value = [] for tmp_val in attr.attribute_value: value.append(tmp_val.text) key = attr.friendly_name if key is None or len(key) == 0: key = attr.text ava[key] = value return ava def generate_cert(): sn = uuid.uuid4().urn cert_info = { "cn": "localhost", "country_code": "se", "state": "ac", "city": "Umea", "organization": "ITS", "organization_unit": "DIRG" } osw = OpenSSLWrapper() ca_cert_str = osw.read_str_from_file( full_path("root_cert/localhost.ca.crt")) ca_key_str = osw.read_str_from_file( full_path("root_cert/localhost.ca.key")) req_cert_str, req_key_str = osw.create_certificate(cert_info, request=True, sn=sn, key_length=2048) cert_str = osw.create_cert_signed_certificate(ca_cert_str, ca_key_str, req_cert_str) return cert_str, req_key_str class TestServer1(): def setup_class(self): self.server = Server("idp_conf") conf = config.SPConfig() conf.load_file("server_conf") self.client = client.Saml2Client(conf) self.name_id = self.server.ident.transient_nameid( "urn:mace:example.com:saml:roland:sp", "id12") self.ava = {"givenName": ["Derek"], "sn": ["Jeter"], "mail": ["[email protected]"], "title": "The man"} def teardown_class(self): self.server.close() def verify_assertion(self, assertion): assert assertion assert assertion[0].attribute_statement ava = ava = get_ava(assertion[0]) assert ava ==\ {'mail': ['[email protected]'], 'givenName': ['Derek'], 'sn': ['Jeter'], 'title': ['The man']} def verify_encrypted_assertion(self, assertion, decr_text): self.verify_assertion(assertion) assert assertion[0].signature is None assert 'EncryptedAssertion><encas1:Assertion xmlns:encas0="http://www.w3.org/2001/XMLSchema-instance" ' \ 'xmlns:encas1="urn:oasis:names:tc:SAML:2.0:assertion"' in decr_text def verify_advice_assertion(self, resp, decr_text): assert resp.assertion[0].signature is None assert resp.assertion[0].advice.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements(resp.assertion[0].advice.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_encrypted_assertion(assertion, decr_text) def test_issuer(self): issuer = self.server._issuer() assert isinstance(issuer, saml.Issuer) assert _eq(issuer.keyswv(), ["text", "format"]) assert issuer.format == saml.NAMEID_FORMAT_ENTITY assert issuer.text == self.server.config.entityid def test_assertion(self): assertion = s_utils.assertion_factory( subject=factory( saml.Subject, text="_aaa", name_id=factory(saml.NameID, format=saml.NAMEID_FORMAT_TRANSIENT)), attribute_statement=do_attribute_statement( { ("", "", "sn"): ("Jeter", ""), ("", "", "givenName"): ("Derek", ""), } ), issuer=self.server._issuer(), ) assert _eq(assertion.keyswv(), ['attribute_statement', 'issuer', 'id', 'subject', 'issue_instant', 'version']) assert assertion.version == "2.0" assert assertion.issuer.text == "urn:mace:example.com:saml:roland:idp" # assert assertion.attribute_statement attribute_statement = assertion.attribute_statement assert len(attribute_statement.attribute) == 2 attr0 = attribute_statement.attribute[0] attr1 = attribute_statement.attribute[1] if attr0.attribute_value[0].text == "Derek": assert attr0.friendly_name == "givenName" assert attr1.friendly_name == "sn" assert attr1.attribute_value[0].text == "Jeter" else: assert attr1.friendly_name == "givenName" assert attr1.attribute_value[0].text == "Derek" assert attr0.friendly_name == "sn" assert attr0.attribute_value[0].text == "Jeter" subject = assertion.subject assert _eq(subject.keyswv(), ["text", "name_id"]) assert subject.text == "_aaa" assert subject.name_id.format == saml.NAMEID_FORMAT_TRANSIENT def test_response(self): response = sigver.response_factory( in_response_to="_012345", destination="https:#www.example.com", status=s_utils.success_status_factory(), assertion=s_utils.assertion_factory( subject=factory(saml.Subject, text="_aaa", name_id=saml.NAMEID_FORMAT_TRANSIENT), attribute_statement=do_attribute_statement( { ("", "", "sn"): ("Jeter", ""), ("", "", "givenName"): ("Derek", ""), } ), issuer=self.server._issuer(), ), issuer=self.server._issuer(), ) print(response.keyswv()) assert _eq(response.keyswv(), ['destination', 'assertion', 'status', 'in_response_to', 'issue_instant', 'version', 'issuer', 'id']) assert response.version == "2.0" assert response.issuer.text == "urn:mace:example.com:saml:roland:idp" assert response.destination == "https:#www.example.com" assert response.in_response_to == "_012345" # status = response.status print(status) assert status.status_code.value == samlp.STATUS_SUCCESS def test_parse_faulty_request(self): req_id, authn_request = self.client.create_authn_request( destination="http://www.example.com", id="id1") # should raise an error because faulty spentityid binding = BINDING_HTTP_REDIRECT htargs = self.client.apply_binding( binding, "%s" % authn_request, "http://www.example.com", "abcd") _dict = parse_qs(htargs["headers"][0][1].split('?')[1]) print(_dict) with raises(OtherError): self.server.parse_authn_request(_dict["SAMLRequest"][0], binding) def test_parse_faulty_request_to_err_status(self): req_id, authn_request = self.client.create_authn_request( destination="http://www.example.com") binding = BINDING_HTTP_REDIRECT htargs = self.client.apply_binding(binding, "%s" % authn_request, "http://www.example.com", "abcd") _dict = parse_qs(htargs["headers"][0][1].split('?')[1]) print(_dict) try: self.server.parse_authn_request(_dict["SAMLRequest"][0], binding) status = None except OtherError as oe: print(oe.args) status = s_utils.error_status_factory(oe) assert status print(status) assert _eq(status.keyswv(), ["status_code", "status_message"]) assert status.status_message.text == 'Not destined for me!' status_code = status.status_code assert _eq(status_code.keyswv(), ["status_code", "value"]) assert status_code.value == samlp.STATUS_RESPONDER assert status_code.status_code.value == samlp.STATUS_UNKNOWN_PRINCIPAL def test_parse_ok_request(self): req_id, authn_request = self.client.create_authn_request( message_id="id1", destination="http://localhost:8088/sso") print(authn_request) binding = BINDING_HTTP_REDIRECT htargs = self.client.apply_binding(binding, "%s" % authn_request, "http://www.example.com", "abcd") _dict = parse_qs(htargs["headers"][0][1].split('?')[1]) print(_dict) req = self.server.parse_authn_request(_dict["SAMLRequest"][0], binding) # returns a dictionary print(req) resp_args = self.server.response_args(req.message, [BINDING_HTTP_POST]) assert resp_args["destination"] == "http://lingon.catalogix.se:8087/" assert resp_args["in_response_to"] == "id1" name_id_policy = resp_args["name_id_policy"] assert _eq(name_id_policy.keyswv(), ["format"]) assert name_id_policy.format == saml.NAMEID_FORMAT_TRANSIENT assert resp_args[ "sp_entity_id"] == "urn:mace:example.com:saml:roland:sp" def test_sso_response_with_identity(self): name_id = self.server.ident.transient_nameid( "https://example.com/sp", "id12") resp = self.server.create_authn_response( { "eduPersonEntitlement": "Short stop", "sn": "Jeter", "givenName": "Derek", "mail": "[email protected]", "title": "The man" }, "id12", # in_response_to "http://localhost:8087/", # destination "https://example.com/sp", # sp_entity_id name_id=name_id, authn=AUTHN ) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'assertion', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer']) assert resp.destination == "http://localhost:8087/" assert resp.in_response_to == "id12" assert resp.status assert resp.status.status_code.value == samlp.STATUS_SUCCESS assert resp.assertion assertion = resp.assertion print(assertion) assert assertion.authn_statement assert assertion.conditions assert assertion.attribute_statement attribute_statement = assertion.attribute_statement print(attribute_statement) assert len(attribute_statement[0].attribute) == 4 # Pick out one attribute attr = None for attr in attribute_statement[0].attribute: if attr.friendly_name == "givenName": break assert len(attr.attribute_value) == 1 assert attr.name == "urn:mace:dir:attribute-def:givenName" assert attr.name_format == "urn:oasis:names:tc:SAML:2.0:attrname-format:basic" value = attr.attribute_value[0] assert value.text.strip() == "Derek" assert value.get_type() == "xs:string" assert assertion.subject assert assertion.subject.name_id assert assertion.subject.subject_confirmation confirmation = assertion.subject.subject_confirmation[0] print(confirmation.keyswv()) print(confirmation.subject_confirmation_data) assert confirmation.subject_confirmation_data.in_response_to == "id12" def test_sso_response_without_identity(self): resp = self.server.create_authn_response( {}, "id12", # in_response_to "http://localhost:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id userid="USER1", authn=AUTHN, release_policy=Policy(), best_effort=True ) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer', 'assertion']) assert resp.destination == "http://localhost:8087/" assert resp.in_response_to == "id12" assert resp.status assert resp.status.status_code.value == samlp.STATUS_SUCCESS assert resp.issuer.text == "urn:mace:example.com:saml:roland:idp" assert not resp.assertion.attribute_statement def test_sso_response_specific_instant(self): _authn = AUTHN.copy() _authn["authn_instant"] = 1234567890 resp = self.server.create_authn_response( {}, "id12", # in_response_to "http://localhost:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id userid="USER1", authn=_authn, best_effort=True ) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer', 'assertion']) authn_statement = resp.assertion.authn_statement[0] assert authn_statement.authn_instant == '2009-02-13T23:31:30Z' def test_sso_failure_response(self): exc = s_utils.MissingValue("eduPersonAffiliation missing") resp = self.server.create_error_response( "id12", "http://localhost:8087/", exc) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer']) assert resp.destination == "http://localhost:8087/" assert resp.in_response_to == "id12" assert resp.status print(resp.status) assert resp.status.status_code.value == samlp.STATUS_RESPONDER assert resp.status.status_code.status_code.value == \ samlp.STATUS_REQUEST_UNSUPPORTED assert resp.status.status_message.text == \ "eduPersonAffiliation missing" assert resp.issuer.text == "urn:mace:example.com:saml:roland:idp" assert not resp.assertion def test_authn_response_0(self): conf = config.SPConfig() conf.load_file("server_conf") self.client = client.Saml2Client(conf) ava = {"givenName": ["Derek"], "sn": ["Jeter"], "mail": ["[email protected]"], "title": "The man"} npolicy = samlp.NameIDPolicy(format=saml.NAMEID_FORMAT_TRANSIENT, allow_create="true") resp_str = "%s" % self.server.create_authn_response( ava, "id1", "http://local:8087/", "urn:mace:example.com:saml:roland:sp", npolicy, "[email protected]", authn=AUTHN) response = samlp.response_from_string(resp_str) print(response.keyswv()) assert _eq(response.keyswv(), ['status', 'destination', 'assertion', 'in_response_to', 'issue_instant', 'version', 'issuer', 'id']) print(response.assertion[0].keyswv()) assert len(response.assertion) == 1 assert _eq(response.assertion[0].keyswv(), ['attribute_statement', 'issue_instant', 'version', 'subject', 'conditions', 'id', 'issuer', 'authn_statement']) assertion = response.assertion[0] assert len(assertion.attribute_statement) == 1 astate = assertion.attribute_statement[0] print(astate) assert len(astate.attribute) == 4 def test_signed_response(self): name_id = self.server.ident.transient_nameid( "urn:mace:example.com:saml:roland:sp", "id12") ava = {"givenName": ["Derek"], "sn": ["Jeter"], "mail": ["[email protected]"], "title": "The man"} signed_resp = self.server.create_authn_response( ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=name_id, sign_assertion=True ) print(signed_resp) assert signed_resp sresponse = response_from_string(signed_resp) # It's the assertions that are signed not the response per se assert len(sresponse.assertion) == 1 assertion = sresponse.assertion[0] # Since the reponse is created dynamically I don't know the signature # value. Just that there should be one assert assertion.signature.signature_value.text != "" def test_signed_response_1(self): signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=sresponse.assertion[0].id, id_attr="") assert valid self.verify_assertion(sresponse.assertion) def test_signed_response_2(self): signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=False, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid assert sresponse.assertion[0].signature == None def test_signed_response_3(self): signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=True, ) sresponse = response_from_string(signed_resp) assert sresponse.signature == None valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=sresponse.assertion[0].id, id_attr="") assert valid self.verify_assertion(sresponse.assertion) def test_encrypted_signed_response_1(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature( signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid valid = self.server.sec.verify_signature( signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=sresponse.assertion[0].id, id_attr="") assert valid key_fd = make_temp(cert_key_str, decode=False) decr_text = self.server.sec.decrypt(signed_resp, key_fd.name) resp = samlp.response_from_string(decr_text) assert resp.assertion[0].advice.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements( resp.assertion[0].advice.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_assertion(assertion) #PEFIM never signs assertions. assert assertion[0].signature is None #valid = self.server.sec.verify_signature(decr_text, # self.server.config.cert_file, # node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', # node_id=assertion[0].id, # id_attr="") assert valid def test_encrypted_signed_response_2(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid decr_text_old = copy.deepcopy("%s" % signed_resp) with raises(DecryptError): decr_text = self.server.sec.decrypt( signed_resp, self.client.config.encryption_keypairs[0]["key_file"], ) decr_text = self.server.sec.decrypt(signed_resp, self.client.config.encryption_keypairs[1]["key_file"]) assert decr_text != decr_text_old resp = samlp.response_from_string(decr_text) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) assert resp.assertion[0].signature == None self.verify_assertion(resp.assertion) def test_encrypted_signed_response_3(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, encrypt_assertion=True, encrypt_assertion_self_contained=False, encrypt_cert_assertion=cert_str, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid key_fd = make_temp(cert_key_str, decode=False) decr_text = self.server.sec.decrypt(signed_resp, key_fd.name) resp = samlp.response_from_string(decr_text) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) valid = self.server.sec.verify_signature(decr_text, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=resp.assertion[0].id, id_attr="") assert valid self.verify_assertion(resp.assertion) assert 'xmlns:encas' not in decr_text def test_encrypted_signed_response_4(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid decr_text = self.server.sec.decrypt(signed_resp, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) valid = self.server.sec.verify_signature(decr_text, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=resp.assertion[0].id, id_attr="") assert valid key_fd = make_temp(cert_key_str, decode=False) decr_text = self.server.sec.decrypt(decr_text, key_fd.name) resp = samlp.response_from_string(decr_text) assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) assertion = \ extension_elements_to_elements(assertion[0].advice.encrypted_assertion[0].extension_elements,[saml, samlp]) self.verify_assertion(assertion) #PEFIM never signs assertion in advice assert assertion[0].signature is None #valid = self.server.sec.verify_signature(decr_text, # self.server.config.cert_file, # node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', # node_id=assertion[0].id, # id_attr="") assert valid def test_encrypted_response_1(self): cert_str_advice, cert_key_str_advice = generate_cert() _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str_advice, ) _resp = "%s" % _resp sresponse = response_from_string(_resp) assert sresponse.signature is None key_fd = make_temp(cert_key_str_advice, decode=False) decr_text = self.server.sec.decrypt(_resp, key_fd.name) resp = samlp.response_from_string(decr_text) self.verify_advice_assertion(resp, decr_text) def test_encrypted_response_2(self): cert_str_advice, cert_key_str_advice = generate_cert() _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str_advice, ) sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text_1 = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) key_fd = make_temp(cert_key_str_advice, decode=False) decr_text_2 = self.server.sec.decrypt(decr_text_1, key_fd.name) resp = samlp.response_from_string(decr_text_2) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_advice_assertion(resp, decr_text_2) def test_encrypted_response_3(self): cert_str_assertion, cert_key_str_assertion = generate_cert() _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, encrypt_cert_assertion=cert_str_assertion ) sresponse = response_from_string(_resp) assert sresponse.signature is None key_fd = make_temp(cert_key_str_assertion, decode=False) decr_text = self.server.sec.decrypt(_resp, key_fd.name) resp = samlp.response_from_string(decr_text) assert resp.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_encrypted_assertion(assertion, decr_text) def test_encrypted_response_4(self): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, ) sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text) assert resp.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_encrypted_assertion(assertion, decr_text) def test_encrypted_response_5(self): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True ) _resp = "%s" % _resp sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text) self.verify_advice_assertion(resp, decr_text) def test_encrypted_response_6(self): _server = Server("idp_conf_verify_cert") cert_str_advice, cert_key_str_advice = generate_cert() cert_str_assertion, cert_key_str_assertion = generate_cert() _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str_advice, encrypt_cert_assertion=cert_str_assertion ) sresponse = response_from_string(_resp) assert sresponse.signature is None key_fd1 = make_temp(cert_key_str_assertion, decode=False) decr_text_1 = _server.sec.decrypt(_resp, key_fd1.name) key_fd2 = make_temp(cert_key_str_advice, decode=False) decr_text_2 = _server.sec.decrypt(decr_text_1, key_fd2.name) resp = samlp.response_from_string(decr_text_2) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_advice_assertion(resp, decr_text_2) def test_encrypted_response_7(self): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True ) sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text_1 = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) decr_text_2 = self.server.sec.decrypt(decr_text_1, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text_2) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_advice_assertion(resp, decr_text_2) def test_encrypted_response_8(self): with raises(EncryptError): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", encrypt_cert_assertion="whatever" ) with raises(EncryptError): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", ) with raises(EncryptError): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, encrypt_cert_assertion="whatever" ) _server = Server("idp_conf_verify_cert") with raises(CertificateError): _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", encrypt_cert_assertion="whatever" ) with raises(CertificateError): _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", ) with raises(CertificateError): _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, encrypt_cert_assertion="whatever" ) def test_encrypted_response_9(self): _server = Server("idp_conf_sp_no_encrypt") _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, ) self.verify_assertion(_resp.assertion.advice.assertion) _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True ) self.verify_assertion(_resp.assertion.advice.assertion) _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, ) self.verify_assertion([_resp.assertion]) def test_slo_http_post(self): soon = time_util.in_a_while(days=1) sinfo = { "name_id": nid, "issuer": "urn:mace:example.com:saml:roland:idp", "not_on_or_after": soon, "user": { "givenName": "Leo", "sn": "Laport", } } self.client.users.add_information_about_person(sinfo) req_id, logout_request = self.client.create_logout_request( destination="http://localhost:8088/slop", name_id=nid, issuer_entity_id="urn:mace:example.com:saml:roland:idp", reason="I'm tired of this") intermed = base64.b64encode(str(logout_request).encode('utf-8')) #saml_soap = make_soap_enveloped_saml_thingy(logout_request) request = self.server.parse_logout_request(intermed, BINDING_HTTP_POST) assert request def test_slo_soap(self): soon = time_util.in_a_while(days=1) sinfo = { "name_id": nid, "issuer": "urn:mace:example.com:saml:roland:idp", "not_on_or_after": soon, "user": { "givenName": "Leo", "sn": "Laport", } } sp = client.Saml2Client(config_file="server_conf") sp.users.add_information_about_person(sinfo) req_id, logout_request = sp.create_logout_request( name_id=nid, destination="http://localhost:8088/slo", issuer_entity_id="urn:mace:example.com:saml:roland:idp", reason="I'm tired of this") #_ = s_utils.deflate_and_base64_encode("%s" % (logout_request,)) saml_soap = make_soap_enveloped_saml_thingy(logout_request) self.server.ident.close() with closing(Server("idp_soap_conf")) as idp: request = idp.parse_logout_request(saml_soap) idp.ident.close() assert request # ------------------------------------------------------------------------ class TestServer1NonAsciiAva(): def setup_class(self): self.server = Server("idp_conf") conf = config.SPConfig() conf.load_file("server_conf") self.client = client.Saml2Client(conf) self.name_id = self.server.ident.transient_nameid( "urn:mace:example.com:saml:roland:sp", "id12") self.ava = {"givenName": ["Dave"], "sn": ["Concepción"], "mail": ["[email protected]"], "title": "#13"} def teardown_class(self): self.server.close() def verify_assertion(self, assertion): assert assertion assert assertion[0].attribute_statement ava = get_ava(assertion[0]) assert ava == \ {"givenName": ["Dave"], "sn": [u"Concepción"], "mail": ["[email protected]"], "title": ["#13"]} def verify_encrypted_assertion(self, assertion, decr_text): self.verify_assertion(assertion) assert assertion[0].signature is None assert 'EncryptedAssertion><encas1:Assertion xmlns:encas0="http://www.w3.org/2001/XMLSchema-instance" ' \ 'xmlns:encas1="urn:oasis:names:tc:SAML:2.0:assertion"' in decr_text def verify_advice_assertion(self, resp, decr_text): assert resp.assertion[0].signature is None assert resp.assertion[0].advice.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements(resp.assertion[0].advice.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_encrypted_assertion(assertion, decr_text) def test_issuer(self): issuer = self.server._issuer() assert isinstance(issuer, saml.Issuer) assert _eq(issuer.keyswv(), ["text", "format"]) assert issuer.format == saml.NAMEID_FORMAT_ENTITY assert issuer.text == self.server.config.entityid def test_assertion(self): assertion = s_utils.assertion_factory( subject=factory( saml.Subject, text="_aaa", name_id=factory(saml.NameID, format=saml.NAMEID_FORMAT_TRANSIENT)), attribute_statement=do_attribute_statement( { ("", "", "sn"): ("Jeter", ""), ("", "", "givenName"): ("Derek", ""), } ), issuer=self.server._issuer(), ) assert _eq(assertion.keyswv(), ['attribute_statement', 'issuer', 'id', 'subject', 'issue_instant', 'version']) assert assertion.version == "2.0" assert assertion.issuer.text == "urn:mace:example.com:saml:roland:idp" # assert assertion.attribute_statement attribute_statement = assertion.attribute_statement assert len(attribute_statement.attribute) == 2 attr0 = attribute_statement.attribute[0] attr1 = attribute_statement.attribute[1] if attr0.attribute_value[0].text == "Derek": assert attr0.friendly_name == "givenName" assert attr1.friendly_name == "sn" assert attr1.attribute_value[0].text == "Jeter" else: assert attr1.friendly_name == "givenName" assert attr1.attribute_value[0].text == "Derek" assert attr0.friendly_name == "sn" assert attr0.attribute_value[0].text == "Jeter" # subject = assertion.subject assert _eq(subject.keyswv(), ["text", "name_id"]) assert subject.text == "_aaa" assert subject.name_id.format == saml.NAMEID_FORMAT_TRANSIENT def test_response(self): response = sigver.response_factory( in_response_to="_012345", destination="https:#www.example.com", status=s_utils.success_status_factory(), assertion=s_utils.assertion_factory( subject=factory(saml.Subject, text="_aaa", name_id=saml.NAMEID_FORMAT_TRANSIENT), attribute_statement=do_attribute_statement( { ("", "", "sn"): ("Jeter", ""), ("", "", "givenName"): ("Derek", ""), } ), issuer=self.server._issuer(), ), issuer=self.server._issuer(), ) print(response.keyswv()) assert _eq(response.keyswv(), ['destination', 'assertion', 'status', 'in_response_to', 'issue_instant', 'version', 'issuer', 'id']) assert response.version == "2.0" assert response.issuer.text == "urn:mace:example.com:saml:roland:idp" assert response.destination == "https:#www.example.com" assert response.in_response_to == "_012345" # status = response.status print(status) assert status.status_code.value == samlp.STATUS_SUCCESS def test_parse_faulty_request(self): req_id, authn_request = self.client.create_authn_request( destination="http://www.example.com", id="id1") # should raise an error because faulty spentityid binding = BINDING_HTTP_REDIRECT htargs = self.client.apply_binding( binding, "%s" % authn_request, "http://www.example.com", "abcd") _dict = parse_qs(htargs["headers"][0][1].split('?')[1]) print(_dict) with raises(OtherError): self.server.parse_authn_request(_dict["SAMLRequest"][0], binding) def test_parse_faulty_request_to_err_status(self): req_id, authn_request = self.client.create_authn_request( destination="http://www.example.com") binding = BINDING_HTTP_REDIRECT htargs = self.client.apply_binding(binding, "%s" % authn_request, "http://www.example.com", "abcd") _dict = parse_qs(htargs["headers"][0][1].split('?')[1]) print(_dict) try: self.server.parse_authn_request(_dict["SAMLRequest"][0], binding) status = None except OtherError as oe: print(oe.args) status = s_utils.error_status_factory(oe) assert status print(status) assert _eq(status.keyswv(), ["status_code", "status_message"]) assert status.status_message.text == 'Not destined for me!' status_code = status.status_code assert _eq(status_code.keyswv(), ["status_code", "value"]) assert status_code.value == samlp.STATUS_RESPONDER assert status_code.status_code.value == samlp.STATUS_UNKNOWN_PRINCIPAL def test_parse_ok_request(self): req_id, authn_request = self.client.create_authn_request( message_id="id1", destination="http://localhost:8088/sso") print(authn_request) binding = BINDING_HTTP_REDIRECT htargs = self.client.apply_binding(binding, "%s" % authn_request, "http://www.example.com", "abcd") _dict = parse_qs(htargs["headers"][0][1].split('?')[1]) print(_dict) req = self.server.parse_authn_request(_dict["SAMLRequest"][0], binding) # returns a dictionary print(req) resp_args = self.server.response_args(req.message, [BINDING_HTTP_POST]) assert resp_args["destination"] == "http://lingon.catalogix.se:8087/" assert resp_args["in_response_to"] == "id1" name_id_policy = resp_args["name_id_policy"] assert _eq(name_id_policy.keyswv(), ["format"]) assert name_id_policy.format == saml.NAMEID_FORMAT_TRANSIENT assert resp_args[ "sp_entity_id"] == "urn:mace:example.com:saml:roland:sp" def test_sso_response_with_identity(self): name_id = self.server.ident.transient_nameid( "https://example.com/sp", "id12") resp = self.server.create_authn_response( { "eduPersonEntitlement": "Short stop", "sn": "Jeter", "givenName": "Derek", "mail": "[email protected]", "title": "The man" }, "id12", # in_response_to "http://localhost:8087/", # destination "https://example.com/sp", # sp_entity_id name_id=name_id, authn=AUTHN ) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'assertion', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer']) assert resp.destination == "http://localhost:8087/" assert resp.in_response_to == "id12" assert resp.status assert resp.status.status_code.value == samlp.STATUS_SUCCESS assert resp.assertion assertion = resp.assertion print(assertion) assert assertion.authn_statement assert assertion.conditions assert assertion.attribute_statement attribute_statement = assertion.attribute_statement print(attribute_statement) assert len(attribute_statement[0].attribute) == 4 # Pick out one attribute attr = None for attr in attribute_statement[0].attribute: if attr.friendly_name == "givenName": break assert len(attr.attribute_value) == 1 assert attr.name == "urn:mace:dir:attribute-def:givenName" assert attr.name_format == "urn:oasis:names:tc:SAML:2.0:attrname-format:basic" value = attr.attribute_value[0] assert value.text.strip() == "Derek" assert value.get_type() == "xs:string" assert assertion.subject assert assertion.subject.name_id assert assertion.subject.subject_confirmation confirmation = assertion.subject.subject_confirmation[0] print(confirmation.keyswv()) print(confirmation.subject_confirmation_data) assert confirmation.subject_confirmation_data.in_response_to == "id12" def test_sso_response_without_identity(self): resp = self.server.create_authn_response( {}, "id12", # in_response_to "http://localhost:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id userid="USER1", authn=AUTHN, release_policy=Policy(), best_effort=True ) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer', 'assertion']) assert resp.destination == "http://localhost:8087/" assert resp.in_response_to == "id12" assert resp.status assert resp.status.status_code.value == samlp.STATUS_SUCCESS assert resp.issuer.text == "urn:mace:example.com:saml:roland:idp" assert not resp.assertion.attribute_statement def test_sso_response_specific_instant(self): _authn = AUTHN.copy() _authn["authn_instant"] = 1234567890 resp = self.server.create_authn_response( {}, "id12", # in_response_to "http://localhost:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id userid="USER1", authn=_authn, best_effort=True ) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer', 'assertion']) authn_statement = resp.assertion.authn_statement[0] assert authn_statement.authn_instant == '2009-02-13T23:31:30Z' def test_sso_failure_response(self): exc = s_utils.MissingValue("eduPersonAffiliation missing") resp = self.server.create_error_response( "id12", "http://localhost:8087/", exc) print(resp.keyswv()) assert _eq(resp.keyswv(), ['status', 'destination', 'in_response_to', 'issue_instant', 'version', 'id', 'issuer']) assert resp.destination == "http://localhost:8087/" assert resp.in_response_to == "id12" assert resp.status print(resp.status) assert resp.status.status_code.value == samlp.STATUS_RESPONDER assert resp.status.status_code.status_code.value == \ samlp.STATUS_REQUEST_UNSUPPORTED assert resp.status.status_message.text == \ "eduPersonAffiliation missing" assert resp.issuer.text == "urn:mace:example.com:saml:roland:idp" assert not resp.assertion def test_authn_response_0(self): conf = config.SPConfig() conf.load_file("server_conf") self.client = client.Saml2Client(conf) ava = {"givenName": ["Derek"], "sn": ["Jeter"], "mail": ["[email protected]"], "title": "The man"} npolicy = samlp.NameIDPolicy(format=saml.NAMEID_FORMAT_TRANSIENT, allow_create="true") resp_str = "%s" % self.server.create_authn_response( ava, "id1", "http://local:8087/", "urn:mace:example.com:saml:roland:sp", npolicy, "[email protected]", authn=AUTHN) response = samlp.response_from_string(resp_str) print(response.keyswv()) assert _eq(response.keyswv(), ['status', 'destination', 'assertion', 'in_response_to', 'issue_instant', 'version', 'issuer', 'id']) print(response.assertion[0].keyswv()) assert len(response.assertion) == 1 assert _eq(response.assertion[0].keyswv(), ['attribute_statement', 'issue_instant', 'version', 'subject', 'conditions', 'id', 'issuer', 'authn_statement']) assertion = response.assertion[0] assert len(assertion.attribute_statement) == 1 astate = assertion.attribute_statement[0] print(astate) assert len(astate.attribute) == 4 def test_signed_response(self): name_id = self.server.ident.transient_nameid( "urn:mace:example.com:saml:roland:sp", "id12") ava = {"givenName": ["Derek"], "sn": ["Jeter"], "mail": ["[email protected]"], "title": "The man"} signed_resp = self.server.create_authn_response( ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=name_id, sign_assertion=True ) print(signed_resp) assert signed_resp sresponse = response_from_string(signed_resp) # It's the assertions that are signed not the response per se assert len(sresponse.assertion) == 1 assertion = sresponse.assertion[0] # Since the reponse is created dynamically I don't know the signature # value. Just that there should be one assert assertion.signature.signature_value.text != "" def test_signed_response_1(self): signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=sresponse.assertion[0].id, id_attr="") assert valid self.verify_assertion(sresponse.assertion) def test_signed_response_2(self): signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=False, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid assert sresponse.assertion[0].signature == None def test_signed_response_3(self): signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=True, ) sresponse = response_from_string(signed_resp) assert sresponse.signature == None valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=sresponse.assertion[0].id, id_attr="") assert valid self.verify_assertion(sresponse.assertion) def test_encrypted_signed_response_1(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature( signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid valid = self.server.sec.verify_signature( signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=sresponse.assertion[0].id, id_attr="") assert valid key_fd = make_temp(cert_key_str, decode=False) decr_text = self.server.sec.decrypt(signed_resp, key_fd.name) resp = samlp.response_from_string(decr_text) assert resp.assertion[0].advice.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements( resp.assertion[0].advice.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_assertion(assertion) #PEFIM never signs assertions. assert assertion[0].signature is None #valid = self.server.sec.verify_signature(decr_text, # self.server.config.cert_file, # node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', # node_id=assertion[0].id, # id_attr="") assert valid def test_encrypted_signed_response_2(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid decr_text_old = copy.deepcopy("%s" % signed_resp) with raises(DecryptError): decr_text = self.server.sec.decrypt( signed_resp, self.client.config.encryption_keypairs[0]["key_file"], ) decr_text = self.server.sec.decrypt(signed_resp, self.client.config.encryption_keypairs[1]["key_file"]) assert decr_text != decr_text_old resp = samlp.response_from_string(decr_text) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) assert resp.assertion[0].signature == None self.verify_assertion(resp.assertion) def test_encrypted_signed_response_3(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, encrypt_assertion=True, encrypt_assertion_self_contained=False, encrypt_cert_assertion=cert_str, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid key_fd = make_temp(cert_key_str, decode=False) decr_text = self.server.sec.decrypt(signed_resp, key_fd.name) resp = samlp.response_from_string(decr_text) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) valid = self.server.sec.verify_signature(decr_text, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=resp.assertion[0].id, id_attr="") assert valid self.verify_assertion(resp.assertion) assert 'xmlns:encas' not in decr_text def test_encrypted_signed_response_4(self): cert_str, cert_key_str = generate_cert() signed_resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=True, sign_assertion=True, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str, ) sresponse = response_from_string(signed_resp) valid = self.server.sec.verify_signature(signed_resp, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:protocol:Response', node_id=sresponse.id, id_attr="") assert valid decr_text = self.server.sec.decrypt(signed_resp, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) valid = self.server.sec.verify_signature(decr_text, self.server.config.cert_file, node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', node_id=resp.assertion[0].id, id_attr="") assert valid key_fd = make_temp(cert_key_str, decode=False) decr_text = self.server.sec.decrypt(decr_text, key_fd.name) resp = samlp.response_from_string(decr_text) assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) assertion = \ extension_elements_to_elements(assertion[0].advice.encrypted_assertion[0].extension_elements,[saml, samlp]) self.verify_assertion(assertion) #PEFIM never signs assertion in advice assert assertion[0].signature is None #valid = self.server.sec.verify_signature(decr_text, # self.server.config.cert_file, # node_name='urn:oasis:names:tc:SAML:2.0:assertion:Assertion', # node_id=assertion[0].id, # id_attr="") assert valid def test_encrypted_response_1(self): cert_str_advice, cert_key_str_advice = generate_cert() _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str_advice, ) _resp = "%s" % _resp sresponse = response_from_string(_resp) assert sresponse.signature is None key_fd = make_temp(cert_key_str_advice, decode=False) decr_text = self.server.sec.decrypt(_resp, key_fd.name) resp = samlp.response_from_string(decr_text) self.verify_advice_assertion(resp, decr_text) def test_encrypted_response_2(self): cert_str_advice, cert_key_str_advice = generate_cert() _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str_advice, ) sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text_1 = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) key_fd = make_temp(cert_key_str_advice, decode=False) decr_text_2 = self.server.sec.decrypt(decr_text_1, key_fd.name) resp = samlp.response_from_string(decr_text_2) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_advice_assertion(resp, decr_text_2) def test_encrypted_response_3(self): cert_str_assertion, cert_key_str_assertion = generate_cert() _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, encrypt_cert_assertion=cert_str_assertion ) sresponse = response_from_string(_resp) assert sresponse.signature is None key_fd = make_temp(cert_key_str_assertion, decode=False) decr_text = self.server.sec.decrypt(_resp, key_fd.name) resp = samlp.response_from_string(decr_text) assert resp.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_encrypted_assertion(assertion, decr_text) def test_encrypted_response_4(self): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, ) sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text) assert resp.encrypted_assertion[0].extension_elements assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_encrypted_assertion(assertion, decr_text) def test_encrypted_response_5(self): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True ) _resp = "%s" % _resp sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text) self.verify_advice_assertion(resp, decr_text) def test_encrypted_response_6(self): _server = Server("idp_conf_verify_cert") cert_str_advice, cert_key_str_advice = generate_cert() cert_str_assertion, cert_key_str_assertion = generate_cert() _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice=cert_str_advice, encrypt_cert_assertion=cert_str_assertion ) sresponse = response_from_string(_resp) assert sresponse.signature is None key_fd1 = make_temp(cert_key_str_assertion, decode=False) decr_text_1 = _server.sec.decrypt(_resp, key_fd1.name) key_fd2 = make_temp(cert_key_str_advice, decode=False) decr_text_2 = _server.sec.decrypt(decr_text_1, key_fd2.name) resp = samlp.response_from_string(decr_text_2) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_advice_assertion(resp, decr_text_2) def test_encrypted_response_7(self): _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True ) sresponse = response_from_string(_resp) assert sresponse.signature is None decr_text_1 = self.server.sec.decrypt(_resp, self.client.config.encryption_keypairs[1]["key_file"]) decr_text_2 = self.server.sec.decrypt(decr_text_1, self.client.config.encryption_keypairs[1]["key_file"]) resp = samlp.response_from_string(decr_text_2) resp.assertion = extension_elements_to_elements(resp.encrypted_assertion[0].extension_elements, [saml, samlp]) self.verify_advice_assertion(resp, decr_text_2) def test_encrypted_response_8(self): try: _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", encrypt_cert_assertion="whatever" ) assert False, "Must throw an exception" except EncryptError as ex: pass except Exception as ex: assert False, "Wrong exception!" try: _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", ) assert False, "Must throw an exception" except EncryptError as ex: pass except Exception as ex: assert False, "Wrong exception!" try: _resp = self.server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, encrypt_cert_assertion="whatever" ) assert False, "Must throw an exception" except EncryptError as ex: pass except Exception as ex: assert False, "Wrong exception!" _server = Server("idp_conf_verify_cert") try: _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", encrypt_cert_assertion="whatever" ) assert False, "Must throw an exception" except CertificateError as ex: pass except Exception as ex: assert False, "Wrong exception!" try: _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True, encrypt_cert_advice="whatever", ) assert False, "Must throw an exception" except CertificateError as ex: pass except Exception as ex: assert False, "Wrong exception!" try: _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, encrypt_cert_assertion="whatever" ) assert False, "Must throw an exception" except CertificateError as ex: pass except Exception as ex: assert False, "Wrong exception!" def test_encrypted_response_9(self): _server = Server("idp_conf_sp_no_encrypt") _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, pefim=True, ) self.verify_assertion(_resp.assertion.advice.assertion) _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=False, encrypt_assertion_self_contained=True, pefim=True ) self.verify_assertion(_resp.assertion.advice.assertion) _resp = _server.create_authn_response( self.ava, "id12", # in_response_to "http://lingon.catalogix.se:8087/", # consumer_url "urn:mace:example.com:saml:roland:sp", # sp_entity_id name_id=self.name_id, sign_response=False, sign_assertion=False, encrypt_assertion=True, encrypt_assertion_self_contained=True, encrypted_advice_attributes=False, ) self.verify_assertion([_resp.assertion]) def test_slo_http_post(self): soon = time_util.in_a_while(days=1) sinfo = { "name_id": nid, "issuer": "urn:mace:example.com:saml:roland:idp", "not_on_or_after": soon, "user": { "givenName": "Leo", "sn": "Laport", } } self.client.users.add_information_about_person(sinfo) req_id, logout_request = self.client.create_logout_request( destination="http://localhost:8088/slop", name_id=nid, issuer_entity_id="urn:mace:example.com:saml:roland:idp", reason="I'm tired of this") intermed = base64.b64encode(str(logout_request).encode('utf-8')) #saml_soap = make_soap_enveloped_saml_thingy(logout_request) request = self.server.parse_logout_request(intermed, BINDING_HTTP_POST) assert request def test_slo_soap(self): soon = time_util.in_a_while(days=1) sinfo = { "name_id": nid, "issuer": "urn:mace:example.com:saml:roland:idp", "not_on_or_after": soon, "user": { "givenName": "Leo", "sn": "Laport", } } sp = client.Saml2Client(config_file="server_conf") sp.users.add_information_about_person(sinfo) req_id, logout_request = sp.create_logout_request( name_id=nid, destination="http://localhost:8088/slo", issuer_entity_id="urn:mace:example.com:saml:roland:idp", reason="I'm tired of this") #_ = s_utils.deflate_and_base64_encode("%s" % (logout_request,)) saml_soap = make_soap_enveloped_saml_thingy(logout_request) self.server.ident.close() with closing(Server("idp_soap_conf")) as idp: request = idp.parse_logout_request(saml_soap) idp.ident.close() assert request # ------------------------------------------------------------------------ IDENTITY = {"eduPersonAffiliation": ["staff", "member"], "sn": ["Jeter"], "givenName": ["Derek"], "mail": ["[email protected]"], "title": "The man"} class TestServer2(): def setup_class(self): self.server = Server("restrictive_idp_conf") def teardown_class(self): self.server.close() def test_do_attribute_reponse(self): aa_policy = self.server.config.getattr("policy", "idp") print(aa_policy.__dict__) response = self.server.create_attribute_response( IDENTITY.copy(), "aaa", "http://example.com/sp/", "http://www.example.com/roland/sp") assert response is not None assert response.destination == "http://example.com/sp/" assert response.in_response_to == "aaa" assert response.version == "2.0" assert response.issuer.text == "urn:mace:example.com:saml:roland:idpr" assert response.status.status_code.value == samlp.STATUS_SUCCESS assert response.assertion assertion = response.assertion assert assertion.version == "2.0" subject = assertion.subject #assert subject.name_id.format == saml.NAMEID_FORMAT_TRANSIENT assert subject.subject_confirmation subject_conf = subject.subject_confirmation[0] assert subject_conf.subject_confirmation_data.in_response_to == "aaa" def _logout_request(conf_file): conf = config.SPConfig() conf.load_file(conf_file) sp = client.Saml2Client(conf) soon = time_util.in_a_while(days=1) sinfo = { "name_id": nid, "issuer": "urn:mace:example.com:saml:roland:idp", "not_on_or_after": soon, "user": { "givenName": "Leo", "sn": "Laport", } } sp.users.add_information_about_person(sinfo) return sp.create_logout_request( name_id=nid, destination="http://localhost:8088/slo", issuer_entity_id="urn:mace:example.com:saml:roland:idp", reason="I'm tired of this") class TestServerLogout(): def test_1(self): with closing(Server("idp_slo_redirect_conf")) as server: req_id, request = _logout_request("sp_slo_redirect_conf") print(request) bindings = [BINDING_HTTP_REDIRECT] response = server.create_logout_response(request, bindings) binding, destination = server.pick_binding("single_logout_service", bindings, "spsso", request) http_args = server.apply_binding(binding, "%s" % response, destination, "relay_state", response=True) assert len(http_args) == 4 assert http_args["headers"][0][0] == "Location" assert http_args["data"] == [] if __name__ == "__main__": ts = TestServer1() ts.setup_class() ts.test_encrypted_signed_response_1()
39.03042
120
0.581446
4a2629daf63d7e67302e15bfa60687ea669c14f6
23,223
py
Python
pandas/core/reshape/concat.py
mavismonica/pandas
dbdc55c9d59f25589d58cc60247af193f06c3c66
[ "BSD-3-Clause" ]
2
2021-06-11T12:31:28.000Z
2021-08-17T10:56:52.000Z
pandas/core/reshape/concat.py
mavismonica/pandas
dbdc55c9d59f25589d58cc60247af193f06c3c66
[ "BSD-3-Clause" ]
null
null
null
pandas/core/reshape/concat.py
mavismonica/pandas
dbdc55c9d59f25589d58cc60247af193f06c3c66
[ "BSD-3-Clause" ]
null
null
null
""" Concat routines. """ from collections import abc from typing import ( TYPE_CHECKING, Iterable, List, Mapping, Optional, Type, Union, cast, overload, ) import numpy as np from pandas._typing import FrameOrSeriesUnion, Label from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos from pandas.core.arrays.categorical import ( factorize_from_iterable, factorize_from_iterables, ) import pandas.core.common as com from pandas.core.indexes.api import ( Index, MultiIndex, all_indexes_same, ensure_index, get_objs_combined_axis, get_unanimous_names, ) import pandas.core.indexes.base as ibase from pandas.core.internals import concatenate_block_managers if TYPE_CHECKING: from pandas import DataFrame, Series from pandas.core.generic import NDFrame # --------------------------------------------------------------------- # Concatenate DataFrame objects @overload def concat( objs: Union[Iterable["DataFrame"], Mapping[Label, "DataFrame"]], axis=0, join: str = "outer", ignore_index: bool = False, keys=None, levels=None, names=None, verify_integrity: bool = False, sort: bool = False, copy: bool = True, ) -> "DataFrame": ... @overload def concat( objs: Union[Iterable["NDFrame"], Mapping[Label, "NDFrame"]], axis=0, join: str = "outer", ignore_index: bool = False, keys=None, levels=None, names=None, verify_integrity: bool = False, sort: bool = False, copy: bool = True, ) -> FrameOrSeriesUnion: ... def concat( objs: Union[Iterable["NDFrame"], Mapping[Label, "NDFrame"]], axis=0, join="outer", ignore_index: bool = False, keys=None, levels=None, names=None, verify_integrity: bool = False, sort: bool = False, copy: bool = True, ) -> FrameOrSeriesUnion: """ Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number. Parameters ---------- objs : a sequence or mapping of Series or DataFrame objects If a mapping is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised. axis : {0/'index', 1/'columns'}, default 0 The axis to concatenate along. join : {'inner', 'outer'}, default 'outer' How to handle indexes on other axis (or axes). ignore_index : bool, default False If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. keys : sequence, default None If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level. levels : list of sequences, default None Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys. names : list, default None Names for the levels in the resulting hierarchical index. verify_integrity : bool, default False Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation. sort : bool, default False Sort non-concatenation axis if it is not already aligned when `join` is 'outer'. This has no effect when ``join='inner'``, which already preserves the order of the non-concatenation axis. .. versionchanged:: 1.0.0 Changed to not sort by default. copy : bool, default True If False, do not copy data unnecessarily. Returns ------- object, type of objs When concatenating all ``Series`` along the index (axis=0), a ``Series`` is returned. When ``objs`` contains at least one ``DataFrame``, a ``DataFrame`` is returned. When concatenating along the columns (axis=1), a ``DataFrame`` is returned. See Also -------- Series.append : Concatenate Series. DataFrame.append : Concatenate DataFrames. DataFrame.join : Join DataFrames using indexes. DataFrame.merge : Merge DataFrames by indexes or columns. Notes ----- The keys, levels, and names arguments are all optional. A walkthrough of how this method fits in with other tools for combining pandas objects can be found `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html>`__. Examples -------- Combine two ``Series``. >>> s1 = pd.Series(['a', 'b']) >>> s2 = pd.Series(['c', 'd']) >>> pd.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object Clear the existing index and reset it in the result by setting the ``ignore_index`` option to ``True``. >>> pd.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object Add a hierarchical index at the outermost level of the data with the ``keys`` option. >>> pd.concat([s1, s2], keys=['s1', 's2']) s1 0 a 1 b s2 0 c 1 d dtype: object Label the index keys you create with the ``names`` option. >>> pd.concat([s1, s2], keys=['s1', 's2'], ... names=['Series name', 'Row ID']) Series name Row ID s1 0 a 1 b s2 0 c 1 d dtype: object Combine two ``DataFrame`` objects with identical columns. >>> df1 = pd.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 >>> df2 = pd.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 >>> pd.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` objects with overlapping columns and return everything. Columns outside the intersection will be filled with ``NaN`` values. >>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog >>> pd.concat([df1, df3], sort=False) letter number animal 0 a 1 NaN 1 b 2 NaN 0 c 3 cat 1 d 4 dog Combine ``DataFrame`` objects with overlapping columns and return only those that are shared by passing ``inner`` to the ``join`` keyword argument. >>> pd.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` objects horizontally along the x axis by passing in ``axis=1``. >>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) >>> pd.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george Prevent the result from including duplicate index values with the ``verify_integrity`` option. >>> df5 = pd.DataFrame([1], index=['a']) >>> df5 0 a 1 >>> df6 = pd.DataFrame([2], index=['a']) >>> df6 0 a 2 >>> pd.concat([df5, df6], verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: ['a'] """ op = _Concatenator( objs, axis=axis, ignore_index=ignore_index, join=join, keys=keys, levels=levels, names=names, verify_integrity=verify_integrity, copy=copy, sort=sort, ) return op.get_result() class _Concatenator: """ Orchestrates a concatenation operation for BlockManagers """ def __init__( self, objs: Union[Iterable["NDFrame"], Mapping[Label, "NDFrame"]], axis=0, join: str = "outer", keys=None, levels=None, names=None, ignore_index: bool = False, verify_integrity: bool = False, copy: bool = True, sort=False, ): if isinstance(objs, (ABCSeries, ABCDataFrame, str)): raise TypeError( "first argument must be an iterable of pandas " f'objects, you passed an object of type "{type(objs).__name__}"' ) if join == "outer": self.intersect = False elif join == "inner": self.intersect = True else: # pragma: no cover raise ValueError( "Only can inner (intersect) or outer (union) join the other axis" ) if isinstance(objs, abc.Mapping): if keys is None: keys = list(objs.keys()) objs = [objs[k] for k in keys] else: objs = list(objs) if len(objs) == 0: raise ValueError("No objects to concatenate") if keys is None: objs = list(com.not_none(*objs)) else: # #1649 clean_keys = [] clean_objs = [] for k, v in zip(keys, objs): if v is None: continue clean_keys.append(k) clean_objs.append(v) objs = clean_objs name = getattr(keys, "name", None) keys = Index(clean_keys, name=name) if len(objs) == 0: raise ValueError("All objects passed were None") # consolidate data & figure out what our result ndim is going to be ndims = set() for obj in objs: if not isinstance(obj, (ABCSeries, ABCDataFrame)): msg = ( f"cannot concatenate object of type '{type(obj)}'; " "only Series and DataFrame objs are valid" ) raise TypeError(msg) # consolidate obj._consolidate_inplace() ndims.add(obj.ndim) # get the sample # want the highest ndim that we have, and must be non-empty # unless all objs are empty sample: Optional["NDFrame"] = None if len(ndims) > 1: max_ndim = max(ndims) for obj in objs: if obj.ndim == max_ndim and np.sum(obj.shape): sample = obj break else: # filter out the empties if we have not multi-index possibilities # note to keep empty Series as it affect to result columns / name non_empties = [ obj for obj in objs if sum(obj.shape) > 0 or isinstance(obj, ABCSeries) ] if len(non_empties) and ( keys is None and names is None and levels is None and not self.intersect ): objs = non_empties sample = objs[0] if sample is None: sample = objs[0] self.objs = objs # Standardize axis parameter to int if isinstance(sample, ABCSeries): axis = sample._constructor_expanddim._get_axis_number(axis) else: axis = sample._get_axis_number(axis) # Need to flip BlockManager axis in the DataFrame special case self._is_frame = isinstance(sample, ABCDataFrame) if self._is_frame: axis = sample._get_block_manager_axis(axis) self._is_series = isinstance(sample, ABCSeries) if not 0 <= axis <= sample.ndim: raise AssertionError( f"axis must be between 0 and {sample.ndim}, input was {axis}" ) # if we have mixed ndims, then convert to highest ndim # creating column numbers as needed if len(ndims) > 1: current_column = 0 max_ndim = sample.ndim self.objs, objs = [], self.objs for obj in objs: ndim = obj.ndim if ndim == max_ndim: pass elif ndim != max_ndim - 1: raise ValueError( "cannot concatenate unaligned mixed " "dimensional NDFrame objects" ) else: name = getattr(obj, "name", None) if ignore_index or name is None: name = current_column current_column += 1 # doing a row-wise concatenation so need everything # to line up if self._is_frame and axis == 1: name = 0 # mypy needs to know sample is not an NDFrame sample = cast("FrameOrSeriesUnion", sample) obj = sample._constructor({name: obj}) self.objs.append(obj) # note: this is the BlockManager axis (since DataFrame is transposed) self.bm_axis = axis self.axis = 1 - self.bm_axis if self._is_frame else 0 self.keys = keys self.names = names or getattr(keys, "names", None) self.levels = levels self.sort = sort self.ignore_index = ignore_index self.verify_integrity = verify_integrity self.copy = copy self.new_axes = self._get_new_axes() def get_result(self): cons: Type[FrameOrSeriesUnion] sample: FrameOrSeriesUnion # series only if self._is_series: sample = cast("Series", self.objs[0]) # stack blocks if self.bm_axis == 0: name = com.consensus_name_attr(self.objs) cons = sample._constructor arrs = [ser._values for ser in self.objs] res = concat_compat(arrs, axis=0) result = cons(res, index=self.new_axes[0], name=name, dtype=res.dtype) return result.__finalize__(self, method="concat") # combine as columns in a frame else: data = dict(zip(range(len(self.objs)), self.objs)) # GH28330 Preserves subclassed objects through concat cons = sample._constructor_expanddim index, columns = self.new_axes df = cons(data, index=index) df.columns = columns return df.__finalize__(self, method="concat") # combine block managers else: sample = cast("DataFrame", self.objs[0]) mgrs_indexers = [] for obj in self.objs: indexers = {} for ax, new_labels in enumerate(self.new_axes): # ::-1 to convert BlockManager ax to DataFrame ax if ax == self.bm_axis: # Suppress reindexing on concat axis continue # 1-ax to convert BlockManager axis to DataFrame axis obj_labels = obj.axes[1 - ax] if not new_labels.equals(obj_labels): # We have to remove the duplicates from obj_labels # in new labels to make them unique, otherwise we would # duplicate or duplicates again if not obj_labels.is_unique: new_labels = algos.make_duplicates_of_left_unique_in_right( np.asarray(obj_labels), np.asarray(new_labels) ) indexers[ax] = obj_labels.reindex(new_labels)[1] mgrs_indexers.append((obj._mgr, indexers)) new_data = concatenate_block_managers( mgrs_indexers, self.new_axes, concat_axis=self.bm_axis, copy=self.copy ) if not self.copy: new_data._consolidate_inplace() cons = sample._constructor return cons(new_data).__finalize__(self, method="concat") def _get_result_dim(self) -> int: if self._is_series and self.bm_axis == 1: return 2 else: return self.objs[0].ndim def _get_new_axes(self) -> List[Index]: ndim = self._get_result_dim() return [ self._get_concat_axis() if i == self.bm_axis else self._get_comb_axis(i) for i in range(ndim) ] def _get_comb_axis(self, i: int) -> Index: data_axis = self.objs[0]._get_block_manager_axis(i) return get_objs_combined_axis( self.objs, axis=data_axis, intersect=self.intersect, sort=self.sort, copy=self.copy, ) def _get_concat_axis(self) -> Index: """ Return index to be used along concatenation axis. """ if self._is_series: if self.bm_axis == 0: indexes = [x.index for x in self.objs] elif self.ignore_index: idx = ibase.default_index(len(self.objs)) return idx elif self.keys is None: names: List[Label] = [None] * len(self.objs) num = 0 has_names = False for i, x in enumerate(self.objs): if not isinstance(x, ABCSeries): raise TypeError( f"Cannot concatenate type 'Series' with " f"object of type '{type(x).__name__}'" ) if x.name is not None: names[i] = x.name has_names = True else: names[i] = num num += 1 if has_names: return Index(names) else: return ibase.default_index(len(self.objs)) else: return ensure_index(self.keys).set_names(self.names) else: indexes = [x.axes[self.axis] for x in self.objs] if self.ignore_index: idx = ibase.default_index(sum(len(i) for i in indexes)) return idx if self.keys is None: concat_axis = _concat_indexes(indexes) else: concat_axis = _make_concat_multiindex( indexes, self.keys, self.levels, self.names ) self._maybe_check_integrity(concat_axis) return concat_axis def _maybe_check_integrity(self, concat_index: Index): if self.verify_integrity: if not concat_index.is_unique: overlap = concat_index[concat_index.duplicated()].unique() raise ValueError(f"Indexes have overlapping values: {overlap}") def _concat_indexes(indexes) -> Index: return indexes[0].append(indexes[1:]) def _make_concat_multiindex(indexes, keys, levels=None, names=None) -> MultiIndex: if (levels is None and isinstance(keys[0], tuple)) or ( levels is not None and len(levels) > 1 ): zipped = list(zip(*keys)) if names is None: names = [None] * len(zipped) if levels is None: _, levels = factorize_from_iterables(zipped) else: levels = [ensure_index(x) for x in levels] else: zipped = [keys] if names is None: names = [None] if levels is None: levels = [ensure_index(keys)] else: levels = [ensure_index(x) for x in levels] if not all_indexes_same(indexes): codes_list = [] # things are potentially different sizes, so compute the exact codes # for each level and pass those to MultiIndex.from_arrays for hlevel, level in zip(zipped, levels): to_concat = [] for key, index in zip(hlevel, indexes): # Find matching codes, include matching nan values as equal. mask = (isna(level) & isna(key)) | (level == key) if not mask.any(): raise ValueError(f"Key {key} not in level {level}") i = np.nonzero(mask)[0][0] to_concat.append(np.repeat(i, len(index))) codes_list.append(np.concatenate(to_concat)) concat_index = _concat_indexes(indexes) # these go at the end if isinstance(concat_index, MultiIndex): levels.extend(concat_index.levels) codes_list.extend(concat_index.codes) else: codes, categories = factorize_from_iterable(concat_index) levels.append(categories) codes_list.append(codes) if len(names) == len(levels): names = list(names) else: # make sure that all of the passed indices have the same nlevels if not len({idx.nlevels for idx in indexes}) == 1: raise AssertionError( "Cannot concat indices that do not have the same number of levels" ) # also copies names = list(names) + list(get_unanimous_names(*indexes)) return MultiIndex( levels=levels, codes=codes_list, names=names, verify_integrity=False ) new_index = indexes[0] n = len(new_index) kpieces = len(indexes) # also copies new_names = list(names) new_levels = list(levels) # construct codes new_codes = [] # do something a bit more speedy for hlevel, level in zip(zipped, levels): hlevel = ensure_index(hlevel) mapped = level.get_indexer(hlevel) mask = mapped == -1 if mask.any(): raise ValueError(f"Values not found in passed level: {hlevel[mask]!s}") new_codes.append(np.repeat(mapped, n)) if isinstance(new_index, MultiIndex): new_levels.extend(new_index.levels) new_codes.extend([np.tile(lab, kpieces) for lab in new_index.codes]) else: new_levels.append(new_index) new_codes.append(np.tile(np.arange(n), kpieces)) if len(new_names) < len(new_levels): new_names.extend(new_index.names) return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False )
32.031724
88
0.552986
4a262a1267035c54c1a0f9b5b44bb0a4c5750b4a
1,798
py
Python
observations/r/freeny.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
199
2017-07-24T01:34:27.000Z
2022-01-29T00:50:55.000Z
observations/r/freeny.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
46
2017-09-05T19:27:20.000Z
2019-01-07T09:47:26.000Z
observations/r/freeny.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
45
2017-07-26T00:10:44.000Z
2022-03-16T20:44:59.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def freeny(path): """Freeny's Revenue Data Freeny's data on quarterly revenue and explanatory variables. There are three ‘freeny’ data sets. `freeny.y` is a time series with 39 observations on quarterly revenue from (1962,2Q) to (1971,4Q). `freeny.x` is a matrix of explanatory variables. The columns are `freeny.y` lagged 1 quarter, price index, income level, and market potential. Finally, `freeny` is a data frame with variables `y`, `lag.quarterly.revenue`, `price.index`, `income.level`, and `market.potential` obtained from the above two data objects. A. E. Freeny (1977) *A Portable Linear Regression Package with Test Programs*. Bell Laboratories memorandum. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `freeny.csv`. Returns: Tuple of np.ndarray `x_train` with 39 rows and 5 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'freeny.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/datasets/freeny.csv' maybe_download_and_extract(path, url, save_file_name='freeny.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
29.47541
71
0.697998
4a262ca81c1827af6bd559bab4224b9a268018ae
2,967
py
Python
flakeheaven/_patched/_style_guide.py
snmishra/flakeheaven
20f94457744c47d965d4520d3b22def538b0cc49
[ "MIT" ]
24
2022-01-06T14:20:37.000Z
2022-03-31T14:47:38.000Z
flakeheaven/_patched/_style_guide.py
snmishra/flakeheaven
20f94457744c47d965d4520d3b22def538b0cc49
[ "MIT" ]
47
2022-01-04T09:19:34.000Z
2022-03-30T12:53:01.000Z
flakeheaven/_patched/_style_guide.py
snmishra/flakeheaven
20f94457744c47d965d4520d3b22def538b0cc49
[ "MIT" ]
5
2022-01-05T03:32:59.000Z
2022-02-05T14:47:58.000Z
# built-in from functools import lru_cache # external from flake8.style_guide import StyleGuide, StyleGuideManager # app from ._violation import FlakeHeavenViolation class FlakeHeavenStyleGuideManager(StyleGuideManager): def __init__(self, options, formatter, decider=None): """Initialize our StyleGuide. .. todo:: Add parameter documentation. """ super().__init__(options, formatter, decider) self.default_style_guide = FlakeHeavenStyleGuide( options, formatter, self.stats, decider=decider, ) self.style_guides = [self.default_style_guide] self.style_guides.extend(self.populate_style_guides_with(options)) @lru_cache(maxsize=None) def style_guide_for(self, filename: str): """Patched styleguide finder to give priority to flakeheaven's stileguides """ guides = sorted( (g for g in self.style_guides if g.applies_to(filename)), key=lambda g: len(g.filename or ''), reverse=True, ) for guide in guides: if isinstance(guide, FlakeHeavenStyleGuide): return guide return guides[0] def handle_error( self, code: str, filename: str, line_number: int, column_number: int, text: str, plugin: str, physical_line: str = None, ): guide = self.style_guide_for(filename) params = dict( code=code, filename=filename, line_number=line_number, column_number=column_number, text=text, physical_line=physical_line, ) if isinstance(guide, FlakeHeavenStyleGuide): params['plugin'] = plugin return guide.handle_error(**params) class FlakeHeavenStyleGuide(StyleGuide): def handle_error( self, code: str, filename: str, line_number: int, column_number: int, text: str, plugin: str, physical_line: str = None, ): """ This function copied as is, but: 1. Violation is replaced by FlakeHeavenViolation 2. `error_is_selected` dropped. If we get here, the error IS selected. """ disable_noqa = self.options.disable_noqa if not column_number: column_number = 0 error = FlakeHeavenViolation( code=code, filename=filename, line_number=line_number, column_number=column_number + 1, text=text, physical_line=physical_line, plugin=plugin, ) is_not_inline_ignored = error.is_inline_ignored(disable_noqa) is False is_included_in_diff = error.is_in(self._parsed_diff) if is_not_inline_ignored and is_included_in_diff: self.formatter.handle(error) self.stats.record(error) return 1 return 0
30.587629
82
0.607347
4a262cbb6180f533ce24e26ffe9f59c70a598423
2,347
py
Python
configs/r3det/datasets/dotav1_rotational_detection.py
cameronchoi/r3det-docker
30af0b845b2baa4dcb7dccdc4ccd3238fd72bf75
[ "Apache-2.0" ]
176
2020-06-18T12:35:30.000Z
2022-03-28T02:20:57.000Z
configs/r3det/datasets/dotav1_rotational_detection.py
cameronchoi/r3det-docker
30af0b845b2baa4dcb7dccdc4ccd3238fd72bf75
[ "Apache-2.0" ]
35
2020-06-28T07:03:24.000Z
2022-01-09T01:20:46.000Z
configs/r3det/datasets/dotav1_rotational_detection.py
cameronchoi/r3det-docker
30af0b845b2baa4dcb7dccdc4ccd3238fd72bf75
[ "Apache-2.0" ]
44
2020-06-20T07:51:01.000Z
2022-02-10T01:17:54.000Z
# dataset settings dataset_type = 'DOTADatasetV1' # dataset root path: data_root = '/data/dota/' trainsplit_ann_folder = 'trainsplit/labelTxt' trainsplit_img_folder = 'trainsplit/images' valsplit_ann_folder = 'valsplit/labelTxt' valsplit_img_folder = 'valsplit/images' val_ann_folder = 'val/labelTxt' val_img_folder = 'val/images' test_img_folder = 'test/images' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RResize', img_scale=(800, 800)), dict(type='RRandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(800, 800)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_ignore']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='CroppedTilesFlipAug', tile_scale=(800, 800), tile_shape=(600, 600), tile_overlap=(150, 150), flip=False, transforms=[ dict(type='RResize', img_scale=(800, 800)), dict(type='RRandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(800, 800)), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=6, workers_per_gpu=2, train=[ dict( type=dataset_type, data_root=data_root, ann_file=trainsplit_ann_folder, img_prefix=trainsplit_img_folder, pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file=valsplit_ann_folder, img_prefix=valsplit_img_folder, pipeline=train_pipeline), ], val=dict( type=dataset_type, data_root=data_root, ann_file=val_ann_folder, difficulty_thresh=1, img_prefix=val_img_folder, pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, ann_file=test_img_folder, difficulty_thresh=1, img_prefix=test_img_folder, pipeline=test_pipeline))
30.881579
85
0.618662
4a262ce2753411137ab683833823302d6ff655fb
2,523
py
Python
utils/estimate_pose.py
chingchichuang/PRNet
4b7125bcf465d178093bc5e1ce3e4926c72c3016
[ "MIT" ]
null
null
null
utils/estimate_pose.py
chingchichuang/PRNet
4b7125bcf465d178093bc5e1ce3e4926c72c3016
[ "MIT" ]
null
null
null
utils/estimate_pose.py
chingchichuang/PRNet
4b7125bcf465d178093bc5e1ce3e4926c72c3016
[ "MIT" ]
null
null
null
import numpy as np from math import cos, sin, atan2, asin def isRotationMatrix(R): ''' checks if a matrix is a valid rotation matrix(whether orthogonal or not) ''' Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 def matrix2angle(R): ''' compute three Euler angles from a Rotation Matrix. Ref: http://www.gregslabaugh.net/publications/euler.pdf Args: R: (3,3). rotation matrix Returns: x: yaw y: pitch z: roll ''' # assert(isRotationMatrix(R)) if R[2,0] !=1 or R[2,0] != -1: x = asin(R[2,0]) y = atan2(R[2,1]/cos(x), R[2,2]/cos(x)) z = atan2(R[1,0]/cos(x), R[0,0]/cos(x)) else:# Gimbal lock z = 0 #can be anything if R[2,0] == -1: x = np.pi/2 y = z + atan2(R[0,1], R[0,2]) else: x = -np.pi/2 y = -z + atan2(-R[0,1], -R[0,2]) return x/np.pi*180.0, y/np.pi*180.0, z/np.pi*180.0 def P2sRt(P): ''' decompositing camera matrix P. Args: P: (3, 4). Affine Camera Matrix. Returns: s: scale factor. R: (3, 3). rotation matrix. t2d: (2,). 2d translation. ''' t2d = P[:2, 3] R1 = P[0:1, :3] R2 = P[1:2, :3] s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0 r1 = R1/np.linalg.norm(R1) r2 = R2/np.linalg.norm(R2) r3 = np.cross(r1, r2) R = np.concatenate((r1, r2, r3), 0) return s, R, t2d def compute_similarity_transform(points_static, points_to_transform): #http://nghiaho.com/?page_id=671 p0 = np.copy(points_static).T p1 = np.copy(points_to_transform).T t0 = -np.mean(p0, axis=1).reshape(3,1) t1 = -np.mean(p1, axis=1).reshape(3,1) t_final = t1 -t0 p0c = p0+t0 p1c = p1+t1 covariance_matrix = p0c.dot(p1c.T) U,S,V = np.linalg.svd(covariance_matrix) R = U.dot(V) if np.linalg.det(R) < 0: R[:,2] *= -1 rms_d0 = np.sqrt(np.mean(np.linalg.norm(p0c, axis=0)**2)) rms_d1 = np.sqrt(np.mean(np.linalg.norm(p1c, axis=0)**2)) s = (rms_d0/rms_d1) P = np.c_[s*np.eye(3).dot(R), t_final] return P def estimate_pose(vertices): canonical_vertices = np.load('Data/uv-data/canonical_vertices.npy') P = compute_similarity_transform(vertices, canonical_vertices) _,R,_ = P2sRt(P) # decompose affine matrix to s, R, t pose = matrix2angle(R) return P, pose
26.28125
114
0.561237
4a262d31341c8d1909219928f4cc6482ba541cc5
16,436
py
Python
scripts/Crawlers/OSFCrawler.py
mathdugre/conp-dataset
f117b9a2f8191d654de6d3aad57e6c352a6e881e
[ "MIT" ]
null
null
null
scripts/Crawlers/OSFCrawler.py
mathdugre/conp-dataset
f117b9a2f8191d654de6d3aad57e6c352a6e881e
[ "MIT" ]
null
null
null
scripts/Crawlers/OSFCrawler.py
mathdugre/conp-dataset
f117b9a2f8191d654de6d3aad57e6c352a6e881e
[ "MIT" ]
null
null
null
from scripts.Crawlers.BaseCrawler import BaseCrawler from git import Repo import os import json import requests import humanize import datetime def _create_osf_tracker(path, dataset): with open(path, "w") as f: data = { "version": dataset["version"], "title": dataset["title"] } json.dump(data, f, indent=4) class OSFCrawler(BaseCrawler): def __init__(self, github_token, config_path, verbose, force): super().__init__(github_token, config_path, verbose, force) self.osf_token = self._get_token() def _get_token(self): if os.path.isfile(self.config_path): with open(self.config_path, "r") as f: data = json.load(f) if "osf_token" in data.keys(): return data["osf_token"] def _get_request_with_bearer_token(self, link, redirect=True): header = {'Authorization': f'Bearer {self.osf_token}'} r = requests.get(link, headers=header, allow_redirects=redirect) if r.ok: return r else: raise Exception(f'Request to {r.url} failed: {r.content}') def _query_osf(self): query = ( 'https://api.osf.io/v2/nodes/?filter[tags]=canadian-open-neuroscience-platform' ) r_json = self._get_request_with_bearer_token(query).json() results = r_json["data"] # Retrieve results from other pages if r_json["links"]["meta"]["total"] > r_json["links"]["meta"]["per_page"]: next_page = r_json["links"]["next"] while next_page is not None: next_page_json = self._get_request_with_bearer_token(next_page).json() results.extend(next_page_json["data"]) next_page = next_page_json["links"]["next"] if self.verbose: print("OSF query: {}".format(query)) return results def _download_files(self, link, current_dir, inner_path, d, annex, sizes): r_json = self._get_request_with_bearer_token(link).json() files = r_json["data"] # Retrieve the files in the other pages if there are more than 1 page if "links" in r_json.keys() and r_json["links"]["meta"]["total"] > r_json["links"]["meta"]["per_page"]: next_page = r_json["links"]["next"] while next_page is not None: next_page_json = self._get_request_with_bearer_token(next_page).json() files.extend(next_page_json["data"]) next_page = next_page_json["links"]["next"] for file in files: # Handle folders if file["attributes"]["kind"] == "folder": folder_path = os.path.join(current_dir, file["attributes"]["name"]) os.mkdir(folder_path) self._download_files( file["relationships"]["files"]["links"]["related"]["href"], folder_path, os.path.join(inner_path, file["attributes"]["name"]), d, annex, sizes ) # Handle single files elif file["attributes"]["kind"] == "file": # Check if file is private r = requests.get(file["links"]["download"], allow_redirects=False) if 'https://accounts.osf.io/login' in r.headers['location']: # Redirects to login, private file correct_download_link = self._get_request_with_bearer_token( file["links"]["download"], redirect=False).headers['location'] if 'https://accounts.osf.io/login' not in correct_download_link: zip_file = True if file["attributes"]["name"].split(".")[-1] == "zip" else False d.download_url(correct_download_link, path=os.path.join(inner_path, ""), archive=zip_file) else: # Token did not work for downloading file, return print(f'Unable to download file {file["links"]["download"]} with current token, skipping file') return # Public file else: # Handle zip files if file["attributes"]["name"].split(".")[-1] == "zip": d.download_url(file["links"]["download"], path=os.path.join(inner_path, ""), archive=True) elif file['attributes']['name'] in ['DATS.json', 'README.md']: d.download_url(file['links']['download'], path=os.path.join(inner_path, '')) else: annex("addurl", file["links"]["download"], "--fast", "--file", os.path.join(inner_path, file["attributes"]["name"])) d.save() # append the size of the downloaded file to the sizes array file_size = file['attributes']['size'] if not file_size: # if the file size cannot be found in the OSF API response, then get it from git annex info inner_file_path = os.path.join(inner_path, file["attributes"]["name"]) annex_info_dict = json.loads(annex('info', '--bytes', '--json', inner_file_path)) file_size = int(annex_info_dict['size']) sizes.append(file_size) def _download_components(self, components_list, current_dir, inner_path, d, annex, dataset_size): # Loop through each available components and download their files for component in components_list: component_title = self._clean_dataset_title(component['attributes']['title']) component_inner_path = os.path.join(inner_path, 'components', component_title) os.makedirs(os.path.join(current_dir, component_inner_path)) self._download_files( component['relationships']['files']['links']['related']['href'], os.path.join(current_dir, component_inner_path), component_inner_path, d, annex, dataset_size ) # check if the component contains (sub)components, in which case, download the (sub)components data subcomponents_list = self._get_components( component['relationships']['children']['links']['related']['href']) if subcomponents_list: self._download_components( subcomponents_list, current_dir, os.path.join(component_inner_path), d, annex, dataset_size ) # Once we have downloaded all the components files, check to see if there are any empty # directories (in the case the 'OSF parent' dataset did not have any downloaded files list_of_empty_dirs = [ dirpath for (dirpath, dirnames, filenames) in os.walk(current_dir) if len(dirnames) == 0 and len(filenames) == 0 ] for empty_dir in list_of_empty_dirs: os.rmdir(empty_dir) def _get_contributors(self, link): r = self._get_request_with_bearer_token(link) contributors = [ contributor["embeds"]["users"]["data"]["attributes"]["full_name"] for contributor in r.json()["data"] ] return contributors def _get_license(self, link): r = self._get_request_with_bearer_token(link) return r.json()["data"]["attributes"]["name"] def _get_components(self, link): r = self._get_request_with_bearer_token(link) return r.json()['data'] def _get_institutions(self, link): r = self._get_request_with_bearer_token(link) if r.json()['data']: institutions = [ institution['attributes']['name'] for institution in r.json()['data'] ] return institutions def _get_identifier(self, link): r = self._get_request_with_bearer_token(link) return r.json()['data'][0]['attributes']['value'] if r.json()['data'] else False def get_all_dataset_description(self): osf_dois = [] datasets = self._query_osf() for dataset in datasets: # skip datasets that have a parent since the files' components will # go into the parent dataset. if 'parent' in dataset['relationships'].keys(): continue attributes = dataset["attributes"] # Retrieve keywords/tags keywords = list(map(lambda x: {"value": x}, attributes["tags"])) # Retrieve contributors/creators contributors = self._get_contributors( dataset["relationships"]["contributors"]["links"]["related"]["href"]) # Retrieve license license_ = "None" if "license" in dataset["relationships"].keys(): license_ = self._get_license(dataset["relationships"]["license"]["links"]["related"]["href"]) # Retrieve institution information institutions = self._get_institutions( dataset['relationships']['affiliated_institutions']['links']['related']['href']) # Retrieve identifier information identifier = self._get_identifier(dataset['relationships']['identifiers']['links']['related']['href']) # Get link for the dataset files files_link = dataset['relationships']['files']['links']['related']['href'] # Get components list components_list = self._get_components(dataset['relationships']['children']['links']['related']['href']) # Gather extra properties extra_properties = [ { "category": "logo", "values": [ { "value": "https://osf.io/static/img/institutions/shields/cos-shield.png" } ], } ] if institutions: extra_properties.append( { "category": "origin_institution", "values": list( map(lambda x: {'value': x}, institutions) ) } ) # Retrieve dates date_created = datetime.datetime.strptime(attributes['date_created'], '%Y-%m-%dT%H:%M:%S.%f') date_modified = datetime.datetime.strptime(attributes['date_modified'], '%Y-%m-%dT%H:%M:%S.%f') dataset_dats_content = { "title": attributes["title"], "files": files_link, "components_list": components_list, "homepage": dataset["links"]["html"], "creators": list( map(lambda x: {"name": x}, contributors) ), "description": attributes["description"], "version": attributes["date_modified"], "licenses": [ { "name": license_ } ], "dates": [ { "date": date_created.strftime('%Y-%m-%d %H:%M:%S'), "type": { "value": "Date Created" } }, { "date": date_modified.strftime('%Y-%m-%d %H:%M:%S'), "type": { "value": "Date Modified" } } ], "keywords": keywords, "distributions": [ { "size": 0, "unit": {"value": "B"}, "access": { "landingPage": dataset["links"]["html"], "authorizations": [ { "value": "public" if attributes['public'] else "private" } ], }, } ], "extraProperties": extra_properties } if identifier: source = 'OSF DOI' if 'OSF.IO' in identifier else 'DOI' dataset_dats_content['identifier'] = { "identifier": identifier, "identifierSource": source } osf_dois.append(dataset_dats_content) if self.verbose: print("Retrieved OSF DOIs: ") for osf_doi in osf_dois: print( "- Title: {}, Last modified: {}".format( osf_doi["title"], osf_doi["version"] ) ) return osf_dois def add_new_dataset(self, dataset, dataset_dir): d = self.datalad.Dataset(dataset_dir) d.no_annex(".conp-osf-crawler.json") d.save() annex = Repo(dataset_dir).git.annex dataset_size = [] self._download_files(dataset["files"], dataset_dir, "", d, annex, dataset_size) if dataset['components_list']: self._download_components(dataset['components_list'], dataset_dir, '', d, annex, dataset_size) dataset_size, dataset_unit = humanize.naturalsize(sum(dataset_size)).split(" ") dataset["distributions"][0]["size"] = float(dataset_size) dataset["distributions"][0]["unit"]["value"] = dataset_unit # Add .conp-osf-crawler.json tracker file _create_osf_tracker( os.path.join(dataset_dir, ".conp-osf-crawler.json"), dataset) def update_if_necessary(self, dataset_description, dataset_dir): tracker_path = os.path.join(dataset_dir, ".conp-osf-crawler.json") if not os.path.isfile(tracker_path): print("{} does not exist in dataset, skipping".format(tracker_path)) return False with open(tracker_path, "r") as f: tracker = json.load(f) if tracker["version"] == dataset_description["version"]: # Same version, no need to update if self.verbose: print("{}, version {} same as OSF version DOI, no need to update" .format(dataset_description["title"], dataset_description["version"])) return False else: # Update dataset if self.verbose: print("{}, version {} different from OSF version DOI {}, updating" .format(dataset_description["title"], tracker["version"], dataset_description["version"])) # Remove all data and DATS.json files for file_name in os.listdir(dataset_dir): if file_name[0] == ".": continue self.datalad.remove(os.path.join(dataset_dir, file_name), check=False) d = self.datalad.Dataset(dataset_dir) annex = Repo(dataset_dir).git.annex dataset_size = [] self._download_files(dataset_description["files"], dataset_dir, "", d, annex, dataset_size) if dataset_description['components_list']: self._download_components( dataset_description['components_list'], dataset_dir, '', d, annex, dataset_size) dataset_size, dataset_unit = humanize.naturalsize(sum(dataset_size)).split(" ") dataset_description["distributions"][0]["size"] = float(dataset_size) dataset_description["distributions"][0]["unit"]["value"] = dataset_unit # Add .conp-osf-crawler.json tracker file _create_osf_tracker( os.path.join(dataset_dir, ".conp-osf-crawler.json"), dataset_description) return True def get_readme_content(self, dataset): readme_content = """# {} Crawled from [OSF]({}) ## Description {}""".format(dataset["title"], dataset["homepage"], dataset["description"]) if 'identifier' in dataset: readme_content += """ DOI: {}""".format(dataset['identifier']['identifier']) return readme_content
42.360825
119
0.532733
4a262e1a8c2381db1bc99c05e9d64a1d0feecca5
1,173
py
Python
src/adaf/python_scripts/plotLumBXB.py
eduardomgutierrez/RIAF_radproc
0e4166f04cce27fed2cbd2c7078023c10e0e8d12
[ "MIT" ]
1
2021-08-30T06:56:03.000Z
2021-08-30T06:56:03.000Z
src/adaf/python_scripts/plotLumBXB.py
eduardomgutierrez/RIAF_radproc
0e4166f04cce27fed2cbd2c7078023c10e0e8d12
[ "MIT" ]
null
null
null
src/adaf/python_scripts/plotLumBXB.py
eduardomgutierrez/RIAF_radproc
0e4166f04cce27fed2cbd2c7078023c10e0e8d12
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib import rc # TO MANAGE MATPLOTLIB PARAMETERS" rc('font',family='serif') rc('text',usetex = True) import scipy.optimize as optimization nu,eV,Sy,Br,IC,pp,CD,Refl,Tot = np.loadtxt('lum.txt',unpack=True) NT_logeV,NT_logSye,NT_logSyp,NT_logIC,NT_logpp,NT_logpg,NT_logeAbs,NT_logpAbs = \ np.loadtxt('ntLuminosities.txt',unpack=True,skiprows=1) x_eV = [-2,16] y_axis = [30,38] fig, ax1 = plt.subplots() ax1.tick_params(axis='both',labelsize=12) ax1.set_xlim(x_eV) ax1.set_ylim(y_axis) ax1.set_xlabel(r'$\mathrm{Log}(E/\mathrm{eV})$',fontsize=13) ax1.set_ylabel(r'$\mathrm{Log}(\nu L_\nu / \mathrm{erg~s}^{-1})$',fontsize=13) ax1.plot(np.log10(eV),np.log10(Tot),label='Thermal') ax1.plot(NT_logeV,NT_logSye,label='eSy') ax1.plot(NT_logeV,NT_logSyp,label='pSy') ax1.plot(NT_logeV,NT_logIC,label='IC') ax1.plot(NT_logeV,NT_logpp,label='pp') ax1.plot(NT_logeV,NT_logpg,label=r'p$\gamma$') ax1.plot(NT_logeV,np.log10(np.power(10,NT_logeAbs)+np.power(10,NT_logpAbs)+Tot),\ lw=3,label='Abs',color='k') ax1.legend(loc='best',fontsize=8) fig.savefig('nonThermalLum.pdf')
30.868421
81
0.728048
4a262edbdb74da0df79148885dbd9a1b0dbc2699
4,806
py
Python
tools/infer_submission_simple.py
swkpku/Detectron
cf27871b2d092fad2afee47c44a622b4bb974cd0
[ "Apache-2.0" ]
null
null
null
tools/infer_submission_simple.py
swkpku/Detectron
cf27871b2d092fad2afee47c44a622b4bb974cd0
[ "Apache-2.0" ]
null
null
null
tools/infer_submission_simple.py
swkpku/Detectron
cf27871b2d092fad2afee47c44a622b4bb974cd0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Perform inference on a single image or all images with a certain extension (e.g., .jpg) in a folder. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import argparse import cv2 # NOQA (Must import before importing caffe2 due to bug in cv2) import glob import logging import os import sys import time from caffe2.python import workspace from core.config import assert_and_infer_cfg from core.config import cfg from core.config import merge_cfg_from_file from utils.timer import Timer import core.test_engine as infer_engine import datasets.dummy_datasets as dummy_datasets import utils.c2 as c2_utils import utils.logging import utils.vis as vis_utils c2_utils.import_detectron_ops() # OpenCL may be enabled by default in OpenCV3; disable it because it's not # thread safe and causes unwanted GPU memory allocations. cv2.ocl.setUseOpenCL(False) def parse_args(): parser = argparse.ArgumentParser(description='End-to-end inference') parser.add_argument( '--cfg', dest='cfg', help='cfg model file (/path/to/model_config.yaml)', default=None, type=str ) parser.add_argument( '--wts', dest='weights', help='weights model file (/path/to/model_weights.pkl)', default=None, type=str ) parser.add_argument( '--output-dir', dest='output_dir', help='directory for visualization pdfs (default: /tmp/infer_simple)', default='/tmp/infer_simple', type=str ) parser.add_argument( '--image-ext', dest='image_ext', help='image file name extension (default: jpg)', default='jpg', type=str ) parser.add_argument( 'im_or_folder', help='image or folder of images', default=None ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.TEST.WEIGHTS = args.weights cfg.NUM_GPUS = 1 assert_and_infer_cfg() model = infer_engine.initialize_model_from_cfg() dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] test_ids = [] rles = [] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.pdf') ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) new_test_ids, new_rles = vis_utils.make_submission( im[:, :, ::-1], im_name, cls_boxes, cls_segms, cls_keyps, thresh=0.7 ) test_ids.extend(new_test_ids) rles.extend(new_rles) import pandas as pd sub = pd.DataFrame() sub['ImageId'] = test_ids sub['EncodedPixels'] = pd.Series(rles).apply(lambda x: ' '.join(str(y) for y in x)) sub.to_csv(args.output_dir + '/e2e_mask_rcnn_R-50-FPN_1x-lr3e-3-nuclei-6-new.csv', index=False) if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) utils.logging.setup_logging(__name__) args = parse_args() main(args)
31.006452
99
0.643987
4a262f2d7926b61c2d456712cf39637c9d5d9116
4,344
py
Python
solidity/python/MongoTestSale.py
dabdevelop/bancorprotocol-contracts
53894df7f4c31828188b11c9a974da6413579799
[ "Apache-2.0" ]
null
null
null
solidity/python/MongoTestSale.py
dabdevelop/bancorprotocol-contracts
53894df7f4c31828188b11c9a974da6413579799
[ "Apache-2.0" ]
null
null
null
solidity/python/MongoTestSale.py
dabdevelop/bancorprotocol-contracts
53894df7f4c31828188b11c9a974da6413579799
[ "Apache-2.0" ]
null
null
null
import sys import math import pymongo import FormulaSolidityPort import FormulaNativePython USERNAME = '' PASSWORD = '' SERVER_NAME = '127.0.0.1:27017' DATABASE_NAME = 'test' MINIMUM_VALUE_SUPPLY = 100 MAXIMUM_VALUE_SUPPLY = 10**34 GROWTH_FACTOR_SUPPLY = 1.5 MINIMUM_VALUE_RESERVE = 100 MAXIMUM_VALUE_RESERVE = 10**34 GROWTH_FACTOR_RESERVE = 1.5 MINIMUM_VALUE_RATIO = 10 MAXIMUM_VALUE_RATIO = 90 GROWTH_FACTOR_RATIO = 1.25 MINIMUM_VALUE_AMOUNT = 1 MAXIMUM_VALUE_AMOUNT = 10**34 GROWTH_FACTOR_AMOUNT = 1.5 TRANSACTION_SUCCESS = 0 TRANSACTION_FAILURE = 1 TRANSACTION_INVALID = 2 IMPLEMENTATION_ERROR = 3 def Main(): username = USERNAME password = PASSWORD server_name = SERVER_NAME database_name = DATABASE_NAME for arg in sys.argv[1:]: username = arg[len('username=' ):] if arg.startswith('username=' ) else username password = arg[len('password=' ):] if arg.startswith('password=' ) else password server_name = arg[len('server_name=' ):] if arg.startswith('server_name=' ) else server_name database_name = arg[len('database_name='):] if arg.startswith('database_name=') else database_name if username and password: uri = 'mongodb://{}:{}@{}/{}'.format(username,password,server_name,database_name) else: uri = 'mongodb://{}/{}'.format(server_name,database_name) TestAll(pymongo.MongoClient(uri)[database_name]['sale']) def TestAll(collection): range_supply = GenerateRange(MINIMUM_VALUE_SUPPLY ,MAXIMUM_VALUE_SUPPLY ,GROWTH_FACTOR_SUPPLY ) range_reserve = GenerateRange(MINIMUM_VALUE_RESERVE,MAXIMUM_VALUE_RESERVE,GROWTH_FACTOR_RESERVE) range_ratio = GenerateRange(MINIMUM_VALUE_RATIO ,MAXIMUM_VALUE_RATIO ,GROWTH_FACTOR_RATIO ) range_amount = GenerateRange(MINIMUM_VALUE_AMOUNT ,MAXIMUM_VALUE_AMOUNT ,GROWTH_FACTOR_AMOUNT ) for supply in range_supply : for reserve in range_reserve: for ratio in range_ratio : for amount in range_amount : if amount <= supply: resultSolidityPort = Run(FormulaSolidityPort,supply,reserve,ratio,amount) resultNativePython = Run(FormulaNativePython,supply,reserve,ratio,amount) if resultNativePython < 0: status = TRANSACTION_INVALID loss = {'absolute':0,'relative':0} elif resultSolidityPort < 0: status = TRANSACTION_FAILURE loss = {'absolute':0,'relative':0} elif resultNativePython < resultSolidityPort: status = IMPLEMENTATION_ERROR loss = {'absolute':0,'relative':0} else: # 0 <= resultSolidityPort <= resultNativePython status = TRANSACTION_SUCCESS loss = {'absolute':float(resultNativePython-resultSolidityPort),'relative':1-float(resultSolidityPort/resultNativePython)} entry = { 'supply' :'{}'.format(supply ), 'reserve':'{}'.format(reserve), 'ratio' :'{}'.format(ratio ), 'amount' :'{}'.format(amount ), 'resultSolidityPort':'{}' .format(resultSolidityPort), 'resultNativePython':'{:.2f}'.format(resultNativePython), 'status':status, 'loss' :loss , } id = collection.insert(entry) print ', '.join('{}: {}'.format(key,entry[key]) for key in ['supply','reserve','ratio','amount','resultSolidityPort','resultNativePython','status','loss']) def Run(module,supply,reserve,ratio,amount): try: return module.calculateSaleReturn(supply,reserve,ratio,amount) except Exception: return -1 def GenerateRange(minimumValue,maximumValue,growthFactor): return [int(minimumValue*growthFactor**n) for n in range(int(math.log(float(maximumValue)/float(minimumValue),growthFactor))+1)] Main()
40.598131
179
0.596685
4a26307cfa315312eee48378039c786116a11ba0
10,235
py
Python
pacu/models/awsapi/codestar-notifications.py
RyanJarv/Pacu2
27df4bcf296fc8f467d3dc671a47bf9519ce7a24
[ "MIT" ]
1
2022-03-09T14:51:54.000Z
2022-03-09T14:51:54.000Z
pacu/models/awsapi/codestar-notifications.py
RyanJarv/Pacu2
27df4bcf296fc8f467d3dc671a47bf9519ce7a24
[ "MIT" ]
null
null
null
pacu/models/awsapi/codestar-notifications.py
RyanJarv/Pacu2
27df4bcf296fc8f467d3dc671a47bf9519ce7a24
[ "MIT" ]
null
null
null
# generated by datamodel-codegen: # filename: openapi.yaml # timestamp: 2021-12-31T02:46:40+00:00 from __future__ import annotations from datetime import datetime from enum import Enum from typing import Annotated, Any, List, Optional from pydantic import BaseModel, Extra, Field, SecretStr class EventTypeId(BaseModel): __root__: Annotated[str, Field(max_length=200, min_length=1)] class TagValue(BaseModel): __root__: Annotated[ str, Field(max_length=256, regex='^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-@]*)$') ] class ResourceAlreadyExistsException(BaseModel): __root__: Any class ValidationException(ResourceAlreadyExistsException): pass class LimitExceededException(ResourceAlreadyExistsException): pass class ConfigurationException(ResourceAlreadyExistsException): pass class ConcurrentModificationException(ResourceAlreadyExistsException): pass class AccessDeniedException(ResourceAlreadyExistsException): pass class DeleteTargetResult(BaseModel): pass class ResourceNotFoundException(ResourceAlreadyExistsException): pass class InvalidNextTokenException(ResourceAlreadyExistsException): pass class TargetType(BaseModel): __root__: Annotated[str, Field(regex='^[A-Za-z]+$')] class TargetAddress(BaseModel): __root__: Annotated[SecretStr, Field(max_length=320, min_length=1)] class UntagResourceResult(DeleteTargetResult): pass class TagKey(BaseModel): __root__: Annotated[ str, Field( max_length=128, min_length=1, regex='^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-@]*)$' ), ] class UpdateNotificationRuleResult(DeleteTargetResult): pass class ClientRequestToken(BaseModel): __root__: Annotated[str, Field(max_length=256, min_length=1, regex='^[\\w:/-]+$')] class NotificationRuleName(BaseModel): __root__: Annotated[ SecretStr, Field(max_length=64, min_length=1, regex='[A-Za-z0-9\\-_ ]+$') ] class EventTypeIds(BaseModel): __root__: List[EventTypeId] class NotificationRuleResource(BaseModel): __root__: Annotated[ str, Field(regex='^arn:aws[^:\\s]*:[^:\\s]*:[^:\\s]*:[0-9]{12}:[^\\s]+$') ] class DetailType(Enum): BASIC = 'BASIC' FULL = 'FULL' class Tags(BaseModel): pass class Config: extra = Extra.allow class NotificationRuleStatus(Enum): ENABLED = 'ENABLED' DISABLED = 'DISABLED' class NotificationRuleArn(BaseModel): __root__: Annotated[ str, Field( regex='^arn:aws[^:\\s]*:codestar-notifications:[^:\\s]+:\\d{12}:notificationrule\\/(.*\\S)?$' ), ] class CreatedTimestamp(BaseModel): __root__: datetime class DeleteNotificationRuleRequest(BaseModel): Arn: NotificationRuleArn class ForceUnsubscribeAll(BaseModel): __root__: bool class DeleteTargetRequest(BaseModel): TargetAddress: TargetAddress ForceUnsubscribeAll: Optional[ForceUnsubscribeAll] = None class DescribeNotificationRuleRequest(BaseModel): Arn: NotificationRuleArn class NotificationRuleCreatedBy(BaseModel): __root__: Annotated[str, Field(min_length=1)] class LastModifiedTimestamp(CreatedTimestamp): pass class EventTypeName(BaseModel): __root__: str class ServiceName(EventTypeName): pass class ResourceType(BaseModel): __root__: Annotated[str, Field(min_length=1, regex='^([a-zA-Z0-9-])+$')] class ListEventTypesFilterName(Enum): RESOURCE_TYPE = 'RESOURCE_TYPE' SERVICE_NAME = 'SERVICE_NAME' class ListEventTypesFilterValue(EventTypeName): pass class NextToken(BaseModel): __root__: Annotated[str, Field(regex='^[\\w/+=]+$')] class MaxResults(BaseModel): __root__: Annotated[int, Field(ge=1.0, le=100.0)] class ListNotificationRulesFilterName(Enum): EVENT_TYPE_ID = 'EVENT_TYPE_ID' CREATED_BY = 'CREATED_BY' RESOURCE = 'RESOURCE' TARGET_ADDRESS = 'TARGET_ADDRESS' class ListNotificationRulesFilterValue(EventTypeName): pass class ListTagsForResourceRequest(BaseModel): Arn: NotificationRuleArn class ListTargetsFilterName(Enum): TARGET_TYPE = 'TARGET_TYPE' TARGET_ADDRESS = 'TARGET_ADDRESS' TARGET_STATUS = 'TARGET_STATUS' class ListTargetsFilterValue(EventTypeName): pass class NotificationRuleId(BaseModel): __root__: Annotated[str, Field(max_length=40, min_length=1)] class TagKeys(BaseModel): __root__: List[TagKey] class TagResourceRequest(BaseModel): Arn: NotificationRuleArn Tags: Tags class TargetStatus(Enum): PENDING = 'PENDING' ACTIVE = 'ACTIVE' UNREACHABLE = 'UNREACHABLE' INACTIVE = 'INACTIVE' DEACTIVATED = 'DEACTIVATED' class TargetSummary(BaseModel): """ Information about the targets specified for a notification rule. """ TargetAddress: Optional[TargetAddress] = None TargetType: Optional[TargetType] = None TargetStatus: Optional[TargetStatus] = None class UnsubscribeRequest(BaseModel): Arn: NotificationRuleArn TargetAddress: TargetAddress class UntagResourceRequest(BaseModel): Arn: NotificationRuleArn TagKeys: TagKeys class CreateNotificationRuleResult(BaseModel): Arn: Optional[NotificationRuleArn] = None class Target(BaseModel): """ Information about the SNS topics associated with a notification rule. """ TargetType: Optional[TargetType] = None TargetAddress: Optional[TargetAddress] = None class DeleteNotificationRuleResult(CreateNotificationRuleResult): pass class ListEventTypesFilter(BaseModel): """ Information about a filter to apply to the list of returned event types. You can filter by resource type or service name. """ Name: ListEventTypesFilterName Value: ListEventTypesFilterValue class ListNotificationRulesFilter(BaseModel): """ Information about a filter to apply to the list of returned notification rules. You can filter by event type, owner, resource, or target. """ Name: ListNotificationRulesFilterName Value: ListNotificationRulesFilterValue class ListTagsForResourceResult(BaseModel): Tags: Optional[Tags] = None class ListTargetsFilter(BaseModel): """ Information about a filter to apply to the list of returned targets. You can filter by target type, address, or status. For example, to filter results to notification rules that have active Amazon SNS topics as targets, you could specify a ListTargetsFilter Name as TargetType and a Value of SNS, and a Name of TARGET_STATUS and a Value of ACTIVE. """ Name: ListTargetsFilterName Value: ListTargetsFilterValue class SubscribeResult(CreateNotificationRuleResult): pass class TagResourceResult(ListTagsForResourceResult): pass class UnsubscribeResult(BaseModel): Arn: NotificationRuleArn class Targets2(BaseModel): __root__: Annotated[List[Target], Field(max_items=10)] class CreateNotificationRuleRequest(BaseModel): Name: NotificationRuleName EventTypeIds: EventTypeIds Resource: NotificationRuleResource Targets: Targets2 DetailType: DetailType ClientRequestToken: Optional[ClientRequestToken] = None Tags: Optional[Tags] = None Status: Optional[NotificationRuleStatus] = None class TargetsBatch(BaseModel): __root__: List[TargetSummary] class EventTypeSummary(BaseModel): """ Returns information about an event that has triggered a notification rule. """ EventTypeId: Optional[EventTypeId] = None ServiceName: Optional[ServiceName] = None EventTypeName: Optional[EventTypeName] = None ResourceType: Optional[ResourceType] = None class ListEventTypesFilters(BaseModel): __root__: List[ListEventTypesFilter] class ListEventTypesRequest(BaseModel): Filters: Optional[ListEventTypesFilters] = None NextToken: Optional[NextToken] = None MaxResults: Optional[MaxResults] = None class ListNotificationRulesFilters(BaseModel): __root__: List[ListNotificationRulesFilter] class ListNotificationRulesRequest(BaseModel): Filters: Optional[ListNotificationRulesFilters] = None NextToken: Optional[NextToken] = None MaxResults: Optional[MaxResults] = None class ListTargetsFilters(BaseModel): __root__: List[ListTargetsFilter] class ListTargetsRequest(BaseModel): Filters: Optional[ListTargetsFilters] = None NextToken: Optional[NextToken] = None MaxResults: Optional[MaxResults] = None class NotificationRuleSummary(BaseModel): """ Information about a specified notification rule. """ Id: Optional[NotificationRuleId] = None Arn: Optional[NotificationRuleArn] = None class SubscribeRequest(BaseModel): Arn: NotificationRuleArn Target: Target ClientRequestToken: Optional[ClientRequestToken] = None class UpdateNotificationRuleRequest(BaseModel): Arn: NotificationRuleArn Name: Optional[NotificationRuleName] = None Status: Optional[NotificationRuleStatus] = None EventTypeIds: Optional[EventTypeIds] = None Targets: Optional[Targets2] = None DetailType: Optional[DetailType] = None class ListTargetsResult(BaseModel): Targets: Optional[TargetsBatch] = None NextToken: Optional[NextToken] = None class EventTypeBatch(BaseModel): __root__: List[EventTypeSummary] class NotificationRuleBatch(BaseModel): __root__: List[NotificationRuleSummary] class DescribeNotificationRuleResult(BaseModel): Arn: NotificationRuleArn Name: Optional[NotificationRuleName] = None EventTypes: Optional[EventTypeBatch] = None Resource: Optional[NotificationRuleResource] = None Targets: Optional[TargetsBatch] = None DetailType: Optional[DetailType] = None CreatedBy: Optional[NotificationRuleCreatedBy] = None Status: Optional[NotificationRuleStatus] = None CreatedTimestamp: Optional[CreatedTimestamp] = None LastModifiedTimestamp: Optional[LastModifiedTimestamp] = None Tags: Optional[Tags] = None class ListEventTypesResult(BaseModel): EventTypes: Optional[EventTypeBatch] = None NextToken: Optional[NextToken] = None class ListNotificationRulesResult(BaseModel): NextToken: Optional[NextToken] = None NotificationRules: Optional[NotificationRuleBatch] = None
23.582949
351
0.740303
4a2630ae576f412f14ba699d698800f2224c3489
1,460
py
Python
pset8/hello/request.py
mar1zzo/cs50-havard-edx
d20bf4dbe45c2633f70704f0dbed7904a2b22841
[ "MIT" ]
1
2021-01-12T02:54:01.000Z
2021-01-12T02:54:01.000Z
pset8/hello/request.py
mar1zzo/cs50-havard-edx
d20bf4dbe45c2633f70704f0dbed7904a2b22841
[ "MIT" ]
null
null
null
pset8/hello/request.py
mar1zzo/cs50-havard-edx
d20bf4dbe45c2633f70704f0dbed7904a2b22841
[ "MIT" ]
null
null
null
# programa para criar uma pagina web com flask import random from flask import Flask, render_template, request # criando a variavel que vai instanciar a biblioteca flask app = Flask(__name__) # criando nossa primeira rota padrao @app.route("/") # criando uma funcao qq que retorna uma mensagem de texto na tela def index(): return render_template("index.html") # criando uma segunda rota qq @app.route("/hello") def hello(): name = request.args.get("name") if not name: return render_template("failure.html") return render_template("hello.html", name=name) # Como estava o index.html? # <!DOCTYPE html> # <html lang="en"> # <head> # <title>Hello!</title> # </head> # <body> # <form action="/hello"> # <input name="name" type="text"> # <input type="submit"> # </form> # </body> # </html> # Como estava o hello.html? # <!DOCTYPE html> # <html lang="en"> # <head> # <title>Hello!</title> # </head> # <body> # <h1> # Hello, {{ name }}! # </h1> # </body> # </html> # Como estava o failure.html? # <!DOCTYPE html> # <html lang="en"> # <head> # <title>Hello!</title> # <style> # body # { # color: red; # } # </style> # </head> # <body> # <h1> # You must provide a name! # </h1> # </body> # </html>
20.857143
65
0.528082
4a2630dbbfd26626d96d040b4e85d162afa93ac2
11,512
py
Python
apis/voca.py
sighill/shade_app
2b42d6411bc6e292b112a5e6be3598de8edadee1
[ "MIT" ]
null
null
null
apis/voca.py
sighill/shade_app
2b42d6411bc6e292b112a5e6be3598de8edadee1
[ "MIT" ]
null
null
null
apis/voca.py
sighill/shade_app
2b42d6411bc6e292b112a5e6be3598de8edadee1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # voca.py # Python 3.4.3 # Django 1.9 # Script rassemblant des fonctions python3 pour modifier les fichiers # des dossiers ###_raw ##################################################################### # README ! # Les fonctions suivantes sont là pour être appelées au sein d'un # script personnalisé pour chaque mission. # Pour importer facilement ces fonctions, CF premier snippet # en bas de ce script. # Implémenter un log permettant de suivre les étapes et le traitement # de la donnée. Le garder en global pour qu'il accumule les logs # de chaque fonction. # Des snippets de code utile sont dispos en fin de document # RAPPEL SUBLIMETEXT : # Pour wrapper tout le code faire ctrl+a ctrl+k ctrl+1 ##################################################################### log = '' headerConstant = 'HEADER;' ##################################################################### def WorkPath(): """ WorkPath 2016.04.09 L'utilisation de cette fonction permet d'utiliser des chemins d'accès relatifs entre scripts et dossiers Cette fonction détermine automatiquement où le script est lancé : Soit sur un pc en travail local Soit sur le serveur avec le shell Django """ # TODO : remplacer le snippet de travail en dossiers relatifs # de voca.py par cette fonction qui détecte automatiquement # le dossier de travail ! def AddLog(log_level , str_to_add): """ AddLog 2016.04.08 Cette fonction gère l'ajout d'une ligne à un compte rendu Elle gère aussi l'ajout de brackets HTML pour la mise en forme du log au niveau du template django log_level is either title , subtitle , corpus """ global log separator = '#' # If title, big separator and str_to_add if log_level == 'title': log = log + separator*70 + '\n' + str_to_add + '\n' # If subtitle, 4 space indent, medium separator, and str_to_add elif log_level == 'subtitle': log = log + ' ' + separator*35 + '\n' + ' ' + str_to_add + '\n' # If corpus, 8 spaces indent and str_to_add elif log_level == 'corpus': log = log + ' ' + str_to_add + '\n' # If typo else: log = log + 'WARNING : bad log_level, using corpus mode' log = log + ' ' + str_to_add + '\n' return log ##################################################################### def OutFileCreate(out_path,raw_filename,ref_list,header): """ OutFileCreate 2016.04.08 Crée les fichiers out et log au bon endroit, et les remplit. CF shade/README.md partie II.2 pour détails Conseil : fonction à appeler en fin de procédure Cette fonction attend quatre arguments: Le chemin absolu vers le dossier out WIP ! Le nom de fichier ###_raw (type attendu : string) Le texte raffiné ref_list (type attendu : list de strings) Le log de la procédure (type attendu : string) """ # Variables globales global log # Variables locales file_id = raw_filename[:3] # Création du header headerComplete = '' if( header == '' ): AddLog('corpus' , 'Fichier créé sans header') else: headerComplete = headerConstant + header + '\n' AddLog('corpus' , 'Le header sera: {}'.format( headerComplete ) ) # Création du fichier ###_out # NB : l'argument w+ écrase l'ancien fichier s'il existe ! AddLog('corpus' , 'Création du fichier {}_out'.format(file_id)) with open(out_path + file_id + '_out' , 'w+') as ofi_out: # Insertion du header seulement si il est non nul if( headerComplete != '' ): ofi_out.write( headerComplete ) ofi_out.write('\n'.join(ref_list)) ofi_out.close() # Création du fichier ###_log # NB : l'argument w+ écrase l'ancien fichier s'il existe ! AddLog('corpus' , 'Création du fichier {}_log'.format(file_id)) with open(out_path + file_id + '_log' , 'w+') as ofi_log: ofi_log.write(log) ofi_log.close() ##################################################################### def StringFormatter(raw_str): """ StringFormatter 2016.04.08 Fonction de modification d'une string de n'importe quel type pour la mettre en forme selon le standard de l'app primus. Standard primus : Une majuscule en début de nom. Si nom composé, majuscule au début de chaque partie. """ # TODO : ajouter un convertisseur de caractères spéciaux. # Exemple : ` --> ' # Variables globales global log # Mise en forme : 'FoO-BAr' --> 'Foo-Bar' ref_str = raw_str.title() # Ecriture du log AddLog( 'corpus' , '{} --> {}.'.format(raw_str , ref_str)) return ref_str ##################################################################### def StrValidator(list): # WIP NE PAS UTILISER """ StrValidator 2016.04.09 Cette fonction permet de valider rapidement chaque entrée d'une liste manuellement. Elle prompte chaque ligne et attend un input. Input vide : validé Input non vide : éliminé """ # TODO : fonction de correction : utiliser while not line_corr_valid_ok # c'est sale et pas solide. A améliorer ! # Variables globales global log # Variables locales out_list = [] counter_valid = 0 counter_corr = 0 counter_eliminated = 0 print('StrValidator - inputs possibles : \n Vide : string validé.\n c : correction manuelle.\n Tout autre input : string éliminé') # Pour chaque ligne de list, prompt et attendre input. for line in list: # Demande d'input key_input = input(line + ' : ') # Si input vide, string éliminée si pas vide, string gardée if not key_input : out_list.append(line) counter_valid += 1 # Si correction, input demandé, confirmé, et ajouté. elif key_input in ['c','C']: line_corr_valid_ok = False while not line_corr_valid_ok: line_corr = input('Correction de {}: '.format(line)) line_corr_valid = input('Validez vous {} ? o/n : '.format(line_corr)) if line_corr_valid in ['o','O','y','Y']: out_list.append(line_corr_valid) line_corr_valid_ok = True counter_corr += 1 else: continue # Si input différent de vide ou 'c', string confirmé et éliminé. else: print('String éliminé.') counter_eliminated += 1 # Ajout du log AddLog('corpus', 'Lignes validées : {}'.format(counter_valid)) AddLog('corpus', 'Lignes corrigées : {}'.format(counter_corr)) AddLog('corpus', 'Lignes éliminées : {}'.format(counter_eliminated)) return out_list ##################################################################### def OdditiesFinder(raw_list): ''' OdditiesFinder 2016.04.12 Cherche dans la string d'entrée des caractères non prévus et pas acceptables dans la db primus. Chaque ligne (string) est transformée en liste de lettres (list) Chaque lettre est comparée à la liste des lettres acceptées. Si problème, prompt pour avoir la lettre de remplacement Laisser vide pour suppression de la lettre merdique. ''' # TODO : tester la fonction avec un insert de plusieurs lettres # dans le cas d'un remplacement de lettre --> plusieurs lettres # Variables globales global log # Variables locales ref_line_list = [] acceptable_char = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '\'' , ' ' ] # Pour chaque ligne, déconstruction lettre par lettre et # comparaison de chaque lettre à un dico personnalisé for line in raw_list: # Passage de string à liste de lettres letter_list = list(line) curseur = 0 for letter in letter_list: if letter not in acceptable_char: replacement_letter = input('Bizarrerie trouvée : \' {} \' dans \' {} \'. Remplacer par : '.format(letter , line)) letter_list[curseur] = replacement_letter AddLog('corpus' , '{} : Modification de la lettre : {} en {}'.format(line , letter , replacement_letter)) else: pass curseur += 1 # Reconstruction de la string à partir de la liste de lettres line = ''.join(letter_list) #Ajout de la string dans la liste de sortie ref_line_list.append(line) return ref_line_list ##################################################################### # SNIPPETS DE CODE UTILES ##################################################################### ''' # Ajout du répertoire de travail local pour travailler en système # de fichiers relatifs et importer les fonctions voca facilement import sys sys.path.insert(0 , 'D:/Projets/shade_django/apis/') from voca import AddLog , StringFormatter , OutFileCreate ''' ''' # créer une liste comportant toutes les lignes du fichier line_list = ofi.read().splitlines() # read() importe les lignes # splitlines() supprime le caractère de retour à la ligne ''' # Ouvrir un fichier et en tirer des lignes sans le caractère # spécial \n qui signifie un retour à la ligne : # ofi = open('path_to_file'+'file_name' , 'option') # CONSEIL : WRAPPE CE COMMENT ! option est soit : # r Opens a file for reading only. The file pointer is placed # at the beginning of the file. This is the default mode. # r+ Opens a file for both reading and writing. The file pointer # placed at the beginning of the file. # w Opens a file for writing only. Overwrites the file if the # file exists. If the file does not exist, creates a # new file for writing. # w+ Opens a file for both writing and reading. Overwrites the # existing file if the file exists. If the file does # not exist, creates a new file for reading and writing. # wb+ Opens a file for both writing and reading in binary format. # Overwrites the existing file if the file exists. # If the file does not exist, creates a new file for # reading and writing. # a Opens a file for appending. The file pointer is at the end # of the file if the file exists. That is, the file is # in the append mode. If the file does not exist, it # creates a new file for writing. # a+ Opens a file for both appending and reading. The file # pointer is at the end of the file if the file exists. # The file opens in the append mode. If the file does # not exist, it creates a new file for reading and writing.
39.560137
138
0.564541
4a2631bb56bcc0e982f037bdd17f161ee9a918f4
5,436
py
Python
coffelli/dashboard/utils.py
coffeestudio/django-coffelli
cd0e6fbcfc169d8335351072c5816fb1d1639429
[ "BSD-3-Clause" ]
null
null
null
coffelli/dashboard/utils.py
coffeestudio/django-coffelli
cd0e6fbcfc169d8335351072c5816fb1d1639429
[ "BSD-3-Clause" ]
null
null
null
coffelli/dashboard/utils.py
coffeestudio/django-coffelli
cd0e6fbcfc169d8335351072c5816fb1d1639429
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 """ Admin ui common utilities. """ # PYTHON IMPORTS from __future__ import unicode_literals from fnmatch import fnmatch from importlib import import_module # DJANGO IMPORTS from django.conf import settings from django.contrib import admin from django.core.urlresolvers import reverse def _get_dashboard_cls(dashboard_cls, context): if isinstance(dashboard_cls, dict): curr_url = context.get('request').path for key in dashboard_cls: admin_site_mod, admin_site_inst = key.rsplit('.', 1) admin_site_mod = import_module(admin_site_mod) admin_site = getattr(admin_site_mod, admin_site_inst) admin_url = reverse('%s:index' % admin_site.name) if curr_url.startswith(admin_url): mod, inst = dashboard_cls[key].rsplit('.', 1) mod = import_module(mod) return getattr(mod, inst) else: mod, inst = dashboard_cls.rsplit('.', 1) mod = import_module(mod) return getattr(mod, inst) raise ValueError('Dashboard matching "%s" not found' % dashboard_cls) def get_index_dashboard(context): """ Returns the admin dashboard defined in settings (or the default one). """ return _get_dashboard_cls(getattr( settings, 'GRAPPELLI_INDEX_DASHBOARD', 'coffelli.dashboard.dashboards.DefaultIndexDashboard' ), context)() def get_admin_site(context=None, request=None): dashboard_cls = getattr( settings, 'GRAPPELLI_INDEX_DASHBOARD', 'coffelli.dashboard.dashboards.DefaultIndexDashboard' ) if isinstance(dashboard_cls, dict): if context: request = context.get('request') curr_url = request.META['PATH_INFO'] for key in dashboard_cls: mod, inst = key.rsplit('.', 1) mod = import_module(mod) admin_site = getattr(mod, inst) admin_url = reverse('%s:index' % admin_site.name) if curr_url.startswith(admin_url): return admin_site else: return admin.site raise ValueError('Admin site matching "%s" not found' % dashboard_cls) def get_admin_site_name(context): return get_admin_site(context).name def get_avail_models(request): """ Returns (model, perm,) for all models user can possibly see """ items = [] admin_site = get_admin_site(request=request) for model, model_admin in admin_site._registry.items(): perms = model_admin.get_model_perms(request) if True not in perms.values(): continue items.append((model, perms,)) return items def filter_models(request, models, exclude): """ Returns (model, perm,) for all models that match models/exclude patterns and are visible by current user. """ items = get_avail_models(request) included = [] full_name = lambda model: '%s.%s' % (model.__module__, model.__name__) # I beleive that that implemented # O(len(patterns)*len(matched_patterns)*len(all_models)) # algorythm is fine for model lists because they are small and admin # performance is not a bottleneck. If it is not the case then the code # should be optimized. if len(models) == 0: included = items else: for pattern in models: pattern_items = [] for item in items: model, perms = item if fnmatch(full_name(model), pattern) and item not in included: pattern_items.append(item) pattern_items.sort(key=lambda x: str(x[0]._meta.verbose_name_plural.encode('utf-8'))) included.extend(pattern_items) result = included[:] for pattern in exclude: for item in included: model, perms = item if fnmatch(full_name(model), pattern): try: result.remove(item) except ValueError: # if the item was already removed skip pass return result class AppListElementMixin(object): """ Mixin class used by both the AppListDashboardModule and the AppListMenuItem (to honor the DRY concept). """ def _visible_models(self, request): included = self.models[:] excluded = self.exclude[:] if not self.models and not self.exclude: included = ["*"] return filter_models(request, included, excluded) def _get_admin_app_list_url(self, model, context): """ Returns the admin change url. """ app_label = model._meta.app_label return reverse('%s:app_list' % get_admin_site_name(context), args=(app_label,)) def _get_admin_change_url(self, model, context): """ Returns the admin change url. """ app_label = model._meta.app_label return reverse('%s:%s_%s_changelist' % (get_admin_site_name(context), app_label, model.__name__.lower())) def _get_admin_add_url(self, model, context): """ Returns the admin add url. """ app_label = model._meta.app_label return reverse('%s:%s_%s_add' % (get_admin_site_name(context), app_label, model.__name__.lower()))
32.746988
97
0.611111
4a2633ab6e0338e6ed92ec16f91938e7851f53a3
644
py
Python
gemlib/mcmc/__init__.py
ThomFNC/covid19uk
ca7e700259b23e4f909b4206d1c160803b5cc0a0
[ "MIT" ]
null
null
null
gemlib/mcmc/__init__.py
ThomFNC/covid19uk
ca7e700259b23e4f909b4206d1c160803b5cc0a0
[ "MIT" ]
null
null
null
gemlib/mcmc/__init__.py
ThomFNC/covid19uk
ca7e700259b23e4f909b4206d1c160803b5cc0a0
[ "MIT" ]
null
null
null
"""MCMC kernel addons""" from gemlib.mcmc.adaptive_random_walk_metropolis import ( AdaptiveRandomWalkMetropolis, ) from gemlib.mcmc.event_time_mh import ( UncalibratedEventTimesUpdate, TransitionTopology, ) from gemlib.mcmc.gibbs_kernel import GibbsKernel from gemlib.mcmc.multi_scan_kernel import MultiScanKernel from gemlib.mcmc.h5_posterior import Posterior from gemlib.mcmc.occult_events_mh import UncalibratedOccultUpdate __all__ = [ "AdaptiveRandomWalkMetropolis", "TransitionTopology", "UncalibratedEventTimesUpdate", "GibbsKernel", "MultiScanKernel", "Posterior", "UncalibratedOccultUpdate", ]
26.833333
65
0.791925
4a2634db250a238aeb5f072c2b697dfee398fd98
1,329
py
Python
app/modules/users/controller.py
awesomedeba10/ocr-automation-api
23e1773de7db74cae323c948d2050815d51e8724
[ "BSD-2-Clause" ]
null
null
null
app/modules/users/controller.py
awesomedeba10/ocr-automation-api
23e1773de7db74cae323c948d2050815d51e8724
[ "BSD-2-Clause" ]
null
null
null
app/modules/users/controller.py
awesomedeba10/ocr-automation-api
23e1773de7db74cae323c948d2050815d51e8724
[ "BSD-2-Clause" ]
null
null
null
from re import template from flask import Blueprint, json, request import os from app import app from app.helper import * from app.middleware import login_required, param_required from app.modules.users.schema import * user_blueprint = Blueprint('user_blueprint', __name__) @user_blueprint.route('/create', methods=['POST']) @param_required(UserCreationSchema()) def create(): user_info = dict(request.form) user_info['user_id'] = return_random() user_info['templates'] = {} with open(os.path.join(app.config.get('STORAGE_DIR'),'users', user_info['user_id']+'.json'), 'w') as jsonFile: json.dump(user_info, jsonFile) return json.jsonify({ 'status': True, 'message': 'User ID Created Successfully', 'response': { 'user_id': user_info['user_id'] } }) @user_blueprint.route('/profile', methods=['POST']) @param_required(UserProfileSchema()) def profile(): user_id = request.form['user_id'] try: with open(os.path.join(app.config.get('STORAGE_DIR'),'users', user_id +'.json'), 'r') as jsonFile: return json.jsonify({ 'status': True, 'response': json.load(jsonFile) }) except FileNotFoundError: return json.jsonify(format_error({"user_id": ["Invalid User Id"]})), 400
31.642857
114
0.650865
4a2635d4f40d98d1427e86851b92975e57801958
792
py
Python
tests/integration/framework/lwm2m_test.py
cerkiewny/Anjay
b38ac519225cb27369c9a411f3f96899075c1216
[ "Apache-2.0" ]
161
2017-02-08T12:07:22.000Z
2022-03-20T11:10:10.000Z
tests/integration/framework/lwm2m_test.py
cerkiewny/Anjay
b38ac519225cb27369c9a411f3f96899075c1216
[ "Apache-2.0" ]
53
2017-03-15T12:58:40.000Z
2022-01-20T09:31:54.000Z
tests/integration/framework/lwm2m_test.py
cerkiewny/Anjay
b38ac519225cb27369c9a411f3f96899075c1216
[ "Apache-2.0" ]
68
2017-02-21T15:02:02.000Z
2022-03-19T06:24:21.000Z
# -*- coding: utf-8 -*- # # Copyright 2017-2021 AVSystem <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import test_suite from .test_utils import * from . import lwm2m from .lwm2m import coap from .lwm2m.server import Lwm2mServer from .lwm2m.messages import *
33
74
0.756313
4a26360940cdee6d81cd4845c33b1291169f4f13
882
py
Python
docs/en/conf.py
guanglinchen/esp-moonlight
285df0c5edbda9e7cbbcd6fc6b6185974887b797
[ "Apache-2.0" ]
2
2021-03-31T22:14:11.000Z
2021-12-03T03:40:34.000Z
docs/en/conf.py
guanglinchen/esp-moonlight
285df0c5edbda9e7cbbcd6fc6b6185974887b797
[ "Apache-2.0" ]
null
null
null
docs/en/conf.py
guanglinchen/esp-moonlight
285df0c5edbda9e7cbbcd6fc6b6185974887b797
[ "Apache-2.0" ]
2
2021-04-06T01:59:39.000Z
2021-12-11T13:26:53.000Z
# -*- coding: utf-8 -*- # # English Language RTD & Sphinx config file # # Uses ../conf_common.py for most non-language-specific settings. # Importing conf_common adds all the non-language-specific # parts to this conf module import sys, os sys.path.insert(0, os.path.abspath('../')) from conf_common import * # General information about the project. project = u'ESP-Jumpstart' copyright = u'2018 - 2019, Espressif Systems (Shanghai) PTE LTD' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = 'en' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'ReadtheDocsTemplate.tex', u'ESP-Jumpstart', u'2018 - 2019, Espressif Systems (Shanghai) PTE LTD', 'manual'), ]
31.5
74
0.730159
4a2637d006c0ea50e9840efd717ab9a632a11306
947
py
Python
package/cloudshell/cp/azure/common/parsers/security_group_parser.py
yaroslavNqualisystems/Azure-Shell
51e376fa60b8276570cc7763b1b1be70655e0b4d
[ "Apache-2.0" ]
5
2016-09-08T08:33:47.000Z
2020-02-10T12:31:15.000Z
package/cloudshell/cp/azure/common/parsers/security_group_parser.py
yaroslavNqualisystems/Azure-Shell
51e376fa60b8276570cc7763b1b1be70655e0b4d
[ "Apache-2.0" ]
505
2016-08-09T07:41:03.000Z
2021-02-08T20:26:46.000Z
package/cloudshell/cp/azure/common/parsers/security_group_parser.py
yaroslavNqualisystems/Azure-Shell
51e376fa60b8276570cc7763b1b1be70655e0b4d
[ "Apache-2.0" ]
5
2016-12-21T12:52:55.000Z
2021-07-08T09:50:42.000Z
from cloudshell.cp.azure.common.parsers.port_group_attribute_parser import PortGroupAttributeParser from cloudshell.cp.azure.models.app_security_groups_model import SecurityGroupConfiguration class SecurityGroupParser(object): def __init__(self): pass @staticmethod def parse_security_group_configurations(data): """ :param [list] data: :rtype list[SecurityGroupConfiguration] """ if not isinstance(data, list): return None parsed_data = [] for configuration in data: sg_configuration = SecurityGroupConfiguration() sg_configuration.subnet_id = configuration.subnetId rules = configuration.rules sg_configuration.rules = PortGroupAttributeParser.parse_security_group_rules_to_port_data(rules) parsed_data.append(sg_configuration) return parsed_data if (len(parsed_data) > 0) else None
33.821429
108
0.704329
4a26381c58fbbdf536b5b4e3e172091b13c984d1
2,602
py
Python
main_lqr.py
longwang-jhu/Complex-Step-SPSA
0db187d0add89c64c3ca11d8cfd1ee372b82538b
[ "MIT" ]
1
2021-10-15T08:09:33.000Z
2021-10-15T08:09:33.000Z
main_lqr.py
longwang-jhu/Complex-Step-SPSA
0db187d0add89c64c3ca11d8cfd1ee372b82538b
[ "MIT" ]
null
null
null
main_lqr.py
longwang-jhu/Complex-Step-SPSA
0db187d0add89c64c3ca11d8cfd1ee372b82538b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Last updated: 2021-03-14 @author: Long Wang """ from datetime import date import numpy as np import matplotlib.pyplot as plt from utility import norm_error # import algorithms from algorithms.spsa import SPSA from algorithms.cs_spsa import CsSPSA # import objective from objectives.lqr import LQR ### today = date.today() np.random.seed(100) p = 12; T = 100 n = 4; m = 3 x_0 = 20 * np.array([1, 2, -1, -0.5]).reshape(n,1) LQR_model = LQR(p=p, T=T, x_0=x_0) K_star = np.array([ [1.60233232e-01, -1.36227805e-01, -9.93576677e-02, -4.28244630e-02], [7.47596033e-02, 9.05753832e-02, 7.46951286e-02, -1.53947620e-01], [3.65372978e-01, -2.59862175e-04, 5.91522023e-02, 8.25660846e-01]]) theta_star = K_star.flatten() # loss_star = loss_true(theta_star) loss_star = 4149.38952236 def loss_true(theta): return LQR_model.compute_cost(theta) def loss_noisy(theta): return LQR_model.compute_cost_noisy(theta) # inital value K_0 = np.ones(K_star.shape) * 2 theta_0 = K_0.flatten() loss_0 = loss_true(theta_0) print('loss_0:', loss_0) # parameters alpha = 0.668; gamma = 0.167 iter_num = 500; rep_num = 5 print('running SPSA') SPSA_solver = SPSA(a=0.00005, c=0.5, A=100, alpha=alpha, gamma=gamma, iter_num=iter_num, rep_num=rep_num, theta_0=theta_0, loss_true=loss_true, loss_noisy=loss_noisy, record_loss_flag=True) # SPSA_solver.train() SPSA_loss_error = norm_error.get_norm_loss_error(SPSA_solver.loss_ks, loss_0, loss_star) plt.yscale('log') plt.plot(SPSA_loss_error, 'k-') print('running CsSPSA') CsSPSA_solver = CsSPSA(a=0.0001, c=0.5, A=100, alpha=alpha, gamma=gamma, iter_num=iter_num, rep_num=rep_num, theta_0=theta_0, loss_true=loss_true, loss_noisy=loss_noisy, record_loss_flag=True) CsSPSA_solver.train() CsSPSA_loss_error = norm_error.get_norm_loss_error(CsSPSA_solver.loss_ks, loss_0, loss_star) plt.yscale('log') plt.plot(CsSPSA_loss_error, 'k-') # plot loss fig = plt.figure() ax = fig.add_subplot() plt.grid() line_SPSA, = ax.plot(SPSA_loss_error, 'k--', dashes=(5,5)) line_SPSA_for_legend, = ax.plot([1], 'k--') line_CS_SPSA, = ax.plot(CsSPSA_loss_error, 'k-') plt.xlim(xmin=0, xmax=iter_num) plt.yscale("log") plt.legend((line_SPSA_for_legend, line_CS_SPSA), ("SPSA", "CS-SPSA"), loc="best") plt.xlabel("Number of Iterations") plt.ylabel("Normalized Errors in Loss (log scale)") plt.savefig("figures/LQR-loss-" + str(today) + ".pdf")#, bbox_inches='tight') plt.show()
29.235955
92
0.688701
4a263948777fca6c046fd297740329bc5081ddef
12,841
py
Python
flow/networks/bottleneck.py
cuijiaxun/MITC
a226308424237a69b5e938baf72949de9b1b4bf2
[ "MIT" ]
1
2021-06-17T03:25:13.000Z
2021-06-17T03:25:13.000Z
flow/networks/bottleneck.py
cuijiaxun/MITC
a226308424237a69b5e938baf72949de9b1b4bf2
[ "MIT" ]
null
null
null
flow/networks/bottleneck.py
cuijiaxun/MITC
a226308424237a69b5e938baf72949de9b1b4bf2
[ "MIT" ]
1
2021-03-18T16:20:57.000Z
2021-03-18T16:20:57.000Z
"""Contains the bottleneck network class.""" from flow.core.params import InitialConfig from flow.core.params import TrafficLightParams from flow.networks.base import Network import numpy as np ADDITIONAL_NET_PARAMS = { # the factor multiplying number of lanes. "scaling": 1, # edge speed limit 'speed_limit': 23 } class BottleneckNetwork(Network): """Network class for bottleneck simulations. This network acts as a scalable representation of the Bay Bridge. It consists of a two-stage lane-drop bottleneck where 4n lanes reduce to 2n and then to n, where n is the scaling value. The length of the bottleneck is fixed. Requires from net_params: * **scaling** : the factor multiplying number of lanes * **speed_limit** : edge speed limit Usage ----- >>> from flow.core.params import NetParams >>> from flow.core.params import VehicleParams >>> from flow.core.params import InitialConfig >>> from flow.networks import BottleneckNetwork >>> >>> network = BottleneckNetwork( >>> name='bottleneck', >>> vehicles=VehicleParams(), >>> net_params=NetParams( >>> additional_params={ >>> 'scaling': 1, >>> 'speed_limit': 1, >>> }, >>> ) >>> ) """ def __init__(self, name, vehicles, net_params, initial_config=InitialConfig(), traffic_lights=TrafficLightParams()): """Instantiate the network class.""" for p in ADDITIONAL_NET_PARAMS.keys(): if p not in net_params.additional_params: raise KeyError('Network parameter "{}" not supplied'.format(p)) super().__init__(name, vehicles, net_params, initial_config, traffic_lights) def specify_nodes(self, net_params): """See parent class.""" nodes = [ { "id": "1", "x": 0, "y": 0 }, # pre-toll { "id": "2", "x": 100, "y": 0 }, # toll { "id": "3", "x": 410, "y": 0 }, # light { "id": "4", "x": 550, "y": 0, "type": "zipper", "radius": 20 }, # merge1 { "id": "5", "x": 830, "y": 0, "type": "zipper", "radius": 20 }, # merge2 { "id": "6", "x": 985, "y": 0 }, # fake nodes used for visualization { "id": "fake1", "x": 0, "y": 1 }, { "id": "fake2", "x": 0, "y": 2 } ] # post-merge2 return nodes def specify_edges(self, net_params): """See parent class.""" scaling = net_params.additional_params.get("scaling", 1) speed = net_params.additional_params['speed_limit'] assert (isinstance(scaling, int)), "Scaling must be an int" edges = [ { "id": "1", "from": "1", "to": "2", "length": 100, "spreadType": "center", "numLanes": 4 * scaling, "speed": speed }, { "id": "2", "from": "2", "to": "3", "length": 310, "spreadType": "center", "numLanes": 4 * scaling, "speed": speed }, { "id": "3", "from": "3", "to": "4", "length": 140, "spreadType": "center", "numLanes": 4 * scaling, "speed": speed }, { "id": "4", "from": "4", "to": "5", "length": 280, "spreadType": "center", "numLanes": 2 * scaling, "speed": speed }, { "id": "5", "from": "5", "to": "6", "length": 155, "spreadType": "center", "numLanes": scaling, "speed": speed }, # fake edge used for visualization { "id": "fake_edge", "from": "fake1", "to": "fake2", "length": 1, "spreadType": "center", "numLanes": scaling, "speed": speed } ] return edges def specify_connections(self, net_params): """See parent class.""" scaling = net_params.additional_params.get("scaling", 1) conn_dic = {} conn = [] for i in range(4 * scaling): conn += [{ "from": "3", "to": "4", "fromLane": i, "toLane": int(np.floor(i / 2)) }] conn_dic["4"] = conn conn = [] for i in range(2 * scaling): conn += [{ "from": "4", "to": "5", "fromLane": i, "toLane": int(np.floor(i / 2)) }] conn_dic["5"] = conn return conn_dic def specify_centroids(self, net_params): """See parent class.""" centroids = [] centroids += [{ "id": "1", "from": None, "to": "1", "x": -30, "y": 0, }] centroids += [{ "id": "1", "from": "5", "to": None, "x": 985 + 30, "y": 0, }] return centroids def specify_routes(self, net_params): """See parent class.""" rts = { "1": ["1", "2", "3", "4", "5"], "2": ["2", "3", "4", "5"], "3": ["3", "4", "5"], "4": ["4", "5"], "5": ["5"] } return rts def specify_edge_starts(self): """See parent class.""" return [("1", 0), ("2", 100), ("3", 405), ("4", 425), ("5", 580)] def get_bottleneck_lanes(self, lane): """Return the reduced number of lanes.""" return [int(lane / 2), int(lane / 4)] class BottleneckNetwork3to2(Network): """Scenario class for bottleneck simulations. This network acts as a scalable representation of the Bay Bridge. It consists of a two-stage lane-drop bottleneck where 4n lanes reduce to 2n and then to n, where n is the scaling value. The length of the bottleneck is fixed. Requires from net_params: * **scaling** : the factor multiplying number of lanes * **speed_limit** : edge speed limit In order for right-of-way dynamics to take place at the intersection, set *no_internal_links* in net_params to False. Usage ----- >>> from flow.core.params import NetParams >>> from flow.core.params import VehicleParams >>> from flow.core.params import InitialConfig >>> from flow.scenarios import BottleneckScenario >>> >>> scenario = BottleneckScenario( >>> name='bottleneck', >>> vehicles=VehicleParams(), >>> net_params=NetParams( >>> additional_params={ >>> 'scaling': 1, >>> 'speed_limit': 1, >>> }, >>> no_internal_links=False # we want junctions >>> ) >>> ) """ def __init__(self, name, vehicles, net_params, initial_config=InitialConfig(), traffic_lights=TrafficLightParams()): """Instantiate the scenario class.""" for p in ADDITIONAL_NET_PARAMS.keys(): if p not in net_params.additional_params: raise KeyError('Network parameter "{}" not supplied'.format(p)) super().__init__(name, vehicles, net_params, initial_config, traffic_lights) def specify_nodes(self, net_params): """See parent class.""" nodes = [ { "id": "inflow_highway", "x": 0, "y": 0 }, { "id": "left", "x": 100, "y": 0 }, # toll { "id": "center", "x": 920, "y": 0, "type": "zipper", "radius": 70 }, { "id": "right", "x": 1100, "y": 0, }, # fake nodes used for visualization { "id": "fake1", "x": 0, "y": 1 }, { "id": "fake2", "x": 0, "y": 2 } ] # post-merge2 return nodes def specify_edges(self, net_params): """See parent class.""" scaling = net_params.additional_params.get("scaling", 1) speed = net_params.additional_params['speed_limit'] assert (isinstance(scaling, int)), "Scaling must be an int" edges = [ { "id": "inflow_highway", "from": "inflow_highway", "to": "left", "length": 100, "spreadType": "center", "numLanes": 3, "speed": speed }, { "id": "left", "from": "left", "to": "center", "length": 820, "spreadType": "center", "numLanes": 3, "speed": speed }, { "id": "center", "from": "center", "to": "right", "length": 180, "spreadType": "center", "numLanes": 2, "speed": speed }, # fake edge used for visualization { "id": "fake_edge", "from": "fake1", "to": "fake2", "length": 1, "spreadType": "center", "numLanes": scaling, "speed": speed } ] return edges def specify_connections(self, net_params): """See parent class.""" scaling = net_params.additional_params.get("scaling", 1) conn_dic = {} conn = [ { "from": "left", "to": "center", "fromLane": 0, "toLane": 0 }, { "from": "left", "to": "center", "fromLane": 1, "toLane": 0 }, { "from": "left", "to": "center", "fromLane": 1, "toLane": 1 }, { "from": "left", "to": "center", "fromLane": 2, "toLane": 1 } ] conn_dic["center"] = conn return conn_dic def specify_centroids(self, net_params): """See parent class.""" centroids = [] centroids += [{ "id": "1", "from": None, "to": "inflow_highway", "x": -30, "y": 0, }] centroids += [{ "id": "1", "from": "center", "to": None, "x": 1100 + 30, "y": 0, }] return centroids def specify_routes(self, net_params): """See parent class.""" rts = { "inflow_highway": ["inflow_highway", "left", "center"], "left": ["left", "center"], "center": ["center"], } return rts def specify_edge_starts(self): """See parent class.""" return [("inflow_highway", 0), ("left", 100), ("center", 920)] def specify_internal_edge_starts(self): """See parent class.""" # hard coded, must correspond to internal noded generated in the # network. Here I hard coded based on .net.xml file I have, and the # information in specify_edge_starts() return [(":left_0", 100), (":center_0", 920)] #def get_bottleneck_lanes(self, lane): # """Return the reduced number of lanes.""" # return [int(lane / 2), int(lane / 4)]
28.221978
79
0.410015
4a263b70239d3c463f832998ceef11c478c71da4
1,776
py
Python
samples/python/13.core-bot/envs/chat_bot_02/Lib/site-packages/adal/__init__.py
luzeunice/BotBuilder-Samples
b62be4e8863125a567902b736b7b74313d9d4f28
[ "MIT" ]
1
2021-10-16T19:33:56.000Z
2021-10-16T19:33:56.000Z
samples/python/13.core-bot/envs/chat_bot_02/Lib/site-packages/adal/__init__.py
luzeunice/BotBuilder-Samples
b62be4e8863125a567902b736b7b74313d9d4f28
[ "MIT" ]
1
2021-04-30T20:41:19.000Z
2021-04-30T20:41:19.000Z
venv/lib/python2.7/site-packages/adal/__init__.py
784134748/kubernetes-install
5df59632c2619632e422948b667fb68eab9ff5be
[ "MIT" ]
1
2019-07-25T15:09:05.000Z
2019-07-25T15:09:05.000Z
#------------------------------------------------------------------------------ # # Copyright (c) Microsoft Corporation. # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #------------------------------------------------------------------------------ # pylint: disable=wrong-import-position __version__ = '1.2.1' import logging from .authentication_context import AuthenticationContext from .token_cache import TokenCache from .log import (set_logging_options, get_logging_options, ADAL_LOGGER_NAME) from .adal_error import AdalError # to avoid "No handler found" warnings. logging.getLogger(ADAL_LOGGER_NAME).addHandler(logging.NullHandler())
39.466667
80
0.696509