hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a26823d702ba75dc63a6b31cbaeac1cefb349c3
686
py
Python
django_jwt/middleware.py
Casassarnau/django-jwt-oidc
0c047c060ff08736b56f408432fbff9ad5799ad3
[ "MIT" ]
5
2022-02-21T10:19:19.000Z
2022-03-29T19:05:44.000Z
django_jwt/middleware.py
Casassarnau/django-jwt-oidc
0c047c060ff08736b56f408432fbff9ad5799ad3
[ "MIT" ]
null
null
null
django_jwt/middleware.py
Casassarnau/django-jwt-oidc
0c047c060ff08736b56f408432fbff9ad5799ad3
[ "MIT" ]
1
2022-03-27T08:39:47.000Z
2022-03-27T08:39:47.000Z
from django.contrib.auth.models import AnonymousUser from django.utils.deprecation import MiddlewareMixin from django_jwt.auth import JWTAuthentication from django_jwt.settings_utils import get_setting class JWTAuthenticationMiddleware(MiddlewareMixin): def process_request(self, request): key = request.get_signed_cookie(get_setting('JWT_CLIENT.COOKIE_NAME'), None, salt=get_setting('SECRET_KEY')) user = None if key is not None: try: user = JWTAuthentication.authenticate_credentials(key) except JWTAuthentication.JWTException: pass request.user = user or AnonymousUser()
38.111111
117
0.706997
4a2682eab7b26af7111abc106b4714b0ca4d3f7b
1,099
py
Python
backend/views.py
jbwashington/F1n35-Server
e2da179bce74b006f1b495077c4188a61a5f1f64
[ "Apache-2.0" ]
null
null
null
backend/views.py
jbwashington/F1n35-Server
e2da179bce74b006f1b495077c4188a61a5f1f64
[ "Apache-2.0" ]
11
2020-09-04T10:13:29.000Z
2022-03-08T22:09:25.000Z
backend/views.py
jbwashington/F1n35-Server
e2da179bce74b006f1b495077c4188a61a5f1f64
[ "Apache-2.0" ]
null
null
null
from flask import request, jsonify, Blueprint from flask_login import login_required, login_user, current_user, logout_user from models import User bp = Blueprint('blueprint', __name__, template_folder='templates') @bp.route("/", methods=["GET"]) def index(): return jsonify(message="Hello World!"), 200 @bp.route("/login", methods=["POST"]) def login(): json_payload = request.get_json() user_entry = User.get(json_payload['username']) if (user_entry): user = User(*user_entry) if (user.password == json_payload['password']): # not for prod login_user(user) return jsonify(isLoggedIn=current_user.is_authenticated), 200 return jsonify(authorization=False), 403 @bp.route("/protected", methods=["GET"]) @login_required def protected(): return jsonify(message="WHATS BRACKIN SLIME"), 200 @bp.route("/me", methods=["GET"]) def me(): return jsonify(isLoggedIn=current_user.is_authenticated) @bp.route("/logout", methods=["GET"]) def logout(): logout_user() return jsonify(isLoggedIn=current_user.is_authenticated)
27.475
77
0.698817
4a268340053a1ddb86db483e978b359c47ca3eb6
640
py
Python
setup.py
PatrickAlphaC/cryptocompare
d94b9bc17d69f6460dbe95b94dbab5c1d2fefc15
[ "MIT" ]
null
null
null
setup.py
PatrickAlphaC/cryptocompare
d94b9bc17d69f6460dbe95b94dbab5c1d2fefc15
[ "MIT" ]
null
null
null
setup.py
PatrickAlphaC/cryptocompare
d94b9bc17d69f6460dbe95b94dbab5c1d2fefc15
[ "MIT" ]
null
null
null
from setuptools import setup with open('README.md', encoding="utf-8") as f: readme = f.read() setup( name='cryptocompare', version='0.7.3', description='Wrapper for CryptoCompare.com', long_description=readme, long_description_content_type='text/markdown', url='https://github.com/lagerfeuer/cryptocompare', author='lagerfeuer', author_email='[email protected]', keywords='crypto cryptocurrency wrapper cryptocompare', license='MIT', python_requires='>=3', packages=['cryptocompare'], classifiers=['Programming Language :: Python :: 3'], install_requires=['requests'] )
29.090909
59
0.695313
4a26843a2369c6d6443513e2c909facba9c54943
816
py
Python
ProjectApplication/evaluation/migrations/0011_adds_decision_letter.py
code-review-doctor/project-application
d85b40b69572efbcda24ce9c40803f76d8ffd192
[ "MIT" ]
5
2020-07-29T10:00:11.000Z
2022-02-19T11:00:34.000Z
ProjectApplication/evaluation/migrations/0011_adds_decision_letter.py
code-review-doctor/project-application
d85b40b69572efbcda24ce9c40803f76d8ffd192
[ "MIT" ]
471
2019-09-20T14:37:28.000Z
2022-03-25T14:16:34.000Z
ProjectApplication/evaluation/migrations/0011_adds_decision_letter.py
code-review-doctor/project-application
d85b40b69572efbcda24ce9c40803f76d8ffd192
[ "MIT" ]
5
2020-03-15T12:42:47.000Z
2022-02-15T18:06:52.000Z
# Generated by Django 3.0.3 on 2020-03-05 09:05 from django.db import migrations, models import evaluation.models import storages.backends.s3boto3 class Migration(migrations.Migration): dependencies = [ ('evaluation', '0010_file_name_processed_on_save'), ] operations = [ migrations.AddField( model_name='historicalproposalevaluation', name='decision_letter', field=models.TextField(blank=True, max_length=100, null=True), ), migrations.AddField( model_name='proposalevaluation', name='decision_letter', field=models.FileField(blank=True, null=True, storage=storages.backends.s3boto3.S3Boto3Storage(), upload_to=evaluation.models.proposal_evaluation_eligibility_letter_rename), ), ]
31.384615
185
0.682598
4a26844a23da6f7c906ea767fe60f0f6b85a2a89
4,021
py
Python
labs/lab06/data.py
abalone88/cs61a_2018sp
59d408d0961cf71faf10b77779bfc71c0c508f0c
[ "MIT" ]
2
2021-06-05T20:36:20.000Z
2021-06-05T20:44:26.000Z
labs/lab06/data.py
abalone88/cs61a_2018sp
59d408d0961cf71faf10b77779bfc71c0c508f0c
[ "MIT" ]
null
null
null
labs/lab06/data.py
abalone88/cs61a_2018sp
59d408d0961cf71faf10b77779bfc71c0c508f0c
[ "MIT" ]
null
null
null
# CS 61A World Game Data: from classes import * # Characters: james = Character('James', 'I saw Gibbes near Soda with a smoothie. You can probably find him there.') gibbes = Character('Gibbes', "This smoothie is so disappointing! " "I wish someone would bring me a non-disappointing smoothie.") jen = Character('Jen', 'No one brought food to the potluck! ' 'Maybe the Golden Bear Cafe (GBC) is open; we can get food there.') jerry_113 = Character('Jerry', "You just saw me in Wheeler? But I've been here all along!") tiffany = Character('Tiffany', "My marker ran out of ink, so I can't vandalize this tower!") jerry = Character('Jerry', 'I heard you like games, so I put some games in this game. ' 'Have you gone to Games of Berkeley on Shattuck?') allen = Character('Allen', 'Hey! Want to play ultimate frisbee?') student = Character('Student', 'I once went into Dwinelle and got lost for 3 days! ' 'That place is a maze!') scared_student = Character('Terrified Student', "I've been lost in Dwinelle for weeks") spooked_student = Character('Spooked Student', 'Help') # Things: smoothie = Thing('Smoothie', "Looks pretty non-disappointing. Gibbes might want this.") lemon = Thing('Lemon', 'Hmmm... try bringing it to a TA') coffee = Thing('Coffee', 'The sweet, caffeinated nectar of the gods') monopoly = Thing('Monopoly', 'Just right for 61A study breaks!') strange_skull = Thing('Strange Skull', 'A strange skull. Dinosaur? Giraffe? Who knows.') # Keys: try: skeleton_key = Key('Skeleton Key', 'A key that unlocks many doors') except NameError as e: skeleton_key = Thing('Not a Skeleton Key', 'You must first implement the Key class') # Places: sather_gate = Place('Sather Gate', 'Sather Gate - A fairly ineffective gate', [], []) fsm = Place('FSM', 'Free Speech Cafe - Home of Coffee', [], [smoothie, coffee]) vlsb = Place('VLSB', 'VLSB - Have you visited the dinosaur?', [james], [skeleton_key]) soda = Place('Soda', 'Soda Hall - A building where Soda is not allowed', [gibbes, jen, jerry_113], []) gbc = Place('GBC', 'Golden Bear Cafe - Now with (healthy?) food', [], [lemon]) campanile = Place('Campanile', 'The Campanile - A great tower!', [tiffany], []) game_store = Place('Games of Berkeley', 'Games of Berkeley', [], [monopoly]) hp = Place('HP', 'HP Auditorium', [], []) shattuck = Place('Shattuck', 'Shattuck Avenue', [], []) wheeler = Place('Wheeler', 'Wheeler - CS61A lectures are held here.', [jerry], []) dwinelle = Place('Dwinelle Hall', 'Dwinelle Hall - A Maze', [student], []) deep_dwinelle = Place('Deep in Dwinelle Hall', 'You are lost in Dwinelle Hall', [scared_student, spooked_student], [strange_skull]) memorial_glade = Place('Memorial Glade', 'Memorial Glade on a beautiful day', [allen], []) # Exits: sather_gate.add_exits([gbc, wheeler, dwinelle, memorial_glade]) gbc.add_exits([sather_gate]) wheeler.add_exits([sather_gate, campanile]) deep_dwinelle.add_exits([deep_dwinelle, dwinelle]) dwinelle.add_exits([sather_gate, vlsb, wheeler, deep_dwinelle]) memorial_glade.add_exits([sather_gate, fsm, campanile, soda]) campanile.add_exits([memorial_glade, wheeler]) vlsb.add_exits([fsm, soda, shattuck, dwinelle]) shattuck.add_exits([vlsb, game_store]) fsm.add_exits([vlsb, memorial_glade]) soda.add_exits([hp, vlsb, memorial_glade]) hp.add_exits([soda]) game_store.add_exits([shattuck]) # Locked Buildings fsm.locked = True # Player: # The Player should start at sather_gate. me = Player('Water', sather_gate)
40.21
93
0.616513
4a2684d52340d5170ad16aa921c8659376a0be7f
5,399
py
Python
manim/utils/bezier.py
elletech/practice_manim
83671e9e801490ce84100da3a684e369860fda37
[ "MIT" ]
1
2021-05-06T13:05:01.000Z
2021-05-06T13:05:01.000Z
manim/utils/bezier.py
elletech/practice_manim
83671e9e801490ce84100da3a684e369860fda37
[ "MIT" ]
null
null
null
manim/utils/bezier.py
elletech/practice_manim
83671e9e801490ce84100da3a684e369860fda37
[ "MIT" ]
null
null
null
"""Utility functions related to Bézier curves.""" __all__ = [ "bezier", "partial_bezier_points", "interpolate", "integer_interpolate", "mid", "inverse_interpolate", "match_interpolate", "get_smooth_handle_points", "diag_to_matrix", "is_closed", ] import typing import numpy as np from scipy import linalg from ..utils.simple_functions import choose CLOSED_THRESHOLD: float = 0.001 def bezier( points: np.ndarray, ) -> typing.Callable[[float], typing.Union[int, typing.Iterable]]: n = len(points) - 1 return lambda t: sum( [ ((1 - t) ** (n - k)) * (t ** k) * choose(n, k) * point for k, point in enumerate(points) ] ) def partial_bezier_points(points: np.ndarray, a: float, b: float) -> np.ndarray: """ Given an array of points which define a bezier curve, and two numbers 0<=a<b<=1, return an array of the same size, which describes the portion of the original bezier curve on the interval [a, b]. This algorithm is pretty nifty, and pretty dense. """ if a == 1: return [points[-1]] * len(points) a_to_1 = np.array([bezier(points[i:])(a) for i in range(len(points))]) end_prop = (b - a) / (1.0 - a) return np.array([bezier(a_to_1[: i + 1])(end_prop) for i in range(len(points))]) # Linear interpolation variants def interpolate(start: int, end: int, alpha: float) -> float: return (1 - alpha) * start + alpha * end def integer_interpolate(start: float, end: float, alpha: float) -> int: """ alpha is a float between 0 and 1. This returns an integer between start and end (inclusive) representing appropriate interpolation between them, along with a "residue" representing a new proportion between the returned integer and the next one of the list. For example, if start=0, end=10, alpha=0.46, This would return (4, 0.6). """ if alpha >= 1: return (end - 1, 1.0) if alpha <= 0: return (start, 0) value = int(interpolate(start, end, alpha)) residue = ((end - start) * alpha) % 1 return (value, residue) def mid(start: float, end: float) -> float: return (start + end) / 2.0 def inverse_interpolate(start: float, end: float, value: float) -> np.ndarray: return np.true_divide(value - start, end - start) def match_interpolate( new_start: float, new_end: float, old_start: float, old_end: float, old_value: float ) -> np.ndarray: return interpolate( new_start, new_end, inverse_interpolate(old_start, old_end, old_value) ) # Figuring out which bezier curves most smoothly connect a sequence of points def get_smooth_handle_points( points: np.ndarray, ) -> typing.Tuple[np.ndarray, np.ndarray]: points = np.array(points) num_handles = len(points) - 1 dim = points.shape[1] if num_handles < 1: return np.zeros((0, dim)), np.zeros((0, dim)) # Must solve 2*num_handles equations to get the handles. # l and u are the number of lower an upper diagonal rows # in the matrix to solve. l, u = 2, 1 # diag is a representation of the matrix in diagonal form # See https://www.particleincell.com/2012/bezier-splines/ # for how to arive at these equations diag = np.zeros((l + u + 1, 2 * num_handles)) diag[0, 1::2] = -1 diag[0, 2::2] = 1 diag[1, 0::2] = 2 diag[1, 1::2] = 1 diag[2, 1:-2:2] = -2 diag[3, 0:-3:2] = 1 # last diag[2, -2] = -1 diag[1, -1] = 2 # This is the b as in Ax = b, where we are solving for x, # and A is represented using diag. However, think of entries # to x and b as being points in space, not numbers b = np.zeros((2 * num_handles, dim)) b[1::2] = 2 * points[1:] b[0] = points[0] b[-1] = points[-1] def solve_func(b: np.ndarray) -> np.ndarray: return linalg.solve_banded((l, u), diag, b) use_closed_solve_function = is_closed(points) if use_closed_solve_function: # Get equations to relate first and last points matrix = diag_to_matrix((l, u), diag) # last row handles second derivative matrix[-1, [0, 1, -2, -1]] = [2, -1, 1, -2] # first row handles first derivative matrix[0, :] = np.zeros(matrix.shape[1]) matrix[0, [0, -1]] = [1, 1] b[0] = 2 * points[0] b[-1] = np.zeros(dim) def closed_curve_solve_func(b: np.ndarray) -> np.ndarray: return linalg.solve(matrix, b) handle_pairs = np.zeros((2 * num_handles, dim)) for i in range(dim): if use_closed_solve_function: handle_pairs[:, i] = closed_curve_solve_func(b[:, i]) else: handle_pairs[:, i] = solve_func(b[:, i]) return handle_pairs[0::2], handle_pairs[1::2] def diag_to_matrix(l_and_u: typing.Tuple[int, int], diag: np.ndarray) -> np.ndarray: """ Converts array whose rows represent diagonal entries of a matrix into the matrix itself. See scipy.linalg.solve_banded """ l, u = l_and_u dim = diag.shape[1] matrix = np.zeros((dim, dim)) for i in range(l + u + 1): np.fill_diagonal( matrix[max(0, i - u) :, max(0, u - i) :], diag[i, max(0, u - i) :] ) return matrix def is_closed(points: typing.Tuple[np.ndarray, np.ndarray]) -> bool: return np.allclose(points[0], points[-1])
29.664835
88
0.614558
4a2685902fbeb59f0f379729b052e1a767eb4e52
12,107
py
Python
examples/mpc_cifar/mpc_cifar.py
knarflin/CrypTen
6a06dc8cd52200f40a9fc520be0066bd0dea6b14
[ "MIT" ]
2
2020-03-23T18:32:13.000Z
2020-12-11T10:54:08.000Z
examples/mpc_cifar/mpc_cifar.py
knarflin/CrypTen
6a06dc8cd52200f40a9fc520be0066bd0dea6b14
[ "MIT" ]
10
2021-02-03T16:45:53.000Z
2021-04-07T16:24:17.000Z
examples/mpc_cifar/mpc_cifar.py
knarflin/CrypTen
6a06dc8cd52200f40a9fc520be0066bd0dea6b14
[ "MIT" ]
2
2020-04-15T19:28:02.000Z
2020-04-16T01:59:30.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import random import shutil import tempfile import time import crypten import crypten.communicator as comm import torch import torch.nn as nn import torch.nn.functional as F import torch.optim import torch.utils.data import torch.utils.data.distributed from examples.meters import AverageMeter from examples.util import NoopContextManager from torchvision import datasets, transforms def run_mpc_cifar( epochs=25, start_epoch=0, batch_size=1, lr=0.001, momentum=0.9, weight_decay=1e-6, print_freq=10, model_location="", resume=False, evaluate=True, seed=None, skip_plaintext=False, context_manager=None, ): if seed is not None: random.seed(seed) torch.manual_seed(seed) crypten.init() # create model model = LeNet() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD( model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay ) # optionally resume from a checkpoint best_prec1 = 0 if resume: if os.path.isfile(model_location): logging.info("=> loading checkpoint '{}'".format(model_location)) checkpoint = torch.load(model_location) start_epoch = checkpoint["epoch"] best_prec1 = checkpoint["best_prec1"] model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) logging.info( "=> loaded checkpoint '{}' (epoch {})".format( model_location, checkpoint["epoch"] ) ) else: raise IOError("=> no checkpoint found at '{}'".format(model_location)) # Data loading code def preprocess_data(context_manager, data_dirname): transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) with context_manager: trainset = datasets.CIFAR10( data_dirname, train=True, download=True, transform=transform ) testset = datasets.CIFAR10( data_dirname, train=False, download=True, transform=transform ) trainloader = torch.utils.data.DataLoader( trainset, batch_size=4, shuffle=True, num_workers=2 ) testloader = torch.utils.data.DataLoader( testset, batch_size=batch_size, shuffle=False, num_workers=2 ) return trainloader, testloader if context_manager is None: context_manager = NoopContextManager() data_dir = tempfile.TemporaryDirectory() train_loader, val_loader = preprocess_data(context_manager, data_dir.name) if evaluate: if not skip_plaintext: logging.info("===== Evaluating plaintext LeNet network =====") validate(val_loader, model, criterion, print_freq) logging.info("===== Evaluating Private LeNet network =====") input_size = get_input_size(val_loader, batch_size) private_model = construct_private_model(input_size, model) validate(val_loader, private_model, criterion, print_freq) # logging.info("===== Validating side-by-side ======") # validate_side_by_side(val_loader, model, private_model) return # define loss function (criterion) and optimizer for epoch in range(start_epoch, epochs): adjust_learning_rate(optimizer, epoch, lr) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, print_freq) # evaluate on validation set prec1 = validate(val_loader, model, criterion, print_freq) # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint( { "epoch": epoch + 1, "arch": "LeNet", "state_dict": model.state_dict(), "best_prec1": best_prec1, "optimizer": optimizer.state_dict(), }, is_best, ) data_dir.cleanup() def train(train_loader, model, criterion, optimizer, epoch, print_freq=10): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.add(loss.item(), input.size(0)) top1.add(prec1[0], input.size(0)) top5.add(prec5[0], input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time current_batch_time = time.time() - end batch_time.add(current_batch_time) end = time.time() if i % print_freq == 0: logging.info( "Epoch: [{}][{}/{}]\t" "Time {:.3f} ({:.3f})\t" "Loss {:.4f} ({:.4f})\t" "Prec@1 {:.3f} ({:.3f})\t" "Prec@5 {:.3f} ({:.3f})".format( epoch, i, len(train_loader), current_batch_time, batch_time.value(), loss.item(), losses.value(), prec1[0], top1.value(), prec5[0], top5.value(), ) ) def validate_side_by_side(val_loader, plaintext_model, private_model): """Validate the plaintext and private models side-by-side on each example""" # switch to evaluate mode plaintext_model.eval() private_model.eval() with torch.no_grad(): for i, (input, target) in enumerate(val_loader): # compute output for plaintext output_plaintext = plaintext_model(input) # encrypt input and compute output for private # assumes that private model is encrypted with src=0 input_encr = encrypt_data_tensor_with_src(input) output_encr = private_model(input_encr) # log all info logging.info("==============================") logging.info("Example %d\t target = %d" % (i, target)) logging.info("Plaintext:\n%s" % output_plaintext) logging.info("Encrypted:\n%s\n" % output_encr.get_plain_text()) # only use the first 1000 examples if i > 1000: break def get_input_size(val_loader, batch_size): input, target = next(iter(val_loader)) return input.size() def construct_private_model(input_size, model): """Encrypt and validate trained model for multi-party setting.""" # get rank of current process rank = comm.get().get_rank() dummy_input = torch.empty(input_size) # party 0 always gets the actual model; remaining parties get dummy model if rank == 0: model_upd = model else: model_upd = LeNet() private_model = crypten.nn.from_pytorch(model_upd, dummy_input).encrypt(src=0) return private_model def encrypt_data_tensor_with_src(input): """Encrypt data tensor for multi-party setting""" # get rank of current process rank = comm.get().get_rank() # get world size world_size = comm.get().get_world_size() if world_size > 1: # party 1 gets the actual tensor; remaining parties get dummy tensor src_id = 1 else: # party 0 gets the actual tensor since world size is 1 src_id = 0 if rank == src_id: input_upd = input else: input_upd = torch.empty(input.size()) private_input = crypten.cryptensor(input_upd, src=src_id) return private_input def validate(val_loader, model, criterion, print_freq=10): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (input, target) in enumerate(val_loader): if isinstance(model, crypten.nn.Module) and not crypten.is_encrypted_tensor( input ): input = encrypt_data_tensor_with_src(input) # compute output output = model(input) if crypten.is_encrypted_tensor(output): output = output.get_plain_text() loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.add(loss.item(), input.size(0)) top1.add(prec1[0], input.size(0)) top5.add(prec5[0], input.size(0)) # measure elapsed time current_batch_time = time.time() - end batch_time.add(current_batch_time) end = time.time() if (i + 1) % print_freq == 0: logging.info( "\nTest: [{}/{}]\t" "Time {:.3f} ({:.3f})\t" "Loss {:.4f} ({:.4f})\t" "Prec@1 {:.3f} ({:.3f}) \t" "Prec@5 {:.3f} ({:.3f})".format( i + 1, len(val_loader), current_batch_time, batch_time.value(), loss.item(), losses.value(), prec1[0], top1.value(), prec5[0], top5.value(), ) ) logging.info( " * Prec@1 {:.3f} Prec@5 {:.3f}".format(top1.value(), top5.value()) ) return top1.value() def save_checkpoint(state, is_best, filename="checkpoint.pth.tar"): """Saves checkpoint of plaintext model""" # only save from rank 0 process to avoid race condition rank = comm.get().get_rank() if rank == 0: torch.save(state, filename) if is_best: shutil.copyfile(filename, "model_best.pth.tar") def adjust_learning_rate(optimizer, epoch, lr=0.01): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" new_lr = lr * (0.1 ** (epoch // 5)) for param_group in optimizer.param_groups: param_group["lr"] = new_lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res class LeNet(nn.Sequential): """ Adaptation of LeNet that uses ReLU activations """ # network architecture: def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
31.944591
88
0.57124
4a26861c83bd93dbc803e187e68b4a9b49810759
2,604
py
Python
youtuatools/extractor/lemonde.py
Pagasis/YouTua
edb44b2065a7224f8b26aaf76166bf7287901567
[ "MIT" ]
47
2021-01-02T07:44:50.000Z
2022-02-28T22:02:13.000Z
nextdl/extractor/lemonde.py
devenu85/nextdl
0b458f556e2e0be80cb94bd9a9b1405ad2e9182d
[ "MIT" ]
4
2021-02-07T03:35:13.000Z
2021-10-31T19:23:53.000Z
nextdl/extractor/lemonde.py
devenu85/nextdl
0b458f556e2e0be80cb94bd9a9b1405ad2e9182d
[ "MIT" ]
8
2021-01-03T05:44:39.000Z
2021-11-01T05:46:32.000Z
from __future__ import unicode_literals from .common import InfoExtractor class LemondeIE(InfoExtractor): _VALID_URL = r"https?://(?:.+?\.)?lemonde\.fr/(?:[^/]+/)*(?P<id>[^/]+)\.html" _TESTS = [ { "url": "http://www.lemonde.fr/police-justice/video/2016/01/19/comprendre-l-affaire-bygmalion-en-cinq-minutes_4849702_1653578.html", "md5": "da120c8722d8632eec6ced937536cc98", "info_dict": { "id": "lqm3kl", "ext": "mp4", "title": "Comprendre l'affaire Bygmalion en 5 minutes", "thumbnail": r"re:^https?://.*\.jpg", "duration": 309, "upload_date": "20160119", "timestamp": 1453194778, "uploader_id": "3pmkp", }, }, { # standard iframe embed "url": "http://www.lemonde.fr/les-decodeurs/article/2016/10/18/tout-comprendre-du-ceta-le-petit-cousin-du-traite-transatlantique_5015920_4355770.html", "info_dict": { "id": "uzsxms", "ext": "mp4", "title": "CETA : quelles suites pour l'accord commercial entre l'Europe et le Canada ?", "thumbnail": r"re:^https?://.*\.jpg", "duration": 325, "upload_date": "20161021", "timestamp": 1477044540, "uploader_id": "3pmkp", }, "params": { "skip_download": True, }, }, { "url": "http://redaction.actu.lemonde.fr/societe/video/2016/01/18/calais-debut-des-travaux-de-defrichement-dans-la-jungle_4849233_3224.html", "only_matching": True, }, { # YouTube embeds "url": "http://www.lemonde.fr/pixels/article/2016/12/09/pourquoi-pewdiepie-superstar-de-youtube-a-menace-de-fermer-sa-chaine_5046649_4408996.html", "only_matching": True, }, ] def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) digiteka_url = self._proto_relative_url( self._search_regex( r'url\s*:\s*(["\'])(?P<url>(?:https?://)?//(?:www\.)?(?:digiteka\.net|ultimedia\.com)/deliver/.+?)\1', webpage, "digiteka url", group="url", default=None, ) ) if digiteka_url: return self.url_result(digiteka_url, "Digiteka") return self.url_result(url, "Generic")
37.2
163
0.517281
4a2686d96e5332d268201d0bad2ac481f79f2572
751
py
Python
02_challenge/02_challenge.py
anithagd30/wtfiswronghere
c2ebccd2fe8bb6df7e78bf9d9d81c1944e45c91b
[ "MIT" ]
null
null
null
02_challenge/02_challenge.py
anithagd30/wtfiswronghere
c2ebccd2fe8bb6df7e78bf9d9d81c1944e45c91b
[ "MIT" ]
null
null
null
02_challenge/02_challenge.py
anithagd30/wtfiswronghere
c2ebccd2fe8bb6df7e78bf9d9d81c1944e45c91b
[ "MIT" ]
null
null
null
""" We will use this script to teach Python to absolute beginners The script is an example of Fizz-Buzz implemented in Python The FizzBuzz problem: For all integers between 1 and 99 (include both): # print fizz for multiples of 3 # print buzz for multiples of 5 # print fizzbuzz for multiples of 3 and 5" """ def fizzbuzz(max_num): "This method implements FizzBuzz" # Google for 'range in python' to see what it does for i in range(1,max_num): # % or modulo division gives you the remainder if i%3==0 and i%5==0: print(i,"fizzbuzz") elif i%3==0: print(i,"fizz") elif i%5==0: print(i,"Buzz") #----START OF SCRIPT if __name__=='__main__': fizzbuzz(9)
27.814815
61
0.629827
4a268830078ee05db245f6d9d5b517507415e48a
4,091
py
Python
python/example_code/s3/s3_versioning/remove_delete_marker.py
Pahtoe/aws-doc-sdk-examples
1534e600cc1bbbf4d9da95cd5df6730e7473edf4
[ "Apache-2.0" ]
1
2020-08-27T16:54:38.000Z
2020-08-27T16:54:38.000Z
python/example_code/s3/s3_versioning/remove_delete_marker.py
hloo/aws-doc-sdk-examples
7ad6a0c079bda6a221c3bbd608cda237d4122bd7
[ "Apache-2.0" ]
null
null
null
python/example_code/s3/s3_versioning/remove_delete_marker.py
hloo/aws-doc-sdk-examples
7ad6a0c079bda6a221c3bbd608cda237d4122bd7
[ "Apache-2.0" ]
null
null
null
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ An AWS Lambda handler that receives an Amazon S3 batch event. The handler unpacks the event and removes the specified delete marker from the bucket. """ # snippet-start:[s3.python.lambda.remove_delete_marker] import logging from urllib import parse import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logger.setLevel('INFO') s3 = boto3.client('s3') def lambda_handler(event, context): """ Removes a delete marker from the specified versioned object. :param event: The S3 batch event that contains the ID of the delete marker to remove. :param context: Context about the event. :return: A result structure that Amazon S3 uses to interpret the result of the operation. When the result code is TemporaryFailure, S3 retries the operation. """ # Parse job parameters from Amazon S3 batch operations invocation_id = event['invocationId'] invocation_schema_version = event['invocationSchemaVersion'] results = [] result_code = None result_string = None task = event['tasks'][0] task_id = task['taskId'] try: obj_key = parse.unquote(task['s3Key'], encoding='utf-8') obj_version_id = task['s3VersionId'] bucket_name = task['s3BucketArn'].split(':')[-1] logger.info("Got task: remove delete marker %s from object %s.", obj_version_id, obj_key) try: # If this call does not raise an error, the object version is not a delete # marker and should not be deleted. response = s3.head_object( Bucket=bucket_name, Key=obj_key, VersionId=obj_version_id) result_code = 'PermanentFailure' result_string = f"Object {obj_key}, ID {obj_version_id} is not " \ f"a delete marker." logger.debug(response) logger.warning(result_string) except ClientError as error: delete_marker = error.response['ResponseMetadata']['HTTPHeaders'] \ .get('x-amz-delete-marker', 'false') if delete_marker == 'true': logger.info("Object %s, version %s is a delete marker.", obj_key, obj_version_id) try: s3.delete_object( Bucket=bucket_name, Key=obj_key, VersionId=obj_version_id) result_code = 'Succeeded' result_string = f"Successfully removed delete marker " \ f"{obj_version_id} from object {obj_key}." logger.info(result_string) except ClientError as error: # Mark request timeout as a temporary failure so it will be retried. if error.response['Error']['Code'] == 'RequestTimeout': result_code = 'TemporaryFailure' result_string = f"Attempt to remove delete marker from " \ f"object {obj_key} timed out." logger.info(result_string) else: raise else: raise ValueError(f"The x-amz-delete-marker header is either not " f"present or is not 'true'.") except Exception as error: # Mark all other exceptions as permanent failures. result_code = 'PermanentFailure' result_string = error logger.exception(error) finally: results.append({ 'taskId': task_id, 'resultCode': result_code, 'resultString': result_string }) return { 'invocationSchemaVersion': invocation_schema_version, 'treatMissingKeysAs': 'PermanentFailure', 'invocationId': invocation_id, 'results': results } # snippet-end:[s3.python.lambda.remove_delete_marker]
38.961905
88
0.594231
4a26895a31ec0e1182be3cd2b895cfbcb5d30aec
230
py
Python
cli/commands/cmd_stopall.py
Pythonian/catwatch
25730faa9d8ec6564b075de78bbbf4ff125ada97
[ "MIT" ]
null
null
null
cli/commands/cmd_stopall.py
Pythonian/catwatch
25730faa9d8ec6564b075de78bbbf4ff125ada97
[ "MIT" ]
null
null
null
cli/commands/cmd_stopall.py
Pythonian/catwatch
25730faa9d8ec6564b075de78bbbf4ff125ada97
[ "MIT" ]
2
2018-08-04T16:46:55.000Z
2019-07-02T19:30:24.000Z
import subprocess import click @click.command() def cli(): """ Stop all services. :return: Subprocess call result """ cmd = 'pkill honcho && docker-compose stop' return subprocess.call(cmd, shell=True)
15.333333
47
0.647826
4a268c538c826eedfe7dd2d9c131594353ea2811
947
py
Python
Ser_1/Code/seir1ask8d.py
AlexandrosKyriakakis/ElectromagneticFieldsB
c7d9cf077a7f6235d1ba27e62dd306d515fa38de
[ "MIT" ]
2
2021-02-22T11:20:03.000Z
2022-03-24T09:12:03.000Z
Ser_1/Code/seir1ask8d.py
AlexandrosKyriakakis/ElectromagneticFieldsB
c7d9cf077a7f6235d1ba27e62dd306d515fa38de
[ "MIT" ]
null
null
null
Ser_1/Code/seir1ask8d.py
AlexandrosKyriakakis/ElectromagneticFieldsB
c7d9cf077a7f6235d1ba27e62dd306d515fa38de
[ "MIT" ]
null
null
null
import scipy as sp import matplotlib import matplotlib.pyplot as plt import numpy as np from scipy import integrate from mpl_toolkits import mplot3d def f(x, y): e0 = 8.854 * (10**(-12)) def Sx(TH): return (2*e0) / \ (((x + 1 - 0.1*np.cos(TH))**2 + 1 + 0.01*(np.sin(TH))**2)**1.5) sx, error1 = integrate.quad(Sx, 0, np.pi*2) def Sy(TH): return (-1)/(((x - 1 - 0.1*np.cos(TH)) ** 2 + 1 + 0.01 * (np.sin(TH))**2)**1.5) sy, error1 = integrate.quad(Sy, 0, np.pi*2) return sx+sy f1 = np.vectorize(f) x = np.linspace(0, 2, 100) y = np.linspace(-2, 2, 100) X, Y = np.meshgrid(x, y) Z = f1(X, Y) fig, ax = plt.subplots() CS = ax.contour(X, Y, Z, zdir='xy', offset=11, cmap=matplotlib.cm.plasma, color='black') ax.clabel(CS, CS.levels, inline=True, fontsize=5) ax.set_title('Επιφανειακή Πυκνότητα Φορτίου') ax.set_xlabel('X(m)') ax.set_ylabel('Z(m)') plt.show()
21.044444
71
0.57339
4a268ce86fc34d9cfb693959f72998a8d81096bd
1,017
py
Python
homzhub_customization/homzhub_customization/doctype/customer_dashboard.py
HPL-ERP/homzhub_customization
311364116aa61fc00b263c78ffbb6d3946cff154
[ "MIT" ]
null
null
null
homzhub_customization/homzhub_customization/doctype/customer_dashboard.py
HPL-ERP/homzhub_customization
311364116aa61fc00b263c78ffbb6d3946cff154
[ "MIT" ]
null
null
null
homzhub_customization/homzhub_customization/doctype/customer_dashboard.py
HPL-ERP/homzhub_customization
311364116aa61fc00b263c78ffbb6d3946cff154
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from frappe import _ def get_data(data): return { 'heatmap': True, 'heatmap_message': _('This is based on transactions against this Customer. See timeline below for details'), 'fieldname': 'customer', 'non_standard_fieldnames': { 'Payment Entry': 'party', 'Quotation': 'party_name', 'Opportunity': 'party_name', 'Project':'tenant' }, 'dynamic_links': { 'party_name': ['Customer', 'quotation_to'] }, 'transactions': [ { 'label': _('Pre Sales'), 'items': ['Opportunity', 'Quotation'] }, { 'label': _('Orders'), 'items': ['Sales Order', 'Delivery Note', 'Sales Invoice'] }, { 'label': _('Payments'), 'items': ['Payment Entry'] }, { 'label': _('Support'), 'items': ['Issue'] }, { 'label': _('Projects'), 'items': ['Project'] }, { 'label': _('Pricing'), 'items': ['Pricing Rule'] }, { 'label': _('Subscriptions'), 'items': ['Subscription'] } ] }
19.941176
110
0.561455
4a268d237840418126dfde839970ccb927debe2f
7,101
py
Python
object_detector_app/object_detection/core/matcher_test.py
robotanica/moveo_ros
12d9e81dd393f3b540e6b9f771ce332a73c86472
[ "MIT" ]
null
null
null
object_detector_app/object_detection/core/matcher_test.py
robotanica/moveo_ros
12d9e81dd393f3b540e6b9f771ce332a73c86472
[ "MIT" ]
null
null
null
object_detector_app/object_detection/core/matcher_test.py
robotanica/moveo_ros
12d9e81dd393f3b540e6b9f771ce332a73c86472
[ "MIT" ]
1
2022-03-28T21:28:41.000Z
2022-03-28T21:28:41.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.matcher.""" import numpy as np import tensorflow as tf from object_detection.core import matcher class AnchorMatcherTest(tf.test.TestCase): def test_get_correct_matched_columnIndices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indices = [0, 1, 3, 5] matched_column_indices = match.matched_column_indices() self.assertEquals(matched_column_indices.dtype, tf.int32) with self.test_session() as sess: matched_column_indices = sess.run(matched_column_indices) self.assertAllEqual(matched_column_indices, expected_column_indices) def test_get_correct_counts(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) exp_num_matched_columns = 4 exp_num_unmatched_columns = 2 exp_num_ignored_columns = 1 num_matched_columns = match.num_matched_columns() num_unmatched_columns = match.num_unmatched_columns() num_ignored_columns = match.num_ignored_columns() self.assertEquals(num_matched_columns.dtype, tf.int32) self.assertEquals(num_unmatched_columns.dtype, tf.int32) self.assertEquals(num_ignored_columns.dtype, tf.int32) with self.test_session() as sess: (num_matched_columns_out, num_unmatched_columns_out, num_ignored_columns_out) = sess.run( [num_matched_columns, num_unmatched_columns, num_ignored_columns]) self.assertAllEqual(num_matched_columns_out, exp_num_matched_columns) self.assertAllEqual(num_unmatched_columns_out, exp_num_unmatched_columns) self.assertAllEqual(num_ignored_columns_out, exp_num_ignored_columns) def testGetCorrectUnmatchedColumnIndices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indices = [2, 4] unmatched_column_indices = match.unmatched_column_indices() self.assertEquals(unmatched_column_indices.dtype, tf.int32) with self.test_session() as sess: unmatched_column_indices = sess.run(unmatched_column_indices) self.assertAllEqual(unmatched_column_indices, expected_column_indices) def testGetCorrectMatchedRowIndices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_row_indices = [3, 1, 0, 5] matched_row_indices = match.matched_row_indices() self.assertEquals(matched_row_indices.dtype, tf.int32) with self.test_session() as sess: matched_row_inds = sess.run(matched_row_indices) self.assertAllEqual(matched_row_inds, expected_row_indices) def test_get_correct_ignored_column_indices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indices = [6] ignored_column_indices = match.ignored_column_indices() self.assertEquals(ignored_column_indices.dtype, tf.int32) with self.test_session() as sess: ignored_column_indices = sess.run(ignored_column_indices) self.assertAllEqual(ignored_column_indices, expected_column_indices) def test_get_correct_matched_column_indicator(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indicator = [True, True, False, True, False, True, False] matched_column_indicator = match.matched_column_indicator() self.assertEquals(matched_column_indicator.dtype, tf.bool) with self.test_session() as sess: matched_column_indicator = sess.run(matched_column_indicator) self.assertAllEqual(matched_column_indicator, expected_column_indicator) def test_get_correct_unmatched_column_indicator(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indicator = [False, False, True, False, True, False, False] unmatched_column_indicator = match.unmatched_column_indicator() self.assertEquals(unmatched_column_indicator.dtype, tf.bool) with self.test_session() as sess: unmatched_column_indicator = sess.run(unmatched_column_indicator) self.assertAllEqual(unmatched_column_indicator, expected_column_indicator) def test_get_correct_ignored_column_indicator(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indicator = [False, False, False, False, False, False, True] ignored_column_indicator = match.ignored_column_indicator() self.assertEquals(ignored_column_indicator.dtype, tf.bool) with self.test_session() as sess: ignored_column_indicator = sess.run(ignored_column_indicator) self.assertAllEqual(ignored_column_indicator, expected_column_indicator) def test_get_correct_unmatched_ignored_column_indices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indices = [2, 4, 6] unmatched_ignored_column_indices = (match. unmatched_or_ignored_column_indices()) self.assertEquals(unmatched_ignored_column_indices.dtype, tf.int32) with self.test_session() as sess: unmatched_ignored_column_indices = sess.run( unmatched_ignored_column_indices) self.assertAllEqual(unmatched_ignored_column_indices, expected_column_indices) def test_all_columns_accounted_for(self): # Note: deliberately setting to small number so not always # all possibilities appear (matched, unmatched, ignored) num_matches = 10 match_results = tf.random.uniform( [num_matches], minval=-2, maxval=5, dtype=tf.int32) match = matcher.Match(match_results) matched_column_indices = match.matched_column_indices() unmatched_column_indices = match.unmatched_column_indices() ignored_column_indices = match.ignored_column_indices() with self.test_session() as sess: matched, unmatched, ignored = sess.run([ matched_column_indices, unmatched_column_indices, ignored_column_indices ]) all_indices = np.hstack((matched, unmatched, ignored)) all_indices_sorted = np.sort(all_indices) self.assertAllEqual(all_indices_sorted, np.arange(num_matches, dtype=np.int32)) if __name__ == '__main__': tf.test.main()
47.02649
80
0.740177
4a268d682215360adb8929a5d03c09de15434064
3,984
py
Python
kubernetes_asyncio/client/models/v1_node_selector.py
weltonrodrigo/kubernetes_asyncio
b793f3e9ea43cbd0f4ff40ace1b0b677682f4042
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_node_selector.py
weltonrodrigo/kubernetes_asyncio
b793f3e9ea43cbd0f4ff40ace1b0b677682f4042
[ "Apache-2.0" ]
13
2021-04-12T02:03:48.000Z
2022-03-28T02:08:46.000Z
kubernetes_asyncio/client/models/v1_node_selector.py
weltonrodrigo/kubernetes_asyncio
b793f3e9ea43cbd0f4ff40ace1b0b677682f4042
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.16.14 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes_asyncio.client.configuration import Configuration class V1NodeSelector(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'node_selector_terms': 'list[V1NodeSelectorTerm]' } attribute_map = { 'node_selector_terms': 'nodeSelectorTerms' } def __init__(self, node_selector_terms=None, local_vars_configuration=None): # noqa: E501 """V1NodeSelector - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._node_selector_terms = None self.discriminator = None self.node_selector_terms = node_selector_terms @property def node_selector_terms(self): """Gets the node_selector_terms of this V1NodeSelector. # noqa: E501 Required. A list of node selector terms. The terms are ORed. # noqa: E501 :return: The node_selector_terms of this V1NodeSelector. # noqa: E501 :rtype: list[V1NodeSelectorTerm] """ return self._node_selector_terms @node_selector_terms.setter def node_selector_terms(self, node_selector_terms): """Sets the node_selector_terms of this V1NodeSelector. Required. A list of node selector terms. The terms are ORed. # noqa: E501 :param node_selector_terms: The node_selector_terms of this V1NodeSelector. # noqa: E501 :type: list[V1NodeSelectorTerm] """ if self.local_vars_configuration.client_side_validation and node_selector_terms is None: # noqa: E501 raise ValueError("Invalid value for `node_selector_terms`, must not be `None`") # noqa: E501 self._node_selector_terms = node_selector_terms def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1NodeSelector): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1NodeSelector): return True return self.to_dict() != other.to_dict()
32.129032
124
0.61998
4a268db0274b1afe5c56016133b5c54b85c18283
6,353
py
Python
python/GafferAppleseedUI/AppleseedAttributesUI.py
danieldresser-ie/gaffer
78c22487156a5800fcca49a24f52451a8ac0c559
[ "BSD-3-Clause" ]
null
null
null
python/GafferAppleseedUI/AppleseedAttributesUI.py
danieldresser-ie/gaffer
78c22487156a5800fcca49a24f52451a8ac0c559
[ "BSD-3-Clause" ]
null
null
null
python/GafferAppleseedUI/AppleseedAttributesUI.py
danieldresser-ie/gaffer
78c22487156a5800fcca49a24f52451a8ac0c559
[ "BSD-3-Clause" ]
null
null
null
########################################################################## # # Copyright (c) 2014, Esteban Tovagliari. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import string import Gaffer import GafferUI import GafferAppleseed def __visibilitySummary( plug ) : info = [] for childName, label in ( ( "camera", "Camera" ), ( "light", "Light" ), ( "shadow", "Shadow" ), ( "diffuse", "Diffuse" ), ( "specular", "Specular" ), ( "glossy", "Glossy" ), ) : values = [] if plug[childName+"Visibility"]["enabled"].getValue() : values.append( "On" if plug[childName+"Visibility"]["value"].getValue() else "Off" ) if values : info.append( label + " : " + "/".join( values ) ) return ", ".join( info ) def __shadingSummary( plug ) : info = [] if plug["shadingSamples"]["enabled"].getValue() : info.append( "Shading Samples %d" % plug["shadingSamples"]["value"].getValue() ) info.append( "Medium Priority %d" % plug["mediumPriority"]["value"].getValue() ) return ", ".join( info ) def __alphaMapSummary( plug ) : info = [] if plug["alphaMap"]["enabled"].getValue() : info.append( "Alpha Map %s" % plug["alphaMap"]["value"].getValue() ) return ", ".join( info ) def __meshSummary( plug ) : info = [] if plug["smoothNormals"]["enabled"].getValue() : info.append( "Smooth Normals %s" % plug["smoothNormals"]["value"].getValue() ) if plug["smoothTangents"]["enabled"].getValue() : info.append( "Smooth Tangents %s" % plug["smoothTangents"]["value"].getValue() ) return ", ".join( info ) Gaffer.Metadata.registerNode( GafferAppleseed.AppleseedAttributes, "description", """ Applies appleseed attributes to objects in the scene. """, plugs = { # Sections "attributes" : [ "layout:section:Visibility:summary", __visibilitySummary, "layout:section:Shading:summary", __shadingSummary, "layout:section:Alpha Map:summary", __alphaMapSummary, "layout:section:Mesh :summary", __meshSummary, ], # Visibility "attributes.cameraVisibility" : [ "description", """ Whether or not the object is visible to camera rays. To hide an object completely, use the visibility settings on the StandardAttributes node instead. """, "layout:section", "Visibility", "label", "Camera", ], "attributes.lightVisibility" : [ "description", """ Whether or not the object is visible to light rays (whether or not it is visible to photons). """, "layout:section", "Visibility", "label", "Light", ], "attributes.shadowVisibility" : [ "description", """ Whether or not the object is visible to shadow rays (whether or not it casts shadows). """, "layout:section", "Visibility", "label", "Shadow", ], "attributes.diffuseVisibility" : [ "description", """ Whether or not the object is visible to diffuse rays - whether it casts bounce light or not. """, "layout:section", "Visibility", "label", "Diffuse", ], "attributes.specularVisibility" : [ "description", """ Whether or not the object is visible in tight mirror reflections and refractions. """, "layout:section", "Visibility", "label", "Specular", ], "attributes.glossyVisibility" : [ "description", """ Whether or not the object is visible in soft specular reflections and refractions. """, "layout:section", "Visibility", "label", "Glossy", ], # Shading "attributes.shadingSamples" : [ "description", """ Number of samples to use when computing shading for the object. """, "layout:section", "Shading", ], "attributes.mediumPriority" : [ "description", """ Specify the object medium priority. When multiple objects share the same volume, appleseed will consider only the highest priority one for intersections and shading. Sometimes called nested dielectrics in other renderers. """, "layout:section", "Shading", ], # Alpha Map "attributes.alphaMap" : [ "description", """ Specifies a grayscale texture than can be used to efficiently discard unwanted parts of the surface of the object while computing ray intersections. """, "layout:section", "Alpha Map", ], "attributes.alphaMap.value" : [ "plugValueWidget:type", "GafferUI.FileSystemPathPlugValueWidget", "path:leaf", True, "path:bookmarks", "texture", ], "attributes.smoothNormals" : [ "description", """ Compute smooth normals. """, "layout:section", "Mesh", "label", "Smooth Normals", ], "attributes.smoothTangents" : [ "description", """ Compute smooth tangents. """, "layout:section", "Mesh", "label", "Smooth Tangents", ], } )
23.271062
87
0.651661
4a268dbf84d78fc55f4701f0d00c478dbf8015b9
7,289
py
Python
FigureTable/RadioROC/roc_pr.py
vkola-lab/multi-task
6a61db4223e1812744f13028747b07e2f840cc0b
[ "MIT" ]
null
null
null
FigureTable/RadioROC/roc_pr.py
vkola-lab/multi-task
6a61db4223e1812744f13028747b07e2f840cc0b
[ "MIT" ]
null
null
null
FigureTable/RadioROC/roc_pr.py
vkola-lab/multi-task
6a61db4223e1812744f13028747b07e2f840cc0b
[ "MIT" ]
null
null
null
import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) parentdir = os.path.dirname(parentdir) print(parentdir) sys.path.append(parentdir) from performance_eval import * import csv from collections import defaultdict # get diagnoses from radiologists' rating form team = defaultdict(dict) # key is initials of radiologist, content is rating with open('ratings.csv', 'r') as csv_file: reader = csv.DictReader(csv_file) for row in reader: if row['rev_initials'] in ['SQ', 'PJ test', 'PJ-trial chart', 'test', 'test (JL)']: continue id = row['id'].split()[0] team[row['rev_initials'].lower()][id] = row['dem_dx'] if row['dem_dx'] == '1' else '0' # for key in team: # print(key, len(team[key].keys()), team[key]) # name_map = {'jac': 'n1', 'phl': 'n2', 'am': 'n3', 'abp': 'n4', 'jes': 'n5', 'mjs': 'n6', 'hy': 'n7'} # with open('kappa/' + name_map[key] + '.csv', 'w') as csv_file: # writer = csv.DictWriter(csv_file, fieldnames=['Diagnosis Label']) # writer.writeheader() # for id in range(1, 51): # writer.writerow({'Diagnosis Label': team[key][str(id)]}) # get ground truth labels from 50cases_dummy.csv label = {} # key is dummy id, content is ADD label (0 is non-ADD, 1 is ADD) with open('../../lookupcsv/derived_tables/NACC_ALL/50cases_dummy.csv', 'r') as csv_file: reader = csv.DictReader(csv_file) for row in reader: label[row['dummy']] = row['ADD'] # print(label) def get_sensitivity_specificity(diag, label): tp, fp, tn, fn = 0, 0, 0, 0 for key in diag: assert key in label, 'id not found' if diag[key] == '1' and label[key] == '1': tp += 1 elif diag[key] == '1' and label[key] == '0': fp += 1 elif diag[key] == '0' and label[key] == '0': tn += 1 elif diag[key] == '0' and label[key] == '1': fn += 1 sensi = tp / (tp + fn + 0.00000001) specf = tn / (tn + fp + 0.00000001) preci = tp / (tp + fp + 0.00000001) recal = sensi return sensi, specf, preci, recal def generate_roc(csv_files, positive_label, color, out_file, team): """ :param csv_files: a list of csv files as above format :param positive_label: if positive_label == 'NC', the curve is about NC vs not NC if positive_label == 'DE', the curve is about DE vs not DE if positive_label =='ADD', the curve is about ADD vs nADD :param color: color of the roc curve :param out_file: image filename you want to save as :return: """ lw = 2 text_size = 12 fig, ax = plt.subplots(dpi=200) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) for csvfile in csv_files: scores, labels = get_score_label(csvfile, positive_label) fpr, tpr, thres = roc_curve(labels, scores, pos_label=1) AUC = auc(fpr, tpr) ax.plot(fpr, tpr, lw=lw/2, alpha=0.15) interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(AUC) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color=color, label=r'AUC=%0.3f$\pm$%0.3f' % (mean_auc, std_auc), lw=2, alpha=.8) ax.plot([0, 1], [0, 1], 'k--', lw=lw) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color=color, alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05]) legend_properties = {'weight': 'bold', 'size': text_size} ax.set_xlabel('False Positive Rate', fontsize=text_size, fontweight='bold') ax.set_ylabel('True Positive Rate', fontsize=text_size, fontweight='bold') ax.tick_params(axis='both', which='major', labelsize=14) add_dots(ax, team, 'roc') ax.legend(loc="lower right", prop=legend_properties) fig.savefig(out_file, bbox_inches='tight') fig.clf() plt.close() return mean_auc def generate_pr(csv_files, positive_label, color, out_file, team): lw = 2 text_size = 12 fig, ax = plt.subplots(dpi=200) prs = [] aucs = [] mean_rc = np.linspace(0, 1, 100) for csvfile in csv_files: scores, labels = get_score_label(csvfile, positive_label) pr, rc, thres = precision_recall_curve(labels, scores, pos_label=1) pr, rc = pr[::-1], rc[::-1] AUC = average_precision_score(labels, scores, pos_label=1) ax.plot(rc, pr, lw=lw/2, alpha=0.15) interp_pr = np.interp(mean_rc, rc, pr) prs.append(interp_pr) aucs.append(AUC) mean_pr = np.mean(prs, axis=0) mean_auc = np.mean(aucs) # is this right? std_auc = np.std(aucs) ax.plot(mean_rc, mean_pr, color=color, label=r'AP=%0.3f$\pm$%0.3f' % (mean_auc, std_auc), lw=2, alpha=.8) count = collections.Counter(labels) ratio = count[1] / (count[1] + count[0]) ax.plot([0, 1], [ratio, ratio], 'k--', lw=lw) std_pr = np.std(prs, axis=0) prs_upper = np.minimum(mean_pr + std_pr, 1) prs_lower = np.maximum(mean_pr - std_pr, 0) ax.fill_between(mean_rc, prs_lower, prs_upper, color=color, alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05]) legend_properties = {'weight': 'bold', 'size': text_size} ax.set_xlabel('Recall', fontsize=text_size, fontweight='bold') ax.set_ylabel('Precision', fontsize=text_size, fontweight='bold') ax.tick_params(axis='both', which='major', labelsize=14) add_dots(ax, team, 'pr') ax.legend(loc="lower left", prop=legend_properties) fig.savefig(out_file, bbox_inches='tight') fig.clf() plt.close() return mean_auc def add_dots(ax, team, mode): y_list, x_list = [], [] for ini in team: sen, spe, pre, rec = get_sensitivity_specificity(team[ini], label) print(ini + ' has sensitivity ', sen, ' has specificity ', spe) if mode == 'roc': y_list.append(sen) x_list.append(1-spe) if mode == 'pr': y_list.append(pre) x_list.append(rec) print(x_list, y_list) x_mean, x_std = np.array(x_list).mean(), np.array(x_list).std() y_mean, y_std = np.array(y_list).mean(), np.array(y_list).std() ax.scatter(x_list, y_list, color='b', marker='P', label='Radiologist', linewidths=1, edgecolors='k', s=7 ** 2, zorder=10) ax.errorbar(x_mean, y_mean, label='avg.Radiologist', xerr=x_std, yerr=y_std, fmt='o', markeredgewidth=1, markeredgecolor='k', markerfacecolor='green', markersize=7, marker='P', elinewidth=1.5, ecolor='green', capsize=3, zorder=11) # draw model roc curve csv_files = ['../../tb_log/CNN_3ways_special1_cross{}/neuro_test_eval_after.csv'.format(i) for i in range(5)] generate_roc(csv_files, 'ADD', 'r', 'radioroc.png', team) generate_pr(csv_files, 'ADD', 'r', 'radiopr.png', team)
40.494444
109
0.601317
4a268dde4d774af7768c59b276cd88e211f8cdec
453
py
Python
data/scripts/templates/object/static/structure/naboo/shared_gungan_shield_s01.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/static/structure/naboo/shared_gungan_shield_s01.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/static/structure/naboo/shared_gungan_shield_s01.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Static() result.template = "object/static/structure/naboo/shared_gungan_shield_s01.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
26.647059
79
0.728477
4a268e230d27c3ddf3c6f06ef2d0c066763505d9
257
py
Python
python/tests/config/sparse_nogold.py
CitizenScienceInAstronomyWorkshop/pyIBCC
35215648f3361689e374780182f39182eddda64f
[ "MIT" ]
11
2015-01-05T14:03:00.000Z
2020-05-31T07:22:20.000Z
python/tests/config/sparse_nogold.py
edwinrobots/pyIBCC
9a51a21638b1e22260a3386862725926addb46c3
[ "MIT" ]
5
2015-03-10T18:24:24.000Z
2018-04-03T12:52:40.000Z
python/tests/config/sparse_nogold.py
CitizenScienceInAstronomyWorkshop/pyIBCC
35215648f3361689e374780182f39182eddda64f
[ "MIT" ]
7
2015-03-16T11:35:08.000Z
2018-04-24T05:45:51.000Z
import numpy as np scores = np.array([0,1]) nScores = len(scores) nClasses = 2 inputFile = "./data/crowdlabels_sparse_mixed.csv" outputFile = "./data/test.out" confMatFile = "./data/test_ibcc.mat" nu0 = np.array([50,50]) alpha0 = np.array([[2, 1], [1, 2]])
25.7
49
0.677043
4a268e4d8f5ff36d46432fb4209de18e0dc881cd
993
py
Python
grid_search.py
FDKevin0/Micro-Expression-with-Deep-Learning
617a359f264a4ccc4b6c5b1eb68c56b08d9cc397
[ "BSD-3-Clause-Attribution" ]
null
null
null
grid_search.py
FDKevin0/Micro-Expression-with-Deep-Learning
617a359f264a4ccc4b6c5b1eb68c56b08d9cc397
[ "BSD-3-Clause-Attribution" ]
null
null
null
grid_search.py
FDKevin0/Micro-Expression-with-Deep-Learning
617a359f264a4ccc4b6c5b1eb68c56b08d9cc397
[ "BSD-3-Clause-Attribution" ]
null
null
null
import itertools import matplotlib.pyplot as plt import numpy as np plt.figure() title = "test" classes = ['2nd Last FC', 'Last FC', '', '', ''] # VGG classes_2 = ['1-layer LSTM(512)', '1-layer LSTM(3000)', '2-layer LSTM(1024-1024)', '2-layer LSTM(3000-1024)', '2-layer LSTM(5000-1024)'] # LSTM cmap = plt.cm.Blues sample_list = np.array([[0, 0.35], [0, 0.35], [0, 0.31], [0.27, 0.31], [0, 0.27]]) plt.imshow(sample_list, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes_2) thresh = sample_list.max() / 2. for i, j in itertools.product(range(sample_list.shape[0]), range(sample_list.shape[1])): plt.text(j, i, format(sample_list[i, j]), horizontalalignment="center", color="white" if sample_list[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show()
31.03125
109
0.660624
4a268e96b365ba018064f0627c0d8e79d1f7ddf5
9,507
py
Python
cosmosis/runtime/parameter.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
1
2021-09-15T10:10:26.000Z
2021-09-15T10:10:26.000Z
cosmosis/runtime/parameter.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
null
null
null
cosmosis/runtime/parameter.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
1
2021-06-11T15:29:43.000Z
2021-06-11T15:29:43.000Z
#coding: utf-8 u"""Definition of the :class:`Parameter` class.""" from __future__ import absolute_import from builtins import object import random from . import config from . import prior as priors # to avoid breaking other stuff below import numpy as np class Parameter(object): u"""Distribution meta-data for a :class:`Pipeline` parameter. While pipeline modules deal with a dictionary of scalar parameters, the pipeline infrastructure (i.e., the :class:`Pipeline` class) must track meta-data for each parameter: the allowable range of values the parameter is allowed to take, and the (prior) distribution from which the values should be sampled. These data, *but not the parameter values themselves*, are stored in this class and kept by the :class:`Pipeline` class in an array which parallels the :class:`DataBlock` or :class:`Config` which holds the values. """ def __init__(self, section, name, start, limits=None, prior=None): u"""Store meta-data for parameter at `(section, name)`. If `prior` is not supplied, a uniform distribution is assumed. If `limits` are not supplied, the parameter will be considered fixed at the `start` value. For the available priors, see the :module:Priors module. """ if not limits: self.limits = (start, start) else: self.limits = limits if (limits[1]<limits[0]): raise ValueError("Your ini file specified that " "parameter %s in section %s had upper limit " "< lower limit"% (name, section)) self.section = section self.name = name self.start = start if prior is None: if limits is None: # Parameter has no setting in the priors file and is fixed prior = priors.DeltaFunctionPrior(start) else: # Parameter has no setting in the priors file and is # variable prior = priors.UniformPrior(limits[0], limits[1]) else: if limits is None: # Parameter does have setting in the priors file but is # fixed - just fix value prior = priors.DeltaFunctionPrior(start) else: # Parameter does have setting in the priors file and is # variable - truncate prior to limits prior = prior.truncate(limits[0], limits[1]) self.prior = prior # TODO: check consistency of prior with limits def __eq__(self, other): u"""Return `True` if `other` stands for the same data block entry as us. The same entry means that the `(section, name)` pairs are the same. Note that this is NOT a test of equality of the `Parameter`sʼ values! """ if isinstance(other, (list, tuple)): try: section, name = other except ValueError: return False return (self.section == section and self.name == name) elif isinstance(other, Parameter): return (self.section == other.section and self.name == other.name) elif isinstance(other, str): return other==self.__str__() else: raise NotImplementedError("Tried to do parameter==something where something was not a thing I understand.") def __str__(self): u"""Return our ID "section--name" as stringified version.""" return self.section + "--" + self.name def __repr__(self): u"""Return __str__.""" return self.__str__() def is_fixed(self): u"""Test whether this parameter is fixed or varied. Returns `True` if parameter is fixed to a single value by degenerate definition of the limits, and false if there is room for it to vary. """ return self.limits[0] == self.limits[1] def is_varied(self): u"""The opposite of :func:`is_fixed`.""" return not self.is_fixed() def in_range(self, p): u"""Check that the value `p` is in this parameterʼs allowed range.""" return self.limits[0] <= p <= self.limits[1] def width(self): u"""Return the difference between the upper and lower limits.""" return self.limits[1] - self.limits[0] def random_point(self): u"""Return a random number taken from the 'prior' distribution.""" return self.prior.sample() def normalize(self, p): u"""Return the relative position of `p` between the allowable limits: a value fron 0.0 to 1.0. But the return value will go beyond the unit interval if `p` is actually outside the limits. """ if self.is_fixed(): return 0.0 else: return (p - self.limits[0]) / (self.limits[1] - self.limits[0]) def denormalize(self, p, raise_exception=True): u"""Return the value at the relative position `p` between the lower and upper limits. If `p` is outside the range [0.0, 1.0], then if `raise_exception` is `True` a ValueError will be raised, otherwise a value extrapolated outside the range of the limits will be returned. """ if 0.0 <= p <= 1.0: return p*(self.limits[1]-self.limits[0]) + self.limits[0] elif not raise_exception: return p*(self.limits[1]-self.limits[0]) + self.limits[0] else: raise ValueError("parameter value {} for {} not normalized".format(p,self)) def denormalize_from_prior(self, p): u"""Take `p` as a probability, and find the value which has that (cumulated) probability in the prior distribution.""" if 0.0 <= p <= 1.0: return self.prior.denormalize_from_prior(p) else: raise ValueError("parameter value {} for {} not normalized".format(p,self)) def evaluate_prior(self, p): u"""Get the probability of `p` coming from the prior distribution.""" if p < self.limits[0] or p > self.limits[1]: return -np.inf elif self.prior: return self.prior(p) else: return 0.0 @staticmethod def load_parameters(value_file, priors_files=None, override=None): u"""Return array of :class:`Parameters` as directed by the input files. Every key in the `value_file` will produce an entry in the returned array, with the inferred starting value, and lower and upper limits (space-separated list). Where a key is also found in a given file in `priors_files` then a :class:`Prior` object will be constructed and attached to the parameter. If `override` contains a corresponding `(section, name)` key, then it will provide the start and limit values for the parameter, regardless of the file contents. """ if isinstance(value_file, config.Inifile): values_ini = value_file else: values_ini = config.Inifile(value_file) if priors_files: priors_data = priors.Prior.load_priors(priors_files) else: priors_data = {} parameters = [] for (section, name), value in values_ini: #override if available if (override is not None) and (section, name) in override: value = override[(section,name)] # parse value line start, limits = Parameter.parse_parameter(value) # check for prior pri = priors_data.get((section, name), None) parameters.append(Parameter(section, name, start, limits, pri)) return parameters @staticmethod def parse_parameter(line): u"""Interpret a `line` of one to three numbers as the start and range of a parameter. In all cases, the return will be a scalar start value and 2-tuple of limits. With one number, the start value will be taken and `None` returned as the limits tuple, indicating that the parameter is to be kept constant, equivalently a delta-function distribution. With two numbers, they will be taken as the limits and the starting value will be half way between the two. With three numbers, they will be taken directly as the start value, lower limit, and upper limit. """ try: values = [float(p) for p in line.split()] if len(values) == 1: if values[0]==int(values[0]): try: v = int(line) return v, None except ValueError: return values[0], None return values[0], None elif len(values) == 2: return 0.5*(values[0]+values[1]), tuple(values) elif len(values) == 3: return values[1], (values[0], values[2]) else: raise ValueError("Was expecting 1-3 values for " "parameter value %s" % (line,)) except ValueError as error: raise ValueError("Unable to parse numeric value for " "parameter value %s, error %s" % (line, error))
33.125436
126
0.585358
4a268ee6de45c8bb94a82cd154a030be9032abbe
2,221
py
Python
benchmark/startPyquil1163.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil1163.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil1163.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=52 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=3 prog += H(1) # number=4 prog += H(2) # number=5 prog += H(3) # number=6 prog += H(0) # number=38 prog += CZ(1,0) # number=39 prog += H(0) # number=40 prog += CNOT(1,0) # number=45 prog += Z(1) # number=46 prog += H(0) # number=49 prog += CZ(1,0) # number=50 prog += H(0) # number=51 prog += H(0) # number=32 prog += CZ(1,0) # number=33 prog += H(0) # number=34 prog += X(4) # number=48 prog += H(4) # number=21 prog += H(0) # number=1 prog += H(1) # number=2 prog += H(2) # number=7 prog += H(3) # number=8 prog += CNOT(3,0) # number=41 prog += Z(3) # number=42 prog += CNOT(3,0) # number=43 prog += CNOT(1,3) # number=44 prog += X(0) # number=9 prog += X(1) # number=10 prog += X(2) # number=11 prog += CNOT(0,3) # number=35 prog += X(3) # number=36 prog += CNOT(0,3) # number=37 prog += CNOT(1,0) # number=24 prog += X(0) # number=25 prog += CNOT(1,0) # number=26 prog += X(1) # number=14 prog += X(2) # number=15 prog += X(3) # number=16 prog += H(0) # number=17 prog += H(1) # number=18 prog += H(2) # number=19 prog += H(3) # number=20 prog += X(1) # number=22 prog += X(1) # number=23 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('5q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil1163.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
24.955056
64
0.541648
4a268f383c62cc15e8aa82f261f3ee6a50c8e949
1,424
py
Python
datasets/fairface/download_fairface.py
oxai/debias-vision-lang
15ff8a00c964fbd03543b77d98ea8d61438e2840
[ "MIT" ]
5
2022-03-23T02:34:28.000Z
2022-03-29T06:06:19.000Z
datasets/fairface/download_fairface.py
oxai/debias-vision-lang
15ff8a00c964fbd03543b77d98ea8d61438e2840
[ "MIT" ]
null
null
null
datasets/fairface/download_fairface.py
oxai/debias-vision-lang
15ff8a00c964fbd03543b77d98ea8d61438e2840
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 import os from gdown import download import subprocess BASE_PATH = os.path.abspath("") OUTDATA_PATH = os.path.join(BASE_PATH, "data") fairface_parts = { "imgs": { "train_val": ( "https://drive.google.com/uc?id=1g7qNOZz9wC7OfOhcPqH1EZ5bk1UFGmlL", "train_val_imgs.zip", ), }, "labels": { "train": ( "https://drive.google.com/uc?id=1i1L3Yqwaio7YSOCj7ftgk8ZZchPG7dmH", "train_labels.csv", ), "val": ( "https://drive.google.com/uc?id=1wOdja-ezstMEp81tX1a-EYkFebev4h7D", "val_labels.csv", ), }, } for part_name, part in fairface_parts.items(): for subpart_name, (subpart_url, subpart_fname) in part.items(): subpart_dir = os.path.join(OUTDATA_PATH, part_name, subpart_name) os.makedirs(subpart_dir, exist_ok=True) print(f"Downloading fairface {subpart_name} {part_name}...") output_path = os.path.join(subpart_dir, subpart_fname) download(subpart_url, output=output_path) if subpart_fname.endswith(".zip"): print(f"Unzipping {subpart_name} {part_name}...") subprocess.check_output(["unzip", "-d", subpart_dir, output_path]) os.remove(output_path) print(f"Done unzipping {subpart_name} {part_name}.") print(f"Done with fairface {subpart_name} {part_name}.")
33.116279
79
0.622893
4a268f4f2876440b5d01522bd80e44f01536ffad
64,529
py
Python
ape/intcoords/nifty.py
shihchengli/APE
c2f529b9e20959824317dbc3c018ce41702d67f6
[ "MIT" ]
3
2020-04-13T02:26:34.000Z
2022-01-04T12:02:08.000Z
ape/intcoords/nifty.py
shihchengli/APE
c2f529b9e20959824317dbc3c018ce41702d67f6
[ "MIT" ]
1
2021-08-06T11:05:51.000Z
2021-08-06T11:05:51.000Z
ape/intcoords/nifty.py
shihchengli/APE
c2f529b9e20959824317dbc3c018ce41702d67f6
[ "MIT" ]
1
2021-08-03T08:28:25.000Z
2021-08-03T08:28:25.000Z
"""@package geometric.nifty Nifty functions, originally intended to be imported by any module within ForceBalance. This file was copied over from ForceBalance to geomeTRIC in order to lighten the dependencies of the latter. Table of Contents: - I/O formatting - Math: Variable manipulation, linear algebra, least squares polynomial fitting - Pickle: Expand Python's own pickle to accommodate writing XML etree objects - Commands for submitting things to the Work Queue - Various file and process management functions - Development stuff (not commonly used) Named after the mighty Sniffy Handy Nifty (King Sniffy) @author Lee-Ping Wang @date 2018-03-10 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import filecmp import itertools import distutils.dir_util import os import re import shutil import sys from select import select import numpy as np from numpy.linalg import multi_dot # For Python 3 compatibility try: from itertools import zip_longest as zip_longest except ImportError: from itertools import izip_longest as zip_longest import threading from pickle import Pickler, Unpickler import tarfile import time import subprocess import math import six # For six.string_types from subprocess import PIPE from collections import OrderedDict, defaultdict #================================# # Set up the logger # #================================# if "forcebalance" in __name__: # If this module is part of ForceBalance, use the package level logger from .output import * package="ForceBalance" else: from logging import * # Define two handlers that don't print newline characters at the end of each line class RawStreamHandler(StreamHandler): """ Exactly like StreamHandler, except no newline character is printed at the end of each message. This is done in order to ensure functions in molecule.py and nifty.py work consistently across multiple packages. """ def __init__(self, stream = sys.stdout): super(RawStreamHandler, self).__init__(stream) def emit(self, record): message = record.getMessage() self.stream.write(message) self.flush() class RawFileHandler(FileHandler): """ Exactly like FileHandler, except no newline character is printed at the end of each message. This is done in order to ensure functions in molecule.py and nifty.py work consistently across multiple packages. """ def __init__(self, *args, **kwargs): super(RawFileHandler, self).__init__(*args, **kwargs) def emit(self, record): if self.stream is None: self.stream = self._open() message = record.getMessage() self.stream.write(message) self.flush() if "geometric" in __name__: # This ensures logging behavior is consistent with the rest of geomeTRIC logger = getLogger(__name__) logger.setLevel(INFO) package="geomeTRIC" else: logger = getLogger("NiftyLogger") logger.setLevel(INFO) handler = RawStreamHandler() logger.addHandler(handler) if __name__ == "__main__": package = "LPW-nifty.py" else: package = __name__.split('.')[0] try: import bz2 HaveBZ2 = True except ImportError: logger.warning("bz2 module import failed (used in compressing or decompressing pickle files)\n") HaveBZ2 = False try: import gzip HaveGZ = True except ImportError: logger.warning("gzip module import failed (used in compressing or decompressing pickle files)\n") HaveGZ = False # The directory that this file lives in rootdir = os.path.dirname(os.path.abspath(__file__)) # On 2020-05-07, these values were revised to CODATA 2018 values # hartree-joule relationship 4.359 744 722 2071(85) e-18 # Hartree energy in eV 27.211 386 245 988(53) # Avogadro constant 6.022 140 76 e23 (exact) # molar gas constant 8.314 462 618 (exact) # Boltzmann constant 1.380649e-23 (exact) # Bohr radius 5.291 772 109 03(80) e-11 # speed of light in vacuum 299 792 458 (exact) # reduced Planck's constant 1.054571817e-34 (exact) # calorie-joule relationship 4.184 J (exact; from NIST) ## Boltzmann constant in kJ mol^-1 k^-1 kb = 0.008314462618 # Previous value: 0.0083144100163 kb_si = 1.380649e-23 # Conversion factors bohr2ang = 0.529177210903 # Previous value: 0.529177210 ang2bohr = 1.0 / bohr2ang au2kcal = 627.5094740630558 # Previous value: 627.5096080306 kcal2au = 1.0 / au2kcal au2kj = 2625.4996394798254 # Previous value: 2625.5002 kj2au = 1.0 / au2kj grad_au2gmx = 49614.75258920567 # Previous value: 49614.75960959161 grad_gmx2au = 1.0 / grad_au2gmx au2evang = 51.422067476325886 # Previous value: 51.42209166566339 evang2au = 1.0 / au2evang c_lightspeed = 299792458. hbar = 1.054571817e-34 avogadro = 6.02214076e23 au_mass = 9.1093837015e-31 # Atomic unit of mass in kg amu_mass = 1.66053906660e-27 # Atomic mass unit in kg amu2au = amu_mass / au_mass cm2au = 100 * c_lightspeed * (2*np.pi*hbar) * avogadro / 1000 / au2kj # Multiply to convert cm^-1 to Hartree ambervel2au = 9.349961132249932e-04 # Multiply to go from AMBER velocity unit Ang/(1/20.455 ps) to bohr/atu. ## Q-Chem to GMX unit conversion for energy eqcgmx = au2kj # Previous value: 2625.5002 ## Q-Chem to GMX unit conversion for force fqcgmx = -grad_au2gmx # Previous value: -49621.9 #=========================# # I/O formatting # #=========================# # These functions may be useful someday but I have not tested them # def bzip2(src): # dest = src+'.bz2' # if not os.path.exists(src): # logger.error('File to be compressed does not exist') # raise RuntimeError # if os.path.exists(dest): # logger.error('Archive to be created already exists') # raise RuntimeError # with open(src, 'rb') as input: # with bz2.BZ2File(dest, 'wb', compresslevel=9) as output: # copyfileobj(input, output) # os.remove(input) # def bunzip2(src): # dest = re.sub('\.bz2$', '', src) # if not os.path.exists(src): # logger.error('File to be decompressed does not exist') # raise RuntimeError # if os.path.exists(dest): # logger.error('Target path for decompression already exists') # raise RuntimeError # with bz2.BZ2File(src, 'rb', compresslevel=9) as input: # with open(dest, 'wb') as output: # copyfileobj(input, output) # os.remove(input) def pvec1d(vec1d, precision=1, format="e", loglevel=INFO): """Printout of a 1-D vector. @param[in] vec1d a 1-D vector """ v2a = np.array(vec1d) for i in range(v2a.shape[0]): logger.log(loglevel, "%% .%i%s " % (precision, format) % v2a[i]) logger.log(loglevel, '\n') def astr(vec1d, precision=4): """ Write an array to a string so we can use it to key a dictionary. """ return ' '.join([("%% .%ie " % precision % i) for i in vec1d]) def pmat2d(mat2d, precision=1, format="e", loglevel=INFO): """Printout of a 2-D array. @param[in] mat2d a 2-D array """ m2a = np.array(mat2d) for i in range(m2a.shape[0]): for j in range(m2a.shape[1]): logger.log(loglevel, "%% .%i%s " % (precision, format) % m2a[i][j]) logger.log(loglevel, '\n') def grouper(iterable, n): """Collect data into fixed-length chunks or blocks""" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx args = [iter(iterable)] * n lzip = [[j for j in i if j is not None] for i in list(zip_longest(*args))] return lzip def encode(l): return [[len(list(group)),name] for name, group in itertools.groupby(l)] def segments(e): # Takes encoded input. begins = np.array([sum([k[0] for k in e][:j]) for j,i in enumerate(e) if i[1] == 1]) lens = np.array([i[0] for i in e if i[1] == 1]) return [(i, i+j) for i, j in zip(begins, lens)] def commadash(l): # Formats a list like [27, 28, 29, 30, 31, 88, 89, 90, 91, 100, 136, 137, 138, 139] # into '27-31,88-91,100,136-139 L = sorted(l) if len(L) == 0: return "(empty)" L.append(L[-1]+1) LL = [i in L for i in range(L[-1])] return ','.join('%i-%i' % (i[0]+1,i[1]) if (i[1]-1 > i[0]) else '%i' % (i[0]+1) for i in segments(encode(LL))) def uncommadash(s): # Takes a string like '27-31,88-91,100,136-139' # and turns it into a list like [26, 27, 28, 29, 30, 87, 88, 89, 90, 99, 135, 136, 137, 138] L = [] try: for w in s.split(','): ws = w.split('-') a = int(ws[0])-1 if len(ws) == 1: b = int(ws[0]) elif len(ws) == 2: b = int(ws[1]) else: logger.warning("Dash-separated list cannot exceed length 2\n") raise if a < 0 or b <= 0 or b <= a: if a < 0 or b <= 0: logger.warning("Items in list cannot be zero or negative: %d %d\n" % (a, b)) else: logger.warning("Second number cannot be smaller than first: %d %d\n" % (a, b)) raise newL = range(a,b) if any([i in L for i in newL]): logger.warning("Duplicate entries found in list\n") raise L += newL if sorted(L) != L: logger.warning("List is out of order\n") raise except: logger.error('Invalid string for converting to list of numbers: %s\n' % s) raise RuntimeError return L def natural_sort(l): """ Return a natural sorted list. """ # Convert a character to a digit or a lowercase character convert = lambda text: int(text) if text.isdigit() else text.lower() # Split string into "integer" and "noninteger" fields and convert each one alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] # Sort strings using these keys in descending order of importance, I guess. return sorted(l, key = alphanum_key) def printcool(text,sym="#",bold=False,color=2,ansi=None,bottom='-',minwidth=50,center=True,sym2="="): """Cool-looking printout for slick formatting of output. @param[in] text The string that the printout is based upon. This function will print out the string, ANSI-colored and enclosed in the symbol for example:\n <tt> ################# </tt>\n <tt> ### I am cool ### </tt>\n <tt> ################# </tt> @param[in] sym The surrounding symbol\n @param[in] bold Whether to use bold print @param[in] color The ANSI color:\n 1 red\n 2 green\n 3 yellow\n 4 blue\n 5 magenta\n 6 cyan\n 7 white @param[in] bottom The symbol for the bottom bar @param[in] minwidth The minimum width for the box, if the text is very short then we insert the appropriate number of padding spaces @return bar The bottom bar is returned for the user to print later, e.g. to mark off a 'section' """ def newlen(l): return len(re.sub(r"\x1b\[[0-9;]*m","",l)) text = text.split('\n') width = max(minwidth,max([newlen(line) for line in text])) bar = ''.join([sym2 for i in range(width + 6)]) bar = sym + bar + sym #bar = ''.join([sym for i in range(width + 8)]) logger.info('\r'+bar + '\n') for ln, line in enumerate(text): if type(center) is list: c1 = center[ln] else: c1 = center if c1: padleft = ' ' * (int((width - newlen(line))/2)) else: padleft = '' padright = ' '* (width - newlen(line) - len(padleft)) if ansi is not None: ansi = str(ansi) logger.info("%s| \x1b[%sm%s " % (sym, ansi, padleft)+line+" %s\x1b[0m |%s\n" % (padright, sym)) elif color is not None: if color == 0 and bold: logger.info("%s| \x1b[1m%s " % (sym, padleft) + line + " %s\x1b[0m |%s\n" % (padright, sym)) elif color == 0: logger.info("%s| %s " % (sym, padleft)+line+" %s |%s\n" % (padright, sym)) else: logger.info("%s| \x1b[%s9%im%s " % (sym, bold and "1;" or "", color, padleft)+line+" %s\x1b[0m |%s\n" % (padright, sym)) # if color == 3 or color == 7: # print "%s\x1b[40m\x1b[%s9%im%s" % (''.join([sym for i in range(3)]), bold and "1;" or "", color, padleft),line,"%s\x1b[0m%s" % (padright, ''.join([sym for i in range(3)])) # else: # print "%s\x1b[%s9%im%s" % (''.join([sym for i in range(3)]), bold and "1;" or "", color, padleft),line,"%s\x1b[0m%s" % (padright, ''.join([sym for i in range(3)])) else: warn_press_key("Inappropriate use of printcool") logger.info(bar + '\n') botbar = ''.join([bottom for i in range(width + 8)]) return botbar + '\n' def printcool_dictionary(Dict,title="Dictionary Keys : Values",bold=False,color=2,keywidth=25,topwidth=50,center=True,leftpad=0): """See documentation for printcool; this is a nice way to print out keys/values in a dictionary. The keys in the dictionary are sorted before printing out. @param[in] dict The dictionary to be printed @param[in] title The title of the printout """ if Dict is None: return bar = printcool(title,bold=bold,color=color,minwidth=topwidth,center=center) def magic_string(str): # This cryptic command returns a string with the number of characters specified as a variable. :P # Useful for printing nice-looking dictionaries, i guess. # print "\'%%-%is\' %% '%s'" % (keywidth,str.replace("'","\\'").replace('"','\\"')) return eval("\'%%-%is\' %% '%s'" % (keywidth,str.replace("'","\\'").replace('"','\\"'))) if isinstance(Dict, OrderedDict): logger.info('\n'.join([' '*leftpad + "%s %s " % (magic_string(str(key)),str(Dict[key])) for key in Dict if Dict[key] is not None])) else: logger.info('\n'.join([' '*leftpad + "%s %s " % (magic_string(str(key)),str(Dict[key])) for key in sorted([i for i in Dict]) if Dict[key] is not None])) logger.info("\n%s" % bar) #===============================# #| Math: Variable manipulation |# #===============================# def isint(word): """ONLY matches integers! If you have a decimal point? None shall pass! @param[in] word String (for instance, '123', '153.0', '2.', '-354') @return answer Boolean which specifies whether the string is an integer (only +/- sign followed by digits) """ try: word = str(word) except: return False return re.match('^[-+]?[0-9]+$', word) def isfloat(word): """Matches ANY number; it can be a decimal, scientific notation, what have you CAUTION - this will also match an integer. @param[in] word String (for instance, '123', '153.0', '2.', '-354') @return answer Boolean which specifies whether the string is any number """ try: word = str(word) except: return False if len(word) == 0: return False return re.match(r'^[-+]?[0-9]*\.?[0-9]*([eEdD][-+]?[0-9]+)?$',word) def isdecimal(word): """Matches things with a decimal only; see isint and isfloat. @param[in] word String (for instance, '123', '153.0', '2.', '-354') @return answer Boolean which specifies whether the string is a number with a decimal point """ try: word = str(word) except: return False return isfloat(word) and not isint(word) def floatornan(word): """Returns a big number if we encounter NaN. @param[in] word The string to be converted @return answer The string converted to a float; if not a float, return 1e10 @todo I could use suggestions for making this better. """ big = 1e10 if isfloat(word): return float(word) else: logger.info("Setting %s to % .1e\n" % big) return big def col(vec): """ Given any list, array, or matrix, return a 1-column 2D array. Input: vec = The input vector that is to be made into a column Output: A 1-column 2D array """ return np.array(vec).reshape(-1, 1) def row(vec): """Given any list, array, or matrix, return a 1-row 2D array. @param[in] vec The input vector that is to be made into a row @return answer A 1-row 2D array """ return np.array(vec).reshape(1, -1) def flat(vec): """Given any list, array, or matrix, return a single-index array. @param[in] vec The data to be flattened @return answer The flattened data """ return np.array(vec).reshape(-1) def est124(val): """Given any positive floating point value, return a value [124]e+xx that is closest to it in the log space. """ log = np.log10(val) logint = math.floor(log) logfrac = log - logint log1 = 0.0 log2 = 0.3010299956639812 log4 = 0.6020599913279624 log10 = 1.0 if logfrac < 0.5*(log1+log2): fac = 1.0 elif logfrac < 0.5*(log2+log4): fac = 2.0 elif logfrac < 0.5*(log4+log10): fac = 4.0 else: fac = 10.0 return fac*10**logint def est1234568(val): """Given any positive floating point value, return a value [1234568]e+xx that is closest to it in the log space. Just because I don't like seven and nine. Call me a numberist? """ log = np.log10(val) logint = math.floor(log) logfrac = log - logint log1 = 0.0 log2 = 0.3010299956639812 log3 = np.log10(3) log4 = 0.6020599913279624 log5 = np.log10(5) log6 = np.log10(6) log8 = np.log10(8) log10 = 1.0 if logfrac < 0.5*(log1+log2): fac = 1.0 elif logfrac < 0.5*(log2+log3): fac = 2.0 elif logfrac < 0.5*(log3+log4): fac = 3.0 elif logfrac < 0.5*(log4+log5): fac = 4.0 elif logfrac < 0.5*(log5+log6): fac = 5.0 elif logfrac < 0.5*(log6+log8): fac = 6.0 elif logfrac < 0.5*(log8+log10): fac = 8.0 else: fac = 10.0 return fac*10**logint def monotonic(arr, start, end): # Make sure an array is monotonically decreasing from the start to the end. a0 = arr[start] i0 = start if end > start: i = start+1 while i < end: if arr[i] < a0: arr[i0:i+1] = np.linspace(a0, arr[i], i-i0+1) a0 = arr[i] i0 = i i += 1 if end < start: i = start-1 while i >= end: if arr[i] < a0: arr[i:i0+1] = np.linspace(arr[i], a0, i0-i+1) a0 = arr[i] i0 = i i -= 1 def monotonic_decreasing(arr, start=None, end=None, verbose=False): """ Return the indices of an array corresponding to strictly monotonic decreasing behavior. Parameters ---------- arr : numpy.ndarray Input array start : int Starting index (first element if None) end : int Ending index (last element if None) Returns ------- indices : numpy.ndarray Selected indices """ if start is None: start = 0 if end is None: end = len(arr) - 1 a0 = arr[start] idx = [start] if verbose: logger.info("Starting @ %i : %.6f\n" % (start, arr[start])) if end > start: i = start+1 while i < end: if arr[i] < a0: a0 = arr[i] idx.append(i) if verbose: logger.info("Including %i : %.6f\n" % (i, arr[i])) else: if verbose: logger.info("Excluding %i : %.6f\n" % (i, arr[i])) i += 1 if end < start: i = start-1 while i >= end: if arr[i] < a0: a0 = arr[i] idx.append(i) if verbose: logger.info("Including %i : %.6f\n" % (i, arr[i])) else: if verbose: logger.info("Excluding %i : %.6f\n" % (i, arr[i])) i -= 1 return np.array(idx) #====================================# #| Math: Vectors and linear algebra |# #====================================# def orthogonalize(vec1, vec2): """Given two vectors vec1 and vec2, project out the component of vec1 that is along the vec2-direction. @param[in] vec1 The projectee (i.e. output is some modified version of vec1) @param[in] vec2 The projector (component subtracted out from vec1 is parallel to this) @return answer A copy of vec1 but with the vec2-component projected out. """ v2u = vec2/np.linalg.norm(vec2) return vec1 - v2u*np.dot(vec1, v2u) def invert_svd(X,thresh=1e-12): """ Invert a matrix using singular value decomposition. @param[in] X The 2-D NumPy array containing the matrix to be inverted @param[in] thresh The SVD threshold; eigenvalues below this are not inverted but set to zero @return Xt The 2-D NumPy array containing the inverted matrix """ u,s,vh = np.linalg.svd(X, full_matrices=0) uh = np.transpose(u) v = np.transpose(vh) si = s.copy() for i in range(s.shape[0]): if abs(s[i]) > thresh: si[i] = 1./s[i] else: si[i] = 0.0 si = np.diag(si) Xt = multi_dot([v, si, uh]) return Xt #==============================# #| Linear least squares |# #==============================# def get_least_squares(x, y, w = None, thresh=1e-12): """ @code __ __ | | | 1 (x0) (x0)^2 (x0)^3 | | 1 (x1) (x1)^2 (x1)^3 | | 1 (x2) (x2)^2 (x2)^3 | | 1 (x3) (x3)^2 (x3)^3 | | 1 (x4) (x4)^2 (x4)^3 | |__ __| @endcode @param[in] X (2-D array) An array of X-values (see above) @param[in] Y (array) An array of Y-values (only used in getting the least squares coefficients) @param[in] w (array) An array of weights, hopefully normalized to one. @param[out] Beta The least-squares coefficients @param[out] Hat The hat matrix that takes linear combinations of data y-values to give fitted y-values (weights) @param[out] yfit The fitted y-values @param[out] MPPI The Moore-Penrose pseudoinverse (multiply by Y to get least-squares coefficients, multiply by dY/dk to get derivatives of least-squares coefficients) """ # X is a 'tall' matrix. X = np.array(x) if len(X.shape) == 1: X = X[:,np.newaxis] Y = col(y) n_x = X.shape[0] n_fit = X.shape[1] if n_fit > n_x: logger.warning("Argh? It seems like this problem is underdetermined!\n") # Build the weight matrix. if w is not None: if len(w) != n_x: warn_press_key("The weight array length (%i) must be the same as the number of 'X' data points (%i)!" % len(w), n_x) w /= np.mean(w) WH = np.diag(w**0.5) else: WH = np.eye(n_x) # Make the Moore-Penrose Pseudoinverse. # if n_fit == n_x: # MPPI = np.linalg.inv(WH*X) # else: # This resembles the formula (X'WX)^-1 X' W^1/2 MPPI = np.linalg.pinv(np.dot(WH, X)) Beta = multi_dot([MPPI, WH, Y]) Hat = multi_dot([WH, X, MPPI]) yfit = flat(np.dot(Hat, Y)) # Return three things: the least-squares coefficients, the hat matrix (turns y into yfit), and yfit # We could get these all from MPPI, but I might get confused later on, so might as well do it here :P return np.array(Beta).flatten(), np.array(Hat), np.array(yfit).flatten(), np.array(MPPI) #===========================================# #| John's statisticalInefficiency function |# #===========================================# def statisticalInefficiency(A_n, B_n=None, fast=False, mintime=3, warn=True): """ Compute the (cross) statistical inefficiency of (two) timeseries. Notes The same timeseries can be used for both A_n and B_n to get the autocorrelation statistical inefficiency. The fast method described in Ref [1] is used to compute g. References [1] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. JCTC 3(1):26-41, 2007. Examples Compute statistical inefficiency of timeseries data with known correlation time. >>> import timeseries >>> A_n = timeseries.generateCorrelatedTimeseries(N=100000, tau=5.0) >>> g = statisticalInefficiency(A_n, fast=True) @param[in] A_n (required, numpy array) - A_n[n] is nth value of timeseries A. Length is deduced from vector. @param[in] B_n (optional, numpy array) - B_n[n] is nth value of timeseries B. Length is deduced from vector. If supplied, the cross-correlation of timeseries A and B will be estimated instead of the autocorrelation of timeseries A. @param[in] fast (optional, boolean) - if True, will use faster (but less accurate) method to estimate correlation time, described in Ref. [1] (default: False) @param[in] mintime (optional, int) - minimum amount of correlation function to compute (default: 3) The algorithm terminates after computing the correlation time out to mintime when the correlation function furst goes negative. Note that this time may need to be increased if there is a strong initial negative peak in the correlation function. @return g The estimated statistical inefficiency (equal to 1 + 2 tau, where tau is the correlation time). We enforce g >= 1.0. """ # Create numpy copies of input arguments. A_n = np.array(A_n) if B_n is not None: B_n = np.array(B_n) else: B_n = np.array(A_n) # Get the length of the timeseries. N = A_n.shape[0] # Be sure A_n and B_n have the same dimensions. if A_n.shape != B_n.shape: logger.error('A_n and B_n must have same dimensions.\n') raise ParameterError # Initialize statistical inefficiency estimate with uncorrelated value. g = 1.0 # Compute mean of each timeseries. mu_A = A_n.mean() mu_B = B_n.mean() # Make temporary copies of fluctuation from mean. dA_n = A_n.astype(np.float64) - mu_A dB_n = B_n.astype(np.float64) - mu_B # Compute estimator of covariance of (A,B) using estimator that will ensure C(0) = 1. sigma2_AB = (dA_n * dB_n).mean() # standard estimator to ensure C(0) = 1 # Trap the case where this covariance is zero, and we cannot proceed. if sigma2_AB == 0: if warn: logger.warning('Sample covariance sigma_AB^2 = 0 -- cannot compute statistical inefficiency\n') return 1.0 # Accumulate the integrated correlation time by computing the normalized correlation time at # increasing values of t. Stop accumulating if the correlation function goes negative, since # this is unlikely to occur unless the correlation function has decayed to the point where it # is dominated by noise and indistinguishable from zero. t = 1 increment = 1 while t < N-1: # compute normalized fluctuation correlation function at time t C = sum( dA_n[0:(N-t)]*dB_n[t:N] + dB_n[0:(N-t)]*dA_n[t:N] ) / (2.0 * float(N-t) * sigma2_AB) # Terminate if the correlation function has crossed zero and we've computed the correlation # function at least out to 'mintime'. if (C <= 0.0) and (t > mintime): break # Accumulate contribution to the statistical inefficiency. g += 2.0 * C * (1.0 - float(t)/float(N)) * float(increment) # Increment t and the amount by which we increment t. t += increment # Increase the interval if "fast mode" is on. if fast: increment += 1 # g must be at least unity if g < 1.0: g = 1.0 # Return the computed statistical inefficiency. return g def mean_stderr(ts): """Return mean and standard deviation of a time series ts.""" return np.mean(ts), \ np.std(ts)*np.sqrt(statisticalInefficiency(ts, warn=False)/len(ts)) # Slices a 2D array of data by column. The new array is fed into the statisticalInefficiency function. def multiD_statisticalInefficiency(A_n, B_n=None, fast=False, mintime=3, warn=True): n_row = A_n.shape[0] n_col = A_n.shape[-1] multiD_sI = np.zeros((n_row, n_col)) for col in range(n_col): if B_n is None: multiD_sI[:,col] = statisticalInefficiency(A_n[:,col], B_n, fast, mintime, warn) else: multiD_sI[:,col] = statisticalInefficiency(A_n[:,col], B_n[:,col], fast, mintime, warn) return multiD_sI #========================================# #| Loading compressed pickles |# #========================================# def lp_dump(obj, fnm, protocol=0): """ Write an object to a zipped pickle file specified by the path. """ # Safeguard against overwriting files? Nah. # if os.path.exists(fnm): # logger.error("lp_dump cannot write to an existing path") # raise IOError if os.path.islink(fnm): logger.warning("Trying to write to a symbolic link %s, removing it first\n" % fnm) os.unlink(fnm) if HaveGZ: f = gzip.GzipFile(fnm, 'wb') elif HaveBZ2: f = bz2.BZ2File(fnm, 'wb') else: f = open(fnm, 'wb') Pickler(f, protocol).dump(obj) f.close() def lp_load(fnm): """ Read an object from a bzipped file specified by the path. """ if not os.path.exists(fnm): logger.error("lp_load cannot read from a path that doesn't exist (%s)" % fnm) raise IOError def load_uncompress(): logger.warning("Compressed file loader failed, attempting to read as uncompressed file\n") f = open(fnm, 'rb') try: answer = Unpickler(f).load() except UnicodeDecodeError: answer = Unpickler(f, encoding='latin1').load() f.close() return answer def load_bz2(): f = bz2.BZ2File(fnm, 'rb') try: answer = Unpickler(f).load() except UnicodeDecodeError: answer = Unpickler(f, encoding='latin1').load() f.close() return answer def load_gz(): f = gzip.GzipFile(fnm, 'rb') try: answer = Unpickler(f).load() except UnicodeDecodeError: answer = Unpickler(f, encoding='latin1').load() f.close() return answer if HaveGZ: try: answer = load_gz() except: if HaveBZ2: try: answer = load_bz2() except: answer = load_uncompress() else: answer = load_uncompress() elif HaveBZ2: try: answer = load_bz2() except: answer = load_uncompress() else: answer = load_uncompress() return answer #==============================# #| Work Queue stuff |# #==============================# try: import work_queue except: pass #logger.warning("Work Queue library import fail (You can't queue up jobs using Work Queue)\n") # Global variable corresponding to the Work Queue object WORK_QUEUE = None # Global variable containing a mapping from target names to Work Queue task IDs WQIDS = defaultdict(list) def getWorkQueue(): global WORK_QUEUE return WORK_QUEUE def getWQIds(): global WQIDS return WQIDS def createWorkQueue(wq_port, debug=True, name=package): global WORK_QUEUE if debug: work_queue.set_debug_flag('all') WORK_QUEUE = work_queue.WorkQueue(port=wq_port) WORK_QUEUE.specify_name(name) # QYD: prefer the worker that is fastest in previous tasks # another choice is first-come-first serve: WORK_QUEUE_SCHEDULE_FCFS WORK_QUEUE.specify_algorithm(work_queue.WORK_QUEUE_SCHEDULE_TIME) # QYD: We don't want to specify the following extremely long keepalive times # because they will prevent checking "dead" workers, causing the program to wait forever #WORK_QUEUE.specify_keepalive_timeout(8640000) #WORK_QUEUE.specify_keepalive_interval(8640000) def destroyWorkQueue(): # Convenience function to destroy the Work Queue objects. global WORK_QUEUE, WQIDS WORK_QUEUE = None WQIDS = defaultdict(list) def queue_up(wq, command, input_files, output_files, tag=None, tgt=None, verbose=True, print_time=60): """ Submit a job to the Work Queue. @param[in] wq (Work Queue Object) @param[in] command (string) The command to run on the remote worker. @param[in] input_files (list of files) A list of locations of the input files. @param[in] output_files (list of files) A list of locations of the output files. """ global WQIDS task = work_queue.Task(command) cwd = os.getcwd() for f in input_files: lf = os.path.join(cwd,f) task.specify_input_file(lf,f,cache=False) for f in output_files: lf = os.path.join(cwd,f) task.specify_output_file(lf,f,cache=False) if tag is None: tag = command task.specify_tag(tag) task.print_time = print_time taskid = wq.submit(task) if verbose: logger.info("Submitting command '%s' to the Work Queue, %staskid %i\n" % (command, "tag %s, " % tag if tag != command else "", taskid)) if tgt is not None: WQIDS[tgt.name].append(taskid) else: WQIDS["None"].append(taskid) def queue_up_src_dest(wq, command, input_files, output_files, tag=None, tgt=None, verbose=True, print_time=60): """ Submit a job to the Work Queue. This function is a bit fancier in that we can explicitly specify where the input files come from, and where the output files go to. @param[in] wq (Work Queue Object) @param[in] command (string) The command to run on the remote worker. @param[in] input_files (list of 2-tuples) A list of local and remote locations of the input files. @param[in] output_files (list of 2-tuples) A list of local and remote locations of the output files. """ global WQIDS task = work_queue.Task(command) for f in input_files: # print f[0], f[1] task.specify_input_file(f[0],f[1],cache=False) for f in output_files: # print f[0], f[1] task.specify_output_file(f[0],f[1],cache=False) if tag is None: tag = command task.specify_tag(tag) task.print_time = print_time taskid = wq.submit(task) if verbose: logger.info("Submitting command '%s' to the Work Queue, taskid %i\n" % (command, taskid)) if tgt is not None: WQIDS[tgt.name].append(taskid) else: WQIDS["None"].append(taskid) def wq_wait1(wq, wait_time=10, wait_intvl=1, print_time=60, verbose=False): """ This function waits ten seconds to see if a task in the Work Queue has finished. """ global WQIDS if verbose: logger.info('---\n') if wait_intvl >= wait_time: wait_time = wait_intvl numwaits = 1 else: numwaits = int(wait_time/wait_intvl) for sec in range(numwaits): task = wq.wait(wait_intvl) if task: exectime = task.cmd_execution_time/1000000 if verbose: logger.info('A job has finished!\n') logger.info('Job name = ' + task.tag + 'command = ' + task.command + '\n') logger.info("status = " + task.status + '\n') logger.info("return_status = " + task.return_status) logger.info("result = " + task.result) logger.info("host = " + task.hostname + '\n') logger.info("execution time = " + exectime) logger.info("total_bytes_transferred = " + task.total_bytes_transferred + '\n') if task.result != 0: oldid = task.id oldhost = task.hostname tgtname = "None" for tnm in WQIDS: if task.id in WQIDS[tnm]: tgtname = tnm WQIDS[tnm].remove(task.id) taskid = wq.submit(task) logger.warning("Task '%s' (task %i) failed on host %s (%i seconds), resubmitted: taskid %i\n" % (task.tag, oldid, oldhost, exectime, taskid)) WQIDS[tgtname].append(taskid) else: if hasattr(task, 'print_time'): print_time = task.print_time if exectime > print_time: # Assume that we're only interested in printing jobs that last longer than a minute. logger.info("Task '%s' (task %i) finished successfully on host %s (%i seconds)\n" % (task.tag, task.id, task.hostname, exectime)) for tnm in WQIDS: if task.id in WQIDS[tnm]: WQIDS[tnm].remove(task.id) del task # LPW 2018-09-10 Updated to use stats fields from CCTools 6.2.10 # Please upgrade CCTools version if errors are encountered during runtime. if verbose: logger.info("Workers: %i init, %i idle, %i busy, %i total joined, %i total removed\n" \ % (wq.stats.workers_init, wq.stats.workers_idle, wq.stats.workers_busy, wq.stats.workers_joined, wq.stats.workers_removed)) logger.info("Tasks: %i running, %i waiting, %i dispatched, %i submitted, %i total complete\n" \ % (wq.stats.tasks_running, wq.stats.tasks_waiting, wq.stats.tasks_dispatched, wq.stats.tasks_submitted, wq.stats.tasks_done)) logger.info("Data: %i / %i kb sent/received\n" % (int(wq.stats.bytes_sent/1024), int(wq.stats.bytes_received/1024))) else: logger.info("\r%s : %i/%i workers busy; %i/%i jobs complete \r" %\ (time.ctime(), wq.stats.workers_busy, wq.stats.workers_connected, wq.stats.tasks_done, wq.stats.tasks_submitted)) if time.time() - wq_wait1.t0 > 900: wq_wait1.t0 = time.time() logger.info('\n') wq_wait1.t0 = time.time() def wq_wait(wq, wait_time=10, wait_intvl=10, print_time=60, verbose=False): """ This function waits until the work queue is completely empty. """ while not wq.empty(): wq_wait1(wq, wait_time=wait_time, wait_intvl=wait_intvl, print_time=print_time, verbose=verbose) #=====================================# #| File and process management stuff |# #=====================================# def click(): """ Stopwatch function for timing. """ ans = time.time() - click.t0 click.t0 = time.time() return ans click.t0 = time.time() def splitall(path): allparts = [] while 1: parts = os.path.split(path) if parts[0] == path: # sentinel for absolute paths allparts.insert(0, parts[0]) break elif parts[1] == path: # sentinel for relative paths allparts.insert(0, parts[1]) break else: path = parts[0] allparts.insert(0, parts[1]) return allparts # Back up a file. def bak(path, dest=None, cwd=None, start=1): oldf = path newf = None if cwd != None: if not os.path.exists(cwd): raise RuntimeError("%s is not an existing folder" % cwd) old_d = os.getcwd() os.chdir(cwd) if os.path.exists(path): dnm, fnm = os.path.split(path) if dnm == '' : dnm = '.' base, ext = os.path.splitext(fnm) if dest is None: dest = dnm if not os.path.isdir(dest): os.makedirs(dest) i = start while True: fnm = "%s_%i%s" % (base,i,ext) newf = os.path.join(dest, fnm) if not os.path.exists(newf): break i += 1 logger.info("Backing up %s -> %s\n" % (oldf, newf)) shutil.move(oldf,newf) if cwd != None: os.chdir(old_d) return newf # Purpose: Given a file name and/or an extension, do one of the following: # 1) If provided a file name, check the file, crash if not exist and err==True. Return the file name. # 2) If list is empty but extension is provided, check if one file exists that matches # the extension. If so, return the file name. # 3) If list is still empty and err==True, then crash with an error. def onefile(fnm=None, ext=None, err=False): if fnm is None and ext is None: if err: logger.error("Must provide either filename or extension to onefile()") raise RuntimeError else: return None if fnm is not None: if os.path.exists(fnm): if os.path.dirname(os.path.abspath(fnm)) != os.getcwd(): fsrc = os.path.abspath(fnm) fdest = os.path.join(os.getcwd(), os.path.basename(fnm)) #----- # If the file path doesn't correspond to the current directory, copy the file over # If the file exists in the current directory already and it's different, then crash. #----- if os.path.exists(fdest): if not filecmp.cmp(fsrc, fdest): logger.error("onefile() will not overwrite %s with %s\n" % (os.path.join(os.getcwd(), os.path.basename(fnm)),os.path.abspath(fnm))) raise RuntimeError else: logger.info("\x1b[93monefile() says the files %s and %s are identical\x1b[0m\n" % (os.path.abspath(fnm), os.getcwd())) else: logger.info("\x1b[93monefile() will copy %s to %s\x1b[0m\n" % (os.path.abspath(fnm), os.getcwd())) shutil.copy2(fsrc, fdest) return os.path.basename(fnm) elif err==True or ext is None: logger.error("File specified by %s does not exist!" % fnm) raise RuntimeError elif ext is not None: warn_once("File specified by %s does not exist - will try to autodetect .%s extension" % (fnm, ext)) answer = None cwd = os.getcwd() ls = [i for i in os.listdir(cwd) if i.endswith('.%s' % ext)] if len(ls) != 1: if err: logger.error("Cannot find a unique file with extension .%s in %s (%i found; %s)" % (ext, cwd, len(ls), ' '.join(ls))) raise RuntimeError else: warn_once("Cannot find a unique file with extension .%s in %s (%i found; %s)" % (ext, cwd, len(ls), ' '.join(ls)), warnhash = "Found %i .%s files" % (len(ls), ext)) else: answer = os.path.basename(ls[0]) warn_once("Autodetected %s in %s" % (answer, cwd), warnhash = "Autodetected %s" % answer) return answer # Purpose: Given a file name / file list and/or an extension, do one of the following: # 1) If provided a file list, check each file in the list # and crash if any file does not exist. Return the list. # 2) If provided a file name, check the file and crash if the file # does not exist. Return a length-one list with the file name. # 3) If list is empty but extension is provided, check for files that # match the extension. If so, append them to the list. # 4) If list is still empty and err==True, then crash with an error. def listfiles(fnms=None, ext=None, err=False, dnm=None): answer = [] cwd = os.path.abspath(os.getcwd()) if dnm is not None: os.chdir(dnm) if isinstance(fnms, list): for i in fnms: if not os.path.exists(i): logger.error('Specified %s but it does not exist' % i) raise RuntimeError answer.append(i) elif isinstance(fnms, six.string_types): if not os.path.exists(fnms): logger.error('Specified %s but it does not exist' % fnms) raise RuntimeError answer = [fnms] elif fnms is not None: logger.info(str(fnms)) logger.error('First argument to listfiles must be a list, a string, or None') raise RuntimeError if answer == [] and ext is not None: answer = [os.path.basename(i) for i in os.listdir(os.getcwd()) if i.endswith('.%s' % ext)] if answer == [] and err: logger.error('listfiles function failed to come up with a file! (fnms = %s ext = %s)' % (str(fnms), str(ext))) raise RuntimeError for ifnm, fnm in enumerate(answer): if os.path.dirname(os.path.abspath(fnm)) != os.getcwd(): fsrc = os.path.abspath(fnm) fdest = os.path.join(os.getcwd(), os.path.basename(fnm)) #----- # If the file path doesn't correspond to the current directory, copy the file over # If the file exists in the current directory already and it's different, then crash. #----- if os.path.exists(fdest): if not filecmp.cmp(fsrc, fdest): logger.error("onefile() will not overwrite %s with %s\n" % (os.path.join(os.getcwd(), os.path.basename(fnm)),os.path.abspath(fnm))) raise RuntimeError else: logger.info("\x1b[93monefile() says the files %s and %s are identical\x1b[0m\n" % (os.path.abspath(fnm), os.getcwd())) answer[ifnm] = os.path.basename(fnm) else: logger.info("\x1b[93monefile() will copy %s to %s\x1b[0m\n" % (os.path.abspath(fnm), os.getcwd())) shutil.copy2(fsrc, fdest) answer[ifnm] = os.path.basename(fnm) os.chdir(cwd) return answer def extract_tar(tarfnm, fnms, force=False): """ Extract a list of files from .tar archive with any compression. The file is extracted to the base folder of the archive. Parameters ---------- tarfnm : Name of the archive file. fnms : str or list File names to be extracted. force : bool, optional If true, then force extraction of file even if they already exist on disk. """ # Get path of tar file. fdir = os.path.abspath(os.path.dirname(tarfnm)) # If all files exist, then return - no need to extract. if (not force) and all([os.path.exists(os.path.join(fdir, f)) for f in fnms]): return # If the tar file doesn't exist or isn't valid, do nothing. if not os.path.exists(tarfnm): return if not tarfile.is_tarfile(tarfnm): return # Check type of fnms argument. if isinstance(fnms, six.string_types): fnms = [fnms] # Load the tar file. arch = tarfile.open(tarfnm, 'r') # Extract only the files we have (to avoid an exception). all_members = arch.getmembers() all_names = [f.name for f in all_members] members = [f for f in all_members if f.name in fnms] # Extract files to the destination. arch.extractall(fdir, members=members) def GoInto(Dir): if os.path.exists(Dir): if os.path.isdir(Dir): pass else: logger.error("Tried to create directory %s, it exists but isn't a directory\n" % newdir) raise RuntimeError else: os.makedirs(Dir) os.chdir(Dir) def allsplit(Dir): # Split a directory into all directories involved. s = os.path.split(os.path.normpath(Dir)) if s[1] == '' or s[1] == '.' : return [] return allsplit(s[0]) + [s[1]] def Leave(Dir): if os.path.split(os.getcwd())[1] != Dir: logger.error("Trying to leave directory %s, but we're actually in directory %s (check your code)\n" % (Dir,os.path.split(os.getcwd())[1])) raise RuntimeError for i in range(len(allsplit(Dir))): os.chdir('..') # Dictionary containing specific error messages for specific missing files or file patterns specific_lst = [(['mdrun','grompp','trjconv','g_energy','g_traj'], "Make sure to install GROMACS and add it to your path (or set the gmxpath option)"), (['force.mdin', 'stage.leap'], "This file is needed for setting up AMBER force matching targets"), (['conf.pdb', 'mono.pdb'], "This file is needed for setting up OpenMM condensed phase property targets"), (['liquid.xyz', 'liquid.key', 'mono.xyz', 'mono.key'], "This file is needed for setting up OpenMM condensed phase property targets"), (['dynamic', 'analyze', 'minimize', 'testgrad', 'vibrate', 'optimize', 'polarize', 'superpose'], "Make sure to install TINKER and add it to your path (or set the tinkerpath option)"), (['runcuda.sh', 'npt.py', 'npt_tinker.py'], "This file belongs in the ForceBalance source directory, not sure why it is missing"), (['input.xyz'], "This file is needed for TINKER molecular property targets"), (['.*key$', '.*xyz$'], "I am guessing this file is probably needed by TINKER"), (['.*gro$', '.*top$', '.*itp$', '.*mdp$', '.*ndx$'], "I am guessing this file is probably needed by GROMACS") ] # Build a dictionary mapping all of the keys in the above lists to their error messages specific_dct = dict(list(itertools.chain(*[[(j,i[1]) for j in i[0]] for i in specific_lst]))) def MissingFileInspection(fnm): fnm = os.path.split(fnm)[1] answer = "" for key in specific_dct: if answer == "": answer += "\n" if re.match(key, fnm): answer += "%s\n" % specific_dct[key] return answer def wopen(dest, binary=False): """ If trying to write to a symbolic link, remove it first. """ if os.path.islink(dest): logger.warning("Trying to write to a symbolic link %s, removing it first\n" % dest) os.unlink(dest) if binary: return open(dest,'wb') else: return open(dest,'w') def LinkFile(src, dest, nosrcok = False): if os.path.abspath(src) == os.path.abspath(dest): return if os.path.exists(src): # Remove broken link if os.path.islink(dest) and not os.path.exists(dest): os.remove(dest) os.symlink(src, dest) elif os.path.exists(dest): if os.path.islink(dest): pass else: logger.error("Tried to create symbolic link %s to %s, destination exists but isn't a symbolic link\n" % (src, dest)) raise RuntimeError else: os.symlink(src, dest) else: if not nosrcok: logger.error("Tried to create symbolic link %s to %s, but source file doesn't exist%s\n" % (src,dest,MissingFileInspection(src))) raise RuntimeError def CopyFile(src, dest): if os.path.exists(src): if os.path.exists(dest): if os.path.islink(dest): logger.error("Tried to copy %s to %s, destination exists but it's a symbolic link\n" % (src, dest)) raise RuntimeError else: shutil.copy2(src, dest) else: logger.error("Tried to copy %s to %s, but source file doesn't exist%s\n" % (src,dest,MissingFileInspection(src))) raise RuntimeError def link_dir_contents(abssrcdir, absdestdir): for fnm in os.listdir(abssrcdir): srcfnm = os.path.join(abssrcdir, fnm) destfnm = os.path.join(absdestdir, fnm) if os.path.islink(destfnm) and not os.path.exists(destfnm): os.remove(destfnm) if os.path.isfile(srcfnm) or (os.path.isdir(srcfnm) and fnm == 'IC'): if not os.path.exists(destfnm): #print "Linking %s to %s" % (srcfnm, destfnm) os.symlink(srcfnm, destfnm) def remove_if_exists(fnm): """ Remove the file if it exists (doesn't return an error). """ if os.path.exists(fnm): os.remove(fnm) def which(fnm): # Get the location of a file. Works only on UNIX-like file systems. try: return os.path.split(os.popen('which %s 2> /dev/null' % fnm).readlines()[0].strip())[0] except: return '' def copy_tree_over(src, dest): """ Copy a source directory tree to a destination directory tree, overwriting files as necessary. This does not require removing the destination folder, which can reduce the number of times shutil.rmtree needs to be called. """ # From https://stackoverflow.com/questions/9160227/dir-util-copy-tree-fails-after-shutil-rmtree/28055993 : # If you copy folder, then remove it, then copy again it will fail, because it caches all the created dirs. # To workaround you can clear _path_created before copy: distutils.dir_util._path_created = {} distutils.dir_util.copy_tree(src, dest) # Thanks to cesarkawakami on #python (IRC freenode) for this code. class LineChunker(object): def __init__(self, callback): self.callback = callback self.buf = "" def push(self, data): # Added by LPW during Py3 compatibility; ran into some trouble decoding strings such as # "a" with umlaut on top. I guess we can ignore these for now. For some reason, # Py2 never required decoding of data, I can simply add it to the wtring. # self.buf += data # Old Py2 code... self.buf += data.decode('utf-8')#errors='ignore') self.nomnom() def close(self): if self.buf: self.callback(self.buf + "\n") def nomnom(self): # Splits buffer by new line or carriage return, and passes # the splitted results onto processing. while "\n" in self.buf or "\r" in self.buf: chunk, sep, self.buf = re.split(r"(\r|\n)", self.buf, maxsplit=1) self.callback(chunk + sep) def __enter__(self): return self def __exit__(self, *args, **kwargs): self.close() def _exec(command, print_to_screen = False, outfnm = None, logfnm = None, stdin = "", print_command = True, copy_stdout = True, copy_stderr = False, persist = False, expand_cr=False, print_error=True, rbytes=1, cwd=None, **kwargs): """Runs command line using subprocess, optionally returning stdout. Options: command (required) = Name of the command you want to execute outfnm (optional) = Name of the output file name (overwritten if exists) logfnm (optional) = Name of the log file name (appended if exists) stdin (optional) = A string to be passed to stdin, as if it were typed (use newline character to mimic Enter key) print_command = Whether to print the command. copy_stdout = Copy the stdout stream; can set to False in strange situations copy_stderr = Copy the stderr stream to the stdout stream; useful for GROMACS which prints out everything to stderr (argh.) expand_cr = Whether to expand carriage returns into newlines (useful for GROMACS mdrun). print_error = Whether to print error messages on a crash. Should be true most of the time. persist = Continue execution even if the command gives a nonzero return code. rbytes = Number of bytes to read from stdout and stderr streams at a time. GMX requires rbytes = 1 otherwise streams are interleaved. Higher values for speed. """ # Dictionary of options to be passed to the Popen object. cmd_options={'shell':isinstance(command, six.string_types), 'stdin':PIPE, 'stdout':PIPE, 'stderr':PIPE, 'universal_newlines':expand_cr, 'cwd':cwd} # If the current working directory is provided, the outputs will be written to there as well. if cwd is not None: if outfnm is not None: outfnm = os.path.abspath(os.path.join(cwd, outfnm)) if logfnm is not None: logfnm = os.path.abspath(os.path.join(cwd, logfnm)) # "write to file" : Function for writing some characters to the log and/or output files. def wtf(out): if logfnm is not None: with open(logfnm,'ab+') as f: f.write(out.encode('utf-8')) f.flush() if outfnm is not None: with open(outfnm,'wb+' if wtf.first else 'ab+') as f: f.write(out.encode('utf-8')) f.flush() wtf.first = False wtf.first = True # Preserve backwards compatibility; sometimes None gets passed to stdin. if stdin is None: stdin = "" if print_command: logger.info("Executing process: \x1b[92m%-50s\x1b[0m%s%s%s%s\n" % (' '.join(command) if type(command) is list else command, " In: %s" % cwd if cwd is not None else "", " Output: %s" % outfnm if outfnm is not None else "", " Append: %s" % logfnm if logfnm is not None else "", (" Stdin: %s" % stdin.replace('\n','\\n')) if stdin else "")) wtf("Executing process: %s%s\n" % (command, (" Stdin: %s" % stdin.replace('\n','\\n')) if stdin else "")) cmd_options.update(kwargs) p = subprocess.Popen(command, **cmd_options) # Write the stdin stream to the process. p.stdin.write(stdin.encode('ascii')) p.stdin.close() #===============================================================# #| Read the output streams from the process. This is a bit |# #| complicated because programs like GROMACS tend to print out |# #| stdout as well as stderr streams, and also carriage returns |# #| along with newline characters. |# #===============================================================# # stdout and stderr streams of the process. streams = [p.stdout, p.stderr] # Are we using Python 2? p2 = sys.version_info.major == 2 # These are functions that take chunks of lines (read) as inputs. def process_out(read): if print_to_screen: # LPW 2019-11-25: We should be writing a string, not a representation of bytes if p2: sys.stdout.write(str(read.encode('utf-8'))) else: sys.stdout.write(read) if copy_stdout: process_out.stdout.append(read) wtf(read) process_out.stdout = [] def process_err(read): if print_to_screen: if p2: sys.stderr.write(str(read.encode('utf-8'))) else: sys.stderr.write(read) process_err.stderr.append(read) if copy_stderr: process_out.stdout.append(read) wtf(read) process_err.stderr = [] # This reads the streams one byte at a time, and passes it to the LineChunker # which splits it by either newline or carriage return. # If the stream has ended, then it is removed from the list. with LineChunker(process_out) as out_chunker, LineChunker(process_err) as err_chunker: while True: to_read, _, _ = select(streams, [], []) for fh in to_read: # We want to call fh.read below, but this can lead to a system hang when executing Tinker on mac. # This hang can be avoided by running fh.read1 (with a "1" at the end), however python2.7 # doesn't implement ByteStream.read1. So, to enable python3 builds on mac to work, we pick the "best" # fh.read function we can get if hasattr(fh, 'read1'): fhread = fh.read1 else: fhread = fh.read if fh is p.stdout: read_nbytes = 0 read = ''.encode('utf-8') while True: if read_nbytes == 0: read += fhread(rbytes) read_nbytes += rbytes else: read += fhread(1) read_nbytes += 1 if read_nbytes > 10+rbytes: raise RuntimeError("Failed to decode stdout from external process.") if not read: streams.remove(p.stdout) p.stdout.close() break else: try: out_chunker.push(read) break except UnicodeDecodeError: pass elif fh is p.stderr: read_nbytes = 0 read = ''.encode('utf-8') while True: if read_nbytes == 0: read += fhread(rbytes) read_nbytes += rbytes else: read += fhread(1) read_nbytes += 1 if read_nbytes > 10+rbytes: raise RuntimeError("Failed to decode stderr from external process.") if not read: streams.remove(p.stderr) p.stderr.close() break else: try: err_chunker.push(read) break except UnicodeDecodeError: pass else: raise RuntimeError if len(streams) == 0: break p.wait() process_out.stdout = ''.join(process_out.stdout) process_err.stderr = ''.join(process_err.stderr) _exec.returncode = p.returncode if p.returncode != 0: if process_err.stderr and print_error: logger.warning("Received an error message:\n") logger.warning("\n[====] \x1b[91mError Message\x1b[0m [====]\n") logger.warning(process_err.stderr) logger.warning("[====] \x1b[91mEnd o'Message\x1b[0m [====]\n") if persist: if print_error: logger.info("%s gave a return code of %i (it may have crashed) -- carrying on\n" % (command, p.returncode)) else: # This code (commented out) would not throw an exception, but instead exit with the returncode of the crashed program. # sys.stderr.write("\x1b[1;94m%s\x1b[0m gave a return code of %i (\x1b[91mit may have crashed\x1b[0m)\n" % (command, p.returncode)) # sys.exit(p.returncode) logger.error("\x1b[1;94m%s\x1b[0m gave a return code of %i (\x1b[91mit may have crashed\x1b[0m)\n\n" % (command, p.returncode)) raise RuntimeError # Return the output in the form of a list of lines, so we can loop over it using "for line in output". Out = process_out.stdout.split('\n') if Out[-1] == '': Out = Out[:-1] return Out _exec.returncode = None def warn_press_key(warning, timeout=10): logger.warning(warning + '\n') if sys.stdin.isatty(): logger.warning("\x1b[1;91mPress Enter or wait %i seconds (I assume no responsibility for what happens after this!)\x1b[0m\n" % timeout) try: rlist, wlist, xlist = select([sys.stdin], [], [], timeout) if rlist: sys.stdin.readline() except: pass def warn_once(warning, warnhash = None): """ Prints a warning but will only do so once in a given run. """ if warnhash is None: warnhash = warning if warnhash in warn_once.already: return warn_once.already.add(warnhash) if type(warning) is str: logger.info(warning + '\n') elif type(warning) is list: for line in warning: logger.info(line + '\n') warn_once.already = set() #=========================================# #| Development stuff (not commonly used) |# #=========================================# def concurrent_map(func, data): """ Similar to the bultin function map(). But spawn a thread for each argument and apply `func` concurrently. Note: unlike map(), we cannot take an iterable argument. `data` should be an indexable sequence. """ N = len(data) result = [None] * N # wrapper to dispose the result in the right slot def task_wrapper(i): result[i] = func(data[i]) threads = [threading.Thread(target=task_wrapper, args=(i,)) for i in range(N)] for t in threads: t.start() for t in threads: t.join() return result
41.179962
231
0.58913
4a26907a7754589ecf0e67a972eb0efe1642b928
27,833
py
Python
hikari/impl/rest_bot.py
Lunarmagpie/hikari
3f4fed67f76c655845d379066f9d192e7dffd0b0
[ "MIT" ]
null
null
null
hikari/impl/rest_bot.py
Lunarmagpie/hikari
3f4fed67f76c655845d379066f9d192e7dffd0b0
[ "MIT" ]
null
null
null
hikari/impl/rest_bot.py
Lunarmagpie/hikari
3f4fed67f76c655845d379066f9d192e7dffd0b0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # cython: language_level=3 # Copyright (c) 2020 Nekokatt # Copyright (c) 2021-present davfsa # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Standard implementations of a Interaction based REST-only bot.""" from __future__ import annotations __all__: typing.List[str] = ["RESTBot"] import asyncio import logging import sys import typing from hikari import config from hikari import errors from hikari import traits from hikari.api import interaction_server as interaction_server_ from hikari.impl import entity_factory as entity_factory_impl from hikari.impl import interaction_server as interaction_server_impl from hikari.impl import rest as rest_impl from hikari.internal import aio from hikari.internal import ux if typing.TYPE_CHECKING: import concurrent.futures import socket as socket_ import ssl from hikari import applications from hikari.api import entity_factory as entity_factory_api from hikari.api import rest as rest_api from hikari.api import special_endpoints from hikari.interactions import base_interactions from hikari.interactions import command_interactions from hikari.interactions import component_interactions _InteractionT_co = typing.TypeVar("_InteractionT_co", bound=base_interactions.PartialInteraction, covariant=True) _MessageResponseBuilderT = typing.Union[ special_endpoints.InteractionDeferredBuilder, special_endpoints.InteractionMessageBuilder ] _LOGGER: typing.Final[logging.Logger] = logging.getLogger("hikari.rest_bot") class RESTBot(traits.RESTBotAware, interaction_server_.InteractionServer): """Basic implementation of an interaction based REST-only bot. Parameters ---------- token : typing.Union[builtins.str, builtins.None, hikari.api.rest.TokenStrategy] The bot or bearer token. If no token is to be used, this can be undefined. token_type : typing.Union[builtins.str, hikari.applications.TokenType, builtins.None] The type of token in use. This should only be passed when `builtins.str` is passed for `token`, can be `"Bot"` or `"Bearer"` and will be defaulted to `"Bearer"` in this situation. This should be left as `builtins.None` when either `hikari.api.rest.TokenStrategy` or `builtins.None` is passed for `token`. Other Parameters ---------------- allow_color : builtins.bool Defaulting to `builtins.True`, this will enable coloured console logs on any platform that is a TTY. Setting a `"CLICOLOR"` environment variable to any **non `0`** value will override this setting. Users should consider this an advice to the application on whether it is safe to show colours if possible or not. Since some terminals can be awkward or not support features in a standard way, the option to explicitly disable this is provided. See `force_color` for an alternative. banner : typing.Optional[builtins.str] The package to search for a `banner.txt` in. Defaults to `"hikari"` for the `"hikari/banner.txt"` banner. Setting this to `builtins.None` will disable the banner being shown. executor : typing.Optional[concurrent.futures.Executor] Defaults to `builtins.None`. If non-`builtins.None`, then this executor is used instead of the `concurrent.futures.ThreadPoolExecutor` attached to the `asyncio.AbstractEventLoop` that the bot will run on. This executor is used primarily for file-IO. While mainly supporting the `concurrent.futures.ThreadPoolExecutor` implementation in the standard lib, Hikari's file handling systems should also work with `concurrent.futures.ProcessPoolExecutor`, which relies on all objects used in IPC to be `pickle`able. Many third-party libraries will not support this fully though, so your mileage may vary on using ProcessPoolExecutor implementations with this parameter. force_color : builtins.bool Defaults to `builtins.False`. If `builtins.True`, then this application will __force__ colour to be used in console-based output. Specifying a `"CLICOLOR_FORCE"` environment variable with a non-`"0"` value will override this setting. http_settings : typing.Optional[hikari.config.HTTPSettings] Optional custom HTTP configuration settings to use. Allows you to customise functionality such as whether SSL-verification is enabled, what timeouts `aiohttp` should expect to use for requests, and behavior regarding HTTP-redirects. logs : typing.Union[builtins.None, LoggerLevel, typing.Dict[str, typing.Any]] Defaults to `"INFO"`. If `builtins.None`, then the Python logging system is left uninitialized on startup, and you will need to configure it manually to view most logs that are output by components of this library. If one of the valid values in a `LoggerLevel`, then this will match a call to `colorlog.basicConfig` (a facade for `logging.basicConfig` with additional conduit for enabling coloured logging levels) with the `level` kwarg matching this value. If a `typing.Dict[str, typing.Any]` equivalent, then this value is passed to `logging.config.dictConfig` to allow the user to provide a specialized logging configuration of their choice. If any handlers are defined in the dict, default handlers will not be setup. As a side note, you can always opt to leave this on the default value and then use an incremental `logging.config.dictConfig` that applies any additional changes on top of the base configuration, if you prefer. An example of can be found in the `Example` section. Note that `"TRACE_HIKARI"` is a library-specific logging level which is expected to be more verbose than `"DEBUG"`. max_rate_limit : builtins.float The max number of seconds to backoff for when rate limited. Anything greater than this will instead raise an error. This defaults to five minutes if left to the default value. This is to stop potentially indefinitely waiting on an endpoint, which is almost never what you want to do if giving a response to a user. You can set this to `float("inf")` to disable this check entirely. Note that this only applies to the REST API component that communicates with Discord, and will not affect sharding or third party HTTP endpoints that may be in use. max_retries : typing.Optional[builtins.int] Maximum number of times a request will be retried if it fails with a `5xx` status. Defaults to 3 if set to `builtins.None`. proxy_settings : typing.Optional[config.ProxySettings] Custom proxy settings to use with network-layer logic in your application to get through an HTTP-proxy. public_key : typing.Union[builtins.str, builtins.bytes, builtins.None] The public key to use to verify received interaction requests. This may be a hex encoded `builtins.str` or the raw `builtins.bytes`. If left as `builtins.None` then the client will try to work this value out based on `token`. rest_url : typing.Optional[builtins.str] Defaults to the Discord REST API URL if `builtins.None`. Can be overridden if you are attempting to point to an unofficial endpoint, or if you are attempting to mock/stub the Discord API for any reason. Generally you do not want to change this. !!! note `force_color` will always take precedence over `allow_color`. Raises ------ builtins.ValueError * If `token_type` is provided when a token strategy is passed for `token`. * if `token_type` is left as `builtins.None` when a string is passed for `token`. """ __slots__: typing.Sequence[str] = ( "_close_event", "_executor", "_http_settings", "_is_closing", "_proxy_settings", "_entity_factory", "_rest", "_server", ) @typing.overload def __init__( self, token: rest_api.TokenStrategy, *, public_key: typing.Union[bytes, str, None] = None, allow_color: bool = True, banner: typing.Optional[str] = "hikari", executor: typing.Optional[concurrent.futures.Executor] = None, force_color: bool = False, http_settings: typing.Optional[config.HTTPSettings] = None, logs: typing.Union[None, int, str, typing.Dict[str, typing.Any]] = "INFO", max_rate_limit: float = 300.0, max_retries: int = 3, proxy_settings: typing.Optional[config.ProxySettings] = None, rest_url: typing.Optional[str] = None, ) -> None: ... @typing.overload def __init__( self, token: str, token_type: typing.Union[str, applications.TokenType], public_key: typing.Union[bytes, str, None] = None, *, allow_color: bool = True, banner: typing.Optional[str] = "hikari", executor: typing.Optional[concurrent.futures.Executor] = None, force_color: bool = False, http_settings: typing.Optional[config.HTTPSettings] = None, logs: typing.Union[None, int, str, typing.Dict[str, typing.Any]] = "INFO", max_rate_limit: float = 300.0, max_retries: int = 3, proxy_settings: typing.Optional[config.ProxySettings] = None, rest_url: typing.Optional[str] = None, ) -> None: ... def __init__( self, token: typing.Union[str, rest_api.TokenStrategy], token_type: typing.Union[applications.TokenType, str, None] = None, public_key: typing.Union[bytes, str, None] = None, *, allow_color: bool = True, banner: typing.Optional[str] = "hikari", executor: typing.Optional[concurrent.futures.Executor] = None, force_color: bool = False, http_settings: typing.Optional[config.HTTPSettings] = None, logs: typing.Union[None, int, str, typing.Dict[str, typing.Any]] = "INFO", max_rate_limit: float = 300.0, max_retries: int = 3, proxy_settings: typing.Optional[config.ProxySettings] = None, rest_url: typing.Optional[str] = None, ) -> None: if isinstance(public_key, str): public_key = bytes.fromhex(public_key) # Beautification and logging ux.init_logging(logs, allow_color, force_color) self.print_banner(banner, allow_color, force_color) # Settings and state self._close_event: typing.Optional[asyncio.Event] = None self._executor = executor self._http_settings = http_settings if http_settings is not None else config.HTTPSettings() self._is_closing = False self._proxy_settings = proxy_settings if proxy_settings is not None else config.ProxySettings() # Entity creation self._entity_factory = entity_factory_impl.EntityFactoryImpl(self) # RESTful API. self._rest = rest_impl.RESTClientImpl( cache=None, entity_factory=self._entity_factory, executor=self._executor, http_settings=self._http_settings, max_rate_limit=max_rate_limit, max_retries=max_retries, proxy_settings=self._proxy_settings, rest_url=rest_url, token=token, token_type=token_type, ) # IntegrationServer self._server = interaction_server_impl.InteractionServer( entity_factory=self._entity_factory, public_key=public_key, rest_client=self._rest, ) @property def is_alive(self) -> bool: return self._close_event is not None @property def interaction_server(self) -> interaction_server_.InteractionServer: return self._server @property def rest(self) -> rest_api.RESTClient: return self._rest @property def entity_factory(self) -> entity_factory_api.EntityFactory: return self._entity_factory @property def http_settings(self) -> config.HTTPSettings: return self._http_settings @property def proxy_settings(self) -> config.ProxySettings: return self._proxy_settings @property def executor(self) -> typing.Optional[concurrent.futures.Executor]: return self._executor @staticmethod def print_banner(banner: typing.Optional[str], allow_color: bool, force_color: bool) -> None: """Print the banner. This allows library vendors to override this behaviour, or choose to inject their own "branding" on top of what hikari provides by default. Normal users should not need to invoke this function, and can simply change the `banner` argument passed to the constructor to manipulate what is displayed. Parameters ---------- banner : typing.Optional[builtins.str] The package to find a `banner.txt` in. allow_color : builtins.bool A flag that allows advising whether to allow color if supported or not. Can be overridden by setting a `"CLICOLOR"` environment variable to a non-`"0"` string. force_color : builtins.bool A flag that allows forcing color to always be output, even if the terminal device may not support it. Setting the `"CLICOLOR_FORCE"` environment variable to a non-`"0"` string will override this. !!! note `force_color` will always take precedence over `allow_color`. """ ux.print_banner(banner, allow_color, force_color) async def close(self) -> None: if not self._close_event: raise errors.ComponentStateConflictError("Cannot close an inactive interaction server") if self._is_closing: await self.join() return self._is_closing = True close_event = self._close_event await self._server.close() await self._rest.close() close_event.set() self._close_event = None async def join(self) -> None: if not self._close_event: raise errors.ComponentStateConflictError("Cannot wait for an inactive bot to join") await self._close_event.wait() async def on_interaction(self, body: bytes, signature: bytes, timestamp: bytes) -> interaction_server_.Response: return await self._server.on_interaction(body, signature, timestamp) def run( self, asyncio_debug: bool = False, backlog: int = 128, check_for_updates: bool = True, close_loop: bool = True, close_passed_executor: bool = False, coroutine_tracking_depth: typing.Optional[int] = None, enable_signal_handlers: bool = True, host: typing.Optional[typing.Union[str, typing.Sequence[str]]] = None, path: typing.Optional[str] = None, port: typing.Optional[int] = None, reuse_address: typing.Optional[bool] = None, reuse_port: typing.Optional[bool] = None, shutdown_timeout: float = 60.0, socket: typing.Optional[socket_.socket] = None, ssl_context: typing.Optional[ssl.SSLContext] = None, ) -> None: """Open this REST server and block until it closes. Other Parameters ---------------- asyncio_debug : builtins.bool Defaults to `builtins.False`. If `builtins.True`, then debugging is enabled for the asyncio event loop in use. backlog : builtins.int The number of unaccepted connections that the system will allow before refusing new connections. check_for_updates : builtins.bool Defaults to `builtins.True`. If `builtins.True`, will check for newer versions of `hikari` on PyPI and notify if available. close_loop : builtins.bool Defaults to `builtins.True`. If `builtins.True`, then once the bot enters a state where all components have shut down permanently during application shutdown, then all asyngens and background tasks will be destroyed, and the event loop will be shut down. This will wait until all `hikari`-owned `aiohttp` connectors have had time to attempt to shut down correctly (around 250ms), and on Python 3.9 and newer, will also shut down the default event loop executor too. close_passed_executor : builtins.bool Defaults to `builtins.False`. If `builtins.True`, any custom `concurrent.futures.Executor` passed to the constructor will be shut down when the application terminates. This does not affect the default executor associated with the event loop, and will not do anything if you do not provide a custom executor to the constructor. coroutine_tracking_depth : typing.Optional[builtins.int] Defaults to `builtins.None`. If an integer value and supported by the interpreter, then this many nested coroutine calls will be tracked with their call origin state. This allows you to determine where non-awaited coroutines may originate from, but generally you do not want to leave this enabled for performance reasons. enable_signal_handlers : builtins.bool Defaults to `builtins.True`. If on a __non-Windows__ OS with builtin support for kernel-level POSIX signals, then setting this to `builtins.True` will allow treating keyboard interrupts and other OS signals to safely shut down the application as calls to shut down the application properly rather than just killing the process in a dirty state immediately. You should leave this disabled unless you plan to implement your own signal handling yourself. host : typing.Optional[typing.Union[builtins.str, aiohttp.web.HostSequence]] TCP/IP host or a sequence of hosts for the HTTP server. port : typing.Optional[builtins.int] TCP/IP port for the HTTP server. path : typing.Optional[builtins.str] File system path for HTTP server unix domain socket. reuse_address : typing.Optional[builtins.bool] Tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for its natural timeout to expire. reuse_port : typing.Optional[builtins.bool] Tells the kernel to allow this endpoint to be bound to the same port as other existing endpoints are also bound to. socket : typing.Optional[socket.socket] A pre-existing socket object to accept connections on. shutdown_timeout : builtins.float A delay to wait for graceful server shutdown before forcefully disconnecting all open client sockets. This defaults to 60 seconds. ssl_context : typing.Optional[ssl.SSLContext] SSL context for HTTPS servers. """ if self.is_alive: raise errors.ComponentStateConflictError("Cannot start a bot that's already active") loop = aio.get_or_make_loop() if asyncio_debug: loop.set_debug(True) if coroutine_tracking_depth is not None: try: # Provisionally defined in CPython, may be removed without notice. sys.set_coroutine_origin_tracking_depth(coroutine_tracking_depth) except AttributeError: _LOGGER.log(ux.TRACE, "cannot set coroutine tracking depth for sys, no functionality exists for this") try: loop.run_until_complete( self.start( backlog=backlog, check_for_updates=check_for_updates, enable_signal_handlers=enable_signal_handlers, host=host, port=port, path=path, reuse_address=reuse_address, reuse_port=reuse_port, socket=socket, shutdown_timeout=shutdown_timeout, ssl_context=ssl_context, ) ) loop.run_until_complete(self.join()) finally: if close_passed_executor and self._executor: self._executor.shutdown(wait=True) self._executor = None if close_loop: loop.close() async def start( self, backlog: int = 128, check_for_updates: bool = True, enable_signal_handlers: bool = True, host: typing.Optional[typing.Union[str, typing.Sequence[str]]] = None, port: typing.Optional[int] = None, path: typing.Optional[str] = None, reuse_address: typing.Optional[bool] = None, reuse_port: typing.Optional[bool] = None, socket: typing.Optional[socket_.socket] = None, shutdown_timeout: float = 60.0, ssl_context: typing.Optional[ssl.SSLContext] = None, ) -> None: """Start the bot and wait for the internal server to startup then return. Other Parameters ---------------- backlog : builtins.int The number of unaccepted connections that the system will allow before refusing new connections. check_for_updates : builtins.bool Defaults to `builtins.True`. If `builtins.True`, will check for newer versions of `hikari` on PyPI and notify if available. enable_signal_handlers : builtins.bool Defaults to `builtins.True`. If on a __non-Windows__ OS with builtin support for kernel-level POSIX signals, then setting this to `builtins.True` will allow treating keyboard interrupts and other OS signals to safely shut down the application as calls to shut down the application properly rather than just killing the process in a dirty state immediately. You should leave this disabled unless you plan to implement your own signal handling yourself. host : typing.Optional[typing.Union[builtins.str, aiohttp.web.HostSequence]] TCP/IP host or a sequence of hosts for the HTTP server. port : typing.Optional[builtins.int] TCP/IP port for the HTTP server. path : typing.Optional[builtins.str] File system path for HTTP server unix domain socket. reuse_address : typing.Optional[builtins.bool] Tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for its natural timeout to expire. reuse_port : typing.Optional[builtins.bool] Tells the kernel to allow this endpoint to be bound to the same port as other existing endpoints are also bound to. socket : typing.Optional[socket.socket] A pre-existing socket object to accept connections on. shutdown_timeout : builtins.float A delay to wait for graceful server shutdown before forcefully disconnecting all open client sockets. This defaults to 60 seconds. ssl_context : typing.Optional[ssl.SSLContext] SSL context for HTTPS servers. !!! note For more information on the other parameters such as defaults see AIOHTTP's documentation. """ if self.is_alive: raise errors.ComponentStateConflictError("Cannot start an already active interaction server") self._is_closing = False self._close_event = asyncio.Event() if check_for_updates: asyncio.create_task( ux.check_for_updates(self._http_settings, self._proxy_settings), name="check for package updates", ) self._rest.start() await self._server.start( backlog=backlog, enable_signal_handlers=enable_signal_handlers, host=host, port=port, path=path, reuse_address=reuse_address, reuse_port=reuse_port, socket=socket, shutdown_timeout=shutdown_timeout, ssl_context=ssl_context, ) @typing.overload def get_listener( self, interaction_type: typing.Type[command_interactions.CommandInteraction], / ) -> typing.Optional[ interaction_server_.ListenerT[command_interactions.CommandInteraction, _MessageResponseBuilderT] ]: ... @typing.overload def get_listener( self, interaction_type: typing.Type[component_interactions.ComponentInteraction], / ) -> typing.Optional[ interaction_server_.ListenerT[component_interactions.ComponentInteraction, _MessageResponseBuilderT] ]: ... @typing.overload def get_listener( self, interaction_type: typing.Type[_InteractionT_co], / ) -> typing.Optional[interaction_server_.ListenerT[_InteractionT_co, special_endpoints.InteractionResponseBuilder]]: ... def get_listener( self, interaction_type: typing.Type[_InteractionT_co], / ) -> typing.Optional[interaction_server_.ListenerT[_InteractionT_co, special_endpoints.InteractionResponseBuilder]]: return self._server.get_listener(interaction_type) @typing.overload def set_listener( self, interaction_type: typing.Type[command_interactions.CommandInteraction], listener: typing.Optional[ interaction_server_.ListenerT[command_interactions.CommandInteraction, _MessageResponseBuilderT] ], /, *, replace: bool = False, ) -> None: ... @typing.overload def set_listener( self, interaction_type: typing.Type[component_interactions.ComponentInteraction], listener: typing.Optional[ interaction_server_.ListenerT[component_interactions.ComponentInteraction, _MessageResponseBuilderT] ], /, *, replace: bool = False, ) -> None: ... def set_listener( self, interaction_type: typing.Type[_InteractionT_co], listener: typing.Optional[ interaction_server_.ListenerT[_InteractionT_co, special_endpoints.InteractionResponseBuilder] ], /, *, replace: bool = False, ) -> None: self._server.set_listener(interaction_type, listener, replace=replace) # type: ignore
43.625392
120
0.666691
4a26915a87fc459359ca81467847e4f5c79a0a2a
9,115
py
Python
standard_wallet/wallet_runnable.py
freddiecoleman/wallets
20c815b404f3c136d4c6d64d5033c017a830e5d9
[ "Apache-2.0" ]
1
2022-01-27T09:26:48.000Z
2022-01-27T09:26:48.000Z
standard_wallet/wallet_runnable.py
freddiecoleman/wallets
20c815b404f3c136d4c6d64d5033c017a830e5d9
[ "Apache-2.0" ]
1
2021-09-05T01:50:18.000Z
2021-09-05T01:50:18.000Z
standard_wallet/wallet_runnable.py
freddiecoleman/wallets
20c815b404f3c136d4c6d64d5033c017a830e5d9
[ "Apache-2.0" ]
1
2021-09-05T02:02:00.000Z
2021-09-05T02:02:00.000Z
import asyncio from utilities.decorations import print_leaf, divider, prompt, start_list, close_list, selectable, informative from utilities.puzzle_utilities import puzzlehash_from_string from chiasim.hashable import Coin, Header, HeaderHash from chiasim.clients.ledger_sim import connect_to_ledger_sim from chiasim.wallet.deltas import additions_for_body, removals_for_body from chiasim.hashable.Body import Body from binascii import hexlify from authorised_payees import ap_wallet_a_functions from standard_wallet.wallet import Wallet try: import qrcode from PIL import Image from pyzbar.pyzbar import decode except ImportError: qrcode = None def view_funds(wallet): print(f"Current balance: {str(wallet.temp_balance)}") print(f"UTXOs: {[x.amount for x in wallet.temp_utxos]}") def print_my_details(wallet): print(f"{informative} Name: {wallet.name}") print(f"{informative} Pubkey: {hexlify(wallet.get_next_public_key().serialize()).decode('ascii')}") print(f"{informative} Puzzlehash: {wallet.get_new_puzzlehash()}") def make_QR(wallet): print(divider) qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_H, box_size=10, border=4, ) qr.add_data(f"{wallet.get_new_puzzlehash()}") qr.make(fit=True) img = qr.make_image() fn = input("Input file name: ") img.save(f"{fn}.jpg") print(f"QR code created in '{fn}.jpg'") def read_qr(wallet): amount = -1 if wallet.current_balance <= 0: print("You need some money first") return None print("Input filename of QR code: ") fn = input(prompt) decoded = decode(Image.open(fn)) puzzlehash = puzzlehash_from_string(decoded[0].data) while amount > wallet.temp_balance or amount <= 0: amount = input("Amount: ") if amount == "q": return if not amount.isdigit(): amount = -1 amount = int(amount) return wallet.generate_signed_transaction(amount, puzzlehash) def set_name(wallet): selection = input("Enter a new name: ") wallet.set_name(selection) async def make_payment(wallet, ledger_api): amount = -1 if wallet.current_balance <= 0: print("You need some money first") return None while amount > wallet.temp_balance or amount < 0: amount = input(f"{prompt} Enter amount to give recipient: ") if amount == "q": return if not amount.isdigit(): amount = -1 amount = int(amount) puzhashstring = input(f"{prompt} Enter puzzlehash: ") puzzlehash = puzzlehash_from_string(puzhashstring) tx = wallet.generate_signed_transaction(amount, puzzlehash) if tx is not None: await ledger_api.push_tx(tx=tx) async def initiate_ap(wallet, ledger_api): if wallet.temp_balance <= 0: print("You need some money first") return None # TODO: add a strict format checker to input here (and everywhere tbh) # Actual puzzle lockup/spend a_pubkey = wallet.get_next_public_key().serialize() b_pubkey = input("Enter recipient's pubkey: 0x") amount = -1 while amount > wallet.temp_balance or amount < 0: amount = input("Enter amount to give recipient: ") if amount == "q": return if not amount.isdigit(): amount = -1 amount = int(amount) APpuzzlehash = ap_wallet_a_functions.ap_get_new_puzzlehash( a_pubkey, b_pubkey) spend_bundle = wallet.generate_signed_transaction(amount, APpuzzlehash) await ledger_api.push_tx(tx=spend_bundle) print() print(f"{informative} AP Puzzlehash is: {str(APpuzzlehash)}") print(f"{informative} Pubkey used is: {hexlify(a_pubkey).decode('ascii')}") sig = str(ap_wallet_a_functions.ap_sign_output_newpuzzlehash( APpuzzlehash, wallet, a_pubkey).sig) print(f"{informative} Approved change signature is: {sig}") print() print("Give the AP wallet the following initialisation string -") print(f"{informative} Initialisation string: {str(APpuzzlehash)}:{hexlify(a_pubkey).decode('ascii')}:{sig}") print() print("The next step is to approve some contacts for the AP wallet to send to.") print("From another standard wallet press '4' to print out their puzzlehash for receiving money.") choice = "" while choice != "q": singlestr = input("Enter approved puzzlehash: ") if singlestr == "q": return puzzlehash = puzzlehash_from_string(singlestr) print() #print("Puzzle: " + str(puzzlehash)) sig = wallet.sign(puzzlehash, a_pubkey) #print("Signature: " + str(sig.sig)) name = input("Add a name for this puzzlehash: ") print("Give the following contact string to the AP wallet.") print(f"{informative} Contact string for AP Wallet: {name}:{str(puzzlehash)}:{str(sig.sig)}") choice = input("Press 'c' to continue, or 'q' to quit to menu: ") async def process_blocks(wallet, ledger_api, last_known_header, current_header_hash): r = await ledger_api.hash_preimage(hash=current_header_hash) header = Header.from_bytes(r) body = Body.from_bytes(await ledger_api.hash_preimage(hash=header.body_hash)) if header.previous_hash != last_known_header: await process_blocks(wallet, ledger_api, last_known_header, header.previous_hash) print(f'processing block {HeaderHash(header)}') additions = list(additions_for_body(body)) removals = removals_for_body(body) removals = [Coin.from_bytes(await ledger_api.hash_preimage(hash=x)) for x in removals] wallet.notify(additions, removals) async def farm_block(wallet, ledger_api, last_known_header): coinbase_puzzle_hash = wallet.get_new_puzzlehash() fees_puzzle_hash = wallet.get_new_puzzlehash() r = await ledger_api.next_block(coinbase_puzzle_hash=coinbase_puzzle_hash, fees_puzzle_hash=fees_puzzle_hash) header = r['header'] header_hash = HeaderHash(header) tip = await ledger_api.get_tip() await process_blocks(wallet, ledger_api, tip['genesis_hash'] if last_known_header is None else last_known_header, header_hash) return header_hash async def update_ledger(wallet, ledger_api, most_recent_header): r = await ledger_api.get_tip() if r['tip_hash'] != most_recent_header: await process_blocks(wallet, ledger_api, r['genesis_hash'] if most_recent_header is None else most_recent_header, r['tip_hash']) return r['tip_hash'] async def main_loop(): ledger_api = await connect_to_ledger_sim("localhost", 9868) selection = "" wallet = Wallet() print(divider) print_leaf() r = await ledger_api.get_tip() most_recent_header = r['genesis_hash'] while selection != "q": print(divider) view_funds(wallet) print(divider) print(start_list) print("Select a function:") print(f"{selectable} 1: Make Payment") print(f"{selectable} 2: Get Update") print(f"{selectable} 3: Farm Block") print(f"{selectable} 4: Print my details for somebody else") print(f"{selectable} 5: Set my wallet name") print(f"{selectable} 6: Initiate Authorised Payee") if qrcode: print(f"{selectable} 7: Make QR code") print(f"{selectable} 8: Payment to QR code") print(f"{selectable} q: Quit") print(close_list) selection = input(prompt) if selection == "1": r = await make_payment(wallet, ledger_api) elif selection == "2": most_recent_header = await update_ledger(wallet, ledger_api, most_recent_header) elif selection == "3": most_recent_header = await farm_block(wallet, ledger_api, most_recent_header) elif selection == "4": print_my_details(wallet) elif selection == "5": set_name(wallet) elif selection == "6": await initiate_ap(wallet, ledger_api) if qrcode: if selection == "7": make_QR(wallet) elif selection == "8": r = read_qr(wallet) if r is not None: await ledger_api.push_tx(tx=r) def main(): run = asyncio.get_event_loop().run_until_complete run(main_loop()) if __name__ == "__main__": main() """ Copyright 2018 Chia Network Inc Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """
37.204082
113
0.664838
4a26915c297b09d17cccb4bf14f3fb45bf1bc5e4
9,968
py
Python
conftest.py
s4-2/scancode-toolkit
8931b42e2630b94d0cabc834dfb3c16f01f82321
[ "Apache-2.0", "CC-BY-4.0" ]
2
2021-04-08T07:04:55.000Z
2021-05-14T04:20:33.000Z
conftest.py
s4-2/scancode-toolkit
8931b42e2630b94d0cabc834dfb3c16f01f82321
[ "Apache-2.0", "CC-BY-4.0" ]
16
2021-04-13T18:04:38.000Z
2021-04-13T18:05:07.000Z
conftest.py
s4-2/scancode-toolkit
8931b42e2630b94d0cabc834dfb3c16f01f82321
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # # Copyright (c) nexB Inc. and others http://www.nexb.com/. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from os import path from subprocess import check_output from subprocess import STDOUT import sys import pytest TRACE = True """ A pytest conftest.py for scancode-toolkit to control which tests to run and when. We use custom markers and command line options to determine which test suite to run. To retest only code impacted by a change, it tries to find which code modules have changed using git, and selectively runs only the tests for the impacted modules when running in a feature branch. When running on the develop or master branches all the tests run: none are skipped. """ ################################################################################ # pytest custom markers and CLI options ################################################################################ SLOW_TEST = 'scanslow' VALIDATION_TEST = 'scanvalidate' def pytest_configure(config): config.addinivalue_line('markers', SLOW_TEST + ': Mark a ScanCode test as a slow, long running test.') config.addinivalue_line('markers', VALIDATION_TEST + ': Mark a ScanCode test as a validation test, super slow, long running test.') TEST_SUITES = 'standard', 'all', 'validate' def pytest_addoption(parser): """ Add options used for ScanCode tests customization. """ group = parser.getgroup('scancode', 'Test suite options for ScanCode') group.addoption( '--force-py3', dest='force_py3', action='store_true', default=False, help='[DEPRECATED and ignored] Python 3 port is completed.', ) group.addoption( '--test-suite', action='store', choices=TEST_SUITES, dest='test_suite', default='standard', help='Select which test suite to run: ' '"standard" runs the standard test suite designed to run reasonably fast. ' '"all" runs "standard" and "slow" (long running) tests. ' '"validate" runs all the tests. ' 'Use the @pytest.mark.scanslow marker to mark a test as "slow" test. ' 'Use the @pytest.mark.scanvalidate marker to mark a test as a "validate" test.' ) group.addoption( '--changed-only', dest='changed_only', action='store_true', default=False, help='Run only the subset of tests impacted by your changes.' 'If selected, you can provide an optional --base-branch and the ' 'changes are checked against that branch. ' 'Otherwise, a git diff is made against the current branch.', ) group.addoption( '--base-branch', dest='base_branch', action='store', default=None, help='Optional name branch of the branch diff against to find what has ' 'changed if --changed-only is selected.', ) group.addoption( '--dry-run', dest='dry_run', action='store_true', default=False, help='Only print selected and deselected tests. Do not run anything.', ) ################################################################################ # Filter whcih tests to collect based on our CLI options and our custom markers ################################################################################ @pytest.mark.trylast def pytest_collection_modifyitems(config, items): test_suite = config.getvalue('test_suite') changed_only = config.getoption('changed_only') base_branch = config.getoption('base_branch') dry_run = config.getoption('dry_run') run_everything = test_suite == 'validate' run_slow_test = test_suite in ('all', 'validate') tests_to_run = [] tests_to_skip = [] if changed_only: base_branch = base_branch or get_git_branch() impacted_modules = get_impacted_modules(base_branch) or set() all_is_changed = not(impacted_modules) impacted_modules_paths = ['/{}/'.format(m) for m in impacted_modules] print() if not impacted_modules: print('All modules impacted') else: print('Run tests only in these changed modules:', ', '.join(sorted(impacted_modules))) for item in items: is_validate = bool(item.get_closest_marker(VALIDATION_TEST)) is_slow = bool(item.get_closest_marker(SLOW_TEST)) if is_validate and not run_everything: tests_to_skip.append(item) continue if is_slow and not run_slow_test: tests_to_skip.append(item) continue if changed_only and not all_is_changed: if not is_changed(item.fspath, impacted_modules_paths): tests_to_skip.append(item) continue tests_to_run.append(item) print() print('{} tests selected, {} tests skipped.'.format(len(tests_to_run), len(tests_to_skip))) if dry_run: if config.getvalue('verbose'): print() print('The following tests will run: ') for test in tests_to_run: print(test.nodeid) print('The following tests are skipped: ') for test in tests_to_skip: print(test.nodeid) tests = items[:] items[:] = [] config.hook.pytest_deselected(items=tests) return items[:] = tests_to_run config.hook.pytest_deselected(items=tests_to_skip) ################################################################################ # Retest only tests for changed modules ################################################################################ def is_changed(path_string, impacted_module_paths, _cache={}): """ Return True if a `path_string` is for a path that has changed. """ path_string = str(path_string).replace('\\', '/') cached = _cache.get(path_string) if cached is not None: return cached if path_string.endswith(('setup.py', 'conftest.py')): return False changed = any(p in path_string for p in impacted_module_paths) if TRACE and changed: print('is_changed:', path_string, changed) _cache[path_string] = changed return changed def get_all_modules(): """ Return a set of top level modules. """ all_modules = set([p for p in os.listdir('src') if p.endswith('code')]) if TRACE: print() print('get_all_modules:', all_modules) return all_modules def get_impacted_modules(base_branch=None): """ Return a set of impacted top level modules under tests or src. Return None if all modules are impacted and should be re-tested. """ try: base_branch = base_branch or get_git_branch() changed_files = get_changed_files(base_branch) locally_changed_files = get_changed_files(None) changed_files.extend(locally_changed_files) except Exception as e: # we test it all if we cannot get proper git information print(e) return changed_modules = set() for changed_file in changed_files: segments = [s for s in changed_file.split('/') if s] if segments[0] == 'thirdparty': # test it all when changing thirdparty deps return if segments[0] not in ('src', 'tests'): # test none on changes to other files continue module = segments[1] changed_modules.add(module) force_full_test = [ 'scancode', 'commoncode', 'typecode', 'textcode', 'plugincode', ] if any(m in changed_modules for m in force_full_test): # test it all when certain widely dependended modules return # add dependencies if 'licensedcode' in changed_modules: changed_modules.add('packagedcode') changed_modules.add('summarycode') changed_modules.add('formattedcode') changed_modules.add('scancode') if 'cluecode' in changed_modules: changed_modules.add('summarycode') changed_modules.add('formattedcode') changed_modules.add('scancode') if TRACE: print() print('get_impacted_modules:', changed_modules) return changed_modules def get_changed_files(base_branch='develop'): """ Return a list of changed file paths against the `base_branch`. Or locally only if `base_branch` is None. Raise an exception on errors. """ # this may fail with exceptions cmd = 'git', 'diff', '--name-only', if base_branch: cmd += base_branch + '...', changed_files = check_output(cmd, stderr=STDOUT) changed_files = changed_files.replace('\\', '/') changed_files = changed_files.splitlines(False) changed_files = [cf for cf in changed_files if cf.strip()] if TRACE: print() print('get_changed_files:', changed_files) return changed_files def get_git_branch(): """ Return the current branch or raise an exception. """ from subprocess import check_output, STDOUT # this may fail with exceptions cmd = 'git', 'status', branch = check_output(cmd, stderr=STDOUT).splitlines(False)[0] _, _, branch = branch.partition('On branch') branch = branch.strip() if TRACE: print() print('get_git_branch:', branch) return branch
32.2589
135
0.616974
4a269183a0000e0ada1b599f177518c4fa2f578d
190
py
Python
src/stk/__init__.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
src/stk/__init__.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
src/stk/__init__.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
from .databases import * # noqa from .ea import * # noqa from .molecular import * # noqa from .serialization import * # noqa from .utilities import * # noqa __version__ = '2022.5.2.1'
23.75
36
0.684211
4a26926b03c2e05fa1daf6399b54e504d8427c64
7,372
py
Python
experiments/ashvin/corl2019/offpolicy/dcvae3.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
experiments/ashvin/corl2019/offpolicy/dcvae3.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
experiments/ashvin/corl2019/offpolicy/dcvae3.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
import railrl.misc.hyperparameter as hyp from experiments.murtaza.multiworld.skew_fit.reacher.generate_uniform_dataset import generate_uniform_dataset_reacher from multiworld.envs.mujoco.cameras import sawyer_init_camera_zoomed_in, sawyer_pusher_camera_upright_v2 from railrl.launchers.launcher_util import run_experiment from railrl.torch.grill.launcher import * import railrl.torch.vae.vae_schedules as vae_schedules from railrl.torch.vae.conv_vae import imsize48_default_architecture, imsize48_default_architecture_with_more_hidden_layers, imsize84_default_architecture from railrl.launchers.arglauncher import run_variants from railrl.torch.grill.launcher import grill_her_twin_sac_online_vae_full_experiment, grill_her_twin_sac_full_experiment from multiworld.envs.pygame.multiobject_pygame_env import Multiobj2DEnv from multiworld.envs.mujoco.sawyer_xyz.sawyer_push_multiobj_subset import SawyerMultiobjectEnv from railrl.torch.vae.conditional_conv_vae import DeltaCVAE from railrl.torch.vae.vae_trainer import DeltaCVAETrainer def experiment(variant): full_experiment_variant_preprocess(variant) train_vae_and_update_variant(variant) if __name__ == "__main__": variant = dict( double_algo=False, online_vae_exploration=False, imsize=48, init_camera=sawyer_pusher_camera_upright_v2, env_class=Multiobj2DEnv, env_kwargs=dict( render_onscreen=False, ball_radius=1.5, images_are_rgb=True, show_goal=False, fixed_colors=False, change_background=False, ), # env_class=Multiobj2DEnv, # env_kwargs=dict( # render_onscreen=False, # ball_radius=1.5, # images_are_rgb=True, # show_goal=False, # change_background=False, # fixed_colors=False, # ), grill_variant=dict( save_video=True, custom_goal_sampler='replay_buffer', online_vae_trainer_kwargs=dict( beta=20, lr=0, ), save_video_period=100, qf_kwargs=dict( hidden_sizes=[400, 300], ), policy_kwargs=dict( hidden_sizes=[400, 300], ), vf_kwargs=dict( hidden_sizes=[400, 300], ), max_path_length=50, algo_kwargs=dict( num_epochs=2000, batch_size=128, num_eval_steps_per_epoch=1000, num_expl_steps_per_train_loop=1000, num_trains_per_train_loop=500, min_num_steps_before_training=1000, vae_training_schedule=vae_schedules.never_train, oracle_data=False, vae_save_period=25, parallel_vae_train=False, ), twin_sac_trainer_kwargs=dict( discount=0.99, reward_scale=1, soft_target_tau=1e-3, target_update_period=1, # 1 use_automatic_entropy_tuning=True, ), replay_buffer_kwargs=dict( start_skew_epoch=10, max_size=int(100000), fraction_goals_rollout_goals=0.2, fraction_goals_env_goals=0.5, exploration_rewards_type='None', vae_priority_type='vae_prob', priority_function_kwargs=dict( sampling_method='importance_sampling', decoder_distribution='gaussian_identity_variance', # decoder_distribution='bernoulli', num_latents_to_sample=10, ), power=-1, relabeling_goal_sampling_mode='vae_prior', ), exploration_goal_sampling_mode='vae_prior', evaluation_goal_sampling_mode='reset_of_env', normalize=False, render=False, exploration_noise=0.2, exploration_type='ou', training_mode='train', testing_mode='test', reward_params=dict( type='latent_distance', ), observation_key='latent_observation', desired_goal_key='latent_desired_goal', vae_wrapped_env_kwargs=dict( sample_from_true_prior=True, ), algorithm='ONLINE-VAE-SAC-BERNOULLI', ), train_vae_variant=dict( representation_size=4, beta=10, beta_schedule_kwargs=dict( x_values=(0, 1500), y_values=(1, 50), ), num_epochs=1500, dump_skew_debug_plots=False, # decoder_activation='gaussian', decoder_activation='sigmoid', use_linear_dynamics=False, generate_vae_dataset_kwargs=dict( #dataset_path="/tmp/SawyerMultiobjectEnv_N100000_sawyer_init_camera_zoomed_in_imsize48_random_oracle_split_0.npy",#"/home/khazatsky/rail/data/multiobj_two_puck.npy", N=102000, n_random_steps=5000, test_p=.9, use_cached=True, show=False, oracle_dataset=False, oracle_dataset_using_set_to_goal=False, non_presampled_goal_img_is_garbage=False, random_rollout_data=True, conditional_vae_dataset=True, save_trajectories=False, enviorment_dataset=False, tag="offpolicy3", ), vae_trainer_class=DeltaCVAETrainer, vae_class=DeltaCVAE, vae_kwargs=dict( # dynamics_type='local', input_channels=3, architecture=imsize48_default_architecture_with_more_hidden_layers, decoder_distribution='gaussian_identity_variance', ), # TODO: why the redundancy? algo_kwargs=dict( start_skew_epoch=5000, is_auto_encoder=False, batch_size=32, lr=1e-3, skew_config=dict( method='vae_prob', power=0, ), linearity_weight=0, distance_weight=0, skew_dataset=False, priority_function_kwargs=dict( decoder_distribution='gaussian_identity_variance', sampling_method='importance_sampling', # sampling_method='true_prior_sampling', num_latents_to_sample=10, ), use_parallel_dataloading=False, ), save_period=25, ), ) search_space = { 'seedid': range(1), 'train_vae_variant.representation_size': [(2, 4),], #(3 * objects, 3 * colors) 'train_vae_variant.generate_vae_dataset_kwargs.n_random_steps': [51],#, 50, 100], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): variants.append(variant) run_variants(experiment, variants, run_id=0)
38.196891
181
0.591291
4a269394698f07ce658ede47e579502e273e263a
608
py
Python
src/python/assign_unmapped_pos.py
mozack/test
39e6297e578d0407fd687958c32cadc2dfc5845d
[ "MIT" ]
77
2016-10-24T15:46:24.000Z
2022-03-22T11:37:56.000Z
src/python/assign_unmapped_pos.py
mozack/test
39e6297e578d0407fd687958c32cadc2dfc5845d
[ "MIT" ]
47
2017-01-31T19:18:51.000Z
2022-03-29T09:26:25.000Z
src/python/assign_unmapped_pos.py
mozack/test
39e6297e578d0407fd687958c32cadc2dfc5845d
[ "MIT" ]
9
2017-10-03T23:31:39.000Z
2021-04-09T09:40:07.000Z
import sys for line in sys.stdin: line = line.rstrip() if line.startswith('@'): print line else: fields = line.split() flag = int(fields[1]) # 4 = read unmapped. 8 = mate unmapped if flag & 0xC == 4 and fields[2] == '*': # This read is unmapped and mate is mapped chrom = fields[6] pos = fields[7] fields[2] = chrom fields[3] = pos print '\t'.join(fields) elif flag & 0xC == 8 and fields[6] == '*': # This read is mapped and mate is unmapped chrom = fields[2] pos = fields[3] fields[6] = chrom fields[7] = pos print '\t'.join(fields) else: print line
23.384615
45
0.600329
4a269504071bd64042c9dab2eb226277a23dd837
197
py
Python
Numpy/Sum_and_Prod.py
idarlenearaujo/HackerRank_Python
3fc4d0baf37fe321737f1e1ae9320d67e5ee984a
[ "MIT" ]
null
null
null
Numpy/Sum_and_Prod.py
idarlenearaujo/HackerRank_Python
3fc4d0baf37fe321737f1e1ae9320d67e5ee984a
[ "MIT" ]
null
null
null
Numpy/Sum_and_Prod.py
idarlenearaujo/HackerRank_Python
3fc4d0baf37fe321737f1e1ae9320d67e5ee984a
[ "MIT" ]
null
null
null
import numpy as np N, M = map(int, input().split()) # array A arrayA = np.array([list(map(int, input().split())) for i in range(N)]) # sum sob eixo 0 # prod print(np.prod(np.sum(arrayA, axis=0)))
21.888889
70
0.639594
4a2695b00752b2555132503b4d536ab399172763
19,044
py
Python
helm/dagster/schema/schema_tests/test_instance.py
camvogel/dagster
b4df94bf34906e7f81c973a7fdad5429ae3697ba
[ "Apache-2.0" ]
null
null
null
helm/dagster/schema/schema_tests/test_instance.py
camvogel/dagster
b4df94bf34906e7f81c973a7fdad5429ae3697ba
[ "Apache-2.0" ]
null
null
null
helm/dagster/schema/schema_tests/test_instance.py
camvogel/dagster
b4df94bf34906e7f81c973a7fdad5429ae3697ba
[ "Apache-2.0" ]
1
2021-12-08T18:13:19.000Z
2021-12-08T18:13:19.000Z
import pytest import yaml from dagster.core.run_coordinator import QueuedRunCoordinator from dagster_aws.s3.compute_log_manager import S3ComputeLogManager from dagster_azure.blob.compute_log_manager import AzureBlobComputeLogManager from dagster_gcp.gcs.compute_log_manager import GCSComputeLogManager from kubernetes.client import models from schema.charts.dagster.subschema.compute_log_manager import ( AzureBlobComputeLogManager as AzureBlobComputeLogManagerModel, ) from schema.charts.dagster.subschema.compute_log_manager import ( ComputeLogManager, ComputeLogManagerConfig, ComputeLogManagerType, ) from schema.charts.dagster.subschema.compute_log_manager import ( GCSComputeLogManager as GCSComputeLogManagerModel, ) from schema.charts.dagster.subschema.compute_log_manager import ( S3ComputeLogManager as S3ComputeLogManagerModel, ) from schema.charts.dagster.subschema.daemon import ( ConfigurableClass, Daemon, QueuedRunCoordinatorConfig, RunCoordinator, RunCoordinatorConfig, RunCoordinatorType, TagConcurrencyLimit, ) from schema.charts.dagster.subschema.postgresql import PostgreSQL, Service from schema.charts.dagster.subschema.python_logs import PythonLogs from schema.charts.dagster.subschema.run_launcher import ( CeleryK8sRunLauncherConfig, K8sRunLauncherConfig, RunLauncher, RunLauncherConfig, RunLauncherType, ) from schema.charts.dagster.values import DagsterHelmValues from schema.utils.helm_template import HelmTemplate def to_camel_case(s: str) -> str: components = s.split("_") return components[0] + "".join(x.title() for x in components[1:]) @pytest.fixture(name="template") def helm_template() -> HelmTemplate: return HelmTemplate( helm_dir_path="helm/dagster", subchart_paths=["charts/dagster-user-deployments"], output="templates/configmap-instance.yaml", model=models.V1ConfigMap, ) @pytest.mark.parametrize("storage", ["schedule_storage", "run_storage", "event_log_storage"]) def test_storage_postgres_db_config(template: HelmTemplate, storage: str): postgresql_username = "username" postgresql_host = "1.1.1.1" postgresql_database = "database" postgresql_params = { "connect_timeout": 10, "application_name": "myapp", "options": "-c synchronous_commit=off", } postgresql_port = 8080 helm_values = DagsterHelmValues.construct( postgresql=PostgreSQL.construct( postgresqlUsername=postgresql_username, postgresqlHost=postgresql_host, postgresqlDatabase=postgresql_database, postgresqlParams=postgresql_params, service=Service(port=postgresql_port), ) ) configmaps = template.render(helm_values) assert len(configmaps) == 1 instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) assert instance[storage] postgres_db = instance[storage]["config"]["postgres_db"] assert postgres_db["username"] == postgresql_username assert postgres_db["password"] == {"env": "DAGSTER_PG_PASSWORD"} assert postgres_db["hostname"] == postgresql_host assert postgres_db["db_name"] == postgresql_database assert postgres_db["port"] == postgresql_port assert postgres_db["params"] == postgresql_params def test_k8s_run_launcher_config(template: HelmTemplate): job_namespace = "namespace" image_pull_policy = "Always" load_incluster_config = True env_config_maps = [{"name": "env_config_map"}] env_secrets = [{"name": "secret"}] env_vars = ["ENV_VAR"] volume_mounts = [ { "mountPath": "/opt/dagster/dagster_home/dagster.yaml", "name": "dagster-instance", "subPath": "dagster.yaml", }, { "name": "test-volume", "mountPath": "/opt/dagster/test_mount_path/volume_mounted_file.yaml", "subPath": "volume_mounted_file.yaml", }, ] volumes = [ {"name": "test-volume", "configMap": {"name": "test-volume-configmap"}}, {"name": "test-pvc", "persistentVolumeClaim": {"claimName": "my_claim", "readOnly": False}}, ] helm_values = DagsterHelmValues.construct( runLauncher=RunLauncher.construct( type=RunLauncherType.K8S, config=RunLauncherConfig.construct( k8sRunLauncher=K8sRunLauncherConfig.construct( jobNamespace=job_namespace, imagePullPolicy=image_pull_policy, loadInclusterConfig=load_incluster_config, envConfigMaps=env_config_maps, envSecrets=env_secrets, envVars=env_vars, volumeMounts=volume_mounts, volumes=volumes, ) ), ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) run_launcher_config = instance["run_launcher"] assert run_launcher_config["module"] == "dagster_k8s" assert run_launcher_config["class"] == "K8sRunLauncher" assert run_launcher_config["config"]["job_namespace"] == job_namespace assert run_launcher_config["config"]["load_incluster_config"] == load_incluster_config assert run_launcher_config["config"]["image_pull_policy"] == image_pull_policy assert run_launcher_config["config"]["env_config_maps"][1:] == [ configmap["name"] for configmap in env_config_maps ] assert run_launcher_config["config"]["env_secrets"] == [ secret["name"] for secret in env_secrets ] assert run_launcher_config["config"]["env_vars"] == env_vars assert run_launcher_config["config"]["volume_mounts"] == volume_mounts assert run_launcher_config["config"]["volumes"] == volumes def test_celery_k8s_run_launcher_config(template: HelmTemplate): image = {"repository": "test_repo", "tag": "test_tag", "pullPolicy": "Always"} configSource = { "broker_transport_options": {"priority_steps": [9]}, "worker_concurrency": 1, } workerQueues = [ {"name": "dagster", "replicaCount": 2}, {"name": "extra-queue-1", "replicaCount": 1}, ] helm_values = DagsterHelmValues.construct( runLauncher=RunLauncher.construct( type=RunLauncherType.CELERY, config=RunLauncherConfig.construct( celeryK8sRunLauncher=CeleryK8sRunLauncherConfig.construct( image=image, configSource=configSource, workerQueues=workerQueues, ) ), ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) run_launcher_config = instance["run_launcher"] assert run_launcher_config["module"] == "dagster_celery_k8s" assert run_launcher_config["class"] == "CeleryK8sRunLauncher" assert run_launcher_config["config"]["config_source"] == configSource assert run_launcher_config["config"]["broker"] == {"env": "DAGSTER_CELERY_BROKER_URL"} assert run_launcher_config["config"]["backend"] == {"env": "DAGSTER_CELERY_BACKEND_URL"} @pytest.mark.parametrize("enabled", [True, False]) def test_queued_run_coordinator_config(template: HelmTemplate, enabled: bool): max_concurrent_runs = 50 tag_concurrency_limits = [TagConcurrencyLimit(key="key", value="value", limit=10)] dequeue_interval_seconds = 50 helm_values = DagsterHelmValues.construct( dagsterDaemon=Daemon.construct( runCoordinator=RunCoordinator.construct( enabled=enabled, type=RunCoordinatorType.QUEUED, config=RunCoordinatorConfig.construct( queuedRunCoordinator=QueuedRunCoordinatorConfig.construct( maxConcurrentRuns=max_concurrent_runs, tagConcurrencyLimits=tag_concurrency_limits, dequeueIntervalSeconds=dequeue_interval_seconds, ) ), ) ) ) configmaps = template.render(helm_values) assert len(configmaps) == 1 instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) assert ("run_coordinator" in instance) == enabled if enabled: assert instance["run_coordinator"]["module"] == "dagster.core.run_coordinator" assert instance["run_coordinator"]["class"] == "QueuedRunCoordinator" assert instance["run_coordinator"]["config"] run_coordinator_config = instance["run_coordinator"]["config"] assert run_coordinator_config["max_concurrent_runs"] == max_concurrent_runs assert run_coordinator_config["dequeue_interval_seconds"] == dequeue_interval_seconds assert len(run_coordinator_config["tag_concurrency_limits"]) == len(tag_concurrency_limits) assert run_coordinator_config["tag_concurrency_limits"] == [ tag_concurrency_limit.dict() for tag_concurrency_limit in tag_concurrency_limits ] def test_custom_run_coordinator_config(template: HelmTemplate): module = "a_module" class_ = "Class" config_field_one = "1" config_field_two = "two" config = {"config_field_one": config_field_one, "config_field_two": config_field_two} helm_values = DagsterHelmValues.construct( dagsterDaemon=Daemon.construct( runCoordinator=RunCoordinator.construct( enabled=True, type=RunCoordinatorType.CUSTOM, config=RunCoordinatorConfig.construct( customRunCoordinator=ConfigurableClass.construct( module=module, class_=class_, config=config, ) ), ) ) ) configmaps = template.render(helm_values) assert len(configmaps) == 1 instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) assert instance["run_coordinator"]["module"] == module assert instance["run_coordinator"]["class"] == class_ assert instance["run_coordinator"]["config"] == config @pytest.mark.parametrize( "compute_log_manager_type", [ComputeLogManagerType.NOOP, ComputeLogManagerType.LOCAL], ids=["noop", "local compute log manager becomes noop"], ) def test_noop_compute_log_manager( template: HelmTemplate, compute_log_manager_type: ComputeLogManagerType ): helm_values = DagsterHelmValues.construct( computeLogManager=ComputeLogManager.construct(type=compute_log_manager_type) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) compute_logs_config = instance["compute_logs"] assert compute_logs_config["module"] == "dagster.core.storage.noop_compute_log_manager" assert compute_logs_config["class"] == "NoOpComputeLogManager" def test_azure_blob_compute_log_manager(template: HelmTemplate): storage_account = "account" container = "container" secret_key = "secret_key" local_dir = "/dir" prefix = "prefix" helm_values = DagsterHelmValues.construct( computeLogManager=ComputeLogManager.construct( type=ComputeLogManagerType.AZURE, config=ComputeLogManagerConfig.construct( azureBlobComputeLogManager=AzureBlobComputeLogManagerModel( storageAccount=storage_account, container=container, secretKey=secret_key, localDir=local_dir, prefix=prefix, ) ), ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) compute_logs_config = instance["compute_logs"] assert compute_logs_config["module"] == "dagster_azure.blob.compute_log_manager" assert compute_logs_config["class"] == "AzureBlobComputeLogManager" assert compute_logs_config["config"] == { "storage_account": storage_account, "container": container, "secret_key": secret_key, "local_dir": local_dir, "prefix": prefix, } # Test all config fields in configurable class assert compute_logs_config["config"].keys() == AzureBlobComputeLogManager.config_type().keys() def test_gcs_compute_log_manager(template: HelmTemplate): bucket = "bucket" local_dir = "/dir" prefix = "prefix" json_credentials_envvar = "ENV_VAR" helm_values = DagsterHelmValues.construct( computeLogManager=ComputeLogManager.construct( type=ComputeLogManagerType.GCS, config=ComputeLogManagerConfig.construct( gcsComputeLogManager=GCSComputeLogManagerModel( bucket=bucket, localDir=local_dir, prefix=prefix, jsonCredentialsEnvvar=json_credentials_envvar, ) ), ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) compute_logs_config = instance["compute_logs"] assert compute_logs_config["module"] == "dagster_gcp.gcs.compute_log_manager" assert compute_logs_config["class"] == "GCSComputeLogManager" assert compute_logs_config["config"] == { "bucket": bucket, "local_dir": local_dir, "prefix": prefix, "json_credentials_envvar": json_credentials_envvar, } # Test all config fields in configurable class assert compute_logs_config["config"].keys() == GCSComputeLogManager.config_type().keys() def test_s3_compute_log_manager(template: HelmTemplate): bucket = "bucket" local_dir = "/dir" prefix = "prefix" use_ssl = True verify = True verify_cert_path = "/path" endpoint_url = "endpoint.com" skip_empty_files = True helm_values = DagsterHelmValues.construct( computeLogManager=ComputeLogManager.construct( type=ComputeLogManagerType.S3, config=ComputeLogManagerConfig.construct( s3ComputeLogManager=S3ComputeLogManagerModel( bucket=bucket, localDir=local_dir, prefix=prefix, useSsl=use_ssl, verify=verify, verifyCertPath=verify_cert_path, endpointUrl=endpoint_url, skipEmptyFiles=skip_empty_files, ) ), ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) compute_logs_config = instance["compute_logs"] assert compute_logs_config["module"] == "dagster_aws.s3.compute_log_manager" assert compute_logs_config["class"] == "S3ComputeLogManager" assert compute_logs_config["config"] == { "bucket": bucket, "local_dir": local_dir, "prefix": prefix, "use_ssl": use_ssl, "verify": verify, "verify_cert_path": verify_cert_path, "endpoint_url": endpoint_url, "skip_empty_files": skip_empty_files, } # Test all config fields in configurable class assert compute_logs_config["config"].keys() == S3ComputeLogManager.config_type().keys() def test_custom_compute_log_manager_config(template: HelmTemplate): module = "a_module" class_ = "Class" config_field_one = "1" config_field_two = "two" config = {"config_field_one": config_field_one, "config_field_two": config_field_two} helm_values = DagsterHelmValues.construct( computeLogManager=ComputeLogManager.construct( type=ComputeLogManagerType.CUSTOM, config=ComputeLogManagerConfig.construct( customComputeLogManager=ConfigurableClass.construct( module=module, class_=class_, config=config, ) ), ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) compute_logs_config = instance["compute_logs"] assert compute_logs_config["module"] == module assert compute_logs_config["class"] == class_ assert compute_logs_config["config"] == config def test_custom_python_logs_config(template: HelmTemplate): log_level = "INFO" managed_python_loggers = ["foo", "bar", "baz"] handler_config = { "handlers": { "myHandler": {"class": "logging.StreamHandler", "level": "INFO", "stream": "foo"} }, "formatters": {"myFormatter": {"format": "%(message)s"}}, } helm_values = DagsterHelmValues.construct( pythonLogs=PythonLogs.construct( pythonLogLevel=log_level, managedPythonLoggers=managed_python_loggers, dagsterHandlerConfig=handler_config, ) ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) python_logs_config = instance["python_logs"] assert python_logs_config["python_log_level"] == log_level assert python_logs_config["managed_python_loggers"] == managed_python_loggers assert python_logs_config["dagster_handler_config"] == handler_config def test_custom_python_logs_missing_config(template: HelmTemplate): helm_values = DagsterHelmValues.construct( pythonLogs=PythonLogs.construct(pythonLogLevel="INFO") ) configmaps = template.render(helm_values) instance = yaml.full_load(configmaps[0].data["dagster.yaml"]) python_logs_config = instance["python_logs"] assert python_logs_config["python_log_level"] == "INFO" assert "managed_python_loggers" not in python_logs_config assert "dagster_handler_config" not in python_logs_config @pytest.mark.parametrize( argnames=["json_schema_model", "compute_log_manager_class"], argvalues=[ (AzureBlobComputeLogManagerModel, AzureBlobComputeLogManager), (GCSComputeLogManagerModel, GCSComputeLogManager), (S3ComputeLogManagerModel, S3ComputeLogManager), ], ) def test_compute_log_manager_has_schema(json_schema_model, compute_log_manager_class): json_schema_fields = json_schema_model.schema()["properties"].keys() compute_log_manager_fields = set( map(to_camel_case, compute_log_manager_class.config_type().keys()) ) assert json_schema_fields == compute_log_manager_fields @pytest.mark.parametrize( argnames=["json_schema_model", "run_coordinator_class"], argvalues=[ (QueuedRunCoordinatorConfig, QueuedRunCoordinator), ], ) def test_run_coordinator_has_schema(json_schema_model, run_coordinator_class): json_schema_fields = json_schema_model.schema()["properties"].keys() run_coordinator_fields = set(map(to_camel_case, run_coordinator_class.config_type().keys())) assert json_schema_fields == run_coordinator_fields
37.122807
100
0.678481
4a26961989d72c1b67a1f0991bbb8f4a7e7d0a14
125
py
Python
tools/pdffer.py
BjornFJohansson/TravisSlideProcessor
8af3531cf5b798000974d65c1d7fa4b5e8ec6a6d
[ "BSD-3-Clause" ]
1
2018-05-09T15:11:46.000Z
2018-05-09T15:11:46.000Z
tools/pdffer.py
BjornFJohansson/TravisSlideProcessor
8af3531cf5b798000974d65c1d7fa4b5e8ec6a6d
[ "BSD-3-Clause" ]
2
2017-09-25T06:36:48.000Z
2017-09-25T09:54:17.000Z
tools/pdffer.py
BjornFJohansson/AutoSlideProcessor
8af3531cf5b798000974d65c1d7fa4b5e8ec6a6d
[ "BSD-3-Clause" ]
null
null
null
from nbconvert import PDFExporter exporter = PDFExporter() output, resources = exporter.from_filename('betacarotene.ipynb')
25
64
0.816
4a26970a24c5a1771426ef27aedb47fee5bf3380
3,064
py
Python
lib/tool_shed/tool_shed_registry.py
julozi/galaxy
90d9da03975f254ac128747cd04532c3595d6155
[ "CC-BY-3.0" ]
1
2020-09-02T23:26:12.000Z
2020-09-02T23:26:12.000Z
lib/tool_shed/tool_shed_registry.py
julozi/galaxy
90d9da03975f254ac128747cd04532c3595d6155
[ "CC-BY-3.0" ]
null
null
null
lib/tool_shed/tool_shed_registry.py
julozi/galaxy
90d9da03975f254ac128747cd04532c3595d6155
[ "CC-BY-3.0" ]
1
2016-06-14T13:21:13.000Z
2016-06-14T13:21:13.000Z
import logging import xml.etree.ElementTree from collections import OrderedDict from six.moves.urllib import request as urlrequest from tool_shed.util import common_util, xml_util log = logging.getLogger(__name__) DEFAULT_TOOL_SHEDS_CONF_XML = """<?xml version="1.0"?> <tool_sheds> <tool_shed name="Galaxy Main Tool Shed" url="https://toolshed.g2.bx.psu.edu/"/> </tool_sheds> """ class Registry(object): def __init__(self, config=None): self.tool_sheds = OrderedDict() self.tool_sheds_auth = OrderedDict() if config: # Parse tool_sheds_conf.xml tree, error_message = xml_util.parse_xml(config) if tree is None: log.warning("Unable to load references to tool sheds defined in file %s" % str(config)) return root = tree.getroot() else: root = xml.etree.ElementTree.fromstring(DEFAULT_TOOL_SHEDS_CONF_XML) config = "internal default config" log.debug('Loading references to tool sheds from %s' % config) for elem in root.findall('tool_shed'): try: name = elem.get('name', None) url = elem.get('url', None) username = elem.get('user', None) password = elem.get('pass', None) if name and url: self.tool_sheds[name] = url self.tool_sheds_auth[name] = None log.debug('Loaded reference to tool shed: %s' % name) if name and url and username and password: pass_mgr = urlrequest.HTTPPasswordMgrWithDefaultRealm() pass_mgr.add_password(None, url, username, password) self.tool_sheds_auth[name] = pass_mgr except Exception as e: log.warning('Error loading reference to tool shed "%s", problem: %s' % (name, str(e))) def password_manager_for_url(self, url): """ If the tool shed is using external auth, the client to the tool shed must authenticate to that as well. This provides access to the six.moves.urllib.request.HTTPPasswordMgrWithdefaultRealm() object for the url passed in. Following more what galaxy.demo_sequencer.controllers.common does might be more appropriate at some stage... """ url_sans_protocol = common_util.remove_protocol_from_tool_shed_url(url) for shed_name, shed_url in self.tool_sheds.items(): shed_url_sans_protocol = common_util.remove_protocol_from_tool_shed_url(shed_url) if url_sans_protocol.startswith(shed_url_sans_protocol): return self.tool_sheds_auth[shed_name] log.debug("Invalid url '%s' received by tool shed registry's password_manager_for_url method." % str(url)) return None def url_auth(self, url): password_manager = self.password_manager_for_url(url) if password_manager is not None: return urlrequest.HTTPBasicAuthHandler(password_manager)
42.555556
119
0.638708
4a2697ec70cc717240744fd758faeea80a81639f
49
py
Python
tools/deepke/name_entity_re/standard/tools/__init__.py
dfface/DoctorKG
6bd6ebec8244a9ce0a2c8c278a704f02b9afaaf8
[ "MIT" ]
1
2022-03-26T16:08:08.000Z
2022-03-26T16:08:08.000Z
tools/deepke/name_entity_re/standard/tools/__init__.py
dfface/DoctorKG
6bd6ebec8244a9ce0a2c8c278a704f02b9afaaf8
[ "MIT" ]
null
null
null
tools/deepke/name_entity_re/standard/tools/__init__.py
dfface/DoctorKG
6bd6ebec8244a9ce0a2c8c278a704f02b9afaaf8
[ "MIT" ]
null
null
null
from .dataset import * from .preprocess import *
24.5
25
0.755102
4a269829b489f4701fa8fe0c58344ec701026f58
8,816
py
Python
Scripts/ORF_CNN_141.py
ShepherdCode/Soars2021
ab4f304eaa09e52d260152397a6c53d7a05457da
[ "MIT" ]
1
2021-08-16T14:49:04.000Z
2021-08-16T14:49:04.000Z
Scripts/ORF_CNN_141.py
ShepherdCode/Soars2021
ab4f304eaa09e52d260152397a6c53d7a05457da
[ "MIT" ]
null
null
null
Scripts/ORF_CNN_141.py
ShepherdCode/Soars2021
ab4f304eaa09e52d260152397a6c53d7a05457da
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # # ORF recognition by CNN # # Use variable number of bases between START and STOP. Thus, ncRNA will have its STOP out-of-frame or too close to the START, and pcRNA will have its STOP in-frame and far from the START. # In[109]: import time t = time.time() time.strftime('%Y-%m-%d %H:%M:%S %Z', time.localtime(t)) # In[110]: PC_SEQUENCES=10000 # how many protein-coding sequences NC_SEQUENCES=10000 # how many non-coding sequences PC_TESTS=1000 NC_TESTS=1000 RNA_LEN=32 # how long is each sequence CDS_LEN=16 # min CDS len to be coding ALPHABET=4 # how many different letters are possible INPUT_SHAPE_2D = (RNA_LEN,ALPHABET,1) # Conv2D needs 3D inputs INPUT_SHAPE = (RNA_LEN,ALPHABET) # Conv1D needs 2D inputs FILTERS = 16 # how many different patterns the model looks for NEURONS = 16 DROP_RATE = 0.8 WIDTH = 3 # how wide each pattern is, in bases STRIDE_2D = (1,1) # For Conv2D how far in each direction STRIDE = 1 # For Conv1D, how far between pattern matches, in bases EPOCHS=100 # how many times to train on all the data SPLITS=3 # SPLITS=3 means train on 2/3 and validate on 1/3 FOLDS=3 # train the model this many times (range 1 to SPLITS) # In[111]: import sys IN_COLAB = False try: from google.colab import drive IN_COLAB = True except: pass if IN_COLAB: print("On Google CoLab, mount cloud-local file, get our code from GitHub.") PATH='/content/drive/' #drive.mount(PATH,force_remount=True) # hardly ever need this #drive.mount(PATH) # Google will require login credentials DATAPATH=PATH+'My Drive/data/' # must end in "/" import requests r = requests.get('https://raw.githubusercontent.com/ShepherdCode/Soars2021/master/SimTools/RNA_describe.py') with open('RNA_describe.py', 'w') as f: f.write(r.text) from RNA_describe import ORF_counter from RNA_describe import Random_Base_Oracle r = requests.get('https://raw.githubusercontent.com/ShepherdCode/Soars2021/master/SimTools/RNA_prep.py') with open('RNA_prep.py', 'w') as f: f.write(r.text) from RNA_prep import prepare_inputs_len_x_alphabet else: print("CoLab not working. On my PC, use relative paths.") DATAPATH='data/' # must end in "/" sys.path.append("..") # append parent dir in order to use sibling dirs from SimTools.RNA_describe import ORF_counter,Random_Base_Oracle from SimTools.RNA_prep import prepare_inputs_len_x_alphabet MODELPATH="BestModel" # saved on cloud instance and lost after logout #MODELPATH=DATAPATH+MODELPATH # saved on Google Drive but requires login # In[112]: from os import listdir import csv from zipfile import ZipFile import numpy as np import pandas as pd from scipy import stats # mode from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from keras.models import Sequential from keras.layers import Dense,Embedding,Dropout from keras.layers import Conv1D,Conv2D from keras.layers import Flatten,MaxPooling1D,MaxPooling2D from keras.losses import BinaryCrossentropy # tf.keras.losses.BinaryCrossentropy import matplotlib.pyplot as plt from matplotlib import colors mycmap = colors.ListedColormap(['red','blue']) # list color for label 0 then 1 np.set_printoptions(precision=2) # In[113]: rbo=Random_Base_Oracle(RNA_LEN,True) pc_all,nc_all = rbo.get_partitioned_sequences(CDS_LEN,10) # just testing pc_all,nc_all = rbo.get_partitioned_sequences(CDS_LEN,PC_SEQUENCES+PC_TESTS) print("Use",len(pc_all),"PC seqs") print("Use",len(nc_all),"NC seqs") # In[114]: # Describe the sequences def describe_sequences(list_of_seq): oc = ORF_counter() num_seq = len(list_of_seq) rna_lens = np.zeros(num_seq) orf_lens = np.zeros(num_seq) for i in range(0,num_seq): rna_len = len(list_of_seq[i]) rna_lens[i] = rna_len oc.set_sequence(list_of_seq[i]) orf_len = oc.get_max_orf_len() orf_lens[i] = orf_len print ("Average RNA length:",rna_lens.mean()) print ("Average ORF length:",orf_lens.mean()) print("Simulated sequences prior to adjustment:") print("PC seqs") describe_sequences(pc_all) print("NC seqs") describe_sequences(nc_all) # In[115]: pc_train=pc_all[:PC_SEQUENCES] nc_train=nc_all[:NC_SEQUENCES] pc_test=pc_all[PC_SEQUENCES:] nc_test=nc_all[NC_SEQUENCES:] # In[116]: # Use code from our SimTools library. X,y = prepare_inputs_len_x_alphabet(pc_train,nc_train,ALPHABET) # shuffles print("Data ready.") # In[117]: def make_DNN(): print("make_DNN") print("input shape:",INPUT_SHAPE) dnn = Sequential() #dnn.add(Embedding(input_dim=INPUT_SHAPE,output_dim=INPUT_SHAPE)) dnn.add(Conv1D(filters=FILTERS,kernel_size=WIDTH,strides=STRIDE,padding="same", input_shape=INPUT_SHAPE)) dnn.add(Conv1D(filters=FILTERS,kernel_size=WIDTH,strides=STRIDE,padding="same")) dnn.add(MaxPooling1D()) dnn.add(Conv1D(filters=FILTERS,kernel_size=WIDTH,strides=STRIDE,padding="same")) dnn.add(Conv1D(filters=FILTERS,kernel_size=WIDTH,strides=STRIDE,padding="same")) dnn.add(MaxPooling1D()) dnn.add(Flatten()) dnn.add(Dense(NEURONS,activation="sigmoid",dtype=np.float32)) dnn.add(Dropout(DROP_RATE)) dnn.add(Dense(1,activation="sigmoid",dtype=np.float32)) dnn.compile(optimizer='adam', loss=BinaryCrossentropy(from_logits=False), metrics=['accuracy']) # add to default metrics=loss dnn.build(input_shape=INPUT_SHAPE) #ln_rate = tf.keras.optimizers.Adam(learning_rate = LN_RATE) #bc=tf.keras.losses.BinaryCrossentropy(from_logits=False) #model.compile(loss=bc, optimizer=ln_rate, metrics=["accuracy"]) return dnn model = make_DNN() print(model.summary()) # In[118]: from keras.callbacks import ModelCheckpoint def do_cross_validation(X,y): cv_scores = [] fold=0 mycallbacks = [ModelCheckpoint( filepath=MODELPATH, save_best_only=True, monitor='val_accuracy', mode='max')] splitter = KFold(n_splits=SPLITS) # this does not shuffle for train_index,valid_index in splitter.split(X): if fold < FOLDS: fold += 1 X_train=X[train_index] # inputs for training y_train=y[train_index] # labels for training X_valid=X[valid_index] # inputs for validation y_valid=y[valid_index] # labels for validation print("MODEL") # Call constructor on each CV. Else, continually improves the same model. model = model = make_DNN() print("FIT") # model.fit() implements learning start_time=time.time() history=model.fit(X_train, y_train, epochs=EPOCHS, verbose=1, # ascii art while learning callbacks=mycallbacks, # called at end of each epoch validation_data=(X_valid,y_valid)) end_time=time.time() elapsed_time=(end_time-start_time) print("Fold %d, %d epochs, %d sec"%(fold,EPOCHS,elapsed_time)) # print(history.history.keys()) # all these keys will be shown in figure pd.DataFrame(history.history).plot(figsize=(8,5)) plt.grid(True) plt.gca().set_ylim(0,1) # any losses > 1 will be off the scale plt.show() # In[119]: do_cross_validation(X,y) # In[120]: from keras.models import load_model X,y = prepare_inputs_len_x_alphabet(pc_test,nc_test,ALPHABET) best_model=load_model(MODELPATH) scores = best_model.evaluate(X, y, verbose=0) print("The best model parameters were saved during cross-validation.") print("Best was defined as maximum validation accuracy at end of any epoch.") print("Now re-load the best model and test it on previously unseen data.") print("Test on",len(pc_test),"PC seqs") print("Test on",len(nc_test),"NC seqs") print("%s: %.2f%%" % (best_model.metrics_names[1], scores[1]*100)) # In[121]: from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score ns_probs = [0 for _ in range(len(y))] bm_probs = best_model.predict(X) ns_auc = roc_auc_score(y, ns_probs) bm_auc = roc_auc_score(y, bm_probs) ns_fpr, ns_tpr, _ = roc_curve(y, ns_probs) bm_fpr, bm_tpr, _ = roc_curve(y, bm_probs) plt.plot(ns_fpr, ns_tpr, linestyle='--', label='Guess, auc=%.4f'%ns_auc) plt.plot(bm_fpr, bm_tpr, marker='.', label='Model, auc=%.4f'%bm_auc) plt.title('ROC') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend() plt.show() print("%s: %.2f%%" %('AUC',bm_auc*100.0)) # In[122]: t = time.time() time.strftime('%Y-%m-%d %H:%M:%S %Z', time.localtime(t)) # In[122]:
31.598566
187
0.694986
4a2698723e98668fdf4fcbb359f73176359503fe
242
py
Python
Tratamento de erros/adicao.py
g7jpedro/Python_exer
9efbe179599eba4cdb39c9525fd850565d16f5fd
[ "MIT" ]
null
null
null
Tratamento de erros/adicao.py
g7jpedro/Python_exer
9efbe179599eba4cdb39c9525fd850565d16f5fd
[ "MIT" ]
null
null
null
Tratamento de erros/adicao.py
g7jpedro/Python_exer
9efbe179599eba4cdb39c9525fd850565d16f5fd
[ "MIT" ]
null
null
null
n1 = input('Digite o primeiro valor: ') n2 = input('Digite o segundo valor: ') try: somar = float(n1) + float(n2) except ValueError: print('ERRO ! Informe um tipo certo de dado.') else: print(f'A soma de {n1} + {n2} = {somar}')
22
50
0.619835
4a26987c3f6748024d30258df2d6ac83da0d2b5b
1,635
py
Python
tests/integration_test.py
alexismhill3/pinetree
45a1c2eae4cb3677b26794b9f1dc8a304e237550
[ "MIT" ]
6
2020-07-20T21:35:07.000Z
2021-06-22T06:51:03.000Z
tests/integration_test.py
alexismhill3/pinetree
45a1c2eae4cb3677b26794b9f1dc8a304e237550
[ "MIT" ]
12
2019-09-09T16:31:29.000Z
2021-09-15T18:10:01.000Z
tests/integration_test.py
alexismhill3/pinetree
45a1c2eae4cb3677b26794b9f1dc8a304e237550
[ "MIT" ]
4
2017-09-08T03:21:49.000Z
2019-08-27T21:12:04.000Z
# Test simulation import unittest import subprocess import tempfile import importlib class MainTest(unittest.TestCase): def setUp(self): self.tempdir = tempfile.TemporaryDirectory() def tearDown(self): self.tempdir.cleanup() def run_test(self, prefix): test_mod = importlib.import_module('.models.' + prefix, 'tests') out_prefix = self.tempdir.name + "/" + prefix test_mod.execute(out_prefix) with open('tests/output/' + prefix + '_counts.tsv') as f: text = f.read() with open(out_prefix + '_counts.tsv') as results_file: results = results_file.read() self.assertEqual(results, text) def test_single_gene(self): self.run_test('single_gene') # def test_three_genes(self): # self.run_test('three_genes') # def test_dual_polymerases(self): # self.run_test('dual_polymerases') # def test_dual_promoters(self): # self.run_test('dual_promoter') # def test_readthrough(self): # self.run_test('readthrough') # def test_genome_entry(self): # self.run_test('genome_entry') # def test_consecutive_promoters(self): # self.run_test('consecutive_promoters') # def test_lotka_voltera(self): # self.run_test('lotka_voltera') # def test_promoter_gene_overlap(self): # self.run_test('promoter_gene_overlap') # def test_three_genes_runoff(self): # self.run_test('three_genes_runoff') # def test_overlapping_genes(self): # self.run_test('overlapping_genes') if __name__ == '__main__': unittest.main()
26.370968
72
0.653823
4a2698c0fbf1e8a4bc710064957ebae6fcc13e11
31
py
Python
3-Python-Advanced (May 2021)/modules/lab/triangle/__init__.py
karolinanikolova/SoftUni-Software-Engineering
7891924956598b11a1e30e2c220457c85c40f064
[ "MIT" ]
null
null
null
3-Python-Advanced (May 2021)/modules/lab/triangle/__init__.py
karolinanikolova/SoftUni-Software-Engineering
7891924956598b11a1e30e2c220457c85c40f064
[ "MIT" ]
null
null
null
3-Python-Advanced (May 2021)/modules/lab/triangle/__init__.py
karolinanikolova/SoftUni-Software-Engineering
7891924956598b11a1e30e2c220457c85c40f064
[ "MIT" ]
null
null
null
from .draw import draw_triangle
31
31
0.870968
4a2699061be5cdcf43d6bb3a9e5bc9aa6ca59122
6,026
py
Python
DankMemes/commandHandler.py
Kritner/DankMemeBot
32120951baf3a63c2e1d6793b180d4a49228e6be
[ "MIT" ]
null
null
null
DankMemes/commandHandler.py
Kritner/DankMemeBot
32120951baf3a63c2e1d6793b180d4a49228e6be
[ "MIT" ]
9
2018-04-04T17:37:32.000Z
2018-04-05T19:40:15.000Z
DankMemes/commandHandler.py
Kritner/DankMemeBot
32120951baf3a63c2e1d6793b180d4a49228e6be
[ "MIT" ]
null
null
null
import random from slackclient import SlackClient class CommandHandler(): _memeMode = "sequential" _memeModeToggleString = "memeMode" _currentTargetForDankness = "michael" _helpCommandString = "wat do" _memes = [ {"trigger" : "rules", "channel" : None, "index" : 0, "responses": ["This place isn't quite dank enough to get into the rules..."]}, {"trigger" : "rules", "channel" : "dank_memers", "index" : 0, "responses": [("Here are the rules..." + "\nRule #1: Don’t tell {0}" + "\nRule #2: If {0} still finds out, invite him." + "\nRule #3: If {0} is in this channel, he can select the next potential candidate.").format(_currentTargetForDankness)]}, {"trigger" : "flavortown", "channel" : None, "index" : 0, "responses": [ "http://i0.kym-cdn.com/photos/images/newsfeed/001/355/960/bf2.jpg", "http://i0.kym-cdn.com/photos/images/newsfeed/001/053/453/f5f.jpg", "http://i0.kym-cdn.com/photos/images/newsfeed/000/972/194/cd9.jpg", "https://i.chzbgr.com/full/9101308416/h26CA5A46/" ]}, {"trigger" : "it is wednesday my dudes", "channel" : None, "index" : 0, "responses": [ "https://www.youtube.com/watch?v=du-TY1GUFGk", "https://www.youtube.com/watch?v=YSDAAh6Lps4", "https://www.youtube.com/watch?v=m2Z0CyuyfMI", "https://youtu.be/Oct2xKMGOno?list=RDRT0soCWpH3Q", "https://www.youtube.com/watch?v=OzQ-KvxLVT0", "https://youtu.be/VaPMUACYWww", "https://www.youtube.com/watch?v=csqJK8wwaHw", "https://www.youtube.com/watch?v=JHO61_wDC30", "https://youtu.be/RT0soCWpH3Q", "https://youtu.be/0W51GIxnwKc", "https://youtu.be/VfaNCw2bF48", "https://youtu.be/RT0soCWpH3Q" ]}, {"trigger" : "doge", "channel" : None, "index" : 0, "responses": [ "https://mtgcardsmith.com/view/complete/full/2017/8/21/1503338850980696.png", "http://i0.kym-cdn.com/photos/images/newsfeed/000/581/723/a8b.jpg", "http://i0.kym-cdn.com/photos/images/newsfeed/000/581/168/9f1.jpg", "http://i0.kym-cdn.com/photos/images/newsfeed/000/581/567/bab.jpg", "http://i0.kym-cdn.com/photos/images/newsfeed/000/661/142/c03.jpg" ]}] def handle_command(self, slackClient, command, channel): """ Executes bot command if the command is known """ # Finds and executes the given command, filling in response response = None if command.startswith(self._helpCommandString): response = self._get_help() elif command.startswith(self._memeModeToggleString): response = "changing current 'memeMode' of {0} ".format(self._memeMode) if self._memeMode == "sequential": self._memeMode = "random" else: self._memeMode = "sequential" response = response + "to {0}.".format(self._memeMode) else: response = self._get_memes(slackClient, command, channel) if response is None: response = "Hmm... I'm not sure what you mean. Try '{0}' for commands".format(self._helpCommandString) # Sends the response back to the channel slackClient.api_call( "chat.postMessage", channel=channel, text=response ) def _get_current_channel_name(self, slackClient, channel): channel_name = None for chan in self._get_channel_list(slackClient, True): if channel == chan["id"]: channel_name = chan["name"] return channel_name def _get_channel_list(self, slackClient, includePrivate = True): channelList = [] apiChannels = slackClient.api_call("channels.list") channels = apiChannels["channels"] for chan in channels: channelList.append({"id": chan["id"], "name": chan["name"]}) if includePrivate: apiChannels = slackClient.api_call("groups.list") channels = apiChannels["groups"] for chan in channels: channelList.append({"id": chan["id"], "name": chan["name"]}) return channelList def _get_help(self): response = ("DankMemeBot is currently operating in {0} meme mode, " + "and capable of acting on the following trigger words:").format(self._memeMode) response = response + "\n----------\n" for item in self._memes: if item["trigger"] not in response: response = response + "\n" + item["trigger"] response = response + "\n----------\n" response = response + ("\nUse command '{0}' " + "to toggle the current meme mode (random or sequential)").format(self._memeModeToggleString) return response def _get_memes(self, slackClient, command, channel): response = None channel_name = self._get_current_channel_name(slackClient, channel) for meme in self._memes: if command.lower().startswith(meme["trigger"].lower()): if meme["channel"] == channel_name: response = self._get_meme(meme) elif meme["channel"] is None: response = self._get_meme(meme) return response def _get_meme(self, meme): if len(meme["responses"]) == 1: return meme["responses"][0] if self._memeMode == "random": return meme["responses"][random.randrange(0, len(meme["responses"]) - 1)] if meme["index"] == len(meme["responses"]): meme["index"] = 0 response = meme["responses"][meme["index"]] meme["index"] += 1 return response
37.899371
133
0.565383
4a2699d343e6ce9904a1e79607d21af896c4c757
42,119
py
Python
mmd_scripting/core/nuthouse01_core.py
Nuthouse01/VMD-to-text-Conversion-Tool
0d9334bd5735accdd8bb6e1b69889fbe054a7481
[ "MIT" ]
4
2020-03-02T00:27:24.000Z
2020-05-29T15:23:50.000Z
mmd_scripting/core/nuthouse01_core.py
Nuthouse01/VMD-to-text-Conversion-Tool
0d9334bd5735accdd8bb6e1b69889fbe054a7481
[ "MIT" ]
null
null
null
mmd_scripting/core/nuthouse01_core.py
Nuthouse01/VMD-to-text-Conversion-Tool
0d9334bd5735accdd8bb6e1b69889fbe054a7481
[ "MIT" ]
null
null
null
import math import sys import traceback from os import path, listdir from typing import Any, Tuple, List, Sequence, Callable, Iterable, TypeVar, Union _SCRIPT_VERSION = "Script version: Nuthouse01 - v1.07.03 - 8/9/2021" # This code is free to use and re-distribute, but I cannot be held responsible for damages that it may or may not cause. ##################### # this contains a bunch of functions that are used throughout multiple different scripts # it's better to keep them all in one place than copy them for each file ######################################################################################################################## # constants used in many files that I don't wanna keep copying over and over ######################################################################################################################## pmxe_material_csv_header = [";Material", "材質名", "材質名(英)", "拡散色_R", "拡散色_G", "拡散色_B", "拡散色_A(非透過度)", "反射色_R", "反射色_G", "反射色_B", "反射強度", "環境色_R", "環境色_G", "環境色_B", "両面描画(0/1)", "地面影(0/1)", "セルフ影マップ(0/1)", "セルフ影(0/1)", "頂点色(0/1)", "描画(0:Tri/1:Point/2:Line)", "エッジ(0/1)", "エッジサイズ", "エッジ色_R", "エッジ色_G", "エッジ色_B", "エッジ色_A", "テクスチャパス", "スフィアテクスチャパス", "スフィアモード(0:無効/1:乗算/2:加算/3:サブテクスチャ)", "Toonテクスチャパス", "メモ"] pmxe_material_csv_tag = "Material" pmxe_vertex_csv_header = [";Vertex", "頂点Index", "位置_x", "位置_y", "位置_z", "法線_x", "法線_y", "法線_z", "エッジ倍率", "UV_u", "UV_v", "追加UV1_x", "追加UV1_y", "追加UV1_z", "追加UV1_w", "追加UV2_x", "追加UV2_y", "追加UV2_z", "追加UV2_w", "追加UV3_x", "追加UV3_y", "追加UV3_z", "追加UV3_w", "追加UV4_x", "追加UV4_y", "追加UV4_z", "追加UV4_w", "ウェイト変形タイプ(0:BDEF1/1:BDEF2/2:BDEF4/3:SDEF/4:QDEF)", "ウェイト1_ボーン名", "ウェイト1_ウェイト値", "ウェイト2_ボーン名", "ウェイト2_ウェイト値", "ウェイト3_ボーン名", "ウェイト3_ウェイト値", "ウェイト4_ボーン名", "ウェイト4_ウェイト値", "C_x", "C_y", "C_z", "R0_x", "R0_y", "R0_z", "R1_x", "R1_y", "R1_z"] pmxe_vertex_csv_tag = "Vertex" pmxe_bone_csv_header = [";Bone", "ボーン名", "ボーン名(英)", "変形階層", "物理後(0/1)", "位置_x", "位置_y", "位置_z", "回転(0/1)", "移動(0/1)", "IK(0/1)", "表示(0/1)", "操作(0/1)", "親ボーン名", "表示先(0:オフセット/1:ボーン)", "表示先ボーン名", "オフセット_x", "オフセット_y", "オフセット_z", "ローカル付与(0/1)", "回転付与(0/1)", "移動付与(0/1)", "付与率", "付与親名", "軸制限(0/1)", "制限軸_x", "制限軸_y", "制限軸_z", "ローカル軸(0/1)", "ローカルX軸_x", "ローカルX軸_y", "ローカルX軸_z", "ローカルZ軸_x", "ローカルZ軸_y", "ローカルZ軸_z", "外部親(0/1)", "外部親Key", "IKTarget名", "IKLoop", "IK単位角[deg]"] pmxe_bone_csv_tag = "Bone" pmxe_morph_csv_header = [";Morph", "モーフ名", "モーフ名(英)", "パネル(0:無効/1:眉(左下)/2:目(左上)/3:口(右上)/4:その他(右下))", "モーフ種類(0:グループモーフ/1:頂点モーフ/2:ボーンモーフ/3:UV(Tex)モーフ/4:追加UV1モーフ/5:追加UV2モーフ/6:追加UV3モーフ/7:追加UV4モーフ/8:材質モーフ/9:フリップモーフ/10:インパルスモーフ)"] pmxe_morph_csv_tag = "Morph" pmxe_morphvertex_csv_tag = "VertexMorph" pmxe_morphmaterial_csv_tag = "MaterialMorph" pmxe_morphuv_csv_tag = "UVMorph" pmxe_rigidbody_csv_header = [";Body", "剛体名", "剛体名(英)", "関連ボーン名", "剛体タイプ(0:Bone/1:物理演算/2:物理演算+ボーン追従)", "グループ(0~15)", "非衝突グループ文字列(ex:1 2 3 4)", "形状(0:球/1:箱/2:カプセル)", "サイズ_x", "サイズ_y", "サイズ_z", "位置_x", "位置_y", "位置_z", "回転_x[deg]", "回転_y[deg]", "回転_z[deg]", "質量", "移動減衰", "回転減衰", "反発力", "摩擦力"] pmxe_rigidbody_csv_tag = "Body" pmxe_face_csv_header = [";Face", "親材質名", "面Index", "頂点Index1", "頂点Index2", "頂点Index3"] pmxe_face_csv_tag = "Face" interpolation_default_linear = [20, 20, 107, 107] ######################################################################################################################## # misc functions and user-input functions ######################################################################################################################## def basic_print(*args, is_progress=False) -> None: """ CONSOLE FUNCTION: emulate builtin print() function and display text in console. :param args: any number of string-able objects, will be joined with spaces. :param is_progress: default false. if true, move the cursor to the beginning of THIS line after printing, so NEXT print contents will overwrite this one. """ the_string = ' '.join([str(x) for x in args]) # replace the print() function with this so i can replace this with the text redirector if is_progress: # leave the cursor at the beginning of the line so the next print statement overwrites this print(the_string, end='\r', flush=True) # print('\r' + p, end='', flush=True) # leave cursor at the end of the line # print('\r', end='', flush=False) # force NEXT print statement to begin by resetting to the start of the line else: # otherwise use the normal print print(the_string) # global variable holding a function pointer that i can overwrite with a different function pointer when in GUI mode MY_PRINT_FUNC = basic_print def pause_and_quit(message=None) -> None: """ CONSOLE FUNCTION: use input() to suspend until user presses ENTER, then die. DO NOT USE THIS FUNCTION IN ANY SCRIPTS THAT WILL BE EXECUTED BY THE GUI. :param message: optional string to print before dying """ # wait for user input before exiting because i want the window to stay open long enough for them to read output MY_PRINT_FUNC(message) MY_PRINT_FUNC("...press ENTER to exit...") input() exit() PROGRESS_REFRESH_RATE = 0.03 # threshold for actually printing PROGRESS_LAST_VALUE = 0.0 # last% def print_progress_oneline(newpercent:float) -> None: """ Prints progress percentage on one continually-overwriting line. To minimize actual print-to-screen events, only print in increments of PROGRESS_REFRESH_RATE (currently 3%) regardless of how often this function is called. This uses the MY_PRINT_FUNC approach so this function works in both GUI and CONSOLE modes. :param newpercent: float [0-1], current progress % """ global PROGRESS_LAST_VALUE # if 'curr' is lower than it was last printed (meaning reset), or it's been a while since i last printed a %, then print if (newpercent < PROGRESS_LAST_VALUE) or (newpercent >= PROGRESS_LAST_VALUE + PROGRESS_REFRESH_RATE): # cursor gets left at the beginning of line, so the next print will overwrite this one p = "...working: {:05.1%}".format(newpercent) MY_PRINT_FUNC(p, is_progress=True) PROGRESS_LAST_VALUE = newpercent # useful as keys for sorting def get1st(x): return x[0] def get2nd(x): return x[1] THING = TypeVar('THING') # Declare type variable so I can say "whatever input type is, it matches the output type" def my_list_search(searchme: Iterable[THING], condition: Callable[[THING], bool], getitem=False): # in a list of things, find the first thing where the condition is true for d,row in enumerate(searchme): if condition(row): return row if getitem else d return None def my_list_partition(l: Iterable[THING], condition: Callable[[THING], bool]) -> Tuple[List[THING], List[THING]]: """ Split one list into two NEW lists based on a condition. Kinda like a list comprehension but it produces 2 results. :param l: the list to be split in two :param condition: lambda function that returns true or false :return: tuple of lists, (list_lambda_true, list_lambda_false) """ list_where_true = [] list_where_false = [] for iiiii in l: if condition(iiiii): list_where_true.append(iiiii) else: list_where_false.append(iiiii) return list_where_true, list_where_false def prettyprint_file_size(size_b: int) -> str: """ Format a filesize in terms of bytes, KB, MB, GB, whatever is most appropriate. :param size_b: int size in bytes :return: string """ if abs(size_b) < 1024: # bytes ret = "%d B" % size_b elif abs(size_b) < 1024*1024: # kilobytes s = size_b / 1024 ret = "{:.2f} KB".format(s) elif abs(size_b) < 1024*1024*1024: # megabytes s = size_b / (1024*1024) ret = "{:.2f} MB".format(s) else: # gigabytes s = size_b / (1024*1024*1024) ret = "{:.2f} GB".format(s) return ret MAXDIFFERENCE = 0 # recursively check for equality, using a loose comparison for floatingpoints # operating on test file, the greatest difference introduced by quaternion transform is 0.000257 # lets set sanity-check threshold at double that, 0.0005 # return the number of times a float difference exceeded the threshold # if there is a non-float difference, return infinity def recursively_compare(A,B): global MAXDIFFERENCE # return 1/true if it FAILS, return 0/false if it MATCHES if hasattr(A, "list"): A = A.list() if hasattr(B, "list"): B = B.list() if isinstance(A, float) and isinstance(B, float): # for floats specifically, replace exact compare with approximate compare diff = abs(A-B) MAXDIFFERENCE = max(diff, MAXDIFFERENCE) return diff >= 0.0005 if isinstance(A, list) and isinstance(B, list): if len(A) != len(B): return float("inf") collect = 0 for A_, B_ in zip(A, B): collect += recursively_compare(A_, B_) return collect # if not float and not list, then use standard compare if A != B: return float("inf") return 0 def new_recursive_compare(L, R): diffcount = 0 maxdiff = 0 if isinstance(L, (list,tuple)) and isinstance(R, (list,tuple)): # if both are listlike, recurse on each element of 'em if len(L) != len(R): diffcount += 1 # walk down both for as long as it will go, i guess? for d,(LL, RR) in enumerate(zip(L, R)): thisdiff, thismax = new_recursive_compare(LL, RR) diffcount += thisdiff maxdiff = max(maxdiff, thismax) elif hasattr(L,"validate") and hasattr(R,"validate"): # for my custom classes, look over the members with "vars" because its fancy Lvars = sorted(list(vars(L).items())) Rvars = sorted(list(vars(R).items())) for (nameL, LL), (nameR, RR) in zip(Lvars, Rvars): thisdiff, thismax = new_recursive_compare(LL, RR) diffcount += thisdiff maxdiff = max(maxdiff, thismax) elif isinstance(L, float) and isinstance(R, float): # for floats specifically, replace exact compare with approximate compare diff = abs(L - R) maxdiff = diff if L != R: diffcount += 1 else: # if not float and not list, then use standard compare if L != R: diffcount += 1 return diffcount, maxdiff def flatten(x: Sequence) -> list: """ Recursively flatten a list of lists (or tuples). Empty lists get replaced with "None" instead of completely vanishing. """ retme = [] for thing in x: if isinstance(thing, (list, tuple)): if len(thing) == 0: retme.append(None) else: retme += flatten(thing) else: retme.append(thing) return retme def justify_stringlist(j: List[str], right=False) -> List[str]: """ CONSOLE FUNCTION: justify all str in a list to match the length of the longest str in that list. Determined by len() function, i.e. number of chars, not by true width when printed, so it doesn't work well with JP/CN chars. :param j: list[str] to be justified :param right: by default, left-justify (right-pad). if this is true, right-justify (left-pad) instead. :return: list[str] after padding/justifying """ # first, look for an excuse to give up early if len(j) == 0 or len(j) == 1: return j # second, find the length of the longest string in the list longest_name_len = max([len(p) for p in j]) # third, make a new list of strings that have been padded to be that length if right: # right-justify, force strings to right by padding on left retlist = [(" " * (longest_name_len - len(p))) + p for p in j] else: # left-justify, force strings to left by padding on right retlist = [p + (" " * (longest_name_len - len(p))) for p in j] return retlist # global variable holding a function pointer that i can overwrite with a different function pointer when in GUI mode MY_JUSTIFY_STRINGLIST = justify_stringlist def prompt_user_choice(options: Sequence[int], explain_info=None) -> int: """ CONSOLE FUNCTION: prompt for multiple-choice question & continue prompting until one of those options is chosen. :param options: list/tuple of ints :param explain_info: None or str or list[str], help text that will be printed when func is called :return: int that the user chose """ if isinstance(explain_info, (list, tuple)): for p in explain_info: MY_PRINT_FUNC(p) elif isinstance(explain_info, str): MY_PRINT_FUNC(explain_info) # create set for matching against choicelist = [str(i) for i in options] # create printable string which is all options separated by slashes promptstr = "/".join(choicelist) while True: # continue prompting until the user gives valid input choice = input(" Choose [" + promptstr + "]: ") if choice in choicelist: # if given valid input, break break # if given invalid input, prompt and loop again MY_PRINT_FUNC("invalid choice") return int(choice) # global variable holding a function pointer that i can overwrite with a different function pointer when in GUI mode MY_SIMPLECHOICE_FUNC = prompt_user_choice def general_input(valid_check: Callable[[str], bool], explain_info=None) -> str: """ CONSOLE FUNCTION: Prompt for string input & continue prompting until given function 'valid_check' returns True. 'valid_check' should probably print some kind of error whenever it returns False, explaining why input isn't valid. Trailing whitespace is removed before calling 'valid_check' and before returning result. :param valid_check: function or lambda that takes str as in put and returns bool :param explain_info: None or str or list[str], help text that will be printed when func is called :return: input string (trailing whitespace removed) """ if explain_info is None: pass elif isinstance(explain_info, str): MY_PRINT_FUNC(explain_info) elif isinstance(explain_info, (list, tuple)): for p in explain_info: MY_PRINT_FUNC(p) while True: s = input("> ") s = s.rstrip() # no use for trailing whitespace, sometimes have use for leading whitespace # perform valid-check if valid_check(s): break else: # if given invalid input, prompt and loop again MY_PRINT_FUNC("invalid input") return s # global variable holding a function pointer that i can overwrite with a different function pointer when in GUI mode MY_GENERAL_INPUT_FUNC = general_input def prompt_user_filename(label: str, ext_list: Union[str,Sequence[str]]) -> str: """ CONSOLE FUNCTION: prompt for file & continue prompting until user enters the name of an existing file with the specified file extension. Returns case-correct absolute file path to the specified file. :param label: {{short}} string label that identifies this kind of input, like "Text file" or "VMD file" :param ext_list: list of acceptable extensions, or just one string :return: case-correct absolute file path """ if isinstance(ext_list, str): # if it comes in as a string, wrap it in a list ext_list = [ext_list] MY_PRINT_FUNC('(type/paste the path to the file, ".." means "go up a folder")') MY_PRINT_FUNC('(path can be absolute, like C:/username/Documents/miku.pmx)') MY_PRINT_FUNC('(or path can be relative to here, example: ../../mmd/models/miku.pmx)') while True: # continue prompting until the user gives valid input if ext_list: name = input(" {:s} path ending with [{:s}] = ".format(label, ", ".join(ext_list))) valid_ext = any(name.lower().endswith(a.lower()) for a in ext_list) if not valid_ext: MY_PRINT_FUNC("Err: given file does not have acceptable extension") continue else: # if given an empty sequence, then do not check for valid extension. accept anything. name = input(" {:s} path = ".format(label)) if not path.isfile(name): MY_PRINT_FUNC("Err: given name is not a file, did you type it wrong?") abspath = path.abspath(name) # find the point where the filepath breaks! walk up folders 1 by 1 until i find the last place where the path was valid c = abspath while c and not path.exists(c): c = path.dirname(c) whereitbreaks = (" " * len(c)) + " ^^^^" MY_PRINT_FUNC(abspath) MY_PRINT_FUNC(whereitbreaks) continue break # it exists, so make it absolute name = path.abspath(path.normpath(name)) # windows is case insensitive, so this doesn't matter, but to make it match the same case as the existing file: return filepath_make_casecorrect(name) # global variable holding a function pointer that i can overwrite with a different function pointer when in GUI mode MY_FILEPROMPT_FUNC = prompt_user_filename def filepath_splitdir(initial_name: str) -> Tuple[str,str]: """ Alias for path.split() :param initial_name: string filepath :return: (directories, filename) """ return path.split(initial_name) def filepath_splitext(initial_name: str) -> Tuple[str,str]: """ Alias for path.splitext() :param initial_name: string filepath :return: (directories+filename, extension) """ return path.splitext(initial_name) def filepath_insert_suffix(initial_name: str, suffix:str) -> str: """ Simple function, insert the suffix between the Basename and Extension. :param initial_name: string filepath :param suffix: string to append to filepath :return: string filepath """ N,E = filepath_splitext(initial_name) ret = N + suffix + E return ret def filepath_make_casecorrect(initial_name: str) -> str: """ Make the given path match the case of the file/folders on the disk. If the path does not exist, then make it casecorrect up to the point where it no longer exists. :param initial_name: string filepath :return: string filepath, exactly the same as input except for letter case """ initial_name = path.normpath(initial_name) # all "." are removed, all ".." are removed except for leading... # first, break the given path into all of its segments seglist = initial_name.split(path.sep) if len(seglist) == 0: raise ValueError("ERROR: input path '%s' is too short" % initial_name) if path.isabs(initial_name): first = seglist.pop(0) + path.sep if path.ismount(first): # windows absolute path! begins with a drive letter reassemble_name = first.upper() elif first == "": # ???? linux ???? reassemble_name = path.sep else: MY_PRINT_FUNC("path is abs, but doesn't start with drive or filesep? what? '%s'" % initial_name) reassemble_name = first else: # if not an absolute path, it needs to start as "." so that listdir works right (need to remove this when done tho) reassemble_name = "." while seglist: nextseg = seglist.pop(0) if nextseg == "..": reassemble_name = path.join(reassemble_name, nextseg) else: try: whats_here = listdir(reassemble_name) except FileNotFoundError: # fallback just in case I forgot about something return initial_name whats_here = [str(w) for w in whats_here] whats_here_lower = [w.lower() for w in whats_here] try: # find which entry in listdir corresponds to nextseg, when both sides are lowered idx = whats_here_lower.index(nextseg.lower()) except ValueError: # the next segment isnt available in the listdir! the path is invalid from here on out! # so, just join everything remaining & break out of the loop. reassemble_name = path.join(reassemble_name, nextseg, *seglist) break # the next segment IS available in the listdir, so use the case-correct version of it reassemble_name = path.join(reassemble_name, whats_here[idx]) # then, loop! # call normpath one more time to get rid of leading ".\\" when path is relative! reassemble_name = path.normpath(reassemble_name) return reassemble_name def filepath_get_unused_name(initial_name: str, checkdisk=True, namelist=None) -> str: """ Given a desired filepath, generate a path that is guaranteed to be unused & safe to write to. Append integers to the end of the basename until it passes. Often it doesn't need to append anything and returns initial_name unmodified. :param initial_name: desired file path, absolute or relative. :param checkdisk: default True. if true, then check uniqueness against names on disk. :param namelist: default empty. if given, then check uniqueness against these names. list or set. :return: same file path as initial_name, but with integers inserted until it becomes unique (if needed) """ # if namelist is given, check against namelist as well as what's on the disk... # make an all-lower version of namelist if namelist is None: namelist_lower = [] else: namelist_lower = [n.lower() for n in namelist] basename, extension = path.splitext(initial_name) test_name = basename + extension # first, try it without adding any numbers for append_num in range(1, 1000): diskpass = not (checkdisk and path.exists(test_name)) listpass = (test_name.lower() not in namelist_lower) if diskpass and listpass: # if this name passes the disk check (or disk check is skipped), AND it passes the list check (or list is empty), # then this name will be kept. return test_name else: # if test_name is already used, then assemle a new name that includes a number test_name = "%s (%d)%s" % (basename, append_num, extension) # if it hits here, it tried 999 file names and none of them worked raise RuntimeError("ERROR: unable to find unused variation of '%s' for file-write" % initial_name) def RUN_WITH_TRACEBACK(func: Callable, *args) -> None: """ Used to execute the "main" function of a script in direct-run mode. If it runs succesfully, do a pause-and-quit afterward. If an exception occurs, print the traceback info and do a pause-and-quit. If it was CTRL+C aborted, do not pause-and-quit. :param func: main-function :param args: optional args to pass to main-function """ try: MY_PRINT_FUNC("") func(*args) pause_and_quit("Done with everything! Goodbye!") except (KeyboardInterrupt, SystemExit): # this is normal and expected, do nothing and die pass except Exception as e: # print an error and full traceback if an exception was received! exc_type, exc_value, exc_traceback = sys.exc_info() printme_list = traceback.format_exception(e.__class__, e, exc_traceback) # now i have the complete traceback info as a list of strings, each ending with newline MY_PRINT_FUNC("") MY_PRINT_FUNC("".join(printme_list)) pause_and_quit("ERROR: the script did not complete succesfully.") ######################################################################################################################## # searching thru sorted lists for MASSIVE speedup ######################################################################################################################## # bisect_left and bisect_right literally just copied from the "bisect" library so I don't need to import that file def bisect_left(a: Sequence[Any], x: Any) -> int: """ Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e < x, and all e in a[i:] have e >= x. So if x already appears in the list, then i = the index where the leftmost x can be found. """ lo = 0 hi = len(a) while lo < hi: mid = (lo+hi)//2 if a[mid] < x: lo = mid+1 else: hi = mid return lo def bisect_right(a: Sequence[Any], x: Any) -> int: """ Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e <= x, and all e in a[i:] have e > x. So if x already appears in the list, then i = index + 1 of the rightmost x already there. """ lo = 0 hi = len(a) while lo < hi: mid = (lo+hi)//2 if x < a[mid]: hi = mid else: lo = mid+1 return lo def binary_search_isin(x: Any, a: Sequence[Any]) -> bool: """ If x is in a, return True. Otherwise return False. a must be in ascending sorted order. """ pos = bisect_left(a, x) # find insertion position return True if pos != len(a) and a[pos] == x else False # don't walk off the end def binary_search_wherein(x: Any, a: Sequence[Any]) -> int: """ If x is in a, return its index. Otherwise return -1. a must be in ascending sorted order. """ pos = bisect_left(a, x) # find insertion position return pos if pos != len(a) and a[pos] == x else -1 # don't walk off the end ######################################################################################################################## # simple, fundamental math operations ######################################################################################################################## def linear_map(x1: float, y1: float, x2: float, y2: float, x_in_val: float) -> float: """ Define a Y=MX+B slope via coords x1,y1 and x2,y2. Then given an X value, calculate the resulting Y. :param x1: x1 :param y1: y1 :param x2: x2 :param y2: y2 :param x_in_val: any float, does not need to be constrained by x1/x2 :return: resulting Y """ m = (y2 - y1) / (x2 - x1) b = y2 - (m * x2) return x_in_val * m + b def clamp(value: float, lower: float, upper: float) -> float: """ Basic clamp function: if below the floor, return floor; if above the ceiling, return ceiling; else return unchanged. :param value: float input :param lower: float floor :param upper: float ceiling :return: float within range [lower-upper] """ return lower if value < lower else upper if value > upper else value def bidirectional_clamp(val: float, a: float, b: float) -> float: """ Clamp when you don't know the relative order of a and b. :param val: float input :param a: ceiling or floor :param b: ceiling or floor :return: float within range [lower-upper] """ return clamp(val, a, b) if a < b else clamp(val, b, a) def my_dot(v0: Sequence[float], v1: Sequence[float]) -> float: """ Perform mathematical dot product between two same-length vectors. IE component-wise multiply, then sum. :param v0: any number of floats :param v1: same number of floats :return: single float """ dot = 0.0 for (a, b) in zip(v0, v1): dot += a * b return dot def my_euclidian_distance(x: Sequence[float]) -> float: """ Calculate Euclidian distance (square each component, sum, and square root). :param x: list/tuple, any number of floats :return: single float """ return math.sqrt(my_dot(x, x)) def normalize_distance(foo: Sequence[float]) -> List[float]: """ Normalize by Euclidian distance. Supports any number of dimensions. :param foo: list/tuple, any number of floats :return: list of floats """ LLL = my_euclidian_distance(foo) return [t / LLL for t in foo] def normalize_sum(foo: Sequence[float]) -> List[float]: """ Normalize by sum. Supports any number of dimensions. :param foo: list/tuple, any number of floats :return: list of floats """ LLL = sum(foo) return [t / LLL for t in foo] ######################################################################################################################## # MyBezier object for bezier curve interpolation ######################################################################################################################## def _bezier_math(t: float, p1: Tuple[float, float], p2: Tuple[float, float]) -> Tuple[float, float]: """ Internal use only. Use standard bezier equations, assuming p0=(0,0) and p3=(1,1) and p1/p2 are args, with a time value t, to calculate the resulting X and Y. If X/Y of p1/p2 are within range [0-1] then output X/Y are guaranteed to also be within [0-1]. :param t: float time value :param p1: 2x float, coord of p1 :param p2: 2x float, coord of p2 :return: 2x float, resulting X Y coords """ x0, y0 = 0, 0 x1, y1 = p1 x2, y2 = p2 x3, y3 = 1, 1 x = (1 - t) ** 3 * x0 + 3 * (1 - t) ** 2 * t * x1 + 3 * (1 - t) * t ** 2 * x2 + t ** 3 * x3 y = (1 - t) ** 3 * y0 + 3 * (1 - t) ** 2 * t * y1 + 3 * (1 - t) * t ** 2 * y2 + t ** 3 * y3 return x, y class MyBezier(object): def __init__(self, p1: Tuple[int,int], p2: Tuple[int,int], resolution=50) -> None: """ This implements a linear approximation of a constrained Bezier curve for motion interpolation. After defining the control points, Y values can be easily generated from X values using self.approximate(x). :param p1: 2x int range [0-128], XY coordinates of control point :param p2: 2x int range [0-128], XY coordinates of control point :param resolution: int, number of points in the linear approximation of the bezier curve """ # first convert tuple(int [0-128]) to tuple(float [0.0-1.0]) point1 = (clamp(p1[0] / 128, 0.0, 1.0), clamp(p1[1] / 128, 0.0, 1.0)) point2 = (clamp(p2[0] / 128, 0.0, 1.0), clamp(p2[1] / 128, 0.0, 1.0)) retlist = [(0.0, 0.0)] # curve always starts at 0,0 # use bezier math to create a list of XY points along the actual bezier curve, evenly spaced in t=time # both x-coords and y-coords are strictly increasing, but not evenly spaced for i in range(1, resolution): retlist.append(_bezier_math(i / resolution, point1, point2)) retlist.append((1.0, 1.0)) # curve always ends at 1,1 self.resolution = resolution # store resolution param xx, yy = zip(*retlist) # unzip self.xx = list(xx) self.yy = list(yy) def approximate(self, x: float) -> float: """ In a constrained bezier curve, X and Y have a perfect one-to-one correspondance, but the math makes it incredibly difficult to exactly calculate a Y given an X. So, approximate it via a series of precalculated line segments. :param x: float input x [0.0-1.0] :return: float output y [0.0-1.0] """ x = clamp(x, 0.0, 1.0) # first take care of the corner cases, i.e. the cases I already know the answers to: if x == 1.0: return 1.0 elif x == 0.0: return 0.0 else: # use binary search to find pos, the idx of the entry in self.xx which is <= x # if xx[3] < x < xx[4], then pos=4. so the segment starts at pos-1 and ends at pos. pos = bisect_left(self.xx, x) # use pos-1 and pos to get two xy points, to build a line segment, to perform linear approximation return linear_map(self.xx[pos-1], self.yy[pos-1], self.xx[pos], self.yy[pos], x) ######################################################################################################################## # advanced geometric math functions ######################################################################################################################## def my_projection(x: Sequence[float], y: Sequence[float]) -> Tuple[float,float,float]: """ Project 3D vector X onto vector Y, i.e. the component of X that is parallel with Y. :param x: 3x float X Y Z :param y: 3x float X Y Z :return: 3x float X Y Z """ # project x onto y: y * (my_dot(x, y) / my_dot(y, y)) scal = my_dot(x, y) / my_dot(y, y) # out = tuple(y_ * scal for y_ in y) return y[0]*scal, y[1]*scal, y[2]*scal def my_cross_product(a: Sequence[float], b: Sequence[float]) -> Tuple[float,float,float]: """ Perform mathematical cross product between two 3D vectors. :param a: 3x float :param b: 3x float :return: 3x float """ return a[1]*b[2] - a[2]*b[1],\ a[2]*b[0] - a[0]*b[2],\ a[0]*b[1] - a[1]*b[0] def my_quat_conjugate(q: Sequence[float]) -> Tuple[float,float,float,float]: """ "invert" or "reverse" or "conjugate" a quaternion by negating the x/y/z components. :param q: 4x float, W X Y Z quaternion :return: 4x float, W X Y Z quaternion """ return q[0], -q[1], -q[2], -q[3] def my_slerp(v0: Sequence[float], v1: Sequence[float], t: float) -> Tuple[float,float,float,float]: """ Spherically Linear intERPolates between quat1 and quat2 by t. The param t will normally be clamped to the range [0, 1]. However, negative values or greater than 1 will still work. If t==0, return v0. If t==1, return v1. :param v0: 4x float, W X Y Z quaternion :param v1: 4x float, W X Y Z quaternion :param t: float [0,1] how far to interpolate :return: 4x float, W X Y Z quaternion """ # https://stackoverflow.com/questions/44706591/how-to-test-quaternion-slerp # fuck this guy his code is mostly wrong, except for the quaternion flipping bit thats clever # https://www.mathworks.com/help/fusion/ref/quaternion.slerp.html#mw_0419144b-0e16-4d56-b5d7-19783b790e4b # this algorithm works tho if math.isclose(t, 0.0, abs_tol=1e-6): return v0 if math.isclose(t, 1.0, abs_tol=1e-6): return v1 # If the dot product is negative, the quaternions # have opposite handed-ness and slerp won't take # the shorter path. Fix by reversing one quaternion. dot = my_dot(v0, v1) if dot < 0.0: v1 = [-v for v in v1] dot = -dot # q0not = my_quat_conjugate(q0) # a = hamilton_product(q1, q0not) # a = normalize_distance(a) # b = quat_pow(a, t) # c = hamilton_product(b, q0) # return c # clamp just to be safe dot = clamp(dot, -1.0, 1.0) theta = math.acos(dot) if theta == 0: # if there is no angle between the two quaternions, then interpolation is pointless return v0[0], v0[1], v0[2], v0[3] # q1 * sin((1-t) * theta) / sin(theta) + q2 * sin(t * theta) / sin(theta) factor0 = math.sin((1 - t) * theta) / math.sin(theta) factor1 = math.sin(t * theta) / math.sin(theta) res = tuple((v0[i] * factor0) + (v1[i] * factor1) for i in range(4)) return res[0], res[1], res[2], res[3] # https://en.wikipedia.org/wiki/Quaternion#Exponential,_logarithm,_and_power_functions # https://math.stackexchange.com/questions/939229/unit-quaternion-to-a-scalar-power # wikipedia is always good, this stackexchange thing is a bit hard to parse def quat_ln(_q: Tuple[float, float, float, float]) -> Tuple[float, float, float, float]: vm = my_euclidian_distance(_q[1:4]) qm = my_euclidian_distance(_q) tt = (math.acos(_q[0] / qm) / vm) if (vm > 1e-9) else 0.0 w = math.log(qm) return w, _q[1] * tt, _q[2] * tt, _q[3] * tt def quat_exp(_q: Tuple[float, float, float, float]) -> Tuple[float, float, float, float]: r = my_euclidian_distance(_q[1:4]) et = math.exp(_q[0]) s = (et * math.sin(r) / r) if (r > 1e-9) else 0.0 w = et * math.cos(r) return w, _q[1] * s, _q[2] * s, _q[3] * s def quat_pow(_q: Tuple[float, float, float, float], _n: float) -> Tuple[float, float, float, float]: aa = quat_ln(_q) # pycharm type checker can go to hell bb = tuple(_n * i for i in aa) cc = quat_exp(bb) # pycharm type checker can go to hell return cc ''' # code block to validate the SLERP code via 3d plotting original_point = [1, 0, 0] t_list = [i/20 for i in range(20)] while True: R = [random.randint(-170, 170) for _ in range(6)] euler1 = R[0:3] euler2 = R[3:6] print(euler1, euler2) quat1 = core.euler_to_quaternion(euler1) quat2 = core.euler_to_quaternion(euler2) point_list = [] point_list_new = [] for t in t_list: rot = core.my_slerp(quat1, quat2, t) # old slerp newpoint = core.rotate3d((0,0,0), rot, original_point) point_list.append(newpoint) rot = core.new_slerp(quat1, quat2, t) # new slerp newpoint = core.rotate3d((0, 0, 0), rot, original_point) point_list_new.append(newpoint) # now graph them fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x,y,z = zip(*point_list) ax.scatter(x,y,z, label="old") x,y,z = zip(*point_list_new) ax.scatter(x,y,z, label="new") ax.scatter(0,0,0, label="origin") # plot the origin too ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) ax.set_zlim(-1, 1) STARTPOINT = core.rotate3d((0,0,0), quat1, original_point) ENDPOINT = core.rotate3d((0,0,0), quat2, original_point) ax.scatter(*STARTPOINT, marker='x', label='START') ax.scatter(*ENDPOINT, marker='x', label='END') ax.legend() plt.show(block=True) ''' def hamilton_product(quat1: Sequence[float], quat2: Sequence[float]) -> Tuple[float,float,float,float]: """ Perform the mathematical "hamilton product", effectively adds two quaternions. However the order of the inputs does matter. Returns the equivalent of rotation quat2 followed by rotation quat1. Result is another quaternion. :param quat1: 4x float, W X Y Z quaternion :param quat2: 4x float, W X Y Z quaternion :return: 4x float, W X Y Z quaternion """ # thank you stackexchange and thank you wikipedia (a1, b1, c1, d1) = quat1 (a2, b2, c2, d2) = quat2 a3 = (a1 * a2) - (b1 * b2) - (c1 * c2) - (d1 * d2) b3 = (a1 * b2) + (b1 * a2) + (c1 * d2) - (d1 * c2) c3 = (a1 * c2) - (b1 * d2) + (c1 * a2) + (d1 * b2) d3 = (a1 * d2) + (b1 * c2) - (c1 * b2) + (d1 * a2) return a3, b3, c3, d3 # def pure_euler_to_quaternion(euler): # # THIS IS THE PURE MATH-ONLY TRANSFORM WITHOUT ANY OF THE MMD SPECIAL CASE COMPENSATION # # angles are in radians # # this logic copied from wikipedia: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles # (roll, pitch, yaw) = euler # # # r=x, p=y, y=z # # # roll (X), pitch (Y), yaw (Z) # sr = math.sin(roll * 0.5) # sp = math.sin(pitch * 0.5) # sy = math.sin(yaw * 0.5) # cr = math.cos(roll * 0.5) # cp = math.cos(pitch * 0.5) # cy = math.cos(yaw * 0.5) # # w = (cy * cp * cr) + (sy * sp * sr) # x = (cy * cp * sr) - (sy * sp * cr) # y = (sy * cp * sr) + (cy * sp * cr) # z = (sy * cp * cr) - (cy * sp * sr) # # return [w, x, y, z] # # def pure_quaternion_to_euler(quaternion): # # THIS IS THE PURE MATH-ONLY TRANSFORM WITHOUT ANY OF THE MMD SPECIAL CASE COMPENSATION # # angles are in radians # # this logic copied from wikipedia: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles # (w, x, y, z) = quaternion # # # roll (x-axis2 rotation) # sinr_cosp = 2 * ((w * x) + (y * z)) # cosr_cosp = 1 - (2 * ((x ** 2) + (y ** 2))) # roll = math.atan2(sinr_cosp, cosr_cosp) # # # pitch (y-axis2 rotation) # sinp = 2 * ((w * y) - (z * x)) # if sinp >= 1.0: # pitch = math.pi / 2 # use 90 degrees if out of range # elif sinp <= -1.0: # pitch = -math.pi / 2 # else: # pitch = math.asin(sinp) # # # yaw (z-axis2 rotation) # siny_cosp = 2 * ((w * z) + (x * y)) # cosy_cosp = 1 - (2 * ((y ** 2) + (z ** 2))) # yaw = math.atan2(siny_cosp, cosy_cosp) # # return [roll, pitch, yaw] def euler_to_quaternion(euler: Sequence[float]) -> Tuple[float,float,float,float]: """ Convert XYZ euler angles to WXYZ quaternion, using the same method as MikuMikuDance. Massive thanks and credit to "Isometric" for helping me discover the transformation method used in mmd!!!! :param euler: 3x float, X Y Z angle in degrees :return: 4x float, W X Y Z quaternion """ # massive thanks and credit to "Isometric" for helping me discover the transformation method used in mmd!!!! # angles are in degrees, must convert to radians roll, pitch, yaw = euler roll = math.radians(roll) pitch = math.radians(pitch) yaw = math.radians(yaw) # roll (X), pitch (Y), yaw (Z) sx = math.sin(roll * 0.5) sy = math.sin(pitch * 0.5) sz = math.sin(yaw * 0.5) cx = math.cos(roll * 0.5) cy = math.cos(pitch * 0.5) cz = math.cos(yaw * 0.5) w = (cz * cy * cx) + (sz * sy * sx) x = (cz * cy * sx) + (sz * sy * cx) y = (sz * cy * sx) - (cz * sy * cx) z = (cz * sy * sx) - (sz * cy * cx) return w, x, y, z def quaternion_to_euler(quat: Sequence[float]) -> Tuple[float,float,float]: """ Convert WXYZ quaternion to XYZ euler angles, using the same method as MikuMikuDance. Massive thanks and credit to "Isometric" for helping me discover the transformation method used in mmd!!!! :param quat: 4x float, W X Y Z quaternion :return: 3x float, X Y Z angle in degrees """ w, x, y, z = quat # pitch (y-axis rotation) sinr_cosp = 2 * ((w * y) + (x * z)) cosr_cosp = 1 - (2 * ((x ** 2) + (y ** 2))) pitch = -math.atan2(sinr_cosp, cosr_cosp) # yaw (z-axis rotation) siny_cosp = 2 * ((-w * z) - (x * y)) cosy_cosp = 1 - (2 * ((x ** 2) + (z ** 2))) yaw = math.atan2(siny_cosp, cosy_cosp) # roll (x-axis rotation) sinp = 2 * ((z * y) - (w * x)) if sinp >= 1.0: roll = -math.pi / 2 # use 90 degrees if out of range elif sinp <= -1.0: roll = math.pi / 2 else: roll = -math.asin(sinp) # fixing the x rotation, part 1 if x ** 2 > 0.5 or w < 0: if x < 0: roll = -math.pi - roll else: roll = math.pi * math.copysign(1, w) - roll # fixing the x rotation, part 2 if roll > (math.pi / 2): roll = math.pi - roll elif roll < -(math.pi / 2): roll = -math.pi - roll roll = math.degrees(roll) pitch = math.degrees(pitch) yaw = math.degrees(yaw) return roll, pitch, yaw def rotate3d(rotate_around: Sequence[float], angle_quat: Sequence[float], initial_position: Sequence[float]) -> List[float]: """ Rotate a point within 3d space around another specified point by a specific quaternion angle. :param rotate_around: X Y Z usually a bone location :param angle_quat: W X Y Z quaternion rotation to apply :param initial_position: X Y Z starting location of the point to be rotated :return: X Y Z position after rotating """ # "rotate around a point in 3d space" # subtract "origin" to move the whole system to rotating around 0,0,0 point = [p - o for p, o in zip(initial_position, rotate_around)] # might need to scale the point down to unit-length??? # i'll do it just to be safe, it couldn't hurt length = my_euclidian_distance(point) if length != 0: point = [p / length for p in point] # set up the math as instructed by math.stackexchange p_vect = [0.0] + point r_prime_vect = my_quat_conjugate(angle_quat) # r_prime_vect = [angle_quat[0], -angle_quat[1], -angle_quat[2], -angle_quat[3]] # P' = R * P * R' # P' = H( H(R,P), R') temp = hamilton_product(angle_quat, p_vect) p_prime_vect = hamilton_product(temp, r_prime_vect) # note that the first element of P' will always be 0 point = p_prime_vect[1:4] # might need to undo scaling the point down to unit-length??? point = [p * length for p in point] # re-add "origin" to move the system to where it should have been point = [p + o for p, o in zip(point, rotate_around)] return point def rotate2d(origin: Sequence[float], angle: float, point: Sequence[float]) -> Tuple[float,float]: """ Rotate a 2d point counterclockwise by a given angle around a given 2d origin. The angle should be given in radians. :param origin: 2x float X Y, rotate-around point :param angle: float, radians to rotate :param point: 2x float X Y, point-that-will-be-rotated :return: 2x float X Y, point after rotation """ ox, oy = origin px, py = point qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy) qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy) return qx, qy if __name__ == '__main__': print(_SCRIPT_VERSION) pause_and_quit("you are not supposed to directly run this file haha")
38.605866
130
0.661459
4a269a1abab64bcb3bf3a4375a0f5d06bd659b21
12,943
py
Python
dipy/sims/tests/test_voxel.py
omarocegueda/dipy
520b724041116a958892bee0068b057314a21cb2
[ "MIT" ]
2
2018-07-25T14:04:20.000Z
2021-02-10T07:10:10.000Z
dipy/sims/tests/test_voxel.py
aarya22/dipy-reco1
9d20c911b4afe83e52ded698eff9ba0f0fafeca8
[ "MIT" ]
null
null
null
dipy/sims/tests/test_voxel.py
aarya22/dipy-reco1
9d20c911b4afe83e52ded698eff9ba0f0fafeca8
[ "MIT" ]
2
2018-07-24T21:20:54.000Z
2018-08-27T04:08:24.000Z
import numpy as np from nose.tools import (assert_true, assert_false, assert_equal, assert_almost_equal) from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_) from dipy.sims.voxel import (_check_directions, SingleTensor, MultiTensor, multi_tensor_odf, all_tensor_evecs, add_noise, single_tensor, sticks_and_ball, multi_tensor_dki, kurtosis_element, dki_signal) from dipy.core.geometry import (vec2vec_rotmat, sphere2cart) from dipy.data import get_data, get_sphere from dipy.core.gradients import gradient_table from dipy.io.gradients import read_bvals_bvecs fimg, fbvals, fbvecs = get_data('small_64D') bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) gtab = gradient_table(bvals, bvecs) # 2 shells for techniques that requires multishell data bvals_2s = np.concatenate((bvals, bvals * 2), axis=0) bvecs_2s = np.concatenate((bvecs, bvecs), axis=0) gtab_2s = gradient_table(bvals_2s, bvecs_2s) def diff2eigenvectors(dx, dy, dz): """ numerical derivatives 2 eigenvectors """ u = np.array([dx, dy, dz]) u = u / np.linalg.norm(u) R = vec2vec_rotmat(basis[:, 0], u) eig0 = u eig1 = np.dot(R, basis[:, 1]) eig2 = np.dot(R, basis[:, 2]) eigs = np.zeros((3, 3)) eigs[:, 0] = eig0 eigs[:, 1] = eig1 eigs[:, 2] = eig2 return eigs, R def test_check_directions(): # Testing spherical angles for two principal coordinate axis angles = [(0, 0)] # axis z sticks = _check_directions(angles) assert_array_almost_equal(sticks, [[0, 0, 1]]) angles = [(0, 90)] # axis z again (phi can be anything it theta is zero) sticks = _check_directions(angles) assert_array_almost_equal(sticks, [[0, 0, 1]]) angles = [(90, 0)] # axis x sticks = _check_directions(angles) assert_array_almost_equal(sticks, [[1, 0, 0]]) # Testing if directions are already given in cartesian coordinates angles = [(0, 0, 1)] sticks = _check_directions(angles) assert_array_almost_equal(sticks, [[0, 0, 1]]) # Testing more than one direction simultaneously angles = np.array([[90, 0], [30, 0]]) sticks = _check_directions(angles) ref_vec = [np.sin(np.pi*30/180), 0, np.cos(np.pi*30/180)] assert_array_almost_equal(sticks, [[1, 0, 0], ref_vec]) # Testing directions not aligned to planes x = 0, y = 0, or z = 0 the1 = 0 phi1 = 90 the2 = 30 phi2 = 45 angles = np.array([(the1, phi1), (the2, phi2)]) sticks = _check_directions(angles) ref_vec1 = (np.sin(np.pi*the1/180) * np.cos(np.pi*phi1/180), np.sin(np.pi*the1/180) * np.sin(np.pi*phi1/180), np.cos(np.pi*the1/180)) ref_vec2 = (np.sin(np.pi*the2/180) * np.cos(np.pi*phi2/180), np.sin(np.pi*the2/180) * np.sin(np.pi*phi2/180), np.cos(np.pi*the2/180)) assert_array_almost_equal(sticks, [ref_vec1, ref_vec2]) def test_sticks_and_ball(): d = 0.0015 S, sticks = sticks_and_ball(gtab, d=d, S0=1, angles=[(0, 0), ], fractions=[100], snr=None) assert_array_equal(sticks, [[0, 0, 1]]) S_st = SingleTensor(gtab, 1, evals=[d, 0, 0], evecs=[[0, 0, 0], [0, 0, 0], [1, 0, 0]]) assert_array_almost_equal(S, S_st) def test_single_tensor(): evals = np.array([1.4, .35, .35]) * 10 ** (-3) evecs = np.eye(3) S = SingleTensor(gtab, 100, evals, evecs, snr=None) assert_array_almost_equal(S[gtab.b0s_mask], 100) assert_(np.mean(S[~gtab.b0s_mask]) < 100) from dipy.reconst.dti import TensorModel m = TensorModel(gtab) t = m.fit(S) assert_array_almost_equal(t.fa, 0.707, decimal=3) def test_multi_tensor(): sphere = get_sphere('symmetric724') vertices = sphere.vertices mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003])) e0 = np.array([np.sqrt(2) / 2., np.sqrt(2) / 2., 0]) e1 = np.array([0, np.sqrt(2) / 2., np.sqrt(2) / 2.]) mevecs = [all_tensor_evecs(e0), all_tensor_evecs(e1)] # odf = multi_tensor_odf(vertices, [0.5, 0.5], mevals, mevecs) # assert_(odf.shape == (len(vertices),)) # assert_(np.all(odf <= 1) & np.all(odf >= 0)) fimg, fbvals, fbvecs = get_data('small_101D') bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) gtab = gradient_table(bvals, bvecs) s1 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None) s2 = single_tensor(gtab, 100, mevals[1], mevecs[1], snr=None) Ssingle = 0.5*s1 + 0.5*s2 S, sticks = MultiTensor(gtab, mevals, S0=100, angles=[(90, 45), (45, 90)], fractions=[50, 50], snr=None) assert_array_almost_equal(S, Ssingle) def test_snr(): np.random.seed(1978) s = single_tensor(gtab) # For reasonably large SNR, var(signal) ~= sigma**2, where sigma = 1/SNR for snr in [5, 10, 20]: sigma = 1.0 / snr for j in range(1000): s_noise = add_noise(s, snr, 1, noise_type='rician') assert_array_almost_equal(np.var(s_noise - s), sigma ** 2, decimal=2) def test_all_tensor_evecs(): e0 = np.array([1/np.sqrt(2), 1/np.sqrt(2), 0]) # Vectors are returned column-wise! desired = np.array([[1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [0, 0, 1]]).T assert_array_almost_equal(all_tensor_evecs(e0), desired) def test_kurtosis_elements(): """ Testing symmetry of the elements of the KT As an 4th order tensor, KT has 81 elements. However, due to diffusion symmetry the KT is fully characterized by 15 independent elements. This test checks for this property. """ # two fiber not aligned to planes x = 0, y = 0, or z = 0 mevals = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087], [0.00099, 0, 0], [0.00226, 0.00087, 0.00087]]) angles = [(80, 10), (80, 10), (20, 30), (20, 30)] fie = 0.49 # intra axonal water fraction frac = [fie * 50, (1-fie) * 50, fie * 50, (1-fie) * 50] sticks = _check_directions(angles) mD = np.zeros((len(frac), 3, 3)) for i in range(len(frac)): R = all_tensor_evecs(sticks[i]) mD[i] = np.dot(np.dot(R, np.diag(mevals[i])), R.T) # compute global DT D = np.zeros((3, 3)) for i in range(len(frac)): D = D + frac[i]*mD[i] # compute voxel's MD MD = (D[0][0] + D[1][1] + D[2][2]) / 3 # Reference dictionary with the 15 independent elements. # Note: The multiplication of the indexes (i+1) * (j+1) * (k+1) * (l+1) # for of an elements is only equal to this multiplication for another # element if an only if the element corresponds to an symmetry element. # Thus indexes multiplication is used as key of the reference dictionary kt_ref = {1: kurtosis_element(mD, frac, 0, 0, 0, 0), 16: kurtosis_element(mD, frac, 1, 1, 1, 1), 81: kurtosis_element(mD, frac, 2, 2, 2, 2), 2: kurtosis_element(mD, frac, 0, 0, 0, 1), 3: kurtosis_element(mD, frac, 0, 0, 0, 2), 8: kurtosis_element(mD, frac, 0, 1, 1, 1), 24: kurtosis_element(mD, frac, 1, 1, 1, 2), 27: kurtosis_element(mD, frac, 0, 2, 2, 2), 54: kurtosis_element(mD, frac, 1, 2, 2, 2), 4: kurtosis_element(mD, frac, 0, 0, 1, 1), 9: kurtosis_element(mD, frac, 0, 0, 2, 2), 36: kurtosis_element(mD, frac, 1, 1, 2, 2), 6: kurtosis_element(mD, frac, 0, 0, 1, 2), 12: kurtosis_element(mD, frac, 0, 1, 1, 2), 18: kurtosis_element(mD, frac, 0, 1, 2, 2)} # Testing all 81 possible elements xyz = [0, 1, 2] for i in xyz: for j in xyz: for k in xyz: for l in xyz: key = (i+1) * (j+1) * (k+1) * (l+1) assert_almost_equal(kurtosis_element(mD, frac, i, k, j, l), kt_ref[key]) # Testing optional funtion inputs assert_almost_equal(kurtosis_element(mD, frac, i, k, j, l), kurtosis_element(mD, frac, i, k, j, l, D, MD)) def test_DKI_simulations_aligned_fibers(): """ Testing DKI simulations when aligning the same fiber to different axis. If biological parameters don't change, kt[0] of a fiber aligned to axis x has to be equal to kt[1] of a fiber aligned to the axis y and equal to kt[2] of a fiber aligned to axis z. The same is applicable for dt """ # Defining parameters based on Neto Henriques et al., 2015. NeuroImage 111 mevals = np.array([[0.00099, 0, 0], # Intra-cellular [0.00226, 0.00087, 0.00087]]) # Extra-cellular frac = [49, 51] # Compartment volume fraction # axis x angles = [(90, 0), (90, 0)] signal_fx, dt_fx, kt_fx = multi_tensor_dki(gtab_2s, mevals, angles=angles, fractions=frac) # axis y angles = [(90, 90), (90, 90)] signal_fy, dt_fy, kt_fy = multi_tensor_dki(gtab_2s, mevals, angles=angles, fractions=frac) # axis z angles = [(0, 0), (0, 0)] signal_fz, dt_fz, kt_fz = multi_tensor_dki(gtab_2s, mevals, angles=angles, fractions=frac) assert_array_equal([kt_fx[0], kt_fx[1], kt_fx[2]], [kt_fy[1], kt_fy[0], kt_fy[2]]) assert_array_equal([kt_fx[0], kt_fx[1], kt_fx[2]], [kt_fz[2], kt_fz[0], kt_fz[1]]) assert_array_equal([dt_fx[0], dt_fx[2], dt_fx[5]], [dt_fy[2], dt_fy[0], dt_fy[5]]) assert_array_equal([dt_fx[0], dt_fx[2], dt_fx[5]], [dt_fz[5], dt_fz[0], dt_fz[2]]) # testing S signal along axis x, y and z bvals = np.array([0, 0, 0, 1000, 1000, 1000, 2000, 2000, 2000]) bvecs = np.asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) gtab_axis = gradient_table(bvals, bvecs) # axis x S_fx = dki_signal(gtab_axis, dt_fx, kt_fx, S0=100) assert_array_almost_equal(S_fx[0:3], [100, 100, 100]) # test S f0r b=0 # axis y S_fy = dki_signal(gtab_axis, dt_fy, kt_fy, S0=100) assert_array_almost_equal(S_fy[0:3], [100, 100, 100]) # test S f0r b=0 # axis z S_fz = dki_signal(gtab_axis, dt_fz, kt_fz, S0=100) assert_array_almost_equal(S_fz[0:3], [100, 100, 100]) # test S f0r b=0 # test S for b = 1000 assert_array_almost_equal([S_fx[3], S_fx[4], S_fx[5]], [S_fy[4], S_fy[3], S_fy[5]]) assert_array_almost_equal([S_fx[3], S_fx[4], S_fx[5]], [S_fz[5], S_fz[3], S_fz[4]]) # test S for b = 2000 assert_array_almost_equal([S_fx[6], S_fx[7], S_fx[8]], [S_fy[7], S_fy[6], S_fy[8]]) assert_array_almost_equal([S_fx[6], S_fx[7], S_fx[8]], [S_fz[8], S_fz[6], S_fz[7]]) def test_DKI_crossing_fibers_simulations(): """ Testing DKI simulations of a crossing fiber """ # two fiber not aligned to planes x = 0, y = 0, or z = 0 mevals = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087], [0.00099, 0, 0], [0.00226, 0.00087, 0.00087]]) angles = [(80, 10), (80, 10), (20, 30), (20, 30)] fie = 0.49 frac = [fie*50, (1 - fie)*50, fie*50, (1 - fie)*50] signal, dt, kt = multi_tensor_dki(gtab_2s, mevals, angles=angles, fractions=frac, snr=None) # in this simulations dt and kt cannot have zero elements for i in range(len(dt)): assert dt[i] != 0 for i in range(len(kt)): assert kt[i] != 0 # test S, dt and kt relative to the expected values computed from another # DKI package - UDKI (Neto Henriques et al., 2015) dt_ref = [1.0576161e-3, 0.1292542e-3, 0.4786179e-3, 0.2667081e-3, 0.1136643e-3, 0.9888660e-3] kt_ref = [2.3529944, 0.8226448, 2.3011221, 0.2017312, -0.0437535, 0.0404011, 0.0355281, 0.2449859, 0.2157668, 0.3495910, 0.0413366, 0.3461519, -0.0537046, 0.0133414, -0.017441] assert_array_almost_equal(dt, dt_ref) assert_array_almost_equal(kt, kt_ref) assert_array_almost_equal(signal, dki_signal(gtab_2s, dt_ref, kt_ref, S0=1., snr=None), decimal=5) if __name__ == "__main__": test_multi_tensor()
40.701258
79
0.564166
4a269a5496e8a0689b293858ea9c4958c00d883a
4,788
py
Python
src/bintray_client.py
hmrc/bintray-backup-restore
26b4744fcbd736fea8c318fe36ce2c11e80bce04
[ "Apache-2.0" ]
1
2021-01-28T11:10:53.000Z
2021-01-28T11:10:53.000Z
src/bintray_client.py
hmrc/bintray-backup-restore
26b4744fcbd736fea8c318fe36ce2c11e80bce04
[ "Apache-2.0" ]
null
null
null
src/bintray_client.py
hmrc/bintray-backup-restore
26b4744fcbd736fea8c318fe36ce2c11e80bce04
[ "Apache-2.0" ]
1
2021-04-10T23:38:50.000Z
2021-04-10T23:38:50.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import os import requests from progress.bar import IncrementalBar from tenacity import retry PROGRESS_BAR_FORMAT = "%(percent).1f%% - remaining %(remaining)d - eta %(eta)ds" def get_sha1_hash(path): pathstr = str(path) stream = os.popen(f"sha1sum {pathstr}") return stream.read().split(" ")[0] class BintrayClient: def __init__(self, organisation, api_creds): self.api_creds = api_creds self.organisation = organisation def get_repository_names(self): response = requests.get( f"https://bintray.com/api/v1/repos/{self.organisation}/", auth=self.api_creds, ) response.raise_for_status() repository_names = map(lambda repository: repository["name"], response.json()) return list(repository_names) def get_package_names(self, repository): discovered_packages = [] packages_api = f"https://bintray.com/api/v1/repos/{self.organisation}/{repository}/packages?start_pos=" start_pos = 0 while True: print(f"getting package names: {start_pos}") response = requests.get(f"{packages_api}{start_pos}", auth=self.api_creds) response.raise_for_status() discovered_packages.extend([package["name"] for package in response.json()]) # print(response.headers) if "X-RangeLimit-EndPos" not in response.headers: break if int(response.headers["X-RangeLimit-EndPos"]) + 1 == int( response.headers["X-RangeLimit-Total"] ): break start_pos = int(response.headers["X-RangeLimit-EndPos"]) + 1 return discovered_packages def get_package_information(self, package_name, repository): response = requests.get( f"https://bintray.com/api/v1/packages/{self.organisation}/{repository}/{package_name}", auth=self.api_creds, ) response.raise_for_status() return response.json() def write_package_metadata(self, package_information, file_path): with open(f"{file_path}/package_metadata.json", "w") as pm: json.dump(package_information, pm) def get_package_files(self, repository, package_name): files_response = requests.get( f"https://bintray.com/api/v1/packages/{self.organisation}/{repository}/{package_name}/files", auth=self.api_creds, ) files_response.raise_for_status() return files_response.json() @retry def download_file(self, path, url): with requests.get(url, auth=self.api_creds) as r: r.raise_for_status() with path.open(mode="wb") as f: f.write(r.content) @retry def upload_file(self, path): response = requests.put( f"https://bintray.com/api/v1/content/{self.organisation}/{path}?publish=1&override=1", auth=self.api_creds, data=path.read_bytes(), ) response.raise_for_status() def get_metadata(self, repositories): all_files = [] package_metadata = [] for repository in repositories: package_names = self.get_package_names(repository) for package in IncrementalBar( f"Downloading '{repository}' package information", suffix=PROGRESS_BAR_FORMAT, ).iter(package_names): package_metadata.append( self.get_package_information(package, repository) ) all_files.extend(self.get_package_files(repository, package)) return all_files, package_metadata def create_package(self, repository, local_metadata): metadata = { "name": local_metadata["name"], "licenses": ["Apache-2.0"], "vcs_url": local_metadata.get("vcs_url", "https://github.com/hmrc"), "desc": local_metadata.get("desc"), "labels": local_metadata.get("labels"), "website_url": local_metadata.get("website_url"), "issue_tracker_url": local_metadata.get("issue_tracker_url"), "github_repo": local_metadata.get("github_repo"), "github_release_notes_file": local_metadata.get( "github_release_notes_file" ), } if metadata["vcs_url"] is None: metadata["vcs_url"] = "https://github.com/hmrc" package_response = requests.post( f"https://bintray.com/api/v1/packages/{self.organisation}/{repository}", auth=self.api_creds, json=metadata, ) package_response.raise_for_status() return package_response.json()
38
111
0.615706
4a269a563cb050c243c7e242ae673c279282d512
1,027
py
Python
test/001/test.py
NSSAC/nssacPreCommitHook
ff27364687c8d89d2d1d8fbe982bf67d851e02fc
[ "Apache-2.0" ]
null
null
null
test/001/test.py
NSSAC/nssacPreCommitHook
ff27364687c8d89d2d1d8fbe982bf67d851e02fc
[ "Apache-2.0" ]
null
null
null
test/001/test.py
NSSAC/nssacPreCommitHook
ff27364687c8d89d2d1d8fbe982bf67d851e02fc
[ "Apache-2.0" ]
null
null
null
# BEGIN: Copyright # Copyright (C) 2019 Rector and Visitors of the University of Virginia # All rights reserved # END: Copyright # BEGIN: License # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # END: License from nssacPreCommitHook.header import Header from nssacPreCommitHook.configuration import Configuration from nssacPreCommitHook.git import Git configuration = Configuration().loadJsonFile("test/example.json") git = Git(repo_path="/home/shoops/git/COPASI") header = Header(git, configuration["copyright"], configuration["license"] if "license" in configuration else None) # header.updateHeader("/home/shoops/git/COPASI/copasi/model/CModel.cpp", commentStart="//", mode="actual") header.updateHeader("/home/shoops/git/COPASI/copasi/xml/CopasiML.rng", commentStart="<!--", commentEnd="-->", prolog=[{"end": ">"}], mode="actual")
38.037037
147
0.745862
4a269ba6571baf473a81fefc9a02ab122543edbd
552
py
Python
cli/src/commands/run_config.py
mikiec84/docsearch-scraper
08aa90ee9bf91b3e5e3e0d383e4d1b4d284c56b8
[ "MIT" ]
1
2020-11-09T21:06:27.000Z
2020-11-09T21:06:27.000Z
cli/src/commands/run_config.py
mikiec84/docsearch-scraper
08aa90ee9bf91b3e5e3e0d383e4d1b4d284c56b8
[ "MIT" ]
4
2021-03-31T19:59:26.000Z
2022-03-02T15:02:55.000Z
cli/src/commands/run_config.py
gaybro8777/docsearch-scraper
08aa90ee9bf91b3e5e3e0d383e4d1b4d284c56b8
[ "MIT" ]
null
null
null
from scraper.src.index import run_config from .abstract_command import AbstractCommand class RunConfig(AbstractCommand): def get_name(self): return 'run' def get_description(self): return 'Run a config' def get_usage(self): return super(RunConfig, self).get_usage() + " config" def get_options(self): return [{"name": "config", "description": "path to the config to run"}] def run(self, args): self.check_not_docsearch_app_id('run a config manually') return run_config(args[0])
26.285714
79
0.67029
4a269bd22e26504b747eda8f1c55cc828051a84a
1,421
py
Python
bin/app_setup.py
openstacker/splunk_app_catalyst_cloud
6d0302aa7bc6be2192a757abcbc350b25a506848
[ "Apache-1.1" ]
null
null
null
bin/app_setup.py
openstacker/splunk_app_catalyst_cloud
6d0302aa7bc6be2192a757abcbc350b25a506848
[ "Apache-1.1" ]
null
null
null
bin/app_setup.py
openstacker/splunk_app_catalyst_cloud
6d0302aa7bc6be2192a757abcbc350b25a506848
[ "Apache-1.1" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2017 Catalyst Cloud Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import splunk.admin as admin class ConfigApp(admin.MConfigHandler): def setup(self): if self.requestedAction == admin.ACTION_EDIT: for arg in ['baseurl', 'tenant']: self.supportedArgs.addOptArg(arg) def handleList(self, confInfo): confDict = self.readConf("myconf") if confDict: for stanza, settings in confDict.items(): for key, val in settings.items(): if key in ['baseurl', 'tenant'] and not val: val = '' confInfo[stanza].append(key, val) def handleEdit(self, confInfo): name = self.callerArgs.id args = self.callerArgs self.writeConf('myconf', 'userinfo', self.callerArgs.data) admin.init(ConfigApp, admin.CONTEXT_NONE)
33.046512
69
0.655876
4a269c5218af88fb30496502f1c1ecbd1872b258
783
py
Python
src/terra/constants.py
eco-stake/staketaxcsv
4d619b0304f8e58ad7940be50edeee4ccc05cd8a
[ "MIT" ]
1
2022-02-05T05:37:08.000Z
2022-02-05T05:37:08.000Z
src/terra/constants.py
eco-stake/staketaxcsv
4d619b0304f8e58ad7940be50edeee4ccc05cd8a
[ "MIT" ]
null
null
null
src/terra/constants.py
eco-stake/staketaxcsv
4d619b0304f8e58ad7940be50edeee4ccc05cd8a
[ "MIT" ]
1
2022-02-05T05:37:11.000Z
2022-02-05T05:37:11.000Z
MILLION = 1000000.0 CONTRACTS_LOTA = [ "terra1e7hzp3tnsswpfcu6gt4wlgfm20lcsqqywhaagu", "terra14mevcmeqt0n4myggt7c56l5fl0xw2hwa2mhlg0", # register contract "terra1342fp86c3z3q0lksq92lncjxpkfl9hujwh6xfn", # withdraw stake contract "terra1ez46kxtulsdv07538fh5ra5xj8l68mu8eg24vr" # bond stake contract ] CONTRACT_RANDOMEARTH = "terra1eek0ymmhyzja60830xhzm7k7jkrk99a60q2z2t" CHAIN_ID = "columbus-5" EXCHANGE_TERRA_BLOCKCHAIN = "terra_blockchain" EXCHANGE_ANCHOR_EARN = "anchor_earn" CUR_ANC = "ANC" CUR_KRT = "KRT" CUR_LUNA = "LUNA" CUR_MIR = "MIR" CUR_MNT = "MNT" CUR_UST = "UST" CUR_AUST = "aUST" CUR_BLUNA = "bLUNA" CUR_MINE = "MINE" CUR_ORION = "ORION" IBC_TOKEN_NAMES = { "ibc/0471F1C4E7AFD3F07702BEF6DC365268D64570F7C1FDC98EA6098DD6DE59817B": "OSMO" }
25.258065
82
0.781609
4a269d60dd5c1f4e80fa8dc77b4dcfa9dcab3bdc
2,794
py
Python
P1/test.py
Rogerwlk/Information-Retrieval-Search-Engine
7f7f0237106344cdaadbf87d769a281218fe711f
[ "MIT" ]
null
null
null
P1/test.py
Rogerwlk/Information-Retrieval-Search-Engine
7f7f0237106344cdaadbf87d769a281218fe711f
[ "MIT" ]
null
null
null
P1/test.py
Rogerwlk/Information-Retrieval-Search-Engine
7f7f0237106344cdaadbf87d769a281218fe711f
[ "MIT" ]
null
null
null
import re p_date = re.compile(r"""\b ([0-9]{1,2}-[0-9]{1,2}-[0-9]{2,4}) |(((Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[.]? |January|February|March|April|May|June|July|August |September|October|November|December) \ [0-9]{1,2}(st|nd|rd|th)?,\ [0-9]{2,4}) \b""", re.VERBOSE) p_num1 = re.compile(r',([0-9]{3})') p_num2 = re.compile(r'\d+[.]\d+') def validDate(month, day, year): if month <= 0 or month > 12 or year > 2018 or year < 0 or day <= 0: return False if (month == 1 or month == 3 or month == 5 or month == 7 or month == 8 or month == 10 or month == 12) and day > 31: return False if month == 2 and day > 29: return False if (month == 4 or month == 6 or month == 9 or month == 11) and day > 30: return False return True def dateReplace(match): match = match.group() month = day = year = 0 if match[0] >= '0' and match[0] <= '9': date = match.split('-') month, day, year = int(date[0]), int(date[1]), int(date[2]) else: date = match.split() t_m, t_d, year = date[0], date[1], int(date[2]) if t_m[0] == 'J': if t_m[1] == 'a': month = 1 elif t_m[2] == 'n': month = 6 else: month = 7 elif t_m[0] == 'F': month = 2 elif t_m[0] == 'M': if t_m[2] == 'r': month = 3 else: month = 5 elif t_m[0] == 'A': if t_m[1] == 'p': month = 4 else: month = 8 elif t_m[0] == 'S': month = 9 elif t_m[0] == 'O': month = 10 elif t_m[0] == 'N': month = 11 else: month = 12 if t_d[1] >= '0' and t_d[1] <= '9': day = 10 * int(t_d[0]) + int(t_d[1]) else: day = int(t_d[0]) if not validDate(month, day, year): return '' if year < 100: if year <= 18: year += 2000 else: year += 1900 s_month = str(month) if month < 10: s_month = '0' + s_month s_day = str(day) if day < 10: s_day = '0' + s_day return s_month+'/'+s_day+'/'+str(year) # p_date = re.compile(r"""\b # ([0-9]{1,2}-[0-9]{1,2}-[0-9]{2,4}) # |(((Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[.]? # |January|February|March|April|May|June|July|August # |September|October|November|December) # \ [0-9]{1,2}(st|nd|rd|th)?,\ [0-9]{2,4}) # \b""", re.X) # p_value = re.compile(r',([0-9]{3})') def round_number(match): print(docno) return str(round(float(match.group()))) p_num1 = re.compile(r',([0-9]{3})') p_num2 = re.compile(r'\b(\d+)[.]0+\b') temp = '1,000,000.001' temp = p_num1.sub(r'\g<1>', temp) # remove ',' in 1,000 temp = p_num2.sub(r'\g<1>', temp) # remove '.00' in 1.00 print(temp) # print(p_date.sub(dateReplace, '05-07-18 Jan 31, 2012 March 3rd, ')) # temp = p_num1.sub(r'\g<1>', 'abc 1,000,000') # docno = 1 # print(p_num2.sub(round_number, temp)) # p_docno = re.compile(r'(?:<DOCNO>\s*)(.+)(?:\s*</DOCNO>)') # print(p_docno.search('<DOCNO> FR940104-0-00021 </DOCNO>').group(1))
26.11215
116
0.557266
4a269dafdb0b91e2ee418b2070fcab4c3d821cf2
2,298
py
Python
DefaultPythonSource/TA/TAPython/Python/ChameleonSketch/ChameleonSketch.py
cgerchenhp/TAPython_DefaultResources
785175cbd93c4dd2185a64b7942d66fa8c2d8bea
[ "MIT" ]
null
null
null
DefaultPythonSource/TA/TAPython/Python/ChameleonSketch/ChameleonSketch.py
cgerchenhp/TAPython_DefaultResources
785175cbd93c4dd2185a64b7942d66fa8c2d8bea
[ "MIT" ]
null
null
null
DefaultPythonSource/TA/TAPython/Python/ChameleonSketch/ChameleonSketch.py
cgerchenhp/TAPython_DefaultResources
785175cbd93c4dd2185a64b7942d66fa8c2d8bea
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import time import unreal from Utilities.Utils import Singleton import random import os class ChameleonSketch(metaclass=Singleton): def __init__(self, jsonPath): self.jsonPath = jsonPath self.data = unreal.PythonBPLib.get_chameleon_data(self.jsonPath) self.ui_names = ["SMultiLineEditableTextBox", "SMultiLineEditableTextBox_2"] self.debug_index = 1 self.ui_python_not_ready = "IsPythonReadyImg" self.ui_python_is_ready = "IsPythonReadyImgB" self.ui_is_python_ready_text = "IsPythonReadyText" print ("ChameleonSketch.Init") def mark_python_ready(self): print("set_python_ready call") self.data.set_visibility(self.ui_python_not_ready, "Collapsed") self.data.set_visibility(self.ui_python_is_ready, "Visible") self.data.set_text(self.ui_is_python_ready_text, "Python Path Ready.") def get_texts(self): for name in self.ui_names: n = self.data.get_text(name) print(f"name: {n}") def set_texts(self): for name in self.ui_names: self.data.set_text(name, ["AAA", "BBB", "CCC", "DDD", "EEE", "FFF"][random.randint(0, 5)]) def set_text_one(self): self.data.set_text(self.ui_names[self.debug_index], ["AAA", "BBB", "CCC", "DDD", "EEE", "FFF"][random.randint(0, 5)] ) def get_text_one(self): print(f"name: {self.data.get_text(self.ui_names[self.debug_index])}") def tree(self): print(time.time()) names = [] parent_indices = [] name_to_index = dict() for root, folders, files in os.walk(r"D:\UnrealProjects\5_0\RDZ\Content"): root_name = os.path.basename(root) if root not in name_to_index: name_to_index[root] = len(names) parent_indices.append(-1 if not names else name_to_index[os.path.dirname(root)]) names.append(root_name) parent_id = name_to_index[root] for items in [folders, files]: for item in items: names.append(item) parent_indices.append(parent_id) print(len(names)) self.data.set_tree_view_items("TreeViewA", names, parent_indices) print(time.time())
38.3
126
0.630548
4a269de20030a9d51d68aabd92e11d40be2ef843
787
py
Python
thyme/wallet/puzzles/p2_puzzle_hash.py
yuanliuus/thyme-blockchain
9ea5cddc78f601fcbe77101d74147cf8190e423d
[ "Apache-2.0" ]
6
2021-06-30T13:03:47.000Z
2021-07-10T12:46:37.000Z
thyme/wallet/puzzles/p2_puzzle_hash.py
yuanliuus/thyme-blockchain
9ea5cddc78f601fcbe77101d74147cf8190e423d
[ "Apache-2.0" ]
8
2021-07-01T15:45:09.000Z
2021-09-08T04:30:46.000Z
thyme/wallet/puzzles/p2_puzzle_hash.py
yuanliuus/thyme-blockchain
9ea5cddc78f601fcbe77101d74147cf8190e423d
[ "Apache-2.0" ]
11
2021-07-03T17:30:57.000Z
2022-03-15T08:47:03.000Z
""" Pay to puzzle hash In this puzzle program, the solution must be a reveal of the puzzle with the given hash along with its solution. """ from thyme.types.blockchain_format.program import Program from thyme.types.blockchain_format.sized_bytes import bytes32 from .load_clvm import load_clvm MOD = load_clvm("p2_puzzle_hash.clvm") def puzzle_for_inner_puzzle_hash(inner_puzzle_hash: bytes32) -> Program: program = MOD.curry(inner_puzzle_hash) return program def puzzle_for_inner_puzzle(inner_puzzle: Program) -> Program: return puzzle_for_inner_puzzle_hash(inner_puzzle.get_tree_hash()) def solution_for_inner_puzzle_and_inner_solution(inner_puzzle: Program, inner_puzzle_solution: Program) -> Program: return Program.to([inner_puzzle, inner_puzzle_solution])
29.148148
115
0.808132
4a269fec691f38d01e4f9a6a8a981fac050b06f4
11,358
py
Python
test/objects/linode_test.py
rylabs-billy/linode_api4-python
55a804d7ae9c208965b6fb759d772cdcebade896
[ "BSD-3-Clause" ]
67
2018-08-26T20:36:34.000Z
2022-03-11T06:15:04.000Z
test/objects/linode_test.py
rylabs-billy/linode_api4-python
55a804d7ae9c208965b6fb759d772cdcebade896
[ "BSD-3-Clause" ]
89
2016-04-19T00:37:00.000Z
2018-04-16T14:46:39.000Z
test/objects/linode_test.py
rylabs-billy/linode_api4-python
55a804d7ae9c208965b6fb759d772cdcebade896
[ "BSD-3-Clause" ]
43
2018-06-28T18:21:14.000Z
2022-02-09T20:53:42.000Z
from datetime import datetime from test.base import ClientBaseCase from linode_api4.objects import Config, Disk, Image, Instance, Type from linode_api4.objects.base import MappedObject class LinodeTest(ClientBaseCase): """ Tests methods of the Linode class """ def test_get_linode(self): """ Tests that a client is loaded correctly by ID """ linode = Instance(self.client, 123) self.assertEqual(linode._populated, False) self.assertEqual(linode.label, "linode123") self.assertEqual(linode.group, "test") self.assertTrue(isinstance(linode.image, Image)) self.assertEqual(linode.image.label, "Ubuntu 17.04") json = linode._raw_json self.assertIsNotNone(json) self.assertEqual(json['id'], 123) self.assertEqual(json['label'], 'linode123') self.assertEqual(json['group'], 'test') # test that the _raw_json stored on the object is sufficient to populate # a new object linode2 = Instance(self.client, json['id'], json=json) self.assertTrue(linode2._populated) self.assertEqual(linode2.id, linode.id) self.assertEqual(linode2.label, linode.label) self.assertEqual(linode2.group, linode.group) self.assertEqual(linode2._raw_json, linode._raw_json) def test_transfer(self): """ Tests that you can get transfer """ linode = Instance(self.client, 123) transfer = linode.transfer self.assertEqual(transfer.quota, 471) self.assertEqual(transfer.billable, 0) self.assertEqual(transfer.used, 10369075) def test_rebuild(self): """ Tests that you can rebuild with an image """ linode = Instance(self.client, 123) with self.mock_post('/linode/instances/123') as m: pw = linode.rebuild('linode/debian9') self.assertIsNotNone(pw) self.assertTrue(isinstance(pw, str)) self.assertEqual(m.call_url, '/linode/instances/123/rebuild') self.assertEqual(m.call_data, { "image": "linode/debian9", "root_pass": pw, }) def test_available_backups(self): """ Tests that a Linode can retrieve its own backups """ linode = Instance(self.client, 123) backups = linode.available_backups # assert we got the correct number of automatic backups self.assertEqual(len(backups.automatic), 3) # examine one automatic backup b = backups.automatic[0] self.assertEqual(b.id, 12345) self.assertEqual(b._populated, True) self.assertEqual(b.status, 'successful') self.assertEqual(b.type, 'auto') self.assertEqual(b.created, datetime(year=2018, month=1, day=9, hour=0, minute=1, second=1)) self.assertEqual(b.updated, datetime(year=2018, month=1, day=9, hour=0, minute=1, second=1)) self.assertEqual(b.finished, datetime(year=2018, month=1, day=9, hour=0, minute=1, second=1)) self.assertEqual(b.region.id, 'us-east-1a') self.assertEqual(b.label, None) self.assertEqual(b.message, None) self.assertEqual(len(b.disks), 2) self.assertEqual(b.disks[0].size, 1024) self.assertEqual(b.disks[0].label, 'Debian 8.1 Disk') self.assertEqual(b.disks[0].filesystem, 'ext4') self.assertEqual(b.disks[1].size, 0) self.assertEqual(b.disks[1].label, '256MB Swap Image') self.assertEqual(b.disks[1].filesystem, 'swap') self.assertEqual(len(b.configs), 1) self.assertEqual(b.configs[0], 'My Debian 8.1 Profile') # assert that snapshots came back as expected self.assertEqual(backups.snapshot.current, None) self.assertEqual(backups.snapshot.in_progress, None) def test_update_linode(self): """ Tests that a Linode can be updated """ with self.mock_put('linode/instances/123') as m: linode = self.client.load(Instance, 123) linode.label = "NewLinodeLabel" linode.group = "new_group" linode.save() self.assertEqual(m.call_url, '/linode/instances/123') self.assertEqual(m.call_data, { "alerts": { "cpu": 90, "io": 5000, "network_in": 5, "network_out": 5, "transfer_quota": 80 }, "label": "NewLinodeLabel", "group": "new_group", "tags": ["something"], }) def test_delete_linode(self): """ Tests that deleting a Linode creates the correct api request """ with self.mock_delete() as m: linode = Instance(self.client, 123) linode.delete() self.assertEqual(m.call_url, '/linode/instances/123') def test_reboot(self): """ Tests that you can submit a correct reboot api request """ linode = Instance(self.client, 123) result = {} with self.mock_post(result) as m: linode.reboot() self.assertEqual(m.call_url, '/linode/instances/123/reboot') def test_shutdown(self): """ Tests that you can submit a correct shutdown api request """ linode = Instance(self.client, 123) result = {} with self.mock_post(result) as m: linode.shutdown() self.assertEqual(m.call_url, '/linode/instances/123/shutdown') def test_boot(self): """ Tests that you can submit a correct boot api request """ linode = Instance(self.client, 123) result = {} with self.mock_post(result) as m: linode.boot() self.assertEqual(m.call_url, '/linode/instances/123/boot') def test_resize(self): """ Tests that you can submit a correct resize api request """ linode = Instance(self.client, 123) result = {} with self.mock_post(result) as m: linode.resize(new_type='g6-standard-1') self.assertEqual(m.call_url, '/linode/instances/123/resize') self.assertEqual(m.call_data, {'type': 'g6-standard-1'}) def test_resize_with_class(self): """ Tests that you can submit a correct resize api request with a Base class type """ linode = Instance(self.client, 123) ltype = Type(self.client, 'g6-standard-2') result = {} with self.mock_post(result) as m: linode.resize(new_type=ltype) self.assertEqual(m.call_url, '/linode/instances/123/resize') self.assertEqual(m.call_data, {'type': 'g6-standard-2'}) def test_boot_with_config(self): """ Tests that you can submit a correct boot with a config api request """ linode = Instance(self.client, 123) config = linode.configs[0] result = {} with self.mock_post(result) as m: linode.boot(config=config) self.assertEqual(m.call_url, '/linode/instances/123/boot') def test_mutate(self): """ Tests that you can submit a correct mutate api request """ linode = Instance(self.client, 123) result = {} with self.mock_post(result) as m: linode.mutate() self.assertEqual(m.call_url, '/linode/instances/123/mutate') def test_initiate_migration(self): """ Tests that you can initiate a pending migration """ linode = Instance(self.client, 123) result = {} with self.mock_post(result) as m: linode.initiate_migration() self.assertEqual(m.call_url, '/linode/instances/123/migrate') def test_create_disk(self): """ Tests that disk_create behaves as expected """ linode = Instance(self.client, 123) with self.mock_post("/linode/instances/123/disks/12345") as m: disk, gen_pass = linode.disk_create(1234, label="test", authorized_users=["test"], image="linode/debian10") self.assertEqual(m.call_url, "/linode/instances/123/disks") print(m.call_data) self.assertEqual(m.call_data, { "size": 1234, "label": "test", "root_pass": gen_pass, "image": "linode/debian10", "authorized_users": ["test"], "read_only": False, }) assert disk.id == 12345 class DiskTest(ClientBaseCase): """ Tests for the Disk object """ def test_resize(self): """ Tests that a resize is submitted correctly """ disk = Disk(self.client, 12345, 123) with self.mock_post({}) as m: r = disk.resize(1000) self.assertTrue(r) self.assertEqual(m.call_url, '/linode/instances/123/disks/12345/resize') self.assertEqual(m.call_data, {"size": 1000}) class ConfigTest(ClientBaseCase): """ Tests for the Config object """ def test_update_interfaces(self): """ Tests that a configs interfaces update correctly """ json = self.client.get('/linode/instances/123/configs/456789') config = Config(self.client, 456789, 123, json=json) with self.mock_put('/linode/instances/123/configs/456789') as m: new_interfaces = [ { 'purpose': 'public' }, { 'purpose': 'vlan', 'label': 'cool-vlan' } ] config.interfaces = new_interfaces config.save() self.assertEqual(m.call_url, '/linode/instances/123/configs/456789') self.assertEqual(m.call_data.get('interfaces'), new_interfaces) class TypeTest(ClientBaseCase): def test_get_types(self): """ Tests that Linode types can be returned """ types = self.client.linode.types() self.assertEqual(len(types), 4) for t in types: self.assertTrue(t._populated) self.assertIsNotNone(t.id) self.assertIsNotNone(t.label) self.assertIsNotNone(t.disk) self.assertIsNotNone(t.type_class) self.assertIsNotNone(t.gpus) def test_get_type_by_id(self): """ Tests that a Linode type is loaded correctly by ID """ t = Type(self.client, 'g5-nanode-1') self.assertEqual(t._populated, False) self.assertEqual(t.vcpus, 1) self.assertEqual(t.gpus, 0) self.assertEqual(t.label, "Linode 1024") self.assertEqual(t.disk, 20480) self.assertEqual(t.type_class, 'nanode') def test_get_type_gpu(self): """ Tests that gpu types load up right """ t = Type(self.client, "g5-gpu-2") self.assertEqual(t._populated, False) self.assertEqual(t.gpus, 1) self.assertEqual(t._populated, True)
32.267045
119
0.573781
4a269ff3651e182be35f62e2f75bed0bec9c8dc1
48,610
py
Python
python/ccxt/bitmex.py
QuoineFinancial/ccxt
c715e44a64250c20bdefd5f5b80ac60f4ae80913
[ "MIT" ]
null
null
null
python/ccxt/bitmex.py
QuoineFinancial/ccxt
c715e44a64250c20bdefd5f5b80ac60f4ae80913
[ "MIT" ]
null
null
null
python/ccxt/bitmex.py
QuoineFinancial/ccxt
c715e44a64250c20bdefd5f5b80ac60f4ae80913
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import DDoSProtection from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.decimal_to_precision import TICK_SIZE class bitmex (Exchange): def describe(self): return self.deep_extend(super(bitmex, self).describe(), { 'id': 'bitmex', 'name': 'BitMEX', 'countries': ['SC'], # Seychelles 'version': 'v1', 'userAgent': None, 'rateLimit': 2000, 'has': { 'CORS': False, 'fetchOHLCV': True, 'withdraw': True, 'editOrder': True, 'fetchOrder': True, 'fetchOrders': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchMyTrades': True, 'fetchLedger': True, 'fetchTransactions': 'emulated', }, 'timeframes': { '1m': '1m', '5m': '5m', '1h': '1h', '1d': '1d', }, 'urls': { 'test': 'https://testnet.bitmex.com', 'logo': 'https://user-images.githubusercontent.com/1294454/27766319-f653c6e6-5ed4-11e7-933d-f0bc3699ae8f.jpg', 'api': 'https://www.bitmex.com', 'www': 'https://www.bitmex.com', 'doc': [ 'https://www.bitmex.com/app/apiOverview', 'https://github.com/BitMEX/api-connectors/tree/master/official-http', ], 'fees': 'https://www.bitmex.com/app/fees', 'referral': 'https://www.bitmex.com/register/rm3C16', }, 'api': { 'public': { 'get': [ 'announcement', 'announcement/urgent', 'funding', 'instrument', 'instrument/active', 'instrument/activeAndIndices', 'instrument/activeIntervals', 'instrument/compositeIndex', 'instrument/indices', 'insurance', 'leaderboard', 'liquidation', 'orderBook', 'orderBook/L2', 'quote', 'quote/bucketed', 'schema', 'schema/websocketHelp', 'settlement', 'stats', 'stats/history', 'trade', 'trade/bucketed', ], }, 'private': { 'get': [ 'apiKey', 'chat', 'chat/channels', 'chat/connected', 'execution', 'execution/tradeHistory', 'notification', 'order', 'position', 'user', 'user/affiliateStatus', 'user/checkReferralCode', 'user/commission', 'user/depositAddress', 'user/margin', 'user/minWithdrawalFee', 'user/wallet', 'user/walletHistory', 'user/walletSummary', ], 'post': [ 'apiKey', 'apiKey/disable', 'apiKey/enable', 'chat', 'order', 'order/bulk', 'order/cancelAllAfter', 'order/closePosition', 'position/isolate', 'position/leverage', 'position/riskLimit', 'position/transferMargin', 'user/cancelWithdrawal', 'user/confirmEmail', 'user/confirmEnableTFA', 'user/confirmWithdrawal', 'user/disableTFA', 'user/logout', 'user/logoutAll', 'user/preferences', 'user/requestEnableTFA', 'user/requestWithdrawal', ], 'put': [ 'order', 'order/bulk', 'user', ], 'delete': [ 'apiKey', 'order', 'order/all', ], }, }, 'exceptions': { 'exact': { 'Invalid API Key.': AuthenticationError, 'Access Denied': PermissionDenied, 'Duplicate clOrdID': InvalidOrder, 'orderQty is invalid': InvalidOrder, 'Invalid price': InvalidOrder, 'Invalid stopPx for ordType': InvalidOrder, }, 'broad': { 'Signature not valid': AuthenticationError, 'overloaded': ExchangeNotAvailable, 'Account has insufficient Available Balance': InsufficientFunds, }, }, 'precisionMode': TICK_SIZE, 'options': { # https://blog.bitmex.com/api_announcement/deprecation-of-api-nonce-header/ # https://github.com/ccxt/ccxt/issues/4789 'api-expires': 5, # in seconds }, }) def fetch_markets(self, params={}): response = self.publicGetInstrumentActiveAndIndices(params) result = [] for i in range(0, len(response)): market = response[i] active = (market['state'] != 'Unlisted') id = market['symbol'] baseId = market['underlying'] quoteId = market['quoteCurrency'] basequote = baseId + quoteId base = self.common_currency_code(baseId) quote = self.common_currency_code(quoteId) swap = (id == basequote) # 'positionCurrency' may be empty("", as Bitmex currently returns for ETHUSD) # so let's take the quote currency first and then adjust if needed positionId = self.safe_string_2(market, 'positionCurrency', 'quoteCurrency') type = None future = False prediction = False position = self.common_currency_code(positionId) symbol = id if swap: type = 'swap' symbol = base + '/' + quote elif id.find('B_') >= 0: prediction = True type = 'prediction' else: future = True type = 'future' precision = { 'amount': None, 'price': None, } lotSize = self.safe_float(market, 'lotSize') tickSize = self.safe_float(market, 'tickSize') if lotSize is not None: precision['amount'] = lotSize if tickSize is not None: precision['price'] = tickSize limits = { 'amount': { 'min': None, 'max': None, }, 'price': { 'min': tickSize, 'max': self.safe_float(market, 'maxPrice'), }, 'cost': { 'min': None, 'max': None, }, } limitField = 'cost' if (position == quote) else 'amount' limits[limitField] = { 'min': lotSize, 'max': self.safe_float(market, 'maxOrderQty'), } result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': active, 'precision': precision, 'limits': limits, 'taker': self.safe_float(market, 'takerFee'), 'maker': self.safe_float(market, 'makerFee'), 'type': type, 'spot': False, 'swap': swap, 'future': future, 'prediction': prediction, 'info': market, }) return result def fetch_balance(self, params={}): self.load_markets() request = { 'currency': 'all', } response = self.privateGetUserMargin(self.extend(request, params)) result = {'info': response} for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'currency') code = currencyId if currencyId in self.currencies_by_id: code = self.currencies_by_id[currencyId]['code'] else: code = self.common_currency_code(currencyId.upper()) account = self.account() account['free'] = self.safe_float(balance, 'availableMargin') account['total'] = self.safe_float(balance, 'marginBalance') if code == 'BTC': account['free'] = account['free'] * 0.00000001 account['total'] = account['total'] * 0.00000001 result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } if limit is not None: request['depth'] = limit response = self.publicGetOrderBookL2(self.extend(request, params)) result = { 'bids': [], 'asks': [], 'timestamp': None, 'datetime': None, 'nonce': None, } for i in range(0, len(response)): order = response[i] side = 'asks' if (order['side'] == 'Sell') else 'bids' amount = self.safe_float(order, 'size') price = self.safe_float(order, 'price') # https://github.com/ccxt/ccxt/issues/4926 # https://github.com/ccxt/ccxt/issues/4927 # the exchange sometimes returns null price in the orderbook if price is not None: result[side].append([price, amount]) result['bids'] = self.sort_by(result['bids'], 0, True) result['asks'] = self.sort_by(result['asks'], 0) return result def fetch_order(self, id, symbol=None, params={}): filter = { 'filter': { 'orderID': id, }, } response = self.fetch_orders(symbol, None, None, self.deep_extend(filter, params)) numResults = len(response) if numResults == 1: return response[0] raise OrderNotFound(self.id + ': The order ' + id + ' not found.') def fetch_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = {} if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] if since is not None: request['startTime'] = self.iso8601(since) if limit is not None: request['count'] = limit request = self.deep_extend(request, params) # why the hassle? urlencode in python is kinda broken for nested dicts. # E.g. self.urlencode({"filter": {"open": True}}) will return "filter={'open':+True}" # Bitmex doesn't like that. Hence resorting to self hack. if 'filter' in request: request['filter'] = self.json(request['filter']) response = self.privateGetOrder(request) return self.parse_orders(response, market, since, limit) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): request = { 'filter': { 'open': True, }, } return self.fetch_orders(symbol, since, limit, self.deep_extend(request, params)) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): # Bitmex barfs if you set 'open': False in the filter... orders = self.fetch_orders(symbol, since, limit, params) return self.filter_by(orders, 'status', 'closed') def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = {} if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] if since is not None: request['startTime'] = self.iso8601(since) if limit is not None: request['count'] = limit request = self.deep_extend(request, params) # why the hassle? urlencode in python is kinda broken for nested dicts. # E.g. self.urlencode({"filter": {"open": True}}) will return "filter={'open':+True}" # Bitmex doesn't like that. Hence resorting to self hack. if 'filter' in request: request['filter'] = self.json(request['filter']) response = self.privateGetExecutionTradeHistory(request) # # [ # { # "execID": "string", # "orderID": "string", # "clOrdID": "string", # "clOrdLinkID": "string", # "account": 0, # "symbol": "string", # "side": "string", # "lastQty": 0, # "lastPx": 0, # "underlyingLastPx": 0, # "lastMkt": "string", # "lastLiquidityInd": "string", # "simpleOrderQty": 0, # "orderQty": 0, # "price": 0, # "displayQty": 0, # "stopPx": 0, # "pegOffsetValue": 0, # "pegPriceType": "string", # "currency": "string", # "settlCurrency": "string", # "execType": "string", # "ordType": "string", # "timeInForce": "string", # "execInst": "string", # "contingencyType": "string", # "exDestination": "string", # "ordStatus": "string", # "triggered": "string", # "workingIndicator": True, # "ordRejReason": "string", # "simpleLeavesQty": 0, # "leavesQty": 0, # "simpleCumQty": 0, # "cumQty": 0, # "avgPx": 0, # "commission": 0, # "tradePublishIndicator": "string", # "multiLegReportingType": "string", # "text": "string", # "trdMatchID": "string", # "execCost": 0, # "execComm": 0, # "homeNotional": 0, # "foreignNotional": 0, # "transactTime": "2019-03-05T12:47:02.762Z", # "timestamp": "2019-03-05T12:47:02.762Z" # } # ] # return self.parse_trades(response, market, since, limit) def parse_ledger_entry_type(self, type): types = { 'Withdrawal': 'transaction', 'RealisedPNL': 'margin', 'Deposit': 'transaction', 'Transfer': 'transfer', 'AffiliatePayout': 'referral', } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # { # transactID: "69573da3-7744-5467-3207-89fd6efe7a47", # account: 24321, # currency: "XBt", # transactType: "Withdrawal", # "AffiliatePayout", "Transfer", "Deposit", "RealisedPNL", ... # amount: -1000000, # fee: 300000, # transactStatus: "Completed", # "Canceled", ... # address: "1Ex4fkF4NhQaQdRWNoYpqiPbDBbq18Kdd9", # tx: "3BMEX91ZhhKoWtsH9QRb5dNXnmnGpiEetA", # text: "", # transactTime: "2017-03-21T20:05:14.388Z", # walletBalance: 0, # balance after # marginBalance: null, # timestamp: "2017-03-22T13:09:23.514Z" # } # id = self.safe_string(item, 'transactID') account = self.safe_string(item, 'account') referenceId = self.safe_string(item, 'tx') referenceAccount = None type = self.parse_ledger_entry_type(self.safe_string(item, 'transactType')) currencyId = self.safe_string(item, 'currency') code = None if currencyId is not None: currencyId = currencyId.upper() code = self.common_currency_code(currencyId) amount = self.safe_float(item, 'amount') if amount is not None: amount = amount * 1e-8 timestamp = self.parse8601(self.safe_string(item, 'transactTime')) feeCost = self.safe_float(item, 'fee', 0) if feeCost is not None: feeCost = feeCost * 1e-8 fee = { 'cost': feeCost, 'currency': code, } after = self.safe_float(item, 'walletBalance') if after is not None: after = after * 1e-8 before = self.sum(after, -amount) direction = None if amount < 0: direction = 'out' amount = abs(amount) else: direction = 'in' status = self.parse_transaction_status(self.safe_string(item, 'transactStatus')) return { 'info': item, 'id': id, 'direction': direction, 'account': account, 'referenceId': referenceId, 'referenceAccount': referenceAccount, 'type': type, 'currency': code, 'amount': amount, 'before': before, 'after': after, 'status': status, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, } def fetch_ledger(self, code=None, since=None, limit=None, params={}): self.load_markets() currency = None if code is not None: currency = self.currency(code) request = { # 'start': 123, } # # if since is not None: # # date-based pagination not supported # } # if limit is not None: request['count'] = limit response = self.privateGetUserWalletHistory(self.extend(request, params)) # # [ # { # transactID: "69573da3-7744-5467-3207-89fd6efe7a47", # account: 24321, # currency: "XBt", # transactType: "Withdrawal", # "AffiliatePayout", "Transfer", "Deposit", "RealisedPNL", ... # amount: -1000000, # fee: 300000, # transactStatus: "Completed", # "Canceled", ... # address: "1Ex4fkF4NhQaQdRWNoYpqiPbDBbq18Kdd9", # tx: "3BMEX91ZhhKoWtsH9QRb5dNXnmnGpiEetA", # text: "", # transactTime: "2017-03-21T20:05:14.388Z", # walletBalance: 0, # balance after # marginBalance: null, # timestamp: "2017-03-22T13:09:23.514Z" # } # ] # return self.parse_ledger(response, currency, since, limit) def fetch_transactions(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'start': 123, } # # if since is not None: # # date-based pagination not supported # } # if limit is not None: request['count'] = limit response = self.privateGetUserWalletHistory(self.extend(request, params)) transactions = self.filter_by_array(response, 'transactType', ['Withdrawal', 'Deposit'], False) currency = None if code is not None: currency = self.currency(code) return self.parseTransactions(transactions, currency, since, limit) def parse_transaction_status(self, status): statuses = { 'Canceled': 'canceled', 'Completed': 'ok', 'Pending': 'pending', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # { # 'transactID': 'ffe699c2-95ee-4c13-91f9-0faf41daec25', # 'account': 123456, # 'currency': 'XBt', # 'transactType': 'Withdrawal', # 'amount': -100100000, # 'fee': 100000, # 'transactStatus': 'Completed', # 'address': '385cR5DM96n1HvBDMzLHPYcw89fZAXULJP', # 'tx': '3BMEXabcdefghijklmnopqrstuvwxyz123', # 'text': '', # 'transactTime': '2019-01-02T01:00:00.000Z', # 'walletBalance': 99900000, # 'marginBalance': None, # 'timestamp': '2019-01-02T13:00:00.000Z' # } # id = self.safe_string(transaction, 'transactID') # For deposits, transactTime == timestamp # For withdrawals, transactTime is submission, timestamp is processed transactTime = self.parse8601(self.safe_string(transaction, 'transactTime')) timestamp = self.parse8601(self.safe_string(transaction, 'timestamp')) type = self.safe_string(transaction, 'transactType') if type is not None: type = type.lower() # Deposits have no from address or to address, withdrawals have both address = None addressFrom = None addressTo = None if type == 'withdrawal': address = self.safe_string(transaction, 'address') addressFrom = self.safe_string(transaction, 'tx') addressTo = address amount = self.safe_integer(transaction, 'amount') if amount is not None: amount = abs(amount) * 1e-8 feeCost = self.safe_integer(transaction, 'fee') if feeCost is not None: feeCost = feeCost * 1e-8 fee = { 'cost': feeCost, 'currency': 'BTC', } status = self.safe_string(transaction, 'transactStatus') if status is not None: status = self.parse_transaction_status(status) return { 'info': transaction, 'id': id, 'txid': None, 'timestamp': transactTime, 'datetime': self.iso8601(transactTime), 'addressFrom': addressFrom, 'address': address, 'addressTo': addressTo, 'tagFrom': None, 'tag': None, 'tagTo': None, 'type': type, 'amount': amount, # BTC is the only currency on Bitmex 'currency': 'BTC', 'status': status, 'updated': timestamp, 'comment': None, 'fee': fee, } def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) if not market['active']: raise ExchangeError(self.id + ': symbol ' + symbol + ' is delisted') tickers = self.fetch_tickers([symbol], params) ticker = self.safe_value(tickers, symbol) if ticker is None: raise ExchangeError(self.id + ' ticker symbol ' + symbol + ' not found') return ticker def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetInstrumentActiveAndIndices(params) result = {} for i in range(0, len(response)): ticker = self.parse_ticker(response[i]) symbol = self.safe_string(ticker, 'symbol') if symbol is not None: result[symbol] = ticker return result def parse_ticker(self, ticker, market=None): # # { symbol: "ETHH19", # rootSymbol: "ETH", # state: "Open", # typ: "FFCCSX", # listing: "2018-12-17T04:00:00.000Z", # front: "2019-02-22T12:00:00.000Z", # expiry: "2019-03-29T12:00:00.000Z", # settle: "2019-03-29T12:00:00.000Z", # relistInterval: null, # inverseLeg: "", # sellLeg: "", # buyLeg: "", # optionStrikePcnt: null, # optionStrikeRound: null, # optionStrikePrice: null, # optionMultiplier: null, # positionCurrency: "ETH", # underlying: "ETH", # quoteCurrency: "XBT", # underlyingSymbol: "ETHXBT=", # reference: "BMEX", # referenceSymbol: ".BETHXBT30M", # calcInterval: null, # publishInterval: null, # publishTime: null, # maxOrderQty: 100000000, # maxPrice: 10, # lotSize: 1, # tickSize: 0.00001, # multiplier: 100000000, # settlCurrency: "XBt", # underlyingToPositionMultiplier: 1, # underlyingToSettleMultiplier: null, # quoteToSettleMultiplier: 100000000, # isQuanto: False, # isInverse: False, # initMargin: 0.02, # maintMargin: 0.01, # riskLimit: 5000000000, # riskStep: 5000000000, # limit: null, # capped: False, # taxed: True, # deleverage: True, # makerFee: -0.0005, # takerFee: 0.0025, # settlementFee: 0, # insuranceFee: 0, # fundingBaseSymbol: "", # fundingQuoteSymbol: "", # fundingPremiumSymbol: "", # fundingTimestamp: null, # fundingInterval: null, # fundingRate: null, # indicativeFundingRate: null, # rebalanceTimestamp: null, # rebalanceInterval: null, # openingTimestamp: "2019-02-13T08:00:00.000Z", # closingTimestamp: "2019-02-13T09:00:00.000Z", # sessionInterval: "2000-01-01T01:00:00.000Z", # prevClosePrice: 0.03347, # limitDownPrice: null, # limitUpPrice: null, # bankruptLimitDownPrice: null, # bankruptLimitUpPrice: null, # prevTotalVolume: 1386531, # totalVolume: 1387062, # volume: 531, # volume24h: 17118, # prevTotalTurnover: 4741294246000, # totalTurnover: 4743103466000, # turnover: 1809220000, # turnover24h: 57919845000, # homeNotional24h: 17118, # foreignNotional24h: 579.19845, # prevPrice24h: 0.03349, # vwap: 0.03383564, # highPrice: 0.03458, # lowPrice: 0.03329, # lastPrice: 0.03406, # lastPriceProtected: 0.03406, # lastTickDirection: "ZeroMinusTick", # lastChangePcnt: 0.017, # bidPrice: 0.03406, # midPrice: 0.034065, # askPrice: 0.03407, # impactBidPrice: 0.03406, # impactMidPrice: 0.034065, # impactAskPrice: 0.03407, # hasLiquidity: True, # openInterest: 83679, # openValue: 285010674000, # fairMethod: "ImpactMidPrice", # fairBasisRate: 0, # fairBasis: 0, # fairPrice: 0.03406, # markMethod: "FairPrice", # markPrice: 0.03406, # indicativeTaxRate: 0, # indicativeSettlePrice: 0.03406, # optionUnderlyingPrice: null, # settledPrice: null, # timestamp: "2019-02-13T08:40:30.000Z", # } # symbol = None marketId = self.safe_string(ticker, 'symbol') market = self.safe_value(self.markets_by_id, marketId, market) if market is not None: symbol = market['symbol'] timestamp = self.parse8601(self.safe_string(ticker, 'timestamp')) open = self.safe_float(ticker, 'prevPrice24h') last = self.safe_float(ticker, 'lastPrice') change = None percentage = None if last is not None and open is not None: change = last - open if open > 0: percentage = change / open * 100 return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'highPrice'), 'low': self.safe_float(ticker, 'lowPrice'), 'bid': self.safe_float(ticker, 'bidPrice'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'askPrice'), 'askVolume': None, 'vwap': self.safe_float(ticker, 'vwap'), 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': percentage, 'average': self.sum(open, last) / 2, 'baseVolume': self.safe_float(ticker, 'homeNotional24h'), 'quoteVolume': self.safe_float(ticker, 'foreignNotional24h'), 'info': ticker, } def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): timestamp = self.parse8601(self.safe_string(ohlcv, 'timestamp')) return [ timestamp, self.safe_float(ohlcv, 'open'), self.safe_float(ohlcv, 'high'), self.safe_float(ohlcv, 'low'), self.safe_float(ohlcv, 'close'), self.safe_float(ohlcv, 'volume'), ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() # send JSON key/value pairs, such as {"key": "value"} # filter by individual fields and do advanced queries on timestamps # filter = {'key': 'value'} # send a bare series(e.g. XBU) to nearest expiring contract in that series # you can also send a timeframe, e.g. XBU:monthly # timeframes: daily, weekly, monthly, quarterly, and biquarterly market = self.market(symbol) request = { 'symbol': market['id'], 'binSize': self.timeframes[timeframe], 'partial': True, # True == include yet-incomplete current bins # 'filter': filter, # filter by individual fields and do advanced queries # 'columns': [], # will return all columns if omitted # 'start': 0, # starting point for results(wtf?) # 'reverse': False, # True == newest first # 'endTime': '', # ending date filter for results } if limit is not None: request['count'] = limit # default 100, max 500 # if since is not set, they will return candles starting from 2017-01-01 if since is not None: ymdhms = self.ymdhms(since) request['startTime'] = ymdhms # starting date filter for results response = self.publicGetTradeBucketed(self.extend(request, params)) return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # timestamp: '2018-08-28T00:00:02.735Z', # symbol: 'XBTUSD', # side: 'Buy', # size: 2000, # price: 6906.5, # tickDirection: 'PlusTick', # trdMatchID: 'b9a42432-0a46-6a2f-5ecc-c32e9ca4baf8', # grossValue: 28958000, # homeNotional: 0.28958, # foreignNotional: 2000 # } # # fetchMyTrades(private) # # { # "execID": "string", # "orderID": "string", # "clOrdID": "string", # "clOrdLinkID": "string", # "account": 0, # "symbol": "string", # "side": "string", # "lastQty": 0, # "lastPx": 0, # "underlyingLastPx": 0, # "lastMkt": "string", # "lastLiquidityInd": "string", # "simpleOrderQty": 0, # "orderQty": 0, # "price": 0, # "displayQty": 0, # "stopPx": 0, # "pegOffsetValue": 0, # "pegPriceType": "string", # "currency": "string", # "settlCurrency": "string", # "execType": "string", # "ordType": "string", # "timeInForce": "string", # "execInst": "string", # "contingencyType": "string", # "exDestination": "string", # "ordStatus": "string", # "triggered": "string", # "workingIndicator": True, # "ordRejReason": "string", # "simpleLeavesQty": 0, # "leavesQty": 0, # "simpleCumQty": 0, # "cumQty": 0, # "avgPx": 0, # "commission": 0, # "tradePublishIndicator": "string", # "multiLegReportingType": "string", # "text": "string", # "trdMatchID": "string", # "execCost": 0, # "execComm": 0, # "homeNotional": 0, # "foreignNotional": 0, # "transactTime": "2019-03-05T12:47:02.762Z", # "timestamp": "2019-03-05T12:47:02.762Z" # } # timestamp = self.parse8601(self.safe_string(trade, 'timestamp')) price = self.safe_float(trade, 'price') amount = self.safe_float_2(trade, 'size', 'lastQty') id = self.safe_string(trade, 'trdMatchID') order = self.safe_string(trade, 'orderID') side = self.safe_string(trade, 'side').lower() # price * amount doesn't work for all symbols(e.g. XBT, ETH) cost = self.safe_float(trade, 'execCost') if cost is not None: cost = abs(cost) / 100000000 fee = None if 'execComm' in trade: feeCost = self.safe_float(trade, 'execComm') feeCost = feeCost / 100000000 currencyId = self.safe_string(trade, 'settlCurrency') currencyId = currencyId.upper() feeCurrency = self.common_currency_code(currencyId) feeRate = self.safe_float(trade, 'commission') fee = { 'cost': feeCost, 'currency': feeCurrency, 'rate': feeRate, } takerOrMaker = None if fee is not None: takerOrMaker = fee['cost'] < 'maker' if 0 else 'taker' symbol = None marketId = self.safe_string(trade, 'symbol') if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] else: symbol = marketId type = self.safe_string(trade, 'ordType') if type is not None: type = type.lower() return { 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': id, 'order': order, 'type': type, 'takerOrMaker': takerOrMaker, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'fee': fee, } def parse_order_status(self, status): statuses = { 'New': 'open', 'PartiallyFilled': 'open', 'Filled': 'closed', 'DoneForDay': 'open', 'Canceled': 'canceled', 'PendingCancel': 'open', 'PendingNew': 'open', 'Rejected': 'rejected', 'Expired': 'expired', 'Stopped': 'open', 'Untriggered': 'open', 'Triggered': 'open', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): status = self.parse_order_status(self.safe_string(order, 'ordStatus')) symbol = None if market is not None: symbol = market['symbol'] else: marketId = self.safe_string(order, 'symbol') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] timestamp = self.parse8601(self.safe_string(order, 'timestamp')) lastTradeTimestamp = self.parse8601(self.safe_string(order, 'transactTime')) price = self.safe_float(order, 'price') amount = self.safe_float(order, 'orderQty') filled = self.safe_float(order, 'cumQty', 0.0) remaining = None if amount is not None: if filled is not None: remaining = max(amount - filled, 0.0) average = self.safe_float(order, 'avgPx') cost = None if filled is not None: if average is not None: cost = average * filled elif price is not None: cost = price * filled id = self.safe_string(order, 'orderID') type = self.safe_string(order, 'ordType') if type is not None: type = type.lower() side = self.safe_string(order, 'side') if side is not None: side = side.lower() return { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'average': average, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': None, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } if since is not None: request['startTime'] = self.iso8601(since) if limit is not None: request['count'] = limit response = self.publicGetTrade(self.extend(request, params)) # # [ # { # timestamp: '2018-08-28T00:00:02.735Z', # symbol: 'XBTUSD', # side: 'Buy', # size: 2000, # price: 6906.5, # tickDirection: 'PlusTick', # trdMatchID: 'b9a42432-0a46-6a2f-5ecc-c32e9ca4baf8', # grossValue: 28958000, # homeNotional: 0.28958, # foreignNotional: 2000 # }, # { # timestamp: '2018-08-28T00:00:03.778Z', # symbol: 'XBTUSD', # side: 'Sell', # size: 1000, # price: 6906, # tickDirection: 'MinusTick', # trdMatchID: '0d4f1682-5270-a800-569b-4a0eb92db97c', # grossValue: 14480000, # homeNotional: 0.1448, # foreignNotional: 1000 # }, # ] # return self.parse_trades(response, market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() request = { 'symbol': self.market_id(symbol), 'side': self.capitalize(side), 'orderQty': amount, 'ordType': self.capitalize(type), } if price is not None: request['price'] = price response = self.privatePostOrder(self.extend(request, params)) order = self.parse_order(response) id = self.safe_string(order, 'id') self.orders[id] = order return self.extend({'info': response}, order) def edit_order(self, id, symbol, type, side, amount=None, price=None, params={}): self.load_markets() request = { 'orderID': id, } if amount is not None: request['orderQty'] = amount if price is not None: request['price'] = price response = self.privatePutOrder(self.extend(request, params)) order = self.parse_order(response) self.orders[order['id']] = order return self.extend({'info': response}, order) def cancel_order(self, id, symbol=None, params={}): self.load_markets() response = self.privateDeleteOrder(self.extend({'orderID': id}, params)) order = response[0] error = self.safe_string(order, 'error') if error is not None: if error.find('Unable to cancel order due to existing state') >= 0: raise OrderNotFound(self.id + ' cancelOrder() failed: ' + error) order = self.parse_order(order) self.orders[order['id']] = order return self.extend({'info': response}, order) def is_fiat(self, currency): if currency == 'EUR': return True if currency == 'PLN': return True return False def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) self.load_markets() # currency = self.currency(code) if code != 'BTC': raise ExchangeError(self.id + ' supoprts BTC withdrawals only, other currencies coming soon...') request = { 'currency': 'XBt', # temporarily 'amount': amount, 'address': address, # 'otpToken': '123456', # requires if two-factor auth(OTP) is enabled # 'fee': 0.001, # bitcoin network fee } response = self.privatePostUserRequestWithdrawal(self.extend(request, params)) return { 'info': response, 'id': response['transactID'], } def handle_errors(self, code, reason, url, method, headers, body, response): if response is None: return if code == 429: raise DDoSProtection(self.id + ' ' + body) if code >= 400: error = self.safe_value(response, 'error', {}) message = self.safe_string(error, 'message') feedback = self.id + ' ' + body exact = self.exceptions['exact'] if message in exact: raise exact[message](feedback) broad = self.exceptions['broad'] broadKey = self.findBroadlyMatchedKey(broad, message) if broadKey is not None: raise broad[broadKey](feedback) if code == 400: raise BadRequest(feedback) raise ExchangeError(feedback) # unknown message def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): query = '/api/' + self.version + '/' + path if method == 'GET': if params: query += '?' + self.urlencode(params) else: format = self.safe_string(params, '_format') if format is not None: query += '?' + self.urlencode({'_format': format}) params = self.omit(params, '_format') url = self.urls['api'] + query if api == 'private': self.check_required_credentials() auth = method + query expires = self.safe_integer(self.options, 'api-expires') headers = { 'Content-Type': 'application/json', 'api-key': self.apiKey, } expires = self.sum(self.seconds(), expires) expires = str(expires) auth += expires headers['api-expires'] = expires if method == 'POST' or method == 'PUT' or method == 'DELETE': if params: body = self.json(params) auth += body headers['api-signature'] = self.hmac(self.encode(auth), self.encode(self.secret)) return {'url': url, 'method': method, 'body': body, 'headers': headers}
40.780201
126
0.464657
4a26a0d66200c005abbaa3686785bf20e1864acc
851
py
Python
main.py
GuiSAlmeida/OS-Scheduler
1b7c3fb2dff5a7a92366519e72cbc86fa2fa337b
[ "MIT" ]
null
null
null
main.py
GuiSAlmeida/OS-Scheduler
1b7c3fb2dff5a7a92366519e72cbc86fa2fa337b
[ "MIT" ]
null
null
null
main.py
GuiSAlmeida/OS-Scheduler
1b7c3fb2dff5a7a92366519e72cbc86fa2fa337b
[ "MIT" ]
null
null
null
################################################################# # Algorithms simulating OS scheduler process # # Author: Guilherme Almeida # # Contact: https://www.guisalmeida.com # ################################################################# import pandas as pd from diagram import create_gantt from algorithms import fifo, sjf, priority import csv filename = 'files/processos.csv' procs = [] with open(filename, 'r') as csv_data: for line in csv.DictReader(csv_data): procs.append(dict(line)) def main(alg, procs): sorted_procs = alg(procs) df = pd.DataFrame(sorted_procs) df.to_csv(f'files/processos_{alg.__name__}.csv') create_gantt(sorted_procs, f'{alg.__name__}') main(fifo, procs) main(sjf, procs) main(priority, procs)
26.59375
65
0.540541
4a26a1065e394fa14a61c4eb605ce92ff8e71965
4,586
py
Python
fiction_scraper/filters.py
de3sw2aq1/fiction-scrapers
bcda0c708c679273b8e2e962faa0d4e8f7988fea
[ "MIT" ]
null
null
null
fiction_scraper/filters.py
de3sw2aq1/fiction-scrapers
bcda0c708c679273b8e2e962faa0d4e8f7988fea
[ "MIT" ]
2
2021-03-22T16:57:08.000Z
2021-12-13T19:36:23.000Z
fiction_scraper/filters.py
de3sw2aq1/fiction-scrapers
bcda0c708c679273b8e2e962faa0d4e8f7988fea
[ "MIT" ]
1
2020-07-22T14:16:40.000Z
2020-07-22T14:16:40.000Z
"""Filter functions for spiders. This module contains functions that can be applied to the <body> of a story to modify it. The body element will be passed to the filter function as the first argument. Some filters have optional keyword arguments that may be configured by setting the arguments with `functools.partial()`. Custom filters may also be written and used in a spider. Example usage: from . import Spider, filters def my_filter(root): pass class MySpider(Spider): filters = (my_filter, filters.kill_classes, *filters.DEFAULT_FILTERS) Always ensure that `DEFAULT_FILTERS` are included in the filter list, unless you are very sure you want to override them. """ import re from lxml.html import clean, builder as E # TODO: add filter to move attributes from <p> tags onto a <div> for Pandoc # TODO: add configurable filter to remove tags by class name # TODO: add filter to ensure ids are unique throughout the document # TODO: add lower_heading_levels filter. Will be manually run. # Set a max output heading level. # Attempt to autodetect the document's heading levels. class Cleaner(clean.Cleaner): """Cleaner to remove unnecessary tags and attributes. Currently removes <div> tags preserving their children. All attributes except what lxml considers to be "safe" are removed. Additionally the attributes `width`, `height`, `dir` and `align` are removed. Instances of this class are usable as a filter. """ remove_tags = ('div') safe_attrs = clean.Cleaner.safe_attrs - {'width', 'height', 'align', 'dir'} def kill_classes(root, classes=('reaction_buttons', 'sharedaddy')): """Filter to remove tags with unwanted classes. If any tag has one of the specified classes, it and it's children will be removed. By default this filter removes classes that match divs at the end of blog posts with social media sharing buttons. """ for c in classes: for e in root.find_class(c): e.drop_tree() # TODO: add stylesheet that includes alignment classes def text_alignment(root, directions=None): """Convert inline styles and align attributes for text alignment to a class. This is needed because inline styles are stripped by default. Currently `text-align: justified` isn't handled, only left, center and right are. It may be a good idea to remove left from the set of handled alignments. Then the document's default alignment, which may be justified, can be applied. """ if not directions: directions = { 'left': 'align-left', 'right': 'align-right', 'center': 'align-center'} for e in root.xpath('.//*[@style]'): style = e.get('style') for direction, css_class in directions.items(): if re.search(r'text-align:\s*'+direction, style, re.I): e.classes.add(css_class) for e in root.xpath('.//*[@align]'): align = e.get('align') for direction, css_class in directions.items(): if direction == align.lower(): e.classes.add(css_class) del e.attrib['align'] # TODO: add stylesheet that includes decoration classes def text_decoration(root, decorations=None): """Convert `text-decoration: underline` in style attributes to a class.""" if not decorations: decorations = {'underline': 'underlined'} for e in root.xpath(r'.//*[@style]'): style = e.get('style') for decoration, css_class in decorations.items(): if re.search(r'text-decoration:\s*'+decoration, style, re.I): e.classes.add(css_class) def move_attrs_to_div(root, elements=('p', 'hr')): """If an element has attributes move them to a <div> wrapping it. Pandoc doesn't support attributes on all types of elements. Notably it does not support attributes on <p> tags. This filter moves all the attributes off of the specified element types onto a <div> wrapping the element. """ # FIXME: the behavior of iter() is undefined if the tree is modified # during iteration. But this seems to work for now. for e in root.iter(*elements): if e.attrib: wrapper = E.DIV(dict(e.attrib)) e.attrib.clear() e.addprevious(wrapper) wrapper.insert(0, e) # The styles, etc shouldn't affect the tail text of the element wrapper.tail = e.tail e.tail = None DEFAULT_FILTERS = (text_decoration, Cleaner(), move_attrs_to_div)
32.992806
79
0.668993
4a26a18ed24dab94094c049b9fdd1b7477650e46
1,529
py
Python
DonnaAlert.py
TobiasMR/donna-alert
5db41b3dbbbbfb7656376e421587d9b87508bc92
[ "MIT" ]
null
null
null
DonnaAlert.py
TobiasMR/donna-alert
5db41b3dbbbbfb7656376e421587d9b87508bc92
[ "MIT" ]
null
null
null
DonnaAlert.py
TobiasMR/donna-alert
5db41b3dbbbbfb7656376e421587d9b87508bc92
[ "MIT" ]
null
null
null
import sys import json import pprint import argparse from flask import Flask, make_response, render_template, jsonify, send_from_directory from flask.ext.sqlalchemy import SQLAlchemy from birdy.twitter import AppClient from models import Source, Mention, Base from twitter import get_twitter_mentions app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite+pysqlite:///sqlite.db' db = SQLAlchemy(app) @app.route('/') def index(): """Return the main view for mentions.""" return render_template('index.html') @app.route('/update/<source>', methods=['POST']) def get_updates_for_source(source): """Return the number of updates found after getting new data from *source*.""" if source == 'twitter': updates = get_twitter_mentions() return jsonify({'updates': updates}) @app.route('/read/<id>', methods=['POST']) def read(id): """Mark a particular mention as having been read.""" session = db.session() mention = session.query(Mention).get(id) mention.seen = True session.add(mention) session.commit() return jsonify({}) @app.route('/mentions') def show_mentions(): """Return a list of all mentions in JSON.""" session = db.session() mentions = session.query(Mention).all() values = [mention.to_json() for mention in mentions] response = make_response() response.data = json.dumps(values) return response def main(): """Main entry point for script.""" app.run() if __name__ == '__main__': sys.exit(main())
27.303571
85
0.691956
4a26a1dc9fc77166691f212b697855db485ce345
4,647
py
Python
homeassistant/components/sensor/command_line.py
don66/home-assistant
a277470363c0758bb305410aad49c257ff8bac40
[ "Apache-2.0" ]
7
2018-06-29T01:13:54.000Z
2020-04-01T16:08:27.000Z
homeassistant/components/sensor/command_line.py
don66/home-assistant
a277470363c0758bb305410aad49c257ff8bac40
[ "Apache-2.0" ]
null
null
null
homeassistant/components/sensor/command_line.py
don66/home-assistant
a277470363c0758bb305410aad49c257ff8bac40
[ "Apache-2.0" ]
3
2018-10-09T08:37:48.000Z
2019-11-16T08:32:27.000Z
""" Allows to configure custom shell commands to turn a value for a sensor. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.command_line/ """ import logging import subprocess import shlex from datetime import timedelta import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.helpers import template from homeassistant.exceptions import TemplateError from homeassistant.const import ( CONF_NAME, CONF_VALUE_TEMPLATE, CONF_UNIT_OF_MEASUREMENT, CONF_COMMAND, STATE_UNKNOWN) from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = 'Command Sensor' SCAN_INTERVAL = timedelta(seconds=60) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_COMMAND): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_UNIT_OF_MEASUREMENT): cv.string, vol.Optional(CONF_VALUE_TEMPLATE): cv.template, }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Command Sensor.""" name = config.get(CONF_NAME) command = config.get(CONF_COMMAND) unit = config.get(CONF_UNIT_OF_MEASUREMENT) value_template = config.get(CONF_VALUE_TEMPLATE) if value_template is not None: value_template.hass = hass data = CommandSensorData(hass, command) add_devices([CommandSensor(hass, data, name, unit, value_template)], True) class CommandSensor(Entity): """Representation of a sensor that is using shell commands.""" def __init__(self, hass, data, name, unit_of_measurement, value_template): """Initialize the sensor.""" self._hass = hass self.data = data self._name = name self._state = None self._unit_of_measurement = unit_of_measurement self._value_template = value_template @property def name(self): """Return the name of the sensor.""" return self._name @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return self._unit_of_measurement @property def state(self): """Return the state of the device.""" return self._state def update(self): """Get the latest data and updates the state.""" self.data.update() value = self.data.value if value is None: value = STATE_UNKNOWN elif self._value_template is not None: self._state = self._value_template.render_with_possible_json_value( value, STATE_UNKNOWN) else: self._state = value class CommandSensorData(object): """The class for handling the data retrieval.""" def __init__(self, hass, command): """Initialize the data object.""" self.value = None self.hass = hass self.command = command def update(self): """Get the latest data with a shell command.""" command = self.command cache = {} if command in cache: prog, args, args_compiled = cache[command] elif ' ' not in command: prog = command args = None args_compiled = None cache[command] = (prog, args, args_compiled) else: prog, args = command.split(' ', 1) args_compiled = template.Template(args, self.hass) cache[command] = (prog, args, args_compiled) if args_compiled: try: args_to_render = {"arguments": args} rendered_args = args_compiled.render(args_to_render) except TemplateError as ex: _LOGGER.exception("Error rendering command template: %s", ex) return else: rendered_args = None if rendered_args == args: # No template used. default behavior shell = True else: # Template used. Construct the string used in the shell command = str(' '.join([prog] + shlex.split(rendered_args))) shell = True try: _LOGGER.info("Running command: %s", command) return_value = subprocess.check_output( command, shell=shell, timeout=15) self.value = return_value.strip().decode('utf-8') except subprocess.CalledProcessError: _LOGGER.error("Command failed: %s", command) except subprocess.TimeoutExpired: _LOGGER.error("Timeout for command: %s", command)
32.270833
79
0.649021
4a26a261c392d3cfb759ed5ba5cd2e0593c8deed
13,264
py
Python
spinup/algos/sapm/sapm.py
kyungjaelee/soft_action_particle_method
8a37dabcb079907bcaebffc45935df8372f78469
[ "MIT" ]
32
2019-08-28T16:48:12.000Z
2021-10-15T04:33:14.000Z
spinup/algos/sapm/sapm.py
kyungjaelee/soft_action_particle_method
8a37dabcb079907bcaebffc45935df8372f78469
[ "MIT" ]
null
null
null
spinup/algos/sapm/sapm.py
kyungjaelee/soft_action_particle_method
8a37dabcb079907bcaebffc45935df8372f78469
[ "MIT" ]
1
2019-08-28T16:46:48.000Z
2019-08-28T16:46:48.000Z
import numpy as np import gym import random import collections import matplotlib.pyplot as plt import time from spinup.algos.sapm import Defs from spinup.algos.sapm.Q_2layers import Q2_Network from spinup.algos.sapm.Q_3layers import Q3_Network from spinup.utils.logx import EpochLogger """ SAPM (Soft Action Particle Method) """ def sapm(env_fn, ac_kwargs=dict(), seed=0, steps_per_epoch=5000, epochs=200, replay_size=int(1e6), #######################################options######################################## # N_layers : 2(2layers Q-Network), 3(3layers Q-Network) # DPP : 0(Random Sampling), 1(DPP Sampling) # Ablation : 0(Fixed Particles), 1(Grad + No Resampling), 2(Grad + Resampling), 3(SAPM) N_layers = 2, DPP = 1, Ablation = 3, ###################################################################################### layer_size1=300, layer_size2=400, lr_Q=0.0001, lr_M=0.01, lr_S=0.01, batch_size=100, start_steps=10000, act_train_step=100, policy_delay=1, act_size=32, min_d=0.5, scale=0.2, std=10, max_ep_len=1000, logger_kwargs=dict(), save_freq=1): """ Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``pi`` (batch, act_dim) | Deterministically computes actions | from policy given states. ``q1`` (batch,) | Gives one estimate of Q* for | states in ``x_ph`` and actions in | ``a_ph``. ``q2`` (batch,) | Gives another estimate of Q* for | states in ``x_ph`` and actions in | ``a_ph``. ``q1_pi`` (batch,) | Gives the composition of ``q1`` and | ``pi`` for states in ``x_ph``: | q1(x, pi(x)). =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to TD3. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs to run and train agent. replay_size (int): Maximum length of replay buffer. gamma (float): Discount factor. (Always between 0 and 1.) polyak (float): Interpolation factor in polyak averaging for target networks. Target networks are updated towards main networks according to: .. math:: \\theta_{\\text{targ}} \\leftarrow \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta where :math:`\\rho` is polyak. (Always between 0 and 1, usually close to 1.) pi_lr (float): Learning rate for policy. q_lr (float): Learning rate for Q-networks. batch_size (int): Minibatch size for SGD. start_steps (int): Number of steps for uniform-random action selection, before running real policy. Helps exploration. act_noise (float): Stddev for Gaussian exploration noise added to policy at training time. (At test time, no noise is added.) target_noise (float): Stddev for smoothing noise added to target policy. noise_clip (float): Limit for absolute value of target policy smoothing noise. policy_delay (int): Policy will only be updated once every policy_delay times for each update of the Q-networks. max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) np.random.seed(seed) rng = np.random.RandomState(seed) random.seed(seed) env, test_env = env_fn(), env_fn() obs_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] env.seed(seed) test_env.seed(seed) # Action limit for clamping: critically, assumes all dimensions share the same bound! act_limit = env.action_space.high[0] # Share information about action space with policy architecture ac_kwargs['action_space'] = env.action_space replay_buffer = collections.deque() if N_layers == 2: Critic_Network = Q2_Network(seed, obs_dim, act_dim, act_size, act_limit, batch_size, scale, layer_size1, layer_size2, lr_Q, lr_M, lr_S, std, Ablation) elif N_layers == 3: Critic_Network = Q3_Network(seed, obs_dim, act_dim, act_size, act_limit, batch_size, scale, layer_size1, layer_size2, lr_Q, lr_M, lr_S, std, Ablation) M_batch, S_batch = Critic_Network.get_action_batch() t_M_batch, t_S_batch = Critic_Network.get_target_action_batch() """ # Count variables scopes = ['actions/action_batch', 'q_critic', 'H1'] var_counts = tuple(Critic_Network.count_vars(scope) for scope in scopes) print(var_counts) print('\nNumber of parameters: \t pi: %d, \t q: %d, \t total: %d\n'%var_counts) # Setup model saving logger.setup_tf_saver(sess, inputs={'x': x_ph, 'a': a_ph}, outputs={'pi': pi, 'q': q}) """ def get_action(o): actions, action_soft = Critic_Network.get_softmax(o, scale) action0 = np.random.choice(len(action_soft), size=1, p=action_soft)[0] return actions[action0] def test_get_action(o, actions): action_test = Critic_Network.get_test_q_batch(np.reshape(o,[1,-1]), actions) action_test = np.reshape(action_test, [1,-1])[0] return actions[np.argmax(action_test)] def test_agent(actions, flag=True, n=10): result = 0 for j in range(n): o_t, r_t, d_t, ep_ret_t, ep_len_t = test_env.reset(), 0, False, 0, 0 while not(d_t or (ep_len_t == max_ep_len)): o_t, r_t, d_t, _ = test_env.step(test_get_action(o_t, actions)) ep_ret_t += r_t ep_len_t += 1 result += ep_ret_t if flag: logger.store(TestEpRet2=ep_ret_t, TestEpLen=ep_len_t) else: logger.store(TestEpRet=ep_ret_t, TestEpLen=ep_len_t) return result/n start_time = time.time() o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 total_steps = steps_per_epoch * epochs global_steps, max_ret = 0, -10000 best_actions = M_batch # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): if t > start_steps: a = get_action(o) else: a0 = np.random.randint(act_size) a = np.random.normal(M_batch[a0], S_batch[a0]) # Step the env o2, r, d, _ = env.step(a) ep_ret += r ep_len += 1 global_steps += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) d = False if ep_len==max_ep_len else d # Store experience to replay buffer replay_buffer.append((o, o2, a, r, d)) if len(replay_buffer)>replay_size: replay_buffer.popleft() # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 if (d or (ep_len == max_ep_len)) and global_steps > batch_size: for tr in range(global_steps-ep_len+1, global_steps+1): minibatch = random.sample(replay_buffer, batch_size) cost, q_t_1, state_t_batch = Defs.train(Critic_Network, minibatch, scale, obs_dim, act_dim, act_size, act_limit) logger.store(LossQ=cost, QVals=q_t_1) if tr % policy_delay == 0: Critic_Network.update_target_critic() if (Ablation!=0) and (tr % act_train_step == 0): for k in range(1): actor_loss, _, _ = Critic_Network.train_weighted_actor(state_t_batch) logger.store(LossPi=np.sum(actor_loss)) M_batch, S_batch = Critic_Network.get_action_batch() t_M_batch, t_S_batch = Critic_Network.get_target_action_batch() M_batch, S_batch, t_M_batch, t_S_batch = Defs.clipping_action(M_batch, S_batch, t_M_batch, t_S_batch, act_limit, std) if Ablation!=1: if DPP == 0: M_batch, S_batch, t_M_batch, t_S_batch = Defs.resampling_random(M_batch, S_batch, t_M_batch, t_S_batch, act_limit, std, min_d, np) elif DPP == 1: M_batch, S_batch, t_M_batch, t_S_batch = Defs.resampling_dpp(M_batch, S_batch, t_M_batch, t_S_batch, act_limit, std, min_d, np) else: print(" It is invalid RESAMPLING option. ") Critic_Network.realign_action_batch(M_batch, S_batch, t_M_batch, t_S_batch) Critic_Network.update_action_target_critic() M_batch, S_batch = Critic_Network.get_action_batch() t_M_batch, t_S_batch = Critic_Network.get_target_action_batch() logger.store(EpRet=ep_ret, EpLen=ep_len) o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # End of epoch wrap-up if t > 0 and t % steps_per_epoch == 0: epoch = t // steps_per_epoch Defs.get_action_variance(M_batch, min_d, act_limit) # Save model if (epoch % save_freq == 0) or (epoch == epochs-1): logger.save_state({'env': env}, None) # Test the performance of the deterministic version of the agent. test_result1 = test_agent(M_batch, flag=False) test_result2 = test_agent(best_actions, flag=True) if max_ret < test_result1 and test_result2 < test_result1: best_actions = M_batch # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=True) logger.log_tabular('TestEpRet2', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('QVals', with_min_and_max=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='HalfCheetah-v2') parser.add_argument('--hid', type=int, default=300) parser.add_argument('--l', type=int, default=1) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--DPP', type=int, default=0) parser.add_argument('--N_layers', type=int, default=2) parser.add_argument('--Ablation', type=int, default=3) parser.add_argument('--act_size', type=int, default=32) parser.add_argument('--min_d', type=float, default=0.1) parser.add_argument('--scale', type=float, default=0.1) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--exp_name', type=str, default='sapm') args = parser.parse_args() from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed) sapm(lambda : gym.make(args.env), #actor_critic=core.mlp_actor_critic, ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma, seed=args.seed, epochs=args.epochs, logger_kwargs=logger_kwargs)
43.205212
162
0.573809
4a26a376bbf103b9f4d149ee37cd9e8bce49523d
2,541
py
Python
ckanext/example_idatasetform/tests/test_controllers.py
GlobalMaksimum/ckan
bdba078d26d485e75554ba9570e292ec480eb9e4
[ "Apache-2.0" ]
1
2018-11-29T22:13:01.000Z
2018-11-29T22:13:01.000Z
ckanext/example_idatasetform/tests/test_controllers.py
GlobalMaksimum/ckan
bdba078d26d485e75554ba9570e292ec480eb9e4
[ "Apache-2.0" ]
135
2019-07-03T19:58:12.000Z
2020-02-14T19:57:33.000Z
ckanext/example_idatasetform/tests/test_controllers.py
GlobalMaksimum/ckan
bdba078d26d485e75554ba9570e292ec480eb9e4
[ "Apache-2.0" ]
3
2019-06-21T11:57:57.000Z
2020-01-20T12:36:38.000Z
# encoding: utf-8 from nose.tools import assert_equal from ckan.lib.helpers import url_for import ckan.plugins as plugins import ckan.tests.helpers as helpers import ckan.tests.factories as factories import ckan.model as model submit_and_follow = helpers.submit_and_follow def _get_package_edit_page(app, package_name): user = factories.User() env = {'REMOTE_USER': user['name'].encode('ascii')} response = app.get( url=url_for('dataset.edit', id=package_name), extra_environ=env, ) return env, response class TestPackageController(helpers.FunctionalTestBase): @classmethod def _apply_config_changes(cls, cfg): cfg['ckan.plugins'] = 'example_idatasetform' @classmethod def setup_class(cls): super(TestPackageController, cls).setup_class() @classmethod def teardown_class(cls): if plugins.plugin_loaded('example_idatasetform'): plugins.unload('example_idatasetform') super(TestPackageController, cls).teardown_class() def test_edit_converted_extra_field(self): dataset = factories.Dataset(custom_text='foo') app = self._get_test_app() env, response = _get_package_edit_page(app, dataset['name']) form = response.forms['dataset-edit'] form['custom_text'] = u'bar' response = submit_and_follow(app, form, env, 'save') # just check it has finished the edit, rather than being sent on to the # resource create/edit form. assert_equal(response.request.path, '/dataset/%s' % dataset['name']) pkg = model.Package.by_name(dataset['name']) assert_equal(pkg.extras['custom_text'], u'bar') def test_edit_custom_extra_field(self): # i.e. an extra field that is not mentioned in the schema, filled in on # the form in the 'custom-fields' section dataset = factories.Dataset(extras=[{'key': 'testkey', 'value': 'foo'}]) app = self._get_test_app() env, response = _get_package_edit_page(app, dataset['name']) form = response.forms['dataset-edit'] form['extras__0__value'] = u'bar' response = submit_and_follow(app, form, env, 'save') # just check it has finished the edit, rather than being sent on to the # resource create/edit form. assert_equal(response.request.path, '/dataset/%s' % dataset['name']) pkg = model.Package.by_name(dataset['name']) assert_equal(pkg.extras['testkey'], u'bar')
35.788732
79
0.662731
4a26a37b58964ba8c7ee9e15acc83687adc1b2b5
243
py
Python
python/8kyu/i_love_you_a_little_a_lot_passionately_not_at_all.py
Sigmanificient/codewars
b34df4bf55460d312b7ddf121b46a707b549387a
[ "MIT" ]
3
2021-06-08T01:57:13.000Z
2021-06-26T10:52:47.000Z
python/8kyu/i_love_you_a_little_a_lot_passionately_not_at_all.py
Sigmanificient/codewars
b34df4bf55460d312b7ddf121b46a707b549387a
[ "MIT" ]
null
null
null
python/8kyu/i_love_you_a_little_a_lot_passionately_not_at_all.py
Sigmanificient/codewars
b34df4bf55460d312b7ddf121b46a707b549387a
[ "MIT" ]
2
2021-06-10T21:20:13.000Z
2021-06-30T10:13:26.000Z
"""Kata url: https://www.codewars.com/kata/57f24e6a18e9fad8eb000296.""" def how_much_i_love_you(nb_petals: int) -> str: return ( "I love you", "a little", "a lot", "passionately", "madly", "not at all" )[(nb_petals - 1) % 6]
30.375
80
0.625514
4a26a48749d5927956d07f7c4b2d65a1f627d2dc
1,514
py
Python
tests/test_utils.py
atrodahl/slack-cli
ee72fa39a5ae516132a6021aa32095a2e5533624
[ "MIT" ]
null
null
null
tests/test_utils.py
atrodahl/slack-cli
ee72fa39a5ae516132a6021aa32095a2e5533624
[ "MIT" ]
null
null
null
tests/test_utils.py
atrodahl/slack-cli
ee72fa39a5ae516132a6021aa32095a2e5533624
[ "MIT" ]
null
null
null
import unittest from unittest.mock import patch from slackcli import messaging class ParseStatusTests(unittest.TestCase): def test_parse_full_status(self): self.assertEqual( {"status_emoji": ":office:", "status_text": "In office"}, messaging.parse_status_update("/status :office: In office"), ) def test_parse_no_emoji_status(self): self.assertEqual( {"status_emoji": ":speech_balloon:", "status_text": "At home"}, messaging.parse_status_update("/status At home"), ) def test_parse_no_text_status(self): self.assertEqual( {"status_emoji": ":office:", "status_text": None}, messaging.parse_status_update("/status :office:"), ) def test_parse_empty_status(self): self.assertEqual(None, messaging.parse_status_update("/status")) def test_parse_clear_status(self): self.assertEqual( {"status_emoji": None, "status_text": ""}, messaging.parse_status_update("/status clear"), ) class FormatMessageTests(unittest.TestCase): @patch.object(messaging.names, "get_user_id", return_value="U024BE7LH") def test_format_outgoing_message(self, mock_user_id): self.assertEqual( "Hello <@U024BE7LH>, did you see my file?", messaging.format_outgoing_message( "Hello @loremipsum, did you see my file?" ), ) mock_user_id.assert_called_with("loremipsum")
32.913043
75
0.639366
4a26a5168c5687fc58032a675a610528831c3c4c
47,555
py
Python
chives/wallet/wallet_node.py
zcomputerwiz/chives-blockchain
73d268bf76f50ff6133c868b58891e75739a2708
[ "Apache-2.0" ]
75
2021-06-27T03:30:59.000Z
2022-03-20T12:32:55.000Z
chives/wallet/wallet_node.py
zcomputerwiz/chives-blockchain
73d268bf76f50ff6133c868b58891e75739a2708
[ "Apache-2.0" ]
39
2021-07-02T07:11:24.000Z
2022-03-20T15:00:07.000Z
chives/wallet/wallet_node.py
zcomputerwiz/chives-blockchain
73d268bf76f50ff6133c868b58891e75739a2708
[ "Apache-2.0" ]
41
2021-06-24T11:24:43.000Z
2022-03-14T16:11:38.000Z
import asyncio import json import logging import time import traceback from pathlib import Path from typing import Callable, Dict, List, Optional, Set, Tuple, Union from blspy import PrivateKey from chives.consensus.block_record import BlockRecord from chives.consensus.blockchain_interface import BlockchainInterface from chives.consensus.constants import ConsensusConstants from chives.consensus.multiprocess_validation import PreValidationResult from chives.daemon.keychain_proxy import ( KeychainProxy, KeychainProxyConnectionFailure, KeyringIsEmpty, KeyringIsLocked, connect_to_keychain_and_validate, wrap_local_keychain, ) from chives.pools.pool_puzzles import SINGLETON_LAUNCHER_HASH from chives.protocols import wallet_protocol from chives.protocols.full_node_protocol import RequestProofOfWeight, RespondProofOfWeight from chives.protocols.protocol_message_types import ProtocolMessageTypes from chives.protocols.wallet_protocol import ( RejectAdditionsRequest, RejectRemovalsRequest, RequestAdditions, RequestHeaderBlocks, RespondAdditions, RespondBlockHeader, RespondHeaderBlocks, RespondRemovals, ) from chives.server.node_discovery import WalletPeers from chives.server.outbound_message import Message, NodeType, make_msg from chives.server.peer_store_resolver import PeerStoreResolver from chives.server.server import ChivesServer from chives.server.ws_connection import WSChivesConnection from chives.types.blockchain_format.coin import Coin, hash_coin_list from chives.types.blockchain_format.sized_bytes import bytes32 from chives.types.coin_spend import CoinSpend from chives.types.header_block import HeaderBlock from chives.types.mempool_inclusion_status import MempoolInclusionStatus from chives.types.peer_info import PeerInfo from chives.util.byte_types import hexstr_to_bytes from chives.util.check_fork_next_block import check_fork_next_block from chives.util.config import WALLET_PEERS_PATH_KEY_DEPRECATED, load_config from chives.util.errors import Err, ValidationError from chives.util.ints import uint32, uint128 from chives.util.keychain import Keychain from chives.util.lru_cache import LRUCache from chives.util.merkle_set import MerkleSet, confirm_included_already_hashed, confirm_not_included_already_hashed from chives.util.network import get_host_addr from chives.util.path import mkdir, path_from_root from chives.wallet.block_record import HeaderBlockRecord from chives.wallet.derivation_record import DerivationRecord from chives.wallet.settings.settings_objects import BackupInitialized from chives.wallet.transaction_record import TransactionRecord from chives.wallet.util.backup_utils import open_backup_file from chives.wallet.util.wallet_types import WalletType from chives.wallet.wallet_action import WalletAction from chives.wallet.wallet_blockchain import ReceiveBlockResult from chives.wallet.wallet_state_manager import WalletStateManager from chives.util.profiler import profile_task class WalletNode: key_config: Dict config: Dict constants: ConsensusConstants keychain_proxy: Optional[KeychainProxy] local_keychain: Optional[Keychain] # For testing only. KeychainProxy is used in normal cases server: Optional[ChivesServer] log: logging.Logger wallet_peers: WalletPeers # Maintains the state of the wallet (blockchain and transactions), handles DB connections wallet_state_manager: Optional[WalletStateManager] # How far away from LCA we must be to perform a full sync. Before then, do a short sync, # which is consecutive requests for the previous block short_sync_threshold: int _shut_down: bool root_path: Path state_changed_callback: Optional[Callable] syncing: bool full_node_peer: Optional[PeerInfo] peer_task: Optional[asyncio.Task] logged_in: bool wallet_peers_initialized: bool def __init__( self, config: Dict, root_path: Path, consensus_constants: ConsensusConstants, name: str = None, local_keychain: Optional[Keychain] = None, ): self.config = config self.constants = consensus_constants self.keychain_proxy = None self.local_keychain = local_keychain self.root_path = root_path self.base_config = load_config(root_path, "config.yaml") self.log = logging.getLogger(name if name else __name__) # Normal operation data self.cached_blocks: Dict = {} self.future_block_hashes: Dict = {} # Sync data self._shut_down = False self.proof_hashes: List = [] self.header_hashes: List = [] self.header_hashes_error = False self.short_sync_threshold = 15 # Change the test when changing this self.potential_blocks_received: Dict = {} self.potential_header_hashes: Dict = {} self.state_changed_callback = None self.wallet_state_manager = None self.backup_initialized = False # Delay first launch sync after user imports backup info or decides to skip self.server = None self.wsm_close_task = None self.sync_task: Optional[asyncio.Task] = None self.logged_in_fingerprint: Optional[int] = None self.peer_task = None self.logged_in = False self.wallet_peers_initialized = False self.last_new_peak_messages = LRUCache(5) async def ensure_keychain_proxy(self) -> KeychainProxy: if not self.keychain_proxy: if self.local_keychain: self.keychain_proxy = wrap_local_keychain(self.local_keychain, log=self.log) else: self.keychain_proxy = await connect_to_keychain_and_validate(self.root_path, self.log) if not self.keychain_proxy: raise KeychainProxyConnectionFailure("Failed to connect to keychain service") return self.keychain_proxy async def get_key_for_fingerprint(self, fingerprint: Optional[int]) -> Optional[PrivateKey]: key: PrivateKey = None try: keychain_proxy = await self.ensure_keychain_proxy() key = await keychain_proxy.get_key_for_fingerprint(fingerprint) except KeyringIsEmpty: self.log.warning("No keys present. Create keys with the UI, or with the 'chives keys' program.") return None except KeyringIsLocked: self.log.warning("Keyring is locked") return None except KeychainProxyConnectionFailure as e: tb = traceback.format_exc() self.log.error(f"Missing keychain_proxy: {e} {tb}") raise e # Re-raise so that the caller can decide whether to continue or abort return key async def _start( self, fingerprint: Optional[int] = None, new_wallet: bool = False, backup_file: Optional[Path] = None, skip_backup_import: bool = False, ) -> bool: try: private_key = await self.get_key_for_fingerprint(fingerprint) except KeychainProxyConnectionFailure: self.log.error("Failed to connect to keychain service") return False if private_key is None: self.logged_in = False return False if self.config.get("enable_profiler", False): asyncio.create_task(profile_task(self.root_path, "wallet", self.log)) db_path_key_suffix = str(private_key.get_g1().get_fingerprint()) db_path_replaced: str = ( self.config["database_path"] .replace("CHALLENGE", self.config["selected_network"]) .replace("KEY", db_path_key_suffix) ) path = path_from_root(self.root_path, db_path_replaced) mkdir(path.parent) self.new_peak_lock = asyncio.Lock() assert self.server is not None self.wallet_state_manager = await WalletStateManager.create( private_key, self.config, path, self.constants, self.server, self.root_path ) self.wsm_close_task = None assert self.wallet_state_manager is not None backup_settings: BackupInitialized = self.wallet_state_manager.user_settings.get_backup_settings() if backup_settings.user_initialized is False: if new_wallet is True: await self.wallet_state_manager.user_settings.user_created_new_wallet() self.wallet_state_manager.new_wallet = True elif skip_backup_import is True: await self.wallet_state_manager.user_settings.user_skipped_backup_import() elif backup_file is not None: await self.wallet_state_manager.import_backup_info(backup_file) else: self.backup_initialized = False await self.wallet_state_manager.close_all_stores() self.wallet_state_manager = None self.logged_in = False return False self.backup_initialized = True # Start peers here after the backup initialization has finished # We only want to do this once per instantiation # However, doing it earlier before backup initialization causes # the wallet to spam the introducer if self.wallet_peers_initialized is False: asyncio.create_task(self.wallet_peers.start()) self.wallet_peers_initialized = True if backup_file is not None: json_dict = open_backup_file(backup_file, self.wallet_state_manager.private_key) if "start_height" in json_dict["data"]: start_height = json_dict["data"]["start_height"] self.config["starting_height"] = max(0, start_height - self.config["start_height_buffer"]) else: self.config["starting_height"] = 0 else: self.config["starting_height"] = 0 if self.state_changed_callback is not None: self.wallet_state_manager.set_callback(self.state_changed_callback) self.wallet_state_manager.set_pending_callback(self._pending_tx_handler) self._shut_down = False self.peer_task = asyncio.create_task(self._periodically_check_full_node()) self.sync_event = asyncio.Event() self.sync_task = asyncio.create_task(self.sync_job()) if fingerprint is None: self.logged_in_fingerprint = private_key.get_g1().get_fingerprint() else: self.logged_in_fingerprint = fingerprint self.logged_in = True return True def _close(self): self.log.info("self._close") self.logged_in_fingerprint = None self._shut_down = True async def _await_closed(self): self.log.info("self._await_closed") await self.server.close_all_connections() asyncio.create_task(self.wallet_peers.ensure_is_closed()) if self.wallet_state_manager is not None: await self.wallet_state_manager.close_all_stores() self.wallet_state_manager = None if self.sync_task is not None: self.sync_task.cancel() self.sync_task = None if self.peer_task is not None: self.peer_task.cancel() self.peer_task = None self.logged_in = False def _set_state_changed_callback(self, callback: Callable): self.state_changed_callback = callback if self.wallet_state_manager is not None: self.wallet_state_manager.set_callback(self.state_changed_callback) self.wallet_state_manager.set_pending_callback(self._pending_tx_handler) def _pending_tx_handler(self): if self.wallet_state_manager is None or self.backup_initialized is False: return None asyncio.create_task(self._resend_queue()) async def _action_messages(self) -> List[Message]: if self.wallet_state_manager is None or self.backup_initialized is False: return [] actions: List[WalletAction] = await self.wallet_state_manager.action_store.get_all_pending_actions() result: List[Message] = [] for action in actions: data = json.loads(action.data) action_data = data["data"]["action_data"] if action.name == "request_puzzle_solution": coin_name = bytes32(hexstr_to_bytes(action_data["coin_name"])) height = uint32(action_data["height"]) msg = make_msg( ProtocolMessageTypes.request_puzzle_solution, wallet_protocol.RequestPuzzleSolution(coin_name, height), ) result.append(msg) return result async def _resend_queue(self): if ( self._shut_down or self.server is None or self.wallet_state_manager is None or self.backup_initialized is None ): return None for msg, sent_peers in await self._messages_to_resend(): if ( self._shut_down or self.server is None or self.wallet_state_manager is None or self.backup_initialized is None ): return None full_nodes = self.server.get_full_node_connections() for peer in full_nodes: if peer.peer_node_id in sent_peers: continue await peer.send_message(msg) for msg in await self._action_messages(): if ( self._shut_down or self.server is None or self.wallet_state_manager is None or self.backup_initialized is None ): return None await self.server.send_to_all([msg], NodeType.FULL_NODE) async def _messages_to_resend(self) -> List[Tuple[Message, Set[bytes32]]]: if self.wallet_state_manager is None or self.backup_initialized is False or self._shut_down: return [] messages: List[Tuple[Message, Set[bytes32]]] = [] records: List[TransactionRecord] = await self.wallet_state_manager.tx_store.get_not_sent() for record in records: if record.spend_bundle is None: continue msg = make_msg( ProtocolMessageTypes.send_transaction, wallet_protocol.SendTransaction(record.spend_bundle), ) already_sent = set() for peer, status, _ in record.sent_to: if status == MempoolInclusionStatus.SUCCESS.value: already_sent.add(hexstr_to_bytes(peer)) messages.append((msg, already_sent)) return messages def set_server(self, server: ChivesServer): self.server = server DNS_SERVERS_EMPTY: list = [] network_name: str = self.config["selected_network"] # TODO: Perhaps use a different set of DNS seeders for wallets, to split the traffic. self.wallet_peers = WalletPeers( self.server, self.config["target_peer_count"], PeerStoreResolver( self.root_path, self.config, selected_network=network_name, peers_file_path_key="wallet_peers_file_path", legacy_peer_db_path_key=WALLET_PEERS_PATH_KEY_DEPRECATED, default_peers_file_path="wallet/db/wallet_peers.dat", ), self.config["introducer_peer"], DNS_SERVERS_EMPTY, self.config["peer_connect_interval"], network_name, None, self.log, ) async def on_connect(self, peer: WSChivesConnection): if self.wallet_state_manager is None or self.backup_initialized is False: return None messages_peer_ids = await self._messages_to_resend() self.wallet_state_manager.state_changed("add_connection") for msg, peer_ids in messages_peer_ids: if peer.peer_node_id in peer_ids: continue await peer.send_message(msg) if not self.has_full_node() and self.wallet_peers is not None: asyncio.create_task(self.wallet_peers.on_connect(peer)) async def _periodically_check_full_node(self) -> None: tries = 0 while not self._shut_down and tries < 5: if self.has_full_node(): await self.wallet_peers.ensure_is_closed() if self.wallet_state_manager is not None: self.wallet_state_manager.state_changed("add_connection") break tries += 1 await asyncio.sleep(self.config["peer_connect_interval"]) def has_full_node(self) -> bool: if self.server is None: return False if "full_node_peer" in self.config: full_node_peer = PeerInfo( self.config["full_node_peer"]["host"], self.config["full_node_peer"]["port"], ) peers = [c.get_peer_info() for c in self.server.get_full_node_connections()] # If full_node_peer is already an address, use it, otherwise # resolve it here. if full_node_peer.is_valid(): full_node_resolved = full_node_peer else: full_node_resolved = PeerInfo( get_host_addr(full_node_peer.host, self.base_config.get("prefer_ipv6")), full_node_peer.port ) if full_node_peer in peers or full_node_resolved in peers: self.log.info(f"Will not attempt to connect to other nodes, already connected to {full_node_peer}") for connection in self.server.get_full_node_connections(): if ( connection.get_peer_info() != full_node_peer and connection.get_peer_info() != full_node_resolved ): self.log.info(f"Closing unnecessary connection to {connection.get_peer_logging()}.") asyncio.create_task(connection.close()) return True return False async def complete_blocks(self, header_blocks: List[HeaderBlock], peer: WSChivesConnection): if self.wallet_state_manager is None: return None header_block_records: List[HeaderBlockRecord] = [] assert self.server trusted = self.server.is_trusted_peer(peer, self.config["trusted_peers"]) async with self.wallet_state_manager.blockchain.lock: for block in header_blocks: if block.is_transaction_block: # Find additions and removals (additions, removals,) = await self.wallet_state_manager.get_filter_additions_removals( block, block.transactions_filter, None ) # Get Additions added_coins = await self.get_additions(peer, block, additions) if added_coins is None: raise ValueError("Failed to fetch additions") # Get removals removed_coins = await self.get_removals(peer, block, added_coins, removals) if removed_coins is None: raise ValueError("Failed to fetch removals") # If there is a launcher created, or we have a singleton spent, fetches the required solutions additional_coin_spends: List[CoinSpend] = await self.get_additional_coin_spends( peer, block, added_coins, removed_coins ) hbr = HeaderBlockRecord(block, added_coins, removed_coins) else: hbr = HeaderBlockRecord(block, [], []) header_block_records.append(hbr) additional_coin_spends = [] (result, error, fork_h,) = await self.wallet_state_manager.blockchain.receive_block( hbr, trusted=trusted, additional_coin_spends=additional_coin_spends ) if result == ReceiveBlockResult.NEW_PEAK: if not self.wallet_state_manager.sync_mode: self.wallet_state_manager.blockchain.clean_block_records() self.wallet_state_manager.state_changed("new_block") self.wallet_state_manager.state_changed("sync_changed") await self.wallet_state_manager.new_peak() elif result == ReceiveBlockResult.INVALID_BLOCK: self.log.info(f"Invalid block from peer: {peer.get_peer_logging()} {error}") await peer.close() return else: self.log.debug(f"Result: {result}") async def new_peak_wallet(self, peak: wallet_protocol.NewPeakWallet, peer: WSChivesConnection): if self.wallet_state_manager is None: return if self.wallet_state_manager.blockchain.contains_block(peak.header_hash): self.log.debug(f"known peak {peak.header_hash}") return if self.wallet_state_manager.sync_mode: self.last_new_peak_messages.put(peer, peak) return async with self.new_peak_lock: curr_peak = self.wallet_state_manager.blockchain.get_peak() if curr_peak is not None and curr_peak.weight >= peak.weight: return request = wallet_protocol.RequestBlockHeader(peak.height) response: Optional[RespondBlockHeader] = await peer.request_block_header(request) if response is None or not isinstance(response, RespondBlockHeader) or response.header_block is None: self.log.warning(f"bad peak response from peer {response}") return header_block = response.header_block curr_peak_height = 0 if curr_peak is None else curr_peak.height if (curr_peak_height == 0 and peak.height < self.constants.WEIGHT_PROOF_RECENT_BLOCKS) or ( curr_peak_height > peak.height - 200 ): if peak.height <= curr_peak_height + self.config["short_sync_blocks_behind_threshold"]: await self.wallet_short_sync_backtrack(header_block, peer) else: await self.batch_sync_to_peak(curr_peak_height, peak) elif peak.height >= self.constants.WEIGHT_PROOF_RECENT_BLOCKS: # Request weight proof # Sync if PoW validates weight_request = RequestProofOfWeight(peak.height, peak.header_hash) weight_proof_response: RespondProofOfWeight = await peer.request_proof_of_weight( weight_request, timeout=360 ) if weight_proof_response is None: return weight_proof = weight_proof_response.wp if self.wallet_state_manager is None: return if self.server is not None and self.server.is_trusted_peer(peer, self.config["trusted_peers"]): valid, fork_point = self.wallet_state_manager.weight_proof_handler.get_fork_point_no_validations( weight_proof ) else: valid, fork_point, _ = await self.wallet_state_manager.weight_proof_handler.validate_weight_proof( weight_proof ) if not valid: self.log.error( f"invalid weight proof, num of epochs {len(weight_proof.sub_epochs)}" f" recent blocks num ,{len(weight_proof.recent_chain_data)}" ) self.log.debug(f"{weight_proof}") return self.log.info(f"Validated, fork point is {fork_point}") self.wallet_state_manager.sync_store.add_potential_fork_point( header_block.header_hash, uint32(fork_point) ) self.wallet_state_manager.sync_store.add_potential_peak(header_block) self.start_sync() async def wallet_short_sync_backtrack(self, header_block, peer): top = header_block blocks = [top] # Fetch blocks backwards until we hit the one that we have, # then complete them with additions / removals going forward while not self.wallet_state_manager.blockchain.contains_block(top.prev_header_hash) and top.height > 0: request_prev = wallet_protocol.RequestBlockHeader(top.height - 1) response_prev: Optional[RespondBlockHeader] = await peer.request_block_header(request_prev) if response_prev is None or not isinstance(response_prev, RespondBlockHeader): raise RuntimeError("bad block header response from peer while syncing") prev_head = response_prev.header_block blocks.append(prev_head) top = prev_head blocks.reverse() await self.complete_blocks(blocks, peer) await self.wallet_state_manager.create_more_puzzle_hashes() async def batch_sync_to_peak(self, fork_height, peak): advanced_peak = False batch_size = self.constants.MAX_BLOCK_COUNT_PER_REQUESTS for i in range(max(0, fork_height - 1), peak.height, batch_size): start_height = i end_height = min(peak.height, start_height + batch_size) peers = self.server.get_full_node_connections() added = False for peer in peers: try: added, advanced_peak = await self.fetch_blocks_and_validate( peer, uint32(start_height), uint32(end_height), None if advanced_peak else fork_height ) if added: break except Exception as e: await peer.close() exc = traceback.format_exc() self.log.error(f"Error while trying to fetch from peer:{e} {exc}") if not added: raise RuntimeError(f"Was not able to add blocks {start_height}-{end_height}") curr_peak = self.wallet_state_manager.blockchain.get_peak() assert peak is not None self.wallet_state_manager.blockchain.clean_block_record( min(end_height, curr_peak.height) - self.constants.BLOCKS_CACHE_SIZE ) def start_sync(self) -> None: self.log.info("self.sync_event.set()") self.sync_event.set() async def check_new_peak(self) -> None: if self.wallet_state_manager is None: return None current_peak: Optional[BlockRecord] = self.wallet_state_manager.blockchain.get_peak() if current_peak is None: return None potential_peaks: List[ Tuple[bytes32, HeaderBlock] ] = self.wallet_state_manager.sync_store.get_potential_peaks_tuples() for _, block in potential_peaks: if current_peak.weight < block.weight: await asyncio.sleep(5) self.start_sync() return None async def sync_job(self) -> None: while True: self.log.info("Loop start in sync job") if self._shut_down is True: break asyncio.create_task(self.check_new_peak()) await self.sync_event.wait() self.last_new_peak_messages = LRUCache(5) self.sync_event.clear() if self._shut_down is True: break try: assert self.wallet_state_manager is not None self.wallet_state_manager.set_sync_mode(True) await self._sync() except Exception as e: tb = traceback.format_exc() self.log.error(f"Loop exception in sync {e}. {tb}") finally: if self.wallet_state_manager is not None: self.wallet_state_manager.set_sync_mode(False) for peer, peak in self.last_new_peak_messages.cache.items(): asyncio.create_task(self.new_peak_wallet(peak, peer)) self.log.info("Loop end in sync job") async def _sync(self) -> None: """ Wallet has fallen far behind (or is starting up for the first time), and must be synced up to the LCA of the blockchain. """ if self.wallet_state_manager is None or self.backup_initialized is False or self.server is None: return None highest_weight: uint128 = uint128(0) peak_height: uint32 = uint32(0) peak: Optional[HeaderBlock] = None potential_peaks: List[ Tuple[bytes32, HeaderBlock] ] = self.wallet_state_manager.sync_store.get_potential_peaks_tuples() self.log.info(f"Have collected {len(potential_peaks)} potential peaks") for header_hash, potential_peak_block in potential_peaks: if potential_peak_block.weight > highest_weight: highest_weight = potential_peak_block.weight peak_height = potential_peak_block.height peak = potential_peak_block if peak_height is None or peak_height == 0: return None if self.wallet_state_manager.peak is not None and highest_weight <= self.wallet_state_manager.peak.weight: self.log.info("Not performing sync, already caught up.") return None peers: List[WSChivesConnection] = self.server.get_full_node_connections() if len(peers) == 0: self.log.info("No peers to sync to") return None async with self.wallet_state_manager.blockchain.lock: fork_height = None if peak is not None: fork_height = self.wallet_state_manager.sync_store.get_potential_fork_point(peak.header_hash) assert fork_height is not None # This is the fork point in SES in the case where no fork was detected peers = self.server.get_full_node_connections() fork_height = await check_fork_next_block( self.wallet_state_manager.blockchain, fork_height, peers, wallet_next_block_check ) if fork_height is None: fork_height = uint32(0) await self.wallet_state_manager.blockchain.warmup(fork_height) await self.batch_sync_to_peak(fork_height, peak) async def fetch_blocks_and_validate( self, peer: WSChivesConnection, height_start: uint32, height_end: uint32, fork_point_with_peak: Optional[uint32], ) -> Tuple[bool, bool]: """ Returns whether the blocks validated, and whether the peak was advanced """ if self.wallet_state_manager is None: return False, False self.log.info(f"Requesting blocks {height_start}-{height_end}") request = RequestHeaderBlocks(uint32(height_start), uint32(height_end)) res: Optional[RespondHeaderBlocks] = await peer.request_header_blocks(request) if res is None or not isinstance(res, RespondHeaderBlocks): raise ValueError("Peer returned no response") header_blocks: List[HeaderBlock] = res.header_blocks advanced_peak = False if header_blocks is None: raise ValueError(f"No response from peer {peer}") assert self.server trusted = self.server.is_trusted_peer(peer, self.config["trusted_peers"]) pre_validation_results: Optional[List[PreValidationResult]] = None if not trusted: pre_validation_results = await self.wallet_state_manager.blockchain.pre_validate_blocks_multiprocessing( header_blocks ) if pre_validation_results is None: return False, advanced_peak assert len(header_blocks) == len(pre_validation_results) for i in range(len(header_blocks)): header_block = header_blocks[i] if not trusted and pre_validation_results is not None and pre_validation_results[i].error is not None: raise ValidationError(Err(pre_validation_results[i].error)) fork_point_with_old_peak = None if advanced_peak else fork_point_with_peak if header_block.is_transaction_block: # Find additions and removals (additions, removals,) = await self.wallet_state_manager.get_filter_additions_removals( header_block, header_block.transactions_filter, fork_point_with_old_peak ) # Get Additions added_coins = await self.get_additions(peer, header_block, additions) if added_coins is None: raise ValueError("Failed to fetch additions") # Get removals removed_coins = await self.get_removals(peer, header_block, added_coins, removals) if removed_coins is None: raise ValueError("Failed to fetch removals") # If there is a launcher created, or we have a singleton spent, fetches the required solutions additional_coin_spends: List[CoinSpend] = await self.get_additional_coin_spends( peer, header_block, added_coins, removed_coins ) header_block_record = HeaderBlockRecord(header_block, added_coins, removed_coins) else: header_block_record = HeaderBlockRecord(header_block, [], []) additional_coin_spends = [] start_t = time.time() if trusted: (result, error, fork_h,) = await self.wallet_state_manager.blockchain.receive_block( header_block_record, None, trusted, fork_point_with_old_peak, additional_coin_spends=additional_coin_spends, ) else: assert pre_validation_results is not None (result, error, fork_h,) = await self.wallet_state_manager.blockchain.receive_block( header_block_record, pre_validation_results[i], trusted, fork_point_with_old_peak, additional_coin_spends=additional_coin_spends, ) self.log.debug( f"Time taken to validate {header_block.height} with fork " f"{fork_point_with_old_peak}: {time.time() - start_t}" ) if result == ReceiveBlockResult.NEW_PEAK: advanced_peak = True self.wallet_state_manager.state_changed("new_block") elif result == ReceiveBlockResult.INVALID_BLOCK: raise ValueError("Value error peer sent us invalid block") if advanced_peak: await self.wallet_state_manager.create_more_puzzle_hashes() return True, advanced_peak def validate_additions( self, coins: List[Tuple[bytes32, List[Coin]]], proofs: Optional[List[Tuple[bytes32, bytes, Optional[bytes]]]], root, ): if proofs is None: # Verify root additions_merkle_set = MerkleSet() # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle_hash, coins_l in coins: additions_merkle_set.add_already_hashed(puzzle_hash) additions_merkle_set.add_already_hashed(hash_coin_list(coins_l)) additions_root = additions_merkle_set.get_root() if root != additions_root: return False else: for i in range(len(coins)): assert coins[i][0] == proofs[i][0] coin_list_1: List[Coin] = coins[i][1] puzzle_hash_proof: bytes32 = proofs[i][1] coin_list_proof: Optional[bytes32] = proofs[i][2] if len(coin_list_1) == 0: # Verify exclusion proof for puzzle hash not_included = confirm_not_included_already_hashed( root, coins[i][0], puzzle_hash_proof, ) if not_included is False: return False else: try: # Verify inclusion proof for coin list included = confirm_included_already_hashed( root, hash_coin_list(coin_list_1), coin_list_proof, ) if included is False: return False except AssertionError: return False try: # Verify inclusion proof for puzzle hash included = confirm_included_already_hashed( root, coins[i][0], puzzle_hash_proof, ) if included is False: return False except AssertionError: return False return True def validate_removals(self, coins, proofs, root): if proofs is None: # If there are no proofs, it means all removals were returned in the response. # we must find the ones relevant to our wallets. # Verify removals root removals_merkle_set = MerkleSet() for name_coin in coins: # TODO review all verification name, coin = name_coin if coin is not None: removals_merkle_set.add_already_hashed(coin.name()) removals_root = removals_merkle_set.get_root() if root != removals_root: return False else: # This means the full node has responded only with the relevant removals # for our wallet. Each merkle proof must be verified. if len(coins) != len(proofs): return False for i in range(len(coins)): # Coins are in the same order as proofs if coins[i][0] != proofs[i][0]: return False coin = coins[i][1] if coin is None: # Verifies merkle proof of exclusion not_included = confirm_not_included_already_hashed( root, coins[i][0], proofs[i][1], ) if not_included is False: return False else: # Verifies merkle proof of inclusion of coin name if coins[i][0] != coin.name(): return False included = confirm_included_already_hashed( root, coin.name(), proofs[i][1], ) if included is False: return False return True async def fetch_puzzle_solution(self, peer, height: uint32, coin: Coin) -> CoinSpend: solution_response = await peer.request_puzzle_solution( wallet_protocol.RequestPuzzleSolution(coin.name(), height) ) if solution_response is None or not isinstance(solution_response, wallet_protocol.RespondPuzzleSolution): raise ValueError(f"Was not able to obtain solution {solution_response}") return CoinSpend(coin, solution_response.response.puzzle, solution_response.response.solution) async def get_additional_coin_spends( self, peer, block, added_coins: List[Coin], removed_coins: List[Coin] ) -> List[CoinSpend]: assert self.wallet_state_manager is not None additional_coin_spends: List[CoinSpend] = [] if len(removed_coins) > 0: removed_coin_ids = set([coin.name() for coin in removed_coins]) all_added_coins = await self.get_additions(peer, block, [], get_all_additions=True) assert all_added_coins is not None if all_added_coins is not None: all_added_coin_parents = [c.parent_coin_info for c in all_added_coins] for coin in all_added_coins: # This searches specifically for a launcher being created, and adds the solution of the launcher if ( coin.puzzle_hash == SINGLETON_LAUNCHER_HASH # Check that it's a launcher and coin.name() in all_added_coin_parents # Check that it's ephemermal and coin.parent_coin_info in removed_coin_ids # Check that an interesting coin created it ): cs: CoinSpend = await self.fetch_puzzle_solution(peer, block.height, coin) additional_coin_spends.append(cs) # Apply this coin solution, which might add things to interested list await self.wallet_state_manager.get_next_interesting_coin_ids(cs, False) all_removed_coins: Optional[List[Coin]] = await self.get_removals( peer, block, added_coins, removed_coins, request_all_removals=True ) assert all_removed_coins is not None all_removed_coins_dict: Dict[bytes32, Coin] = {coin.name(): coin for coin in all_removed_coins} keep_searching = True while keep_searching: # This keeps fetching solutions for coins we are interested list, in this block, until # there are no more interested things to fetch keep_searching = False interested_ids: List[ bytes32 ] = await self.wallet_state_manager.interested_store.get_interested_coin_ids() for coin_id in interested_ids: if coin_id in all_removed_coins_dict: coin = all_removed_coins_dict[coin_id] cs = await self.fetch_puzzle_solution(peer, block.height, coin) # Apply this coin solution, which might add things to interested list await self.wallet_state_manager.get_next_interesting_coin_ids(cs, False) additional_coin_spends.append(cs) keep_searching = True all_removed_coins_dict.pop(coin_id) break return additional_coin_spends async def get_additions( self, peer: WSChivesConnection, block_i, additions: Optional[List[bytes32]], get_all_additions: bool = False ) -> Optional[List[Coin]]: if (additions is not None and len(additions) > 0) or get_all_additions: if get_all_additions: additions = None additions_request = RequestAdditions(block_i.height, block_i.header_hash, additions) additions_res: Optional[Union[RespondAdditions, RejectAdditionsRequest]] = await peer.request_additions( additions_request ) if additions_res is None: await peer.close() return None elif isinstance(additions_res, RespondAdditions): validated = self.validate_additions( additions_res.coins, additions_res.proofs, block_i.foliage_transaction_block.additions_root, ) if not validated: await peer.close() return None added_coins = [] for ph_coins in additions_res.coins: ph, coins = ph_coins added_coins.extend(coins) return added_coins elif isinstance(additions_res, RejectRemovalsRequest): await peer.close() return None return None else: return [] # No added coins async def get_removals( self, peer: WSChivesConnection, block_i, additions, removals, request_all_removals=False ) -> Optional[List[Coin]]: assert self.wallet_state_manager is not None # Check if we need all removals for coin in additions: puzzle_store = self.wallet_state_manager.puzzle_store record_info: Optional[DerivationRecord] = await puzzle_store.get_derivation_record_for_puzzle_hash( coin.puzzle_hash ) if record_info is not None and record_info.wallet_type == WalletType.COLOURED_COIN: # TODO why ? request_all_removals = True break if record_info is not None and record_info.wallet_type == WalletType.DISTRIBUTED_ID: request_all_removals = True break if len(removals) > 0 or request_all_removals: if request_all_removals: removals_request = wallet_protocol.RequestRemovals(block_i.height, block_i.header_hash, None) else: removals_request = wallet_protocol.RequestRemovals(block_i.height, block_i.header_hash, removals) removals_res: Optional[Union[RespondRemovals, RejectRemovalsRequest]] = await peer.request_removals( removals_request ) if removals_res is None: return None elif isinstance(removals_res, RespondRemovals): validated = self.validate_removals( removals_res.coins, removals_res.proofs, block_i.foliage_transaction_block.removals_root, ) if validated is False: await peer.close() return None removed_coins = [] for _, coins_l in removals_res.coins: if coins_l is not None: removed_coins.append(coins_l) return removed_coins elif isinstance(removals_res, RejectRemovalsRequest): return None else: return None else: return [] async def wallet_next_block_check( peer: WSChivesConnection, potential_peek: uint32, blockchain: BlockchainInterface ) -> bool: block_response = await peer.request_header_blocks( wallet_protocol.RequestHeaderBlocks(potential_peek, potential_peek) ) if block_response is not None and isinstance(block_response, wallet_protocol.RespondHeaderBlocks): our_peak = blockchain.get_peak() if our_peak is not None and block_response.header_blocks[0].prev_header_hash == our_peak.header_hash: return True return False
45.550766
118
0.617075
4a26a56be93f97b4a95b6eaa6dcde724f588621e
2,710
py
Python
setup.py
loot-king/cmake-python-distributions
edc3205a6aa354db1bde47dfe20478353d11c045
[ "Apache-2.0" ]
null
null
null
setup.py
loot-king/cmake-python-distributions
edc3205a6aa354db1bde47dfe20478353d11c045
[ "Apache-2.0" ]
null
null
null
setup.py
loot-king/cmake-python-distributions
edc3205a6aa354db1bde47dfe20478353d11c045
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import sys from distutils.text_file import TextFile from skbuild import setup # Add current folder to path # This is required to import versioneer in an isolated pip build sys.path.append(os.path.dirname(os.path.abspath(__file__))) import versioneer # noqa: E402 with open('README.rst', 'r') as fp: readme = fp.read() with open('HISTORY.rst', 'r') as fp: history = fp.read().replace('.. :changelog:', '') def parse_requirements(filename): with open(filename, 'r') as file: return TextFile(filename, file).readlines() requirements = [] test_requirements = parse_requirements('requirements-test.txt') # Require pytest-runner only when running tests pytest_runner = (['pytest-runner>=2.0,<3dev'] if any(arg in sys.argv for arg in ('pytest', 'test')) else []) setup_requires = pytest_runner setup( name='cmake', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), author='Jean-Christophe Fillion-Robin', author_email='[email protected]', package_dir={'': 'src'}, packages=['cmake'], cmake_install_dir='src/cmake/data', entry_points={ 'console_scripts': [ 'cmake=cmake:cmake', 'cpack=cmake:cpack', 'ctest=cmake:ctest' ] }, url='https://cmake.org/', download_url='https://cmake.org/download', project_urls={ "Documentation": "https://cmake-python-distributions.readthedocs.io/", "Source Code": "https://github.com/scikit-build/cmake-python-distributions", "Mailing list": "https://groups.google.com/forum/#!forum/scikit-build", "Bug Tracker": "https://github.com/scikit-build/cmake-python-distributions/issues", }, description='CMake is an open-source, cross-platform family of ' 'tools designed to build, test and package software', long_description=readme + '\n\n' + history, long_description_content_type='text/x-rst', classifiers=[ 'License :: OSI Approved :: Apache Software License', 'License :: OSI Approved :: BSD License', 'Programming Language :: C', 'Programming Language :: C++', 'Programming Language :: Fortran', 'Programming Language :: Python', 'Operating System :: OS Independent', 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools' ], license='Apache 2.0', keywords='CMake build c++ fortran cross-platform cross-compilation', install_requires=requirements, tests_require=test_requirements, setup_requires=setup_requires )
28.526316
91
0.656089
4a26a5c38ceb94810fd34500c5c6cc236cae7976
8,327
py
Python
meercat/utils.py
rloganiv/meercat-aux
4d9006095e9fb91034f8dae0baaa81a1567f6606
[ "Apache-2.0" ]
1
2021-11-24T03:32:00.000Z
2021-11-24T03:32:00.000Z
meercat/utils.py
rloganiv/meercat-aux
4d9006095e9fb91034f8dae0baaa81a1567f6606
[ "Apache-2.0" ]
1
2020-12-09T00:15:33.000Z
2021-05-27T00:52:03.000Z
meercat/utils.py
rloganiv/streaming-cdc
4d9006095e9fb91034f8dae0baaa81a1567f6606
[ "Apache-2.0" ]
null
null
null
"""Utilities.""" import csv import collections import itertools import json import logging import os import pickle import random import torch from tqdm import tqdm logger = logging.getLogger(__name__) ENTITY_VOCAB_FILENAME = 'entities.txt' ENTITY_MENTION_START = '[E_START]' ENTITY_MENTION_END = '[E_END]' def add_mention_seps( tokenizer, ): """Adds entity mention seperator tokens if needed.""" # start_id = tokenizer.convert_tokens_to_ids(ENTITY_MENTION_START) # if start_id == tokenizer.unk_token_id: # tokenizer.add_tokens(ENTITY_MENTION_START) # end_id = tokenizer.convert_tokens_to_ids(ENTITY_MENTION_END) # if end_id == tokenizer.unk_token_id: # tokenizer.add_tokens(ENTITY_MENTION_END) tokenizer.add_special_tokens({ 'additional_special_tokens': [ENTITY_MENTION_START, ENTITY_MENTION_END], }) class EntityTokenizer: def __init__(self, entities, counts): self.idx_to_entity = entities self.entity_to_idx = {x: i for i, x in enumerate(entities)} self.counts = counts def __len__(self): return len(self.idx_to_entity) def __call__(self, entity_id): if entity_id not in self.entity_to_idx: logger.warning('Adding entity to vocabulary: %s.', entity_id) self.entity_to_idx[entity_id] = len(self.entity_to_idx) self.idx_to_entity.append(entity_id) return self.entity_to_idx[entity_id] def save_pretrained( self, save_directory, ): assert os.path.isdir(save_directory), 'save_directory is not a directory.' output_path = os.path.join(save_directory, ENTITY_VOCAB_FILENAME) with open(output_path, 'w') as g: writer = csv.writer(g) for entity, count in zip(self.idx_to_entity, self.counts): writer.writerow((entity, count)) @classmethod def from_pretrained(cls, path): if os.path.isdir(path): path = os.path.join(path, ENTITY_VOCAB_FILENAME) entities = [] counts = [] with open(path, 'r') as f: reader = csv.reader(f) for entity, count in reader: entities.append(entity) counts.append(int(count)) return cls(entities, counts) def _encode_mention(data, tokenizer): mention_tokens = tokenizer.tokenize(data['mention']) mention_tokens = [ENTITY_MENTION_START, *mention_tokens, ENTITY_MENTION_END] left_tokens = tokenizer.tokenize(data['left_context']) right_tokens = tokenizer.tokenize(data['right_context']) # Get a roughly centered window around the mention. context_size = tokenizer.model_max_length - len(mention_tokens) - 2 left_size = right_size = context_size // 2 if len(left_tokens) < left_size: right_size += left_size - len(left_tokens) left_size = len(left_tokens) if len(right_tokens) < right_size: left_size += right_size - len(right_tokens) right_size = len(right_tokens) left_tokens = left_tokens[-left_size:] right_tokens = right_tokens[:right_size] tokens = left_tokens + mention_tokens + right_tokens mention_encoding = tokenizer.encode_plus( text=tokens, add_special_tokens=True, padding='max_length', truncation=True, return_tensors='pt', ) mention_encoding = {k: v.squeeze(0) for k, v in mention_encoding.items()} return mention_encoding class ELDataset(torch.utils.data.Dataset): def __init__(self, mention_encodings, labels=None): if labels is not None: assert len(mention_encodings) == len(labels) self._mention_encodings = mention_encodings self._labels = labels def __len__(self): return len(self._mention_encodings) def __getitem__(self, idx): out = self._mention_encodings[idx] if self._labels is not None: out['labels'] = self._labels[idx] return out @classmethod def from_jsonl( cls, fname, tokenizer, entity_tokenizer, ): mention_encodings = [] labels = [] with open(fname, 'r') as f: for line in tqdm(f): data = json.loads(line) mention_encodings.append(_encode_mention(data, tokenizer)) labels.append(entity_tokenizer(data['entity_id'])) return cls(mention_encodings, labels) @classmethod def load(cls, fname): with open(fname, 'rb') as f: state_dict = pickle.load(f) return cls(**state_dict) def save(self, fname): state_dict = { 'mention_encodings': self._mention_encodings, 'labels': self._labels, } with open(fname, 'wb') as f: pickle.dump(state_dict, f) def streaming_shuffle(iterable, chunk_size=32768): # TODO: Test that this works with multiprocessing chunks = [iter(iterable)] * chunk_size for chunk in itertools.zip_longest(*chunks, fillvalue=None): chunk = [x for x in chunk if x is not None] random.shuffle(chunk) for element in chunk: yield element class ELIterableDataset(torch.utils.data.IterableDataset): def __init__( self, fname, tokenizer, entity_tokenizer, rank, world_size, shuffle=False, ): super().__init__() self._fname = fname self._tokenizer = tokenizer self._entity_tokenizer = entity_tokenizer self._rank = rank self._world_size = world_size self._shuffle = shuffle def __iter__(self): def generator(): worker_info = torch.utils.data.get_worker_info() with open(self._fname, 'r') as f: iter_ = streaming_shuffle(f) if self._shuffle else f for i, line in enumerate(iter_): # Ensures data isn't repeated across processes if self._world_size is not None: if (i % self._world_size) != self._rank: continue data = json.loads(line) model_inputs = _encode_mention(data, self._tokenizer) model_inputs['labels'] = self._entity_tokenizer(data['entity_id']) yield model_inputs return generator() class APIterableDataset(torch.utils.data.IterableDataset): def __init__( self, entity_ids, buckets, tokenizer, rank, world_size, ): super().__init__() self._entity_ids = entity_ids self._buckets = buckets self._tokenizer = tokenizer self._rank = rank self._world_size = world_size @classmethod def load(cls, fname, tokenizer, rank, world_size): entity_ids = collections.Counter() buckets = collections.defaultdict(list) with open(fname, 'r') as f: for line in f: data = json.loads(line) entity_ids[data['entity_id']] += 1 buckets[data['entity_id']].append(data) return cls(entity_ids, buckets, tokenizer, rank, world_size) def __iter__(self): # Entities w/ more than 1 mention multi_mentions = [x for x, y in self._entity_ids.items() if y > 1] choices = list(self._entity_ids.keys()) for i, pos_entity_id in enumerate(multi_mentions): # Ensures data isn't repeated across processes if self._world_size is not None: if (i % self._world_size) != self._rank: continue # Select two mentions from positive entity bucket pos_1, pos_2 = random.sample(self._buckets[pos_entity_id], 2) # Select a negative entity id at random neg_entity_id = random.choice(choices) while neg_entity_id == pos_entity_id: neg_entity_id = random.choice(choices) neg = random.choice(self._buckets[neg_entity_id]) pos_1 = _encode_mention(pos_1, self._tokenizer) pos_2 = _encode_mention(pos_2, self._tokenizer) neg = _encode_mention(neg, self._tokenizer) yield pos_1, pos_2, neg
33.175299
86
0.620151
4a26a62af11cef4606bd08f0aa0c00ea83d8c152
3,173
py
Python
ucsmsdk/mometa/firmware/FirmwareSystemFsmTask.py
Kego/ucsmsdk
244f283a5c295cf746110bb96686d079b19927ce
[ "Apache-2.0" ]
78
2015-11-30T14:10:05.000Z
2022-02-13T00:29:08.000Z
ucsmsdk/mometa/firmware/FirmwareSystemFsmTask.py
Kego/ucsmsdk
244f283a5c295cf746110bb96686d079b19927ce
[ "Apache-2.0" ]
113
2015-11-20T09:42:46.000Z
2022-03-16T16:53:29.000Z
ucsmsdk/mometa/firmware/FirmwareSystemFsmTask.py
Kego/ucsmsdk
244f283a5c295cf746110bb96686d079b19927ce
[ "Apache-2.0" ]
86
2015-12-12T08:22:18.000Z
2022-01-23T03:56:34.000Z
"""This module contains the general information for FirmwareSystemFsmTask ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class FirmwareSystemFsmTaskConsts: COMPLETION_CANCELLED = "cancelled" COMPLETION_COMPLETED = "completed" COMPLETION_PROCESSING = "processing" COMPLETION_SCHEDULED = "scheduled" ITEM_APPLY_CATALOG_PACK = "ApplyCatalogPack" ITEM_DEPLOY = "Deploy" ITEM_NOP = "nop" class FirmwareSystemFsmTask(ManagedObject): """This is FirmwareSystemFsmTask class.""" consts = FirmwareSystemFsmTaskConsts() naming_props = set(['item']) mo_meta = MoMeta("FirmwareSystemFsmTask", "firmwareSystemFsmTask", "task-[item]", VersionMeta.Version211a, "OutputOnly", 0xf, [], [""], ['firmwareSystem'], [], [None]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version211a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "completion": MoPropertyMeta("completion", "completion", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["cancelled", "completed", "processing", "scheduled"], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, 0x2, 0, 256, None, [], []), "flags": MoPropertyMeta("flags", "flags", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, None, None, r"""(defaultValue){0,1}""", [], []), "item": MoPropertyMeta("item", "item", "string", VersionMeta.Version211a, MoPropertyMeta.NAMING, None, None, None, None, ["ApplyCatalogPack", "Deploy", "nop"], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "seq_id": MoPropertyMeta("seq_id", "seqId", "uint", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version211a, MoPropertyMeta.READ_WRITE, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "completion": "completion", "dn": "dn", "flags": "flags", "item": "item", "rn": "rn", "sacl": "sacl", "seqId": "seq_id", "status": "status", } def __init__(self, parent_mo_or_dn, item, **kwargs): self._dirty_mask = 0 self.item = item self.child_action = None self.completion = None self.flags = None self.sacl = None self.seq_id = None self.status = None ManagedObject.__init__(self, "FirmwareSystemFsmTask", parent_mo_or_dn, **kwargs)
52.016393
248
0.656161
4a26a6b527c288d82161e6050f0933670ecb88f7
2,627
py
Python
docs/conf.py
darrowco/readthedocs.org
fa7fc5a24306f1f6a27c7393f381c594ab29b357
[ "MIT" ]
1
2021-08-17T00:50:48.000Z
2021-08-17T00:50:48.000Z
docs/conf.py
darrowco/readthedocs.org
fa7fc5a24306f1f6a27c7393f381c594ab29b357
[ "MIT" ]
null
null
null
docs/conf.py
darrowco/readthedocs.org
fa7fc5a24306f1f6a27c7393f381c594ab29b357
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals import os import sys from configparser import RawConfigParser import sphinx_rtd_theme sys.path.insert(0, os.path.abspath('..')) sys.path.append(os.path.dirname(__file__)) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "readthedocs.settings.dev") from django.conf import settings from django.utils import timezone import django django.setup() def get_version(): """Return package version from setup.cfg.""" config = RawConfigParser() config.read(os.path.join('..', 'setup.cfg')) return config.get('metadata', 'version') sys.path.append(os.path.abspath('_ext')) extensions = [ 'sphinx.ext.autosectionlabel', 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinxcontrib.httpdomain', 'djangodocs', 'doc_extensions', 'sphinx_tabs.tabs', 'sphinx-prompt', 'recommonmark', 'notfound.extension', 'sphinx_search.extension', ] templates_path = ['_templates'] source_suffix = ['.rst', '.md'] master_doc = 'index' project = u'Read the Docs' copyright = '2010-{}, Read the Docs, Inc & contributors'.format( timezone.now().year ) version = get_version() release = version exclude_patterns = ['_build'] default_role = 'obj' intersphinx_mapping = { 'python': ('https://python.readthedocs.io/en/latest/', None), 'django': ('https://django.readthedocs.io/en/1.11.x/', None), 'sphinx': ('https://sphinx.readthedocs.io/en/latest/', None), } htmlhelp_basename = 'ReadTheDocsdoc' latex_documents = [ ('index', 'ReadTheDocs.tex', u'Read the Docs Documentation', u'Eric Holscher, Charlie Leifer, Bobby Grace', 'manual'), ] man_pages = [ ('index', 'read-the-docs', u'Read the Docs Documentation', [u'Eric Holscher, Charlie Leifer, Bobby Grace'], 1) ] exclude_patterns = [ # 'api' # needed for ``make gettext`` to not die. ] language = 'en' locale_dirs = [ 'locale/', ] gettext_compact = False html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_logo = 'img/logo.svg' html_theme_options = { 'logo_only': True, 'display_version': False, } # Activate autosectionlabel plugin autosectionlabel_prefix_document = True # sphinx-notfound-page # https://github.com/readthedocs/sphinx-notfound-page notfound_context = { 'title': 'Page Not Found', 'body': ''' <h1>Page Not Found</h1> <p>Sorry, we couldn't find that page.</p> <p>Try using the search box or go to the homepage.</p> ''', } def setup(app): app.add_stylesheet('css/sphinx_prompt_css.css')
23.881818
75
0.69547
4a26a6b58dca85b3ad6b9015ab0948c9f4ef318d
1,804
py
Python
aliyun-python-sdk-resourcemanager/aliyunsdkresourcemanager/request/v20200331/GetPolicyRequest.py
jia-jerry/aliyun-openapi-python-sdk
e90f3683a250cfec5b681b5f1d73a68f0dc9970d
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-resourcemanager/aliyunsdkresourcemanager/request/v20200331/GetPolicyRequest.py
jia-jerry/aliyun-openapi-python-sdk
e90f3683a250cfec5b681b5f1d73a68f0dc9970d
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-resourcemanager/aliyunsdkresourcemanager/request/v20200331/GetPolicyRequest.py
jia-jerry/aliyun-openapi-python-sdk
e90f3683a250cfec5b681b5f1d73a68f0dc9970d
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkresourcemanager.endpoint import endpoint_data class GetPolicyRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'ResourceManager', '2020-03-31', 'GetPolicy','resourcemanager') self.set_protocol_type('https') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_PolicyType(self): return self.get_query_params().get('PolicyType') def set_PolicyType(self,PolicyType): self.add_query_param('PolicyType',PolicyType) def get_Language(self): return self.get_query_params().get('Language') def set_Language(self,Language): self.add_query_param('Language',Language) def get_PolicyName(self): return self.get_query_params().get('PolicyName') def set_PolicyName(self,PolicyName): self.add_query_param('PolicyName',PolicyName)
36.08
92
0.768293
4a26a75e95f521afc2f7282a4d793c55ee618818
14,191
py
Python
fairseq_master/fairseq/models/transformer_lm.py
Vicky-Wil/NLE_CLR_NMT
48758b6ee7de3f8546f1e54c6650cd0082c7dee7
[ "MIT" ]
41
2020-07-06T03:26:59.000Z
2022-01-12T07:34:23.000Z
fairseq_master/fairseq/models/transformer_lm.py
Vicky-Wil/NLE_CLR_NMT
48758b6ee7de3f8546f1e54c6650cd0082c7dee7
[ "MIT" ]
13
2019-08-15T18:32:54.000Z
2020-03-31T17:32:24.000Z
fairseq_master/fairseq/models/transformer_lm.py
Vicky-Wil/NLE_CLR_NMT
48758b6ee7de3f8546f1e54c6650cd0082c7dee7
[ "MIT" ]
11
2019-10-01T04:54:17.000Z
2021-04-07T14:27:48.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from fairseq import options, utils from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import ( Embedding, TransformerDecoder, ) from fairseq.modules import ( AdaptiveInput, CharacterTokenEmbedder, ) DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model('transformer_lm') class TransformerLanguageModel(FairseqLanguageModel): @classmethod def hub_models(cls): return { 'transformer_lm.gbw.adaptive_huge': 'https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2', 'transformer_lm.wiki103.adaptive': 'https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.tar.bz2', } def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', default=0.1, type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', default=0., type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension') parser.add_argument('--decoder-input-dim', type=int, metavar='N', help='decoder input dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-normalize-before', default=False, action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--no-decoder-final-norm', default=False, action='store_true', help='don\'t add an extra layernorm after the last decoder block') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion') parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--adaptive-softmax-factor', type=float, metavar='N', help='adaptive input factor') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--character-embeddings', default=False, action='store_true', help='if set, uses character embedding convolutions to produce token embeddings') parser.add_argument('--character-filters', type=str, metavar='LIST', default='[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]', help='size of character embeddings') parser.add_argument('--character-embedding-dim', default=4, type=int, metavar='N', help='size of character embeddings') parser.add_argument('--char-embedder-highway-layers', default=2, type=int, metavar='N', help='number of highway layers for character token embeddder') parser.add_argument('--adaptive-input', action='store_true', help='if set, uses adaptive input') parser.add_argument('--adaptive-input-factor', type=float, metavar='N', help='adaptive input factor') parser.add_argument('--adaptive-input-cutoff', metavar='EXPR', help='comma separated list of adaptive input cutoff points.') parser.add_argument('--tie-adaptive-weights', action='store_true', help='if set, ties the weights of adaptive softmax and adaptive input') parser.add_argument('--tie-adaptive-proj', action='store_true', help='if set, ties the projection weights of adaptive softmax and adaptive input') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_lm_architecture(args) if getattr(args, 'max_target_positions', None) is None: args.max_target_positions = getattr(args, 'tokens_per_sample', DEFAULT_MAX_TARGET_POSITIONS) if args.character_embeddings: embed_tokens = CharacterTokenEmbedder( task.source_dictionary, eval(args.character_filters), args.character_embedding_dim, args.decoder_embed_dim, args.char_embedder_highway_layers, ) elif args.adaptive_input: embed_tokens = AdaptiveInput( len(task.source_dictionary), task.source_dictionary.pad(), args.decoder_input_dim, args.adaptive_input_factor, args.decoder_embed_dim, options.eval_str_list(args.adaptive_input_cutoff, type=int), ) else: embed_tokens = Embedding(len(task.source_dictionary), args.decoder_input_dim, task.source_dictionary.pad()) if args.tie_adaptive_weights: assert args.adaptive_input assert args.adaptive_input_factor == args.adaptive_softmax_factor assert args.adaptive_softmax_cutoff == args.adaptive_input_cutoff, '{} != {}'.format( args.adaptive_softmax_cutoff, args.adaptive_input_cutoff) assert args.decoder_input_dim == args.decoder_output_dim decoder = TransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True, ) return TransformerLanguageModel(decoder) @register_model_architecture('transformer_lm', 'transformer_lm') def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, 'no_tie_adaptive_proj'): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, 'decoder_final_norm'): args.no_decoder_final_norm = not args.decoder_final_norm args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 2048) args.decoder_layers = getattr(args, 'decoder_layers', 6) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8) args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', None) args.adaptive_softmax_dropout = getattr(args, 'adaptive_softmax_dropout', 0) args.adaptive_softmax_factor = getattr(args, 'adaptive_softmax_factor', 4) args.decoder_learned_pos = getattr(args, 'decoder_learned_pos', False) args.activation_fn = getattr(args, 'activation_fn', 'relu') args.add_bos_token = getattr(args, 'add_bos_token', False) args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) args.character_embeddings = getattr(args, 'character_embeddings', False) args.decoder_output_dim = getattr(args, 'decoder_output_dim', args.decoder_embed_dim) args.decoder_input_dim = getattr(args, 'decoder_input_dim', args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, 'no_decoder_final_norm', False) args.adaptive_input = getattr(args, 'adaptive_input', False) args.adaptive_input_factor = getattr(args, 'adaptive_input_factor', 4) args.adaptive_input_cutoff = getattr(args, 'adaptive_input_cutoff', None) args.tie_adaptive_weights = getattr(args, 'tie_adaptive_weights', False) args.tie_adaptive_proj = getattr(args, 'tie_adaptive_proj', False) @register_model_architecture('transformer_lm', 'transformer_lm_big') def transformer_lm_big(args): args.decoder_layers = getattr(args, 'decoder_layers', 12) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) base_lm_architecture(args) @register_model_architecture('transformer_lm', 'transformer_lm_wiki103') @register_model_architecture('transformer_lm', 'transformer_lm_baevski_wiki103') def transformer_lm_baevski_wiki103(args): args.decoder_layers = getattr(args, 'decoder_layers', 16) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8) args.dropout = getattr(args, 'dropout', 0.3) args.adaptive_input = getattr(args, 'adaptive_input', True) args.tie_adaptive_weights = getattr(args, 'tie_adaptive_weights', True) args.adaptive_input_cutoff = getattr(args, 'adaptive_input_cutoff', '20000,60000') args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', '20000,60000') args.adaptive_softmax_dropout = getattr(args, 'adaptive_softmax_dropout', 0.2) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_dropout = getattr(args, 'activation_dropout', 0.1) args.no_decoder_final_norm = getattr(args, 'no_decoder_final_norm', True) args.tie_adaptive_proj = getattr(args, 'tie_adaptive_proj', True) transformer_lm_big(args) @register_model_architecture('transformer_lm', 'transformer_lm_gbw') @register_model_architecture('transformer_lm', 'transformer_lm_baevski_gbw') def transformer_lm_baevski_gbw(args): args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.dropout = getattr(args, 'dropout', 0.1) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.no_decoder_final_norm = getattr(args, 'no_decoder_final_norm', True) transformer_lm_big(args) @register_model_architecture('transformer_lm', 'transformer_lm_gpt') def transformer_lm_gpt(args): args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) args.decoder_layers = getattr(args, 'decoder_layers', 12) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 12) args.dropout = getattr(args, 'dropout', 0.1) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_fn = getattr(args, 'activation_fn', 'gelu') base_lm_architecture(args) @register_model_architecture('transformer_lm', 'transformer_lm_gpt2_small') def transformer_lm_gpt2_small(args): args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096) args.decoder_layers = getattr(args, 'decoder_layers', 24) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) args.dropout = getattr(args, 'dropout', 0.1) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_fn = getattr(args, 'activation_fn', 'gelu') base_lm_architecture(args) @register_model_architecture('transformer_lm', 'transformer_lm_gpt2_medium') def transformer_lm_gpt2_medium(args): args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1280) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 5120) args.decoder_layers = getattr(args, 'decoder_layers', 36) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 20) args.dropout = getattr(args, 'dropout', 0.1) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_fn = getattr(args, 'activation_fn', 'gelu') base_lm_architecture(args) @register_model_architecture('transformer_lm', 'transformer_lm_gpt2_big') def transformer_lm_gpt2_big(args): args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1600) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 6400) args.decoder_layers = getattr(args, 'decoder_layers', 48) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 25) args.dropout = getattr(args, 'dropout', 0.1) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_fn = getattr(args, 'activation_fn', 'gelu') base_lm_architecture(args)
53.753788
128
0.691776
4a26a764f91c9328e58e1679814a45499aa929c6
1,216
py
Python
venv/Lib/site-packages/gevent/resolver/blocking.py
asanka9/Quession-Discussion-App-Socket.Io-NLP
95a49a8afa572dc3908a0bade45e424c3751f191
[ "Apache-2.0" ]
13
2018-03-28T23:07:01.000Z
2022-03-12T06:01:21.000Z
venv/Lib/site-packages/gevent/resolver/blocking.py
asanka9/Quession-Discussion-App-Socket.Io-NLP
95a49a8afa572dc3908a0bade45e424c3751f191
[ "Apache-2.0" ]
11
2018-06-18T15:49:07.000Z
2021-11-25T01:45:33.000Z
venv/Lib/site-packages/gevent/resolver/blocking.py
asanka9/Quession-Discussion-App-Socket.Io-NLP
95a49a8afa572dc3908a0bade45e424c3751f191
[ "Apache-2.0" ]
5
2018-03-28T23:07:05.000Z
2021-12-09T19:02:00.000Z
# Copyright (c) 2018 gevent contributors. See LICENSE for details. import _socket __all__ = [ 'Resolver', ] class Resolver(object): """ A resolver that directly uses the system's resolver functions. .. caution:: This resolver is *not* cooperative. This resolver has the lowest overhead of any resolver and typically approaches the speed of the unmodified :mod:`socket` functions. However, it is not cooperative, so if name resolution blocks, the entire thread and all its greenlets will be blocked. This can be useful during debugging, or it may be a good choice if your operating system provides a good caching resolver (such as macOS's Directory Services) that is usually very fast and functionally non-blocking. .. versionchanged:: 1.3a2 This was previously undocumented and existed in :mod:`gevent.socket`. """ def __init__(self, hub=None): pass def close(self): pass for method in ( 'gethostbyname', 'gethostbyname_ex', 'getaddrinfo', 'gethostbyaddr', 'getnameinfo' ): locals()[method] = staticmethod(getattr(_socket, method))
26.434783
76
0.657072
4a26a7d2ef7bcc39fd71182b0cd8e2cca7a504d4
6,006
py
Python
find.py
matthewkos/DREAM-ALS-Stratification-Prize4Life-Challenge
907676e0b7f3a52ab4a131089fc562375f09170b
[ "WTFPL" ]
null
null
null
find.py
matthewkos/DREAM-ALS-Stratification-Prize4Life-Challenge
907676e0b7f3a52ab4a131089fc562375f09170b
[ "WTFPL" ]
null
null
null
find.py
matthewkos/DREAM-ALS-Stratification-Prize4Life-Challenge
907676e0b7f3a52ab4a131089fc562375f09170b
[ "WTFPL" ]
null
null
null
import pandas from TicToc import TicToc import numpy as np from process import print_pd import sklearn.feature_selection def read_data(): train_filename = 'Data/Train_data_processed.pkl' val_filename = 'Data/Val_data_processed.pkl' train_data = pandas.read_pickle(train_filename) val_data = pandas.read_pickle(val_filename) return train_data, val_data def process_into_np_sclar(x, name): m = dict() array_name = [] for i in x.keys(): if i in ['SubjectID', 'Age', 'Gender', 'ALSFRS_slope', 'time_event', 'status']: m[i] = x[i].values.reshape(-1, 1) array_name.append(i) continue m[i] = np.zeros((x.shape[0], 1)) array_name.append(i) for j in range(m[i].shape[0]): m[i][j] = np.sum(x[i][j]) mx = np.concatenate(tuple((m[i] for i in x.keys())), axis=1) mx = mx.astype(float) fx = mx[:, :-3] fy = mx[:, -3] fz = mx[:, -3:] return fx, fy, fz, np.array(array_name) def process_into_np_slope(x, name): m = dict() array_name = [] for i in x.keys(): if i in ['SubjectID', 'Age', 'Gender', 'ALSFRS_slope', 'time_event', 'status']: m[i] = x[i].values.reshape(-1, 1) array_name.append(i) continue m[i] = np.zeros((x.shape[0], 1)) array_name.append(i) for j in range(m[i].shape[0]): m[i][j] = (x[i][j][-1] - x[i][j][-0]) / 90.0 mx = np.concatenate(tuple((m[i] for i in x.keys())), axis=1) mx = mx.astype(float) fx = mx[:, :-3] fy = mx[:, -3] fz = mx[:, -3:] return fx, fy, fz, np.array(array_name) def process_into_np_avg(x, name): m = dict() array_name = [] for i in x.keys(): if i in ['SubjectID', 'Age', 'Gender', 'ALSFRS_slope', 'time_event', 'status']: m[i] = x[i].values.reshape(-1, 1) array_name.append(i) continue m[i] = np.zeros((x.shape[0], 1)) array_name.append(i) for j in range(m[i].shape[0]): m[i][j] = np.average(x[i][j]) mx = np.concatenate(tuple((m[i] for i in x.keys())), axis=1) mx = mx.astype(float) fx = mx[:, :-3] fy = mx[:, -3] fz = mx[:, -3:] return fx, fy, fz, np.array(array_name) def process_into_np_idv(x, name): m = dict() array_name = [] for i in x.keys(): if i in ['SubjectID', 'Age', 'Gender', 'ALSFRS_slope', 'time_event', 'status']: m[i] = x[i].values.reshape(-1, 1) array_name.append(i) continue m[i] = np.zeros((x.shape[0], x[i][0].shape[0])) for k in range(m[i].shape[1]): array_name.append(i + '_' + str(k * 15)) for j in range(m[i].shape[0]): m[i][j] = x[i][j] mx = np.concatenate(tuple((m[i] for i in x.keys())), axis=1) mx = mx.astype(float) fx = mx[:, :-3] fy = mx[:, -3] fz = mx[:, -3:] # np.savetxt('Data/{}_fx.txt'.format(name), fx, header=str(array_name[:-3])) # np.savetxt('Data/{}_fy.txt'.format(name), fy, header=str(array_name[-3])) # np.savetxt('Data/{}_fz.txt'.format(name), fz, header=str(array_name[-3:])) return fx, fy, fz, np.array(array_name) def process_into_np_idv(x, name): m = dict() array_name = [] for i in x.keys(): if i in ['SubjectID', 'Age', 'Gender', 'ALSFRS_slope', 'time_event', 'status']: m[i] = x[i].values.reshape(-1, 1) array_name.append(i) continue m[i] = np.zeros((x.shape[0], x[i][0].shape[0])) for k in range(m[i].shape[1]): array_name.append(i + '_' + str(k * 15)) for j in range(m[i].shape[0]): m[i][j] = x[i][j] mx = np.concatenate(tuple((m[i] for i in x.keys())), axis=1) mx = mx.astype(float) fx = mx[:, :-3] fy = mx[:, -3] fz = mx[:, -3:] # np.savetxt('Data/{}_fx.txt'.format(name), fx, header=str(array_name[:-3])) # np.savetxt('Data/{}_fy.txt'.format(name), fy, header=str(array_name[-3])) # np.savetxt('Data/{}_fz.txt'.format(name), fz, header=str(array_name[-3:])) return fx, fy, fz, np.array(array_name) def analysis_mi_slope(x, y, array_name): print('*' * 20, "Slope", '*' * 20) mi = sklearn.feature_selection.mutual_info_regression(x, y, n_neighbors=3) mi_sort_index = np.argsort(mi)[::-1] for i in range(mi.shape[0]): print('{:>20} : {:.4f}'.format(array_name[mi_sort_index[i]], mi[mi_sort_index[i]])) print('*' * 50) def analysis_mi_dead(x, y, array_name): print('*' * 20, "Dead", '*'*20) mi = sklearn.feature_selection.mutual_info_classif(x, y, n_neighbors=3) mi_sort_index = np.argsort(mi)[::-1] for i in range(mi.shape[0]): print('{:>20} : {:.4f}'.format(array_name[mi_sort_index[i]], mi[mi_sort_index[i]])) print('*' * 50) def MI_slope(x): # fx, fy, fz, array_name = process_into_np_idv(x, 'train') # analysis_mi_slope(fx, fy, array_name) # fx, fy, fz, array_name = process_into_np_avg(x, 'train') # analysis_mi_slope(fx, fy, array_name) # fx, fy, fz, array_name = process_into_np_slope(x, 'train') # analysis_mi_slope(fx, fy, array_name) fx, fy, fz, array_name = process_into_np_sclar(x, 'train') analysis_mi_slope(fx, fy, array_name) def MI_dead(x): # fx, fy, fz, array_name = process_into_np_idv(x, 'train') # analysis_mi_dead(fx, fz[:,-1], array_name) # fx, fy, fz, array_name = process_into_np_avg(x, 'train') # analysis_mi_dead(fx, fz[:, -1], array_name) # fx, fy, fz, array_name = process_into_np_slope(x, 'train') # analysis_mi_dead(fx, fz[:, -1], array_name) fx, fy, fz, array_name = process_into_np_sclar(x, 'train') analysis_mi_dead(fx, fz[:, -1], array_name) if __name__ == '__main__': tic = TicToc() train_data, val_data = read_data() print("training") MI_slope(train_data) MI_dead(train_data) print("validation") MI_slope(val_data) MI_dead(val_data) tic.toc()
34.125
91
0.566101
4a26a84acfcc32a81b246d3dad04b84a7dcb53a5
6,388
py
Python
pytext/utils/timing.py
victorling8/pytext
bc78c39edd06797b766ba7db4bef731e6e1ac533
[ "BSD-3-Clause" ]
null
null
null
pytext/utils/timing.py
victorling8/pytext
bc78c39edd06797b766ba7db4bef731e6e1ac533
[ "BSD-3-Clause" ]
null
null
null
pytext/utils/timing.py
victorling8/pytext
bc78c39edd06797b766ba7db4bef731e6e1ac533
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import collections import functools import timeit import traceback import weakref from json import dumps as json_dumps from .ascii_table import ascii_table class SnapshotList(list): """lists are not weakref-able by default.""" class Timings: sum: float count: int max: float def __init__(self, sum: float = 0.0, count: int = 0, max: float = -float("inf")): self.sum = sum self.count = count self.max = max @property def average(self): return self.sum / (self.count or 1) def add(self, time): self.sum += time self.count += 1 self.max = max(self.max, time) SECONDS_IN_MINUTE = 60 SECONDS_IN_HOUR = 60 * SECONDS_IN_MINUTE SECONDS_IN_DAY = 24 * SECONDS_IN_HOUR def format_time(seconds): if seconds > 60: days, seconds = int(seconds // SECONDS_IN_DAY), seconds % SECONDS_IN_DAY hours, seconds = int(seconds // SECONDS_IN_HOUR), seconds % SECONDS_IN_HOUR minutes, seconds = ( int(seconds // SECONDS_IN_MINUTE), seconds % SECONDS_IN_MINUTE, ) if days: if minutes >= 30: hours += 1 return f"{days}d{hours}h" elif hours: if seconds >= 30: minutes += 1 return f"{hours}h{minutes}m" else: seconds = int(round(seconds)) return f"{minutes}m{seconds}s" elif seconds > 1: return f"{seconds:.1f}s" elif seconds > 0.001: return f"{seconds * 1000:.1f}ms" else: return f"{seconds * 1000000:.1f}ns" class Snapshot: def __init__(self): self.times = collections.defaultdict(Timings) self.start = timeit.default_timer() def report(self, report_pep=False): snapshot_total = timeit.default_timer() - self.start def path(key): return " -> ".join(label for label, _ in key) def print_pep(results, snapshot_total): for key, times in sorted(self.times.items()): info = { "type": path(key), "metric": "latency", "unit": "ms", "value": f"{times.sum * 1000:.1f}", } if times.sum < 0.001: info["unit"] = "ns" info["value"] = f"{times.sum * 1000000:.1f}" if times.count > 1: info["info_string"] = " ".join( [ "Count", str(times.count), "Average", f"{times.average * 1000:.1f}", "Max", f"{times.max * 1000:.1f}", ] ) print("PyTorchObserver " + json_dumps(info)) info = { "type": "NET", "metric": "latency", "unit": "ms", "value": f"{snapshot_total * 1000:.1f}", } print("PyTorchObserver " + json_dumps(info)) results = [ { "name": path(key), "total": format_time(times.sum), "avg": format_time(times.average), "max": format_time(times.max), "count": times.count, } for key, times in sorted(self.times.items()) ] print( ascii_table( results, human_column_names={ "name": "Stage", "total": "Total", "avg": "Average", "max": "Max", "count": "Count", }, footer={"name": "Total time", "total": format_time(snapshot_total)}, alignments={"name": "<"}, ) ) if report_pep: print_pep(results, snapshot_total) class HierarchicalTimer: def __init__(self): self.current_stack = [] self.all_snapshots = SnapshotList() def snapshot(self): snapshot = Snapshot() self.all_snapshots.append(weakref.ref(snapshot)) return snapshot def _clean_snapshots(self): self.all_snapshots = [ref for ref in self.all_snapshots if ref() is not None] def push(self, label, caller_id): self.current_stack.append((label, caller_id, timeit.default_timer())) def pop(self): label, _, start_time = self.current_stack[-1] key = tuple((label, caller) for label, caller, _ in self.current_stack) delta = timeit.default_timer() - start_time for ref in self.all_snapshots: snapshot = ref() if snapshot is not None: snapshot.times[key].add(delta) self.current_stack.pop() # Need to put this somewhere self._clean_snapshots() def time(self, label): return _TimerContextManager(label, self) class _TimerContextManager: def __init__(self, label, timer, caller_id=None): self.label = label self.timer = timer self.caller_id = caller_id def __enter__(self): if self.caller_id: caller_id = self.caller_id else: stack = traceback.extract_stack() caller = stack[-2] caller_id = (caller.filename, caller.line) self.timer.push(self.label, caller_id) def __exit__(self, *exception_info): self.timer.pop() def __call__(self, fn): """Decorator syntax""" caller_id = (fn.__code__.co_filename, fn.__code__.co_firstlineno) timer_context = _TimerContextManager(self.label, self.timer, caller_id) @functools.wraps(fn) def wrapper(*args, **kwargs): with timer_context: return fn(*args, **kwargs) return wrapper TIMER = HierarchicalTimer() time = TIMER.time snapshot = TIMER.snapshot SNAPSHOT = TIMER.snapshot() report = SNAPSHOT.report def report_snapshot(fn): @functools.wraps(fn) def wrapper(*args, **kwargs): snapshot = TIMER.snapshot() result = fn(*args, **kwargs) snapshot.report() return result return wrapper
28.904977
85
0.526143
4a26a8763d267d6f5851971232107bf610c64c60
4,335
py
Python
synthetic_simpleAE.py
wushanshan/L1AE
c15b2a3f74a48d6a51d8efcea09689f0d2ebf46a
[ "Apache-2.0" ]
19
2018-06-28T15:47:22.000Z
2021-11-13T09:01:32.000Z
synthetic_simpleAE.py
wushanshan/L1AE
c15b2a3f74a48d6a51d8efcea09689f0d2ebf46a
[ "Apache-2.0" ]
1
2019-05-03T14:18:52.000Z
2019-05-05T12:31:21.000Z
synthetic_simpleAE.py
wushanshan/L1AE
c15b2a3f74a48d6a51d8efcea09689f0d2ebf46a
[ "Apache-2.0" ]
5
2019-08-11T22:19:26.000Z
2020-09-10T11:48:12.000Z
"""Train an autoencoder over synthetic datasets""" from __future__ import division from datasets import synthetic_block_sparse_data from utils import l1_min_avg_err from baselines import simple_AE_l1 import os import numpy as np import tensorflow as tf SEED = 43 np.random.seed(SEED) flags = tf.app.flags flags.DEFINE_integer("input_dim", 1000, "Input dimension [1000]") flags.DEFINE_integer("block_dim", 10, "Size of a block in block-sparsity [10]") flags.DEFINE_integer("sparsity_level", 1, "Sparsity in block-sparsity [1]") flags.DEFINE_integer("emb_dim", 10, "Number of measurements [10]") flags.DEFINE_integer("num_samples", 10000, "Number of total samples [10000]") flags.DEFINE_integer("batch_size", 128, "Batch size [128]") flags.DEFINE_float("learning_rate", 0.1, "Learning rate for SGD [0.01]") flags.DEFINE_integer("max_training_epochs", 2e4, "Maximum number of training epochs [2e4]") flags.DEFINE_integer("display_interval", 100, "Print the training info every [100] epochs") flags.DEFINE_integer("validation_interval", 1, "Compute validation loss every [10] epochs") flags.DEFINE_integer("max_steps_not_improve", 1, "stop training when the validation loss \ does not improve for [5] validation_intervals") flags.DEFINE_string("checkpoint_dir", "ckpts/synthetic/", "Directory name to save the checkpoints \ [ckpts/synthetic/]") flags.DEFINE_integer("num_random_dataset", 10, "Number of random datasets [10]") flags.DEFINE_integer("num_experiment", 1, "Number of experiments for each dataset [1]") FLAGS = flags.FLAGS # model parameters input_dim = FLAGS.input_dim block_dim = FLAGS.block_dim sparsity_level = FLAGS.sparsity_level emb_dim = FLAGS.emb_dim num_samples = FLAGS.num_samples # training parameters batch_size = FLAGS.batch_size learning_rate = FLAGS.learning_rate max_training_epochs = FLAGS.max_training_epochs display_interval = FLAGS.display_interval validation_interval = FLAGS.validation_interval max_steps_not_improve = FLAGS.max_steps_not_improve # checkpoint directory checkpoint_dir = FLAGS.checkpoint_dir if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) # number of experiments num_random_dataset = FLAGS.num_random_dataset num_experiment = FLAGS.num_experiment results_dict = {} def merge_dict(a, b): """Merge two dictionaries""" for k in b.keys(): if k in a: a[k].append(b[k]) else: a[k] = [b[k]] for dataset_i in xrange(num_random_dataset): X_train, X_valid, X_test = synthetic_block_sparse_data( input_dim, block_dim, sparsity_level, num_samples) for experiment_i in xrange(num_experiment): print("---Dataset: %d, Experiment: %d---" % (dataset_i, experiment_i)) err, G = simple_AE_l1(input_dim, emb_dim, X_train, X_valid, X_test, batch_size, learning_rate, max_training_epochs, display_interval, validation_interval, max_steps_not_improve) Y = X_test.dot(G) sim_l1_err, sim_l1_exact, _ = l1_min_avg_err(np.transpose(G), Y, X_test, use_pos=False) sim_l1_err_pos, sim_l1_exact_pos, _ = l1_min_avg_err( np.transpose(G), Y, X_test, use_pos=True) res = {} res['simple_ae_err'] = np.sqrt(err) # RMSE res['simple_ae_l1_err'] = sim_l1_err res['simple_ae_l1_exact'] = sim_l1_exact res['simple_ae_l1_err_pos'] = sim_l1_err_pos res['simple_ae_l1_exact_pos'] = sim_l1_exact_pos merge_dict(results_dict, res) # save results_dict file_name = ('simple_ae_input_%d_'+'block_%d_'+'sparse_%d_') % (input_dim, block_dim, sparsity_level) file_name = file_name + ('emb_%d.npy') % (emb_dim) file_path = checkpoint_dir + file_name np.save(file_path, results_dict)
39.054054
79
0.635755
4a26a89f1010253a44386473be1090c35d7c9137
4,038
py
Python
sisjuridico/apps/reportes/views.py
AnthonyWainer/sistemaJuridico
83acf42fd20793ea05d6bff57322e17355893fc9
[ "MIT" ]
null
null
null
sisjuridico/apps/reportes/views.py
AnthonyWainer/sistemaJuridico
83acf42fd20793ea05d6bff57322e17355893fc9
[ "MIT" ]
null
null
null
sisjuridico/apps/reportes/views.py
AnthonyWainer/sistemaJuridico
83acf42fd20793ea05d6bff57322e17355893fc9
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.decorators import login_required from django.db.models import Max, Q from apps.seguridad.models import permisos, User from apps.expediente.models import expedientes, categoria, resolucion from apps.paginacion import paginacion from .models import historial import json as simplejson import datetime today = datetime.datetime.now() fecha = today.strftime("%Y-%m-%d") # Crea tus vista aqui. def permi(request,url): idp = request.user.idperfil_id mod = permisos.objects.filter(idmodulo__url=url, idperfil_id=idp).values('idmodulo__url','buscar','eliminar','editar','insertar','imprimir','ver') return mod @login_required(login_url='/') def reportes_consolidados(request): if request.method == 'POST': e = expedientes.objects.filter(fecha__range= [request.POST["fecha_ini"],request.POST["fecha_ter"]]) ep = 0 a = 0 na = 0 for i in e: if i.estado == "en proceso": ep += 1 elif i.estado == "aprobado": a += 1 elif i.estado == "no aprobado": na += 1 if request.POST["v"] == "v": data = [] data.append({"label":"Aprobado","data":a,"color": "#d3d3d3",}) data.append({"label":"No Aprobado","data":na,"color": "#79d2c0",}) data.append({"label":"En Proceso","data":ep,"color": "#1ab394",}) return HttpResponse(simplejson.dumps(data), content_type="application/json" ) return render(request,"reportes/reportes_consolidados/ajax_reportes_consolidados.html",{'ep':ep,'ap':a,'na':na}) return render(request,"reportes/reportes_consolidados/reportes_consolidados.html",{'fecha':fecha}) @login_required(login_url='/') def reportes_detallados(request): estado = permi(request, "reportes_detallados") listaCategoria = [{'id':con.id,'descripcion':con.descripcion} for con in categoria.objects.all()] listaResolucion = [{'id':con.id,'numero':con.numero} for con in resolucion.objects.all()] if request.method == 'POST': idc = request.POST.get("idc","") expediente = expedientes.objects.filter(idcategoria= idc).order_by('id') return render(request,'reportes/reportes_detallados/ajax_reportes_detallados.html',{'lista':expediente,'estado':estado}) else: idc= 1 expediente = expedientes.objects.filter(idcategoria= idc).order_by('id') modulo = {'url':'reportes_detallados/','n':'reportesU','estado':estado,'idcategoria':listaCategoria, 'idresolucion':listaResolucion,'fecha' :fecha} return paginacion(request,expediente, modulo, 'reportes/reportes_detallados/reportes_detallados.html' ) def busqueda(request): e = expedientes.objects.filter( Q(nro__contains=request.POST["nro"]), Q(idcategoria__id__contains=request.POST["idcategoria"]), Q(fecha__contains=request.POST["fecha"]), Q(estado__contains=request.POST["estado"]) )[:10] #print (e.query) modulo = {'lista':e} return render(request,'reportes/reportes_detallados/ajax_reportes_detallados.html', modulo) @login_required(login_url='/') def reportes_transacciones(request): estado = permi(request, "reportes_transacciones") listaUsuarios = [{'id':con.id,'usuario':con.usuario} for con in User.objects.all()] if request.method == 'GET': idc= 1 historias = historial.objects.all().order_by('id') modulo = { 'url':'reportes_transacciones/','n':'reportesU','estado':estado,'idusuario':listaUsuarios,'fecha' :fecha} return paginacion(request,historias, modulo, 'reportes/reportes_transacciones/reportes_transacciones.html' ) def transacciones(request): e = historial.objects.filter( idusuario_id=request.POST["idusuario"]).filter(Q(fecha__contains=request.POST["fecha"]))[:10] modulo = {'lista':e} return render(request,'reportes/reportes_transacciones/ajax_reportes_transacciones.html', modulo)
48.650602
223
0.684002
4a26a8cd452530b8d89bbe6d84f7ee0a5ec35580
3,241
py
Python
koran.py
Reylyer/discord-koran
b2ca8fc728c2944a691ed5ce67007118a8017201
[ "MIT" ]
null
null
null
koran.py
Reylyer/discord-koran
b2ca8fc728c2944a691ed5ce67007118a8017201
[ "MIT" ]
null
null
null
koran.py
Reylyer/discord-koran
b2ca8fc728c2944a691ed5ce67007118a8017201
[ "MIT" ]
null
null
null
import discord from discord.ext import commands import requests, json, asyncio import argparse, inspect from datetime import datetime from datetime import timedelta class Koran(commands.Cog): tformat = '%Y-%m-%dT%H:%M:%S+00:00' print_tformat = '%a, %d %b %Y %H:%M' def __init__(self, client) -> None: super().__init__() self.client = client self.__get_self_methods() self.__create_parser() # ENTRY @commands.command() async def koran(self, ctx, *, argument): await ctx.send(f"args: {argument}") try: kwargs = self.parser.parse_args(argument.split()) await ctx.send(f"kwargs: {json.dumps(kwargs.__dict__, indent=4)}") await self.ctftime(ctx, kwargs.__dict__) except Exception as e: await ctx.send(e) # SUBKORAN async def ctftime(self, ctx, kwargs): await ctx.send("Berhasil subs ke ctftime") asd_json = '' while True: print("requesting") cjson = request_ctftime() if cjson and asd_json != cjson: asd_json = cjson embed = discord.Embed(color = discord.Color.from_rgb(215, 0, 10)) print(type(cjson)) start = datetime.strptime(cjson['start'], self.tformat) + timedelta(hours=7) fin = datetime.strptime(cjson['finish'], self.tformat) + timedelta(hours=7) embed.set_author(name="CTFtime", url=cjson['ctftime_url'], icon_url="https://pbs.twimg.com/profile_images/2189766987/ctftime-logo-avatar_400x400.png") desc = f"[{cjson['title']}]({cjson['url']})\n\n" desc += f"Format: {cjson['format']}\n" desc += f"Time: {start.strftime(self.print_tformat)} - {fin.strftime(self.print_tformat)}\n" desc += f"Duration: {cjson['duration']['days']} days {cjson['duration']['hours']} hours\n" desc += f"Weight: {cjson['weight']}\n" desc += f"Restrictions: {cjson['restrictions']}\n" embed.description = desc embed.set_image(url=cjson['logo']) await ctx.send("**New CTF!!!**", embed=embed) # except Exception as e: # await ctx.send(e) await asyncio.sleep(kwargs['delay']) def whatsapp(self, ctx, **kwargs): pass def nhentai(self, ctx, **kwargs): pass # INTERNAL USE def __create_parser(self): self.parser = parser = argparse.ArgumentParser() parser.add_argument("subkoran", type=str, help="pilihan langganan", choices=self.methods) parser.add_argument("-d", "--delay", type=int, default=3600, help="delay between request(for request based)") def __get_self_methods(self): self.methods = mtds = [t[0] for t in inspect.getmembers(self, predicate=inspect.ismethod) if not t[0].startswith('_Koran_')] print(mtds) # mtds.remove("koran") def request_ctftime(): r = requests.get("https://ctftime.org/api/v1/events/?limit=1", headers = {"User-Agent": 'browser palsu'}) if r.status_code == 200: return json.loads(r.text)[0] else: return False
36.41573
166
0.586239
4a26a9198529978fd1fc3a8ba63016402c9a0475
753
py
Python
livemark/plugins/comments/plugin.py
AyrtonB/livemark
f8c49d449ea6242c674cf345823468aaabea6e6b
[ "MIT" ]
1
2021-10-05T15:52:17.000Z
2021-10-05T15:52:17.000Z
livemark/plugins/comments/plugin.py
AyrtonB/livemark
f8c49d449ea6242c674cf345823468aaabea6e6b
[ "MIT" ]
null
null
null
livemark/plugins/comments/plugin.py
AyrtonB/livemark
f8c49d449ea6242c674cf345823468aaabea6e6b
[ "MIT" ]
null
null
null
from ...plugin import Plugin # TODO: use base url from the SitePlugin class CommentsPlugin(Plugin): identity = "comments" priority = 45 validity = { "type": "object", "properties": { "enable": {"type": "boolean"}, }, } # Context @property def code(self): return self.config.get("code") @property def link(self): return self.config.get("link") # Process def process_markup(self, markup): if self.code and self.link: markup.add_style("style.css") markup.add_script("https://livemark.disqus.com/count.js") markup.add_script("script.js") markup.add_markup("markup.html", target="#livemark-main")
21.514286
69
0.572377
4a26a9d7c775441f0c0a7e05fcdf2b01a2d59f1b
11,353
py
Python
config.py
KatanoShingo/Keyhac
4b68bc866f6bfe9cbf7f43dcc8f60d2022fd88e1
[ "MIT" ]
3
2020-05-23T13:39:52.000Z
2021-02-22T07:48:43.000Z
config.py
KatanoShingo/Keyhac
4b68bc866f6bfe9cbf7f43dcc8f60d2022fd88e1
[ "MIT" ]
2
2020-04-12T11:10:50.000Z
2020-04-12T15:27:47.000Z
config.py
KatanoShingo/Keyhac
4b68bc866f6bfe9cbf7f43dcc8f60d2022fd88e1
[ "MIT" ]
1
2021-03-06T11:01:54.000Z
2021-03-06T11:01:54.000Z
import sys import os import datetime import pyauto from keyhac import * class MAP: def __init__(self, keymap): self.ime = False #ユーザー設定 MultiDisplay = True #どのウインドウにフォーカスがあっても効くキーマップ keymap_global = keymap.defineWindowKeymap() #アプリ切り替え keymap_global[ "RS-Z" ] = "Win-1" keymap_global[ "RS-X" ] = "Win-2" keymap_global[ "RS-C" ] = "Win-3" keymap_global[ "RS-V" ] = "Win-4" keymap_global[ "RS-B" ] = "Win-5" if MultiDisplay: #ウィンドウの移動の配置変更 keymap_global[ "LC-LW-Left" ] = "LW-LS-Left" keymap_global[ "LC-LW-Right" ] = "LW-LS-Right" #仮想ウデスクトップ追加 keymap_global[ "LC-LW-LA-N" ] = "LC-LW-D" #仮想ウデスクトップ削除 keymap_global[ "LC-LW-LA-Delete" ] = "LC-LW-F4" #仮想ウデスクトップ移動 keymap_global[ "LC-LW-LA-Left" ] = "LC-LW-Right" keymap_global[ "LC-LW-LA-Right" ] = "LC-LW-Left" # アンダースコア入れ替え keymap_global[ "Underscore" ] = "S-Underscore" keymap_global[ "S-Underscore" ] = "Underscore" #左十字キー keymap_global[ "RA-W" ] = "Up" keymap_global[ "RA-A" ] = "Left" keymap_global[ "RA-D" ] = "Right" keymap_global[ "RA-S" ] = "Down" def key_A(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "A" )() keymap_global[ "A" ] = key_A def key_B(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "B" )() keymap_global[ "B" ] = key_B def key_C(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "C" )() keymap_global[ "C" ] = key_C def key_D(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "D" )() keymap_global[ "D" ] = key_D def key_E(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "E" )() keymap_global[ "E" ] = key_E def key_F(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "F" )() keymap_global[ "F" ] = key_F def key_G(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "G" )() keymap_global[ "G" ] = key_G def key_H(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "H" )() keymap_global[ "H" ] = key_H def key_I(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "I" )() keymap_global[ "I" ] = key_I def key_J(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "J" )() keymap_global[ "J" ] = key_J def key_L(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "L" )() keymap_global[ "L" ] = key_L def key_N(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "N" )() keymap_global[ "N" ] = key_N def key_M(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "M" )() keymap_global[ "M" ] = key_M def key_O(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "O" )() keymap_global[ "O" ] = key_O def key_P(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "P" )() keymap_global[ "P" ] = key_P def key_Q(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "Q" )() keymap_global[ "Q" ] = key_Q def key_R(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "R" )() keymap_global[ "R" ] = key_R def key_S(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "S" )() keymap_global[ "S" ] = key_S def key_T(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "T" )() keymap_global[ "T" ] = key_T def key_U(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "U" )() keymap_global[ "U" ] = key_U def key_V(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "V" )() keymap_global[ "V" ] = key_V def key_W(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "W" )() keymap_global[ "W" ] = key_W def key_X(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "X" )() keymap_global[ "X" ] = key_X def key_Y(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "Y" )() keymap_global[ "Y" ] = key_Y def key_Z(): if ( self.ime ): keymap.getWindow().setImeStatus(1) else: keymap.getWindow().setImeStatus(0) return keymap.InputKeyCommand( "Z" )() keymap_global[ "Z" ] = key_Z #CapsLock def key_240(): self.ime = not self.ime keymap.InputKeyCommand( "(240)" )() keymap_global[ "(240)" ] = key_240 #半角全角 def key_243(): self.ime = not self.ime keymap.InputKeyCommand( "(243)" )() keymap_global[ "(243)" ] = key_243 def key_244(): self.ime = not self.ime keymap.InputKeyCommand( "(244)" )() keymap_global[ "(244)" ] = key_244 #数字対応 def num_1(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "1" )() keymap_global[ "1" ] = num_1 def num_2(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "2" )() keymap_global[ "2" ] = num_2 def num_3(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "3" )() keymap_global[ "3" ] = num_3 def num_4(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "4" )() keymap_global[ "4" ] = num_4 def num_5(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "5" )() keymap_global[ "5" ] = num_5 def num_6(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "6" )() keymap_global[ "6" ] = num_6 def num_7(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "7" )() keymap_global[ "7" ] = num_7 def num_8(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "8" )() keymap_global[ "8" ] = num_8 def num_9(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "9" )() keymap_global[ "9" ] = num_9 def num_0(): if ( keymap.wnd.getImeStatus() ): keymap.getWindow().setImeStatus(0) keymap.InputKeyCommand( "0" )() keymap_global[ "0" ] = num_0 #Insertをbackspaceに置き換え keymap.replaceKey( 45, 8 ) #無変換、変換を未定義の仮想キーに置き換え keymap.replaceKey( 28, 58 ) keymap.replaceKey( 29, 59 ) #IMEオン def ime_on(): keymap.getWindow().setImeStatus(1) self.ime = True keymap_global[ "(58)" ] = ime_on #IMEオフ def ime_off(): keymap.getWindow().setImeStatus(0) self.ime = False keymap_global[ "(59)" ] = ime_off keymap_chrome = keymap.defineWindowKeymap( exe_name="chrome.exe" ) #クローム用タブ切り替え keymap_chrome[ "RS-LS-Z" ] = "C-1" keymap_chrome[ "RS-LS-X" ] = "C-2" keymap_chrome[ "RS-LS-C" ] = "C-3" keymap_chrome[ "RS-LS-V" ] = "C-4" keymap_chrome[ "RS-LS-B" ] = "C-5" #クローム用タブ削除 keymap_chrome[ "LC-Delete" ] = "LC-W" def configure(keymap): if 1: MAP(keymap)
32.344729
74
0.485334
4a26ad07d036befce0b4dffb7f8c99e28cbb90ce
931
py
Python
python/examples/guess_number_1.py
RodolfoDiaz/CodeLibrary
603ac9eee5b014bef8f04545bc4e73b0ec376131
[ "MIT" ]
1
2018-10-11T14:29:40.000Z
2018-10-11T14:29:40.000Z
python/examples/guess_number_1.py
RodolfoDiaz/CodeLibrary
603ac9eee5b014bef8f04545bc4e73b0ec376131
[ "MIT" ]
2
2020-04-26T21:12:00.000Z
2020-10-28T21:10:03.000Z
python/examples/guess_number_1.py
RodolfoDiaz/CodeLibrary
603ac9eee5b014bef8f04545bc4e73b0ec376131
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Code sample: using random numbers and loops.""" import random minNumber = 1 # input('Enter the minimum number: ') maxNumber = 5 # input('Enter the maximum number: ') attempts = 3 if (minNumber < maxNumber): random_number = random.randint(minNumber, maxNumber) count = 0 while count < attempts: count = count + 1 guess = int(input("Guess the 'Magic Number'." " Enter a value between {0} and {1}: " .format(minNumber, maxNumber))) if random_number == guess: print('You got it, the magic number was {0}'.format(guess)) break elif random_number != guess and count >= attempts: print('You lost!, the magic number was {0}'.format(random_number)) else: print('Try again...') else: print('The maximum number must be greater than the minimum number')
33.25
78
0.586466
4a26ad433e9264c22f384439d8ce50576eb12806
13,422
py
Python
venv/lib/python3.9/site-packages/pyarrow/tests/test_gandiva.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
3
2021-03-29T19:21:08.000Z
2021-12-31T09:30:11.000Z
python/pyarrow/tests/test_gandiva.py
royalstream/arrow
eb20a3dbc7732f612e5ce54be5f4291440829350
[ "CC-BY-3.0", "Apache-2.0", "CC0-1.0", "MIT" ]
95
2020-12-08T14:14:27.000Z
2021-07-17T00:43:39.000Z
python/pyarrow/tests/test_gandiva.py
royalstream/arrow
eb20a3dbc7732f612e5ce54be5f4291440829350
[ "CC-BY-3.0", "Apache-2.0", "CC0-1.0", "MIT" ]
9
2021-02-24T10:27:55.000Z
2022-03-28T08:27:12.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import pytest import pyarrow as pa @pytest.mark.gandiva def test_tree_exp_builder(): import pyarrow.gandiva as gandiva builder = gandiva.TreeExprBuilder() field_a = pa.field('a', pa.int32()) field_b = pa.field('b', pa.int32()) schema = pa.schema([field_a, field_b]) field_result = pa.field('res', pa.int32()) node_a = builder.make_field(field_a) node_b = builder.make_field(field_b) condition = builder.make_function("greater_than", [node_a, node_b], pa.bool_()) if_node = builder.make_if(condition, node_a, node_b, pa.int32()) expr = builder.make_expression(if_node, field_result) projector = gandiva.make_projector( schema, [expr], pa.default_memory_pool()) # Gandiva generates compute kernel function named `@expr_X` assert projector.llvm_ir.find("@expr_") != -1 a = pa.array([10, 12, -20, 5], type=pa.int32()) b = pa.array([5, 15, 15, 17], type=pa.int32()) e = pa.array([10, 15, 15, 17], type=pa.int32()) input_batch = pa.RecordBatch.from_arrays([a, b], names=['a', 'b']) r, = projector.evaluate(input_batch) assert r.equals(e) @pytest.mark.gandiva def test_table(): import pyarrow.gandiva as gandiva table = pa.Table.from_arrays([pa.array([1.0, 2.0]), pa.array([3.0, 4.0])], ['a', 'b']) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) node_b = builder.make_field(table.schema.field("b")) sum = builder.make_function("add", [node_a, node_b], pa.float64()) field_result = pa.field("c", pa.float64()) expr = builder.make_expression(sum, field_result) projector = gandiva.make_projector( table.schema, [expr], pa.default_memory_pool()) # TODO: Add .evaluate function which can take Tables instead of # RecordBatches r, = projector.evaluate(table.to_batches()[0]) e = pa.array([4.0, 6.0]) assert r.equals(e) @pytest.mark.gandiva def test_filter(): import pyarrow.gandiva as gandiva table = pa.Table.from_arrays([pa.array([1.0 * i for i in range(10000)])], ['a']) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) thousand = builder.make_literal(1000.0, pa.float64()) cond = builder.make_function("less_than", [node_a, thousand], pa.bool_()) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) # Gandiva generates compute kernel function named `@expr_X` assert filter.llvm_ir.find("@expr_") != -1 result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert result.to_array().equals(pa.array(range(1000), type=pa.uint32())) @pytest.mark.gandiva def test_in_expr(): import pyarrow.gandiva as gandiva arr = pa.array(["ga", "an", "nd", "di", "iv", "va"]) table = pa.Table.from_arrays([arr], ["a"]) # string builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, ["an", "nd"], pa.string()) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert result.to_array().equals(pa.array([1, 2], type=pa.uint32())) # int32 arr = pa.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 4]) table = pa.Table.from_arrays([arr.cast(pa.int32())], ["a"]) node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, [1, 5], pa.int32()) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert result.to_array().equals(pa.array([1, 3, 4, 8], type=pa.uint32())) # int64 arr = pa.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 4]) table = pa.Table.from_arrays([arr], ["a"]) node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, [1, 5], pa.int64()) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert result.to_array().equals(pa.array([1, 3, 4, 8], type=pa.uint32())) @pytest.mark.skip(reason="Gandiva C++ did not have *real* binary, " "time and date support.") def test_in_expr_todo(): import pyarrow.gandiva as gandiva # TODO: Implement reasonable support for timestamp, time & date. # Current exceptions: # pyarrow.lib.ArrowException: ExpressionValidationError: # Evaluation expression for IN clause returns XXXX values are of typeXXXX # binary arr = pa.array([b"ga", b"an", b"nd", b"di", b"iv", b"va"]) table = pa.Table.from_arrays([arr], ["a"]) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, [b'an', b'nd'], pa.binary()) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert result.to_array().equals(pa.array([1, 2], type=pa.uint32())) # timestamp datetime_1 = datetime.datetime.utcfromtimestamp(1542238951.621877) datetime_2 = datetime.datetime.utcfromtimestamp(1542238911.621877) datetime_3 = datetime.datetime.utcfromtimestamp(1542238051.621877) arr = pa.array([datetime_1, datetime_2, datetime_3]) table = pa.Table.from_arrays([arr], ["a"]) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, [datetime_2], pa.timestamp('ms')) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert list(result.to_array()) == [1] # time time_1 = datetime_1.time() time_2 = datetime_2.time() time_3 = datetime_3.time() arr = pa.array([time_1, time_2, time_3]) table = pa.Table.from_arrays([arr], ["a"]) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, [time_2], pa.time64('ms')) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert list(result.to_array()) == [1] # date date_1 = datetime_1.date() date_2 = datetime_2.date() date_3 = datetime_3.date() arr = pa.array([date_1, date_2, date_3]) table = pa.Table.from_arrays([arr], ["a"]) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) cond = builder.make_in_expression(node_a, [date_2], pa.date32()) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert list(result.to_array()) == [1] @pytest.mark.gandiva def test_boolean(): import pyarrow.gandiva as gandiva table = pa.Table.from_arrays([ pa.array([1., 31., 46., 3., 57., 44., 22.]), pa.array([5., 45., 36., 73., 83., 23., 76.])], ['a', 'b']) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) node_b = builder.make_field(table.schema.field("b")) fifty = builder.make_literal(50.0, pa.float64()) eleven = builder.make_literal(11.0, pa.float64()) cond_1 = builder.make_function("less_than", [node_a, fifty], pa.bool_()) cond_2 = builder.make_function("greater_than", [node_a, node_b], pa.bool_()) cond_3 = builder.make_function("less_than", [node_b, eleven], pa.bool_()) cond = builder.make_or([builder.make_and([cond_1, cond_2]), cond_3]) condition = builder.make_condition(cond) filter = gandiva.make_filter(table.schema, condition) result = filter.evaluate(table.to_batches()[0], pa.default_memory_pool()) assert result.to_array().equals(pa.array([0, 2, 5], type=pa.uint32())) @pytest.mark.gandiva def test_literals(): import pyarrow.gandiva as gandiva builder = gandiva.TreeExprBuilder() builder.make_literal(True, pa.bool_()) builder.make_literal(0, pa.uint8()) builder.make_literal(1, pa.uint16()) builder.make_literal(2, pa.uint32()) builder.make_literal(3, pa.uint64()) builder.make_literal(4, pa.int8()) builder.make_literal(5, pa.int16()) builder.make_literal(6, pa.int32()) builder.make_literal(7, pa.int64()) builder.make_literal(8.0, pa.float32()) builder.make_literal(9.0, pa.float64()) builder.make_literal("hello", pa.string()) builder.make_literal(b"world", pa.binary()) builder.make_literal(True, "bool") builder.make_literal(0, "uint8") builder.make_literal(1, "uint16") builder.make_literal(2, "uint32") builder.make_literal(3, "uint64") builder.make_literal(4, "int8") builder.make_literal(5, "int16") builder.make_literal(6, "int32") builder.make_literal(7, "int64") builder.make_literal(8.0, "float32") builder.make_literal(9.0, "float64") builder.make_literal("hello", "string") builder.make_literal(b"world", "binary") with pytest.raises(TypeError): builder.make_literal("hello", pa.int64()) with pytest.raises(TypeError): builder.make_literal(True, None) @pytest.mark.gandiva def test_regex(): import pyarrow.gandiva as gandiva elements = ["park", "sparkle", "bright spark and fire", "spark"] data = pa.array(elements, type=pa.string()) table = pa.Table.from_arrays([data], names=['a']) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) regex = builder.make_literal("%spark%", pa.string()) like = builder.make_function("like", [node_a, regex], pa.bool_()) field_result = pa.field("b", pa.bool_()) expr = builder.make_expression(like, field_result) projector = gandiva.make_projector( table.schema, [expr], pa.default_memory_pool()) r, = projector.evaluate(table.to_batches()[0]) b = pa.array([False, True, True, True], type=pa.bool_()) assert r.equals(b) @pytest.mark.gandiva def test_get_registered_function_signatures(): import pyarrow.gandiva as gandiva signatures = gandiva.get_registered_function_signatures() assert type(signatures[0].return_type()) is pa.DataType assert type(signatures[0].param_types()) is list assert hasattr(signatures[0], "name") @pytest.mark.gandiva def test_filter_project(): import pyarrow.gandiva as gandiva mpool = pa.default_memory_pool() # Create a table with some sample data array0 = pa.array([10, 12, -20, 5, 21, 29], pa.int32()) array1 = pa.array([5, 15, 15, 17, 12, 3], pa.int32()) array2 = pa.array([1, 25, 11, 30, -21, None], pa.int32()) table = pa.Table.from_arrays([array0, array1, array2], ['a', 'b', 'c']) field_result = pa.field("res", pa.int32()) builder = gandiva.TreeExprBuilder() node_a = builder.make_field(table.schema.field("a")) node_b = builder.make_field(table.schema.field("b")) node_c = builder.make_field(table.schema.field("c")) greater_than_function = builder.make_function("greater_than", [node_a, node_b], pa.bool_()) filter_condition = builder.make_condition( greater_than_function) project_condition = builder.make_function("less_than", [node_b, node_c], pa.bool_()) if_node = builder.make_if(project_condition, node_b, node_c, pa.int32()) expr = builder.make_expression(if_node, field_result) # Build a filter for the expressions. filter = gandiva.make_filter(table.schema, filter_condition) # Build a projector for the expressions. projector = gandiva.make_projector( table.schema, [expr], mpool, "UINT32") # Evaluate filter selection_vector = filter.evaluate(table.to_batches()[0], mpool) # Evaluate project r, = projector.evaluate( table.to_batches()[0], selection_vector) exp = pa.array([1, -21, None], pa.int32()) assert r.equals(exp)
36.672131
79
0.668008
4a26af76283ec0a8023f05f5cae6c1e188af7216
2,815
py
Python
solmate/programs/system_program/instructions/create_account.py
nimily/solmate
acd12d6e79598ca53fcb94b0fc3c524cb6c50b7c
[ "MIT" ]
3
2022-03-11T19:06:15.000Z
2022-03-22T02:40:53.000Z
solmate/programs/system_program/instructions/create_account.py
nimily/solmate
acd12d6e79598ca53fcb94b0fc3c524cb6c50b7c
[ "MIT" ]
null
null
null
solmate/programs/system_program/instructions/create_account.py
nimily/solmate
acd12d6e79598ca53fcb94b0fc3c524cb6c50b7c
[ "MIT" ]
null
null
null
# LOCK-BEGIN[imports]: DON'T MODIFY from .instruction_tag import InstructionTag from dataclasses import dataclass from io import BytesIO from podite import ( BYTES_CATALOG, U64, ) from solana.publickey import PublicKey from solana.transaction import ( AccountMeta, TransactionInstruction, ) from solmate.programs.system_program.addrs import PROGRAM_ID from solmate.utils import to_account_meta from typing import ( List, Optional, Union, ) # LOCK-END # LOCK-BEGIN[ix_cls(create_account)]: DON'T MODIFY @dataclass class CreateAccountIx: program_id: PublicKey # account metas from_pubkey: AccountMeta to_pubkey: AccountMeta remaining_accounts: Optional[List[AccountMeta]] # data fields lamports: U64 space: U64 owner: PublicKey def to_instruction(self): keys = [] keys.append(self.from_pubkey) keys.append(self.to_pubkey) if self.remaining_accounts is not None: keys.extend(self.remaining_accounts) buffer = BytesIO() buffer.write(InstructionTag.to_bytes(InstructionTag.CREATE_ACCOUNT)) buffer.write(BYTES_CATALOG.pack(U64, self.lamports)) buffer.write(BYTES_CATALOG.pack(U64, self.space)) buffer.write(BYTES_CATALOG.pack(PublicKey, self.owner)) return TransactionInstruction( keys=keys, program_id=self.program_id, data=buffer.getvalue(), ) # LOCK-END # LOCK-BEGIN[ix_fn(create_account)]: DON'T MODIFY def create_account( from_pubkey: Union[str, PublicKey, AccountMeta], to_pubkey: Union[str, PublicKey, AccountMeta], lamports: U64, space: U64, owner: PublicKey, remaining_accounts: Optional[List[Union[str, PublicKey, AccountMeta]]] = None, program_id: PublicKey = PROGRAM_ID, ): if isinstance(from_pubkey, (str, PublicKey)): from_pubkey = to_account_meta( from_pubkey, is_signer=True, is_writable=True, ) if isinstance(to_pubkey, (str, PublicKey)): to_pubkey = to_account_meta( to_pubkey, is_signer=True, is_writable=True, ) if isinstance(remaining_accounts, list): for i in range(len(remaining_accounts)): if isinstance(remaining_accounts[i], (str, PublicKey)): remaining_accounts[i] = to_account_meta( remaining_accounts[i], is_signer=False, is_writable=False, ) return CreateAccountIx( program_id=program_id, from_pubkey=from_pubkey, to_pubkey=to_pubkey, remaining_accounts=remaining_accounts, lamports=lamports, space=space, owner=owner, ).to_instruction() # LOCK-END
25.825688
82
0.652575
4a26afa35d4665b71ed5ce927337e57e32bc9eec
691
py
Python
pitty/bin/django-admin.py
othienoJoe/Moringa-Tribune
7bb86e1b45f81dba3079abf6ab1f302d22234cd1
[ "Unlicense" ]
null
null
null
pitty/bin/django-admin.py
othienoJoe/Moringa-Tribune
7bb86e1b45f81dba3079abf6ab1f302d22234cd1
[ "Unlicense" ]
null
null
null
pitty/bin/django-admin.py
othienoJoe/Moringa-Tribune
7bb86e1b45f81dba3079abf6ab1f302d22234cd1
[ "Unlicense" ]
null
null
null
#!/home/moringa/Desktop/Moringa-Tribune/pitty/bin/python # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
31.409091
80
0.727931
4a26afd7fa3c76dfe085506dd6ddb52c150528e5
181
py
Python
settings/channel_archiver/NIHSAMPLE_FROZEN_OPTICAL_settings.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
null
null
null
settings/channel_archiver/NIHSAMPLE_FROZEN_OPTICAL_settings.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
1
2019-10-22T21:28:31.000Z
2019-10-22T21:39:12.000Z
settings/channel_archiver/NIHSAMPLE_FROZEN_OPTICAL_settings.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
2
2019-06-06T15:06:46.000Z
2020-07-20T02:03:22.000Z
MEAN.filename = '//mx340hs/data/anfinrud_1903/Archive/NIH.SAMPLE_FROZEN_OPTICAL.MEAN.txt' MEAN2.filename = '//mx340hs/data/anfinrud_1903/Archive/NIH.SAMPLE_FROZEN_OPTICAL.MEAN2.txt'
90.5
91
0.828729
4a26b0a39ecf4bca8d56c7539b428348d71afc73
5,940
py
Python
migrations/versions/9aa069b2417d_.py
jiejiang/inventory
9ce34a54812a23785504bbe62d914afde797895f
[ "Apache-2.0" ]
1
2021-10-06T04:28:09.000Z
2021-10-06T04:28:09.000Z
migrations/versions/9aa069b2417d_.py
jiejiang/inventory
9ce34a54812a23785504bbe62d914afde797895f
[ "Apache-2.0" ]
6
2021-03-19T01:45:44.000Z
2022-03-11T23:52:09.000Z
migrations/versions/9aa069b2417d_.py
jiejiang/inventory
9ce34a54812a23785504bbe62d914afde797895f
[ "Apache-2.0" ]
null
null
null
"""empty message Revision ID: 9aa069b2417d Revises: None Create Date: 2016-08-22 15:22:08.772102 """ # revision identifiers, used by Alembic. revision = '9aa069b2417d' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('city', sa.Column('id', sa.Integer(), nullable=False), sa.Column('parent_id', sa.Integer(), nullable=True), sa.Column('name', sa.String(length=32), nullable=False), sa.Column('type', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['parent_id'], ['city.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_city_name'), 'city', ['name'], unique=False) op.create_index(op.f('ix_city_type'), 'city', ['type'], unique=False) op.create_table('job', sa.Column('id', sa.Integer(), nullable=False), sa.Column('uuid', sa.String(length=64), nullable=False), sa.Column('percentage', sa.Integer(), nullable=False), sa.Column('status', sa.Integer(), nullable=False), sa.Column('creation_time', sa.DateTime(), nullable=True), sa.Column('completion_time', sa.DateTime(), nullable=True), sa.Column('message', sa.Text(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_job_uuid'), 'job', ['uuid'], unique=True) op.create_table('product_info', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=False), sa.Column('net_weight', sa.Float(), nullable=False), sa.Column('price_per_kg', sa.Float(), nullable=False), sa.Column('full_name', sa.String(length=128), nullable=True), sa.Column('deprecated', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_product_info_name'), 'product_info', ['name'], unique=True) op.create_table('retraction', sa.Column('id', sa.Integer(), nullable=False), sa.Column('uuid', sa.String(length=64), nullable=False), sa.Column('success', sa.Boolean(), nullable=False), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('message', sa.Text(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_retraction_uuid'), 'retraction', ['uuid'], unique=True) op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=50), nullable=False), sa.Column('password', sa.String(length=255), nullable=False), sa.Column('reset_password_token', sa.String(length=100), nullable=False), sa.Column('email', sa.String(length=255), nullable=False), sa.Column('confirmed_at', sa.DateTime(), nullable=True), sa.Column('is_enabled', sa.Boolean(), nullable=False), sa.Column('first_name', sa.String(length=50), nullable=False), sa.Column('last_name', sa.String(length=50), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) op.create_table('order', sa.Column('id', sa.Integer(), nullable=False), sa.Column('order_number', sa.String(length=128), nullable=False), sa.Column('type', sa.Integer(), nullable=True), sa.Column('upload_time', sa.DateTime(), nullable=True), sa.Column('used', sa.Boolean(), nullable=False), sa.Column('used_time', sa.DateTime(), nullable=True), sa.Column('sender_address', sa.String(length=256), nullable=True), sa.Column('receiver_address', sa.String(length=256), nullable=True), sa.Column('receiver_name', sa.String(length=32), nullable=True), sa.Column('receiver_id_number', sa.String(length=64), nullable=True), sa.Column('job_id', sa.Integer(), nullable=True), sa.Column('retraction_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['job_id'], ['job.id'], ), sa.ForeignKeyConstraint(['retraction_id'], ['retraction.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_order_order_number'), 'order', ['order_number'], unique=True) op.create_index(op.f('ix_order_type'), 'order', ['type'], unique=False) op.create_index(op.f('ix_order_used'), 'order', ['used'], unique=False) op.create_table('product_count_info', sa.Column('id', sa.Integer(), nullable=False), sa.Column('product_info_id', sa.Integer(), nullable=True), sa.Column('count', sa.Integer(), nullable=False), sa.Column('gross_weight_per_box', sa.Float(), nullable=False), sa.ForeignKeyConstraint(['product_info_id'], ['product_info.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('product_info_id', 'count') ) op.create_index(op.f('ix_product_count_info_count'), 'product_count_info', ['count'], unique=False) op.create_index(op.f('ix_product_count_info_product_info_id'), 'product_count_info', ['product_info_id'], unique=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_product_count_info_product_info_id'), table_name='product_count_info') op.drop_index(op.f('ix_product_count_info_count'), table_name='product_count_info') op.drop_table('product_count_info') op.drop_index(op.f('ix_order_used'), table_name='order') op.drop_index(op.f('ix_order_type'), table_name='order') op.drop_index(op.f('ix_order_order_number'), table_name='order') op.drop_table('order') op.drop_table('user') op.drop_index(op.f('ix_retraction_uuid'), table_name='retraction') op.drop_table('retraction') op.drop_index(op.f('ix_product_info_name'), table_name='product_info') op.drop_table('product_info') op.drop_index(op.f('ix_job_uuid'), table_name='job') op.drop_table('job') op.drop_index(op.f('ix_city_type'), table_name='city') op.drop_index(op.f('ix_city_name'), table_name='city') op.drop_table('city') ### end Alembic commands ###
46.771654
123
0.685017
4a26b0c4195824609cb3fc706b2b3bdbca4fa1f9
4,859
py
Python
api.py
locus-ioe/SF21-Project-1-Template
ad813ddd5619d66e9375d17a0e58b3d3f3d99610
[ "MIT" ]
null
null
null
api.py
locus-ioe/SF21-Project-1-Template
ad813ddd5619d66e9375d17a0e58b3d3f3d99610
[ "MIT" ]
null
null
null
api.py
locus-ioe/SF21-Project-1-Template
ad813ddd5619d66e9375d17a0e58b3d3f3d99610
[ "MIT" ]
null
null
null
""" This file contains the code to setup your own REST API server for use in the project. The custom REST API server fetches data from the original One API and only provides the first 20 characters for use in the actual app. The comments throughout the file will guide you to fully setup your own API server. The required utility functions are also provided in the file itself. """ import requests # noqa from flask import Flask, jsonify, request # noqa app = Flask(__name__) # The following variable is a global variable that stores only the required # data from The One API that is to be sent to your web app. characters = [] # Import the config file which contains your API key. Head over to config.py # and set up your API key there. If you don't have it yet, follow the URL and # create one. app.config.from_pyfile("config.py") API_KEY = app.config["API_KEY"] URL = "https://the-one-api.dev/v2/" # These entities are the only ones that you will be needing in your app. # You will be extracting them from the fetched data before making it # available to your app. required_keys = {"_id", "name", "race", "gender", "wikiUrl"} # This is the utility function that will extract the required entities # mentioned above. This function accepts the list of characters obtained # from The One API and returns the list of characters with only the required # five fields def filter_character_fields(raw_characters): filtered_characters = [] for character in raw_characters: filtered_characters.append( {key: value for key, value in character.items() if key in required_keys} ) return filtered_characters # This is your own character retrieving API endpoint. You will be hitting this # endpoint to get the characters with only the required fields in your app. @app.route("/character", methods=["GET"]) def get_characters(): headers = {"Authorization": f"Bearer {API_KEY}"} # noqa # Send out a request to The One API including the headers above to retrieve # the characters. You have to fetch only 20 characters, so you need to set # a limit while fetching. The limit to retrieve characters can be set as # "URL_TO_RETRIEVE_CHARACTER?limit=20". For further information, you can # consult the documentation of The One API by following this URL, # https://the-one-api.dev/documentation # The following two variables are placeholders to store the received # response from the API and for the list of characters after converting # that into JSON format. Edit these lines to obtain the required behaviour. response = None # noqa raw_characters = [] # noqa # This variable stores the filtered character list that only contains the # fields required in yoyur web app. You can call the utility function that # we have provided above to extract the required fields. Edit the following # line to include the funciton call for extraction. characters = [] return jsonify(characters) # This is your own character adding API endpoint. You will be hitting this # endpoint with the POST method to add new characters to your API data. @app.route("/character", methods=["POST"]) def create_character(): # Get a JSON of the POST request to this endpoint and store it in the # following variable. character = None # noqa # Edit the following lines to store the values obtained from the POST # request. Store the values of field names in the corresponding field name # variables provided below. Extract the values from the character variable. _id = None name = None race = None gender = None wikiUrl = None # This line inserts the character details obtained from the POST request to # the global data variable. You need not change anything in the following # line but you are highly encouraged to understand the code and search for # similar related list manipulation functions. characters.insert( 0, {"_id": _id, "name": name, "race": race, "gender": gender, "wikiUrl": wikiUrl}, ) return jsonify(message="Character Created!", status="200") # This is your own character deleting API endpoint. You will be hitting this # endpoint with the DELETE method to delete characters from your API data. @app.route("/character/<id>", methods=["DELETE"]) def delete_character(id): # Using a for loop to go through all the characters to find the character # with the matching ID for deletion for character in characters: if character["_id"] == id: # Write down the character removal logic here. Removing the # characters means deleting its entry from the global character # list in this file. pass return jsonify() # API Runs on port 5001 if __name__ == "__main__": app.run(port=5001, debug=True)
40.831933
87
0.722165
4a26b11db112ba49b60015a7ec1f730fa53507af
991
py
Python
kommersant_parser.py
Zed-chi/news-parser
20c5592baaa8d80182b45b0a2aafde4baaf3357a
[ "MIT" ]
1
2019-01-14T17:59:34.000Z
2019-01-14T17:59:34.000Z
kommersant_parser.py
Zed-chi/news-parser
20c5592baaa8d80182b45b0a2aafde4baaf3357a
[ "MIT" ]
null
null
null
kommersant_parser.py
Zed-chi/news-parser
20c5592baaa8d80182b45b0a2aafde4baaf3357a
[ "MIT" ]
1
2019-01-14T17:59:37.000Z
2019-01-14T17:59:37.000Z
from bs4 import BeautifulSoup as web from basic_parser import Parser class Kommersant_parser(Parser): def __init__(self): super().__init__("http://www.kommersant.ru/RSS/news.xml") self.encoding = "windows-1251" self.site_encoding = "windows-1251" def grab(self, url): content = web(self.get_content(url, self.site_encoding), "html.parser") obj = {} if content.select(".article_name"): obj["title"] = content.select(".article_name")[0].text if content.select(".article_text_wrapper > p"): obj["content"] = list( map( lambda x: x.text, content.select(".article_text_wrapper > p") ) ) return obj if __name__ == "__main__": kom = Kommersant_parser() news = kom.news() print(news) url = news[0]["link"] title = news[0]["title"] print(title, url) data = kom.grab(url) print(data)
28.314286
79
0.566095
4a26b1643b6fb3d83c9b6501d4279a47860b8b65
8,372
py
Python
tritam_crm_sms/models/stock_picking.py
kenysmile/test_facebook
844a3ddd53abd319c0115de86909118a37106c67
[ "Apache-2.0" ]
null
null
null
tritam_crm_sms/models/stock_picking.py
kenysmile/test_facebook
844a3ddd53abd319c0115de86909118a37106c67
[ "Apache-2.0" ]
null
null
null
tritam_crm_sms/models/stock_picking.py
kenysmile/test_facebook
844a3ddd53abd319c0115de86909118a37106c67
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from odoo import models, fields, api,tools,_ import calendar from datetime import timedelta, date import datetime import re from threading import Timer, Thread #import imp import sys #reload(sys) #sys.setdefaultencoding("utf8") from odoo.exceptions import UserError import logging _logger = logging.getLogger(__name__) from pytz import timezone from dateutil.relativedelta import relativedelta class Duoc_Delivery_Carrier(models.Model): _inherit = "delivery.carrier" type_method = fields.Selection([ (1, 'Ship ngoài'), (2, 'Hãng vận chuyển'), ], string='Loại vận chuyển', default= 1) mail_template = fields.Many2one('mail.template', "SMS Template", domain=[('model_id.model', '=', 'stock.picking')]) mail_template_do_out = fields.Many2one('mail.template', "SMS Template DO OUT", domain=[('model_id.model', '=', 'stock.picking')]) link_shipping = fields.Char(string="Link tra cứu MVĐ") class Duoc_Stock_Picking(models.Model): _inherit = "stock.picking" @api.multi def do_new_transfer(self): # so = self.env['sale.order'].browse(self.group_id.procurement_ids[0].sale_line_id.order_id.id) \ # or self.env['sale.order'].search([('name','=',self.group_id.name)]) if self.group_id.procurement_ids: so = self.env['sale.order'].browse(self.group_id.procurement_ids[0].sale_line_id.order_id.id) else: so = self.env['sale.order'].search([('name', '=', self.group_id.name)]) user_tz = self.env.user.tz or u'UTC' local_time = datetime.datetime.now(timezone(user_tz)) utc_time = datetime.datetime.now(timezone('UTC')) if local_time.day > utc_time.day: delay_hours_local = local_time.hour + 24 - utc_time.hour elif local_time.day < utc_time.day: delay_hours_local = local_time.hour - (utc_time.hour + 24) else: delay_hours_local = local_time.hour - utc_time.hour if self.name.find('PICK') != -1: if so.carrier_id: if not so.carrier_id.mail_template: raise UserError(_("Phương án giao hàng của %s chưa có SMS Template " % (so.name))) lines = "" for line in so.order_line: qty = line.product_uom_qty or "" price_unit = line.price_unit or "" product = line.product_id.name or "" lines += "Số lượng: " + str(qty) + " Đơn Giá: " + str(price_unit) + " Sản Phẩm: " + str( product) + ", " content = re.sub(r'<.*?>', '', so.carrier_id.mail_template.body_html).replace('\n', '') content_cv = content.format(lines=lines, amount_total=str(so.amount_total), contact=so.partner_id.name, address=so.partner_id.contact_address or "", sale_order=so.name,link_mvd=so.carrier_id.link_shipping or "",company_phone=self.env.user.company_id.phone or "", product=so.partner_id.x_product_id.name or "", category=so.partner_id.x_product_id.categ_id.name or "") if so.carrier_id.type_method == 1: if so.partner_id.phone and so.partner_id.sms: self.env['tritam.sms'].send_sms_api(so.partner_id.phone, content_cv) body_html = "<div><ul>" \ "<li>Gửi Sms</li>" \ "<li>Người gửi: {sale_man}</li>" \ "<li>Ngày gửi: {time}</li>" \ "<li>Hành động: gửi SMS</li>" \ "<li>Nội dung SMS: {note} </li>" \ "</ul></div>".format(sale_man=self.env.user.name, time=fields.datetime.now()-relativedelta(hours=delay_hours_local), note=content_cv) self.message_post(body_html) self.env['tritam.history.sms'].sudo().create({ 'mail_template': so.carrier_id.mail_template.id, 'user_id': self.env.user.id, 'partner_id': so.partner_id.id, 'date': fields.datetime.now(), }) elif so.carrier_id.type_method == 2: now = datetime.datetime.now()-relativedelta(hours=delay_hours_local) run_at = (now + timedelta(days=1)) giventime = run_at.replace(hour=8, minute=00, second=0, microsecond=0) _logger.info( "--------------before-------------" + str(now)+"------------------------------------------") _logger.info( "--------------before-------------" + str(giventime)+"------------------------------------------") if so.partner_id.phone and so.partner_id.sms: self.env['tritam.sms'].send_sms_api_delay(so.partner_id.phone, content_cv,str(giventime)) body_html = "<div><ul>" \ "<li>Gửi Sms</li>" \ "<li>Người gửi: {sale_man}</li>" \ "<li>Ngày gửi: {time}</li>" \ "<li>Hành động: gửi SMS</li>" \ "<li>Nội dung SMS: {note} </li>" \ "</ul></div>".format(sale_man=self.env.user.name, time=giventime, note=content_cv) self.message_post(body_html) self.env['tritam.history.sms'].sudo().create({ 'mail_template': so.carrier_id.mail_template.id, 'user_id': self.env.user.id, 'partner_id': so.partner_id.id, 'date': str(giventime+relativedelta(hours=delay_hours_local)), }) else : raise UserError(_("Phương án giao hàng của %s chưa có loại vận chuyển" % (so.name))) else: raise UserError(_("%s chưa có phương án giao hàng"%(so.name))) if self.name.find('OUT') != -1: if so.carrier_id: if not so.carrier_id.mail_template_do_out: raise UserError(_("Phương án giao hàng của %s chưa có SMS Template " % (so.name))) content = re.sub(r'<.*?>', '', so.carrier_id.mail_template_do_out.body_html).replace('\n', '') content_cv = content.format(contact=so.partner_id.name,product = so.partner_id.x_product_id.name or "", category=so.partner_id.x_product_id.categ_id.name or "") if so.partner_id.phone and so.partner_id.sms: self.env['tritam.sms'].send_sms_api(so.partner_id.phone, content_cv) body_html = "<div><ul>" \ "<li>Gửi Sms</li>" \ "<li>Người gửi: {sale_man}</li>" \ "<li>Ngày gửi: {time}</li>" \ "<li>Hành động: gửi SMS</li>" \ "<li>Nội dung SMS: {note} </li>" \ "</ul></div>".format(sale_man=self.env.user.name, time=fields.datetime.now()-relativedelta(hours=delay_hours_local), note=content_cv) self.message_post(body_html) self.env['tritam.history.sms'].sudo().create({ 'mail_template': so.carrier_id.mail_template_do_out.id, 'user_id': self.env.user.id, 'partner_id': so.partner_id.id, 'date': fields.datetime.now(), }) else: raise UserError(_("%s chưa có phương án giao hàng"%(so.name))) res = super(Duoc_Stock_Picking, self).do_new_transfer() return res
56.952381
157
0.491758
4a26b1665885f6ff757ab0504ffe9658b1722fb5
11,180
py
Python
src/robot/running/handlers.py
d-biehl/robotframework
ac4803649702ada9d18c5357ad7fcbbebcd0fb89
[ "ECL-2.0", "Apache-2.0" ]
1
2020-02-14T12:19:18.000Z
2020-02-14T12:19:18.000Z
src/robot/running/handlers.py
imust6226/robotframework
08c56fef2ebc64d682c7f99acd77c480d8d0e028
[ "ECL-2.0", "Apache-2.0" ]
26
2020-04-07T04:25:35.000Z
2022-03-01T08:08:23.000Z
src/robot/running/handlers.py
imust6226/robotframework
08c56fef2ebc64d682c7f99acd77c480d8d0e028
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import copy import inspect from robot.utils import (getdoc, getshortdoc, is_list_like, normpath, printable_name, split_tags_from_doc, type_name) from robot.errors import DataError from robot.model import Tags from .arguments import ArgumentSpec, DynamicArgumentParser, PythonArgumentParser from .dynamicmethods import GetKeywordSource, GetKeywordTypes from .librarykeywordrunner import (EmbeddedArgumentsRunner, LibraryKeywordRunner, RunKeywordRunner) from .runkwregister import RUN_KW_REGISTER def Handler(library, name, method): if RUN_KW_REGISTER.is_run_keyword(library.orig_name, name): return _RunKeywordHandler(library, name, method) return _PythonHandler(library, name, method) def DynamicHandler(library, name, method, doc, argspec, tags=None): if RUN_KW_REGISTER.is_run_keyword(library.orig_name, name): return _DynamicRunKeywordHandler(library, name, method, doc, argspec, tags) return _DynamicHandler(library, name, method, doc, argspec, tags) def InitHandler(library, method=None, docgetter=None): return _PythonInitHandler(library, '__init__', method, docgetter) class _RunnableHandler: def __init__(self, library, handler_name, handler_method, doc='', tags=None): self.library = library self._handler_name = handler_name self.name = self._get_name(handler_name, handler_method) self.arguments = self._parse_arguments(handler_method) self._method = self._get_initial_handler(library, handler_name, handler_method) doc, tags_from_doc = split_tags_from_doc(doc or '') tags_from_attr = self._get_tags_from_attribute(handler_method) self._doc = doc self.tags = Tags(tuple(tags_from_doc) + tuple(tags_from_attr) + tuple(tags or ())) def _get_name(self, handler_name, handler_method): robot_name = getattr(handler_method, 'robot_name', None) name = robot_name or printable_name(handler_name, code_style=True) if not name: raise DataError('Keyword name cannot be empty.') return name def _parse_arguments(self, handler_method): raise NotImplementedError def _get_tags_from_attribute(self, handler_method): tags = getattr(handler_method, 'robot_tags', ()) if not is_list_like(tags): raise DataError("Expected tags to be list-like, got %s." % type_name(tags)) return tags def _get_initial_handler(self, library, name, method): if library.scope.is_global: return self._get_global_handler(method, name) return None def resolve_arguments(self, args, variables=None): return self.arguments.resolve(args, variables, self.library.converters) @property def doc(self): return self._doc @property def longname(self): return '%s.%s' % (self.library.name, self.name) @property def shortdoc(self): return getshortdoc(self.doc) @property def libname(self): return self.library.name @property def source(self): return self.library.source @property def lineno(self): return -1 def create_runner(self, name): return LibraryKeywordRunner(self) def current_handler(self): if self._method: return self._method return self._get_handler(self.library.get_instance(), self._handler_name) def _get_global_handler(self, method, name): return method def _get_handler(self, lib_instance, handler_name): try: return getattr(lib_instance, handler_name) except AttributeError: # Occurs with old-style classes. if handler_name == '__init__': return None raise class _PythonHandler(_RunnableHandler): def __init__(self, library, handler_name, handler_method): _RunnableHandler.__init__(self, library, handler_name, handler_method, getdoc(handler_method)) def _parse_arguments(self, handler_method): return PythonArgumentParser().parse(handler_method, self.longname) @property def source(self): handler = self.current_handler() # `getsourcefile` can return None and raise TypeError. try: source = inspect.getsourcefile(inspect.unwrap(handler)) except TypeError: source = None return normpath(source) if source else self.library.source @property def lineno(self): handler = self.current_handler() try: lines, start_lineno = inspect.getsourcelines(inspect.unwrap(handler)) except (TypeError, OSError, IOError): return -1 for increment, line in enumerate(lines): if line.strip().startswith('def '): return start_lineno + increment return start_lineno class _DynamicHandler(_RunnableHandler): def __init__(self, library, handler_name, dynamic_method, doc='', argspec=None, tags=None): self._argspec = argspec self._run_keyword_method_name = dynamic_method.name self._supports_kwargs = dynamic_method.supports_kwargs _RunnableHandler.__init__(self, library, handler_name, dynamic_method.method, doc, tags) self._source_info = None def _parse_arguments(self, handler_method): spec = DynamicArgumentParser().parse(self._argspec, self.longname) if not self._supports_kwargs: if spec.var_named: raise DataError("Too few '%s' method parameters for **kwargs " "support." % self._run_keyword_method_name) if spec.named_only: raise DataError("Too few '%s' method parameters for " "keyword-only arguments support." % self._run_keyword_method_name) get_keyword_types = GetKeywordTypes(self.library.get_instance()) spec.types = get_keyword_types(self._handler_name) return spec @property def source(self): if self._source_info is None: self._source_info = self._get_source_info() return self._source_info[0] def _get_source_info(self): get_keyword_source = GetKeywordSource(self.library.get_instance()) try: source = get_keyword_source(self._handler_name) except DataError as err: self.library.report_error( "Getting source information for keyword '%s' failed: %s" % (self.name, err.message), err.details ) return None, -1 if not source: return self.library.source, -1 if ':' not in source: return source, -1 path, lineno = source.rsplit(':', 1) try: return path or self.library.source, int(lineno) except ValueError: return source, -1 @property def lineno(self): if self._source_info is None: self._source_info = self._get_source_info() return self._source_info[1] def resolve_arguments(self, arguments, variables=None): positional, named = super().resolve_arguments(arguments, variables) if not self._supports_kwargs: positional, named = self.arguments.map(positional, named) return positional, named def _get_handler(self, lib_instance, handler_name): runner = getattr(lib_instance, self._run_keyword_method_name) return self._get_dynamic_handler(runner, handler_name) def _get_global_handler(self, method, name): return self._get_dynamic_handler(method, name) def _get_dynamic_handler(self, runner, name): def handler(*positional, **kwargs): if self._supports_kwargs: return runner(name, positional, kwargs) else: return runner(name, positional) return handler class _RunKeywordHandler(_PythonHandler): def create_runner(self, name): default_dry_run_keywords = ('name' in self.arguments.positional and self._args_to_process) return RunKeywordRunner(self, default_dry_run_keywords) @property def _args_to_process(self): return RUN_KW_REGISTER.get_args_to_process(self.library.orig_name, self.name) def resolve_arguments(self, args, variables=None): return self.arguments.resolve(args, variables, self.library.converters, resolve_named=False, resolve_variables_until=self._args_to_process) class _DynamicRunKeywordHandler(_DynamicHandler, _RunKeywordHandler): _parse_arguments = _RunKeywordHandler._parse_arguments resolve_arguments = _RunKeywordHandler.resolve_arguments class _PythonInitHandler(_PythonHandler): def __init__(self, library, handler_name, handler_method, docgetter): _PythonHandler.__init__(self, library, handler_name, handler_method) self._docgetter = docgetter @property def doc(self): if self._docgetter: self._doc = self._docgetter() or self._doc self._docgetter = None return self._doc def _parse_arguments(self, init_method): parser = PythonArgumentParser(type='Library') return parser.parse(init_method or (lambda: None), self.library.name) class EmbeddedArgumentsHandler: def __init__(self, name_regexp, orig_handler): self.arguments = ArgumentSpec() # Show empty argument spec for Libdoc self.name_regexp = name_regexp self._orig_handler = orig_handler def __getattr__(self, item): return getattr(self._orig_handler, item) @property def library(self): return self._orig_handler.library @library.setter def library(self, library): self._orig_handler.library = library def matches(self, name): return self.name_regexp.match(name) is not None def create_runner(self, name): return EmbeddedArgumentsRunner(self, name) def __copy__(self): orig_handler = copy(self._orig_handler) return EmbeddedArgumentsHandler(self.name_regexp, orig_handler)
35.833333
85
0.657513
4a26b29fe5e4b988588579acfcf2c792c3ff4f6d
3,554
py
Python
sdk/python/pulumi_azure/compute/get_dedicated_host.py
AdminTurnedDevOps/pulumi-azure
affd9eaaee3016f350f0d0469694dbd52850300b
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/compute/get_dedicated_host.py
AdminTurnedDevOps/pulumi-azure
affd9eaaee3016f350f0d0469694dbd52850300b
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/compute/get_dedicated_host.py
AdminTurnedDevOps/pulumi-azure
affd9eaaee3016f350f0d0469694dbd52850300b
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetDedicatedHostResult: """ A collection of values returned by getDedicatedHost. """ def __init__(__self__, dedicated_host_group_name=None, id=None, location=None, name=None, resource_group_name=None, tags=None): if dedicated_host_group_name and not isinstance(dedicated_host_group_name, str): raise TypeError("Expected argument 'dedicated_host_group_name' to be a str") __self__.dedicated_host_group_name = dedicated_host_group_name if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") __self__.location = location """ The location where the Dedicated Host exists. """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if resource_group_name and not isinstance(resource_group_name, str): raise TypeError("Expected argument 'resource_group_name' to be a str") __self__.resource_group_name = resource_group_name if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") __self__.tags = tags """ A mapping of tags assigned to the Dedicated Host. """ class AwaitableGetDedicatedHostResult(GetDedicatedHostResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDedicatedHostResult( dedicated_host_group_name=self.dedicated_host_group_name, id=self.id, location=self.location, name=self.name, resource_group_name=self.resource_group_name, tags=self.tags) def get_dedicated_host(dedicated_host_group_name=None,name=None,resource_group_name=None,opts=None): """ Use this data source to access information about an existing Dedicated Host. :param str dedicated_host_group_name: Specifies the name of the Dedicated Host Group the Dedicated Host is located in. :param str name: Specifies the name of the Dedicated Host. :param str resource_group_name: Specifies the name of the resource group the Dedicated Host is located in. """ __args__ = dict() __args__['dedicatedHostGroupName'] = dedicated_host_group_name __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:compute/getDedicatedHost:getDedicatedHost', __args__, opts=opts).value return AwaitableGetDedicatedHostResult( dedicated_host_group_name=__ret__.get('dedicatedHostGroupName'), id=__ret__.get('id'), location=__ret__.get('location'), name=__ret__.get('name'), resource_group_name=__ret__.get('resourceGroupName'), tags=__ret__.get('tags'))
40.850575
131
0.689645
4a26b3511eabb848557335172dccd4c669daef06
1,969
py
Python
xrpl/ledger/main.py
florent-uzio/xrpl-py
ce396a15a6fc39ca20e035636463b58b231ffeac
[ "0BSD" ]
1
2021-04-07T16:59:01.000Z
2021-04-07T16:59:01.000Z
xrpl/ledger/main.py
florent-uzio/xrpl-py
ce396a15a6fc39ca20e035636463b58b231ffeac
[ "0BSD" ]
null
null
null
xrpl/ledger/main.py
florent-uzio/xrpl-py
ce396a15a6fc39ca20e035636463b58b231ffeac
[ "0BSD" ]
null
null
null
"""High-level ledger methods with the XRPL ledger.""" from typing import Any, Dict, cast from xrpl.clients import Client, XRPLRequestFailureException from xrpl.models.requests import Fee, Ledger def get_latest_validated_ledger_sequence(client: Client) -> int: """ Returns the sequence number of the latest validated ledger. Args: client: The network client to use to send the request. Returns: The sequence number of the latest validated ledger. Raises: XRPLRequestFailureException: if the rippled API call fails. """ response = client.request(Ledger(ledger_index="validated")) result = cast(Dict[str, Any], response.result) if response.is_successful(): return cast(int, result["ledger_index"]) raise XRPLRequestFailureException(result) def get_latest_open_ledger_sequence(client: Client) -> int: """ Returns the sequence number of the latest open ledger. Args: client: The network client to use to send the request. Returns: The sequence number of the latest open ledger. Raises: XRPLRequestFailureException: if the rippled API call fails. """ response = client.request(Ledger(ledger_index="open")) result = cast(Dict[str, Any], response.result) if response.is_successful(): return cast(int, result["ledger_index"]) raise XRPLRequestFailureException(result) def get_fee(client: Client) -> str: """ Query the ledger for the current minimum transaction fee. Args: client: the network client used to make network calls. Returns: The minimum fee for transactions. Raises: XRPLRequestFailureException: if the rippled API call fails. """ response = client.request(Fee()) result = cast(Dict[str, Any], response.result) if response.is_successful(): return cast(str, result["drops"]["minimum_fee"]) raise XRPLRequestFailureException(result)
28.128571
67
0.694769
4a26b364a3062eebf66a8b8c3cb3402284c322eb
1,473
py
Python
MechFinder/urls.py
srinidh-007/MechFinder
6c217ee28963ea11b0960c982aa07cff35e31709
[ "Apache-2.0" ]
null
null
null
MechFinder/urls.py
srinidh-007/MechFinder
6c217ee28963ea11b0960c982aa07cff35e31709
[ "Apache-2.0" ]
null
null
null
MechFinder/urls.py
srinidh-007/MechFinder
6c217ee28963ea11b0960c982aa07cff35e31709
[ "Apache-2.0" ]
null
null
null
"""mechcheck URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from home import views urlpatterns = [ path('admin/', admin.site.urls), path('mechanic/', include('mechanic.urls')), path('customer/', include('customer.urls'), name="customer"), path('', views.home, name="home"), path('signup', views.signupuser, name="signupuser"), # path('customer', views.customer, name="customer"), path('login', views.loginuser, name="loginuser"), path('logout', views.logoutuser, name="logoutuser"), path('edit', views.editProfile, name="editProfile"), path('services', views.services, name="services"), path('about', views.about, name="about"), path('faqs', views.faqs, name="faqs"), path('contact/', views.contact, name="contact"), path('feedback', views.feedback, name="feedback"), ]
38.763158
77
0.682281
4a26b41f252e099f6bb08f49519ef23506e6c1db
148
py
Python
library_app/library_app/doctype/trancation/test_trancation.py
priyatoshy/FrappeLibraryApplication
73237b49f9647024ef7262b756fa799fe201b6d9
[ "MIT" ]
null
null
null
library_app/library_app/doctype/trancation/test_trancation.py
priyatoshy/FrappeLibraryApplication
73237b49f9647024ef7262b756fa799fe201b6d9
[ "MIT" ]
null
null
null
library_app/library_app/doctype/trancation/test_trancation.py
priyatoshy/FrappeLibraryApplication
73237b49f9647024ef7262b756fa799fe201b6d9
[ "MIT" ]
null
null
null
# Copyright (c) 2022, Priyatosh and Contributors # See license.txt # import frappe import unittest class TestTrancation(unittest.TestCase): pass
16.444444
48
0.783784
4a26b4fa42ce8085af307df776c8bc8a236820ad
3,542
py
Python
neurokit2/rsp/rsp_process.py
danibene/NeuroKit
df0ab6696e7418cf8b8dcd3ed82dbf879fa61b3a
[ "MIT" ]
null
null
null
neurokit2/rsp/rsp_process.py
danibene/NeuroKit
df0ab6696e7418cf8b8dcd3ed82dbf879fa61b3a
[ "MIT" ]
null
null
null
neurokit2/rsp/rsp_process.py
danibene/NeuroKit
df0ab6696e7418cf8b8dcd3ed82dbf879fa61b3a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pandas as pd from ..signal import signal_rate, signal_sanitize from .rsp_amplitude import rsp_amplitude from .rsp_clean import rsp_clean from .rsp_peaks import rsp_peaks from .rsp_phase import rsp_phase def rsp_process(rsp_signal, sampling_rate=1000, method="khodadad2018"): """**Process a respiration (RSP) signal** Convenience function that automatically processes a respiration signal with one of the following methods: * `Khodadad et al. (2018) <https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta>`_ * `BioSPPy <https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py>`_ Parameters ---------- rsp_signal : Union[list, np.array, pd.Series] The raw respiration channel (as measured, for instance, by a respiration belt). sampling_rate : int The sampling frequency of :func:`.rsp_signal` (in Hz, i.e., samples/second). method : str The processing pipeline to apply. Can be one of ``"khodadad2018"`` (default) or ``"biosppy"``. Returns ------- signals : DataFrame A DataFrame of same length as :func:`.rsp_signal` containing the following columns: * ``"RSP_Raw"``: the raw signal. * ``"RSP_Clean"``: the cleaned signal. * ``"RSP_Peaks"``: the respiratory peaks (exhalation onsets) marked as "1" in a list of zeros. * ``"RSP_Troughs"``: the respiratory troughs (inhalation onsets) marked as "1" in a list of zeros. * ``"RSP_Rate"``: breathing rate interpolated between inhalation peaks. * ``"RSP_Amplitude"``: breathing amplitude interpolated between inhalation peaks. * ``"RSP_Phase"``: breathing phase, marked by "1" for inspiration and "0" for expiration. * ``"RSP_PhaseCompletion"``: breathing phase completion, expressed in percentage (from 0 to 1), representing the stage of the current respiratory phase. info : dict A dictionary containing the samples at which inhalation peaks and exhalation troughs occur, accessible with the keys ``"RSP_Peaks"``, and ``"RSP_Troughs"`` respectively, as well as the signals' sampling rate. See Also -------- rsp_clean, rsp_findpeaks, signal_rate, rsp_amplitude, rsp_plot Examples -------- .. ipython:: python import neurokit2 as nk rsp = nk.rsp_simulate(duration=90, respiratory_rate=15) signals, info = nk.rsp_process(rsp, sampling_rate=1000) @savefig p_rsp_process_1.png scale=100% fig = nk.rsp_plot(signals) @suppress plt.close() """ # Sanitize input rsp_signal = signal_sanitize(rsp_signal) # Clean signal rsp_cleaned = rsp_clean(rsp_signal, sampling_rate=sampling_rate, method=method) # Extract, fix and format peaks peak_signal, info = rsp_peaks(rsp_cleaned, sampling_rate=sampling_rate, method=method, amplitude_min=0.3) info['sampling_rate'] = sampling_rate # Add sampling rate in dict info # Get additional parameters phase = rsp_phase(peak_signal, desired_length=len(rsp_signal)) amplitude = rsp_amplitude(rsp_cleaned, peak_signal) rate = signal_rate(info["RSP_Troughs"], sampling_rate=sampling_rate, desired_length=len(rsp_signal)) # Prepare output signals = pd.DataFrame( {"RSP_Raw": rsp_signal, "RSP_Clean": rsp_cleaned, "RSP_Amplitude": amplitude, "RSP_Rate": rate} ) signals = pd.concat([signals, phase, peak_signal], axis=1) return signals, info
38.5
109
0.682947
4a26b56d05aa2314899dcaa6729330c086fb5d37
6,463
py
Python
filer/admin/clipboardadmin.py
pabloriveracelerity/django-filer
db9d7c02c51e85af46fa8a47be522e6f391c1264
[ "BSD-3-Clause" ]
null
null
null
filer/admin/clipboardadmin.py
pabloriveracelerity/django-filer
db9d7c02c51e85af46fa8a47be522e6f391c1264
[ "BSD-3-Clause" ]
null
null
null
filer/admin/clipboardadmin.py
pabloriveracelerity/django-filer
db9d7c02c51e85af46fa8a47be522e6f391c1264
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import from django.conf.urls import url from django.contrib import admin from django.forms.models import modelform_factory from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from . import views from .. import settings as filer_settings from ..models import Clipboard, ClipboardItem, Folder from ..utils.files import ( UploadException, handle_request_files_upload, handle_upload, ) from ..utils.loader import load_model NO_FOLDER_ERROR = "Can't find folder to upload. Please refresh and try again" NO_PERMISSIONS_FOR_FOLDER = ( "Can't use this folder, Permission Denied. Please select another folder." ) Image = filer_settings.FILER_IMAGE_MODEL # ModelAdmins class ClipboardItemInline(admin.TabularInline): model = ClipboardItem class ClipboardAdmin(admin.ModelAdmin): model = Clipboard inlines = [ClipboardItemInline] filter_horizontal = ('files',) raw_id_fields = ('user',) verbose_name = "DEBUG Clipboard" verbose_name_plural = "DEBUG Clipboards" def get_urls(self): return [ url(r'^operations/paste_clipboard_to_folder/$', self.admin_site.admin_view(views.paste_clipboard_to_folder), name='filer-paste_clipboard_to_folder'), url(r'^operations/discard_clipboard/$', self.admin_site.admin_view(views.discard_clipboard), name='filer-discard_clipboard'), url(r'^operations/delete_clipboard/$', self.admin_site.admin_view(views.delete_clipboard), name='filer-delete_clipboard'), url(r'^operations/upload/(?P<folder_id>[0-9]+)/$', ajax_upload, name='filer-ajax_upload'), url(r'^operations/upload/no_folder/$', ajax_upload, name='filer-ajax_upload'), ] + super(ClipboardAdmin, self).get_urls() def get_model_perms(self, *args, **kwargs): """ It seems this is only used for the list view. NICE :-) """ return { 'add': False, 'change': False, 'delete': False, } @csrf_exempt def ajax_upload(request, folder_id=None): """ Receives an upload from the uploader. Receives only one file at a time. """ folder = None if folder_id: try: # Get folder folder = Folder.objects.get(pk=folder_id) except Folder.DoesNotExist: return JsonResponse({'error': NO_FOLDER_ERROR}) # check permissions if folder and not folder.has_add_children_permission(request): return JsonResponse({'error': NO_PERMISSIONS_FOR_FOLDER}) try: if len(request.FILES) == 1: # dont check if request is ajax or not, just grab the file upload, filename, is_raw = handle_request_files_upload(request) else: # else process the request as usual upload, filename, is_raw = handle_upload(request) # TODO: Deprecated/refactor # Get clipboad # clipboard = Clipboard.objects.get_or_create(user=request.user)[0] # find the file type for filer_class in filer_settings.FILER_FILE_MODELS: FileSubClass = load_model(filer_class) # TODO: What if there are more than one that qualify? if FileSubClass.matches_file_type(filename, upload, request): FileForm = modelform_factory( model=FileSubClass, fields=('original_filename', 'owner', 'file') ) break uploadform = FileForm({'original_filename': filename, 'owner': request.user.pk}, {'file': upload}) if uploadform.is_valid(): file_obj = uploadform.save(commit=False) # Enforce the FILER_IS_PUBLIC_DEFAULT file_obj.is_public = filer_settings.FILER_IS_PUBLIC_DEFAULT file_obj.folder = folder file_obj.save() # TODO: Deprecated/refactor # clipboard_item = ClipboardItem( # clipboard=clipboard, file=file_obj) # clipboard_item.save() # Try to generate thumbnails. if not file_obj.icons: # There is no point to continue, as we can't generate # thumbnails for this file. Usual reasons: bad format or # filename. file_obj.delete() # This would be logged in BaseImage._generate_thumbnails() # if FILER_ENABLE_LOGGING is on. return JsonResponse( {'error': 'failed to generate icons for file'}, status=500, ) thumbnail = None # Backwards compatibility: try to get specific icon size (32px) # first. Then try medium icon size (they are already sorted), # fallback to the first (smallest) configured icon. for size in (['32'] + filer_settings.FILER_ADMIN_ICON_SIZES[1::-1]): try: thumbnail = file_obj.icons[size] break except KeyError: continue data = { 'thumbnail': thumbnail, 'alt_text': '', 'label': str(file_obj), 'file_id': file_obj.pk, } if type(file_obj) == Image: thumbnail_180_options = { 'size': (180, 180), 'crop': True, 'upscale': True, } thumbnail_180 = file_obj.file.get_thumbnail( thumbnail_180_options) data['thumbnail_180'] = thumbnail_180.url data['original_image'] = file_obj.url return JsonResponse(data) else: form_errors = '; '.join(['%s: %s' % ( field, ', '.join(errors)) for field, errors in list( uploadform.errors.items()) ]) raise UploadException( "AJAX request not valid: form invalid '%s'" % ( form_errors,)) except UploadException as e: return JsonResponse({'error': str(e)}, status=500)
36.931429
77
0.57218
4a26b6568ed7e9fc334ef470f659697381265ba1
2,300
py
Python
tests/chainer_tests/functions_tests/array_tests/test_spatial_transformer_grid.py
disktnk/chainer
133798db470f6fd95973b882b9ccbd0c9726ac13
[ "MIT" ]
90
2017-02-23T04:04:47.000Z
2020-04-09T12:06:50.000Z
tests/chainer_tests/functions_tests/array_tests/test_spatial_transformer_grid.py
disktnk/chainer
133798db470f6fd95973b882b9ccbd0c9726ac13
[ "MIT" ]
7
2017-07-23T13:38:06.000Z
2018-07-10T07:09:03.000Z
tests/chainer_tests/functions_tests/array_tests/test_spatial_transformer_grid.py
disktnk/chainer
133798db470f6fd95973b882b9ccbd0c9726ac13
[ "MIT" ]
32
2017-02-28T07:40:38.000Z
2021-02-17T11:33:09.000Z
import unittest import numpy import chainer from chainer.backends import cuda from chainer import functions from chainer import gradient_check from chainer import testing from chainer.testing import attr @testing.parameterize(*testing.product({ 'use_cudnn': ['always', 'never'], })) class TestSpatialTransformerGrid(unittest.TestCase): def setUp(self): B = 3 self.theta = numpy.random.uniform(size=(B, 2, 3)).astype(numpy.float32) self.output_shape = (5, 6) self.grads = numpy.random.uniform( size=(B, 2) + self.output_shape).astype(self.theta.dtype) self.check_backward_options = { 'atol': 1e-4, 'rtol': 1e-3} def check_forward(self, theta, output_shape): grid = functions.spatial_transformer_grid(theta, output_shape).data theta = cuda.to_cpu(theta) B = theta.shape[0] H, W = output_shape expected = [] for b in range(B): for i in numpy.linspace(-1., 1., H): for j in numpy.linspace(-1., 1., W): coord = numpy.array([j, i, 1]) expected.append(self.theta[b].dot(coord)) expected = numpy.array( expected).reshape(B, H, W, 2).transpose(0, 3, 1, 2) testing.assert_allclose(grid, expected) self.assertEqual(grid.dtype, theta.dtype) def test_forward_cpu(self): self.check_forward(self.theta, self.output_shape) @attr.gpu def test_forward_gpu(self): self.check_forward(cuda.to_gpu(self.theta), self.output_shape) def check_backward(self, theta, output_shape, grads): with chainer.using_config('use_cudnn', self.use_cudnn): gradient_check.check_backward( functions.SpatialTransformerGrid(output_shape), (theta,), (grads,), dtype=numpy.float64, **self.check_backward_options) def test_backward_cpu(self): self.check_backward(self.theta, self.output_shape, self.grads) @attr.gpu def test_backward_gpu(self): with chainer.using_config('use_cudnn', self.use_cudnn): self.check_backward(cuda.to_gpu(self.theta), self.output_shape, cuda.to_gpu(self.grads)) testing.run_module(__name__, __file__)
32.394366
79
0.633913
4a26b6f0eeb024c64cd89fdd6ae3293bffcc0087
1,337
py
Python
source/evaluation/classification/evaluation.py
vered1986/NC_embeddings
8dec4e2f7918ab7606abf61b9d90e4f2786a9652
[ "Apache-2.0" ]
9
2019-06-11T02:55:07.000Z
2019-09-04T23:51:36.000Z
source/evaluation/classification/evaluation.py
vered1986/NC_embeddings
8dec4e2f7918ab7606abf61b9d90e4f2786a9652
[ "Apache-2.0" ]
null
null
null
source/evaluation/classification/evaluation.py
vered1986/NC_embeddings
8dec4e2f7918ab7606abf61b9d90e4f2786a9652
[ "Apache-2.0" ]
2
2020-08-26T10:20:07.000Z
2021-02-24T07:00:33.000Z
import codecs from sklearn import metrics def output_predictions(predictions_file, relations, predictions, test_set_keys, test_labels): """ Output the model predictions for the test set :param predictions_file: the output file path :param relations: the ordered list of relations :param predictions: the predicted labels for the test set :param test_set: the test set - a list of (w1, w2, relation) instances :return: """ with codecs.open(predictions_file, 'w', 'utf-8') as f_out: for i, (w1, w2) in enumerate(test_set_keys): f_out.write('\t'.join([w1, w2, relations[test_labels[i]], relations[predictions[i]]]) + '\n') def evaluate(test_set, predictions): """ Evaluate performance of the model on the test set :param test_set: the test set object :param predictions: the predicted values :return: mean F1 over all classes """ full_report = metrics.classification_report(test_set.labels, predictions, labels=range(len(test_set.index2label)), target_names=test_set.index2label, digits=3) pre, rec, f1, support = metrics.precision_recall_fscore_support(test_set.labels, predictions, average='weighted') return pre, rec, f1, support, full_report
40.515152
117
0.667165
4a26b7224ae81404fd3db93f5c4e82c36aa013a0
39,971
py
Python
tensorflow/python/framework/tensor_shape.py
MathMachado/tensorflow
56afda20b15f234c23e8393f7e337e7dd2659c2d
[ "Apache-2.0" ]
848
2019-12-03T00:16:17.000Z
2022-03-31T22:53:17.000Z
tensorflow/python/framework/tensor_shape.py
MathMachado/tensorflow
56afda20b15f234c23e8393f7e337e7dd2659c2d
[ "Apache-2.0" ]
656
2019-12-03T00:48:46.000Z
2022-03-31T18:41:54.000Z
tensorflow/python/framework/tensor_shape.py
MathMachado/tensorflow
56afda20b15f234c23e8393f7e337e7dd2659c2d
[ "Apache-2.0" ]
506
2019-12-03T00:46:26.000Z
2022-03-30T10:34:56.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper classes for tensor shape inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.python import tf2 from tensorflow.python.eager import monitoring from tensorflow.python.framework import dtypes from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export _TENSORSHAPE_V2_OVERRIDE = None _api_usage_gauge = monitoring.BoolGauge( "/tensorflow/api/v2_tensorshape", "Whether tensor_shape.enable_v2_tensorshape() is called.") @tf_export(v1=["enable_v2_tensorshape"]) def enable_v2_tensorshape(): """In TensorFlow 2.0, iterating over a TensorShape instance returns values. This enables the new behavior. Concretely, `tensor_shape[i]` returned a Dimension instance in V1, but it V2 it returns either an integer, or None. Examples: ``` ####################### # If you had this in V1: value = tensor_shape[i].value # Do this in V2 instead: value = tensor_shape[i] ####################### # If you had this in V1: for dim in tensor_shape: value = dim.value print(value) # Do this in V2 instead: for value in tensor_shape: print(value) ####################### # If you had this in V1: dim = tensor_shape[i] dim.assert_is_compatible_with(other_shape) # or using any other shape method # Do this in V2 instead: if tensor_shape.rank is None: dim = Dimension(None) else: dim = tensor_shape.dims[i] dim.assert_is_compatible_with(other_shape) # or using any other shape method # The V2 suggestion above is more explicit, which will save you from # the following trap (present in V1): # you might do in-place modifications to `dim` and expect them to be reflected # in `tensor_shape[i]`, but they would not be. ``` """ global _TENSORSHAPE_V2_OVERRIDE # pylint: disable=invalid-name _TENSORSHAPE_V2_OVERRIDE = True _api_usage_gauge.get_cell().set(True) @tf_export(v1=["disable_v2_tensorshape"]) def disable_v2_tensorshape(): """Disables the V2 TensorShape behavior and reverts to V1 behavior. See docstring for `enable_v2_tensorshape` for details about the new behavior. """ global _TENSORSHAPE_V2_OVERRIDE # pylint: disable=invalid-name _TENSORSHAPE_V2_OVERRIDE = False _api_usage_gauge.get_cell().set(False) @tf_export( "compat.dimension_value", v1=["dimension_value", "compat.dimension_value"]) def dimension_value(dimension): """Compatibility utility required to allow for both V1 and V2 behavior in TF. Until the release of TF 2.0, we need the legacy behavior of `TensorShape` to coexist with the new behavior. This utility is a bridge between the two. When accessing the value of a TensorShape dimension, use this utility, like this: ``` # If you had this in your V1 code: value = tensor_shape[i].value # Use `dimension_value` as direct replacement compatible with both V1 & V2: value = dimension_value(tensor_shape[i]) # This would be the V2 equivalent: value = tensor_shape[i] # Warning: this will return the dim value in V2! ``` Arguments: dimension: Either a `Dimension` instance, an integer, or None. Returns: A plain value, i.e. an integer or None. """ if isinstance(dimension, Dimension): return dimension.value return dimension @tf_export( "compat.dimension_at_index", v1=["dimension_at_index", "compat.dimension_at_index"]) def dimension_at_index(shape, index): """Compatibility utility required to allow for both V1 and V2 behavior in TF. Until the release of TF 2.0, we need the legacy behavior of `TensorShape` to coexist with the new behavior. This utility is a bridge between the two. If you want to retrieve the Dimension instance corresponding to a certain index in a TensorShape instance, use this utility, like this: ``` # If you had this in your V1 code: dim = tensor_shape[i] # Use `dimension_at_index` as direct replacement compatible with both V1 & V2: dim = dimension_at_index(tensor_shape, i) # Another possibility would be this, but WARNING: it only works if the # tensor_shape instance has a defined rank. dim = tensor_shape.dims[i] # `dims` may be None if the rank is undefined! # In native V2 code, we recommend instead being more explicit: if tensor_shape.rank is None: dim = Dimension(None) else: dim = tensor_shape.dims[i] # Being more explicit will save you from the following trap (present in V1): # you might do in-place modifications to `dim` and expect them to be reflected # in `tensor_shape[i]`, but they would not be (as the Dimension object was # instantiated on the fly. ``` Arguments: shape: A TensorShape instance. index: An integer index. Returns: A dimension object. """ assert isinstance(shape, TensorShape) if shape.rank is None: return Dimension(None) else: return shape.dims[index] @tf_export(v1=["Dimension"]) class Dimension(object): """Represents the value of one dimension in a TensorShape.""" def __init__(self, value): """Creates a new Dimension with the given value.""" if value is None: self._value = None elif isinstance(value, Dimension): self._value = value.value elif isinstance(value, dtypes.DType): raise TypeError("Cannot convert %s to Dimension" % value) else: self._value = int(value) if (not isinstance(value, compat.bytes_or_text_types) and self._value != value): raise ValueError("Ambiguous dimension: %s" % value) if self._value < 0: raise ValueError("Dimension %d must be >= 0" % self._value) def __repr__(self): return "Dimension(%s)" % repr(self._value) def __str__(self): value = self._value return "?" if value is None else str(value) def __eq__(self, other): """Returns true if `other` has the same known value as this Dimension.""" try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return None return self._value == other.value def __ne__(self, other): """Returns true if `other` has a different known value from `self`.""" try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return None return self._value != other.value def __int__(self): return self._value # This is needed for Windows. # See https://github.com/tensorflow/tensorflow/pull/9780 def __long__(self): return self._value def __index__(self): # Allow use in Python 3 range return self._value @property def value(self): """The value of this dimension, or None if it is unknown.""" return self._value def is_compatible_with(self, other): """Returns true if `other` is compatible with this Dimension. Two known Dimensions are compatible if they have the same value. An unknown Dimension is compatible with all other Dimensions. Args: other: Another Dimension. Returns: True if this Dimension and `other` are compatible. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented return (self._value is None or other.value is None or self._value == other.value) def assert_is_compatible_with(self, other): """Raises an exception if `other` is not compatible with this Dimension. Args: other: Another Dimension. Raises: ValueError: If `self` and `other` are not compatible (see is_compatible_with). """ if not self.is_compatible_with(other): raise ValueError("Dimensions %s and %s are not compatible" % (self, other)) def merge_with(self, other): """Returns a Dimension that combines the information in `self` and `other`. Dimensions are combined as follows: ```python tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(n)) == tf.compat.v1.Dimension(n) tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(None)) == tf.compat.v1.Dimension(n) tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(n)) == tf.compat.v1.Dimension(n) # equivalent to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(None)) # raises ValueError for n != m tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(m)) ``` Args: other: Another Dimension. Returns: A Dimension containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not compatible (see is_compatible_with). """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented self.assert_is_compatible_with(other) if self._value is None: return Dimension(other.value) else: return Dimension(self._value) def __add__(self, other): """Returns the sum of `self` and `other`. Dimensions are summed as follows: ```python tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(n) == tf.compat.v1.Dimension(m + n) tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(n) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the sum of `self` and `other`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value + other.value) def __radd__(self, other): """Returns the sum of `other` and `self`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the sum of `self` and `other`. """ return self + other def __sub__(self, other): """Returns the subtraction of `other` from `self`. Dimensions are subtracted as follows: ```python tf.compat.v1.Dimension(m) - tf.compat.v1.Dimension(n) == tf.compat.v1.Dimension(m - n) tf.compat.v1.Dimension(m) - tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(n) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the subtraction of `other` from `self`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value - other.value) def __rsub__(self, other): """Returns the subtraction of `self` from `other`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the subtraction of `self` from `other`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(other.value - self._value) def __mul__(self, other): """Returns the product of `self` and `other`. Dimensions are summed as follows: ```python tf.compat.v1.Dimension(m) * tf.compat.v1.Dimension(n) == tf.compat.v1.Dimension(m * n) tf.compat.v1.Dimension(m) * tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(n) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the product of `self` and `other`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value * other.value) def __rmul__(self, other): """Returns the product of `self` and `other`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the product of `self` and `other`. """ return self * other def __floordiv__(self, other): """Returns the quotient of `self` and `other` rounded down. Dimensions are divided as follows: ```python tf.compat.v1.Dimension(m) // tf.compat.v1.Dimension(n) == tf.compat.v1.Dimension(m // n) tf.compat.v1.Dimension(m) // tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(n) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A `Dimension` whose value is the integer quotient of `self` and `other`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value // other.value) def __rfloordiv__(self, other): """Returns the quotient of `other` and `self` rounded down. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A `Dimension` whose value is the integer quotient of `self` and `other`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(other.value // self._value) def __div__(self, other): """DEPRECATED: Use `__floordiv__` via `x // y` instead. This function exists only for backwards compatibility purposes; new code should use `__floordiv__` via the syntax `x // y`. Using `x // y` communicates clearly that the result rounds down, and is forward compatible to Python 3. Args: other: Another `Dimension`. Returns: A `Dimension` whose value is the integer quotient of `self` and `other`. """ return self // other def __rdiv__(self, other): """Use `__floordiv__` via `x // y` instead. This function exists only to have a better error message. Instead of: `TypeError: unsupported operand type(s) for /: 'int' and 'Dimension'`, this function will explicitly call for usage of `//` instead. Args: other: Another `Dimension`. Raises: TypeError. """ raise TypeError("unsupported operand type(s) for /: '{}' and 'Dimension', " "please use // instead".format(type(other).__name__)) def __truediv__(self, other): """Use `__floordiv__` via `x // y` instead. This function exists only to have a better error message. Instead of: `TypeError: unsupported operand type(s) for /: 'Dimension' and 'int'`, this function will explicitly call for usage of `//` instead. Args: other: Another `Dimension`. Raises: TypeError. """ raise TypeError("unsupported operand type(s) for /: 'Dimension' and '{}', " "please use // instead".format(type(other).__name__)) def __rtruediv__(self, other): """Use `__floordiv__` via `x // y` instead. This function exists only to have a better error message. Instead of: `TypeError: unsupported operand type(s) for /: 'int' and 'Dimension'`, this function will explicitly call for usage of `//` instead. Args: other: Another `Dimension`. Raises: TypeError. """ raise TypeError("unsupported operand type(s) for /: '{}' and 'Dimension', " "please use // instead".format(type(other).__name__)) def __mod__(self, other): """Returns `self` modulo `other`. Dimension moduli are computed as follows: ```python tf.compat.v1.Dimension(m) % tf.compat.v1.Dimension(n) == tf.compat.v1.Dimension(m % n) tf.compat.v1.Dimension(m) % tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(n) # equiv. to tf.compat.v1.Dimension(None) tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(None) # equiv. to tf.compat.v1.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is `self` modulo `other`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value % other.value) def __rmod__(self, other): """Returns `other` modulo `self`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is `other` modulo `self`. """ other = as_dimension(other) return other % self def __lt__(self, other): """Returns True if `self` is known to be less than `other`. Dimensions are compared as follows: ```python (tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(n)) == (m < n) (tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(None)) == None (tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(n)) == None (tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value < other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value < other.value def __le__(self, other): """Returns True if `self` is known to be less than or equal to `other`. Dimensions are compared as follows: ```python (tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(n)) == (m <= n) (tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(None)) == None (tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(n)) == None (tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value <= other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value <= other.value def __gt__(self, other): """Returns True if `self` is known to be greater than `other`. Dimensions are compared as follows: ```python (tf.compat.v1.Dimension(m) > tf.compat.v1.Dimension(n)) == (m > n) (tf.compat.v1.Dimension(m) > tf.compat.v1.Dimension(None)) == None (tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(n)) == None (tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value > other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value > other.value def __ge__(self, other): """Returns True if `self` is known to be greater than or equal to `other`. Dimensions are compared as follows: ```python (tf.compat.v1.Dimension(m) >= tf.compat.v1.Dimension(n)) == (m >= n) (tf.compat.v1.Dimension(m) >= tf.compat.v1.Dimension(None)) == None (tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(n)) == None (tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value >= other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value >= other.value def __reduce__(self): return Dimension, (self._value,) def as_dimension(value): """Converts the given value to a Dimension. A Dimension input will be returned unmodified. An input of `None` will be converted to an unknown Dimension. An integer input will be converted to a Dimension with that value. Args: value: The value to be converted. Returns: A Dimension corresponding to the given value. """ if isinstance(value, Dimension): return value else: return Dimension(value) @tf_export("TensorShape") class TensorShape(object): """Represents the shape of a `Tensor`. A `TensorShape` represents a possibly-partial shape specification for a `Tensor`. It may be one of the following: * *Fully-known shape:* has a known number of dimensions and a known size for each dimension. e.g. `TensorShape([16, 256])` * *Partially-known shape:* has a known number of dimensions, and an unknown size for one or more dimension. e.g. `TensorShape([None, 256])` * *Unknown shape:* has an unknown number of dimensions, and an unknown size in all dimensions. e.g. `TensorShape(None)` If a tensor is produced by an operation of type `"Foo"`, its shape may be inferred if there is a registered shape function for `"Foo"`. See [Shape functions](https://tensorflow.org/extend/adding_an_op#shape_functions_in_c) for details of shape functions and how to register them. Alternatively, the shape may be set explicitly using `tf.Tensor.set_shape`. """ def __init__(self, dims): """Creates a new TensorShape with the given dimensions. Args: dims: A list of Dimensions, or None if the shape is unspecified. Raises: TypeError: If dims cannot be converted to a list of dimensions. """ if dims is None: self._dims = None elif isinstance(dims, compat.bytes_or_text_types): raise TypeError("A string has ambiguous TensorShape, please wrap in a " "list or convert to an int: %s" % dims) elif isinstance(dims, tensor_shape_pb2.TensorShapeProto): if dims.unknown_rank: self._dims = None else: self._dims = [ # Protos store variable-size dimensions as -1 as_dimension(dim.size if dim.size != -1 else None) for dim in dims.dim ] elif isinstance(dims, TensorShape): self._dims = dims.dims else: try: dims_iter = iter(dims) except TypeError: # Treat as a singleton dimension self._dims = [as_dimension(dims)] else: # Got a list of dimensions self._dims = [as_dimension(d) for d in dims_iter] @property def _v2_behavior(self): if _TENSORSHAPE_V2_OVERRIDE is None: return tf2.enabled() return _TENSORSHAPE_V2_OVERRIDE def __repr__(self): if self._v2_behavior: if self._dims is not None: return "TensorShape(%r)" % [dim.value for dim in self._dims] else: return "TensorShape(None)" else: return "TensorShape(%r)" % self._dims def __str__(self): if self.rank is None: return "<unknown>" elif self.rank == 1: if self._v2_behavior: return "(%s,)" % self._dims[0].value else: return "(%s,)" % self._dims[0] else: if self._v2_behavior: return "(%s)" % ", ".join(str(d.value) for d in self._dims) else: return "(%s)" % ", ".join(str(d) for d in self._dims) @property def rank(self): """Returns the rank of this shape, or None if it is unspecified.""" if self._dims is not None: return len(self._dims) return None @property def dims(self): """Returns a list of Dimensions, or None if the shape is unspecified.""" return self._dims @property def ndims(self): """Deprecated accessor for `rank`.""" return self.rank def __len__(self): """Returns the rank of this shape, or raises ValueError if unspecified.""" if self._dims is None: raise ValueError("Cannot take the length of shape with unknown rank.") return len(self._dims) def __bool__(self): """Returns True if this shape contains non-zero information.""" return self._dims is not None # Python 3 wants __bool__, Python 2.7 wants __nonzero__ __nonzero__ = __bool__ def __iter__(self): """Returns `self.dims` if the rank is known, otherwise raises ValueError.""" if self._dims is None: raise ValueError("Cannot iterate over a shape with unknown rank.") else: if self._v2_behavior: return iter(d.value for d in self._dims) else: return iter(d for d in self._dims) def __getitem__(self, key): """Returns the value of a dimension or a shape, depending on the key. Args: key: If `key` is an integer, returns the dimension at that index; otherwise if `key` is a slice, returns a TensorShape whose dimensions are those selected by the slice from `self`. Returns: An integer if `key` is an integer, or a `TensorShape` if `key` is a slice. Raises: ValueError: If `key` is a slice and `self` is completely unknown and the step is set. """ if self._dims is not None: if isinstance(key, slice): return TensorShape(self._dims[key]) else: if self._v2_behavior: return self._dims[key].value else: return self._dims[key] else: if isinstance(key, slice): start = key.start if key.start is not None else 0 stop = key.stop if key.step is not None: # TODO(mrry): Handle these maybe. raise ValueError("Steps are not yet handled") if stop is None: # NOTE(mrry): This implies that TensorShape(None) is compatible with # TensorShape(None)[1:], which is obviously not true. It would be # possible to track the number of dimensions symbolically, # and perhaps we should do that. return unknown_shape() elif start < 0 or stop < 0: # TODO(mrry): Handle this better, as it will be useful for handling # suffixes of otherwise unknown shapes. return unknown_shape() else: return unknown_shape(rank=stop - start) else: if self._v2_behavior: return None else: return Dimension(None) def num_elements(self): """Returns the total number of elements, or none for incomplete shapes.""" if self.is_fully_defined(): size = 1 for dim in self._dims: size *= dim.value return size else: return None def merge_with(self, other): """Returns a `TensorShape` combining the information in `self` and `other`. The dimensions in `self` and `other` are merged elementwise, according to the rules defined for `Dimension.merge_with()`. Args: other: Another `TensorShape`. Returns: A `TensorShape` containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not compatible. """ other = as_shape(other) if self._dims is None: return other else: try: self.assert_same_rank(other) new_dims = [] for i, dim in enumerate(self._dims): new_dims.append(dim.merge_with(other[i])) return TensorShape(new_dims) except ValueError: raise ValueError("Shapes %s and %s are not compatible" % (self, other)) def __add__(self, other): if not isinstance(other, TensorShape): other = TensorShape(other) return self.concatenate(other) def __radd__(self, other): if not isinstance(other, TensorShape): other = TensorShape(other) return other.concatenate(self) def concatenate(self, other): """Returns the concatenation of the dimension in `self` and `other`. *N.B.* If either `self` or `other` is completely unknown, concatenation will discard information about the other shape. In future, we might support concatenation that preserves this information for use with slicing. Args: other: Another `TensorShape`. Returns: A `TensorShape` whose dimensions are the concatenation of the dimensions in `self` and `other`. """ # TODO(mrry): Handle the case where we concatenate a known shape with a # completely unknown shape, so that we can use the partial information. other = as_shape(other) if self._dims is None or other.dims is None: return unknown_shape() else: return TensorShape(self._dims + other.dims) def assert_same_rank(self, other): """Raises an exception if `self` and `other` do not have compatible ranks. Args: other: Another `TensorShape`. Raises: ValueError: If `self` and `other` do not represent shapes with the same rank. """ other = as_shape(other) if self.rank is not None and other.rank is not None: if self.rank != other.rank: raise ValueError("Shapes %s and %s must have the same rank" % (self, other)) def assert_has_rank(self, rank): """Raises an exception if `self` is not compatible with the given `rank`. Args: rank: An integer. Raises: ValueError: If `self` does not represent a shape with the given `rank`. """ if self.rank not in (None, rank): raise ValueError("Shape %s must have rank %d" % (self, rank)) def with_rank(self, rank): """Returns a shape based on `self` with the given rank. This method promotes a completely unknown shape to one with a known rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with the given rank. Raises: ValueError: If `self` does not represent a shape with the given `rank`. """ try: return self.merge_with(unknown_shape(rank=rank)) except ValueError: raise ValueError("Shape %s must have rank %d" % (self, rank)) def with_rank_at_least(self, rank): """Returns a shape based on `self` with at least the given rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with at least the given rank. Raises: ValueError: If `self` does not represent a shape with at least the given `rank`. """ if self.rank is not None and self.rank < rank: raise ValueError("Shape %s must have rank at least %d" % (self, rank)) else: return self def with_rank_at_most(self, rank): """Returns a shape based on `self` with at most the given rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with at most the given rank. Raises: ValueError: If `self` does not represent a shape with at most the given `rank`. """ if self.rank is not None and self.rank > rank: raise ValueError("Shape %s must have rank at most %d" % (self, rank)) else: return self def is_compatible_with(self, other): """Returns True iff `self` is compatible with `other`. Two possibly-partially-defined shapes are compatible if there exists a fully-defined shape that both shapes can represent. Thus, compatibility allows the shape inference code to reason about partially-defined shapes. For example: * TensorShape(None) is compatible with all shapes. * TensorShape([None, None]) is compatible with all two-dimensional shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is not compatible with, for example, TensorShape([None]) or TensorShape([None, None, None]). * TensorShape([32, None]) is compatible with all two-dimensional shapes with size 32 in the 0th dimension, and also TensorShape([None, None]) and TensorShape(None). It is not compatible with, for example, TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]). * TensorShape([32, 784]) is compatible with itself, and also TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None, None]) and TensorShape(None). It is not compatible with, for example, TensorShape([32, 1, 784]) or TensorShape([None]). The compatibility relation is reflexive and symmetric, but not transitive. For example, TensorShape([32, 784]) is compatible with TensorShape(None), and TensorShape(None) is compatible with TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with TensorShape([4, 4]). Args: other: Another TensorShape. Returns: True iff `self` is compatible with `other`. """ other = as_shape(other) if self._dims is not None and other.dims is not None: if self.rank != other.rank: return False for x_dim, y_dim in zip(self._dims, other.dims): if not x_dim.is_compatible_with(y_dim): return False return True def assert_is_compatible_with(self, other): """Raises exception if `self` and `other` do not represent the same shape. This method can be used to assert that there exists a shape that both `self` and `other` represent. Args: other: Another TensorShape. Raises: ValueError: If `self` and `other` do not represent the same shape. """ if not self.is_compatible_with(other): raise ValueError("Shapes %s and %s are incompatible" % (self, other)) def most_specific_compatible_shape(self, other): """Returns the most specific TensorShape compatible with `self` and `other`. * TensorShape([None, 1]) is the most specific TensorShape compatible with both TensorShape([2, 1]) and TensorShape([5, 1]). Note that TensorShape(None) is also compatible with above mentioned TensorShapes. * TensorShape([1, 2, 3]) is the most specific TensorShape compatible with both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more less specific TensorShapes compatible with above mentioned TensorShapes, e.g. TensorShape([1, 2, None]), TensorShape(None). Args: other: Another `TensorShape`. Returns: A `TensorShape` which is the most specific compatible shape of `self` and `other`. """ other = as_shape(other) if self._dims is None or other.dims is None or self.rank != other.rank: return unknown_shape() dims = [(Dimension(None))] * self.rank for i, (d1, d2) in enumerate(zip(self._dims, other.dims)): if d1 is not None and d2 is not None and d1 == d2: dims[i] = d1 return TensorShape(dims) def is_fully_defined(self): """Returns True iff `self` is fully defined in every dimension.""" return (self._dims is not None and all(dim.value is not None for dim in self._dims)) def assert_is_fully_defined(self): """Raises an exception if `self` is not fully defined in every dimension. Raises: ValueError: If `self` does not have a known value for every dimension. """ if not self.is_fully_defined(): raise ValueError("Shape %s is not fully defined" % self) def as_list(self): """Returns a list of integers or `None` for each dimension. Returns: A list of integers or `None` for each dimension. Raises: ValueError: If `self` is an unknown shape with an unknown rank. """ if self._dims is None: raise ValueError("as_list() is not defined on an unknown TensorShape.") return [dim.value for dim in self._dims] def as_proto(self): """Returns this shape as a `TensorShapeProto`.""" if self._dims is None: return tensor_shape_pb2.TensorShapeProto(unknown_rank=True) else: return tensor_shape_pb2.TensorShapeProto(dim=[ tensor_shape_pb2.TensorShapeProto.Dim( size=-1 if d.value is None else d.value) for d in self._dims ]) def __eq__(self, other): """Returns True if `self` is equivalent to `other`.""" try: other = as_shape(other) except TypeError: return NotImplemented return self._dims == other.dims def __ne__(self, other): """Returns True if `self` is known to be different from `other`.""" try: other = as_shape(other) except TypeError: return NotImplemented if self.rank is None or other.rank is None: raise ValueError("The inequality of unknown TensorShapes is undefined.") if self.rank != other.rank: return True return self._dims != other.dims def __reduce__(self): return TensorShape, (self._dims,) def __concat__(self, other): return self.concatenate(other) def as_shape(shape): """Converts the given object to a TensorShape.""" if isinstance(shape, TensorShape): return shape else: return TensorShape(shape) def unknown_shape(rank=None, **kwargs): """Returns an unknown TensorShape, optionally with a known rank. Args: rank: (Optional) If specified, the number of dimensions in the shape. **kwargs: For backwards compatibility. Returns: An unknown TensorShape. Raises: TypeError: In case of invalid arguments. """ if rank is None and "ndims" in kwargs: rank = kwargs.pop("ndims") if kwargs: raise TypeError("Unknown argument: %s" % kwargs) if rank is None: return TensorShape(None) else: return TensorShape([Dimension(None)] * rank) @deprecation.deprecated(None, "Use tf.TensorShape([]).") def scalar(): """Returns a shape representing a scalar.""" return TensorShape([]) @deprecation.deprecated(None, "Use tf.TensorShape([length]).") def vector(length): """Returns a shape representing a vector. Args: length: The length of the vector, which may be None if unknown. Returns: A TensorShape representing a vector of the given length. """ return TensorShape([length]) @deprecation.deprecated(None, "Use tf.TensorShape([rows, cols]).") def matrix(rows, cols): """Returns a shape representing a matrix. Args: rows: The number of rows in the matrix, which may be None if unknown. cols: The number of columns in the matrix, which may be None if unknown. Returns: A TensorShape representing a matrix of the given size. """ return TensorShape([rows, cols])
31.399057
80
0.660029
4a26b8cb6dad6d78f867d2551fc91352720b66e2
4,195
py
Python
ops.py
postBG/fashionMNIST-DCGAN-tensorflow
cd13df6425d30132064ddaa1925280433e827d2c
[ "MIT" ]
null
null
null
ops.py
postBG/fashionMNIST-DCGAN-tensorflow
cd13df6425d30132064ddaa1925280433e827d2c
[ "MIT" ]
null
null
null
ops.py
postBG/fashionMNIST-DCGAN-tensorflow
cd13df6425d30132064ddaa1925280433e827d2c
[ "MIT" ]
null
null
null
import tensorflow as tf from layers import leaky_relu, batch_norm GENERATOR = 'generator' DISCRIMINATOR = 'discriminator' # TODO: How to collect this all variables # TODO: Extract Hyper parameter def generator(z, output_channel=1, reuse=False, training=True, kernel_size=4): """ This function creates generator. :param z: random noise, ex) tensor shapes [None, 100] :param output_channel: number of channels of generated data, ex) 3 for SVHN, 1 for MNIST :param reuse: ... :param training: ... :param kernel_size: transposed conv layer's kernel size :return: generated data(fake data) tensor, ex) tensor shapes [None, 28, 28, 1] for MNIST """ with tf.variable_scope(GENERATOR, reuse=reuse): with tf.name_scope('layer1'): projected_z = tf.layers.dense(z, 7 * 7 * 256) reshaped_z = tf.reshape(projected_z, [-1, 7, 7, 256]) layer1 = batch_norm(reshaped_z, training=training) layer1 = tf.nn.relu(layer1) with tf.name_scope('layer2'): layer2 = tf.layers.conv2d_transpose(layer1, 128, kernel_size, strides=2, padding='same') layer2 = batch_norm(layer2, training=training) layer2 = tf.nn.relu(layer2) with tf.name_scope('layer3'): layer3 = tf.layers.conv2d_transpose(layer2, 64, kernel_size, strides=2, padding='same') layer3 = batch_norm(layer3, training=training) layer3 = tf.nn.relu(layer3) with tf.name_scope('output'): logits = tf.layers.conv2d_transpose(layer3, output_channel, kernel_size, strides=1, padding='same') output = tf.nn.tanh(logits) return output # TODO: Extract Hyper parameter and Care about initializer def discriminator(images, reuse=False, alpha=0.2): """ Create Discriminator :param images: tensor shapes [None, 28, 28, 1] :param reuse: ... :param alpha: leaky relu alpha :return: discriminator output and logits """ with tf.variable_scope(DISCRIMINATOR, reuse=reuse): with tf.name_scope('layer1'): layer1 = tf.layers.conv2d(images, 64, 4, strides=2, padding='same') layer1 = leaky_relu(layer1, alpha) # 14x14x64 with tf.name_scope('layer2'): layer2 = tf.layers.conv2d(layer1, 128, 4, strides=2, padding='same') layer2 = batch_norm(layer2, training=True) layer2 = leaky_relu(layer2, alpha) # 7x7x128 with tf.name_scope('layer3'): layer3 = tf.layers.conv2d(layer2, 256, 4, strides=2, padding='same') layer3 = batch_norm(layer3, training=True) layer3 = leaky_relu(layer3, alpha) # 4x4x256 # TODO: Make robust to tensor shapes using tensor's get_shape method with tf.name_scope('output'): flatten = tf.reshape(layer3, [-1, 4 * 4 * 256]) logits = tf.layers.dense(flatten, 1) output = tf.nn.sigmoid(logits) return output, logits def model_loss(input_real, input_z, output_channel=1, kernel_size=4, alpha=0.2): """ Get the loss for the discriminator and generator :param input_real: should be normalized [-1, 1] :param input_z: :param output_channel: The number of channels in the output image :param kernel_size: :param alpha: relu alpha :return: d_loss, g_loss """ g_model = generator(input_z, output_channel=output_channel, reuse=False, training=True, kernel_size=kernel_size) d_model_real, d_logits_real = discriminator(input_real, reuse=False, alpha=alpha) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha) g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake))) d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake))) d_loss = d_loss_real + d_loss_fake return d_loss, g_loss
38.842593
116
0.66031
4a26b915385f936315fa9bb75ce019517bfe4fb2
2,453
py
Python
internal/notes/builtin-SAVE/packages/r-genomicalignments/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
1
2019-01-17T20:07:19.000Z
2019-01-17T20:07:19.000Z
internal/notes/builtin-SAVE/packages/r-genomicalignments/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
null
null
null
internal/notes/builtin-SAVE/packages/r-genomicalignments/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
2
2019-08-06T18:13:57.000Z
2021-11-05T18:19:49.000Z
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class RGenomicalignments(RPackage): """Provides efficient containers for storing and manipulating short genomic alignments (typically obtained by aligning short reads to a reference genome). This includes read counting, computing the coverage, junction detection, and working with the nucleotide content of the alignments.""" homepage = "https://bioconductor.org/packages/GenomicAlignments/" url = "https://git.bioconductor.org/packages/GenomicAlignments" list_url = homepage version('1.12.2', git='https://git.bioconductor.org/packages/GenomicAlignments', commit='b5d6f19e4a89b6c1c3e9e58e5ea4eb13870874ef') depends_on('r-biocgenerics', type=('build', 'run')) depends_on('r-s4vectors', type=('build', 'run')) depends_on('r-iranges', type=('build', 'run')) depends_on('r-genomeinfodb', type=('build', 'run')) depends_on('r-genomicranges', type=('build', 'run')) depends_on('r-summarizedexperiment', type=('build', 'run')) depends_on('r-biostrings', type=('build', 'run')) depends_on('r-rsamtools', type=('build', 'run')) depends_on('r-biocparallel', type=('build', 'run')) depends_on('[email protected]:3.4.9', when='@1.12.2')
49.06
135
0.684468
4a26b9543333c1b3a047270ae2244ed31295e414
7,186
py
Python
pkg/scheduler/patcher/main.py
yaroslaver/csi-baremetal
f0dc8d36de06bd19613ff5683069919534db54ce
[ "Apache-2.0" ]
null
null
null
pkg/scheduler/patcher/main.py
yaroslaver/csi-baremetal
f0dc8d36de06bd19613ff5683069919534db54ce
[ "Apache-2.0" ]
null
null
null
pkg/scheduler/patcher/main.py
yaroslaver/csi-baremetal
f0dc8d36de06bd19613ff5683069919534db54ce
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -* # Copyright © 2020 Dell Inc. or its subsidiaries. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import yaml import time import argparse import sys from os.path import isfile, dirname, basename from os import makedirs from shutil import copy from signal import signal, SIGINT, SIGTERM from filecmp import cmp, clear_cache import logging log = logging.getLogger('patcher') def run(): parser = argparse.ArgumentParser( description='Patcher script for csi-baremetal kube-extender') parser.add_argument( '--manifest', help='path to the scheduler manifest file', required=True) parser.add_argument( '--restore', help='restore manifest when on shutdown', action='store_true') parser.add_argument('--interval', type=int, help='interval to check manifest config') parser.add_argument('--target-config-path', help='target path for scheduler config file', required=True) parser.add_argument('--target-policy-path', help='target path for scheduler policy file', required=True) parser.add_argument('--source-config-path', help='source path for scheduler config file', required=True) parser.add_argument('--source-policy-path', help='source path for scheduler policy file', required=True) parser.add_argument( '--loglevel', help="Set level for logging", dest="loglevel", default='info') parser.add_argument( '--backup-path', help="Set path for backup folder", default='/etc/kubernetes/scheduler') args = parser.parse_args() logging.basicConfig(level=logging.getLevelName(args.loglevel.upper())) log.info('patcher started') source_config = File(args.source_config_path) source_policy = File(args.source_policy_path) target_config = File(args.target_config_path) target_policy = File(args.target_policy_path) config_volume = Volume("scheduler-config", args.target_config_path) config_volume.compile_config() policy_volume = Volume("scheduler-policy", args.target_policy_path) policy_volume.compile_config() manifest = ManifestFile( args.manifest, [config_volume, policy_volume], args.target_config_path, args.backup_path) # add watcher on signals killer = GracefulKiller(args.restore, manifest) killer.watch(SIGINT) killer.watch(SIGTERM) while True: # check everything is in a right place _must_exist(manifest, source_config, source_policy) # copy config and policy if they don't exist or they have different content copy_not_equal(source_config, target_config) copy_not_equal(source_policy, target_policy) # work with content of manifest file manifest.load() manifest.patch() if manifest.changed: manifest.backup() manifest.flush() log.info('manifest file({}) was patched'.format(manifest.path)) log.debug('sleeping {} seconds'.format(args.interval)) time.sleep(args.interval) class GracefulKiller: def __init__(self, restore, file): self.restore = restore self.file = file def exit_gracefully(self, signum, frame): if self.restore: self.file.restore() sys.exit(0) def watch(self, sig): signal(sig, self.exit_gracefully) class File: def __init__(self, path): self.path = path def copy(self, target_file): makedirs(dirname(target_file.path), exist_ok=True) copy(self.path, target_file.path) def exists(self): return isfile(self.path) def equal(self, target_file): if target_file.exists(): clear_cache() return cmp(self.path, target_file.path) return False class Volume: def __init__(self, name, path): self.name = name self.path = path def compile_config(self): self.mount_path = {'name': self.name, 'mountPath': self.path, 'readOnly': True} self.container_volume = { 'name': self.name, 'hostPath': { 'path': self.path, 'type': 'File'} } class ManifestFile(File): def __init__(self, path, volumes, config_path, backup_folder): self.path = path self.backup_folder = backup_folder self.volumes = volumes self.config_path = config_path def backup(self): makedirs(dirname(self.backup_folder), exist_ok=True) backup_path = self.backup_folder + basename(self.path) copy(self.path, backup_path) def restore(self): backup_path = self.backup_folder + basename(self.path) copy(backup_path, self.path) def need_patching(self): self.changed = True def load(self): with open(self.path, 'r') as f: content = f.read() self.content = yaml.load(content, Loader=yaml.FullLoader) log.debug('manifest {} loaded'.format(self.path)) self.changed = False def flush(self): with open(self.path, 'w') as f: yaml.dump(self.content, f) log.debug('manifest {} dumped'.format(self.path)) def patch_volumes(self): volumes = self.content['spec']['volumes'] volumeMounts = self.content['spec']['containers'][0]['volumeMounts'] for volume in self.volumes: if not _name_exists(volumes, volume.name): volumes.append(volume.container_volume) self.need_patching() if not _name_exists(volumeMounts, volume.name): volumeMounts.append(volume.mount_path) self.need_patching() def patch_commands(self): commands = self.content['spec']['containers'][0]['command'] config_command = '--config={}'.format(self.config_path) if config_command not in commands: commands.append(config_command) self.need_patching() def patch(self): self.patch_commands() self.patch_volumes() def _name_exists(items, name): for i in items: if i['name'] == name: return True return False def _must_exist(*files): for f in files: if not f.exists(): raise FileNotFoundError( 'One of the required files is not there - {}'.format(f.path)) def copy_not_equal(src, dst): if not src.equal(dst): src.copy(dst) log.info('{} copied to {}'.format(src.path, dst.path)) if __name__ == "__main__": run()
32.224215
97
0.641108
4a26b9ce13b5e35499044d559c681b52c96e991c
1,101
py
Python
tapis_cli/commands/taccapis/v2/systems/models/system_history.py
shwetagopaul92/tapis-cli-ng
6f424b8352c0d034d4f5547fac21d5c8dd097a7f
[ "BSD-3-Clause" ]
null
null
null
tapis_cli/commands/taccapis/v2/systems/models/system_history.py
shwetagopaul92/tapis-cli-ng
6f424b8352c0d034d4f5547fac21d5c8dd097a7f
[ "BSD-3-Clause" ]
null
null
null
tapis_cli/commands/taccapis/v2/systems/models/system_history.py
shwetagopaul92/tapis-cli-ng
6f424b8352c0d034d4f5547fac21d5c8dd097a7f
[ "BSD-3-Clause" ]
null
null
null
from tapis_cli.display import Verbosity from tapis_cli.search import argtype, argmod from .system import System __all__ = ['SystemHistory'] class SystemHistory(System): """Model of a Tapis system history record """ SEARCH_ARGS = [ # JSON_field, type, verbosity, mods_allowed, default_mod, choices, override_option, searchable ("_links", argtype.OBJECT, Verbosity.RECORD, argmod.STRING_DEFAULTS, argmod.DEFAULT, None, None, False), ("id", argtype.STRING, Verbosity.RECORD, argmod.STRING_DEFAULTS, argmod.DEFAULT, None, None, False), ("status", argtype.STRING, Verbosity.BRIEF, argmod.STRING_DEFAULTS, argmod.DEFAULT, None, None, False), ("created", argtype.DATETIME, Verbosity.BRIEF, argmod.STRING_DEFAULTS, argmod.DEFAULT, None, None, False), ("createdBy", argtype.STRING, Verbosity.LISTING_VERBOSE, argmod.STRING_DEFAULTS, argmod.DEFAULT, None, None, False), ("description", argtype.STRING, Verbosity.LISTING, argmod.STRING_DEFAULTS, argmod.DEFAULT, None, None, False) ]
42.346154
102
0.69119
4a26baba45298984e8192ce5c2686265f895daba
6,003
py
Python
wdae/wdae/datasets_api/views.py
iossifovlab/gpf
e556243d29666179dbcb72859845b4d6c011af2b
[ "MIT" ]
null
null
null
wdae/wdae/datasets_api/views.py
iossifovlab/gpf
e556243d29666179dbcb72859845b4d6c011af2b
[ "MIT" ]
82
2019-07-22T11:44:23.000Z
2022-01-13T15:27:33.000Z
wdae/wdae/datasets_api/views.py
iossifovlab/gpf
e556243d29666179dbcb72859845b4d6c011af2b
[ "MIT" ]
null
null
null
from rest_framework.response import Response from rest_framework import status from guardian.shortcuts import get_groups_with_perms from query_base.query_base import QueryBaseView from studies.study_wrapper import StudyWrapperBase from .models import Dataset from groups_api.serializers import GroupSerializer from datasets_api.permissions import get_wdae_parents, \ user_has_permission class DatasetView(QueryBaseView): def augment_accessibility(self, dataset, user): dataset_object = Dataset.objects.get(dataset_id=dataset["id"]) dataset["access_rights"] = user_has_permission( user, dataset_object) return dataset def augment_with_groups(self, dataset): dataset_object = Dataset.objects.get(dataset_id=dataset["id"]) groups = get_groups_with_perms(dataset_object) serializer = GroupSerializer(groups, many=True) dataset["groups"] = serializer.data return dataset def augment_with_parents(self, dataset): parents = get_wdae_parents(dataset["id"]) parents = [ds.dataset_id for ds in parents] dataset["parents"] = parents return dataset def get(self, request, dataset_id=None): user = request.user if dataset_id is None: selected_genotype_data = \ self.gpf_instance.get_selected_genotype_data() \ or self.gpf_instance.get_genotype_data_ids() datasets = filter(None, [ self.gpf_instance.get_wdae_wrapper(genotype_data_id) for genotype_data_id in selected_genotype_data ]) # assert all([d is not None for d in datasets]), \ # selected_genotype_data res = [ StudyWrapperBase.build_genotype_data_group_description( self.gpf_instance, dataset.config, dataset.description, dataset.person_set_collection_configs ) for dataset in datasets ] if not self.gpf_instance.get_selected_genotype_data(): res = sorted( res, key=lambda desc: desc["name"] ) res = [self.augment_accessibility(ds, user) for ds in res] res = [self.augment_with_groups(ds) for ds in res] res = [self.augment_with_parents(ds) for ds in res] return Response({"data": res}) else: dataset = self.gpf_instance.get_wdae_wrapper(dataset_id) if dataset: res = StudyWrapperBase.build_genotype_data_group_description( self.gpf_instance, dataset.config, dataset.description, dataset.person_set_collection_configs ) res = self.augment_accessibility(res, user) res = self.augment_with_groups(res) res = self.augment_with_parents(res) return Response({"data": res}) return Response( {"error": "Dataset {} not found".format(dataset_id)}, status=status.HTTP_404_NOT_FOUND, ) class PermissionDeniedPromptView(QueryBaseView): def __init__(self): super(PermissionDeniedPromptView, self).__init__() prompt_filepath = ( self.gpf_instance.dae_config.gpfjs.permission_denied_prompt_file ) with open(prompt_filepath, "r") as infile: self.permission_denied_prompt = infile.read() def get(self, request): return Response({"data": self.permission_denied_prompt}) class DatasetDetailsView(QueryBaseView): def get(self, request, dataset_id): if dataset_id is None: return Response( {"error": "No dataset ID given"}, status=status.HTTP_400_BAD_REQUEST, ) # genotype_data = self.gpf_instance.get_wdae_wrapper(dataset_id) genotype_data_config = \ self.gpf_instance.get_genotype_data_config(dataset_id) if genotype_data_config is None: return Response( {"error": f"No such dataset {dataset_id}"}, status=status.HTTP_400_BAD_REQUEST, ) has_denovo = genotype_data_config.get("has_denovo", False) dataset_details = { "hasDenovo": has_denovo, "genome": genotype_data_config.genome, "chrPrefix": genotype_data_config.chr_prefix, } return Response(dataset_details) class DatasetPedigreeView(QueryBaseView): def get(self, request, dataset_id, column): if dataset_id is None: return Response( {"error": "No dataset ID given"}, status=status.HTTP_400_BAD_REQUEST, ) genotype_data = self.gpf_instance.get_genotype_data(dataset_id) if genotype_data is None: return Response( {"error": f"No such dataset {dataset_id}"}, status=status.HTTP_400_BAD_REQUEST, ) values_domain = list( map(str, genotype_data.families.ped_df[column].unique()) ) return Response( {"column_name": column, "values_domain": values_domain} ) class DatasetConfigView(DatasetView): def get(self, request, dataset_id): if dataset_id is None: return Response( {"error": "No dataset ID given"}, status=status.HTTP_400_BAD_REQUEST, ) genotype_data = self.gpf_instance.get_genotype_data(dataset_id) if genotype_data is None: return Response( {"error": f"No such dataset {dataset_id}"}, status=status.HTTP_400_BAD_REQUEST, ) return Response( self.augment_with_parents(genotype_data.config.to_dict()) )
33.724719
77
0.604864
4a26bb509a7159b49b1d584c93c7330044ba392a
209
py
Python
Dataset/Leetcode/train/136/168.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
Dataset/Leetcode/train/136/168.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
Dataset/Leetcode/train/136/168.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
class Solution: def singleNumber(self, nums: List[int]) -> int: nums.sort() for i in range(len(nums)//2): if nums[2*i] != nums[2*i+1]:return nums[2*i] return nums[-1]
26.125
56
0.5311