modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
glorial/llama2-eng
glorial
2024-07-01T05:38:17Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:38:17Z
Entry not found
kmpartner/bk-testcan
kmpartner
2024-07-01T05:44:14Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "endpoints_compatible", "diffusers:StableDiffusionControlNetPipeline", "region:us" ]
text-to-image
2024-07-01T05:40:32Z
Entry not found
X27/vit-Facial-Expression-Recognition
X27
2024-07-01T08:41:21Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-07-01T05:40:42Z
Entry not found
yjwon/zephyr_sft_dpo_beta5e-2_epoch4
yjwon
2024-07-01T05:49:24Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T05:45:02Z
Entry not found
Rdvs1969/WonderWoman
Rdvs1969
2024-07-01T05:45:26Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:45:25Z
Entry not found
Jsjshshd/gptoezm
Jsjshshd
2024-07-01T05:46:55Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:45:39Z
from transformers import pipeline # Load the model from Hugging Face Transformers Hub generator = pipeline('text-generation', model='gpt2') # Main conversation loop print("Starting the conversation!") conversation_history = "" while True: user_input = input("User: ") # Append user input to conversation history conversation_history += user_input + " " # Generate response based on the entire conversation history response = generator(conversation_history, max_length=100, num_return_sequences=1)[0]['generated_text'] print("Model:", response)
noobilal/Falcon7B
noobilal
2024-07-01T05:46:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T05:45:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habulaj/478498453819
habulaj
2024-07-01T05:48:01Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:47:54Z
Entry not found
lucasbalponti/split4
lucasbalponti
2024-07-01T05:50:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:neuralmind/bert-large-portuguese-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-07-01T05:49:44Z
--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: split4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # split4 This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3764 - Accuracy: 0.9033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.272 | 1.0 | 8509 | 0.3425 | 0.8802 | | 0.2319 | 2.0 | 17018 | 0.3300 | 0.8998 | | 0.2046 | 3.0 | 25527 | 0.3764 | 0.9033 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1
jykim310/st-llama-1-5.5b-taylor-q4f16_1-MLC
jykim310
2024-07-01T05:56:14Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:53:48Z
Entry not found
BilalRana/mt0-large-ia3
BilalRana
2024-07-01T05:54:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T05:54:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mihirkothari0702/Test_model
mihirkothari0702
2024-07-01T06:01:05Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:00:02Z
Entry not found
locking4451/lama222
locking4451
2024-07-01T06:14:31Z
0
0
null
[ "arxiv:1910.09700", "license:llama3", "region:us" ]
null
2024-07-01T06:01:31Z
--- license: llama3 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yjwon/zephyr_sft_dpo_beta1e-1_epoch5
yjwon
2024-07-01T06:06:10Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:01:59Z
Entry not found
abdiharyadi/indoamrbart-mbart-triple-ft-parser-no-nst-16-eps-v2
abdiharyadi
2024-07-01T06:12:00Z
0
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "generated_from_trainer", "dataset:data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-07-01T06:04:18Z
--- tags: - generated_from_trainer datasets: - data model-index: - name: indoamrbart-mbart-triple-ft-parser-no-nst-16-eps-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indoamrbart-mbart-triple-ft-parser-no-nst-16-eps-v2 This model was trained from scratch on the data dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 200 - num_epochs: 16.0 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
VKapseln475/Safran7885
VKapseln475
2024-07-01T06:08:39Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:08:09Z
# Safran Premium France Commentaires - Safran Premium Expériences Avantages, Prix, acheter Safran Premium France Commentaires Découvrez notre Safran bio premium de qualité Safr'inside. Extrait breveté garanti avec un triple titrage en actifs dont les safromotivines (12%), les crocines (3%) et le safranal (2%). Cette formule certifiée 100% pure en Crocus sativus L, favorise notamment la relaxation et contribue à réduire le temps d’endormissement. ## **[cliquez ici pour acheter maintenant sur le site officiel de Safran Premium](https://adtocart.xyz/safran-premium-fr)** ## Pouvoir anti-douleur Le Safran Premium dispose également d’un pouvoir anti-douleur notable. Il contribue à réduire l’inflammation et la douleur, ce qui est particulièrement bénéfique pour les personnes souffrant de conditions chroniques ou de douleurs occasionnelles. Quelle est l’efficacité du Safran Premium contre la douleur ? Ses composants actifs, comme la crocine et le safranal, agissent comme des analgésiques naturels, réduisant l’inflammation et fournissant un soulagement de la douleur sans les risques associés aux médicaments conventionnels. Outre les avantages mentionnés ci-dessus, Safran Premium contribue à une meilleure qualité de sommeil, améliore la fonction cognitive et possède des propriétés antioxydantes. Ces effets supplémentaires renforcent le bien-être général et contribuent à un mode de vie plus sain et plus équilibré. ## La posologie de Safran Premium La posologie recommandée pour le Safran Premium est de prendre une gélule le matin et une gélule le soir, de préférence une heure avant le coucher. Chaque flacon contient 120 gélules, ce qui correspond à un approvisionnement de deux mois si utilisé comme indiqué. Pour maximiser les bienfaits du complément, il est conseillé de le prendre régulièrement et conformément aux instructions. Une utilisation cohérente, combinée à un mode de vie sain, permettra d’observer les meilleurs résultats. ## Effets secondaires et contre-indications Le Safran Premium est généralement bien toléré, mais comme pour tout complément alimentaire, il peut y avoir des effets secondaires ou des contre-indications à prendre en compte. ## Effets secondaires potentiels : Nausées ou troubles digestifs légers Somnolence ou étourdissements Réactions allergiques, bien que rares ## Contre-indications : Femmes enceintes ou allaitantes : la sécurité du safran pendant la grossesse et l’allaitement n’étant pas établie, il est conseillé d’éviter son utilisation. Personnes sous médication : Ceux qui prennent des médicaments, en particulier des antidépresseurs ou des anticoagulants, devraient consulter un professionnel de santé avant de commencer le traitement. Enfants : Safran Premium n’est pas recommandé pour les enfants sans l’avis d’un médecin. En résumé, bien que Safran Premium soit une option naturelle pour améliorer le bien-être, respectez la posologie recommandée et de prendre en compte les éventuelles interactions médicamenteuses ou conditions de santé préexistantes. ## Où acheter Safran Premium ? Le Safran Premium de Nutr’Innov est un produit exclusif qui n’est disponible à l’achat que via le site officiel du fabricant. Cette décision de distribution exclusive est stratégique et repose sur plusieurs raisons importantes. D’abord, elle garantit que les clients reçoivent le produit authentique, directement du fabricant, sans intermédiaire susceptible d’altérer la qualité ou d’augmenter les prix. ## **[cliquez ici pour acheter maintenant sur le site officiel de Safran Premium](https://adtocart.xyz/safran-premium-fr)**
khanhnn55/naschainv10
khanhnn55
2024-07-02T23:12:47Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:08:27Z
Entry not found
Moriacrafter/Qwen1.5-1.8B-8bit_DepressionDetection
Moriacrafter
2024-07-01T06:10:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:08:49Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yjwon/zephyr_sft_dpo_beta5e-2_epoch5
yjwon
2024-07-01T06:12:49Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:08:56Z
Entry not found
Ranhui/Reinforce-CartPole-v1
Ranhui
2024-07-01T06:11:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-07-01T06:10:48Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
soonmo/OpenHermes-2.5-Mistral-7B-method1
soonmo
2024-07-01T06:36:24Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:11:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SeanYou/gpt-sovits-firefly
SeanYou
2024-07-01T06:12:41Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-01T06:12:41Z
--- license: mit ---
yjwon/zephyr_sft_dpo_beta1e-2_epoch5
yjwon
2024-07-01T06:17:33Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:13:15Z
Entry not found
moonjeongy/yujin
moonjeongy
2024-07-01T06:16:00Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:14:54Z
Entry not found
LeroyDyer/LCARS_AI_016
LeroyDyer
2024-07-01T06:22:43Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:LCARS_AI_015", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T06:17:19Z
--- base_model: LCARS_AI_015 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl --- # Uploaded model - **Developed by:** LeroyDyer - **License:** apache-2.0 - **Finetuned from model :** LCARS_AI_015 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vaivTA/yolov8x_doclaynet
vaivTA
2024-07-03T00:00:19Z
0
0
null
[ "tensorboard", "object-detection", "en", "dataset:ds4sd/DocLayNet", "license:mit", "region:us" ]
object-detection
2024-07-01T06:17:40Z
--- license: mit datasets: - ds4sd/DocLayNet language: - en metrics: - accuracy pipeline_tag: object-detection ---
nandhakumar7/sample
nandhakumar7
2024-07-01T06:18:41Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:18:41Z
Entry not found
heison/l3
heison
2024-07-01T06:20:33Z
0
0
null
[ "license:llama3", "region:us" ]
null
2024-07-01T06:20:33Z
--- license: llama3 ---
peshimaammuzammil/imageteller
peshimaammuzammil
2024-07-01T06:23:07Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:22:08Z
Entry not found
yjwon/zephyr_sft_uniform_meogd_rms_RE_epoch1
yjwon
2024-07-01T06:31:32Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:27:08Z
Entry not found
shivangi19s/llama3_chatbot_finetuned
shivangi19s
2024-07-01T06:27:42Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:27:42Z
Entry not found
apwic/summarization-base-3
apwic
2024-07-01T09:45:39Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "id", "base_model:LazarusNLP/IndoNanoT5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2024-07-01T06:28:24Z
--- language: - id license: apache-2.0 base_model: LazarusNLP/IndoNanoT5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: summarization-base-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarization-base-3 This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5374 - Rouge1: 0.4096 - Rouge2: 0.0 - Rougel: 0.4081 - Rougelsum: 0.4102 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.6296 | 1.0 | 3568 | 0.5221 | 0.3678 | 0.0 | 0.3666 | 0.3673 | 1.0 | | 0.4308 | 2.0 | 7136 | 0.4927 | 0.4034 | 0.0 | 0.3999 | 0.4032 | 1.0 | | 0.3347 | 3.0 | 10704 | 0.5028 | 0.4081 | 0.0 | 0.407 | 0.4083 | 1.0 | | 0.2655 | 4.0 | 14272 | 0.5221 | 0.4264 | 0.0 | 0.4239 | 0.4268 | 1.0 | | 0.2179 | 5.0 | 17840 | 0.5374 | 0.4096 | 0.0 | 0.4081 | 0.4102 | 1.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
mago18/ava-50-chose
mago18
2024-07-01T06:31:53Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T06:30:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LeroyDyer/LCARS_AI_016_4_BIT
LeroyDyer
2024-07-01T06:33:57Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:LCARS_AI_015", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-07-01T06:31:24Z
--- base_model: LCARS_AI_015 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- # Uploaded model - **Developed by:** LeroyDyer - **License:** apache-2.0 - **Finetuned from model :** LCARS_AI_015 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yjwon/zephyr_sft_uniform_ogd_rms_RE_epoch1
yjwon
2024-07-01T06:36:03Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:31:58Z
Entry not found
xinghaow/zephyr-7b-dpo-full
xinghaow
2024-07-02T14:14:45Z
0
0
transformers
[ "transformers", "tensorboard", "moss2", "feature-extraction", "custom_code", "region:us" ]
feature-extraction
2024-07-01T06:33:36Z
Entry not found
ShapeKapseln33/RediminPolska76
ShapeKapseln33
2024-07-01T06:35:53Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:33:52Z
Redimin Polska Opinie Stosując ten produkt, można zapomnieć o ciągłych dietach i wyczerpujących treningach cardio, ponieważ sam rozwiązuje problem nadwagi. Dowiedzmy się więcej o tym, czym jest Redimin? **[Kliknij tutaj, aby kupić teraz na oficjalnej stronie Redmi Polska](https://adtocart.xyz/redimin-polska)** Utrata wagi to cel wielu ludzi, ale znalezienie czasu na ćwiczenia może być trudne, ze względu na styl życia. Jeśli jesteś chętny do utraty wagi, ale nie masz zbyt wiele czasu, aby spędzić go na siłowni, nie martw się – istnieje wiele sposobów, aby zrzucić zbędne kilogramy bez ogromu wyrzeczeń. Taką pomocną dłonią jest Redimin – suplement diety, który wspomaga proces utraty wagi. Możesz wprowadzić małe, proste zmiany do swojej codziennej rutyny, które pomogą Ci osiągnąć cele związane z utratą wagi bez konieczności poświęcania sporo czasu na ćwiczenia. Zdrowe odżywianie, kontrola porcji i modyfikacje stylu życia mogą być skutecznymi strategiami zrzucania tych dodatkowych kilogramów. Przy odrobinie wysiłku i niesłabnącej motywacji, można osiągnąć swoje cele utraty wagi bez większego problemu. Nie zniechęcaj się więc, jeśli nie masz czasu na ćwiczenia – nadal istnieje wiele sposobów na uzyskanie ciała, o którym zawsze marzyłeś. Poniżej omówiony zostanie każdy aspekt suplementu Redimin, dzięki czemu dowiesz się czy jest to produkt dla Ciebie oraz co na jego temat uważają użytkownicy. Cały tekst powstał w oparciu o informacje znajdujące się na oficjalnej stronie producenta. ##Co to jest Redimin? Redimin to suplement diety zaprojektowany, aby pomóc ludziom osiągnąć ich cele związane z utratą wagi poprzez zapewnienie naturalnego, bezpiecznego i skutecznego rozwiązania. Ten suplement jest w postaci tabletek, wykonanych z całkowicie naturalnych składników, które zostały zaprojektowane, aby pomóc przyspieszyć metabolizm i oczyścić organizm. Może pomóc osobom zmagającym się z przyrostem masy ciała, ponieważ działa na fizyczne przyczyny, takie jak powolny metabolizm i retencja płynów. Dzięki całkowicie naturalnemu składowi, Redimin z pewnością zapewni zauważalne wyniki w krótkim czasie. Produkt Redimin jest doskonałym rozwiązaniem dla osób dorosłych, które szukają szybkiej i łatwej utraty wagi. Te kapsułki są przeznaczone do wspomagania spalania tłuszczu bez konieczności wprowadzania drastycznych zmian w diecie lub ćwiczeń, co czyni je odpowiednią opcją dla każdej osoby, która chce zrzucić trochę kilogramów, ale nie wiem od czego zacząć. Dzięki wygodnym i skutecznym właściwościom spalającym tłuszcz, Redimin jest doskonałym rozwiązaniem dla każdego, kto szuka bezstresowego i szybkiego sposobu na osiągnięcie swoich celów związanych z utratą wagi. **[Kliknij tutaj, aby kupić teraz na oficjalnej stronie Redmi Polska](https://adtocart.xyz/redimin-polska)** ##Jak działa Redimin? Redimin to suplement diety zaprojektowany, aby pomóc organizmowi spalić nadmiar tłuszczu, nawet podczas snu. Redimin działa poprzez przyspieszenie metabolizmu, dzięki czemu organizm może szybciej wchłaniać i trawić pokarm. Ponadto suplement może pomóc zaaklimatyzować organizm do poczucia sytości i pełności, zmniejszając tym samym głód. Aby zmaksymalizować jego działanie, ważne jest, aby połączyć stosowanie Redimin z dietą o niskiej zawartości tłuszczu i cukru oraz regularną aktywnością fizyczną. W ten sposób Redimin może pomóc w przywróceniu ciała do formy bez poświęcania wielu godzin każdego dnia na ćwiczenia. ##Redimin – Skład Poszczególne skład, które tworzą Redimin są wolne od wszelkich sztucznych dodatków i niebezpiecznych substancji chemicznych, dzięki czemu są wysoce tolerowane i skuteczne dla większości ludzi, którzy je przyjmują. Poniżej znajduje się lista kompozycji występujących w Rediminie. Bacopa Monnieri to naturalny składnik związany z wieloma niezwykłymi korzyściami związanymi z utratą wagi. Pomaga regulować poziom glikemii, ograniczając gromadzenie się tłuszczu. Berberynie przypisuje się właściwości hipoglikemiczne i jest ona stosowana jako środek wspomagający w dietach odchudzających. L-karnityna umożliwia poprawę drenażu płynów, co pomaga wydalić nadmiar odpadów i toksyn z organizmu, oczyszczając go i umożliwiając sprawniejsze działanie funkcji życiowych. Garcinia cambogia przyspiesza metabolizm tłuszczów i pomaga zmniejszyć głód, ułatwiając trzymanie się celów związanych z utratą wagi. ##Redimin – Efekty Skład Redimin oferują kilka efekty, w tym zmniejszenie wzdęcia brzucha, optymalizację faz trawienia i jelit, oczyszczanie organizmu i zmniejszenie masy tłuszczu. Efekty te współpracują ze sobą, aby promować poprawę ogólnego stanu zdrowia, umożliwiając organizmowi bardziej efektywne wchłanianie niezbędnych witamin i minerałów. Redimin zawiera mieszankę starannie dobranych składników pochodzenia naturalnego, które współdziałają w celu stymulowania naturalnych procesów metabolicznych organizmu. Połączenie tych składników pomaga przyspieszyć metabolizm, reguluje poziom hormonów, wspomaga utratę wagi i zmniejsza stan zapalny. Antyoksydanty obecne w Redimin pomagają zwalczać wolne rodniki, które mogą negatywnie wpływać na proces utraty wagi. **[Kliknij tutaj, aby kupić teraz na oficjalnej stronie Redmi Polska](https://adtocart.xyz/redimin-polska)** ##Redimin – Opinie i recenzje Redimin stał się popularnym suplementem diety dzięki udanej sprzedaży online. Opinie użytkowników na temat Redimin są w przeważającej mierze pozytywne, z wielu konsumentów zgłaszających uczucie lżejsze, mniej wzdęty i o zmniejszone uczucie głodu po początkowym spożyciu. Ten suplement jest również bardzo chwalony za jego 100% naturalną, bezpieczną formułę bez przeciwwskazań. Ponadto zauważono, że Redimin jest łatwy do podjęcia i może pomóc w przyspieszeniu metabolizmu. Nie udało nam się znaleźć żadnych negatywnych recenzji tego produktu. ##Redimin – Dawkowanie – Sposób użycia Zalecana dawka to dwie kapsułki dziennie, przyjmowane po jednej kapsułce 30 minut przed posiłkiem. Kapsułki Redimin należy zawsze popijać pełną szklanką wody. Należy również pamiętać, aby nie przekraczać dziennej dawki, która jest zalecana przez producenta. Producent zaleca przyjmowanie Redimin przez okres co najmniej czterech – ośmiu tygodni w celu uzyskania najlepszych rezultatów. Dłuższe stosowanie suplementu może być korzystne dla wsparcia i utrzymania utraty wagi. ##Redimin – Skutki uboczne i przeciwwskazania Redimin jest suplementem diety, który jest ogólnie dobrze tolerowany i nie ma znanych skutków ubocznych lub przeciwwskazań i powinien być przyjmowany przez dorosłych. Jednakże, jeśli jesteś kobietą w ciąży lub karmiącą piersią, upewnij się, że skonsultujesz się z lekarzem przed zażyciem Rediminu. Dla osób, które mają alergie, pamiętaj, aby sprawdzić skład Rediminu. ##Gdzie kupić Redimin? Apteka, Allegro Jeśli chcesz kupić autentyczny produkt Redimin, należy pamiętać o odpowiednim wyborzu miejsce zakupu. Aby uniknąć wszelkich podróbek, lepiej nie próbować znaleźć suplementu na stronach takich jak Allegro i Ebay. Ważne jest, aby kupować tylko z oficjalnej strony producenta, aby upewnić się, że otrzymujesz oryginalny produkt Redimin. Ponadto, suplement zgodnie ze strategia producenta, nie jest dostępny w aptekach. ##Ile kosztuje Redimin – Cena Redimin jest dostępny tylko na swojej oficjalnej stronie internetowej i jego cena różni się w zależności od pakietu, który zakupisz. Cena 30 kapsułek wynosi 294 zł, ale dzięki obowiązującej teraz promocji, można zamówić kapsułki za jedyne 147 złotych z darmową dostawą. Producent Redimin oferuje promocyjną zniżkę od czasu do czasu, aby skorzystać z tego rabatu warto dokonać zamówienia jak najszybciej, gdyż jest to oferta ograniczona czasowo. **[Kliknij tutaj, aby kupić teraz na oficjalnej stronie Redmi Polska](https://adtocart.xyz/redimin-polska)**
Vikas4Bits/vicuna-13b-v1.5_4bit
Vikas4Bits
2024-07-01T06:47:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2024-07-01T06:35:08Z
Entry not found
wardloyson/d
wardloyson
2024-07-01T06:35:12Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:35:12Z
Entry not found
penguindustin/temp-model
penguindustin
2024-07-01T06:36:38Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:35:24Z
Entry not found
sivakarri/roberta_nba_v2
sivakarri
2024-07-01T10:28:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-07-01T06:36:18Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta_nba_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_nba_v2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4838 | 1.0 | 193 | 0.5098 | | 0.4339 | 2.0 | 386 | 0.5224 | | 0.3639 | 3.0 | 579 | 0.5431 | | 0.4189 | 4.0 | 772 | 0.4780 | | 0.3729 | 5.0 | 965 | 0.6443 | | 0.1509 | 6.0 | 1158 | 0.6412 | | 0.0923 | 7.0 | 1351 | 0.7526 | | 0.0256 | 8.0 | 1544 | 0.7852 | | 0.1447 | 9.0 | 1737 | 0.8347 | | 0.0011 | 10.0 | 1930 | 0.8231 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
MayurPai/half_precision_llama2_1
MayurPai
2024-07-01T07:23:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:36:23Z
Entry not found
yjwon/zephyr_sft_uniform_meogd_rms_RE_epoch2
yjwon
2024-07-01T06:40:41Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:36:35Z
Entry not found
MrDorian/Gladiatorlight
MrDorian
2024-07-01T06:40:50Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:38:41Z
Entry not found
irusl/01IR-11
irusl
2024-07-01T06:42:02Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T06:39:14Z
Entry not found
yjwon/zephyr_sft_uniform_ogd_rms_RE_epoch2
yjwon
2024-07-01T06:45:14Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:41:11Z
Entry not found
liujiahao/Phi-3-medium-4k-instruct-lora-afac-track2
liujiahao
2024-07-02T05:37:16Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T06:42:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mooskim/distilhubert-finetuned-gtzan
mooskim
2024-07-01T07:21:20Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "hubert", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2024-07-01T06:44:15Z
Entry not found
irusl/02IR-11
irusl
2024-07-01T06:47:49Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T06:45:11Z
Entry not found
yjwon/zephyr_sft_uniform_meogd_rms_RE_epoch3
yjwon
2024-07-01T06:49:41Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:45:36Z
Entry not found
liuqinqguan/modeltest
liuqinqguan
2024-07-01T06:49:45Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:47:32Z
Entry not found
tgrhn/wav2vec2-turkish-1
tgrhn
2024-07-01T10:34:00Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T06:48:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yjwon/zephyr_sft_uniform_ogd_rms_RE_epoch3
yjwon
2024-07-01T06:53:57Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:50:04Z
Entry not found
irusl/04IR-11
irusl
2024-07-01T06:53:36Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T06:50:59Z
Entry not found
Tonole/test
Tonole
2024-07-01T06:52:05Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:52:05Z
Entry not found
azadeh1972/fVSb_finetuned
azadeh1972
2024-07-02T23:30:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2024-07-01T06:53:59Z
Invalid username or password.
Aina69/opus_mt_mg_fr
Aina69
2024-07-01T06:54:10Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:54:10Z
Entry not found
yjwon/zephyr_sft_uniform_meogd_rms_RE_epoch4
yjwon
2024-07-01T06:58:11Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:54:24Z
Entry not found
whizzzzkid/whizzzzkid_358_1
whizzzzkid
2024-07-01T06:56:56Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T06:55:37Z
Entry not found
Aina69/opus_mt_mg_eng
Aina69
2024-07-01T06:55:45Z
0
0
null
[ "region:us" ]
null
2024-07-01T06:55:45Z
Entry not found
siddhant2610/Llama-2-7b-chat-finetune
siddhant2610
2024-07-01T06:56:20Z
0
0
null
[ "license:llama2", "region:us" ]
null
2024-07-01T06:56:20Z
--- license: llama2 ---
CatBarks/t5-lora-squad_model
CatBarks
2024-07-01T06:58:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T06:58:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CatBarks/t5-lora-squad_tokenizer
CatBarks
2024-07-01T06:58:21Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T06:58:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yjwon/zephyr_sft_uniform_ogd_rms_RE_epoch4
yjwon
2024-07-01T07:02:41Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T06:58:39Z
Entry not found
Vikas4Bits/Llama-3-8B-instruct-4bit
Vikas4Bits
2024-07-01T09:23:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2024-07-01T07:02:43Z
## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "Vikas4Bits/Llama-3-8B-instruct-4bit" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( messages, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][-1]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "Vikas4Bits/Llama-3-8B-instruct-4bit" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3`
yjwon/zephyr_sft_uniform_meogd_rms_RE_epoch5
yjwon
2024-07-01T07:07:04Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T07:03:09Z
Entry not found
nlplabtdtu/vilaw-sailor-instruct-v2-adapter
nlplabtdtu
2024-07-01T07:35:20Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-07-01T07:03:23Z
Entry not found
jung0202/llama3data_sample
jung0202
2024-07-01T07:03:35Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-01T07:03:35Z
--- license: mit ---
Alifnfa/model_kue_indonesia
Alifnfa
2024-07-01T07:06:42Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:06:42Z
Entry not found
vimal10/example-model
vimal10
2024-07-01T08:34:27Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:06:51Z
Example Model This is my model card Readme --- license: mit ---
yjwon/zephyr_sft_uniform_ogd_rms_RE_epoch5
yjwon
2024-07-01T07:11:41Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T07:07:29Z
Entry not found
whizzzzkid/whizzzzkid_359_2
whizzzzkid
2024-07-01T07:09:02Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T07:07:41Z
Entry not found
Gaby1306/DriehoekNoord
Gaby1306
2024-07-01T07:09:43Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:09:43Z
Entry not found
whizzzzkid/whizzzzkid_360_6
whizzzzkid
2024-07-01T07:11:14Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T07:09:46Z
Entry not found
itay-nakash/model_643111dcc3_sweep_tough-blaze-1007
itay-nakash
2024-07-01T07:11:44Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:11:44Z
Entry not found
whizzzzkid/whizzzzkid_361_5
whizzzzkid
2024-07-01T07:13:34Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T07:11:59Z
Entry not found
Loren85/Dick
Loren85
2024-07-01T07:13:48Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-07-01T07:12:38Z
--- license: openrail ---
whizzzzkid/whizzzzkid_362_4
whizzzzkid
2024-07-01T07:15:55Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T07:14:23Z
Entry not found
Tanysha/llama-3-8b-chatdoc
Tanysha
2024-07-01T07:18:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T07:17:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VinaySukhesh/gemma-2-9b-q4f16_1-MLC
VinaySukhesh
2024-07-01T07:17:56Z
0
0
null
[ "license:gemma", "region:us" ]
null
2024-07-01T07:17:56Z
--- license: gemma ---
subhadeep-das/toyota-corolla-cross-xle-2022
subhadeep-das
2024-07-01T07:18:12Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:18:12Z
Entry not found
scenario-labs/FastSam
scenario-labs
2024-07-01T07:35:39Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:19:37Z
Entry not found
davis0577/TestGPT1
davis0577
2024-07-01T07:20:24Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-01T07:20:24Z
--- license: mit ---
giusebello/garment_designer
giusebello
2024-07-01T09:41:53Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:21:03Z
Entry not found
habulaj/3245350643
habulaj
2024-07-01T07:22:13Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:22:04Z
Entry not found
kaya-kedi/Sonic-RogerCraigSmith-TITANPretrain
kaya-kedi
2024-07-01T07:35:14Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:23:29Z
Entry not found
Huy227/adapter_v8
Huy227
2024-07-01T07:26:23Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:google/gemma-2-9b-it", "license:other", "region:us" ]
null
2024-07-01T07:25:27Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: google/gemma-2-9b-it model-index: - name: dpo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on the dpo_vi dataset. It achieves the following results on the evaluation set: - Loss: 0.5875 - Rewards/chosen: 0.7433 - Rewards/rejected: 0.4637 - Rewards/accuracies: 0.6538 - Rewards/margins: 0.2796 - Logps/rejected: -233.8130 - Logps/chosen: -211.9995 - Logits/rejected: -2.6008 - Logits/chosen: -3.2426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1
xinqiwei/xinqi-wei
xinqiwei
2024-07-01T07:27:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-07-01T07:27:08Z
--- license: apache-2.0 ---
soonmo/Phi-3-mini-4k-instruct-dpo_method1
soonmo
2024-07-02T03:54:47Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T07:27:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
itay-nakash/model_643111dcc3_sweep_cerulean-snowball-1009
itay-nakash
2024-07-01T07:27:50Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:27:50Z
Entry not found
AzureBP/Yi-6B-Chat-Test1
AzureBP
2024-07-01T07:55:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T07:28:08Z
--- license: mit ---
Imvignesh/tt-oilwell-qa-pipeline-demo
Imvignesh
2024-07-01T07:35:11Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:28:22Z
Entry not found
yews1234/inje-jun-yeop-en-to-ko
yews1234
2024-07-01T07:29:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T07:29:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habulaj/150713127895
habulaj
2024-07-01T07:30:16Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:30:09Z
Entry not found
haibaraconan/a
haibaraconan
2024-07-01T07:36:16Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:31:43Z
Entry not found
Ksgk-fy/ecoach_philippine_v9_merge
Ksgk-fy
2024-07-01T07:34:44Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T07:32:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
itay-nakash/model_2eb3b834b5_sweep_sage-energy-1010
itay-nakash
2024-07-01T07:34:54Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:34:54Z
Entry not found
Kshitiz91/Llama-2-7b-chat-finetune
Kshitiz91
2024-07-01T07:35:18Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-01T07:35:18Z
--- license: mit ---
leva4656/tsoi
leva4656
2024-07-01T07:46:10Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-07-01T07:37:36Z
--- license: openrail ---
J5Tsai/debug-static-files
J5Tsai
2024-07-01T07:42:42Z
0
0
null
[ "region:us" ]
null
2024-07-01T07:37:45Z
Entry not found