modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
mssongit/Qwen2-7b-orpo-1
mssongit
2024-07-01T02:31:13Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T02:28:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
caitq-huggingface/llama3-8b-instruct-seqlen-4096-bs-2
caitq-huggingface
2024-07-01T02:30:14Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T02:28:34Z
Entry not found
mjkenney/my-gemma-2b-arc-finetuned-model
mjkenney
2024-07-01T02:32:34Z
0
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T02:30:10Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sliceofham/firstmodel
sliceofham
2024-07-01T02:35:41Z
0
0
null
[ "license:llama3", "region:us" ]
null
2024-07-01T02:35:41Z
--- license: llama3 ---
bigstorm/dolphin-2.9.2-qwen2-72b-7.0bpw-8hb-exl2
bigstorm
2024-07-01T03:17:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "conversational", "dataset:cognitivecomputations/Dolphin-2.9", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:microsoft/orca-math-word-problems-200k", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "base_model:Qwen/Qwen2-72B", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "6-bit", "exl2", "region:us" ]
text-generation
2024-07-01T02:38:39Z
--- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-110B/blob/main/LICENSE base_model: Qwen/Qwen2-72B tags: - generated_from_trainer - axolotl datasets: - cognitivecomputations/Dolphin-2.9 - teknium/OpenHermes-2.5 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - microsoft/orca-math-word-problems-200k - Locutusque/function-calling-chatml - internlm/Agent-FLAN --- # BigStorm - ExLLamaV2 (Exl2) Quantization - 7.0 bpw target - 8 head bits Enjoy! Raise an issue if you'd like other BPW levels. **Base Model Card Follows:** --- # Dolphin 2.9.2 Qwen2 72B ๐Ÿฌ Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations [![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/cognitivecomputations) Discord: https://discord.gg/cognitivecomputations <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" /> Our appreciation for the sponsors of Dolphin 2.9.2: - [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xH100 node This model is based on Qwen2-72b, and is governed by [tongyi-qianwen license](LICENSE) The base model has 128k context, and the full-weight fine-tuning was with 8k sequence length. This model was trained FFT on parameters selected by [Laser Scanner](https://github.com/cognitivecomputations/laserRMT/blob/main/laser_scanner.py), using ChatML prompt template format. example: ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Dolphin-2.9.2 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling. Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly. Dolphin is licensed according to Qwen's tongyi-qianwen license. We grant permission for any use, including commercial, that falls within accordance with said license. Dolphin was trained on data generated from GPT4, among other models. ## Evals ![image/png](https://i.ibb.co/B4x1Ddr/file-2ao0fl-K2-B2-Hmka-Epd0ja-QY0x.webp) [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen2-72B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true # load_in_8bit: true # load_in_4bit: false # strict: false datasets: - path: /workspace/datasets/dolphin-2.9.2/dolphin201-sharegpt2.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/dolphin-coder-codegen-sharegpt2.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/dolphin-coder-translate-sharegpt2.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/not_samantha_norefusals.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/openhermes200k_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/Orca-Math-resort-unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/SystemChat_sharegpt.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/toolbench_instruct_j1s1_3k_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/toolbench_negative_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/toolbench_react_10p_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/toolbench_tflan_cot_30p_unfiltered.jsonl type: sharegpt conversation: chatml - path: /workspace/datasets/dolphin-2.9.2/agent_instruct_react_unfiltered.jsonl type: sharegpt conversation: chatml unfrozen_parameters: - ^lm_head.weight$ - ^model.embed_tokens.weight$ # mlp.down_proj layers - model.layers.62.mlp.down_proj - model.layers.63.mlp.down_proj - model.layers.66.mlp.down_proj - model.layers.65.mlp.down_proj - model.layers.64.mlp.down_proj - model.layers.67.mlp.down_proj - model.layers.68.mlp.down_proj - model.layers.60.mlp.down_proj - model.layers.31.mlp.down_proj - model.layers.69.mlp.down_proj - model.layers.61.mlp.down_proj - model.layers.59.mlp.down_proj - model.layers.70.mlp.down_proj - model.layers.30.mlp.down_proj - model.layers.76.mlp.down_proj - model.layers.72.mlp.down_proj - model.layers.77.mlp.down_proj - model.layers.71.mlp.down_proj - model.layers.29.mlp.down_proj - model.layers.58.mlp.down_proj - model.layers.75.mlp.down_proj - model.layers.32.mlp.down_proj - model.layers.56.mlp.down_proj - model.layers.28.mlp.down_proj - model.layers.26.mlp.down_proj - model.layers.33.mlp.down_proj - model.layers.34.mlp.down_proj - model.layers.57.mlp.down_proj - model.layers.27.mlp.down_proj - model.layers.25.mlp.down_proj - model.layers.35.mlp.down_proj - model.layers.73.mlp.down_proj - model.layers.24.mlp.down_proj - model.layers.78.mlp.down_proj - model.layers.74.mlp.down_proj - model.layers.54.mlp.down_proj # mlp.gate_proj layers - model.layers.78.mlp.gate_proj - model.layers.77.mlp.gate_proj - model.layers.76.mlp.gate_proj - model.layers.79.mlp.gate_proj - model.layers.75.mlp.gate_proj - model.layers.74.mlp.gate_proj - model.layers.73.mlp.gate_proj - model.layers.70.mlp.gate_proj - model.layers.72.mlp.gate_proj - model.layers.71.mlp.gate_proj - model.layers.69.mlp.gate_proj - model.layers.54.mlp.gate_proj - model.layers.68.mlp.gate_proj - model.layers.57.mlp.gate_proj - model.layers.63.mlp.gate_proj - model.layers.49.mlp.gate_proj - model.layers.55.mlp.gate_proj - model.layers.53.mlp.gate_proj - model.layers.44.mlp.gate_proj - model.layers.46.mlp.gate_proj - model.layers.67.mlp.gate_proj - model.layers.58.mlp.gate_proj - model.layers.56.mlp.gate_proj - model.layers.45.mlp.gate_proj - model.layers.50.mlp.gate_proj - model.layers.62.mlp.gate_proj - model.layers.64.mlp.gate_proj - model.layers.48.mlp.gate_proj - model.layers.66.mlp.gate_proj - model.layers.52.mlp.gate_proj - model.layers.40.mlp.gate_proj - model.layers.47.mlp.gate_proj - model.layers.43.mlp.gate_proj - model.layers.65.mlp.gate_proj - model.layers.61.mlp.gate_proj - model.layers.59.mlp.gate_proj # mlp.up_proj layers - model.layers.69.mlp.up_proj - model.layers.70.mlp.up_proj - model.layers.71.mlp.up_proj - model.layers.68.mlp.up_proj - model.layers.67.mlp.up_proj - model.layers.66.mlp.up_proj - model.layers.46.mlp.up_proj - model.layers.63.mlp.up_proj - model.layers.72.mlp.up_proj - model.layers.64.mlp.up_proj - model.layers.62.mlp.up_proj - model.layers.45.mlp.up_proj - model.layers.65.mlp.up_proj - model.layers.73.mlp.up_proj - model.layers.47.mlp.up_proj - model.layers.44.mlp.up_proj - model.layers.49.mlp.up_proj - model.layers.48.mlp.up_proj - model.layers.53.mlp.up_proj - model.layers.74.mlp.up_proj - model.layers.75.mlp.up_proj - model.layers.57.mlp.up_proj - model.layers.76.mlp.up_proj - model.layers.43.mlp.up_proj - model.layers.42.mlp.up_proj - model.layers.61.mlp.up_proj - model.layers.40.mlp.up_proj - model.layers.56.mlp.up_proj - model.layers.60.mlp.up_proj - model.layers.31.mlp.up_proj - model.layers.54.mlp.up_proj - model.layers.55.mlp.up_proj - model.layers.32.mlp.up_proj - model.layers.41.mlp.up_proj - model.layers.33.mlp.up_proj - model.layers.58.mlp.up_proj # self_attn.k_proj layers - model.layers.79.self_attn.k_proj - model.layers.36.self_attn.k_proj - model.layers.35.self_attn.k_proj - model.layers.74.self_attn.k_proj - model.layers.34.self_attn.k_proj - model.layers.78.self_attn.k_proj - model.layers.77.self_attn.k_proj - model.layers.37.self_attn.k_proj - model.layers.39.self_attn.k_proj - model.layers.41.self_attn.k_proj - model.layers.38.self_attn.k_proj - model.layers.33.self_attn.k_proj - model.layers.69.self_attn.k_proj - model.layers.42.self_attn.k_proj - model.layers.32.self_attn.k_proj - model.layers.25.self_attn.k_proj - model.layers.70.self_attn.k_proj - model.layers.22.self_attn.k_proj - model.layers.63.self_attn.k_proj - model.layers.29.self_attn.k_proj - model.layers.68.self_attn.k_proj - model.layers.24.self_attn.k_proj - model.layers.30.self_attn.k_proj - model.layers.66.self_attn.k_proj - model.layers.31.self_attn.k_proj - model.layers.23.self_attn.k_proj - model.layers.65.self_attn.k_proj - model.layers.57.self_attn.k_proj - model.layers.28.self_attn.k_proj - model.layers.64.self_attn.k_proj - model.layers.44.self_attn.k_proj - model.layers.27.self_attn.k_proj - model.layers.75.self_attn.k_proj - model.layers.40.self_attn.k_proj - model.layers.26.self_attn.k_proj - model.layers.61.self_attn.k_proj # self_attn.o_proj layers - model.layers.14.self_attn.o_proj - model.layers.39.self_attn.o_proj - model.layers.19.self_attn.o_proj - model.layers.16.self_attn.o_proj - model.layers.17.self_attn.o_proj - model.layers.15.self_attn.o_proj - model.layers.69.self_attn.o_proj - model.layers.12.self_attn.o_proj - model.layers.42.self_attn.o_proj - model.layers.23.self_attn.o_proj - model.layers.22.self_attn.o_proj - model.layers.29.self_attn.o_proj - model.layers.13.self_attn.o_proj - model.layers.46.self_attn.o_proj - model.layers.52.self_attn.o_proj - model.layers.26.self_attn.o_proj - model.layers.38.self_attn.o_proj - model.layers.41.self_attn.o_proj - model.layers.18.self_attn.o_proj - model.layers.49.self_attn.o_proj - model.layers.11.self_attn.o_proj - model.layers.28.self_attn.o_proj - model.layers.25.self_attn.o_proj - model.layers.47.self_attn.o_proj - model.layers.53.self_attn.o_proj - model.layers.27.self_attn.o_proj - model.layers.37.self_attn.o_proj - model.layers.20.self_attn.o_proj - model.layers.43.self_attn.o_proj - model.layers.44.self_attn.o_proj - model.layers.45.self_attn.o_proj - model.layers.30.self_attn.o_proj - model.layers.24.self_attn.o_proj - model.layers.21.self_attn.o_proj - model.layers.10.self_attn.o_proj - model.layers.3.self_attn.o_proj # self_attn.q_proj layers - model.layers.1.self_attn.q_proj - model.layers.2.self_attn.q_proj - model.layers.3.self_attn.q_proj - model.layers.5.self_attn.q_proj - model.layers.4.self_attn.q_proj - model.layers.0.self_attn.q_proj - model.layers.6.self_attn.q_proj - model.layers.8.self_attn.q_proj - model.layers.7.self_attn.q_proj - model.layers.9.self_attn.q_proj - model.layers.10.self_attn.q_proj - model.layers.12.self_attn.q_proj - model.layers.19.self_attn.q_proj - model.layers.18.self_attn.q_proj - model.layers.25.self_attn.q_proj - model.layers.11.self_attn.q_proj - model.layers.15.self_attn.q_proj - model.layers.61.self_attn.q_proj - model.layers.17.self_attn.q_proj - model.layers.55.self_attn.q_proj - model.layers.54.self_attn.q_proj - model.layers.16.self_attn.q_proj - model.layers.68.self_attn.q_proj - model.layers.49.self_attn.q_proj - model.layers.48.self_attn.q_proj - model.layers.52.self_attn.q_proj - model.layers.13.self_attn.q_proj - model.layers.42.self_attn.q_proj - model.layers.57.self_attn.q_proj - model.layers.60.self_attn.q_proj - model.layers.53.self_attn.q_proj - model.layers.64.self_attn.q_proj - model.layers.66.self_attn.q_proj - model.layers.62.self_attn.q_proj - model.layers.59.self_attn.q_proj - model.layers.50.self_attn.q_proj # self_attn.v_proj layers - model.layers.15.self_attn.v_proj - model.layers.16.self_attn.v_proj - model.layers.23.self_attn.v_proj - model.layers.24.self_attn.v_proj - model.layers.25.self_attn.v_proj - model.layers.26.self_attn.v_proj - model.layers.27.self_attn.v_proj - model.layers.28.self_attn.v_proj - model.layers.29.self_attn.v_proj - model.layers.30.self_attn.v_proj - model.layers.31.self_attn.v_proj - model.layers.32.self_attn.v_proj - model.layers.33.self_attn.v_proj - model.layers.34.self_attn.v_proj - model.layers.35.self_attn.v_proj - model.layers.36.self_attn.v_proj - model.layers.37.self_attn.v_proj - model.layers.38.self_attn.v_proj - model.layers.39.self_attn.v_proj - model.layers.41.self_attn.v_proj - model.layers.42.self_attn.v_proj - model.layers.48.self_attn.v_proj - model.layers.53.self_attn.v_proj - model.layers.57.self_attn.v_proj - model.layers.58.self_attn.v_proj - model.layers.59.self_attn.v_proj - model.layers.61.self_attn.v_proj - model.layers.63.self_attn.v_proj - model.layers.64.self_attn.v_proj - model.layers.65.self_attn.v_proj - model.layers.66.self_attn.v_proj - model.layers.69.self_attn.v_proj - model.layers.74.self_attn.v_proj - model.layers.75.self_attn.v_proj - model.layers.76.self_attn.v_proj - model.layers.72.self_attn.v_proj chat_template: chatml dataset_prepared_path: qwen2-72b-data val_set_size: 0.01 output_dir: qwen2-72b sequence_len: 8192 # supports up to 8192 sample_packing: true pad_to_sequence_len: true # adapter: lora # lora_model_dir: # lora_r: 32 # lora_alpha: 16 # lora_dropout: 0.05 # lora_target_linear: true # lora_fan_in_fan_out: wandb_project: qwen2-72b wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 4 save_total_limit: 2 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json weight_decay: 0.05 fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|im_end|>" ```
wiliie/bert-finetuned-ner
wiliie
2024-07-01T03:01:20Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:bert-base-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-07-01T02:41:30Z
--- base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9373342175066313 - name: Recall type: recall value: 0.9515314708852238 - name: F1 type: f1 value: 0.9443794888926006 - name: Accuracy type: accuracy value: 0.9862836286572084 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9373 - Recall: 0.9515 - F1: 0.9444 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0771 | 1.0 | 1756 | 0.0615 | 0.9157 | 0.9384 | 0.9269 | 0.9828 | | 0.0354 | 2.0 | 3512 | 0.0589 | 0.9292 | 0.9470 | 0.9380 | 0.9857 | | 0.0219 | 3.0 | 5268 | 0.0602 | 0.9373 | 0.9515 | 0.9444 | 0.9863 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.0 - Datasets 2.20.0 - Tokenizers 0.19.1
sgdkn/model_id
sgdkn
2024-07-01T02:42:24Z
0
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-07-01T02:41:55Z
Entry not found
y1xing/llama-3-8b-Instruct-bnb-4bit-learn-marking-synthetic-data
y1xing
2024-07-01T02:45:56Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T02:45:50Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** y1xing - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cukmanish/best_model.h5
cukmanish
2024-07-01T02:47:30Z
0
0
null
[ "region:us" ]
null
2024-07-01T02:47:30Z
Entry not found
lvjianjin/pokemon-lora
lvjianjin
2024-07-01T02:48:09Z
0
0
null
[ "region:us" ]
null
2024-07-01T02:48:09Z
Entry not found
xuxinrui/result
xuxinrui
2024-07-01T02:48:51Z
0
0
null
[ "region:us" ]
null
2024-07-01T02:48:51Z
Entry not found
houbw/llama3_8b_bnb_4bit_ruozhiba_method_10
houbw
2024-07-01T02:53:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T02:53:18Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** houbw - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MoRa2001/vit-base-patch16-224-in21k-finetuned-lora-food101
MoRa2001
2024-07-01T03:03:52Z
0
0
null
[ "tensorboard", "safetensors", "region:us" ]
null
2024-07-01T02:55:36Z
Entry not found
bumick/Llama3-appsealing-8b-Instruct
bumick
2024-07-01T03:00:13Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-07-01T02:57:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kudod/xlm-roberta-large-finetuned-ner-vlsp2021-3090-1July-1
Kudod
2024-07-01T04:29:48Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-07-01T02:59:45Z
--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large-finetuned-ner-vlsp2021-3090-1July-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-ner-vlsp2021-3090-1July-1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1332 - eval_ATETIME: {'precision': 0.8748768472906404, 'recall': 0.8862275449101796, 'f1': 0.8805156172533465, 'number': 1002} - eval_DDRESS: {'precision': 0.7837837837837838, 'recall': 1.0, 'f1': 0.8787878787878788, 'number': 29} - eval_ERSON: {'precision': 0.9496365524402908, 'recall': 0.9631384939441812, 'f1': 0.9563398692810458, 'number': 1899} - eval_ERSONTYPE: {'precision': 0.7142857142857143, 'recall': 0.7602339181286549, 'f1': 0.7365439093484419, 'number': 684} - eval_HONENUMBER: {'precision': 1.0, 'recall': 0.8888888888888888, 'f1': 0.9411764705882353, 'number': 9} - eval_ISCELLANEOUS: {'precision': 0.5521472392638037, 'recall': 0.5660377358490566, 'f1': 0.5590062111801242, 'number': 159} - eval_MAIL: {'precision': 1.0, 'recall': 0.9803921568627451, 'f1': 0.99009900990099, 'number': 51} - eval_OCATION: {'precision': 0.8478731074260994, 'recall': 0.9039200614911607, 'f1': 0.875, 'number': 1301} - eval_P: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} - eval_RL: {'precision': 0.5789473684210527, 'recall': 0.7333333333333333, 'f1': 0.6470588235294117, 'number': 15} - eval_RODUCT: {'precision': 0.7018739352640545, 'recall': 0.6592, 'f1': 0.6798679867986799, 'number': 625} - eval_overall_precision: 0.8469 - eval_overall_recall: 0.8683 - eval_overall_f1: 0.8575 - eval_overall_accuracy: 0.9793 - eval_runtime: 38.9411 - eval_samples_per_second: 64.919 - eval_steps_per_second: 16.23 - epoch: 7.0 - step: 22841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
davidyu2023/Qwen-Qwen1.5-0.5B-1719803002
davidyu2023
2024-07-01T03:03:31Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-0.5B", "region:us" ]
null
2024-07-01T03:03:22Z
--- base_model: Qwen/Qwen1.5-0.5B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
dbaranchuk/check
dbaranchuk
2024-07-01T04:06:23Z
0
0
transformers
[ "transformers", "safetensors", "mobilenet_v2", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-07-01T03:04:37Z
Entry not found
apwic/summarization-base-2
apwic
2024-07-01T06:27:46Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "id", "base_model:LazarusNLP/IndoNanoT5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2024-07-01T03:05:30Z
--- language: - id license: apache-2.0 base_model: LazarusNLP/IndoNanoT5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: summarization-base-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarization-base-2 This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4862 - Rouge1: 0.3867 - Rouge2: 0.0 - Rougel: 0.3833 - Rougelsum: 0.386 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.6352 | 1.0 | 3573 | 0.4614 | 0.3871 | 0.0 | 0.3846 | 0.3884 | 1.0 | | 0.4361 | 2.0 | 7146 | 0.4357 | 0.3574 | 0.0 | 0.3543 | 0.3544 | 1.0 | | 0.3391 | 3.0 | 10719 | 0.4479 | 0.3973 | 0.0 | 0.3975 | 0.4009 | 1.0 | | 0.2686 | 4.0 | 14292 | 0.4639 | 0.4113 | 0.0 | 0.4102 | 0.4115 | 1.0 | | 0.2221 | 5.0 | 17865 | 0.4862 | 0.3867 | 0.0 | 0.3833 | 0.386 | 1.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
MariaGbrl/openai-gpt2-large-fine-tuned
MariaGbrl
2024-07-01T11:03:20Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:openai-community/gpt2-large", "license:mit", "region:us" ]
null
2024-07-01T03:07:11Z
--- base_model: openai-community/gpt2-large datasets: - generator library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: openai-gpt2-large-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai-gpt2-large-fine-tuned This model is a fine-tuned version of [openai-community/gpt2-large](https://huggingface.co/openai-community/gpt2-large) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.3.1 - Datasets 2.16.1 - Tokenizers 0.15.2
tatsuMura/furnituredatasets
tatsuMura
2024-07-03T01:26:40Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2024-07-01T03:07:51Z
--- license: cc-by-nc-4.0 ---
Sanchirmaa/shuuh_model
Sanchirmaa
2024-07-01T03:09:02Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T03:08:45Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Sanchirmaa - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
davidyu2023/Qwen-Qwen1.5-1.8B-1719803429
davidyu2023
2024-07-01T03:10:37Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-1.8B", "region:us" ]
null
2024-07-01T03:10:30Z
--- base_model: Qwen/Qwen1.5-1.8B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
Charles1210/FocusedLLama
Charles1210
2024-07-01T03:11:33Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:11:33Z
Entry not found
didev007/qwen1.5-llm
didev007
2024-07-01T03:13:17Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:13:17Z
Entry not found
NoNameFactory/llama-3-8b-it-4bit-ContdPT_4_10
NoNameFactory
2024-07-01T03:18:03Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T03:15:37Z
--- base_model: unsloth/llama-3-8b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** NoNameFactory - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
davidyu2023/google-gemma-2b-1719803739
davidyu2023
2024-07-01T03:16:06Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2b", "region:us" ]
null
2024-07-01T03:15:39Z
--- base_model: google/gemma-2b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
yitzshapiro/Qwen2-7B-Instruct-90s-Commercials-v2
yitzshapiro
2024-07-01T03:18:42Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "base_model:Qwen/Qwen2-7B-Instruct", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-07-01T03:16:53Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: Qwen/Qwen2-7B-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
JuanCena/Shondo
JuanCena
2024-07-01T03:25:20Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-07-01T03:19:42Z
--- license: openrail ---
Beyond08/Introduction
Beyond08
2024-07-01T03:21:12Z
0
0
null
[ "license:unknown", "region:us" ]
null
2024-07-01T03:21:12Z
--- license: unknown ---
statking/gemma9bit_rec_lora_kalora_test_fold0_classweight_1024_full
statking
2024-07-01T03:21:54Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:21:54Z
Entry not found
jasonk19/essay-scoring-5-epoch-batch-16-lr-1e-5-dropout-01
jasonk19
2024-07-01T03:23:54Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:23:54Z
Entry not found
tacmatic/yolov10-finetuned
tacmatic
2024-07-01T03:24:58Z
0
0
ultralytics
[ "ultralytics", "safetensors", "object-detection", "computer-vision", "yolov10", "dataset:detection-datasets/coco", "arxiv:2405.14458", "license:agpl-3.0", "region:us" ]
object-detection
2024-07-01T03:24:56Z
--- license: agpl-3.0 library_name: ultralytics tags: - object-detection - computer-vision - yolov10 datasets: - detection-datasets/coco repo_url: https://github.com/THU-MIG/yolov10 inference: false --- ### Model Description [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1) - arXiv: https://arxiv.org/abs/2405.14458v1 - github: https://github.com/THU-MIG/yolov10 ### Installation ``` pip install git+https://github.com/THU-MIG/yolov10.git ``` ### Training and validation ```python from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10n') # Training model.train(...) # after training, one can push to the hub model.push_to_hub("your-hf-username/yolov10-finetuned") # Validation model.val(...) ``` ### Inference Here's an end-to-end example showcasing inference on a cats image: ```python from ultralytics import YOLOv10 model = YOLOv10.from_pretrained('jameslahm/yolov10n') source = 'http://images.cocodataset.org/val2017/000000039769.jpg' model.predict(source=source, save=True) ``` which shows: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628ece6054698ce61d1e7be3/tBwAsKcQA_96HCYQp7BRr.png) ### BibTeX Entry and Citation Info ``` @article{wang2024yolov10, title={YOLOv10: Real-Time End-to-End Object Detection}, author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, journal={arXiv preprint arXiv:2405.14458}, year={2024} } ```
ndsolo/llama3-8b-cosmic-fusion-dynamics-lora
ndsolo
2024-07-01T03:26:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T03:26:28Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ndsolo - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Haary/TinyLlama-1.1B-Adapter-Unsloth
Haary
2024-07-01T03:31:15Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/tinyllama-chat-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T03:31:06Z
--- base_model: unsloth/tinyllama-chat-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Haary - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-chat-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
akshatxv/LCS2GPTNeo
akshatxv
2024-07-01T03:31:44Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:31:44Z
Entry not found
jefson08/GPT2Khasi
jefson08
2024-07-01T03:38:22Z
0
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T03:37:08Z
--- license: mit ---
Yharaoj12/Ok
Yharaoj12
2024-07-01T03:43:23Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:43:23Z
Entry not found
yjwon/zephyr_sft_dpo_beta1e-1_epoch1
yjwon
2024-07-01T03:47:48Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T03:44:13Z
Entry not found
hiepdaoquang704/IU_style
hiepdaoquang704
2024-07-01T03:57:51Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:52:19Z
Entry not found
statking/gemma9bit_rec_lora_kalora_test_fold0_classweight_2048_full
statking
2024-07-01T03:52:26Z
0
0
null
[ "region:us" ]
null
2024-07-01T03:52:26Z
Entry not found
kP0pR3bel/Momo-All-Round
kP0pR3bel
2024-07-01T03:54:16Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-07-01T03:52:39Z
--- license: openrail ---
mjoys/jinpan-13B
mjoys
2024-07-02T07:40:17Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T03:55:00Z
--- license: apache-2.0 --- # jinpan-13B **ๆต™ๅคงไบบๅทฅๆ™บ่ƒฝ็ ”็ฉถๆ‰€+ๆ‘ธ่ฑก็ง‘ๆŠ€๏ผŒ2023ๅนด8ๆœˆ21ๆ—ฅ่”ๅˆๅ‘ๅธƒๅž‚็›ดไบŽ้‡‘่ž้›ถๅ”ฎ็š„่ฏญ่จ€ๅคงๆจกๅž‹** * ใ€้‡‘็ฃๅคงๆจกๅž‹ใ€‘ๆ˜ฏๆต™ๆฑŸๅคงๅญฆๅ’Œๆ‘ธ่ฑก็ง‘ๆŠ€่”ๅˆๅ‘ๅธƒ็š„ไธ€ไธช่‡ชไธป็ ”ๅ‘็š„ๅž‚็›ด้‡‘่ž็š„่ฏญ่จ€ๅคงๆจกๅž‹๏ผŒ็›ฎๅ‰ๆจกๅž‹่ง„ๆจก7Bใ€13B๏ผŒๅฏ่ฟ›ไธ€ๆญฅๆ‰ฉๅฑ•ใ€‚่ฎญ็ปƒ็š„ๆ•ฐๆฎ้›†ๅž‚็›ดไบŽ้›ถๅ”ฎ้‡‘่žๆ–นๅ‘๏ผŒๆถต็›–ไบ†้‡‘่žไนฆ็ฑใ€่ฎบๆ–‡๏ผŒ้‡‘่ž็Ÿฅ่ฏ†ๅ›พ่ฐฑใ€้‡‘่žๅฏน่ฏๆ–‡ๆœฌ็ญ‰ๅคš็งๆ•ฐๆฎๆบ * ใ€้‡‘็ฃๅคงๆจกๅž‹ใ€‘็š„็›ฎๆ ‡ๆ˜ฏไธบ้‡‘่žๆœบๆž„ๆไพ›้ซ˜ๆ•ˆใ€ๆ™บ่ƒฝใ€ๅฏไฟก่ต–็š„่ฏญ่จ€ๆœๅŠก๏ผŒๅŒ…ๆ‹ฌ้‡‘่ž็Ÿฅ่ฏ†้—ฎ็ญ”ใ€้‡‘่žๆ–‡ๆœฌ็”Ÿๆˆใ€้‡‘่ž็Ÿฅ่ฏ†ๆŽจ็†ๅˆ†ๆž็ญ‰ๅคš็งๅบ”็”จๅœบๆ™ฏใ€‚ * ใ€ๆ ธๅฟƒ็‰นๅพใ€‘่งฃๅ†ณ้€š็”จๅคงๆจกๅž‹็ผบไน็ฒพๅ‡†ๅฎš้‡่งฃๅ†ณไธšๅŠก้—ฎ้ข˜็š„่ƒฝๅŠ›๏ผŒๅœจ้‡‘่ž้›ถๅ”ฎ้ข†ๅŸŸๅฎž็Žฐ็ฒพ่ฐƒ้€‚้…ใ€ไธ“ไธš็Ÿฅ่ฏ†ๆณจๅ…ฅใ€ๅค–้ƒจ็Ÿฅ่ฏ†ๅบ“ๅๅŒ๏ผŒไปฅๅŠ่งฃๅ†ณๆจกๅž‹่พ“ๅ‡บๅ†…ๅฎนๅ’Œๆจกๅž‹ๅ‚ๆ•ฐใ€่ฎญ็ปƒๆ•ฐๆฎๅ’Œๅค–ๆบ็Ÿฅ่ฏ†็š„ๅฏ่งฃ้‡Šๆ€งๆบฏๆบใ€‚ๅŒๆ—ถๅ…ทๆœ‰ๅคงๆจกๅž‹ๅŸบ็ก€่ƒฝๅŠ›ๅ’Œ้‡‘่ž้ข†ๅŸŸๆณ›ๅŒ–่ƒฝๅŠ›๏ผŒๆจกๅž‹ไฝ“็งฏๅฐ๏ผŒๅ‚ๆ•ฐ้‡้€‚ไธญ๏ผŒๅ•ไธช้‡‘่žไผไธšๆœ‰้™็ฎ—ๅŠ›ๅฏไปฅๆ‰ฟ่ฝฝ๏ผŒๅฏไปฅ็งๆœ‰ๅŒ–้ƒจ็ฝฒ๏ผŒๆปก่ถณๆ•ฐๆฎๅฎ‰ๅ…จๅˆ่ง„่ฆๆฑ‚๏ผŒๅŒๆ—ถๆจกๅž‹่ƒฝ็ป“ๅˆๅ„็งๆœฌๅœฐๆ•ฐๆฎไปฅๅŠ้›†ๆˆๆœ็ดข็ป„ไปถไปฅๅขžๅผบๆจกๅž‹่พ“ๅ‡บ่ƒฝๅŠ›ใ€‚ ## Quickstart ### ๐Ÿค— Hugging Face Transformers Here we show a code snippet to show you how to use the chat model with `transformers`: ```python import os DEVICE_ID = "0" os.environ['CUDA_VISIBLE_DEVICES'] = DEVICE_ID from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "mjoys/jinpan-13B" device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "ๆ€ŽไนˆๅŠž็†ไฟก็”จๅก" messages = [ {"role": "system", "content": "You are a helpful assistant. ไฝ ๆ˜ฏไธ€ไธชไนไบŽๅŠฉไบบ็š„ๅŠฉๆ‰‹ใ€‚"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ```
j9uv1n0/cl
j9uv1n0
2024-07-01T03:59:10Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-07-01T03:58:44Z
--- license: openrail ---
yjwon/zephyr_sft_dpo_beta1e-1_epoch2
yjwon
2024-07-01T04:03:30Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T03:59:49Z
Entry not found
AUSWEIS/AUSWEIS
AUSWEIS
2024-07-01T04:03:36Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:03:36Z
Entry not found
caitq-huggingface/llama3-8b-instruct-seqlen-4096-bs-1-v22
caitq-huggingface
2024-07-01T04:06:51Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T04:05:02Z
Entry not found
TomEijkelenkamp/renaissance-cogvlm-contrast
TomEijkelenkamp
2024-07-01T04:06:48Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:06:48Z
Entry not found
mintjoa/trained-sd3
mintjoa
2024-07-01T04:09:59Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:09:59Z
Entry not found
AN64M/BaldiRVCmodels
AN64M
2024-07-01T04:15:29Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:11:00Z
Entry not found
j9uv1n0/minzy
j9uv1n0
2024-07-01T04:14:58Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-07-01T04:13:36Z
--- license: openrail ---
habulaj/1136714145
habulaj
2024-07-01T04:13:47Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:13:41Z
Entry not found
Kelcin/test_model
Kelcin
2024-07-01T04:18:33Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:18:33Z
Entry not found
imagepipeline/choke
imagepipeline
2024-07-01T04:18:46Z
0
0
null
[ "imagepipeline", "imagepipeline.io", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-07-01T04:18:42Z
--- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ## choke <img src="https://via.placeholder.com/468x300?text=App+Screenshot+Here" alt="Generated on Image Pipeline" style="border-radius: 10px;"> **This lora model is uploaded on [imagepipeline.io](https://imagepipeline.io/)** Model details - choke [![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/choke?id=f025dc63-d60b-4617-a2d4-7ce15786e92c/) ## How to try this model ? You can try using it locally or send an API call to test the output quality. Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required. Coding in `php` `javascript` `node` etc ? Checkout our documentation [![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction) ```python import requests import json url = "https://imagepipeline.io/sd/text2image/v1/run" payload = json.dumps({ "model_id": "sd1.5", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": false, "guidance_scale": 7.5, "multi_lingual": "no", "embeddings": "", "lora_models": "f025dc63-d60b-4617-a2d4-7ce15786e92c", "lora_weights": "0.5" }) headers = { 'Content-Type': 'application/json', 'API-Key': 'your_api_key' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) } ``` Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` : [![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models) ### API Reference #### Generate Image ```http https://api.imagepipeline.io/sd/text2image/v1 ``` | Headers | Type | Description | |:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------| | `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) | | `Content-Type` | `str` | application/json - content type of the request body | | Parameter | Type | Description | | :-------- | :------- | :------------------------- | | `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own| | `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips | | `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) | | `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 | | `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page | | `lora_weights` | `str, array` | Strength of the LoRA effect | --- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ### Feedback If you have any feedback, please reach out to us at [email protected] #### ๐Ÿ”— Visit Website [![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/) If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
amyc20230713/merged16bit_model2
amyc20230713
2024-07-01T06:50:57Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T04:20:33Z
Entry not found
amyc20230713/lora_model2
amyc20230713
2024-07-01T06:37:14Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/llama-3-8b-bnb-4bit", "region:us" ]
null
2024-07-01T04:20:53Z
--- base_model: unsloth/llama-3-8b-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
sungju12/my_awesome_billsum_model
sungju12
2024-07-01T04:23:46Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:23:46Z
Entry not found
to100mak/lora_model
to100mak
2024-07-01T04:26:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:beomi/Llama-3-Open-Ko-8B-Instruct-preview", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T04:26:03Z
--- base_model: beomi/Llama-3-Open-Ko-8B-Instruct-preview language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** to100mak - **License:** apache-2.0 - **Finetuned from model :** beomi/Llama-3-Open-Ko-8B-Instruct-preview This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
habulaj/80729218
habulaj
2024-07-01T04:26:52Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:26:47Z
Entry not found
ZeZanZiet/processor_image_captioning
ZeZanZiet
2024-07-01T04:27:40Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T04:27:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Bajiyo/w2v2bert-lm-studiorecs
Bajiyo
2024-07-01T11:17:24Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T04:29:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habulaj/11446089196
habulaj
2024-07-01T04:29:49Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:29:47Z
Entry not found
Alifnfa/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
Alifnfa
2024-07-01T04:31:47Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:31:47Z
Entry not found
avnishkanungo/distilhubert-finetuned-gtzan
avnishkanungo
2024-07-01T05:48:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2024-07-01T04:35:42Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4577 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9562 | 1.0 | 113 | 1.8362 | 0.5 | | 1.1877 | 2.0 | 226 | 1.2579 | 0.62 | | 1.0263 | 3.0 | 339 | 1.0316 | 0.69 | | 0.6373 | 4.0 | 452 | 0.7494 | 0.84 | | 0.5875 | 5.0 | 565 | 0.6581 | 0.85 | | 0.428 | 6.0 | 678 | 0.5088 | 0.89 | | 0.3152 | 7.0 | 791 | 0.4619 | 0.86 | | 0.1577 | 8.0 | 904 | 0.4274 | 0.88 | | 0.2456 | 9.0 | 1017 | 0.4739 | 0.88 | | 0.0905 | 10.0 | 1130 | 0.4577 | 0.87 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
yjwon/zephyr_sft_dpo_beta1e-2_epoch3
yjwon
2024-07-01T04:43:28Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T04:39:56Z
Entry not found
Dev372/HarshDev-whisper-small-English_4000_new
Dev372
2024-07-01T11:27:53Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-07-01T04:41:52Z
Entry not found
houbw/llama38b_ruozhiba_1
houbw
2024-07-01T04:42:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T04:42:16Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** houbw - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Hieuman/GenC-Mistral
Hieuman
2024-07-01T04:42:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-07-01T04:42:18Z
--- license: apache-2.0 ---
basitkanjoo/Sidhu
basitkanjoo
2024-07-01T04:42:43Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:42:43Z
Entry not found
yjwon/zephyr_sft_dpo_beta1e-2_epoch4
yjwon
2024-07-01T04:56:43Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T04:43:57Z
Entry not found
GraydientPlatformAPI/loras-june30
GraydientPlatformAPI
2024-07-01T05:29:56Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:50:03Z
Entry not found
Dimeltech/Tenezis-8B-Instruct
Dimeltech
2024-07-01T09:49:04Z
0
0
null
[ "safetensors", "text-generation", "fr", "en", "license:apache-2.0", "region:us" ]
text-generation
2024-07-01T04:50:56Z
--- license: apache-2.0 language: - fr - en metrics: - accuracy pipeline_tag: text-generation ---
habulaj/668544122
habulaj
2024-07-01T04:53:32Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:53:26Z
Entry not found
habulaj/54526591
habulaj
2024-07-01T04:56:33Z
0
0
null
[ "region:us" ]
null
2024-07-01T04:56:25Z
Entry not found
priiiiiii/whisper-large-hindi-finetuned
priiiiiii
2024-07-01T05:00:52Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:00:52Z
Entry not found
tomreichel/repair-tokenizer
tomreichel
2024-07-01T05:01:29Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T05:01:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
v0dkapapi/attempt5
v0dkapapi
2024-07-01T05:49:56Z
0
0
null
[ "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2024-07-01T05:03:13Z
--- base_model: ybelkada/falcon-7b-sharded-bf16 tags: - generated_from_trainer model-index: - name: attempt5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # attempt5 This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 150 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.3.0+cu121 - Datasets 2.13.1 - Tokenizers 0.13.3
Huy227/adapter_v7
Huy227
2024-07-01T05:05:24Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:google/gemma-2-9b-it", "license:other", "region:us" ]
null
2024-07-01T05:05:01Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: google/gemma-2-9b-it model-index: - name: sft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sft This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on the identity, the sft_final_data and the chat_sharegpt datasets. It achieves the following results on the evaluation set: - Loss: 1.2501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6945 | 2.0060 | 500 | 1.1457 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1
idiotDeveloper/vts_to_text_1.0
idiotDeveloper
2024-07-01T05:16:29Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:jwanZZANG/vts_sample_data_1.0", "base_model:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-07-01T05:05:08Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - jwanZZANG/vts_sample_data_1.0 model-index: - name: jwanZZANG/vts_to_text_1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jwanZZANG/vts_to_text_1.0 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the jwanZZANG/vts_sample_data_1.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
habulaj/267229272785
habulaj
2024-07-01T05:05:54Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:05:51Z
Entry not found
Alifnfa/model
Alifnfa
2024-07-01T05:07:45Z
0
0
keras
[ "keras", "region:us" ]
null
2024-07-01T05:06:06Z
Entry not found
rishab12023/t5-small-finetuned-xsum
rishab12023
2024-07-01T09:40:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2024-07-01T05:07:46Z
Entry not found
anupam69/mistral_instruct_greenbonds
anupam69
2024-07-01T05:09:03Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:08:41Z
Entry not found
BaurRustem/llava-1.5-7b-hf-test
BaurRustem
2024-07-01T05:09:28Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:09:28Z
Entry not found
BaurRustem/llava-1.5-7b-hf-ft-mix-vsft
BaurRustem
2024-07-01T15:53:15Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:llava-hf/llava-1.5-7b-hf", "region:us" ]
null
2024-07-01T05:09:31Z
--- base_model: llava-hf/llava-1.5-7b-hf library_name: peft tags: - trl - sft - generated_from_trainer model-index: - name: llava-1.5-7b-hf-ft-mix-vsft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-ft-mix-vsft This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
kwkwkwkwpark/pegasus-samsum
kwkwkwkwpark
2024-07-01T05:09:35Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:09:35Z
Entry not found
achoi1107/dummy
achoi1107
2024-07-01T05:12:19Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:10:34Z
# Dummy model This is a dummy model
jiyi/hyact-qwen
jiyi
2024-07-01T06:16:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T05:11:19Z
--- license: apache-2.0 ---
kodoqmc/XTTS-v2_PeterDrury
kodoqmc
2024-07-01T07:20:30Z
0
1
coqui
[ "coqui", "text-to-speech", "license:other", "region:us" ]
text-to-speech
2024-07-01T05:14:33Z
--- license: other license_name: coqui-public-model-license license_link: https://coqui.ai/cpml library_name: coqui pipeline_tag: text-to-speech widget: - text: "Once when I was six years old I saw a magnificent picture" --- # โ“TTS_v2 - Peter Drury Fine-Tuned Model This repository hosts a fine-tuned version of the โ“TTS model, utilizing 2.3 minutes of unique voice lines from Peter Drury, The voice lines were sourced from he's podcast with JOE on youtube, can be found here: [Peter Drury RANKS His Best Commentary Moments & Reveals Commentary Secrets! MESSI WIN WORLD CUP!](https://www.youtube.com/watch?v=ibT6PINpyaw&t) ![Peter Drury](peterdrury.jpg) Listen to a sample of the โ“TTS_v2 - Peter Drury Fine-Tuned Model: <audio controls> <source src="https://huggingface.co/kodoqmc/XTTS-v2_PeterDrury/resolve/main/fromtts.wav" type="audio/wav"> Your browser does not support the audio element. </audio> Here's a Peter Drury mp3 voice line clip from the training data: <audio controls> <source src="https://huggingface.co/kodoqmc/XTTS-v2_PeterDrury/resolve/main/reference.wav" type="audio/wav"> Your browser does not support the audio element. </audio> ## Features - ๐ŸŽ™๏ธ **Voice Cloning**: Realistic voice cloning with just a short audio clip. - ๐ŸŒ **Multi-Lingual Support**: Generates speech in 17 different languages while maintaining Peter Drury's voice. - ๐Ÿ˜ƒ **Emotion & Style Transfer**: Captures the emotional tone and style of the original voice. - ๐Ÿ”„ **Cross-Language Cloning**: Maintains the unique voice characteristics across different languages. - ๐ŸŽง **High-Quality Audio**: Outputs at a 24kHz sampling rate for clear and high-fidelity audio. ## Supported Languages The model supports the following 17 languages: English (en), Spanish (es), French (fr), German (de), Italian (it), Portuguese (pt), Polish (pl), Turkish (tr), Russian (ru), Dutch (nl), Czech (cs), Arabic (ar), Chinese (zh-cn), Japanese (ja), Hungarian (hu), Korean (ko), and Hindi (hi). ## Usage in Roll Cage ๐Ÿค–๐Ÿ’ฌ Boost your AI experience with this Ollama add-on! Enjoy real-time audio ๐ŸŽ™๏ธ and text ๐Ÿ” chats, LaTeX rendering ๐Ÿ“œ, agent automations โš™๏ธ, workflows ๐Ÿ”„, text-to-image ๐Ÿ“โžก๏ธ๐Ÿ–ผ๏ธ, image-to-text ๐Ÿ–ผ๏ธโžก๏ธ๐Ÿ”ค, image-to-video ๐Ÿ–ผ๏ธโžก๏ธ๐ŸŽฅ transformations. Fine-tune text ๐Ÿ“, voice ๐Ÿ—ฃ๏ธ, and image ๐Ÿ–ผ๏ธ gens. Includes Windows macro controls ๐Ÿ–ฅ๏ธ and DuckDuckGo search. [ollama_agent_roll_cage (OARC)](https://github.com/Leoleojames1/ollama_agent_roll_cage) is a completely local Python & CMD toolset add-on for the Ollama command line interface. The OARC toolset automates the creation of agents, giving the user more control over the likely output. It provides SYSTEM prompt templates for each ./Modelfile, allowing users to design and deploy custom agents quickly. Users can select which local model file is used in agent construction with the desired system prompt. ## CoquiTTS and Resources - ๐Ÿธ๐Ÿ’ฌ **CoquiTTS**: [Coqui TTS on GitHub](https://github.com/coqui-ai/TTS) - ๐Ÿ“š **Documentation**: [ReadTheDocs](https://tts.readthedocs.io/en/latest/) - ๐Ÿ‘ฉโ€๐Ÿ’ป **Questions**: [GitHub Discussions](https://github.com/coqui-ai/TTS/discussions) - ๐Ÿ—ฏ **Community**: [Discord](https://discord.gg/5eXr5seRrv) ## License This model is licensed under the [Coqui Public Model License](https://coqui.ai/cpml). Read more about the origin story of CPML [here](https://coqui.ai/blog/tts/cpml). ## Contact Join our ๐ŸธCommunity on [Discord](https://discord.gg/fBC58unbKE) and follow us on [Twitter](https://twitter.com/coqui_ai). For inquiries, email us at [email protected]. Using ๐ŸธTTS API: ```python from TTS.api import TTS tts = TTS(model_path="D:/AI/ollama_agent_roll_cage/AgentFiles/Ignored_TTS/XTTS-v2_PeterDrury/", config_path="D:/AI/ollama_agent_roll_cage/AgentFiles/Ignored_TTS/XTTS-v2_PeterDrury/config.json", progress_bar=False, gpu=True).to(self.device) # generate speech by cloning a voice using default settings tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", file_path="output.wav", speaker_wav="/path/to/target/speaker.wav", language="en") ``` Using ๐ŸธTTS Command line: ```console tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 \ --text "Bugรผn okula gitmek istemiyorum." \ --speaker_wav /path/to/target/speaker.wav \ --language_idx tr \ --use_cuda true ``` Using the model directly: ```python from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts config = XttsConfig() config.load_json("/path/to/xtts/config.json") model = Xtts.init_from_config(config) model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", eval=True) model.cuda() outputs = model.synthesize( "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", config, speaker_wav="/data/TTS-public/_refclips/3.wav", gpt_cond_len=3, language="en", ) ```
yjwon/zephyr_sft_dpo_beta5e-2_epoch1
yjwon
2024-07-01T05:22:14Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T05:18:22Z
Entry not found
yoko119/distilbert-base-uncased-finetuned-emotion
yoko119
2024-07-01T05:30:08Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-07-01T05:25:50Z
Entry not found
yjwon/zephyr_sft_dpo_beta5e-2_epoch2
yjwon
2024-07-01T05:31:02Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T05:27:01Z
Entry not found
erwannd/llava-1.5-7b-finetune-cord-1
erwannd
2024-07-01T05:52:06Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-01T05:28:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kakaou/test
kakaou
2024-07-01T05:35:31Z
0
0
null
[ "ko", "region:us" ]
null
2024-07-01T05:31:55Z
--- language: - ko ---
houbw/llama38b_ruozhiba_2
houbw
2024-07-01T05:32:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-01T05:32:21Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** houbw - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Ketansomewhere/cifar10_conditional_diffusion1
Ketansomewhere
2024-07-01T17:39:38Z
0
0
diffusers
[ "diffusers", "safetensors", "Class conditioned Diffusion", "CIFAR10 Diffusion", "en", "license:mit", "region:us" ]
null
2024-07-01T05:34:37Z
--- license: mit language: - en library_name: diffusers tags: - Class conditioned Diffusion - CIFAR10 Diffusion --- Here is Custom Pipeline for Class conditioned diffusion model. For training script, pipeline, tutorial nb and sampling please check my Github Repo:- https://github.com/KetanMann/Class_Conditioned_Diffusion_Training_Script Here is Class Conditional Diffusion Pipeline and Sampling. <div align="center"> <img src="grid_images.gif" alt="Class Conditioned Diffusion GIF"> </div> Firstly install Diffusers ```bash !pip install git+https://github.com/huggingface/diffusers ``` Then login to your huggingface account. ```bash from huggingface_hub import notebook_login notebook_login() ``` Finally for sampling and model testing. Run these lines of code. ```bash from diffusers import UNet2DModel, DDPMScheduler from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from huggingface_hub import hf_hub_download import torch import os from PIL import Image import matplotlib.pyplot as plt from typing import List, Optional, Tuple, Union class DDPMPipelinenew(DiffusionPipeline): def __init__(self, unet, scheduler, num_classes: int): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) self.num_classes = num_classes self._device = unet.device # Ensure the pipeline knows the device @torch.no_grad() def __call__( self, batch_size: int = 64, class_labels: Optional[torch.Tensor] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 1000, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: # Ensure class_labels is on the same device as the model class_labels = class_labels.to(self._device) if class_labels.ndim == 0: class_labels = class_labels.unsqueeze(0).expand(batch_size) else: class_labels = class_labels.expand(batch_size) # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size, int): image_shape = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) image = randn_tensor(image_shape, generator=generator, device=self._device) # Set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # Ensure the class labels are correctly broadcast to match the input tensor shape model_output = self.unet(image, t, class_labels).sample image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) def to(self, device: torch.device): self._device = device self.unet.to(device) return self def load_pipeline(repo_id, num_classes, device): unet = UNet2DModel.from_pretrained(repo_id, subfolder="unet").to(device) scheduler = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler") pipeline = DDPMPipelinenew(unet=unet, scheduler=scheduler, num_classes=num_classes) return pipeline.to(device) # Move the entire pipeline to the device def save_images_locally(images, save_dir, epoch, class_label): os.makedirs(save_dir, exist_ok=True) for i, image in enumerate(images): image_path = os.path.join(save_dir, f"image_epoch{epoch}_class{class_label}_idx{i}.png") image.save(image_path) def generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch): generator = torch.Generator(device=pipeline._device).manual_seed(0) class_labels = torch.tensor([class_label] * batch_size).to(pipeline._device) images = pipeline( generator=generator, batch_size=batch_size, num_inference_steps=num_inference_steps, class_labels=class_labels, output_type="pil", ).images save_images_locally(images, save_dir, epoch, class_label) return images def create_image_grid(images, grid_size, save_path): assert len(images) == grid_size ** 2, "Number of images must be equal to grid_size squared" width, height = images[0].size grid_img = Image.new('RGB', (grid_size * width, grid_size * height)) for i, image in enumerate(images): x = i % grid_size * width y = i // grid_size * height grid_img.paste(image, (x, y)) grid_img.save(save_path) return grid_img if __name__ == "__main__": repo_id = "Ketansomewhere/cifar10_conditional_diffusion1" num_classes = 10 # Adjust to your number of classes batch_size = 64 num_inference_steps = 1000 # Can be as low as 50 for faster generation save_dir = "generated_images" epoch = 0 grid_size = 8 # 8x8 grid device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipeline = load_pipeline(repo_id, num_classes, device) for class_label in range(num_classes): images = generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch) # Create and save the grid image grid_img_path = os.path.join(save_dir, f"grid_image_class{class_label}.png") grid_img = create_image_grid(images, grid_size, grid_img_path) # Plot the grid image plt.figure(figsize=(10, 10)) plt.imshow(grid_img) plt.axis('off') plt.title(f'Class {class_label}') plt.savefig(os.path.join(save_dir, f"grid_image_class{class_label}.png")) plt.show() ``` Also, check this nb for the above implementation *testing.ipynb* .
jkmeng/data_labeling_demo
jkmeng
2024-07-01T05:36:13Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-07-01T05:36:12Z
--- license: apache-2.0 ---
yjwon/zephyr_sft_dpo_beta5e-2_epoch3
yjwon
2024-07-01T05:41:10Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-01T05:36:41Z
Entry not found
taehyunzzz/switch-base-32-samsum
taehyunzzz
2024-07-01T11:10:15Z
0
0
transformers
[ "transformers", "safetensors", "switch_transformers", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/switch-base-32", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-07-01T05:37:03Z
--- license: apache-2.0 base_model: google/switch-base-32 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: switch-base-32-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 48.5521 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # switch-base-32-samsum This model is a fine-tuned version of [google/switch-base-32](https://huggingface.co/google/switch-base-32) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3830 - Rouge1: 48.5521 - Rouge2: 25.5283 - Rougel: 40.8665 - Rougelsum: 44.9575 - Gen Len: 16.9144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 13.4215 | 0.1086 | 100 | 11.0472 | 20.1278 | 5.2521 | 17.5417 | 19.1564 | 18.5807 | | 2.8392 | 0.2172 | 200 | 2.1007 | 38.3594 | 16.281 | 32.2365 | 35.4802 | 16.5599 | | 2.4215 | 0.3257 | 300 | 1.7960 | 42.1238 | 19.355 | 35.3645 | 39.2556 | 16.2677 | | 2.122 | 0.4343 | 400 | 1.6754 | 43.7744 | 20.6979 | 36.6416 | 40.6431 | 17.3716 | | 2.0046 | 0.5429 | 500 | 1.5964 | 44.1887 | 21.1957 | 36.8047 | 40.8905 | 16.7249 | | 1.9988 | 0.6515 | 600 | 1.5513 | 45.6737 | 21.9662 | 38.0672 | 42.3237 | 17.0293 | | 1.868 | 0.7600 | 700 | 1.5133 | 45.549 | 21.791 | 37.9979 | 42.1384 | 16.2249 | | 1.7934 | 0.8686 | 800 | 1.4904 | 45.6877 | 22.6099 | 38.4701 | 42.2678 | 16.2335 | | 1.8638 | 0.9772 | 900 | 1.4783 | 46.2036 | 23.2629 | 39.2818 | 43.0232 | 16.2555 | | 1.6739 | 1.0858 | 1000 | 1.4597 | 46.4896 | 23.2284 | 39.6004 | 43.1073 | 16.2335 | | 1.6511 | 1.1944 | 1100 | 1.4717 | 46.3555 | 23.2062 | 39.0139 | 43.0476 | 17.0636 | | 1.7472 | 1.3029 | 1200 | 1.4456 | 46.8039 | 23.0325 | 39.3688 | 43.267 | 16.9169 | | 1.6646 | 1.4115 | 1300 | 1.4474 | 46.9795 | 23.8693 | 40.0189 | 43.5672 | 16.4095 | | 1.7575 | 1.5201 | 1400 | 1.4313 | 47.0233 | 23.2824 | 39.4242 | 43.4246 | 17.1039 | | 1.6169 | 1.6287 | 1500 | 1.4282 | 47.2462 | 23.6695 | 39.6043 | 43.575 | 16.6883 | | 1.6276 | 1.7372 | 1600 | 1.4179 | 47.5435 | 24.1485 | 40.2526 | 44.2173 | 16.3386 | | 1.5724 | 1.8458 | 1700 | 1.4148 | 47.709 | 24.1513 | 40.3054 | 44.3152 | 16.8716 | | 1.6417 | 1.9544 | 1800 | 1.4070 | 47.711 | 24.3763 | 40.4776 | 44.1524 | 17.099 | | 1.4839 | 2.0630 | 1900 | 1.4223 | 47.6921 | 24.5385 | 40.5104 | 44.2406 | 16.4535 | | 1.4515 | 2.1716 | 2000 | 1.4060 | 48.0411 | 24.8227 | 40.9466 | 44.5028 | 16.6675 | | 1.4827 | 2.2801 | 2100 | 1.4066 | 47.7 | 24.3622 | 40.2299 | 44.1456 | 17.0183 | | 1.4776 | 2.3887 | 2200 | 1.4066 | 47.9768 | 24.7871 | 40.7986 | 44.5597 | 16.8178 | | 1.4776 | 2.4973 | 2300 | 1.4017 | 47.9306 | 24.6758 | 40.4826 | 44.4696 | 17.2176 | | 1.5189 | 2.6059 | 2400 | 1.4000 | 47.422 | 24.3336 | 40.0832 | 43.9033 | 16.5281 | | 1.5369 | 2.7144 | 2500 | 1.3910 | 47.9702 | 24.7618 | 40.5049 | 44.4661 | 16.9046 | | 1.4754 | 2.8230 | 2600 | 1.3915 | 48.0885 | 25.0111 | 41.0073 | 44.5462 | 16.3215 | | 1.4609 | 2.9316 | 2700 | 1.3796 | 48.2953 | 25.1084 | 40.8045 | 44.8141 | 16.6883 | | 1.2852 | 3.0402 | 2800 | 1.3914 | 48.1816 | 24.9564 | 40.4874 | 44.4959 | 16.6809 | | 1.3426 | 3.1488 | 2900 | 1.3925 | 47.9864 | 25.1931 | 40.6587 | 44.3335 | 16.7457 | | 1.342 | 3.2573 | 3000 | 1.3907 | 47.9714 | 25.0598 | 40.7272 | 44.4796 | 16.6663 | | 1.3408 | 3.3659 | 3100 | 1.3876 | 47.9041 | 24.8444 | 40.4734 | 44.1852 | 17.0917 | | 1.3964 | 3.4745 | 3200 | 1.3831 | 48.244 | 25.3169 | 40.7608 | 44.6435 | 16.846 | | 1.2923 | 3.5831 | 3300 | 1.3872 | 48.1798 | 25.031 | 40.7752 | 44.7031 | 17.1149 | | 1.3557 | 3.6916 | 3400 | 1.3797 | 48.4681 | 25.1391 | 40.7846 | 44.9196 | 16.8924 | | 1.3749 | 3.8002 | 3500 | 1.3799 | 48.2949 | 25.3223 | 40.6975 | 44.7215 | 17.1785 | | 1.3232 | 3.9088 | 3600 | 1.3761 | 48.2852 | 25.0934 | 40.7396 | 44.6782 | 16.8643 | | 1.2519 | 4.0174 | 3700 | 1.3756 | 47.8744 | 24.8648 | 40.4524 | 44.4635 | 16.8631 | | 1.1997 | 4.1260 | 3800 | 1.3859 | 48.6158 | 25.5093 | 41.1598 | 45.2168 | 16.9132 | | 1.2544 | 4.2345 | 3900 | 1.3837 | 48.492 | 25.1007 | 40.7921 | 44.8931 | 17.0538 | | 1.2808 | 4.3431 | 4000 | 1.3825 | 48.5394 | 25.5808 | 40.9153 | 44.9679 | 16.912 | | 1.2971 | 4.4517 | 4100 | 1.3844 | 48.5203 | 25.4213 | 41.0222 | 45.0464 | 16.923 | | 1.2563 | 4.5603 | 4200 | 1.3842 | 48.5428 | 25.7257 | 41.2674 | 45.0936 | 16.7531 | | 1.2324 | 4.6688 | 4300 | 1.3828 | 48.6838 | 25.797 | 41.216 | 45.1151 | 16.8362 | | 1.3399 | 4.7774 | 4400 | 1.3831 | 48.5336 | 25.5641 | 40.8484 | 44.9315 | 16.9523 | | 1.3147 | 4.8860 | 4500 | 1.3823 | 48.5021 | 25.4093 | 40.8773 | 44.8717 | 16.8851 | | 1.2837 | 4.9946 | 4600 | 1.3830 | 48.5521 | 25.5283 | 40.8665 | 44.9575 | 16.9144 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.0 - Datasets 2.14.5 - Tokenizers 0.19.1
baseten/btest-Mistral-7B-Instruct-v0.2-A100-2a115dae-TP2-lora
baseten
2024-07-01T05:38:32Z
0
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-07-01T05:37:23Z
Entry not found
taehyunzzz/switch-base-32-xsum
taehyunzzz
2024-07-01T05:38:11Z
0
0
null
[ "region:us" ]
null
2024-07-01T05:38:11Z
Entry not found