modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Zaib/Vulnerability-detection
Zaib
2022-08-05T08:47:07Z
13
5
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-16T09:16:45Z
--- tags: - generated_from_trainer model-index: - name: Vulnerability-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vulnerability-detection This model is a fine-tuned version of [mrm8488/codebert-base-finetuned-detect-insecure-code](https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jefsnacker/testpyramidsrnd
jefsnacker
2022-08-05T07:52:18Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-05T07:52:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jefsnacker/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
abdulmatinomotoso/multi_news_article_title_1200
abdulmatinomotoso
2022-08-05T07:14:16Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-05T06:42:59Z
--- tags: - generated_from_trainer model-index: - name: multi_news_article_title_1200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi_news_article_title_1200 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sagar122/xperimentalilst_hackathon_2022
sagar122
2022-08-05T06:19:19Z
0
1
null
[ "arxiv:2205.02455", "license:cc-by-nc-4.0", "region:us" ]
null
2022-08-04T08:49:20Z
--- license: cc-by-nc-4.0 --- ## COGMEN; Official Pytorch Implementation [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/cogmen-contextualized-gnn-based-multimodal/multimodal-emotion-recognition-on-iemocap)](https://paperswithcode.com/sota/multimodal-emotion-recognition-on-iemocap?p=cogmen-contextualized-gnn-based-multimodal) **CO**ntextualized **G**NN based **M**ultimodal **E**motion recognitio**N** ![Teaser image](logo.png) **Picture:** *My sample picture for logo* This repository contains the official Pytorch implementation of the following paper: > **COGMEN: COntextualized GNN based Multimodal Emotion recognitioN**<br> > **Paper:** https://arxiv.org/abs/2205.02455 > **Authors:** Abhinav Joshi, Ashwani Bhat, Ayush Jain, Atin Vikram Singh, Ashutosh Modi<br> > > **Abstract:** *Emotions are an inherent part of human interactions, and consequently, it is imperative to develop AI systems that understand and recognize human emotions. During a conversation involving various people, a person’s emotions are influenced by the other speaker’s utterances and their own emotional state over the utterances. In this paper, we propose COntextualized Graph Neural Network based Multimodal Emotion recognitioN (COGMEN) system that leverages local information (i.e., inter/intra dependency between speakers) and global information (context). The proposed model uses Graph Neural Network (GNN) based architecture to model the complex dependencies (local and global information) in a conversation. Our model gives state-of-theart (SOTA) results on IEMOCAP and MOSEI datasets, and detailed ablation experiments show the importance of modeling information at both levels* ## Requirements - We use PyG (PyTorch Geometric) for the GNN component in our architecture. [RGCNConv](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv) and [TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.TransformerConv) - We use [comet](https://comet.ml) for logging all our experiments and its Bayesian optimizer for hyperparameter tuning. - For textual features we use [SBERT](https://www.sbert.net/). ### Installations - [Install PyTorch Geometric](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) - [Install Comet.ml](https://www.comet.ml/docs/python-sdk/advanced/) - [Install SBERT](https://www.sbert.net/) ## Preparing datasets for training python preprocess.py --dataset="iemocap_4" ## Training networks python train.py --dataset="iemocap_4" --modalities="atv" --from_begin --epochs=55 ## Run Evaluation [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1biIvonBdJWo2TiYyTiQkxZ_V88JEXa_d?usp=sharing) python eval.py --dataset="iemocap_4" --modalities="atv" Please cite the paper using following citation: ## Citation @inproceedings{joshi-etal-2022-cogmen, title = "{COGMEN}: {CO}ntextualized {GNN} based Multimodal Emotion recognitio{N}", author = "Joshi, Abhinav and Bhat, Ashwani and Jain, Ayush and Singh, Atin and Modi, Ashutosh", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.306", pages = "4148--4164", abstract = "Emotions are an inherent part of human interactions, and consequently, it is imperative to develop AI systems that understand and recognize human emotions. During a conversation involving various people, a person{'}s emotions are influenced by the other speaker{'}s utterances and their own emotional state over the utterances. In this paper, we propose COntextualized Graph Neural Network based Multi- modal Emotion recognitioN (COGMEN) system that leverages local information (i.e., inter/intra dependency between speakers) and global information (context). The proposed model uses Graph Neural Network (GNN) based architecture to model the complex dependencies (local and global information) in a conversation. Our model gives state-of-the- art (SOTA) results on IEMOCAP and MOSEI datasets, and detailed ablation experiments show the importance of modeling information at both levels.",} ## Acknowledgments The structure of our code is inspired by [pytorch-DialogueGCN-mianzhang](https://github.com/mianzhang/dialogue_gcn).
okho0653/Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad-optimal
okho0653
2022-08-05T05:29:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T05:12:27Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad-optimal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad-optimal This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.8836 - Accuracy: 0.5 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
okho0653/Bio_ClinicalBERT-zero-shot-finetuned-all-cad
okho0653
2022-08-05T04:50:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T04:33:44Z
--- license: mit tags: - generated_from_trainer model-index: - name: Bio_ClinicalBERT-zero-shot-finetuned-all-cad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot-finetuned-all-cad This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
zhiguoxu/chinese-roberta-wwm-ext-finetuned2
zhiguoxu
2022-08-05T03:45:08Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T07:54:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: chinese-roberta-wwm-ext-finetuned2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-roberta-wwm-ext-finetuned2 This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.4081 | 1.0 | 3 | 0.9711 | 0.7273 | 0.6573 | | 0.9516 | 2.0 | 6 | 0.8174 | 0.8182 | 0.8160 | | 0.8945 | 3.0 | 9 | 0.6617 | 0.9091 | 0.9124 | | 0.7042 | 4.0 | 12 | 0.5308 | 1.0 | 1.0 | | 0.6641 | 5.0 | 15 | 0.4649 | 1.0 | 1.0 | | 0.5731 | 6.0 | 18 | 0.4046 | 1.0 | 1.0 | | 0.5132 | 7.0 | 21 | 0.3527 | 1.0 | 1.0 | | 0.3999 | 8.0 | 24 | 0.3070 | 1.0 | 1.0 | | 0.4198 | 9.0 | 27 | 0.2673 | 1.0 | 1.0 | | 0.3677 | 10.0 | 30 | 0.2378 | 1.0 | 1.0 | | 0.3545 | 11.0 | 33 | 0.2168 | 1.0 | 1.0 | | 0.3237 | 12.0 | 36 | 0.1980 | 1.0 | 1.0 | | 0.3122 | 13.0 | 39 | 0.1860 | 1.0 | 1.0 | | 0.2802 | 14.0 | 42 | 0.1759 | 1.0 | 1.0 | | 0.2552 | 15.0 | 45 | 0.1671 | 1.0 | 1.0 | | 0.2475 | 16.0 | 48 | 0.1598 | 1.0 | 1.0 | | 0.2259 | 17.0 | 51 | 0.1541 | 1.0 | 1.0 | | 0.201 | 18.0 | 54 | 0.1492 | 1.0 | 1.0 | | 0.2083 | 19.0 | 57 | 0.1461 | 1.0 | 1.0 | | 0.2281 | 20.0 | 60 | 0.1448 | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
ariesutiono/scibert-lm-v1-finetuned-20
ariesutiono
2022-08-05T03:07:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T01:57:31Z
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: scibert-lm-v1-finetuned-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert-lm-v1-finetuned-20 This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 22.6145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0118 | 1.0 | 1756 | 15.0609 | | 0.0001 | 2.0 | 3512 | 17.9265 | | 0.0 | 3.0 | 5268 | 18.6256 | | 0.0001 | 4.0 | 7024 | 19.5144 | | 0.0002 | 5.0 | 8780 | 19.8926 | | 0.0 | 6.0 | 10536 | 21.6975 | | 0.0 | 7.0 | 12292 | 22.2388 | | 0.0 | 8.0 | 14048 | 21.0441 | | 0.0 | 9.0 | 15804 | 21.6852 | | 0.0 | 10.0 | 17560 | 22.4439 | | 0.0 | 11.0 | 19316 | 20.9994 | | 0.0 | 12.0 | 21072 | 21.7275 | | 0.0 | 13.0 | 22828 | 22.1329 | | 0.0 | 14.0 | 24584 | 22.4599 | | 0.0 | 15.0 | 26340 | 22.5726 | | 0.0 | 16.0 | 28096 | 22.7823 | | 0.0 | 17.0 | 29852 | 22.4167 | | 0.0 | 18.0 | 31608 | 22.4075 | | 0.0 | 19.0 | 33364 | 22.5731 | | 0.0 | 20.0 | 35120 | 22.6145 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
tals/roberta_python
tals
2022-08-05T02:30:51Z
5
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:2106.05784", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# roberta_python --- language: code datasets: - code_search_net - Fraser/python-lines tags: - python - code - masked-lm widget: - text "assert 6 == sum([i for i in range(<mask>)])" --- # Details This is a roBERTa-base model trained on the python part of [CodeSearchNet](https://github.com/github/CodeSearchNet) and reached a dev perplexity of 3.296 This model was used for the Programming Puzzles enumerative solver baseline detailed in [Programming Puzzles paper](https://arxiv.org/abs/2106.05784). See also the [Python Programming Puzzles (P3) Repository](https://github.com/microsoft/PythonProgrammingPuzzles) for more details. # Usage You can either load the model and further fine-tune it for a target task (as done for the puzzle solver), or you can experiment with mask-filling directly with this model as in the following example: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("tals/roberta_python") model = AutoModelWithLMHead.from_pretrained("tals/roberta_python") demo = pipeline("fill-mask", model=model, tokenizer=tokenizer) code = """sum= 0 for i in range(<mask>): sum += i assert sum == 6 """ demo(code) ``` # BibTeX entry and citation info ```bibtex @inproceedings{ schuster2021programming, title={Programming Puzzles}, author={Tal Schuster and Ashwin Kalyan and Alex Polozov and Adam Tauman Kalai}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)}, year={2021}, url={https://openreview.net/forum?id=fe_hCc4RBrg} } ```
tals/albert-base-vitaminc_wnei-fever
tals
2022-08-05T02:25:41Z
6
1
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:tals/vitaminc", "dataset:fever", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- datasets: - tals/vitaminc - fever --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
fzwd6666/NLTBert_multi_fine_tune_new
fzwd6666
2022-08-05T00:22:54Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T00:04:38Z
This model is a fine-tuned version of fzwd6666/Ged_bert_new with 4 layers on an NLT dataset. It achieves the following results on the evaluation set: {'precision': 0.9795081967213115} {'recall': 0.989648033126294} {'f1': 0.984552008238929} {'accuracy': 0.9843227424749164} Training hyperparameters: learning_rate: 1e-4 train_batch_size: 8 eval_batch_size: 8 optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 weight_decay= 0.01 lr_scheduler_type: linear num_epochs: 3 It achieves the following results on the test set: Incorrect UD Padded: {'precision': 0.6878048780487804} {'recall': 0.2863913337846987} {'f1': 0.4043977055449331} {'accuracy': 0.4722575180008471} Incorrect UD Unigram: {'precision': 0.6348314606741573} {'recall': 0.3060257278266757} {'f1': 0.4129739607126542} {'accuracy': 0.4557390936044049} Incorrect UD Bigram: {'precision': 0.6588419405320813} {'recall': 0.28503723764387273} {'f1': 0.3979206049149338} {'accuracy': 0.4603981363828886} Incorrect UD All: {'precision': 0.4} {'recall': 0.0013540961408259986} {'f1': 0.002699055330634278} {'accuracy': 0.373994070309191} Incorrect Sentence: {'precision': 0.5} {'recall': 0.012186865267433988} {'f1': 0.02379378717779247} {'accuracy': 0.37441761965268955}
SharpAI/mal-tls-bert-base-w8a8
SharpAI
2022-08-04T23:39:11Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T21:02:28Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-base-w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-base-w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
fzwd6666/NLI_new
fzwd6666
2022-08-04T22:33:38Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T21:42:12Z
This model is a fine-tuned version of bert-base-uncased on an NLI dataset. It achieves the following results on the evaluation set: {'precision': 0.9690210656753407} {'recall': 0.9722337339411521} {'f1': 0.9706247414149772} {'accuracy': 0.9535340314136126} Training hyperparameters: learning_rate: 2e-5 train_batch_size: 8 eval_batch_size: 8 optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 weight_decay= 0.01 lr_scheduler_type: linear num_epochs: 3 It achieves the following results on the test set: Incorrect UD Padded: {'precision': 0.623370110330993} {'recall': 0.8415707515233581} {'f1': 0.7162201094785364} {'accuracy': 0.5828038966539602} Incorrect UD Unigram: {'precision': 0.6211431461810825} {'recall': 0.8314150304671631} {'f1': 0.7110596409959468} {'accuracy': 0.5772977551884795} Incorrect UD Bigram: {'precision': 0.6203980099502487} {'recall': 0.8442789438050101} {'f1': 0.7152279896759391} {'accuracy': 0.579415501905972} Incorrect UD All: {'precision': 0.605543710021322} {'recall': 0.1922816519972918} {'f1': 0.2918807810894142} {'accuracy': 0.4163490046590428} Incorrect Sentence: {'precision': 0.6411042944785276} {'recall': 0.4245091401489506} {'f1': 0.5107942973523422} {'accuracy': 0.4913172384582804}
fzwd6666/Ged_bert_new
fzwd6666
2022-08-04T22:32:48Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T22:14:19Z
This model is a fine-tuned version of bert-base-uncased on an NLI dataset. It achieves the following results on the evaluation set: {'precision': 0.8384560400285919} {'recall': 0.9536585365853658} {'f1': 0.892354507417269} {'accuracy': 0.8345996493278784} Training hyperparameters: learning_rate=2e-5 batch_size=32 epochs = 4 warmup_steps=10% training data number optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear
SharpAI/mal-tls-bert-large-relu-w8a8
SharpAI
2022-08-04T22:20:15Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T21:31:59Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large-relu-w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large-relu-w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
SharpAI/mal-tls-bert-large-w8a8
SharpAI
2022-08-04T22:03:00Z
6
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T17:48:37Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large-w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large-w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
SharpAI/mal-tls-bert-large-relu
SharpAI
2022-08-04T21:41:21Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T17:58:24Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large-relu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large-relu This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
SharpAI/mal-tls-bert-large
SharpAI
2022-08-04T21:04:08Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T22:26:09Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
DOOGLAK/wikigold_trained_no_DA_testing2
DOOGLAK
2022-08-04T20:30:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikigold_splits", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T19:39:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikigold_splits metrics: - precision - recall - f1 - accuracy model-index: - name: wikigold_trained_no_DA_testing2 results: - task: name: Token Classification type: token-classification dataset: name: wikigold_splits type: wikigold_splits args: default metrics: - name: Precision type: precision value: 0.8410852713178295 - name: Recall type: recall value: 0.84765625 - name: F1 type: f1 value: 0.8443579766536965 - name: Accuracy type: accuracy value: 0.9571820972693489 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wikigold_trained_no_DA_testing2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikigold_splits dataset. It achieves the following results on the evaluation set: - Loss: 0.1431 - Precision: 0.8411 - Recall: 0.8477 - F1: 0.8444 - Accuracy: 0.9572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 167 | 0.1618 | 0.7559 | 0.75 | 0.7529 | 0.9410 | | No log | 2.0 | 334 | 0.1488 | 0.8384 | 0.8242 | 0.8313 | 0.9530 | | 0.1589 | 3.0 | 501 | 0.1431 | 0.8411 | 0.8477 | 0.8444 | 0.9572 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
aliprf/ASMNet
aliprf
2022-08-04T19:48:14Z
0
1
null
[ "cvpr2021", "computer vision", "face alignment", "facial landmark point", "pose estimation", "face pose tracking", "CNN", "loss", "custom loss", "ASMNet", "Tensor Flow", "en", "license:mit", "region:us" ]
null
2022-08-04T19:19:41Z
--- language: en tags: [cvpr2021, computer vision, face alignment, facial landmark point, pose estimation, face pose tracking, CNN, loss, custom loss, ASMNet, Tensor Flow] license: mit --- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-active-shape-model-for-face-alignment/pose-estimation-on-300w-full)](https://paperswithcode.com/sota/pose-estimation-on-300w-full?p=deep-active-shape-model-for-face-alignment) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-active-shape-model-for-face-alignment/face-alignment-on-wflw)](https://paperswithcode.com/sota/face-alignment-on-wflw?p=deep-active-shape-model-for-face-alignment) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-active-shape-model-for-face-alignment/face-alignment-on-300w)](https://paperswithcode.com/sota/face-alignment-on-300w?p=deep-active-shape-model-for-face-alignment) ```diff ! plaese STAR the repo if you like it. ``` # [ASMNet](https://scholar.google.com/scholar?oi=bibs&cluster=3428857185978099736&btnI=1&hl=en) ## a Lightweight Deep Neural Network for Face Alignment and Pose Estimation #### Link to the paper: https://scholar.google.com/scholar?oi=bibs&cluster=3428857185978099736&btnI=1&hl=en #### Link to the paperswithcode.com: https://paperswithcode.com/paper/asmnet-a-lightweight-deep-neural-network-for #### Link to the article on Towardsdatascience.com: https://aliprf.medium.com/asmnet-a-lightweight-deep-neural-network-for-face-alignment-and-pose-estimation-9e9dfac07094 ``` Please cite this work as: @inproceedings{fard2021asmnet, title={ASMNet: A Lightweight Deep Neural Network for Face Alignment and Pose Estimation}, author={Fard, Ali Pourramezan and Abdollahi, Hojjat and Mahoor, Mohammad}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={1521--1530}, year={2021} } ``` ## Introduction ASMNet is a lightweight Convolutional Neural Network (CNN) which is designed to perform face alignment and pose estimation efficiently while having acceptable accuracy. ASMNet proposed inspired by MobileNetV2, modified to be suitable for face alignment and pose estimation, while being about 2 times smaller in terms of number of the parameters. Moreover, Inspired by Active Shape Model (ASM), ASM-assisted loss function is proposed in order to improve the accuracy of facial landmark points detection and pose estimation. ## ASMnet Architecture Features in a CNN are distributed hierarchically. In other words, the lower layers have features such as edges, and corners which are more suitable for tasks like landmark localization and pose estimation, and deeper layers contain more abstract features that are more suitable for tasks like image classification and image detection. Furthermore, training a network for correlated tasks simultaneously builds a synergy that can improve the performance of each task. Having said that, we designed ASMNe by fusing the features that are available if different layers of the model. Furthermore, by concatenating the features that are collected after each global average pooling layer in the back-propagation process, it will be possible for the network to evaluate the effect of each shortcut path. Following is the ASMNet architecture: ![ASMNet architecture](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/arch.png?raw=true) The implementation of ASMNet in TensorFlow is provided in the following path: https://github.com/aliprf/ASMNet/blob/master/cnn_model.py ## ASM Loss We proposed a new loss function called ASM-LOSS which utilizes ASM to improve the accuracy of the network. In other words, during the training process, the loss function compares the predicted facial landmark points with their corresponding ground truth as well as the smoothed version the ground truth which is generated using ASM operator. Accordingly, ASM-LOSS guides the network to first learn the smoothed distribution of the facial landmark points. Then, it leads the network to learn the original landmark points. For more detail please refer to the paper. Following is the ASM Loss diagram: ![ASM Loss](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/Lossfunction.png?raw=true) ## Evaluation As you can see in the following tables, ASMNet has only 1.4 M parameters which is the smallets comparing to the similar Facial landmark points detection models. Moreover, ASMNet designed to performs Face alignment as well as Pose estimation with a very small CNN while having an acceptable accuracy. ![num of params](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/num_params.png?raw=true) Although ASMNet is much smaller than the state-of-the-art methods on face alignment, it's performance is also very good and acceptable for many real-world applications: ![300W Evaluation](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/300wEval.png?raw=true) ![WFLW Evaluation](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/wflwEval.png?raw=true) As shown in the following table, ASMNet performs much better that the state-of-the-art models on 300W dataseton Pose estimation task: ![Pose Evaluation](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/poseEval.png?raw=true) Following are some samples in order to show the visual performance of ASMNet on 300W and WFLW datasets: ![300W visual](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/300W.png?raw=true) ![wflw visual](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/wflw.png?raw=true) The visual performance of Pose estimation task using ASMNet is very accurate and the results also are much better than the state-of-the-art pose estimation over 300W dataset: ![pose sample visual](https://github.com/aliprf/ASMNet/blob/master/documents/graphical_items_in_paper/posesample.png?raw=true) ---------------------------------------------------------------------------------------------------------------------------------- ## Installing the requirements In order to run the code you need to install python >= 3.5. The requirements and the libraries needed to run the code can be installed using the following command: ``` pip install -r requirements.txt ``` ## Using the pre-trained models You can test and use the preetrained models using the following codes which are available in the following file: https://github.com/aliprf/ASMNet/blob/master/main.py ``` tester = Test() tester.test_model(ds_name=DatasetName.w300, pretrained_model_path='./pre_trained_models/ASMNet/ASM_loss/ASMNet_300W_ASMLoss.h5') ``` ## Training Network from scratch ### Preparing Data Data needs to be normalized and saved in npy format. ### PCA creation you can you the pca_utility.py class to create the eigenvalues, eigenvectors, and the meanvector: ``` pca_calc = PCAUtility() pca_calc.create_pca_from_npy(dataset_name=DatasetName.w300, labels_npy_path='./data/w300/normalized_labels/', pca_percentages=90) ``` ### Training The training implementation is located in train.py class. You can use the following code to start the training: ``` trainer = Train(arch=ModelArch.ASMNet, dataset_name=DatasetName.w300, save_path='./', asm_accuracy=90) ``` Please cite this work as: @inproceedings{fard2021asmnet, title={ASMNet: A Lightweight Deep Neural Network for Face Alignment and Pose Estimation}, author={Fard, Ali Pourramezan and Abdollahi, Hojjat and Mahoor, Mohammad}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={1521--1530}, year={2021} } ```diff @@plaese STAR the repo if you like it.@@ ```
aliprf/ACR-Loss
aliprf
2022-08-04T19:47:19Z
0
0
null
[ "ICPR", "ICPR2022", "computer vision", "face alignment", "facial landmark point", "CNN", "loss", "Tensor Flow", "en", "arxiv:2203.15835", "license:mit", "region:us" ]
null
2022-08-04T18:26:32Z
--- language: en tags: [ICPR, ICPR2022, computer vision, face alignment, facial landmark point, CNN, loss, Tensor Flow ] thumbnail: license: mit --- # [ACR-Loss](https://scholar.google.com/citations?view_op=view_citation&hl=en&user=96lS6HIAAAAJ&citation_for_view=96lS6HIAAAAJ:eQOLeE2rZwMC) ### Accepted in ICPR 2022 ACR Loss: Adaptive Coordinate-based Regression Loss for Face Alignment #### Link to the paper: https://arxiv.org/pdf/2203.15835.pdf ```diff @@plaese STAR the repo if you like it.@@ ``` ``` Please cite this work as: @article{fard2022acr, title={ACR Loss: Adaptive Coordinate-based Regression Loss for Face Alignment}, author={Fard, Ali Pourramezan and Mahoor, Mohammah H}, journal={arXiv preprint arXiv:2203.15835}, year={2022} } ``` ![Samples](https://github.com/aliprf/ACR-Loss/blob/main/img/ACR_300w_samples.png?raw=true) ## Introduction Although deep neural networks have achieved reasonable accuracy in solving face alignment, it is still a challenging task, specifically when we deal with facial images, under occlusion, or extreme head poses. Heatmap-based Regression (HBR) and Coordinate-based Regression (CBR) are among the two mainly used methods for face alignment. CBR methods require less computer memory, though their performance is less than HBR methods. In this paper, we propose an Adaptive Coordinatebased Regression (ACR) loss to improve the accuracy of CBR for face alignment. Inspired by the Active Shape Model (ASM), we generate Smooth-Face objects, a set of facial landmark points with less variations compared to the ground truth landmark points. We then introduce a method to estimate the level of difficulty in predicting each landmark point for the network by comparing the distribution of the ground truth landmark points and the corresponding Smooth-Face objects. Our proposed ACR Loss can adaptively modify its curvature and the influence of the loss based on the difficulty level of predicting each landmark point in a face. Accordingly, the ACR Loss guides the network toward challenging points than easier points, which improves the accuracy of the face alignment task. Our extensive evaluation shows the capabilities of the proposed ACR Loss in predicting facial landmark points in various facial images. We evaluated our ACR Loss using MobileNetV2, EfficientNetB0, and EfficientNet-B3 on widely used 300W, and COFW datasets and showed that the performance of face alignment using the ACR Loss is much better than the widely-used L2 loss. Moreover, on the COFW dataset, we achieved state-of-theart accuracy. In addition, on 300W the ACR Loss performance is comparable to the state-of-the-art methods. We also compared the performance of MobileNetV2 trained using the ACR Loss with the lightweight state-of-the-art methods, and we achieved the best accuracy, highlighting the effectiveness of our ACR Loss for face alignment specifically for the lightweight models. ---------------------------------------------------------------------------------------------------------------------------------- ## Installing the requirements In order to run the code you need to install python >= 3.5. The requirements and the libraries needed to run the code can be installed using the following command: ``` pip install -r requirements.txt ``` ## Using the pre-trained models You can test and use the preetrained models using the following codes: ``` tester = Test() tester.test_model(ds_name=DatasetName.w300, pretrained_model_path='./pre_trained_models/ACRLoss/300w/EF_3/300w_EF3_ACRLoss.h5') ``` ## Training Network from scratch ### Preparing Data Data needs to be normalized and saved in npy format. ### PCA creation you can you the pca_utility.py class to create the eigenvalues, eigenvectors, and the meanvector: ``` pca_calc = PCAUtility() pca_calc.create_pca_from_npy(dataset_name=DatasetName.w300, labels_npy_path='./data/w300/normalized_labels/', pca_percentages=90) ``` ### Training The training implementation is located in train.py class. You can use the following code to start the training: ``` trainer = Train(arch=ModelArch.MNV2, dataset_name=DatasetName.w300, save_path='./') ```
aliprf/Ad-Corre
aliprf
2022-08-04T19:46:42Z
0
2
null
[ "Ad-Corre", "facial expression recognition", "emotion recognition", "expression recognition", "computer vision", "CNN", "loss", "IEEE Access", "Tensor Flow", "en", "license:mit", "region:us" ]
null
2022-08-04T19:11:54Z
--- language: en tags: [Ad-Corre, facial expression recognition, emotion recognition, expression recognition, computer vision, CNN, loss, IEEE Access, Tensor Flow ] thumbnail: license: mit --- # Ad-Corre Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-raf-db)](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=ad-corre-adaptive-correlation-based-loss-for) <!-- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-affectnet)](https://paperswithcode.com/sota/facial-expression-recognition-on-affectnet?p=ad-corre-adaptive-correlation-based-loss-for) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-fer2013)](https://paperswithcode.com/sota/facial-expression-recognition-on-fer2013?p=ad-corre-adaptive-correlation-based-loss-for) --> #### Link to the paper (open access): https://ieeexplore.ieee.org/document/9727163 #### Link to the paperswithcode.com: https://paperswithcode.com/paper/ad-corre-adaptive-correlation-based-loss-for ``` Please cite this work as: @ARTICLE{9727163, author={Fard, Ali Pourramezan and Mahoor, Mohammad H.}, journal={IEEE Access}, title={Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild}, year={2022}, volume={}, number={}, pages={1-1}, doi={10.1109/ACCESS.2022.3156598}} ``` ## Introduction Automated Facial Expression Recognition (FER) in the wild using deep neural networks is still challenging due to intra-class variations and inter-class similarities in facial images. Deep Metric Learning (DML) is among the widely used methods to deal with these issues by improving the discriminative power of the learned embedded features. This paper proposes an Adaptive Correlation (Ad-Corre) Loss to guide the network towards generating embedded feature vectors with high correlation for within-class samples and less correlation for between-class samples. Ad-Corre consists of 3 components called Feature Discriminator, Mean Discriminator, and Embedding Discriminator. We design the Feature Discriminator component to guide the network to create the embedded feature vectors to be highly correlated if they belong to a similar class, and less correlated if they belong to different classes. In addition, the Mean Discriminator component leads the network to make the mean embedded feature vectors of different classes to be less similar to each other.We use Xception network as the backbone of our model, and contrary to previous work, we propose an embedding feature space that contains k feature vectors. Then, the Embedding Discriminator component penalizes the network to generate the embedded feature vectors, which are dissimilar.We trained our model using the combination of our proposed loss functions called Ad-Corre Loss jointly with the cross-entropy loss. We achieved a very promising recognition accuracy on AffectNet, RAF-DB, and FER-2013. Our extensive experiments and ablation study indicate the power of our method to cope well with challenging FER tasks in the wild. ## Evaluation and Samples The following samples are taken from the paper: ![Samples](https://github.com/aliprf/Ad-Corre/blob/main/paper_graphical_items/samples.jpg?raw=true) ---------------------------------------------------------------------------------------------------------------------------------- ## Installing the requirements In order to run the code you need to install python >= 3.5. The requirements and the libraries needed to run the code can be installed using the following command: ``` pip install -r requirements.txt ``` ## Using the pre-trained models The pretrained models for Affectnet, RafDB, and Fer2013 are provided in the [Trained_Models](https://github.com/aliprf/Ad-Corre/tree/main/Trained_Models) folder. You can use the following code to predict the facial emotionn of a facial image: ``` tester = TestModels(h5_address='./trained_models/AffectNet_6336.h5') tester.recognize_fer(img_path='./img.jpg') ``` plaese see the following [main.py](https://github.com/aliprf/Ad-Corre/tree/main/main.py) file. ## Training Network from scratch The information and the code to train the model is provided in train.py .Plaese see the following [main.py](https://github.com/aliprf/Ad-Corre/tree/main/main.py) file: ``` '''training part''' trainer = TrainModel(dataset_name=DatasetName.affectnet, ds_type=DatasetType.train_7) trainer.train(arch="xcp", weight_path="./") ``` ### Preparing Data Data needs to be normalized and saved in npy format. --------------------------------------------------------------- ``` Please cite this work as: @ARTICLE{9727163, author={Fard, Ali Pourramezan and Mahoor, Mohammad H.}, journal={IEEE Access}, title={Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild}, year={2022}, volume={}, number={}, pages={1-1}, doi={10.1109/ACCESS.2022.3156598}} ```
Talha/URDU-ASR
Talha
2022-08-04T19:27:04Z
113
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-03T19:50:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2822 - Wer: 0.2423 - Cer: 0.0842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data I have used dataset other than mozila common voice, thats why for fair evaluation, i do 80:20 split. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | No log | 1.0 | 174 | 0.9860 | 3.1257 | 1.0 | | No log | 2.0 | 348 | 0.9404 | 2.4914 | 0.9997 | | No log | 3.0 | 522 | 0.1889 | 0.5970 | 0.5376 | | No log | 4.0 | 696 | 0.1428 | 0.4462 | 0.4121 | | No log | 5.0 | 870 | 0.1211 | 0.3775 | 0.3525 | | 1.7 | 6.0 | 1044 | 0.1113 | 0.3594 | 0.3264 | | 1.7 | 7.0 | 1218 | 0.1032 | 0.3354 | 0.3013 | | 1.7 | 8.0 | 1392 | 0.1005 | 0.3171 | 0.2843 | | 1.7 | 9.0 | 1566 | 0.0953 | 0.3115 | 0.2717 | | 1.7 | 10.0 | 1740 | 0.0934 | 0.3058 | 0.2671 | | 1.7 | 11.0 | 1914 | 0.0926 | 0.3060 | 0.2656 | | 0.3585 | 12.0 | 2088 | 0.0899 | 0.3070 | 0.2566 | | 0.3585 | 13.0 | 2262 | 0.0888 | 0.2979 | 0.2509 | | 0.3585 | 14.0 | 2436 | 0.0868 | 0.3005 | 0.2473 | | 0.3585 | 15.0 | 2610 | 0.2822 | 0.2423 | 0.0842 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
keepitreal/mini-phobert-v2.1
keepitreal
2022-08-04T16:42:05Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T14:49:57Z
--- tags: - generated_from_trainer model-index: - name: mini-phobert-v2.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phobert-v2.1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dquisi/story_spanish_category
dquisi
2022-08-04T15:44:12Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-03T20:01:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: story_spanish_category results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # story_spanish_category This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yukseltron/lyrics-classifier
yukseltron
2022-08-04T15:42:31Z
0
0
null
[ "tensorboard", "text-classification", "lyrics", "catboost", "en", "dataset:data", "license:gpl-3.0", "region:us" ]
text-classification
2022-07-28T12:48:01Z
--- language: - en thumbnail: "http://s4.thingpic.com/images/Yx/zFbS5iJFJMYNxDp9HTR7TQtT.png" tags: - text-classification - lyrics - catboost license: gpl-3.0 datasets: - data metrics: - accuracy widget: - text: "I know when that hotline bling, that can only mean one thing" --- # Lyrics Classifier This submission uses [CatBoost](https://catboost.ai/). CatBoost was chosen for its listed benefits, mainly in requiring less hyperparameter tuning and preprocessing of categorical and text features. It is also fast and fairly easy to set up. <img src="http://s4.thingpic.com/images/Yx/zFbS5iJFJMYNxDp9HTR7TQtT.png" alt="Markdown Monster icon" style="float: left; margin-right: 10px;" />
tj-solergibert/xlm-roberta-base-finetuned-panx-it
tj-solergibert
2022-08-04T15:36:59Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T15:21:38Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Jacobsith/autotrain-Hello_there-1209845735
Jacobsith
2022-08-04T15:30:19Z
14
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Jacobsith/autotrain-data-Hello_there", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-02T06:38:58Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain \U0001F917" datasets: - Jacobsith/autotrain-data-Hello_there co2_eq_emissions: emissions: 3602.3174355473616 model-index: - name: Jacobsith/autotrain-Hello_there-1209845735 results: - task: type: summarization name: Summarization dataset: name: Blaise-g/SumPubmed type: Blaise-g/SumPubmed config: Blaise-g--SumPubmed split: test metrics: - name: ROUGE-1 type: rouge value: 38.2084 verified: true - name: ROUGE-2 type: rouge value: 12.4744 verified: true - name: ROUGE-L type: rouge value: 21.5536 verified: true - name: ROUGE-LSUM type: rouge value: 34.229 verified: true - name: loss type: loss value: 2.0952045917510986 verified: true - name: gen_len type: gen_len value: 126.3001 verified: true --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1209845735 - CO2 Emissions (in grams): 3602.3174 ## Validation Metrics - Loss: 2.484 - Rouge1: 38.448 - Rouge2: 10.900 - RougeL: 22.080 - RougeLsum: 33.458 - Gen Len: 115.982 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Jacobsith/autotrain-Hello_there-1209845735 ```
mindwrapped/collaborative-filtering-movielens-copy
mindwrapped
2022-08-04T15:17:05Z
0
1
keras
[ "keras", "tensorboard", "tf-keras", "collaborative-filtering", "recommender", "tabular-classification", "license:cc0-1.0", "region:us" ]
tabular-classification
2022-06-08T16:15:46Z
--- library_name: keras tags: - collaborative-filtering - recommender - tabular-classification license: - cc0-1.0 --- ## Model description This repo contains the model and the notebook on [how to build and train a Keras model for Collaborative Filtering for Movie Recommendations](https://keras.io/examples/structured_data/collaborative_filtering_movielens/). Full credits to [Siddhartha Banerjee](https://twitter.com/sidd2006). ## Intended uses & limitations Based on a user and movies they have rated highly in the past, this model outputs the predicted rating a user would give to a movie they haven't seen yet (between 0-1). This information can be used to find out the top recommended movies for this user. ## Training and evaluation data The dataset consists of user's ratings on specific movies. It also consists of the movie's specific genres. ## Training procedure The model was trained for 5 epochs with a batch size of 64. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | Validation Loss | |--- |--- |--- | | 1| 0.637| 0.619| | 2| 0.614| 0.616| | 3| 0.609| 0.611| | 4| 0.608| 0.61| | 5| 0.608| 0.609| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Ilyes/wav2vec2-large-xlsr-53-french
Ilyes
2022-08-04T14:51:35Z
29
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: fr datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-French by Ilyes Rebai results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 12.82 --- ## Evaluation on Common Voice FR Test The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import re model_name = "Ilyes/wav2vec2-large-xlsr-53-french" device = "cpu" # "cuda" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr") chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“\%\‘\”\�\‘\’\’\’\‘\…\·\!\ǃ\?\«\‹\»\›“\”\\ʿ\ʾ\„\∞\\|\.\,\;\:\*\—\–\─\―\_\/\:\ː\;\,\=\«\»\→]' def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch resampler = torchaudio.transforms.Resample(48_000, 16_000) ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` ## Results WER=12.82% CER=4.40%
nikitakapitan/FrozenLake-v2-4x4-Slippery
nikitakapitan
2022-08-04T14:36:18Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-21T20:31:46Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: FrozenLake-v2-4x4-Slippery results: - metrics: - type: mean_reward value: 0.73 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v2-4x4-Slippery** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v2-4x4-Slippery** . ## Usage ```python model = load_from_hub(repo_id="nikitakapitan/FrozenLake-v2-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
29thDay/PPO-MountainCar-v0
29thDay
2022-08-04T14:07:15Z
4
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-04T12:08:40Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -91.30 +/- 7.04 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
schnell/bert-small-ipadic_bpe
schnell
2022-08-04T13:37:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-01T15:40:13Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-small-ipadic_bpe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-ipadic_bpe This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6777 - Accuracy: 0.6519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 768 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 14 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.2548 | 1.0 | 69473 | 2.1163 | 0.5882 | | 2.0904 | 2.0 | 138946 | 1.9562 | 0.6101 | | 2.0203 | 3.0 | 208419 | 1.8848 | 0.6208 | | 1.978 | 4.0 | 277892 | 1.8408 | 0.6272 | | 1.937 | 5.0 | 347365 | 1.8080 | 0.6320 | | 1.9152 | 6.0 | 416838 | 1.7818 | 0.6361 | | 1.8982 | 7.0 | 486311 | 1.7575 | 0.6395 | | 1.8808 | 8.0 | 555784 | 1.7413 | 0.6421 | | 1.8684 | 9.0 | 625257 | 1.7282 | 0.6440 | | 1.8517 | 10.0 | 694730 | 1.7140 | 0.6464 | | 1.8353 | 11.0 | 764203 | 1.7022 | 0.6481 | | 1.8245 | 12.0 | 833676 | 1.6877 | 0.6504 | | 1.8191 | 13.0 | 903149 | 1.6829 | 0.6515 | | 1.8122 | 14.0 | 972622 | 1.6777 | 0.6519 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.12.0+cu116 - Datasets 2.2.2 - Tokenizers 0.12.1
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm1000
dminiotas05
2022-08-04T13:18:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T12:02:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm1000 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0875 - Mse: 1.3594 - Mae: 0.5794 - R2: 0.3573 - Accuracy: 0.7015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.8897 | 1.0 | 3122 | 1.0463 | 1.3078 | 0.5936 | 0.3817 | 0.7008 | | 0.7312 | 2.0 | 6244 | 1.0870 | 1.3588 | 0.5796 | 0.3576 | 0.7002 | | 0.5348 | 3.0 | 9366 | 1.1056 | 1.3820 | 0.5786 | 0.3467 | 0.7124 | | 0.3693 | 4.0 | 12488 | 1.0866 | 1.3582 | 0.5854 | 0.3579 | 0.7053 | | 0.2848 | 5.0 | 15610 | 1.0875 | 1.3594 | 0.5794 | 0.3573 | 0.7015 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
isaacaderogba/tonality
isaacaderogba
2022-08-04T12:48:32Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T07:33:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: tonality results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tonality This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
Rushikesh/distilbert-base-uncased-finetuned-imdb
Rushikesh
2022-08-04T12:19:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T18:45:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.6893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.099 | 1.0 | 5 | 2.6076 | | 2.7996 | 2.0 | 10 | 2.5412 | | 2.7876 | 3.0 | 15 | 2.6641 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
29thDay/PPO-CartPole-v1
29thDay
2022-08-04T11:17:41Z
5
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T08:41:13Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
masapasa/blurr_IMDB_distilbert_classification
masapasa
2022-08-04T11:03:15Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-08-04T11:01:30Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
elopezlopez/Bio_ClinicalBERT_fold_9_binary_v1
elopezlopez
2022-08-04T10:48:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T20:38:00Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_9_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_9_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6976 - F1: 0.8065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.4002 | 0.7826 | | 0.4094 | 2.0 | 582 | 0.3968 | 0.8212 | | 0.4094 | 3.0 | 873 | 0.6130 | 0.7984 | | 0.1977 | 4.0 | 1164 | 0.5853 | 0.8227 | | 0.1977 | 5.0 | 1455 | 0.9401 | 0.8143 | | 0.0837 | 6.0 | 1746 | 1.1764 | 0.8059 | | 0.0274 | 7.0 | 2037 | 1.1515 | 0.8112 | | 0.0274 | 8.0 | 2328 | 1.2614 | 0.8065 | | 0.0113 | 9.0 | 2619 | 1.3404 | 0.8002 | | 0.0113 | 10.0 | 2910 | 1.3926 | 0.8088 | | 0.0125 | 11.0 | 3201 | 1.4539 | 0.8010 | | 0.0125 | 12.0 | 3492 | 1.5460 | 0.7998 | | 0.0101 | 13.0 | 3783 | 1.5920 | 0.8060 | | 0.0107 | 14.0 | 4074 | 1.5631 | 0.8059 | | 0.0107 | 15.0 | 4365 | 1.6323 | 0.8020 | | 0.0127 | 16.0 | 4656 | 1.6183 | 0.8008 | | 0.0127 | 17.0 | 4947 | 1.6351 | 0.8033 | | 0.0068 | 18.0 | 5238 | 1.5608 | 0.8121 | | 0.0047 | 19.0 | 5529 | 1.6339 | 0.8141 | | 0.0047 | 20.0 | 5820 | 1.6039 | 0.8091 | | 0.0029 | 21.0 | 6111 | 1.5676 | 0.8085 | | 0.0029 | 22.0 | 6402 | 1.6489 | 0.8139 | | 0.0036 | 23.0 | 6693 | 1.6824 | 0.8087 | | 0.0036 | 24.0 | 6984 | 1.6773 | 0.8106 | | 0.0008 | 25.0 | 7275 | 1.6976 | 0.8065 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_8_binary_v1
elopezlopez
2022-08-04T10:25:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T20:12:13Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_8_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_8_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5821 - F1: 0.8265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.3933 | 0.8222 | | 0.4092 | 2.0 | 580 | 0.4431 | 0.8237 | | 0.4092 | 3.0 | 870 | 0.6243 | 0.8292 | | 0.1845 | 4.0 | 1160 | 0.6526 | 0.8300 | | 0.1845 | 5.0 | 1450 | 0.9229 | 0.8203 | | 0.0671 | 6.0 | 1740 | 0.9436 | 0.8279 | | 0.0303 | 7.0 | 2030 | 1.1281 | 0.8260 | | 0.0303 | 8.0 | 2320 | 1.1676 | 0.8327 | | 0.0105 | 9.0 | 2610 | 1.2557 | 0.8291 | | 0.0105 | 10.0 | 2900 | 1.3556 | 0.8326 | | 0.0102 | 11.0 | 3190 | 1.3160 | 0.8413 | | 0.0102 | 12.0 | 3480 | 1.3199 | 0.8344 | | 0.0068 | 13.0 | 3770 | 1.3827 | 0.8314 | | 0.0049 | 14.0 | 4060 | 1.5265 | 0.8197 | | 0.0049 | 15.0 | 4350 | 1.5481 | 0.8215 | | 0.0069 | 16.0 | 4640 | 1.3824 | 0.8292 | | 0.0069 | 17.0 | 4930 | 1.4398 | 0.8305 | | 0.0073 | 18.0 | 5220 | 1.5004 | 0.8255 | | 0.0033 | 19.0 | 5510 | 1.5322 | 0.8253 | | 0.0033 | 20.0 | 5800 | 1.5239 | 0.8237 | | 0.0025 | 21.0 | 6090 | 1.5299 | 0.8286 | | 0.0025 | 22.0 | 6380 | 1.5788 | 0.8271 | | 0.0005 | 23.0 | 6670 | 1.5903 | 0.8298 | | 0.0005 | 24.0 | 6960 | 1.5893 | 0.8232 | | 0.0026 | 25.0 | 7250 | 1.5821 | 0.8265 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
keepitreal/mini-phobert-v3
keepitreal
2022-08-04T10:02:44Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T08:08:28Z
--- tags: - generated_from_trainer model-index: - name: mini-phobert-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phobert-v3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Saraswati/Reinforce-CartPole-v1
Saraswati
2022-08-04T09:09:12Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T12:03:32Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 8.30 +/- 4.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
dminiotas05/distilbert-base-uncased-finetuned-ft1500_class
dminiotas05
2022-08-04T08:58:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T08:18:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft1500_class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_class This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9779 - Accuracy: 0.2357 - F1: 0.2352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.034 | 1.0 | 3122 | 1.9454 | 0.2351 | 0.1964 | | 1.8558 | 2.0 | 6244 | 1.9235 | 0.2377 | 0.2300 | | 1.6754 | 3.0 | 9366 | 1.9779 | 0.2357 | 0.2352 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_4_binary_v1
elopezlopez
2022-08-04T08:55:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:29:31Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_4_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_4_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4627 - F1: 0.8342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.3641 | 0.8394 | | 0.3953 | 2.0 | 578 | 0.3729 | 0.8294 | | 0.3953 | 3.0 | 867 | 0.6156 | 0.8126 | | 0.189 | 4.0 | 1156 | 0.7389 | 0.8326 | | 0.189 | 5.0 | 1445 | 0.8925 | 0.8322 | | 0.0783 | 6.0 | 1734 | 1.0909 | 0.8196 | | 0.0219 | 7.0 | 2023 | 1.1241 | 0.8346 | | 0.0219 | 8.0 | 2312 | 1.2684 | 0.8130 | | 0.0136 | 9.0 | 2601 | 1.2615 | 0.8202 | | 0.0136 | 10.0 | 2890 | 1.2477 | 0.8401 | | 0.0143 | 11.0 | 3179 | 1.3211 | 0.8254 | | 0.0143 | 12.0 | 3468 | 1.2627 | 0.8286 | | 0.0165 | 13.0 | 3757 | 1.3804 | 0.8264 | | 0.006 | 14.0 | 4046 | 1.3213 | 0.8414 | | 0.006 | 15.0 | 4335 | 1.3152 | 0.8427 | | 0.0117 | 16.0 | 4624 | 1.3373 | 0.8368 | | 0.0117 | 17.0 | 4913 | 1.3599 | 0.8406 | | 0.0021 | 18.0 | 5202 | 1.4072 | 0.8237 | | 0.0021 | 19.0 | 5491 | 1.3893 | 0.8336 | | 0.0045 | 20.0 | 5780 | 1.4331 | 0.8391 | | 0.0049 | 21.0 | 6069 | 1.4128 | 0.8370 | | 0.0049 | 22.0 | 6358 | 1.4660 | 0.8356 | | 0.0029 | 23.0 | 6647 | 1.4721 | 0.8388 | | 0.0029 | 24.0 | 6936 | 1.4636 | 0.8329 | | 0.0023 | 25.0 | 7225 | 1.4627 | 0.8342 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_3_binary_v1
elopezlopez
2022-08-04T08:33:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:03:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_3_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_3_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8860 - F1: 0.8051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.4493 | 0.7916 | | 0.3975 | 2.0 | 578 | 0.4608 | 0.7909 | | 0.3975 | 3.0 | 867 | 0.8364 | 0.7726 | | 0.1885 | 4.0 | 1156 | 1.0380 | 0.7902 | | 0.1885 | 5.0 | 1445 | 1.1612 | 0.7921 | | 0.0692 | 6.0 | 1734 | 1.3894 | 0.7761 | | 0.0295 | 7.0 | 2023 | 1.3730 | 0.7864 | | 0.0295 | 8.0 | 2312 | 1.4131 | 0.7939 | | 0.0161 | 9.0 | 2601 | 1.5538 | 0.7929 | | 0.0161 | 10.0 | 2890 | 1.6417 | 0.7931 | | 0.006 | 11.0 | 3179 | 1.5745 | 0.7974 | | 0.006 | 12.0 | 3468 | 1.7212 | 0.7908 | | 0.0132 | 13.0 | 3757 | 1.7349 | 0.7945 | | 0.0062 | 14.0 | 4046 | 1.7593 | 0.7908 | | 0.0062 | 15.0 | 4335 | 1.7420 | 0.8035 | | 0.0073 | 16.0 | 4624 | 1.7620 | 0.8007 | | 0.0073 | 17.0 | 4913 | 1.8286 | 0.7908 | | 0.0033 | 18.0 | 5202 | 1.7863 | 0.7977 | | 0.0033 | 19.0 | 5491 | 1.9275 | 0.7919 | | 0.0035 | 20.0 | 5780 | 1.8481 | 0.8042 | | 0.0035 | 21.0 | 6069 | 1.9465 | 0.8012 | | 0.0035 | 22.0 | 6358 | 1.8177 | 0.8044 | | 0.005 | 23.0 | 6647 | 1.8615 | 0.8030 | | 0.005 | 24.0 | 6936 | 1.8427 | 0.8054 | | 0.0011 | 25.0 | 7225 | 1.8860 | 0.8051 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
KaranChand/wav2vec2-XLSR-ft-10
KaranChand
2022-08-04T08:13:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-04T07:37:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-XLSR-ft-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-XLSR-ft-10 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
FluxML/densenet121
FluxML
2022-08-04T06:39:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:12:25Z
--- license: mit --- DenseNet121 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(121; pretrain = true) ```
FluxML/densenet161
FluxML
2022-08-04T06:39:41Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:16:19Z
--- license: mit --- DenseNet161 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(161; pretrain = true) ```
FluxML/densenet169
FluxML
2022-08-04T06:39:26Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:20:00Z
--- license: mit --- DenseNet169 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(169; pretrain = true) ```
FluxML/densenet201
FluxML
2022-08-04T06:33:40Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:22:23Z
--- license: mit --- DenseNet201 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(201; pretrain = true) ```
BekirTaha/testpyramidsrnd
BekirTaha
2022-08-04T06:26:32Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-03T12:55:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: BekirTaha/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bash1130/bert-base-finetuned-ynat
bash1130
2022-08-04T06:19:20Z
20
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T19:50:38Z
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: ynat split: train args: ynat metrics: - name: F1 type: f1 value: 0.871180664370084 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3609 - F1: 0.8712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.3979 | 0.8611 | | No log | 2.0 | 358 | 0.3773 | 0.8669 | | 0.3007 | 3.0 | 537 | 0.3609 | 0.8712 | | 0.3007 | 4.0 | 716 | 0.3708 | 0.8708 | | 0.3007 | 5.0 | 895 | 0.3720 | 0.8697 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
srivatsavaasista/textgenerator
srivatsavaasista
2022-08-04T05:40:30Z
28
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-27T09:12:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: textgenerator results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # textgenerator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4579 - Validation Loss: 6.4893 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 398, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.5475 | 6.4893 | 0 | | 6.4577 | 6.4893 | 1 | | 6.4579 | 6.4893 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
keepitreal/mini-phobert-v2
keepitreal
2022-08-04T04:42:30Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T20:07:20Z
--- tags: - generated_from_trainer model-index: - name: mini-phobert-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phobert-v2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/wikigold_trained_no_DA_small
DOOGLAK
2022-08-04T03:56:36Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikigold_splits", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T00:47:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikigold_splits metrics: - precision - recall - f1 - accuracy model-index: - name: wikigold_trained_no_DA_small results: - task: name: Token Classification type: token-classification dataset: name: wikigold_splits type: wikigold_splits args: default metrics: - name: Precision type: precision value: 0.34285714285714286 - name: Recall type: recall value: 0.5454545454545454 - name: F1 type: f1 value: 0.42105263157894735 - name: Accuracy type: accuracy value: 0.853035143769968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wikigold_trained_no_DA_small This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikigold_splits dataset. It achieves the following results on the evaluation set: - Loss: 0.6066 - Precision: 0.3429 - Recall: 0.5455 - F1: 0.4211 - Accuracy: 0.8530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 32 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 9 | 0.8525 | 0.0 | 0.0 | 0.0 | 0.7604 | | No log | 2.0 | 18 | 0.7135 | 0.0 | 0.0 | 0.0 | 0.7604 | | No log | 3.0 | 27 | 0.5972 | 0.1579 | 0.1364 | 0.1463 | 0.7923 | | No log | 4.0 | 36 | 0.5108 | 0.0769 | 0.0909 | 0.0833 | 0.8083 | | No log | 5.0 | 45 | 0.4725 | 0.2333 | 0.3182 | 0.2692 | 0.8466 | | No log | 6.0 | 54 | 0.4569 | 0.2333 | 0.3182 | 0.2692 | 0.8339 | | No log | 7.0 | 63 | 0.4428 | 0.2258 | 0.3182 | 0.2642 | 0.8371 | | No log | 8.0 | 72 | 0.4362 | 0.2121 | 0.3182 | 0.2545 | 0.8435 | | No log | 9.0 | 81 | 0.4509 | 0.2258 | 0.3182 | 0.2642 | 0.8403 | | No log | 10.0 | 90 | 0.4614 | 0.2121 | 0.3182 | 0.2545 | 0.8466 | | No log | 11.0 | 99 | 0.4546 | 0.2188 | 0.3182 | 0.2593 | 0.8435 | | No log | 12.0 | 108 | 0.4734 | 0.2188 | 0.3182 | 0.2593 | 0.8435 | | No log | 13.0 | 117 | 0.5098 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 14.0 | 126 | 0.5280 | 0.2258 | 0.3182 | 0.2642 | 0.8435 | | No log | 15.0 | 135 | 0.5264 | 0.2188 | 0.3182 | 0.2593 | 0.8435 | | No log | 16.0 | 144 | 0.5317 | 0.2727 | 0.4091 | 0.3273 | 0.8498 | | No log | 17.0 | 153 | 0.5414 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 18.0 | 162 | 0.5505 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 19.0 | 171 | 0.5521 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 20.0 | 180 | 0.5627 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 21.0 | 189 | 0.5687 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 22.0 | 198 | 0.5751 | 0.2581 | 0.3636 | 0.3019 | 0.8466 | | No log | 23.0 | 207 | 0.5825 | 0.2727 | 0.4091 | 0.3273 | 0.8498 | | No log | 24.0 | 216 | 0.5881 | 0.2727 | 0.4091 | 0.3273 | 0.8498 | | No log | 25.0 | 225 | 0.5930 | 0.2727 | 0.4091 | 0.3273 | 0.8498 | | No log | 26.0 | 234 | 0.5969 | 0.2727 | 0.4091 | 0.3273 | 0.8498 | | No log | 27.0 | 243 | 0.5995 | 0.3429 | 0.5455 | 0.4211 | 0.8530 | | No log | 28.0 | 252 | 0.6017 | 0.3429 | 0.5455 | 0.4211 | 0.8530 | | No log | 29.0 | 261 | 0.6035 | 0.3429 | 0.5455 | 0.4211 | 0.8530 | | No log | 30.0 | 270 | 0.6053 | 0.3429 | 0.5455 | 0.4211 | 0.8530 | | No log | 31.0 | 279 | 0.6063 | 0.3429 | 0.5455 | 0.4211 | 0.8530 | | No log | 32.0 | 288 | 0.6066 | 0.3429 | 0.5455 | 0.4211 | 0.8530 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
RayS2022/dqn-SpaceInvadersNoFrameskip-v4
RayS2022
2022-08-04T03:16:30Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-04T03:16:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 138.50 +/- 87.49 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RayS2022 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RayS2022 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
yashwantk/distilbert-base-cased-distilled-squad-finetuned-squad
yashwantk
2022-08-04T02:42:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2_yash", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T10:29:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2_yash model-index: - name: distilbert-base-cased-distilled-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-distilled-squad-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad_v2_yash dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 198 | 0.7576 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
canIjoin/datafun
canIjoin
2022-08-04T02:29:03Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "zh", "arxiv:1810.04805", "arxiv:1907.11692", "arxiv:2001.04351", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T13:10:26Z
--- language: zh widget: - text: "江苏警方通报特斯拉冲进店铺" --- # Chinese RoBERTa-Base Model for NER ## Model description The model is used for named entity recognition. You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese). ## How to use You can use this model directly with a pipeline for token classification : ```python >>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline >>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> ner = pipeline('ner', model=model, tokenizer=tokenizer) >>> ner("江苏警方通报特斯拉冲进店铺") [ {'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1}, {'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2}, {'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7}, {'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8}, {'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9} ] ``` ## Training data [CLUENER2020](https://github.com/CLUEbenchmark/CLUENER2020) is used as training data. We only use the train set of the dataset. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/cluener2020/train.tsv \ --dev_path datasets/cluener2020/dev.tsv \ --label2id_path datasets/cluener2020/label2id.json \ --output_model_path models/cluener2020_ner_model.bin \ --learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{xu2020cluener2020, title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese}, author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei}, journal={arXiv preprint arXiv:2001.04351}, year={2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
jerryw/my_bert-base-cased
jerryw
2022-08-04T01:38:04Z
5
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T01:34:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my_bert-base-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my_bert-base-cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
khabiri/test_keras_model_elham
khabiri
2022-08-03T22:23:45Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-08-03T22:23:36Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
huggingtweets/elonmusk-srinithyananda-yeshuaissavior
huggingtweets
2022-08-03T22:10:12Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-03T21:57:09Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1552061223864127488/Y-7S0UTB_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1157286539036020737/5TQyrkEw_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Feather of the One & Elon Musk & KAILASA's SPH Nithyananda</div> <div style="text-align: center; font-size: 14px;">@elonmusk-srinithyananda-yeshuaissavior</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Feather of the One & Elon Musk & KAILASA's SPH Nithyananda. | Data | Feather of the One | Elon Musk | KAILASA's SPH Nithyananda | | --- | --- | --- | --- | | Tweets downloaded | 505 | 3200 | 3250 | | Retweets | 29 | 128 | 6 | | Short tweets | 175 | 982 | 523 | | Tweets kept | 301 | 2090 | 2721 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wthdqz7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-srinithyananda-yeshuaissavior's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18cn8xoz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18cn8xoz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-srinithyananda-yeshuaissavior') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
RayS2022/q-Taxi-v3
RayS2022
2022-08-03T20:58:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T20:58:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RayS2022/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
andrewzhang505/sample-factory-2-doom-battle
andrewzhang505
2022-08-03T20:49:22Z
7
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T16:53:16Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 56.20 +/- 6.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_battle type: doom_battle --- A(n) **APPO** model trained on the **doom_battle** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
RayS2022/q-FrozenLake-v1-4x4-noSlippery
RayS2022
2022-08-03T20:47:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T20:47:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="RayS2022/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
andrewzhang505/sample-factory-2-doom-battle2
andrewzhang505
2022-08-03T20:42:10Z
13
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T16:33:35Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 32.93 +/- 5.44 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_battle2 type: doom_battle2 --- A(n) **APPO** model trained on the **doom_battle2** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
yasnunsal/distilbert-base-uncased-finetuned-emotion
yasnunsal
2022-08-03T18:32:09Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T15:08:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BenWord/autotrain-APMv2Multiclass-1216046004
BenWord
2022-08-03T18:06:06Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:BenWord/autotrain-data-APMv2Multiclass", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:03:06Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - BenWord/autotrain-data-APMv2Multiclass co2_eq_emissions: emissions: 2.4364900803769225 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1216046004 - CO2 Emissions (in grams): 2.4365 ## Validation Metrics - Loss: 0.094 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/BenWord/autotrain-APMv2Multiclass-1216046004 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("BenWord/autotrain-APMv2Multiclass-1216046004", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("BenWord/autotrain-APMv2Multiclass-1216046004", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
NitishKarra/layoutlmv3-finetuned-wildreceipt
NitishKarra
2022-08-03T17:44:41Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wildreceipt", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T16:06:42Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wildreceipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wildreceipt type: wildreceipt config: WildReceipt split: train args: WildReceipt metrics: - name: Precision type: precision value: 0.8693453601202679 - name: Recall type: recall value: 0.8753268198706481 - name: F1 type: f1 value: 0.872325836533187 - name: Accuracy type: accuracy value: 0.9240429965997587 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3154 - Precision: 0.8693 - Recall: 0.8753 - F1: 0.8723 - Accuracy: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.3618 | 0.6375 | 0.3049 | 0.4125 | 0.6708 | | No log | 0.63 | 200 | 0.9129 | 0.6662 | 0.4897 | 0.5645 | 0.7631 | | No log | 0.95 | 300 | 0.6800 | 0.7273 | 0.6375 | 0.6795 | 0.8274 | | No log | 1.26 | 400 | 0.5733 | 0.7579 | 0.6926 | 0.7238 | 0.8501 | | 1.0638 | 1.58 | 500 | 0.5015 | 0.7854 | 0.7383 | 0.7611 | 0.8667 | | 1.0638 | 1.89 | 600 | 0.4501 | 0.7916 | 0.7680 | 0.7796 | 0.8770 | | 1.0638 | 2.21 | 700 | 0.4145 | 0.8177 | 0.8053 | 0.8114 | 0.8917 | | 1.0638 | 2.52 | 800 | 0.3835 | 0.8214 | 0.8210 | 0.8212 | 0.8961 | | 1.0638 | 2.84 | 900 | 0.3666 | 0.8251 | 0.8338 | 0.8294 | 0.9009 | | 0.423 | 3.15 | 1000 | 0.3524 | 0.8485 | 0.8217 | 0.8349 | 0.9026 | | 0.423 | 3.47 | 1100 | 0.3451 | 0.8430 | 0.8327 | 0.8378 | 0.9060 | | 0.423 | 3.79 | 1200 | 0.3348 | 0.8347 | 0.8504 | 0.8425 | 0.9092 | | 0.423 | 4.1 | 1300 | 0.3331 | 0.8368 | 0.8448 | 0.8408 | 0.9079 | | 0.423 | 4.42 | 1400 | 0.3163 | 0.8503 | 0.8519 | 0.8511 | 0.9138 | | 0.2822 | 4.73 | 1500 | 0.3168 | 0.8531 | 0.8504 | 0.8518 | 0.9133 | | 0.2822 | 5.05 | 1600 | 0.3013 | 0.8629 | 0.8577 | 0.8603 | 0.9183 | | 0.2822 | 5.36 | 1700 | 0.3146 | 0.8619 | 0.8528 | 0.8573 | 0.9160 | | 0.2822 | 5.68 | 1800 | 0.3121 | 0.8474 | 0.8638 | 0.8555 | 0.9159 | | 0.2822 | 5.99 | 1900 | 0.3054 | 0.8537 | 0.8667 | 0.8601 | 0.9166 | | 0.2176 | 6.31 | 2000 | 0.3127 | 0.8556 | 0.8592 | 0.8574 | 0.9167 | | 0.2176 | 6.62 | 2100 | 0.3072 | 0.8568 | 0.8667 | 0.8617 | 0.9194 | | 0.2176 | 6.94 | 2200 | 0.2989 | 0.8617 | 0.8660 | 0.8638 | 0.9209 | | 0.2176 | 7.26 | 2300 | 0.2997 | 0.8616 | 0.8682 | 0.8649 | 0.9199 | | 0.2176 | 7.57 | 2400 | 0.3100 | 0.8538 | 0.8689 | 0.8613 | 0.9191 | | 0.1777 | 7.89 | 2500 | 0.3022 | 0.8649 | 0.8695 | 0.8672 | 0.9228 | | 0.1777 | 8.2 | 2600 | 0.2990 | 0.8631 | 0.8740 | 0.8685 | 0.9224 | | 0.1777 | 8.52 | 2700 | 0.3072 | 0.8669 | 0.8697 | 0.8683 | 0.9228 | | 0.1777 | 8.83 | 2800 | 0.3038 | 0.8689 | 0.8720 | 0.8705 | 0.9238 | | 0.1777 | 9.15 | 2900 | 0.3138 | 0.8726 | 0.8673 | 0.8700 | 0.9216 | | 0.1434 | 9.46 | 3000 | 0.3150 | 0.8610 | 0.8740 | 0.8674 | 0.9221 | | 0.1434 | 9.78 | 3100 | 0.3055 | 0.8674 | 0.8742 | 0.8708 | 0.9239 | | 0.1434 | 10.09 | 3200 | 0.3182 | 0.8618 | 0.8724 | 0.8671 | 0.9215 | | 0.1434 | 10.41 | 3300 | 0.3175 | 0.8633 | 0.8727 | 0.8680 | 0.9223 | | 0.1434 | 10.73 | 3400 | 0.3146 | 0.8685 | 0.8717 | 0.8701 | 0.9234 | | 0.1282 | 11.04 | 3500 | 0.3136 | 0.8671 | 0.8757 | 0.8714 | 0.9233 | | 0.1282 | 11.36 | 3600 | 0.3186 | 0.8679 | 0.8734 | 0.8706 | 0.9225 | | 0.1282 | 11.67 | 3700 | 0.3147 | 0.8701 | 0.8745 | 0.8723 | 0.9238 | | 0.1282 | 11.99 | 3800 | 0.3159 | 0.8705 | 0.8759 | 0.8732 | 0.9244 | | 0.1282 | 12.3 | 3900 | 0.3147 | 0.8699 | 0.8748 | 0.8723 | 0.9246 | | 0.1121 | 12.62 | 4000 | 0.3154 | 0.8693 | 0.8753 | 0.8723 | 0.9240 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MayaGalvez/bert-base-multilingual-cased-finetuned-nli
MayaGalvez
2022-08-03T16:48:33Z
18
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:xnli", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:58:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xnli metrics: - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: xnli type: xnli config: en split: train args: en metrics: - name: Accuracy type: accuracy value: 0.8156626506024096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-nli This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the xnli dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Accuracy: 0.8157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9299 | 0.02 | 200 | 0.8468 | 0.6277 | | 0.7967 | 0.03 | 400 | 0.7425 | 0.6855 | | 0.7497 | 0.05 | 600 | 0.7116 | 0.6924 | | 0.7083 | 0.07 | 800 | 0.6868 | 0.7153 | | 0.6882 | 0.08 | 1000 | 0.6638 | 0.7289 | | 0.6944 | 0.1 | 1200 | 0.6476 | 0.7361 | | 0.6682 | 0.11 | 1400 | 0.6364 | 0.7458 | | 0.6635 | 0.13 | 1600 | 0.6592 | 0.7337 | | 0.6423 | 0.15 | 1800 | 0.6120 | 0.7510 | | 0.6196 | 0.16 | 2000 | 0.5990 | 0.7582 | | 0.6381 | 0.18 | 2200 | 0.6026 | 0.7538 | | 0.6276 | 0.2 | 2400 | 0.6054 | 0.7598 | | 0.6248 | 0.21 | 2600 | 0.6368 | 0.7526 | | 0.6331 | 0.23 | 2800 | 0.5959 | 0.7655 | | 0.6142 | 0.24 | 3000 | 0.6117 | 0.7554 | | 0.6124 | 0.26 | 3200 | 0.6221 | 0.7570 | | 0.6127 | 0.28 | 3400 | 0.5748 | 0.7695 | | 0.602 | 0.29 | 3600 | 0.5735 | 0.7598 | | 0.5923 | 0.31 | 3800 | 0.5609 | 0.7723 | | 0.5827 | 0.33 | 4000 | 0.5635 | 0.7743 | | 0.5732 | 0.34 | 4200 | 0.5547 | 0.7771 | | 0.5757 | 0.36 | 4400 | 0.5629 | 0.7739 | | 0.5736 | 0.37 | 4600 | 0.5680 | 0.7659 | | 0.5642 | 0.39 | 4800 | 0.5437 | 0.7871 | | 0.5763 | 0.41 | 5000 | 0.5589 | 0.7807 | | 0.5713 | 0.42 | 5200 | 0.5355 | 0.7867 | | 0.5644 | 0.44 | 5400 | 0.5346 | 0.7888 | | 0.5727 | 0.46 | 5600 | 0.5519 | 0.7815 | | 0.5539 | 0.47 | 5800 | 0.5219 | 0.7900 | | 0.5516 | 0.49 | 6000 | 0.5560 | 0.7795 | | 0.5539 | 0.51 | 6200 | 0.5544 | 0.7847 | | 0.5693 | 0.52 | 6400 | 0.5322 | 0.7932 | | 0.5632 | 0.54 | 6600 | 0.5404 | 0.7936 | | 0.565 | 0.55 | 6800 | 0.5382 | 0.7880 | | 0.5555 | 0.57 | 7000 | 0.5364 | 0.7920 | | 0.5329 | 0.59 | 7200 | 0.5177 | 0.7964 | | 0.54 | 0.6 | 7400 | 0.5286 | 0.7916 | | 0.554 | 0.62 | 7600 | 0.5401 | 0.7835 | | 0.5447 | 0.64 | 7800 | 0.5261 | 0.7876 | | 0.5438 | 0.65 | 8000 | 0.5032 | 0.8020 | | 0.5505 | 0.67 | 8200 | 0.5220 | 0.7924 | | 0.5364 | 0.68 | 8400 | 0.5398 | 0.7876 | | 0.5317 | 0.7 | 8600 | 0.5310 | 0.7944 | | 0.5361 | 0.72 | 8800 | 0.5297 | 0.7936 | | 0.5204 | 0.73 | 9000 | 0.5270 | 0.7940 | | 0.5189 | 0.75 | 9200 | 0.5193 | 0.7964 | | 0.5348 | 0.77 | 9400 | 0.5270 | 0.7867 | | 0.5363 | 0.78 | 9600 | 0.5194 | 0.7924 | | 0.5184 | 0.8 | 9800 | 0.5298 | 0.7888 | | 0.5072 | 0.81 | 10000 | 0.4999 | 0.7992 | | 0.5229 | 0.83 | 10200 | 0.4922 | 0.8108 | | 0.5201 | 0.85 | 10400 | 0.5019 | 0.7920 | | 0.5304 | 0.86 | 10600 | 0.4959 | 0.7992 | | 0.5061 | 0.88 | 10800 | 0.5047 | 0.7980 | | 0.5291 | 0.9 | 11000 | 0.4974 | 0.8068 | | 0.5099 | 0.91 | 11200 | 0.4988 | 0.8036 | | 0.5271 | 0.93 | 11400 | 0.4899 | 0.8028 | | 0.5211 | 0.95 | 11600 | 0.4866 | 0.8092 | | 0.4977 | 0.96 | 11800 | 0.5059 | 0.7960 | | 0.5155 | 0.98 | 12000 | 0.4821 | 0.8084 | | 0.5061 | 0.99 | 12200 | 0.4763 | 0.8116 | | 0.4607 | 1.01 | 12400 | 0.5245 | 0.8020 | | 0.4435 | 1.03 | 12600 | 0.5021 | 0.8032 | | 0.4289 | 1.04 | 12800 | 0.5219 | 0.8060 | | 0.4227 | 1.06 | 13000 | 0.5119 | 0.8076 | | 0.4349 | 1.08 | 13200 | 0.4957 | 0.8104 | | 0.4331 | 1.09 | 13400 | 0.4914 | 0.8129 | | 0.4269 | 1.11 | 13600 | 0.4785 | 0.8145 | | 0.4185 | 1.12 | 13800 | 0.4879 | 0.8161 | | 0.4244 | 1.14 | 14000 | 0.4834 | 0.8149 | | 0.4016 | 1.16 | 14200 | 0.5084 | 0.8056 | | 0.4106 | 1.17 | 14400 | 0.4993 | 0.8052 | | 0.4345 | 1.19 | 14600 | 0.5029 | 0.8124 | | 0.4162 | 1.21 | 14800 | 0.4841 | 0.8120 | | 0.4239 | 1.22 | 15000 | 0.4756 | 0.8189 | | 0.4215 | 1.24 | 15200 | 0.4957 | 0.8088 | | 0.4157 | 1.25 | 15400 | 0.4845 | 0.8112 | | 0.3982 | 1.27 | 15600 | 0.5064 | 0.8048 | | 0.4056 | 1.29 | 15800 | 0.4827 | 0.8241 | | 0.4105 | 1.3 | 16000 | 0.4936 | 0.8088 | | 0.4221 | 1.32 | 16200 | 0.4800 | 0.8129 | | 0.4029 | 1.34 | 16400 | 0.4790 | 0.8181 | | 0.4346 | 1.35 | 16600 | 0.4802 | 0.8137 | | 0.4163 | 1.37 | 16800 | 0.4838 | 0.8213 | | 0.4106 | 1.39 | 17000 | 0.4905 | 0.8209 | | 0.4071 | 1.4 | 17200 | 0.4889 | 0.8153 | | 0.4077 | 1.42 | 17400 | 0.4801 | 0.8165 | | 0.4074 | 1.43 | 17600 | 0.4765 | 0.8217 | | 0.4095 | 1.45 | 17800 | 0.4942 | 0.8096 | | 0.4117 | 1.47 | 18000 | 0.4668 | 0.8225 | | 0.3991 | 1.48 | 18200 | 0.4814 | 0.8161 | | 0.4114 | 1.5 | 18400 | 0.4757 | 0.8193 | | 0.4061 | 1.52 | 18600 | 0.4702 | 0.8209 | | 0.4104 | 1.53 | 18800 | 0.4814 | 0.8149 | | 0.3997 | 1.55 | 19000 | 0.4833 | 0.8141 | | 0.3992 | 1.56 | 19200 | 0.4847 | 0.8169 | | 0.4021 | 1.58 | 19400 | 0.4893 | 0.8189 | | 0.4284 | 1.6 | 19600 | 0.4806 | 0.8173 | | 0.3915 | 1.61 | 19800 | 0.4952 | 0.8092 | | 0.4122 | 1.63 | 20000 | 0.4917 | 0.8112 | | 0.4164 | 1.65 | 20200 | 0.4769 | 0.8157 | | 0.4063 | 1.66 | 20400 | 0.4723 | 0.8141 | | 0.4087 | 1.68 | 20600 | 0.4701 | 0.8157 | | 0.4159 | 1.69 | 20800 | 0.4826 | 0.8141 | | 0.4 | 1.71 | 21000 | 0.4760 | 0.8133 | | 0.4024 | 1.73 | 21200 | 0.4755 | 0.8161 | | 0.4201 | 1.74 | 21400 | 0.4728 | 0.8173 | | 0.4066 | 1.76 | 21600 | 0.4690 | 0.8157 | | 0.3941 | 1.78 | 21800 | 0.4687 | 0.8181 | | 0.3987 | 1.79 | 22000 | 0.4735 | 0.8149 | | 0.4074 | 1.81 | 22200 | 0.4715 | 0.8137 | | 0.4083 | 1.83 | 22400 | 0.4660 | 0.8181 | | 0.4107 | 1.84 | 22600 | 0.4699 | 0.8161 | | 0.3924 | 1.86 | 22800 | 0.4732 | 0.8153 | | 0.4205 | 1.87 | 23000 | 0.4686 | 0.8177 | | 0.3962 | 1.89 | 23200 | 0.4688 | 0.8177 | | 0.3888 | 1.91 | 23400 | 0.4778 | 0.8124 | | 0.3978 | 1.92 | 23600 | 0.4713 | 0.8145 | | 0.3963 | 1.94 | 23800 | 0.4704 | 0.8145 | | 0.408 | 1.96 | 24000 | 0.4674 | 0.8165 | | 0.4014 | 1.97 | 24200 | 0.4679 | 0.8161 | | 0.3951 | 1.99 | 24400 | 0.4681 | 0.8157 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
sutd-ai/distilbert-base-uncased-finetuned-squad
sutd-ai
2022-08-03T16:43:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-03T12:59:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.5027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2343 | 1.0 | 8235 | 1.3121 | | 0.9657 | 2.0 | 16470 | 1.2259 | | 0.7693 | 3.0 | 24705 | 1.5027 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/wikigold_trained_no_DA
DOOGLAK
2022-08-03T14:33:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikigold_splits", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T14:25:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikigold_splits metrics: - precision - recall - f1 - accuracy model-index: - name: temp results: - task: name: Token Classification type: token-classification dataset: name: wikigold_splits type: wikigold_splits args: default metrics: - name: Precision type: precision value: 0.8517110266159695 - name: Recall type: recall value: 0.875 - name: F1 type: f1 value: 0.8631984585741811 - name: Accuracy type: accuracy value: 0.9607367910809501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikigold_splits dataset. It achieves the following results on the evaluation set: - Loss: 0.1322 - Precision: 0.8517 - Recall: 0.875 - F1: 0.8632 - Accuracy: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 167 | 0.1490 | 0.7583 | 0.7760 | 0.7671 | 0.9472 | | No log | 2.0 | 334 | 0.1337 | 0.8519 | 0.8464 | 0.8491 | 0.9572 | | 0.1569 | 3.0 | 501 | 0.1322 | 0.8517 | 0.875 | 0.8632 | 0.9607 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
ghomasHudson/booksum
ghomasHudson
2022-08-03T14:22:58Z
4
0
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-03T14:12:02Z
# GPTJ Booksum model Model for hierarchical booksum stuff.
elopezlopez/distilbert-base-uncased_fold_9_binary_v1
elopezlopez
2022-08-03T14:14:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:37:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_9_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_9_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6965 - F1: 0.8090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.4193 | 0.7989 | | 0.3993 | 2.0 | 582 | 0.4039 | 0.8026 | | 0.3993 | 3.0 | 873 | 0.5227 | 0.7995 | | 0.2044 | 4.0 | 1164 | 0.7264 | 0.8011 | | 0.2044 | 5.0 | 1455 | 0.8497 | 0.8007 | | 0.0882 | 6.0 | 1746 | 0.9543 | 0.8055 | | 0.0374 | 7.0 | 2037 | 1.1349 | 0.7997 | | 0.0374 | 8.0 | 2328 | 1.3175 | 0.8009 | | 0.0151 | 9.0 | 2619 | 1.3585 | 0.8030 | | 0.0151 | 10.0 | 2910 | 1.4202 | 0.8067 | | 0.0068 | 11.0 | 3201 | 1.4364 | 0.8108 | | 0.0068 | 12.0 | 3492 | 1.4443 | 0.8088 | | 0.0096 | 13.0 | 3783 | 1.5308 | 0.8075 | | 0.0031 | 14.0 | 4074 | 1.5061 | 0.8020 | | 0.0031 | 15.0 | 4365 | 1.5769 | 0.7980 | | 0.0048 | 16.0 | 4656 | 1.5962 | 0.8038 | | 0.0048 | 17.0 | 4947 | 1.5383 | 0.8085 | | 0.0067 | 18.0 | 5238 | 1.5456 | 0.8158 | | 0.0062 | 19.0 | 5529 | 1.6325 | 0.8044 | | 0.0062 | 20.0 | 5820 | 1.5430 | 0.8141 | | 0.0029 | 21.0 | 6111 | 1.6590 | 0.8117 | | 0.0029 | 22.0 | 6402 | 1.6650 | 0.8112 | | 0.0017 | 23.0 | 6693 | 1.7016 | 0.8053 | | 0.0017 | 24.0 | 6984 | 1.6998 | 0.8090 | | 0.0011 | 25.0 | 7275 | 1.6965 | 0.8090 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jjjjjjjjjj/ppo-LunarLander-v3
jjjjjjjjjj
2022-08-03T14:03:20Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T14:03:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -120.73 +/- 30.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
elopezlopez/distilbert-base-uncased_fold_8_binary_v1
elopezlopez
2022-08-03T13:59:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:22:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_8_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_8_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 - F1: 0.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4038 | 0.7981 | | 0.409 | 2.0 | 580 | 0.4023 | 0.8176 | | 0.409 | 3.0 | 870 | 0.5245 | 0.8169 | | 0.1938 | 4.0 | 1160 | 0.6242 | 0.8298 | | 0.1938 | 5.0 | 1450 | 0.8432 | 0.8159 | | 0.0848 | 6.0 | 1740 | 1.0887 | 0.8015 | | 0.038 | 7.0 | 2030 | 1.0700 | 0.8167 | | 0.038 | 8.0 | 2320 | 1.0970 | 0.8241 | | 0.0159 | 9.0 | 2610 | 1.2474 | 0.8142 | | 0.0159 | 10.0 | 2900 | 1.3453 | 0.8184 | | 0.01 | 11.0 | 3190 | 1.4412 | 0.8147 | | 0.01 | 12.0 | 3480 | 1.4263 | 0.8181 | | 0.007 | 13.0 | 3770 | 1.3859 | 0.8258 | | 0.0092 | 14.0 | 4060 | 1.4633 | 0.8128 | | 0.0092 | 15.0 | 4350 | 1.4304 | 0.8206 | | 0.0096 | 16.0 | 4640 | 1.5081 | 0.8149 | | 0.0096 | 17.0 | 4930 | 1.5239 | 0.8189 | | 0.0047 | 18.0 | 5220 | 1.5268 | 0.8151 | | 0.0053 | 19.0 | 5510 | 1.5445 | 0.8173 | | 0.0053 | 20.0 | 5800 | 1.6051 | 0.8180 | | 0.0014 | 21.0 | 6090 | 1.5981 | 0.8211 | | 0.0014 | 22.0 | 6380 | 1.5957 | 0.8225 | | 0.001 | 23.0 | 6670 | 1.5838 | 0.8189 | | 0.001 | 24.0 | 6960 | 1.6301 | 0.8178 | | 0.0018 | 25.0 | 7250 | 1.6283 | 0.8178 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jjjjjjjjjj/ppo-LunarLander-v2
jjjjjjjjjj
2022-08-03T13:18:36Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T13:18:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -544.81 +/- 132.76 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dminiotas05/distilbert-base-uncased-finetuned-ft1500_unnorm
dminiotas05
2022-08-03T12:56:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T12:24:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_unnorm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_unnorm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0557 - Mse: 205571.2188 - Mae: 74.8054 - R2: 0.0463 - Accuracy: 0.0090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:------:|:--------:| | 1.2054 | 1.0 | 3122 | 2.0557 | 205571.2188 | 74.8054 | 0.0463 | 0.0090 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_11_binary_v1
elopezlopez
2022-08-03T12:19:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T12:05:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_11_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_11_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8389 - F1: 0.8057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4534 | 0.8011 | | 0.4027 | 2.0 | 576 | 0.4299 | 0.8121 | | 0.4027 | 3.0 | 864 | 0.4840 | 0.8142 | | 0.1947 | 4.0 | 1152 | 0.7501 | 0.7992 | | 0.1947 | 5.0 | 1440 | 1.0307 | 0.7866 | | 0.0771 | 6.0 | 1728 | 1.1292 | 0.8034 | | 0.0253 | 7.0 | 2016 | 1.2620 | 0.8033 | | 0.0253 | 8.0 | 2304 | 1.4065 | 0.7954 | | 0.0137 | 9.0 | 2592 | 1.4922 | 0.7887 | | 0.0137 | 10.0 | 2880 | 1.4922 | 0.8050 | | 0.0046 | 11.0 | 3168 | 1.4883 | 0.8097 | | 0.0046 | 12.0 | 3456 | 1.5542 | 0.8133 | | 0.0066 | 13.0 | 3744 | 1.5180 | 0.8000 | | 0.0094 | 14.0 | 4032 | 1.6762 | 0.7919 | | 0.0094 | 15.0 | 4320 | 1.5808 | 0.8005 | | 0.0047 | 16.0 | 4608 | 1.7025 | 0.8012 | | 0.0047 | 17.0 | 4896 | 1.6494 | 0.7986 | | 0.0039 | 18.0 | 5184 | 1.7218 | 0.8010 | | 0.0039 | 19.0 | 5472 | 1.8293 | 0.7994 | | 0.0005 | 20.0 | 5760 | 1.8142 | 0.7980 | | 0.0033 | 21.0 | 6048 | 1.8350 | 0.8037 | | 0.0033 | 22.0 | 6336 | 1.8361 | 0.8042 | | 0.0023 | 23.0 | 6624 | 1.8715 | 0.7996 | | 0.0023 | 24.0 | 6912 | 1.8411 | 0.8057 | | 0.0019 | 25.0 | 7200 | 1.8389 | 0.8057 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
wenkai-li/distilroberta-base-wikitextepoch_50
wenkai-li
2022-08-03T12:16:08Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T09:57:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-wikitextepoch_50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wikitextepoch_50 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.9729 | 1.0 | 2145 | 1.7725 | | 1.9158 | 2.0 | 4290 | 1.7521 | | 1.8479 | 3.0 | 6435 | 1.7376 | | 1.8081 | 4.0 | 8580 | 1.7272 | | 1.7966 | 5.0 | 10725 | 1.7018 | | 1.7284 | 6.0 | 12870 | 1.7010 | | 1.7198 | 7.0 | 15015 | 1.6868 | | 1.6985 | 8.0 | 17160 | 1.6879 | | 1.6712 | 9.0 | 19305 | 1.6930 | | 1.6489 | 10.0 | 21450 | 1.6594 | | 1.6643 | 11.0 | 23595 | 1.6856 | | 1.6215 | 12.0 | 25740 | 1.6816 | | 1.6125 | 13.0 | 27885 | 1.6714 | | 1.5936 | 14.0 | 30030 | 1.6760 | | 1.5745 | 15.0 | 32175 | 1.6660 | | 1.572 | 16.0 | 34320 | 1.6690 | | 1.5614 | 17.0 | 36465 | 1.6807 | | 1.558 | 18.0 | 38610 | 1.6711 | | 1.5305 | 19.0 | 40755 | 1.6446 | | 1.5021 | 20.0 | 42900 | 1.6573 | | 1.4923 | 21.0 | 45045 | 1.6648 | | 1.5086 | 22.0 | 47190 | 1.6757 | | 1.4895 | 23.0 | 49335 | 1.6525 | | 1.4918 | 24.0 | 51480 | 1.6577 | | 1.4642 | 25.0 | 53625 | 1.6633 | | 1.4604 | 26.0 | 55770 | 1.6462 | | 1.4644 | 27.0 | 57915 | 1.6509 | | 1.4633 | 28.0 | 60060 | 1.6417 | | 1.4188 | 29.0 | 62205 | 1.6519 | | 1.4066 | 30.0 | 64350 | 1.6363 | | 1.409 | 31.0 | 66495 | 1.6419 | | 1.4029 | 32.0 | 68640 | 1.6510 | | 1.4013 | 33.0 | 70785 | 1.6522 | | 1.3939 | 34.0 | 72930 | 1.6498 | | 1.3648 | 35.0 | 75075 | 1.6423 | | 1.3682 | 36.0 | 77220 | 1.6504 | | 1.3603 | 37.0 | 79365 | 1.6511 | | 1.3621 | 38.0 | 81510 | 1.6533 | | 1.3783 | 39.0 | 83655 | 1.6426 | | 1.3707 | 40.0 | 85800 | 1.6542 | | 1.3628 | 41.0 | 87945 | 1.6671 | | 1.3359 | 42.0 | 90090 | 1.6394 | | 1.3433 | 43.0 | 92235 | 1.6409 | | 1.3525 | 44.0 | 94380 | 1.6366 | | 1.3312 | 45.0 | 96525 | 1.6408 | | 1.3389 | 46.0 | 98670 | 1.6225 | | 1.3323 | 47.0 | 100815 | 1.6309 | | 1.3294 | 48.0 | 102960 | 1.6151 | | 1.3356 | 49.0 | 105105 | 1.6374 | | 1.3285 | 50.0 | 107250 | 1.6360 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.5.0 - Datasets 2.4.0 - Tokenizers 0.12.1
SlavaC/bert-fine-tuned-cola
SlavaC
2022-08-03T10:47:51Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T10:12:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2861 - Validation Loss: 0.4212 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4878 | 0.4234 | 0 | | 0.2861 | 0.4212 | 1 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.7.0 - Datasets 2.4.0 - Tokenizers 0.12.1
MCG-NJU/videomae-base-short-finetuned-ssv2
MCG-NJU
2022-08-03T10:23:28Z
6
1
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "vision", "arxiv:2203.12602", "arxiv:2111.06377", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2022-08-02T16:17:19Z
--- license: "cc-by-nc-4.0" tags: - vision - video-classification --- # VideoMAE (base-sized model, fine-tuned on Something-Something-v2) VideoMAE model pre-trained for 800 epochs in a self-supervised way and fine-tuned in a supervised way on Something-Something-v2. It was introduced in the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Tong et al. and first released in [this repository](https://github.com/MCG-NJU/VideoMAE). Disclaimer: The team releasing VideoMAE did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description VideoMAE is an extension of [Masked Autoencoders (MAE)](https://arxiv.org/abs/2111.06377) to video. The architecture of the model is very similar to that of a standard Vision Transformer (ViT), with a decoder on top for predicting pixel values for masked patches. Videos are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds fixed sinus/cosinus position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of videos that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled videos for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire video. ## Intended uses & limitations You can use the raw model for video classification into one of the 400 possible Kinetics-400 labels. ### How to use Here is how to use this model to classify a video: ```python from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification import numpy as np import torch video = list(np.random.randn(16, 3, 224, 224)) feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-short-finetuned-ssv2") model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-short-finetuned-ssv2") inputs = feature_extractor(video, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/videomae.html#). ## Training data (to do, feel free to open a PR) ## Training procedure ### Preprocessing (to do, feel free to open a PR) ### Pretraining (to do, feel free to open a PR) ## Evaluation results This model obtains a top-1 accuracy of 69.6 and a top-5 accuracy of 92.0 on the test set of Something-Something-v2. ### BibTeX entry and citation info ```bibtex misc{https://doi.org/10.48550/arxiv.2203.12602, doi = {10.48550/ARXIV.2203.12602}, url = {https://arxiv.org/abs/2203.12602}, author = {Tong, Zhan and Song, Yibing and Wang, Jue and Wang, Limin}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
spacestar1705/Reinforce-PixelCopter-PLE-v0
spacestar1705
2022-08-03T09:30:13Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T12:45:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-PLE-v0 results: - metrics: - type: mean_reward value: 10.60 +/- 9.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
SyedArsal/roberta-urdu-small-finetuned-news
SyedArsal
2022-08-03T09:13:02Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "multiple-choice", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-29T08:04:18Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-urdu-small-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-urdu-small-finetuned-news This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2702 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5949 | 1.0 | 938 | 0.3626 | 0.9029 | | 0.1351 | 2.0 | 1876 | 0.2545 | 0.9389 | | 0.0281 | 3.0 | 2814 | 0.2702 | 0.9482 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
shashanksrinath/News_Sentiment_Analysis
shashanksrinath
2022-08-03T08:34:50Z
66
4
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-01T13:01:39Z
--- tags: - generated_from_trainer model-index: - name: News_Sentiment_Analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # News_Sentiment_Analysis This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ArneD/pegasus-samsum
ArneD
2022-08-03T07:54:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-03T06:20:40Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6902 | 0.54 | 500 | 1.4884 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.10.3
NimaBoscarino/July25Test
NimaBoscarino
2022-08-03T07:20:01Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-26T02:54:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # NimaBoscarino/July25Test This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('NimaBoscarino/July25Test') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/July25Test') model = AutoModel.from_pretrained('NimaBoscarino/July25Test') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=NimaBoscarino/July25Test) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
msms/deberta-v3-base-squad2-finetuned-squad
msms
2022-08-03T06:25:28Z
4
0
transformers
[ "transformers", "tf", "deberta-v2", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T11:28:16Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: msms/deberta-v3-base-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # msms/deberta-v3-base-squad2-finetuned-squad This model is a fine-tuned version of [deepset/deberta-v3-base-squad2](https://huggingface.co/deepset/deberta-v3-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7266 - Validation Loss: 4.5755 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1533, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3334 | 3.8035 | 0 | | 0.7266 | 4.5755 | 1 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
woojinSong/my_bean_VIT
woojinSong
2022-08-03T05:58:02Z
55
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-03T04:20:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: my_bean_VIT results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_bean_VIT This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0321 - Accuracy: 0.9925 ## Model description Bean datasets based Vision Transformer model. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2698 | 1.54 | 100 | 0.1350 | 0.9549 | | 0.0147 | 3.08 | 200 | 0.0321 | 0.9925 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
abyaugustinek/distilbert-base-uncased-finetuned
abyaugustinek
2022-08-03T05:09:00Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T04:41:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: abyaugustinek/distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # abyaugustinek/distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3693 - Validation Loss: 1.2106 - Train Precision: 0.0 - Train Recall: 0.0 - Train F1: 0.0 - Train Accuracy: 0.6565 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 30, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.0691 | 1.5942 | 0.0 | 0.0 | 0.0 | 0.6565 | 0 | | 1.4705 | 1.2376 | 0.0 | 0.0 | 0.0 | 0.6565 | 1 | | 1.3693 | 1.2106 | 0.0 | 0.0 | 0.0 | 0.6565 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.7.0 - Datasets 2.3.2 - Tokenizers 0.12.1
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v3
AykeeSalazar
2022-08-03T02:02:46Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-03T01:15:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vc-bantai-vit-withoutAMBI-adunest-v3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: Violation-Classification---Raw-10 metrics: - name: Accuracy type: accuracy value: 0.8218352310783658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8889 - Accuracy: 0.8218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.38 | 100 | 0.8208 | 0.7147 | | No log | 0.76 | 200 | 0.8861 | 0.7595 | | No log | 1.14 | 300 | 0.4306 | 0.7910 | | No log | 1.52 | 400 | 0.5222 | 0.8245 | | 0.3448 | 1.9 | 500 | 0.8621 | 0.7602 | | 0.3448 | 2.28 | 600 | 0.2902 | 0.8801 | | 0.3448 | 2.66 | 700 | 0.3687 | 0.8426 | | 0.3448 | 3.04 | 800 | 0.3585 | 0.8694 | | 0.3448 | 3.42 | 900 | 0.6546 | 0.7897 | | 0.2183 | 3.8 | 1000 | 0.3881 | 0.8272 | | 0.2183 | 4.18 | 1100 | 0.9650 | 0.7709 | | 0.2183 | 4.56 | 1200 | 0.6444 | 0.7917 | | 0.2183 | 4.94 | 1300 | 0.4685 | 0.8707 | | 0.2183 | 5.32 | 1400 | 0.4972 | 0.8506 | | 0.157 | 5.7 | 1500 | 0.4010 | 0.8513 | | 0.157 | 6.08 | 1600 | 0.4629 | 0.8419 | | 0.157 | 6.46 | 1700 | 0.4258 | 0.8714 | | 0.157 | 6.84 | 1800 | 0.4383 | 0.8573 | | 0.157 | 7.22 | 1900 | 0.5324 | 0.8493 | | 0.113 | 7.6 | 2000 | 0.3212 | 0.8942 | | 0.113 | 7.98 | 2100 | 0.8621 | 0.8326 | | 0.113 | 8.37 | 2200 | 0.6050 | 0.8131 | | 0.113 | 8.75 | 2300 | 0.7173 | 0.7991 | | 0.113 | 9.13 | 2400 | 0.5313 | 0.8125 | | 0.0921 | 9.51 | 2500 | 0.6584 | 0.8158 | | 0.0921 | 9.89 | 2600 | 0.8727 | 0.7930 | | 0.0921 | 10.27 | 2700 | 0.4222 | 0.8922 | | 0.0921 | 10.65 | 2800 | 0.5811 | 0.8265 | | 0.0921 | 11.03 | 2900 | 0.6175 | 0.8372 | | 0.0701 | 11.41 | 3000 | 0.3914 | 0.8835 | | 0.0701 | 11.79 | 3100 | 0.3364 | 0.8654 | | 0.0701 | 12.17 | 3200 | 0.6223 | 0.8359 | | 0.0701 | 12.55 | 3300 | 0.7830 | 0.8125 | | 0.0701 | 12.93 | 3400 | 0.4356 | 0.8942 | | 0.0552 | 13.31 | 3500 | 0.7553 | 0.8232 | | 0.0552 | 13.69 | 3600 | 0.9107 | 0.8292 | | 0.0552 | 14.07 | 3700 | 0.6108 | 0.8580 | | 0.0552 | 14.45 | 3800 | 0.5732 | 0.8567 | | 0.0552 | 14.83 | 3900 | 0.5087 | 0.8614 | | 0.0482 | 15.21 | 4000 | 0.8889 | 0.8218 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingartists/bob-dylan
huggingartists
2022-08-03T00:30:29Z
17
2
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bob-dylan", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/bob-dylan tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/22306423b6ad8777d1ed5b33ad8b0d0b.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob Dylan</div> <a href="https://genius.com/artists/bob-dylan"> <div style="text-align: center; font-size: 14px;">@bob-dylan</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bob Dylan. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bob-dylan). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bob-dylan") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3mj0lvel/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bob Dylan's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2rt8ywgd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2rt8ywgd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bob-dylan') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bob-dylan") model = AutoModelWithLMHead.from_pretrained("huggingartists/bob-dylan") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
elopezlopez/distilbert-base-uncased_fold_6_binary_v1
elopezlopez
2022-08-02T23:17:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T23:03:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_6_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_6_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7209 - F1: 0.8156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4115 | 0.8048 | | 0.3976 | 2.0 | 580 | 0.3980 | 0.8156 | | 0.3976 | 3.0 | 870 | 0.5953 | 0.8142 | | 0.1965 | 4.0 | 1160 | 0.7940 | 0.8057 | | 0.1965 | 5.0 | 1450 | 0.8098 | 0.8069 | | 0.0847 | 6.0 | 1740 | 1.0293 | 0.7913 | | 0.03 | 7.0 | 2030 | 1.1649 | 0.8073 | | 0.03 | 8.0 | 2320 | 1.2876 | 0.7973 | | 0.0166 | 9.0 | 2610 | 1.3260 | 0.8038 | | 0.0166 | 10.0 | 2900 | 1.3523 | 0.8084 | | 0.0062 | 11.0 | 3190 | 1.3814 | 0.8097 | | 0.0062 | 12.0 | 3480 | 1.4134 | 0.8165 | | 0.0113 | 13.0 | 3770 | 1.5374 | 0.8068 | | 0.006 | 14.0 | 4060 | 1.5808 | 0.8100 | | 0.006 | 15.0 | 4350 | 1.6551 | 0.7972 | | 0.0088 | 16.0 | 4640 | 1.5793 | 0.8116 | | 0.0088 | 17.0 | 4930 | 1.6134 | 0.8143 | | 0.0021 | 18.0 | 5220 | 1.6204 | 0.8119 | | 0.0031 | 19.0 | 5510 | 1.7006 | 0.8029 | | 0.0031 | 20.0 | 5800 | 1.6777 | 0.8145 | | 0.0019 | 21.0 | 6090 | 1.7202 | 0.8079 | | 0.0019 | 22.0 | 6380 | 1.7539 | 0.8053 | | 0.0008 | 23.0 | 6670 | 1.7408 | 0.8119 | | 0.0008 | 24.0 | 6960 | 1.7388 | 0.8176 | | 0.0014 | 25.0 | 7250 | 1.7209 | 0.8156 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_5_binary_v1
elopezlopez
2022-08-02T23:02:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T22:48:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_5_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_5_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6980 - F1: 0.8110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4412 | 0.7981 | | 0.396 | 2.0 | 576 | 0.4419 | 0.8078 | | 0.396 | 3.0 | 864 | 0.4955 | 0.8166 | | 0.2019 | 4.0 | 1152 | 0.6341 | 0.8075 | | 0.2019 | 5.0 | 1440 | 1.0351 | 0.7979 | | 0.0808 | 6.0 | 1728 | 1.1818 | 0.7844 | | 0.0315 | 7.0 | 2016 | 1.2530 | 0.8051 | | 0.0315 | 8.0 | 2304 | 1.3568 | 0.7937 | | 0.0143 | 9.0 | 2592 | 1.4009 | 0.8045 | | 0.0143 | 10.0 | 2880 | 1.5333 | 0.7941 | | 0.0066 | 11.0 | 3168 | 1.5242 | 0.7982 | | 0.0066 | 12.0 | 3456 | 1.5752 | 0.8050 | | 0.0091 | 13.0 | 3744 | 1.5199 | 0.8046 | | 0.0111 | 14.0 | 4032 | 1.5319 | 0.8117 | | 0.0111 | 15.0 | 4320 | 1.5333 | 0.8156 | | 0.0072 | 16.0 | 4608 | 1.5461 | 0.8192 | | 0.0072 | 17.0 | 4896 | 1.5288 | 0.8252 | | 0.0048 | 18.0 | 5184 | 1.5725 | 0.8078 | | 0.0048 | 19.0 | 5472 | 1.5896 | 0.8138 | | 0.0032 | 20.0 | 5760 | 1.6917 | 0.8071 | | 0.0028 | 21.0 | 6048 | 1.6608 | 0.8109 | | 0.0028 | 22.0 | 6336 | 1.7013 | 0.8122 | | 0.0029 | 23.0 | 6624 | 1.6769 | 0.8148 | | 0.0029 | 24.0 | 6912 | 1.6906 | 0.8100 | | 0.0006 | 25.0 | 7200 | 1.6980 | 0.8110 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_4_binary_v1
elopezlopez
2022-08-02T22:47:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T22:34:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_4_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_4_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5144 - F1: 0.8245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.3756 | 0.8175 | | 0.3977 | 2.0 | 578 | 0.3672 | 0.8336 | | 0.3977 | 3.0 | 867 | 0.4997 | 0.8276 | | 0.1972 | 4.0 | 1156 | 0.6597 | 0.8244 | | 0.1972 | 5.0 | 1445 | 0.8501 | 0.8195 | | 0.0824 | 6.0 | 1734 | 1.0074 | 0.8097 | | 0.037 | 7.0 | 2023 | 1.1122 | 0.8131 | | 0.037 | 8.0 | 2312 | 1.0963 | 0.8189 | | 0.0182 | 9.0 | 2601 | 1.2511 | 0.8125 | | 0.0182 | 10.0 | 2890 | 1.2255 | 0.8141 | | 0.0121 | 11.0 | 3179 | 1.3120 | 0.8187 | | 0.0121 | 12.0 | 3468 | 1.4182 | 0.8165 | | 0.0079 | 13.0 | 3757 | 1.4142 | 0.8218 | | 0.0081 | 14.0 | 4046 | 1.4765 | 0.8150 | | 0.0081 | 15.0 | 4335 | 1.3510 | 0.8187 | | 0.0109 | 16.0 | 4624 | 1.3455 | 0.8255 | | 0.0109 | 17.0 | 4913 | 1.4157 | 0.8234 | | 0.0022 | 18.0 | 5202 | 1.4651 | 0.8197 | | 0.0022 | 19.0 | 5491 | 1.4388 | 0.8267 | | 0.0017 | 20.0 | 5780 | 1.4552 | 0.8304 | | 0.0005 | 21.0 | 6069 | 1.5357 | 0.8248 | | 0.0005 | 22.0 | 6358 | 1.4924 | 0.8241 | | 0.0009 | 23.0 | 6647 | 1.4865 | 0.8248 | | 0.0009 | 24.0 | 6936 | 1.4697 | 0.8275 | | 0.0013 | 25.0 | 7225 | 1.5144 | 0.8245 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_2_binary_v1
elopezlopez
2022-08-02T22:17:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T22:03:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_2_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_2_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8833 - F1: 0.7841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4060 | 0.8070 | | 0.3981 | 2.0 | 580 | 0.4534 | 0.8072 | | 0.3981 | 3.0 | 870 | 0.5460 | 0.7961 | | 0.1985 | 4.0 | 1160 | 0.8684 | 0.7818 | | 0.1985 | 5.0 | 1450 | 0.9009 | 0.7873 | | 0.0844 | 6.0 | 1740 | 1.1529 | 0.7825 | | 0.0329 | 7.0 | 2030 | 1.3185 | 0.7850 | | 0.0329 | 8.0 | 2320 | 1.4110 | 0.7862 | | 0.0109 | 9.0 | 2610 | 1.4751 | 0.7784 | | 0.0109 | 10.0 | 2900 | 1.6276 | 0.7723 | | 0.0071 | 11.0 | 3190 | 1.6779 | 0.7861 | | 0.0071 | 12.0 | 3480 | 1.6258 | 0.7850 | | 0.0041 | 13.0 | 3770 | 1.6324 | 0.7903 | | 0.0109 | 14.0 | 4060 | 1.7563 | 0.7932 | | 0.0109 | 15.0 | 4350 | 1.6740 | 0.7906 | | 0.0079 | 16.0 | 4640 | 1.7468 | 0.7944 | | 0.0079 | 17.0 | 4930 | 1.7095 | 0.7879 | | 0.0067 | 18.0 | 5220 | 1.7293 | 0.7912 | | 0.0021 | 19.0 | 5510 | 1.7875 | 0.7848 | | 0.0021 | 20.0 | 5800 | 1.7462 | 0.7906 | | 0.0026 | 21.0 | 6090 | 1.8549 | 0.7815 | | 0.0026 | 22.0 | 6380 | 1.8314 | 0.7860 | | 0.0021 | 23.0 | 6670 | 1.8577 | 0.7839 | | 0.0021 | 24.0 | 6960 | 1.8548 | 0.7883 | | 0.0001 | 25.0 | 7250 | 1.8833 | 0.7841 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_1_binary_v1
elopezlopez
2022-08-02T22:02:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T21:49:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_1_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_1_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7296 - F1: 0.8038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4152 | 0.7903 | | 0.3956 | 2.0 | 576 | 0.4037 | 0.8083 | | 0.3956 | 3.0 | 864 | 0.5601 | 0.7996 | | 0.181 | 4.0 | 1152 | 0.8571 | 0.8023 | | 0.181 | 5.0 | 1440 | 0.9704 | 0.7822 | | 0.0935 | 6.0 | 1728 | 0.9509 | 0.8074 | | 0.0418 | 7.0 | 2016 | 1.1813 | 0.7736 | | 0.0418 | 8.0 | 2304 | 1.2619 | 0.7859 | | 0.0134 | 9.0 | 2592 | 1.4275 | 0.7863 | | 0.0134 | 10.0 | 2880 | 1.4035 | 0.8019 | | 0.0127 | 11.0 | 3168 | 1.4903 | 0.7897 | | 0.0127 | 12.0 | 3456 | 1.5853 | 0.7919 | | 0.0061 | 13.0 | 3744 | 1.6628 | 0.7957 | | 0.0058 | 14.0 | 4032 | 1.5736 | 0.8060 | | 0.0058 | 15.0 | 4320 | 1.6226 | 0.7929 | | 0.0065 | 16.0 | 4608 | 1.6395 | 0.8010 | | 0.0065 | 17.0 | 4896 | 1.6556 | 0.7993 | | 0.002 | 18.0 | 5184 | 1.7075 | 0.8030 | | 0.002 | 19.0 | 5472 | 1.6925 | 0.7964 | | 0.0058 | 20.0 | 5760 | 1.6511 | 0.8030 | | 0.0013 | 21.0 | 6048 | 1.6135 | 0.8037 | | 0.0013 | 22.0 | 6336 | 1.6739 | 0.8028 | | 0.0001 | 23.0 | 6624 | 1.7014 | 0.8109 | | 0.0001 | 24.0 | 6912 | 1.7015 | 0.8045 | | 0.002 | 25.0 | 7200 | 1.7296 | 0.8038 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sepidmnorozy/sentiment-5Epochs
sepidmnorozy
2022-08-02T21:57:08Z
5
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T17:58:38Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment-5Epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-5Epochs This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4947 - Accuracy: 0.8719 - F1: 0.8685 - Precision: 0.8919 - Recall: 0.8463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3566 | 1.0 | 7088 | 0.3987 | 0.8627 | 0.8505 | 0.9336 | 0.7810 | | 0.3468 | 2.0 | 14176 | 0.3861 | 0.8702 | 0.8638 | 0.9085 | 0.8232 | | 0.335 | 3.0 | 21264 | 0.4421 | 0.8759 | 0.8697 | 0.9154 | 0.8283 | | 0.3003 | 4.0 | 28352 | 0.4601 | 0.8754 | 0.8696 | 0.9119 | 0.8311 | | 0.2995 | 5.0 | 35440 | 0.4947 | 0.8719 | 0.8685 | 0.8919 | 0.8463 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6
sumba/covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess
sumba
2022-08-02T21:49:07Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T17:16:02Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5162 - Accuracy: 0.0862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4275469935864394e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8058 | 1.0 | 632 | 0.5946 | 0.1411 | | 0.5512 | 2.0 | 1264 | 0.5162 | 0.0862 | | 0.4049 | 3.0 | 1896 | 0.6612 | 0.0470 | | 0.1756 | 4.0 | 2528 | 0.7155 | 0.0426 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
sgraf202/finetuning-sentiment-model-3000-samples
sgraf202
2022-08-02T21:32:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T10:41:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7404 - Accuracy: 0.4688 - F1: 0.5526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
aujer/autotrain-not_interested_1-1213145894
aujer
2022-08-02T21:27:19Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:aujer/autotrain-data-not_interested_1", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T21:26:07Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - aujer/autotrain-data-not_interested_1 co2_eq_emissions: emissions: 1.5489539045493725 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1213145894 - CO2 Emissions (in grams): 1.5490 ## Validation Metrics - Loss: 0.904 - Accuracy: 0.735 - Macro F1: 0.566 - Micro F1: 0.735 - Weighted F1: 0.715 - Macro Precision: 0.566 - Micro Precision: 0.735 - Weighted Precision: 0.714 - Macro Recall: 0.583 - Micro Recall: 0.735 - Weighted Recall: 0.735 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/aujer/autotrain-not_interested_1-1213145894 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("aujer/autotrain-not_interested_1-1213145894", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("aujer/autotrain-not_interested_1-1213145894", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```