modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Vlasta/DNADebertaSentencepiece10k_continuation_continuation
Vlasta
2022-08-08T20:15:51Z
10
0
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T19:00:28Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaSentencepiece10k_continuation_continuation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaSentencepiece10k_continuation_continuation This model is a fine-tuned version of [Vlasta/DNADebertaSentencepiece10k_continuation](https://huggingface.co/Vlasta/DNADebertaSentencepiece10k_continuation) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 5.4806 | 0.36 | 5000 | 5.4385 | | 5.4848 | 0.72 | 10000 | 5.4333 | | 5.4803 | 1.08 | 15000 | 5.4312 | | 5.4759 | 1.45 | 20000 | 5.4223 | | 5.4703 | 1.81 | 25000 | 5.4199 | | 5.4626 | 2.17 | 30000 | 5.4147 | | 5.4596 | 2.53 | 35000 | 5.4094 | | 5.4534 | 2.89 | 40000 | 5.4014 | | 5.4466 | 3.25 | 45000 | 5.4017 | | 5.445 | 3.61 | 50000 | 5.3954 | | 5.4446 | 3.97 | 55000 | 5.3916 | | 5.4359 | 4.34 | 60000 | 5.3809 | | 5.4327 | 4.7 | 65000 | 5.3846 | | 5.4281 | 5.06 | 70000 | 5.3765 | | 5.4207 | 5.42 | 75000 | 5.3744 | | 5.4207 | 5.78 | 80000 | 5.3704 | | 5.4167 | 6.14 | 85000 | 5.3685 | | 5.41 | 6.5 | 90000 | 5.3641 | | 5.4117 | 6.86 | 95000 | 5.3582 | | 5.4075 | 7.23 | 100000 | 5.3568 | | 5.4017 | 7.59 | 105000 | 5.3547 | | 5.4006 | 7.95 | 110000 | 5.3494 | | 5.3969 | 8.31 | 115000 | 5.3475 | | 5.3935 | 8.67 | 120000 | 5.3453 | | 5.3926 | 9.03 | 125000 | 5.3422 | | 5.3895 | 9.39 | 130000 | 5.3351 | | 5.3813 | 9.75 | 135000 | 5.3326 | | 5.3841 | 10.12 | 140000 | 5.3340 | | 5.3787 | 10.48 | 145000 | 5.3301 | | 5.3781 | 10.84 | 150000 | 5.3280 | | 5.3769 | 11.2 | 155000 | 5.3258 | | 5.3733 | 11.56 | 160000 | 5.3198 | | 5.3683 | 11.92 | 165000 | 5.3180 | | 5.3682 | 12.28 | 170000 | 5.3181 | | 5.3673 | 12.64 | 175000 | 5.3167 | | 5.3623 | 13.01 | 180000 | 5.3116 | | 5.3602 | 13.37 | 185000 | 5.3109 | | 5.361 | 13.73 | 190000 | 5.3071 | | 5.3573 | 14.09 | 195000 | 5.3078 | | 5.3575 | 14.45 | 200000 | 5.3051 | | 5.3544 | 14.81 | 205000 | 5.3038 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
ScottMueller/Cats_v_Dogs.ONNX
ScottMueller
2022-08-08T20:10:32Z
0
0
null
[ "onnx", "license:mit", "region:us" ]
null
2022-08-08T19:54:50Z
--- license: mit --- A simple single label classification model, ResNet18, to predict whether the provided image is a cat or a dog. The model was created in Fast.ai and exported to ONNX using PyTorch's ONNX export capabilities. The source dataset is the OXFORD-IIIT PET. Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman and C. V. Jawahar We have created a 37 category pet dataset with roughly 200 images for each class. The images have a large variations in scale, pose and lighting. All images havean associated ground truth annotation of breed, head ROI, and pixel level trimap segmentation. The ONNX model can be used in other frameworks like Elixir's Axon. An example of converting the ONNX model into Axon can be found at: https://github.com/elixir-nx/axon/tree/main/notebooks/onnx_to_axon.livemd.
Vlasta/DNADebertaSentencepiece30k_continuation_continuation
Vlasta
2022-08-08T18:56:18Z
5
0
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T18:58:36Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaSentencepiece30k_continuation_continuation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaSentencepiece30k_continuation_continuation This model is a fine-tuned version of [Vlasta/DNADebertaSentencepiece30k_continuation](https://huggingface.co/Vlasta/DNADebertaSentencepiece30k_continuation) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 6.1786 | 0.41 | 5000 | 6.1475 | | 6.1856 | 0.81 | 10000 | 6.1490 | | 6.1769 | 1.22 | 15000 | 6.1370 | | 6.1714 | 1.62 | 20000 | 6.1330 | | 6.1633 | 2.03 | 25000 | 6.1221 | | 6.1548 | 2.44 | 30000 | 6.1180 | | 6.1495 | 2.84 | 35000 | 6.1141 | | 6.1453 | 3.25 | 40000 | 6.1026 | | 6.1362 | 3.66 | 45000 | 6.0984 | | 6.1325 | 4.06 | 50000 | 6.0961 | | 6.1227 | 4.47 | 55000 | 6.0874 | | 6.1215 | 4.87 | 60000 | 6.0806 | | 6.1149 | 5.28 | 65000 | 6.0779 | | 6.1099 | 5.69 | 70000 | 6.0701 | | 6.104 | 6.09 | 75000 | 6.0633 | | 6.0963 | 6.5 | 80000 | 6.0628 | | 6.095 | 6.91 | 85000 | 6.0572 | | 6.0858 | 7.31 | 90000 | 6.0525 | | 6.0895 | 7.72 | 95000 | 6.0430 | | 6.0804 | 8.12 | 100000 | 6.0437 | | 6.0767 | 8.53 | 105000 | 6.0371 | | 6.0748 | 8.94 | 110000 | 6.0312 | | 6.0702 | 9.34 | 115000 | 6.0293 | | 6.0668 | 9.75 | 120000 | 6.0242 | | 6.0615 | 10.16 | 125000 | 6.0213 | | 6.0568 | 10.56 | 130000 | 6.0183 | | 6.0552 | 10.97 | 135000 | 6.0125 | | 6.0496 | 11.37 | 140000 | 6.0087 | | 6.0493 | 11.78 | 145000 | 6.0084 | | 6.0466 | 12.19 | 150000 | 6.0060 | | 6.042 | 12.59 | 155000 | 6.0008 | | 6.0375 | 13.0 | 160000 | 5.9986 | | 6.0345 | 13.41 | 165000 | 5.9940 | | 6.0336 | 13.81 | 170000 | 5.9905 | | 6.0334 | 14.22 | 175000 | 5.9891 | | 6.0313 | 14.62 | 180000 | 5.9887 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
keljai/ppo-LunarLander-v2
keljai
2022-08-08T17:14:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T17:13:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 227.24 +/- 21.38 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sofiaoliveira/q-Taxi-v3
sofiaoliveira
2022-08-08T16:12:21Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T14:35:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sofiaoliveira/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
abdulmatinomotoso/multi_news_article_title_12000_2
abdulmatinomotoso
2022-08-08T15:54:55Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T12:42:58Z
--- tags: - generated_from_trainer model-index: - name: multi_news_article_title_12000_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi_news_article_title_12000_2 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3887 | 0.65 | 500 | 0.2781 | | 0.2484 | 1.31 | 1000 | 0.2000 | | 0.2314 | 1.96 | 1500 | 0.1917 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
lauer/distilbert-base-uncased-finetuned-emotion
lauer
2022-08-08T15:47:05Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-08T15:14:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.930580220497549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.9305 - F1: 0.9306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.825 | 1.0 | 250 | 0.2957 | 0.909 | 0.9069 | | 0.2399 | 2.0 | 500 | 0.2133 | 0.9305 | 0.9306 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Mozart-coder/DNA_bert_3-finetuned
Mozart-coder
2022-08-08T15:45:59Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-08T15:29:41Z
--- tags: - generated_from_trainer model-index: - name: DNA_bert_3-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNA_bert_3-finetuned This model is a fine-tuned version of [armheb/DNA_bert_3](https://huggingface.co/armheb/DNA_bert_3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8244 | 1.0 | 62 | 0.6044 | | 0.5987 | 2.0 | 124 | 0.5933 | | 0.5915 | 3.0 | 186 | 0.5856 | | 0.585 | 4.0 | 248 | 0.5844 | | 0.5817 | 5.0 | 310 | 0.5818 | | 0.5791 | 6.0 | 372 | 0.5809 | | 0.5801 | 7.0 | 434 | 0.5807 | | 0.5768 | 8.0 | 496 | 0.5796 | | 0.5741 | 9.0 | 558 | 0.5790 | | 0.574 | 10.0 | 620 | 0.5788 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MLRS/mBERTu
MLRS
2022-08-08T15:44:11Z
34
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "mt", "dataset:MLRS/korpus_malti", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-14T13:54:27Z
--- language: - mt datasets: - MLRS/korpus_malti model-index: - name: mBERTu results: - task: type: dependency-parsing name: Dependency Parsing dataset: type: universal_dependencies args: mt_mudt name: Maltese Universal Dependencies Treebank (MUDT) metrics: - type: uas value: 92.10 name: Unlabelled Attachment Score - type: las value: 87.87 name: Labelled Attachment Score - task: type: part-of-speech-tagging name: Part-of-Speech Tagging dataset: type: mlrs_pos name: MLRS POS dataset metrics: - type: accuracy value: 98.66 name: UPOS Accuracy args: upos - type: accuracy value: 98.58 name: XPOS Accuracy args: xpos - task: type: named-entity-recognition name: Named Entity Recognition dataset: type: wikiann name: WikiAnn (Maltese) args: mt metrics: - type: f1 args: span value: 86.60 name: Span-based F1 - task: type: sentiment-analysis name: Sentiment Analysis dataset: type: mt-sentiment-analysis name: Maltese Sentiment Analysis Dataset metrics: - type: f1 args: macro value: 76.79 name: Macro-averaged F1 license: cc-by-nc-sa-4.0 widget: - text: "Malta huwa pajjiż fl-[MASK]." --- # mBERTu A Maltese multilingual model pre-trained on the Korpus Malti v4.0 using multilingual BERT as the initial checkpoint. ## License This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. Permissions beyond the scope of this license may be available at [https://mlrs.research.um.edu.mt/](https://mlrs.research.um.edu.mt/). [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png ## Citation This work was first presented in [Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese](https://aclanthology.org/2022.deeplo-1.10/). Cite it as follows: ```bibtex @inproceedings{BERTu, title = "Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and {BERT} Models for {M}altese", author = "Micallef, Kurt and Gatt, Albert and Tanti, Marc and van der Plas, Lonneke and Borg, Claudia", booktitle = "Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing", month = jul, year = "2022", address = "Hybrid", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.deeplo-1.10", doi = "10.18653/v1/2022.deeplo-1.10", pages = "90--101", } ```
wenkai-li/finetuned-marktextepoch-n500
wenkai-li
2022-08-08T15:03:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-08T04:03:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuned-marktextepoch-n500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-marktextepoch-n500 This model is a fine-tuned version of [leokai/finetuned-marktextepoch-n200](https://huggingface.co/leokai/finetuned-marktextepoch-n200) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.4281 - eval_runtime: 11.4175 - eval_samples_per_second: 279.571 - eval_steps_per_second: 34.946 - epoch: 218.0 - step: 350108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
neskue/ppo-LunarLander-v2
neskue
2022-08-08T14:57:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T14:56:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 27.28 +/- 144.51 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sofiaoliveira/q-FrozenLake-v1-8x8-noSlippery
sofiaoliveira
2022-08-08T14:08:49Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T14:08:41Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sofiaoliveira/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
nvidia/segformer-b0-finetuned-cityscapes-1024-1024
nvidia
2022-08-08T13:43:30Z
5,316
7
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:cityscapes", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png example_title: Road --- # SegFormer (b0-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm500_aug1
dminiotas05
2022-08-08T13:27:41Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-08T11:37:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500_aug1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm500_aug1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9086 - Mse: 3.6357 - Mae: 1.0762 - R2: 0.2894 - Accuracy: 0.5170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 1.5856 | 1.0 | 5847 | 3.3101 | 4.1376 | 1.1447 | 0.1913 | 0.4965 | | 0.442 | 2.0 | 11694 | 2.7448 | 3.4311 | 1.0934 | 0.3294 | 0.4523 | | 0.2703 | 3.0 | 17541 | 2.9300 | 3.6625 | 1.0907 | 0.2841 | 0.4933 | | 0.1699 | 4.0 | 23388 | 2.7979 | 3.4973 | 1.0808 | 0.3164 | 0.4805 | | 0.1168 | 5.0 | 29235 | 2.9086 | 3.6357 | 1.0762 | 0.2894 | 0.5170 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Lvxue/distilled-mt5-small-0.5
Lvxue
2022-08-08T10:41:51Z
8
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T08:12:07Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-0.5 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 1.2575 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-0.5 This model is a distilled version of [Lvxue/finetuned-mt5-base](https://huggingface.co/Lvxue/finetuned-mt5-base) on [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.7455 - Bleu: 1.2575 - Gen Len: 94.3597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
mohammadhadiarabi/ddpm-butterflies-128
mohammadhadiarabi
2022-08-08T10:35:57Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-08T09:22:10Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mohammadhadiarabi/ddpm-butterflies-128/tensorboard?#scalars)
osanseviero/distilroberta-base-sentence-transformer
osanseviero
2022-08-08T09:33:52Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:embedding-data/QQP_triplets", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-08T09:33:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - embedding-data/QQP_triplets --- # osanseviero/distilroberta-base-sentence-transformer This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('osanseviero/distilroberta-base-sentence-transformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('osanseviero/distilroberta-base-sentence-transformer') model = AutoModel.from_pretrained('osanseviero/distilroberta-base-sentence-transformer') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=osanseviero/distilroberta-base-sentence-transformer) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 63 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 63, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Lvxue/distilled-mt5-small-0.9
Lvxue
2022-08-08T09:27:38Z
6
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T08:18:23Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-0.9 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 2.6938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-0.9 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.4137 - Bleu: 2.6938 - Gen Len: 69.7484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Mahmoud7/q-Taxi-v3
Mahmoud7
2022-08-08T09:21:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T09:21:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Mahmoud7/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
eliwill/distilgpt2-discursive-krishna
eliwill
2022-08-08T07:56:32Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-08T07:49:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: eliwill/distilgpt2-discursive-krishna results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eliwill/distilgpt2-discursive-krishna This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.2503 - Validation Loss: 3.1371 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2503 | 3.1371 | 0 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
202015004/Spoof_detection
202015004
2022-08-08T07:48:41Z
37
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-05T09:32:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Spoof_detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Spoof_detection This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7448 - Wer: 0.1090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 95.9046 | 0.66 | 500 | 992.2993 | 0.6180 | | 14.0322 | 1.33 | 1000 | 1.8873 | 0.1090 | | 1.8659 | 1.99 | 1500 | 1.7827 | 0.1090 | | 1.851 | 2.65 | 2000 | 1.8489 | 0.1090 | | 1.8218 | 3.32 | 2500 | 1.8943 | 0.1090 | | 1.8108 | 3.98 | 3000 | 1.9250 | 0.1090 | | 1.8228 | 4.64 | 3500 | 1.7555 | 0.1090 | | 1.832 | 5.31 | 4000 | 1.7837 | 0.1090 | | 1.8403 | 5.97 | 4500 | 1.6644 | 0.1090 | | 1.8292 | 6.63 | 5000 | 1.6906 | 0.1090 | | 1.8223 | 7.29 | 5500 | 1.6966 | 0.1090 | | 1.8007 | 7.96 | 6000 | 1.6951 | 0.1090 | | 1.7986 | 8.62 | 6500 | 1.7436 | 0.1090 | | 1.7933 | 9.28 | 7000 | 1.8169 | 0.1090 | | 1.7861 | 9.95 | 7500 | 1.7209 | 0.1090 | | 1.7843 | 10.61 | 8000 | 1.9379 | 0.1090 | | 1.7743 | 11.27 | 8500 | 1.9834 | 0.1090 | | 1.7721 | 11.94 | 9000 | 1.9279 | 0.1090 | | 1.7719 | 12.6 | 9500 | 1.8187 | 0.1090 | | 1.7616 | 13.26 | 10000 | 1.7804 | 0.1090 | | 1.7638 | 13.93 | 10500 | 1.7884 | 0.1090 | | 1.7651 | 14.59 | 11000 | 1.7476 | 0.1090 | | 1.7603 | 15.25 | 11500 | 1.7570 | 0.1090 | | 1.7543 | 15.92 | 12000 | 1.7356 | 0.1090 | | 1.7556 | 16.58 | 12500 | 1.7140 | 0.1090 | | 1.751 | 17.24 | 13000 | 1.7453 | 0.1090 | | 1.75 | 17.9 | 13500 | 1.7648 | 0.1090 | | 1.7492 | 18.57 | 14000 | 1.7338 | 0.1090 | | 1.7484 | 19.23 | 14500 | 1.7093 | 0.1090 | | 1.7461 | 19.89 | 15000 | 1.7393 | 0.1090 | | 1.7429 | 20.56 | 15500 | 1.7605 | 0.1090 | | 1.7446 | 21.22 | 16000 | 1.7782 | 0.1090 | | 1.7435 | 21.88 | 16500 | 1.6749 | 0.1090 | | 1.7392 | 22.55 | 17000 | 1.7468 | 0.1090 | | 1.741 | 23.21 | 17500 | 1.7406 | 0.1090 | | 1.7394 | 23.87 | 18000 | 1.7787 | 0.1090 | | 1.739 | 24.54 | 18500 | 1.7969 | 0.1090 | | 1.7341 | 25.2 | 19000 | 1.7490 | 0.1090 | | 1.7371 | 25.86 | 19500 | 1.7783 | 0.1090 | | 1.735 | 26.53 | 20000 | 1.7540 | 0.1090 | | 1.7353 | 27.19 | 20500 | 1.7735 | 0.1090 | | 1.7331 | 27.85 | 21000 | 1.7188 | 0.1090 | | 1.7308 | 28.51 | 21500 | 1.7349 | 0.1090 | | 1.7341 | 29.18 | 22000 | 1.7531 | 0.1090 | | 1.7305 | 29.84 | 22500 | 1.7448 | 0.1090 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.12.1
amartyobanerjee/mt5-small-finetuned-amazon-en-es
amartyobanerjee
2022-08-08T07:43:46Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-08T06:18:06Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0294 - Rouge1: 16.497 - Rouge2: 8.0618 - Rougel: 16.2979 - Rougelsum: 16.1465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.5928 | 1.0 | 1209 | 3.3005 | 14.7843 | 6.5518 | 14.2805 | 14.2951 | | 3.9024 | 2.0 | 2418 | 3.1399 | 16.8202 | 8.6739 | 16.1194 | 16.0844 | | 3.5806 | 3.0 | 3627 | 3.0869 | 18.1223 | 9.3051 | 17.7533 | 17.7254 | | 3.4201 | 4.0 | 4836 | 3.0590 | 17.654 | 9.0154 | 17.1853 | 17.1769 | | 3.3202 | 5.0 | 6045 | 3.0598 | 17.612 | 8.6707 | 17.4662 | 17.2963 | | 3.2436 | 6.0 | 7254 | 3.0409 | 16.7938 | 8.3054 | 16.6141 | 16.4853 | | 3.2079 | 7.0 | 8463 | 3.0332 | 16.7246 | 8.2362 | 16.5065 | 16.3611 | | 3.1801 | 8.0 | 9672 | 3.0294 | 16.497 | 8.0618 | 16.2979 | 16.1465 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
naveenkb/ppo-LunarLander-v2
naveenkb
2022-08-08T07:35:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T07:34:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 193.11 +/- 17.14 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wenkai-li/finetuned-marktextepoch-n200
wenkai-li
2022-08-08T03:37:00Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-07T17:29:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuned-marktextepoch-n200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-marktextepoch-n200 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.5742 | 1.0 | 1606 | 2.4071 | | 2.4441 | 2.0 | 3212 | 2.2715 | | 2.3699 | 3.0 | 4818 | 2.2896 | | 2.3074 | 4.0 | 6424 | 2.2295 | | 2.2667 | 5.0 | 8030 | 2.2147 | | 2.2376 | 6.0 | 9636 | 2.1886 | | 2.2161 | 7.0 | 11242 | 2.1816 | | 2.1611 | 8.0 | 12848 | 2.1690 | | 2.1418 | 9.0 | 14454 | 2.1541 | | 2.1198 | 10.0 | 16060 | 2.1355 | | 2.1033 | 11.0 | 17666 | 2.1132 | | 2.0738 | 12.0 | 19272 | 2.1441 | | 2.0581 | 13.0 | 20878 | 2.1068 | | 2.0555 | 14.0 | 22484 | 2.1035 | | 2.0375 | 15.0 | 24090 | 2.1000 | | 2.0071 | 16.0 | 25696 | 2.1084 | | 1.9942 | 17.0 | 27302 | 2.0711 | | 1.9554 | 18.0 | 28908 | 2.0978 | | 1.9469 | 19.0 | 30514 | 2.0705 | | 1.9414 | 20.0 | 32120 | 2.0597 | | 1.9331 | 21.0 | 33726 | 2.0782 | | 1.9132 | 22.0 | 35332 | 2.0622 | | 1.9003 | 23.0 | 36938 | 2.0426 | | 1.9019 | 24.0 | 38544 | 2.0562 | | 1.8733 | 25.0 | 40150 | 2.0419 | | 1.8556 | 26.0 | 41756 | 2.0572 | | 1.8399 | 27.0 | 43362 | 2.0453 | | 1.8332 | 28.0 | 44968 | 2.0517 | | 1.8296 | 29.0 | 46574 | 2.0580 | | 1.788 | 30.0 | 48180 | 2.0454 | | 1.7944 | 31.0 | 49786 | 2.0193 | | 1.7716 | 32.0 | 51392 | 2.0595 | | 1.7799 | 33.0 | 52998 | 2.0379 | | 1.7633 | 34.0 | 54604 | 2.0392 | | 1.7477 | 35.0 | 56210 | 2.0122 | | 1.7407 | 36.0 | 57816 | 2.0293 | | 1.7163 | 37.0 | 59422 | 2.0339 | | 1.72 | 38.0 | 61028 | 1.9987 | | 1.729 | 39.0 | 62634 | 2.0135 | | 1.709 | 40.0 | 64240 | 2.0455 | | 1.7019 | 41.0 | 65846 | 2.0206 | | 1.6958 | 42.0 | 67452 | 2.0408 | | 1.6789 | 43.0 | 69058 | 2.0470 | | 1.6907 | 44.0 | 70664 | 2.0280 | | 1.6531 | 45.0 | 72270 | 2.0514 | | 1.6563 | 46.0 | 73876 | 2.0428 | | 1.6364 | 47.0 | 75482 | 2.0305 | | 1.6534 | 48.0 | 77088 | 2.0200 | | 1.6312 | 49.0 | 78694 | 2.0444 | | 1.6092 | 50.0 | 80300 | 2.0154 | | 1.5998 | 51.0 | 81906 | 2.0249 | | 1.5808 | 52.0 | 83512 | 2.0235 | | 1.5945 | 53.0 | 85118 | 2.0286 | | 1.6004 | 54.0 | 86724 | 2.0288 | | 1.5802 | 55.0 | 88330 | 2.0346 | | 1.5665 | 56.0 | 89936 | 2.0120 | | 1.5723 | 57.0 | 91542 | 2.0257 | | 1.5553 | 58.0 | 93148 | 2.0146 | | 1.5445 | 59.0 | 94754 | 2.0333 | | 1.5669 | 60.0 | 96360 | 2.0325 | | 1.5318 | 61.0 | 97966 | 2.0250 | | 1.5117 | 62.0 | 99572 | 2.0343 | | 1.5248 | 63.0 | 101178 | 2.0183 | | 1.5149 | 64.0 | 102784 | 2.0422 | | 1.5087 | 65.0 | 104390 | 2.0236 | | 1.5087 | 66.0 | 105996 | 2.0275 | | 1.4938 | 67.0 | 107602 | 2.0384 | | 1.5008 | 68.0 | 109208 | 2.0167 | | 1.4871 | 69.0 | 110814 | 2.0456 | | 1.4931 | 70.0 | 112420 | 2.0083 | | 1.467 | 71.0 | 114026 | 2.0313 | | 1.4519 | 72.0 | 115632 | 2.0254 | | 1.448 | 73.0 | 117238 | 2.0289 | | 1.4475 | 74.0 | 118844 | 2.0051 | | 1.4522 | 75.0 | 120450 | 2.0378 | | 1.4508 | 76.0 | 122056 | 2.0612 | | 1.4428 | 77.0 | 123662 | 2.0479 | | 1.4496 | 78.0 | 125268 | 2.0082 | | 1.4305 | 79.0 | 126874 | 2.0376 | | 1.4072 | 80.0 | 128480 | 2.0294 | | 1.4148 | 81.0 | 130086 | 2.0565 | | 1.4078 | 82.0 | 131692 | 2.0309 | | 1.3931 | 83.0 | 133298 | 2.0371 | | 1.4038 | 84.0 | 134904 | 2.0318 | | 1.3893 | 85.0 | 136510 | 2.0413 | | 1.3862 | 86.0 | 138116 | 2.0503 | | 1.3782 | 87.0 | 139722 | 2.0182 | | 1.3757 | 88.0 | 141328 | 2.0253 | | 1.3879 | 89.0 | 142934 | 2.0357 | | 1.3768 | 90.0 | 144540 | 2.0405 | | 1.3494 | 91.0 | 146146 | 2.0495 | | 1.3492 | 92.0 | 147752 | 2.0586 | | 1.353 | 93.0 | 149358 | 2.0779 | | 1.3397 | 94.0 | 150964 | 2.0564 | | 1.3486 | 95.0 | 152570 | 2.0459 | | 1.3262 | 96.0 | 154176 | 2.0692 | | 1.349 | 97.0 | 155782 | 2.0765 | | 1.3228 | 98.0 | 157388 | 2.0443 | | 1.3291 | 99.0 | 158994 | 2.0617 | | 1.3211 | 100.0 | 160600 | 2.0552 | | 1.3344 | 101.0 | 162206 | 2.0626 | | 1.307 | 102.0 | 163812 | 2.0492 | | 1.2968 | 103.0 | 165418 | 2.0461 | | 1.2919 | 104.0 | 167024 | 2.0725 | | 1.3004 | 105.0 | 168630 | 2.0424 | | 1.303 | 106.0 | 170236 | 2.0484 | | 1.2847 | 107.0 | 171842 | 2.0083 | | 1.2861 | 108.0 | 173448 | 2.0491 | | 1.2763 | 109.0 | 175054 | 2.0505 | | 1.2852 | 110.0 | 176660 | 2.0691 | | 1.2611 | 111.0 | 178266 | 2.0711 | | 1.2739 | 112.0 | 179872 | 2.0730 | | 1.278 | 113.0 | 181478 | 2.0551 | | 1.2581 | 114.0 | 183084 | 2.0554 | | 1.2532 | 115.0 | 184690 | 2.0513 | | 1.2322 | 116.0 | 186296 | 2.0292 | | 1.2774 | 117.0 | 187902 | 2.0409 | | 1.242 | 118.0 | 189508 | 2.0517 | | 1.2476 | 119.0 | 191114 | 2.0612 | | 1.2314 | 120.0 | 192720 | 2.0795 | | 1.2379 | 121.0 | 194326 | 2.0679 | | 1.2291 | 122.0 | 195932 | 2.0472 | | 1.2515 | 123.0 | 197538 | 2.0829 | | 1.2467 | 124.0 | 199144 | 2.0662 | | 1.2437 | 125.0 | 200750 | 2.0962 | | 1.2373 | 126.0 | 202356 | 2.0692 | | 1.2099 | 127.0 | 203962 | 2.0688 | | 1.1911 | 128.0 | 205568 | 2.0803 | | 1.2311 | 129.0 | 207174 | 2.0765 | | 1.2095 | 130.0 | 208780 | 2.0697 | | 1.2093 | 131.0 | 210386 | 2.0507 | | 1.2065 | 132.0 | 211992 | 2.0658 | | 1.1964 | 133.0 | 213598 | 2.0542 | | 1.2085 | 134.0 | 215204 | 2.0722 | | 1.1871 | 135.0 | 216810 | 2.0806 | | 1.1863 | 136.0 | 218416 | 2.0691 | | 1.1763 | 137.0 | 220022 | 2.0869 | | 1.1816 | 138.0 | 221628 | 2.0780 | | 1.1854 | 139.0 | 223234 | 2.0462 | | 1.1902 | 140.0 | 224840 | 2.0880 | | 1.1762 | 141.0 | 226446 | 2.0682 | | 1.1551 | 142.0 | 228052 | 2.0837 | | 1.171 | 143.0 | 229658 | 2.1028 | | 1.1571 | 144.0 | 231264 | 2.0726 | | 1.1627 | 145.0 | 232870 | 2.0863 | | 1.1537 | 146.0 | 234476 | 2.0857 | | 1.1695 | 147.0 | 236082 | 2.0620 | | 1.1477 | 148.0 | 237688 | 2.0817 | | 1.1592 | 149.0 | 239294 | 2.0705 | | 1.1478 | 150.0 | 240900 | 2.0841 | | 1.1398 | 151.0 | 242506 | 2.0886 | | 1.144 | 152.0 | 244112 | 2.0673 | | 1.1646 | 153.0 | 245718 | 2.0620 | | 1.12 | 154.0 | 247324 | 2.0821 | | 1.1419 | 155.0 | 248930 | 2.0632 | | 1.1436 | 156.0 | 250536 | 2.0817 | | 1.1365 | 157.0 | 252142 | 2.0663 | | 1.1318 | 158.0 | 253748 | 2.0796 | | 1.1219 | 159.0 | 255354 | 2.0825 | | 1.1306 | 160.0 | 256960 | 2.0837 | | 1.1295 | 161.0 | 258566 | 2.0564 | | 1.1261 | 162.0 | 260172 | 2.0722 | | 1.1273 | 163.0 | 261778 | 2.1058 | | 1.1143 | 164.0 | 263384 | 2.0963 | | 1.1276 | 165.0 | 264990 | 2.0948 | | 1.1238 | 166.0 | 266596 | 2.0695 | | 1.1222 | 167.0 | 268202 | 2.0801 | | 1.1145 | 168.0 | 269808 | 2.0768 | | 1.1093 | 169.0 | 271414 | 2.0664 | | 1.1141 | 170.0 | 273020 | 2.0903 | | 1.0936 | 171.0 | 274626 | 2.1012 | | 1.1048 | 172.0 | 276232 | 2.1033 | | 1.0991 | 173.0 | 277838 | 2.0761 | | 1.1164 | 174.0 | 279444 | 2.0689 | | 1.0935 | 175.0 | 281050 | 2.0754 | | 1.1032 | 176.0 | 282656 | 2.0810 | | 1.1124 | 177.0 | 284262 | 2.0790 | | 1.1107 | 178.0 | 285868 | 2.0762 | | 1.085 | 179.0 | 287474 | 2.0697 | | 1.093 | 180.0 | 289080 | 2.0856 | | 1.1034 | 181.0 | 290686 | 2.0734 | | 1.0983 | 182.0 | 292292 | 2.0837 | | 1.0972 | 183.0 | 293898 | 2.1063 | | 1.0909 | 184.0 | 295504 | 2.0873 | | 1.0805 | 185.0 | 297110 | 2.0888 | | 1.0893 | 186.0 | 298716 | 2.0498 | | 1.096 | 187.0 | 300322 | 2.0906 | | 1.0781 | 188.0 | 301928 | 2.0905 | | 1.0981 | 189.0 | 303534 | 2.0767 | | 1.093 | 190.0 | 305140 | 2.0695 | | 1.0814 | 191.0 | 306746 | 2.0763 | | 1.0862 | 192.0 | 308352 | 2.0890 | | 1.0833 | 193.0 | 309958 | 2.1026 | | 1.0806 | 194.0 | 311564 | 2.0978 | | 1.0834 | 195.0 | 313170 | 2.1004 | | 1.0807 | 196.0 | 314776 | 2.0953 | | 1.0827 | 197.0 | 316382 | 2.1129 | | 1.0826 | 198.0 | 317988 | 2.1069 | | 1.0796 | 199.0 | 319594 | 2.0867 | | 1.0881 | 200.0 | 321200 | 2.0880 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jjjjjjjjjj/Reinforce-PixelCopterV1
jjjjjjjjjj
2022-08-08T03:32:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T03:22:44Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopterV1 results: - metrics: - type: mean_reward value: 18.50 +/- 12.47 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
abdulmatinomotoso/multi_news_article_title_25000_1
abdulmatinomotoso
2022-08-08T02:32:22Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-07T23:09:49Z
--- tags: - generated_from_trainer model-index: - name: multi_news_article_title_25000_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi_news_article_title_25000_1 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3431 | 0.32 | 500 | 0.2731 | | 0.2171 | 0.64 | 1000 | 0.2056 | | 0.2211 | 0.96 | 1500 | 0.1973 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ariesutiono/scibert-lm-v2-finetuned-20
ariesutiono
2022-08-08T02:13:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-08T01:28:54Z
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: scibert-lm-v2-finetuned-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert-lm-v2-finetuned-20 This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 15.7952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0211 | 1.0 | 878 | 15.1971 | | 0.0001 | 2.0 | 1756 | 16.8774 | | 0.0001 | 3.0 | 2634 | 15.7952 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jjjjjjjjjj/testpyramidsrnd
jjjjjjjjjj
2022-08-08T02:10:40Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-08T02:07:17Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jjjjjjjjjj/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
yuewu/toc_titler
yuewu
2022-08-08T01:55:41Z
23
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "image-captioning", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2022-08-08T01:11:08Z
--- license: mit tags: - image-to-text - image-captioning --- A model that inputs chemistry journal article table of contents (ToC) images and generates appropriate titles. Trained on all JACS ToCs and titles.
ultra-coder54732/comment-detection-prop-16
ultra-coder54732
2022-08-08T00:29:14Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-07T05:37:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: comment-detection-prop-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # comment-detection-prop-16 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
srcocotero/bert-qa-es
srcocotero
2022-08-07T21:19:06Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_es", "endpoints_compatible", "region:us" ]
question-answering
2022-08-07T18:16:10Z
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: bert-qa-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-qa-es This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the squad_es dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/RELEXset-MLM
paola-md
2022-08-07T20:07:52Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-07T13:14:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilroberta-Is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilroberta-Is This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 19.6191 | 1.0 | 2135 | 10.5217 | | 8.6838 | 2.0 | 4270 | 7.3017 | | 6.884 | 3.0 | 6405 | 6.4445 | | 6.2953 | 4.0 | 8540 | 6.0610 | | 6.0205 | 5.0 | 10675 | 5.9047 | | 5.851 | 6.0 | 12810 | 5.7790 | | 5.7464 | 7.0 | 14945 | 5.7164 | | 5.6684 | 8.0 | 17080 | 5.6415 | | 5.6138 | 9.0 | 19215 | 5.5671 | | 5.5638 | 10.0 | 21350 | 5.5360 | | 5.5288 | 11.0 | 23485 | 5.5069 | | 5.4968 | 12.0 | 25620 | 5.4968 | | 5.4696 | 13.0 | 27755 | 5.4539 | | 5.4468 | 14.0 | 29890 | 5.4416 | | 5.4177 | 15.0 | 32025 | 5.3722 | | 5.3717 | 16.0 | 34160 | 5.3226 | | 5.317 | 17.0 | 36295 | 5.2197 | | 5.2367 | 18.0 | 38430 | 5.0888 | | 5.1543 | 19.0 | 40565 | 4.9954 | | 5.0919 | 20.0 | 42700 | 4.9306 | | 5.038 | 21.0 | 44835 | 4.8657 | | 4.9983 | 22.0 | 46970 | 4.8137 | | 4.9639 | 23.0 | 49105 | 4.7704 | | 4.9426 | 24.0 | 51240 | 4.7486 | | 4.9312 | 25.0 | 53375 | 4.7427 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
theicfire/ppo-LunarLander-v2
theicfire
2022-08-07T19:48:16Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-07T19:47:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 245.21 +/- 40.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ycchen/TrOCR-base-ver021-v1
ycchen
2022-08-07T19:23:45Z
45
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-08-07T18:49:55Z
### How to use Here is how to use this model in PyTorch: ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import requests # load image from the IAM database (actually this model is meant to be used on printed text) url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = TrOCRProcessor.from_pretrained('ycchen/TrOCR-base-ver021-v1') model = VisionEncoderDecoderModel.from_pretrained('ycchen/TrOCR-base-ver021-v1') pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```
cataluna84/xlm-roberta-base-finetuned-panx-en
cataluna84
2022-08-07T18:15:27Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-07T17:56:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6886160714285715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1347 | 1.0 | 50 | 0.5771 | 0.4880 | | 0.5066 | 2.0 | 100 | 0.4209 | 0.6582 | | 0.3631 | 3.0 | 150 | 0.4043 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ultra-coder54732/stance-detection-prop-16
ultra-coder54732
2022-08-07T17:32:24Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-07T06:06:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: stance-detection-prop-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stance-detection-prop-16 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ai4bharat/IndicBART
ai4bharat
2022-08-07T17:12:33Z
1,663
29
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "multilingual", "nlp", "indicnlp", "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "arxiv:2109.02903", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te tags: - multilingual - nlp - indicnlp --- IndicBART is a multilingual, sequence-to-sequence pre-trained model focusing on Indic languages and English. It currently supports 11 Indian languages and is based on the mBART architecture. You can use IndicBART model to build natural language generation applications for Indian languages by finetuning the model with supervised training data for tasks like machine translation, summarization, question generation, etc. Some salient features of the IndicBART are: <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, Telugu and English. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li> <li> Trained on large Indic language corpora (452 million sentences and 9 billion tokens) which also includes Indian English content. </li> <li> All languages, except English, have been represented in Devanagari script to encourage transfer learning among the related languages. </li> </ul> You can read more about IndicBART in this <a href="https://arxiv.org/abs/2109.02903">paper</a>. For detailed documentation, look here: https://github.com/AI4Bharat/indic-bart/ and https://indicnlp.ai4bharat.org/indic-bart/ # Pre-training corpus We used the <a href="https://indicnlp.ai4bharat.org/corpora/">IndicCorp</a> data spanning 12 languages with 452 million sentences (9 billion tokens). The model was trained using the text-infilling objective used in mBART. # Usage: ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBART", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBART", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBART") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/IndicBART") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]]) out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]]) # Note that if you use any language other than Hindi or Marathi, you should convert its script to Devanagari using the Indic NLP Library. model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am a boy # Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library. # What if we mask? inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am happy inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # मैं जानता हूँ inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # मला ओळखलं पाहिजे ``` # Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. While I have only shown how to get logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore, I used the AlbertTokenizer class and not the MBartTokenizer class. 4. If you wish to use any language written in a non-Devanagari script (except English), then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. # Fine-tuning on a downstream task 1. If you wish to fine-tune this model, then you can do so using the <a href="https://github.com/prajdabre/yanmtt">YANMTT</a> toolkit, following the instructions <a href="https://github.com/AI4Bharat/indic-bart ">here</a>. 2. (Untested) Alternatively, you may use the official huggingface scripts for <a href="https://github.com/huggingface/transformers/tree/master/examples/pytorch/translation">translation</a> and <a href="https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization">summarization</a>. # Contributors <ul> <li> Raj Dabre </li> <li> Himani Shrotriya </li> <li> Anoop Kunchukuttan </li> <li> Ratish Puduppully </li> <li> Mitesh M. Khapra </li> <li> Pratyush Kumar </li> </ul> # Paper If you use IndicBART, please cite the following paper: ``` @misc{dabre2021indicbart, title={IndicBART: A Pre-trained Model for Natural Language Generation of Indic Languages}, author={Raj Dabre and Himani Shrotriya and Anoop Kunchukuttan and Ratish Puduppully and Mitesh M. Khapra and Pratyush Kumar}, year={2021}, eprint={2109.02903}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # License The model is available under the MIT License.
abcp4/a2c-CartPole-v1
abcp4
2022-08-07T16:42:18Z
1
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-07T02:07:19Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 16.90 +/- 6.92 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **A2C** Agent playing **CartPole-v1** This is a trained model of a **A2C** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Yuri/xlm-roberta-base-finetuned-panx-de-fr
Yuri
2022-08-07T16:26:58Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-07T16:01:49Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/apesahoy-dril_gpt2-nigella_lawson
huggingtweets
2022-08-07T16:24:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-07T16:22:50Z
--- language: en thumbnail: http://www.huggingtweets.com/apesahoy-dril_gpt2-nigella_lawson/1659889467093/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493693969825423365/pqVtK9q0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1514451221054173189/BWP3wqQj_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Humongous Ape MP & Nigella Lawson & wint but Al</div> <div style="text-align: center; font-size: 14px;">@apesahoy-dril_gpt2-nigella_lawson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Humongous Ape MP & Nigella Lawson & wint but Al. | Data | Humongous Ape MP | Nigella Lawson | wint but Al | | --- | --- | --- | --- | | Tweets downloaded | 3245 | 3250 | 3229 | | Retweets | 199 | 60 | 47 | | Short tweets | 612 | 667 | 57 | | Tweets kept | 2434 | 2523 | 3125 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nku0vp7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-dril_gpt2-nigella_lawson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gjr59ua) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gjr59ua/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-dril_gpt2-nigella_lawson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Yuri/xlm-roberta-base-finetuned-panx-de
Yuri
2022-08-07T15:54:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-07T13:23:41Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/donalds28__-dril-kommmipakk
huggingtweets
2022-08-07T15:45:18Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-07T15:45:12Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520796357149315073/VpjToHNe_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241482050370224135/TAQSqgng_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510917391533830145/XW-zSFDJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">owen & Ⓐju goblin 🦉 & wint</div> <div style="text-align: center; font-size: 14px;">@donalds28__-dril-kommmipakk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from owen & Ⓐju goblin 🦉 & wint. | Data | owen | Ⓐju goblin 🦉 | wint | | --- | --- | --- | --- | | Tweets downloaded | 2359 | 2701 | 3224 | | Retweets | 94 | 609 | 497 | | Short tweets | 725 | 744 | 287 | | Tweets kept | 1540 | 1348 | 2440 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27r6w6f8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donalds28__-dril-kommmipakk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pen7vd2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pen7vd2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/donalds28__-dril-kommmipakk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/apesahoy-chai_ste-punishedvirgo
huggingtweets
2022-08-07T14:48:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-07T14:47:43Z
--- language: en thumbnail: http://www.huggingtweets.com/apesahoy-chai_ste-punishedvirgo/1659883708573/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479595267800322048/Aqqb82wz_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513525852906180612/yOaU5tCT_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ste 🍊 & Humongous Ape MP & radler inspector 🍋🍺🇵🇸🇺🇦</div> <div style="text-align: center; font-size: 14px;">@apesahoy-chai_ste-punishedvirgo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ste 🍊 & Humongous Ape MP & radler inspector 🍋🍺🇵🇸🇺🇦. | Data | ste 🍊 | Humongous Ape MP | radler inspector 🍋🍺🇵🇸🇺🇦 | | --- | --- | --- | --- | | Tweets downloaded | 3192 | 3245 | 3235 | | Retweets | 293 | 199 | 657 | | Short tweets | 494 | 612 | 675 | | Tweets kept | 2405 | 2434 | 1903 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/eaah6yyc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-chai_ste-punishedvirgo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/deqhdcw0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/deqhdcw0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-chai_ste-punishedvirgo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dbmdz/detectron2-model
dbmdz
2022-08-07T14:35:23Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-08-07T14:25:43Z
--- license: mit --- # Detectron2 model This repository hosts our trained Detectron2 model, that can detect segments from digitized books. The following classes are supported: - Illustration - Illumination The model is based on `faster_rcnn_R_50_FPN_3x` and was fine-tuned on own and manually annotated segments from digitized books.
jonahank/KlimaBERT
jonahank
2022-08-07T14:34:37Z
11
4
transformers
[ "transformers", "pytorch", "bert", "text-classification", "climate change", "climate-classifier", "political quotes", "klimabert", "da", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T08:21:00Z
--- language: - da tags: - climate change - climate-classifier - political quotes - klimabert --- # Identifying and Analysing political quotes from the Danish Parliament related to climate change using NLP **KlimaBERT**, a sequence-classifier fine-tuned to predict whether political quotes are climate-related. When predicting the positive class 1, "climate-related", the model achieves a F1-score of 0.97, Precision of 0.97, and Recall of 0.97. The negative class, 0, is defined as "non-climate-related". KlimaBERT is fine-tuned using the pre-trained DaBERT-uncased model, on a training set of 1.000 manually labelled data-points. The training set contains both political quotes and summaries of bills from the [Danish Parliament](https://www.ft.dk/). The model is created to identify political quotes related to climate change, and performs best on official texts from the Danish Parliament. ### Fine-tuning To fine-tune a model similar to KlimaBERT, follow the [fine-tuning notebooks](https://github.com/jonahank/Vote-Prediction-Model/tree/main/climate_classifier) ### References BERT: Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805 DaBERT: Certainly (2021). Certainly has trained the most advanced danish bert model to date. https://www.certainly.io/blog/danish-bert-model/. ### Acknowledgements The resources are created through the work of my Master's thesis, so I would like to thank my supervisors [Leon Derczynski](https://www.derczynski.com/itu/) and [Vedran Sekara](https://vedransekara.github.io/) for the great support throughout the project! And a HUGE thanks to [Gustav Gyrst](https://github.com/Gyrst) for great sparring and co-development of the tools you find in this repo. ### Contact For any further help, questions, comments etc. feel free to contact the author Jonathan Kristensen on [LinedIn](https://www.linkedin.com/in/jonathan-kristensen-444a96104) or by creating a "discussion" on this model's page.
VietAI/gpt-neo-1.3B-vietnamese-news
VietAI
2022-08-07T14:32:07Z
1,341
28
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "causal-lm", "gpt", "vi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - vi tags: - pytorch - causal-lm - gpt --- # GPT-Neo 1.3B on Vietnamese News Details will be available soon. For more information, please contact [email protected] (Dương) / [email protected] (Thành) / [email protected] (Bình). ### How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("VietAI/gpt-neo-1.3B-vietnamese-news") model = AutoModelForCausalLM.from_pretrained("VietAI/gpt-neo-1.3B-vietnamese-news", low_cpu_mem_usage=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) prompt = "Tiềm năng của trí tuệ nhân tạo" # your input sentence input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device) gen_tokens = model.generate( input_ids, max_length=max_length, do_sample=True, temperature=0.9, top_k=20, ) gen_text = tokenizer.batch_decode(gen_tokens)[0] print(gen_text) ```
VietAI/gpt-j-6B-vietnamese-news
VietAI
2022-08-07T14:31:36Z
111
12
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "vi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - vi tags: - pytorch - causal-lm - text-generation --- # GPT-J 6B on Vietnamese News Details will be available soon. For more information, please contact [email protected] (Dương) / [email protected] (Thành) / [email protected] (Bình). ### How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("VietAI/gpt-j-6B-vietnamese-news") model = AutoModelForCausalLM.from_pretrained("VietAI/gpt-j-6B-vietnamese-news", low_cpu_mem_usage=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) prompt = "Tiềm năng của trí tuệ nhân tạo" # your input sentence input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device) gen_tokens = model.generate( input_ids, max_length=max_length, do_sample=True, temperature=0.9, top_k=20, ) gen_text = tokenizer.batch_decode(gen_tokens)[0] print(gen_text) ```
mohammedbriman/t5-small-finetuned-tf-xsum
mohammedbriman
2022-08-07T13:52:08Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-16T14:46:07Z
--- tags: - generated_from_keras_callback model-index: - name: t5-small-finetuned-tf-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-tf-xsum This model was trained from scratch on xsum dataset. It achieves the following results on the evaluation set: - Train Loss: 2.3494 - Validation Loss: 2.1933 - Train Rouge1: 32.0241 - Train Rouge2: 10.1025 - Train Rougel: 25.8834 - Train Rougelsum: 25.9662 - Train Gen Len: 18.69 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | | :--------: | :-------------: | :----------: | :----------: | :----------: | :-------------: | :-----------: | :---: | | 2.7197 | 2.4028 | 29.6376 | 8.8596 | 22.8598 | 22.8401 | 18.82 | 1 | | 2.5822 | 2.3407 | 30.6849 | 9.3100 | 23.8971 | 23.9096 | 18.745 | 2 | | 2.5174 | 2.2979 | 32.3706 | 11.5463 | 26.4253 | 26.3525 | 18.75 | 3 | | 2.4711 | 2.2703 | 32.2768 | 11.0460 | 26.2472 | 26.1540 | 18.825 | 4 | | 2.4305 | 2.2432 | 29.3935 | 8.3337 | 22.2859 | 22.3557 | 18.65 | 5 | | 2.3994 | 2.2237 | 31.0993 | 8.7932 | 23.6971 | 23.7702 | 18.815 | 6 | | 2.3732 | 2.2071 | 31.4819 | 10.0677 | 25.1846 | 25.2829 | 18.675 | 7 | | 2.3494 | 2.1933 | 32.0241 | 10.1025 | 25.8834 | 25.9662 | 18.69 | 8 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
sunilkumardash9/finetuning-sentiment-model-3000-samples
sunilkumardash9
2022-08-07T12:16:22Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-07T12:04:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8684210526315789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3213 - Accuracy: 0.8667 - F1: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yhavinga/t5-small-24L-ccmatrix-multi
yhavinga
2022-08-07T12:07:16Z
8
2
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "translation", "seq2seq", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "dataset:yhavinga/ccmatrix", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-04-27T09:46:23Z
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned - yhavinga/ccmatrix tags: - t5 - translation - seq2seq pipeline_tag: translation widget: - text: "It is a painful and tragic spectacle that rises before me: I have drawn back the curtain from the rottenness of man. This word, in my mouth, is at least free from one suspicion: that it involves a moral accusation against humanity." - text: "Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible. His camouflage was perfect, since the waiting room had a disorderly and demoralized air, too. Chairs and ashtrays had been moved away from the walls. The floor was paved with spattered dropcloths." license: apache-2.0 --- # t5-small-24L-ccmatrix-multi A [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) model finetuned for Dutch to English and English to Dutch translation on the CCMatrix dataset. Evaluation metrics of this model are listed in the **Translation models** section below. You can use this model directly with a pipeline for text translation: ```python model_name = "yhavinga/t5-small-24L-ccmatrix-multi" from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM from transformers import pipeline import torch device_num = 0 if torch.cuda.is_available() else -1 device = "cpu" if device_num < 0 else f"cuda:{device_num}" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) params = {"max_length": 128, "num_beams": 4, "early_stopping": True} en_to_nl = pipeline("translation_en_to_nl", tokenizer=tokenizer, model=model, device=device_num) print(en_to_nl("""Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible.""", **params)[0]['translation_text']) nl_to_en = pipeline("translation_nl_to_en", tokenizer=tokenizer, model=model, device=device_num) print(nl_to_en("""De jonge Wehling zat gebogen in zijn stoel, zijn hoofd in zijn hand. Hij was zo stoffig, zo stil en kleurloos dat hij vrijwel onzichtbaar was.""", **params)[0]['translation_text']) ``` This **t5 eff** model has **249M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **4d10h**, with a sequence length of **512**, batch size **128** and **851852** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,18** and **0,74**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
yhavinga/t5-base-36L-ccmatrix-multi
yhavinga
2022-08-07T12:07:12Z
13
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "translation", "seq2seq", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "dataset:yhavinga/ccmatrix", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-04-22T07:56:31Z
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned - yhavinga/ccmatrix tags: - t5 - translation - seq2seq pipeline_tag: translation widget: - text: "It is a painful and tragic spectacle that rises before me: I have drawn back the curtain from the rottenness of man. This word, in my mouth, is at least free from one suspicion: that it involves a moral accusation against humanity." - text: "Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible. His camouflage was perfect, since the waiting room had a disorderly and demoralized air, too. Chairs and ashtrays had been moved away from the walls. The floor was paved with spattered dropcloths." license: apache-2.0 --- # t5-base-36L-ccmatrix-multi A [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) model finetuned for Dutch to English and English to Dutch translation on the CCMatrix dataset. Evaluation metrics of this model are listed in the **Translation models** section below. You can use this model directly with a pipeline for text translation: ```python model_name = "yhavinga/t5-base-36L-ccmatrix-multi" from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM from transformers import pipeline import torch device_num = 0 if torch.cuda.is_available() else -1 device = "cpu" if device_num < 0 else f"cuda:{device_num}" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) params = {"max_length": 128, "num_beams": 4, "early_stopping": True} en_to_nl = pipeline("translation_en_to_nl", tokenizer=tokenizer, model=model, device=device_num) print(en_to_nl("""Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible.""", **params)[0]['translation_text']) nl_to_en = pipeline("translation_nl_to_en", tokenizer=tokenizer, model=model, device=device_num) print(nl_to_en("""De jonge Wehling zat gebogen in zijn stoel, zijn hoofd in zijn hand. Hij was zo stoffig, zo stil en kleurloos dat hij vrijwel onzichtbaar was.""", **params)[0]['translation_text']) ``` This **t5 eff** model has **728M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **17d15h**, with a sequence length of **512**, batch size **512** and **212963** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,05** and **0,76**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
yhavinga/t5-eff-large-8l-dutch-english-cased
yhavinga
2022-08-07T12:07:07Z
4
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "seq2seq", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "arxiv:1910.10683", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-05-06T07:48:22Z
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned tags: - t5 - seq2seq inference: false license: apache-2.0 --- # t5-eff-large-8l-dutch-english-cased A [T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) sequence to sequence model pre-trained from scratch on [cleaned Dutch 🇳🇱🇧🇪 mC4 and cleaned English 🇬🇧 C4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned). This **t5 eff** model has **334M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **3d 23h**, with a sequence length of **512**, batch size **128** and **851850** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,15** and **0,74**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. * Pre-trained T5 models need to be finetuned before they can be used for downstream tasks, therefore the inference widget on the right has been turned off. * For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)** example application! Please refer to the original T5 papers and Scale Efficiently papers for more information about the T5 architecture and configs, though it must be noted that this model (t5-eff-large-8l-dutch-english-cased) is unrelated to these projects and not an 'official' checkpoint. * **[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)** by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*. * **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
yhavinga/t5-base-36L-dutch-english-cased
yhavinga
2022-08-07T12:06:50Z
6
0
transformers
[ "transformers", "jax", "t5", "text2text-generation", "seq2seq", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "arxiv:1910.10683", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2022-03-07T08:59:11Z
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned tags: - t5 - seq2seq inference: false license: apache-2.0 --- # t5-base-36L-dutch-english-cased A [T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) sequence to sequence model pre-trained from scratch on [cleaned Dutch 🇳🇱🇧🇪 mC4 and cleaned English 🇬🇧 C4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned). This **t5 eff** model has **728M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **17d15h**, with a sequence length of **512**, batch size **512** and **212963** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,05** and **0,76**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. * Pre-trained T5 models need to be finetuned before they can be used for downstream tasks, therefore the inference widget on the right has been turned off. * For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)** example application! Please refer to the original T5 papers and Scale Efficiently papers for more information about the T5 architecture and configs, though it must be noted that this model (t5-base-36L-dutch-english-cased) is unrelated to these projects and not an 'official' checkpoint. * **[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)** by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*. * **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
yhavinga/t5-small-24L-dutch-english
yhavinga
2022-08-07T12:06:40Z
22
1
transformers
[ "transformers", "jax", "t5", "text2text-generation", "seq2seq", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "arxiv:1910.10683", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2022-03-09T20:39:13Z
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned tags: - t5 - seq2seq inference: false license: apache-2.0 --- # t5-small-24L-dutch-english A [T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) sequence to sequence model pre-trained from scratch on [cleaned Dutch 🇳🇱🇧🇪 mC4 and cleaned English 🇬🇧 C4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned). This **t5 eff** model has **249M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **4d10h**, with a sequence length of **512**, batch size **128** and **851852** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,18** and **0,74**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. * Pre-trained T5 models need to be finetuned before they can be used for downstream tasks, therefore the inference widget on the right has been turned off. * For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)** example application! Please refer to the original T5 papers and Scale Efficiently papers for more information about the T5 architecture and configs, though it must be noted that this model (t5-small-24L-dutch-english) is unrelated to these projects and not an 'official' checkpoint. * **[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)** by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*. * **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
Mahmoud7/ppo-LunarLander-v2
Mahmoud7
2022-08-07T08:49:54Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-07T08:49:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 216.14 +/- 19.57 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
osanseviero/llama_or_alpaca
osanseviero
2022-08-07T08:23:43Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-08-07T08:23:33Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
osanseviero/is_it_a_llama
osanseviero
2022-08-07T07:02:11Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-08-07T07:02:02Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
pritoms/opt-350m-opty-350m-lectures
pritoms
2022-08-07T06:08:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-07T05:52:41Z
--- license: other tags: - generated_from_trainer model-index: - name: opt-350m-opty-350m-lectures results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-opty-350m-lectures This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 2.7828 | | No log | 2.0 | 10 | 2.4889 | | No log | 3.0 | 15 | 2.3830 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Mozart-coder/DNA_BigBird_3
Mozart-coder
2022-08-07T04:37:56Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "big_bird", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-07T03:30:19Z
--- tags: - generated_from_trainer model-index: - name: dna_3-Pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dna_3-Pretrained This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6057 | 1.0 | 62 | 0.6032 | | 0.5983 | 2.0 | 124 | 0.6002 | | 0.5934 | 3.0 | 186 | 0.5992 | | 0.5853 | 4.0 | 248 | 0.5979 | | 0.5799 | 5.0 | 310 | 0.5982 | | 0.5769 | 6.0 | 372 | 0.5999 | | 0.5754 | 7.0 | 434 | 0.5996 | | 0.5713 | 8.0 | 496 | 0.6000 | | 0.5687 | 9.0 | 558 | 0.5988 | | 0.5666 | 10.0 | 620 | 0.6003 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
JTH/twitter_classification
JTH
2022-08-07T04:28:59Z
4
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-06T15:46:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: twitter_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter_classification Label mapping: ``` { 'Business': 2, 'Civil Society': 4, 'Government': 5, 'Individual': 0, 'News & Info': 1, 'Research & Academia': 3 } ``` This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sherwinseah/Fine-tuned-T5-for-MCQGenerator
sherwinseah
2022-08-07T04:18:04Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-07T03:07:33Z
--- tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: Fine-tuned-T5-for-MCQGenerator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine-tuned-T5-for-MCQGenerator This model is a fine-tuned version of [ramsrigouthamg/t5_squad_v1](https://huggingface.co/ramsrigouthamg/t5_squad_v1) on the squad_modified_for_t5_qg dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
voice/wav2vec2-large-xlsr-common1000asli-demo-colab-dd
voice
2022-08-07T03:39:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-02T05:56:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-common1000asli-demo-colab-dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-common1000asli-demo-colab-dd This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0671 - Wer: 0.5268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 10.4469 | 10.53 | 400 | 2.9884 | 0.9788 | | 1.6358 | 21.05 | 800 | 0.5968 | 0.6578 | | 0.3404 | 31.58 | 1200 | 0.5348 | 0.5757 | | 0.2218 | 42.11 | 1600 | 0.5945 | 0.5659 | | 0.1676 | 52.63 | 2000 | 0.6318 | 0.5753 | | 0.1442 | 63.16 | 2400 | 0.6395 | 0.5559 | | 0.1237 | 73.68 | 2800 | 0.6981 | 0.5522 | | 0.1132 | 84.21 | 3200 | 0.7174 | 0.5428 | | 0.1056 | 94.74 | 3600 | 0.7120 | 0.5531 | | 0.0942 | 105.26 | 4000 | 0.7865 | 0.5529 | | 0.0967 | 115.79 | 4400 | 0.7796 | 0.5546 | | 0.0854 | 126.32 | 4800 | 0.7392 | 0.5507 | | 0.0816 | 136.84 | 5200 | 0.8173 | 0.5575 | | 0.0748 | 147.37 | 5600 | 0.8164 | 0.5550 | | 0.0691 | 157.89 | 6000 | 0.8061 | 0.5444 | | 0.0654 | 168.42 | 6400 | 0.8098 | 0.5524 | | 0.0627 | 178.95 | 6800 | 0.8527 | 0.5655 | | 0.0653 | 189.47 | 7200 | 0.8210 | 0.5412 | | 0.0639 | 200.0 | 7600 | 0.8619 | 0.5602 | | 0.0614 | 210.53 | 8000 | 0.8453 | 0.5606 | | 0.0647 | 221.05 | 8400 | 0.8248 | 0.5564 | | 0.0611 | 231.58 | 8800 | 0.8323 | 0.5637 | | 0.0606 | 242.11 | 9200 | 0.8754 | 0.5654 | | 0.0587 | 252.63 | 9600 | 0.8684 | 0.5528 | | 0.0524 | 263.16 | 10000 | 0.8798 | 0.5556 | | 0.0499 | 273.68 | 10400 | 0.8593 | 0.5553 | | 0.0466 | 284.21 | 10800 | 0.9079 | 0.5520 | | 0.0505 | 294.74 | 11200 | 0.8680 | 0.5607 | | 0.0517 | 305.26 | 11600 | 0.8709 | 0.5557 | | 0.0522 | 315.79 | 12000 | 0.8687 | 0.5570 | | 0.0453 | 326.32 | 12400 | 0.8585 | 0.5614 | | 0.047 | 336.84 | 12800 | 0.9249 | 0.5581 | | 0.0431 | 347.37 | 13200 | 0.8934 | 0.5543 | | 0.0454 | 357.89 | 13600 | 0.8837 | 0.5583 | | 0.0472 | 368.42 | 14000 | 0.9070 | 0.5565 | | 0.0431 | 378.95 | 14400 | 0.9202 | 0.5526 | | 0.0404 | 389.47 | 14800 | 0.9234 | 0.5543 | | 0.0386 | 400.0 | 15200 | 0.9056 | 0.5549 | | 0.0372 | 410.53 | 15600 | 0.9901 | 0.5493 | | 0.0376 | 421.05 | 16000 | 0.9109 | 0.5460 | | 0.0365 | 431.58 | 16400 | 0.9313 | 0.5487 | | 0.0347 | 442.11 | 16800 | 0.9027 | 0.5496 | | 0.0361 | 452.63 | 17200 | 0.9614 | 0.5457 | | 0.0323 | 463.16 | 17600 | 0.9782 | 0.5558 | | 0.0325 | 473.68 | 18000 | 0.9549 | 0.5481 | | 0.032 | 484.21 | 18400 | 0.9781 | 0.5431 | | 0.0289 | 494.74 | 18800 | 0.9840 | 0.5463 | | 0.0292 | 505.26 | 19200 | 0.9397 | 0.5357 | | 0.0276 | 515.79 | 19600 | 0.9228 | 0.5467 | | 0.0283 | 526.32 | 20000 | 0.9683 | 0.5394 | | 0.0281 | 536.84 | 20400 | 0.9783 | 0.5479 | | 0.026 | 547.37 | 20800 | 0.9663 | 0.5472 | | 0.0288 | 557.89 | 21200 | 0.9424 | 0.5426 | | 0.0275 | 568.42 | 21600 | 0.9788 | 0.5435 | | 0.0264 | 578.95 | 22000 | 0.9703 | 0.5473 | | 0.0259 | 589.47 | 22400 | 0.9994 | 0.5446 | | 0.0243 | 600.0 | 22800 | 0.9637 | 0.5590 | | 0.0251 | 610.53 | 23200 | 0.9577 | 0.5457 | | 0.0222 | 621.05 | 23600 | 0.9780 | 0.5419 | | 0.0227 | 631.58 | 24000 | 0.9582 | 0.5417 | | 0.0222 | 642.11 | 24400 | 0.9847 | 0.5432 | | 0.0214 | 652.63 | 24800 | 1.0171 | 0.5449 | | 0.022 | 663.16 | 25200 | 0.9819 | 0.5430 | | 0.0202 | 673.68 | 25600 | 0.9737 | 0.5413 | | 0.0187 | 684.21 | 26000 | 0.9977 | 0.5440 | | 0.0213 | 694.74 | 26400 | 0.9919 | 0.5464 | | 0.0197 | 705.26 | 26800 | 0.9769 | 0.5357 | | 0.0183 | 715.79 | 27200 | 0.9964 | 0.5377 | | 0.0187 | 726.32 | 27600 | 0.9973 | 0.5341 | | 0.0191 | 736.84 | 28000 | 0.9970 | 0.5399 | | 0.0183 | 747.37 | 28400 | 1.0179 | 0.5371 | | 0.0176 | 757.89 | 28800 | 1.0020 | 0.5440 | | 0.018 | 768.42 | 29200 | 0.9992 | 0.5394 | | 0.0157 | 778.95 | 29600 | 1.0502 | 0.5397 | | 0.0165 | 789.47 | 30000 | 1.0463 | 0.5397 | | 0.0147 | 800.0 | 30400 | 1.0363 | 0.5430 | | 0.0153 | 810.53 | 30800 | 0.9890 | 0.5407 | | 0.0145 | 821.05 | 31200 | 1.0139 | 0.5369 | | 0.0143 | 831.58 | 31600 | 1.0260 | 0.5346 | | 0.0141 | 842.11 | 32000 | 1.0277 | 0.5361 | | 0.0139 | 852.63 | 32400 | 1.0639 | 0.5335 | | 0.0132 | 863.16 | 32800 | 1.0661 | 0.5314 | | 0.013 | 873.68 | 33200 | 1.0537 | 0.5335 | | 0.0126 | 884.21 | 33600 | 1.0433 | 0.5347 | | 0.0121 | 894.74 | 34000 | 1.0275 | 0.5326 | | 0.0128 | 905.26 | 34400 | 1.0405 | 0.5327 | | 0.0112 | 915.79 | 34800 | 1.0626 | 0.5296 | | 0.0115 | 926.32 | 35200 | 1.0583 | 0.5284 | | 0.0109 | 936.84 | 35600 | 1.0494 | 0.5287 | | 0.0113 | 947.37 | 36000 | 1.0655 | 0.5294 | | 0.0104 | 957.89 | 36400 | 1.0723 | 0.5269 | | 0.0108 | 968.42 | 36800 | 1.0680 | 0.5267 | | 0.0104 | 978.95 | 37200 | 1.0707 | 0.5261 | | 0.0108 | 989.47 | 37600 | 1.0649 | 0.5268 | | 0.0103 | 1000.0 | 38000 | 1.0671 | 0.5268 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
arinze/t5_finetuned_xsum_hr
arinze
2022-08-07T02:11:35Z
17
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-05T14:50:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5_finetuned_xsum_hr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 29.1239 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_finetuned_xsum_hr This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4224 - Rouge1: 29.1239 - Rouge2: 8.3165 - Rougel: 22.9946 - Rougelsum: 22.9996 - Gen Len: 18.819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6839 | 1.0 | 12753 | 2.4474 | 28.721 | 8.0397 | 22.6568 | 22.6527 | 18.8324 | | 2.6425 | 2.0 | 25506 | 2.4224 | 29.1239 | 8.3165 | 22.9946 | 22.9996 | 18.819 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/carterhiggins
huggingtweets
2022-08-07T01:19:20Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-07T01:12:44Z
--- language: en thumbnail: http://www.huggingtweets.com/carterhiggins/1659835083112/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296229510510030849/0dyqAcul_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Carter Higgins</div> <div style="text-align: center; font-size: 14px;">@carterhiggins</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Carter Higgins. | Data | Carter Higgins | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 539 | | Short tweets | 568 | | Tweets kept | 2139 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jjhg6sk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @carterhiggins's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14ee5p5o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14ee5p5o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/carterhiggins') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AdamAbate1/wav2vec2-base-finetuned-ks
AdamAbate1
2022-08-07T00:53:49Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-08-06T11:29:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0993 - Accuracy: 0.9812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7367 | 1.0 | 399 | 0.6341 | 0.8819 | | 0.3087 | 2.0 | 798 | 0.1900 | 0.9771 | | 0.1979 | 3.0 | 1197 | 0.1232 | 0.9800 | | 0.171 | 4.0 | 1596 | 0.1057 | 0.9794 | | 0.1253 | 5.0 | 1995 | 0.0993 | 0.9812 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingartists/gspd
huggingartists
2022-08-06T23:30:23Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/gspd", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/gspd tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9409ae2b38424a74b42cb1e4bb66b83a.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">GSPD</div> <a href="https://genius.com/artists/gspd"> <div style="text-align: center; font-size: 14px;">@gspd</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from GSPD. Dataset is available [here](https://huggingface.co/datasets/huggingartists/gspd). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gspd") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3jof0sex/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on GSPD's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2nxhrny4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2nxhrny4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/gspd') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/gspd") model = AutoModelWithLMHead.from_pretrained("huggingartists/gspd") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/morgenshtern
huggingartists
2022-08-06T23:27:49Z
11
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/morgenshtern", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/morgenshtern tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/cdfb190640789439daae426c799e5e32.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MORGENSHTERN</div> <a href="https://genius.com/artists/morgenshtern"> <div style="text-align: center; font-size: 14px;">@morgenshtern</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MORGENSHTERN. Dataset is available [here](https://huggingface.co/datasets/huggingartists/morgenshtern). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/morgenshtern") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lmrnk6sz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MORGENSHTERN's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1m2jynlh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1m2jynlh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/morgenshtern') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/morgenshtern") model = AutoModelWithLMHead.from_pretrained("huggingartists/morgenshtern") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
theojolliffe/bart-paraphrase-v2-e1
theojolliffe
2022-08-06T22:09:16Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-06T21:11:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-v2-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v2-e1 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1536 - Rouge1: 72.6807 - Rouge2: 68.1957 - Rougel: 71.1787 - Rougelsum: 71.3376 - Gen Len: 19.5698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0682 | 1.0 | 7093 | 0.1536 | 72.6807 | 68.1957 | 71.1787 | 71.3376 | 19.5698 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/chai_ste
huggingtweets
2022-08-06T21:51:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-06T20:38:06Z
--- language: en thumbnail: http://www.huggingtweets.com/chai_ste/1659822641053/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479595267800322048/Aqqb82wz_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ste 🍊</div> <div style="text-align: center; font-size: 14px;">@chai_ste</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ste 🍊. | Data | ste 🍊 | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 293 | | Short tweets | 497 | | Tweets kept | 2402 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pklrw4p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chai_ste's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ef8xv0wo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ef8xv0wo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chai_ste') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
abcp4/a2c-HalfCheetahBulletEnv-v0
abcp4
2022-08-06T20:44:56Z
3
0
stable-baselines3
[ "stable-baselines3", "HalfCheetahBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-06T20:10:39Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: -891.37 +/- 122.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 --- # **A2C** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bassemessam/wav2vec2-large-xls-r-300m-arabic-saudi-colab
bassemessam
2022-08-06T20:37:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-06T19:09:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-arabic-saudi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-arabic-saudi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Yousef7/U
Yousef7
2022-08-06T19:50:32Z
0
0
null
[ "region:us" ]
null
2022-08-06T19:43:17Z
pip install rubika pip install colorama pip install rubpy
jackoyoungblood/q-FrozenLake-v1-4x4-noSlippery
jackoyoungblood
2022-08-06T19:13:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-06T19:13:22Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
JTH/results
JTH
2022-08-06T15:36:15Z
10
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-29T16:43:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Einmalumdiewelt/DistilBART_CNN_GNAD
Einmalumdiewelt
2022-08-06T15:16:21Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-05T19:47:30Z
--- language: - de tags: - generated_from_trainer metrics: - rouge model-index: - name: DistilBART_CNN_GNAD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBART_CNN_GNAD This model is a fine-tuned version of [Einmalumdiewelt/DistilBART_CNN_GNAD](https://huggingface.co/Einmalumdiewelt/DistilBART_CNN_GNAD) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8723 - Rouge1: 27.4368 - Rouge2: 8.159 - Rougel: 18.1359 - Rougelsum: 23.1339 - Gen Len: 91.5847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
L-macc/autotrain-Biomedical_sc_summ-1217846142
L-macc
2022-08-06T14:50:47Z
15
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:L-macc/autotrain-data-Biomedical_sc_summ", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-04T07:45:06Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain \U0001F917" datasets: - L-macc/autotrain-data-Biomedical_sc_summ co2_eq_emissions: emissions: 16.211223325053414 model-index: - name: L-macc/autotrain-Biomedical_sc_summ-1217846142 results: - task: type: summarization name: Summarization dataset: name: Blaise-g/SumPubmed type: Blaise-g/SumPubmed config: Blaise-g--SumPubmed split: test metrics: - name: ROUGE-1 type: rouge value: 38.2324 verified: true - name: ROUGE-2 type: rouge value: 12.2914 verified: true - name: ROUGE-L type: rouge value: 21.4512 verified: true - name: ROUGE-LSUM type: rouge value: 34.3031 verified: true - name: loss type: loss value: 2.3273825645446777 verified: true - name: gen_len type: gen_len value: 130.3934 verified: true --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1217846142 - CO2 Emissions (in grams): 16.2112 ## Validation Metrics - Loss: 2.159 - Rouge1: 40.236 - Rouge2: 12.161 - RougeL: 23.255 - RougeLsum: 35.138 - Gen Len: 121.504 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/L-macc/autotrain-Biomedical_sc_summ-1217846142 ```
qiaoyi/Comment_Summarization4DesignTutor
qiaoyi
2022-08-06T14:34:39Z
14
0
transformers
[ "transformers", "pytorch", "jax", "rust", "t5", "text2text-generation", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1805.12471", "arxiv:1708.00055", "arxiv:1704.05426", "arxiv:1606.05250", "arxiv:1808.09121", "arxiv:1810.12885", "arxiv:1905.10044", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-08-06T14:06:42Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) ## PreTraining The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. Thereby, the following datasets were being used for (1.) and (2.): 1. **Datasets used for Unsupervised denoising objective**: - [C4](https://huggingface.co/datasets/c4) - [Wiki-DPR](https://huggingface.co/datasets/wiki_dpr) 2. **Datasets used for Supervised text-to-text language modeling objective** - Sentence acceptability judgment - CoLA [Warstadt et al., 2018](https://arxiv.org/abs/1805.12471) - Sentiment analysis - SST-2 [Socher et al., 2013](https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf) - Paraphrasing/sentence similarity - MRPC [Dolan and Brockett, 2005](https://aclanthology.org/I05-5002) - STS-B [Ceret al., 2017](https://arxiv.org/abs/1708.00055) - QQP [Iyer et al., 2017](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) - Natural language inference - MNLI [Williams et al., 2017](https://arxiv.org/abs/1704.05426) - QNLI [Rajpurkar et al.,2016](https://arxiv.org/abs/1606.05250) - RTE [Dagan et al., 2005](https://link.springer.com/chapter/10.1007/11736790_9) - CB [De Marneff et al., 2019](https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf) - Sentence completion - COPA [Roemmele et al., 2011](https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning) - Word sense disambiguation - WIC [Pilehvar and Camacho-Collados, 2018](https://arxiv.org/abs/1808.09121) - Question answering - MultiRC [Khashabi et al., 2018](https://aclanthology.org/N18-1023) - ReCoRD [Zhang et al., 2018](https://arxiv.org/abs/1810.12885) - BoolQ [Clark et al., 2019](https://arxiv.org/abs/1905.10044) ## All T5 checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=t5) ## Paper For more information, please take a look at the original paper. Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* **Abstract** Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
paola-md/recipe-reg
paola-md
2022-08-06T11:51:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T12:31:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-reg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-reg This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3717 - Rmse: 1.8362 - Mse: 3.3717 - Mae: 1.6145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:| | 3.3247 | 1.0 | 12809 | 3.3717 | 1.8362 | 3.3717 | 1.6145 | | 3.3238 | 2.0 | 25618 | 3.3722 | 1.8363 | 3.3722 | 1.6145 | | 3.3217 | 3.0 | 38427 | 3.3718 | 1.8362 | 3.3718 | 1.6145 | | 3.3215 | 4.0 | 51236 | 3.3754 | 1.8372 | 3.3754 | 1.6145 | | 3.3203 | 5.0 | 64045 | 3.3721 | 1.8363 | 3.3721 | 1.6145 | | 3.3199 | 6.0 | 76854 | 3.3731 | 1.8366 | 3.3731 | 1.6145 | | 3.319 | 7.0 | 89663 | 3.3731 | 1.8366 | 3.3731 | 1.6145 | | 3.3188 | 8.0 | 102472 | 3.3717 | 1.8362 | 3.3717 | 1.6145 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
nvidia/mit-b2
nvidia
2022-08-06T10:26:08Z
20,071
4
transformers
[ "transformers", "pytorch", "tf", "segformer", "image-classification", "vision", "dataset:imagenet_1k", "arxiv:2105.15203", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: other tags: - vision datasets: - imagenet_1k widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # SegFormer (b2-sized) encoder pre-trained-only SegFormer encoder fine-tuned on Imagenet-1k. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. This repository only contains the pre-trained hierarchical Transformer, hence it can be used for fine-tuning purposes. ## Intended uses & limitations You can use the model for fine-tuning of semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b2") model = SegformerForImageClassification.from_pretrained("nvidia/mit-b2") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nvidia/segformer-b5-finetuned-ade-640-640
nvidia
2022-08-06T10:25:55Z
210,546
39
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:scene_parse_150", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - scene_parse_150 widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # SegFormer (b5-sized) model fine-tuned on ADE20k SegFormer model fine-tuned on ADE20k at resolution 640x640. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-ade-512-512") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-ade-512-512") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nvidia/mit-b1
nvidia
2022-08-06T10:25:12Z
38,555
1
transformers
[ "transformers", "pytorch", "tf", "segformer", "image-classification", "vision", "dataset:imagenet_1k", "arxiv:2105.15203", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: other tags: - vision datasets: - imagenet_1k widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # SegFormer (b1-sized) encoder pre-trained-only SegFormer encoder fine-tuned on Imagenet-1k. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. This repository only contains the pre-trained hierarchical Transformer, hence it can be used for fine-tuning purposes. ## Intended uses & limitations You can use the model for fine-tuning of semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b1") model = SegformerForImageClassification.from_pretrained("nvidia/mit-b1") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
maan909/unisumm
maan909
2022-08-06T09:14:26Z
17
0
transformers
[ "transformers", "jax", "rust", "bart", "text2text-generation", "summarization", "en", "dataset:cnn_dailymail", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-01T06:32:51Z
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
trtd56/ppo-CartPole
trtd56
2022-08-05T23:42:39Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-05T23:42:30Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - metrics: - type: mean_reward value: 166.60 +/- 82.10 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'trtd56/ppo-CartPole' 'batch_size': 512 'minibatch_size': 128} ```
nikhilnayak/lyrics.ai
nikhilnayak
2022-08-05T23:02:19Z
2
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-08-05T18:55:44Z
--- widget: - text: "Jens Peter Hansen kommer fra Danmark" - pipeline-tag: text-generation ---
huggingtweets/chipflake
huggingtweets
2022-08-05T22:38:19Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-05T22:37:32Z
--- language: en thumbnail: http://www.huggingtweets.com/chipflake/1659739094566/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1338527116644806663/XkhjylPj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">the one, singular chip</div> <div style="text-align: center; font-size: 14px;">@chipflake</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from the one, singular chip. | Data | the one, singular chip | | --- | --- | | Tweets downloaded | 1214 | | Retweets | 80 | | Short tweets | 220 | | Tweets kept | 914 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38uu3y9r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chipflake's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/40p3p4l2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/40p3p4l2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chipflake') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Hazam/distilbert-base-uncased-finetuned-imdb
Hazam
2022-08-05T22:00:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-05T21:02:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
1-800-BAD-CODE/morsecode_en_quartznet_10x5
1-800-BAD-CODE
2022-08-05T21:55:46Z
9
1
nemo
[ "nemo", "region:us" ]
null
2022-08-05T21:31:47Z
## Model Overview This model is a Morse Code recognition model. It was trained with the package at https://github.com/1-800-BAD-CODE/MorseCodeToolkit. This model accepts as input audio signals sampled at 8khz containing Morse code. The model produces the English transcription of the Morse code signal. For inference, only the base NeMo package needs to be installed because this is just an ASR model trained to decode Morse code signals rather than speech signals. ## How to Use this Model With NeMo is installed, this model can be used to run inference on Morse code audio files. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("1-800-BAD-CODE/morsecode_en_quartznet_10x5") ``` ### Transcribing using Python First, let's download an example Morse code audio file from Wikipedia: ``` wget https://upload.wikimedia.org/wikipedia/commons/0/04/Wikipedia-Morse.ogg ``` Then simply do: ``` asr_model.transcribe(['Wikipedia-Morse.ogg']) ['WELCOME TO WIKIPEDIA, THE FREE ENCYCLOPEDIA THAT ANYONE CAN EDIT.'] ``` ## Limitations This model was trained on synthetic Morse code data generated by https://github.com/1-800-BAD-CODE/MorseCodeToolkit. Any Morse code generated with parameters outside of the range of the parameters used to generate the training data will not be well recognized by the model.
skr1125/xlm-roberta-base-finetuned-panx-all
skr1125
2022-08-05T21:43:23Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-05T21:20:17Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1781 - F1: 0.8538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2986 | 1.0 | 835 | 0.1929 | 0.8055 | | 0.1547 | 2.0 | 1670 | 0.1804 | 0.8380 | | 0.1003 | 3.0 | 2505 | 0.1781 | 0.8538 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
skr1125/xlm-roberta-base-finetuned-panx-en
skr1125
2022-08-05T21:18:38Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-05T21:03:08Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1504 | 1.0 | 50 | 0.5992 | 0.4786 | | 0.5147 | 2.0 | 100 | 0.4307 | 0.6468 | | 0.3717 | 3.0 | 150 | 0.3932 | 0.7032 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
abdulmatinomotoso/multi_news_article_title_5000
abdulmatinomotoso
2022-08-05T21:05:21Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-05T19:01:50Z
--- tags: - generated_from_trainer model-index: - name: multi_news_article_title_5000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi_news_article_title_5000 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3601 | 1.52 | 500 | 0.2547 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
skr1125/xlm-roberta-base-finetuned-panx-fr
skr1125
2022-08-05T20:47:17Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-05T20:30:21Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8330673475901692 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2851 - F1: 0.8331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5989 | 1.0 | 191 | 0.3200 | 0.7991 | | 0.2617 | 2.0 | 382 | 0.2897 | 0.8236 | | 0.1672 | 3.0 | 573 | 0.2851 | 0.8331 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
bennyeatspants/Cat-vs-Dog
bennyeatspants
2022-08-05T20:03:42Z
0
2
fastai
[ "fastai", "region:us" ]
null
2022-08-05T18:21:41Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
jackoyoungblood/ppo-LunarLander-v2c
jackoyoungblood
2022-08-05T19:46:18Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T23:03:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 267.50 +/- 18.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
embedding-data/distilroberta-base-sentence-transformer
embedding-data
2022-08-05T19:12:47Z
4,095
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:embedding-data/QQP_triplets", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-05T18:36:25Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - embedding-data/QQP_triplets --- # embedding-data/distilroberta-base-sentence-transformer This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('embedding-data/distilroberta-base-sentence-transformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('embedding-data/distilroberta-base-sentence-transformer') model = AutoModel.from_pretrained('embedding-data/distilroberta-base-sentence-transformer') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=embedding-data/distilroberta-base-sentence-transformer) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 7, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
skr1125/xlm-roberta-base-finetuned-panx-de
skr1125
2022-08-05T17:50:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T01:50:37Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Evelyn18/roberta-base-bne-ROBERTaBECAS
Evelyn18
2022-08-05T16:38:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-05T15:49:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-bne-ROBERTaBECAS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-ROBERTaBECAS This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.5760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 4.3366 | | No log | 2.0 | 12 | 3.1395 | | No log | 3.0 | 18 | 2.6092 | | No log | 4.0 | 24 | 2.5084 | | No log | 5.0 | 30 | 2.5760 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
roberta-sgariglia/ppo-LunarLander-v2
roberta-sgariglia
2022-08-05T16:04:03Z
7
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-05T16:03:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 230.59 +/- 38.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrm8488/dqn-BeamRiderNoFrameskip-v4
mrm8488
2022-08-05T14:05:47Z
11
1
stable-baselines3
[ "stable-baselines3", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-05T14:03:10Z
--- library_name: stable-baselines3 tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 2519.60 +/- 1330.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 --- # **DQN** Agent playing **BeamRiderNoFrameskip-v4** This is a trained model of a **DQN** agent playing **BeamRiderNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga mrm8488 -f logs/ python enjoy.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ -orga mrm8488 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 1024), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 600000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AlexN/xls-r-300m-pt
AlexN
2022-08-05T11:24:32Z
36
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "pt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-pt results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 pt type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 19.361 - name: Test CER type: cer value: 5.533 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Validation WER type: wer value: 47.812 - name: Validation CER type: cer value: 18.805 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 19.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 48.01 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 49.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Wer: 0.2382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0952 | 0.64 | 500 | 3.0982 | 1.0 | | 1.7975 | 1.29 | 1000 | 0.7887 | 0.5651 | | 1.4138 | 1.93 | 1500 | 0.5238 | 0.4389 | | 1.344 | 2.57 | 2000 | 0.4775 | 0.4318 | | 1.2737 | 3.21 | 2500 | 0.4648 | 0.4075 | | 1.2554 | 3.86 | 3000 | 0.4069 | 0.3678 | | 1.1996 | 4.5 | 3500 | 0.3914 | 0.3668 | | 1.1427 | 5.14 | 4000 | 0.3694 | 0.3572 | | 1.1372 | 5.78 | 4500 | 0.3568 | 0.3501 | | 1.0831 | 6.43 | 5000 | 0.3331 | 0.3253 | | 1.1074 | 7.07 | 5500 | 0.3332 | 0.3352 | | 1.0536 | 7.71 | 6000 | 0.3131 | 0.3152 | | 1.0248 | 8.35 | 6500 | 0.3024 | 0.3023 | | 1.0075 | 9.0 | 7000 | 0.2948 | 0.3028 | | 0.979 | 9.64 | 7500 | 0.2796 | 0.2853 | | 0.9594 | 10.28 | 8000 | 0.2719 | 0.2789 | | 0.9172 | 10.93 | 8500 | 0.2620 | 0.2695 | | 0.9047 | 11.57 | 9000 | 0.2537 | 0.2596 | | 0.8777 | 12.21 | 9500 | 0.2438 | 0.2525 | | 0.8629 | 12.85 | 10000 | 0.2409 | 0.2493 | | 0.8575 | 13.5 | 10500 | 0.2366 | 0.2440 | | 0.8361 | 14.14 | 11000 | 0.2317 | 0.2385 | | 0.8126 | 14.78 | 11500 | 0.2290 | 0.2382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
keepitreal/mini-phoelectra-v1
keepitreal
2022-08-05T10:47:11Z
5
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-05T09:19:28Z
--- tags: - generated_from_trainer model-index: - name: mini-phoelectra-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phoelectra-v1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.4503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1