modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-22 00:45:16
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
570 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-22 00:43:28
card
stringlengths
11
1.01M
infinitejoy/wav2vec2-large-xls-r-300m-romansh-sursilvan
infinitejoy
2022-03-24T11:51:18Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "rm-sursilv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - rm-sursilv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romansh Sursilvan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: rm-sursilv metrics: - name: Test WER type: wer value: 19.816 - name: Test CER type: cer value: 4.153 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romansh-sursilvan This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2163 - Wer: 0.1981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.1004 | 23.81 | 2000 | 0.3710 | 0.4191 | | 0.7002 | 47.62 | 4000 | 0.2342 | 0.2562 | | 0.5573 | 71.43 | 6000 | 0.2175 | 0.2177 | | 0.4799 | 95.24 | 8000 | 0.2109 | 0.1987 | | 0.4511 | 119.05 | 10000 | 0.2164 | 0.1975 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-slovenian
infinitejoy
2022-03-24T11:49:25Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - sl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: sl metrics: - name: Test WER type: wer value: 18.97 - name: Test CER type: cer value: 4.534 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 55.048 - name: Test CER type: cer value: 22.739 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 54.81 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2093 - Wer: 0.1907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.785 | 12.5 | 1000 | 0.7465 | 0.6812 | | 0.8989 | 25.0 | 2000 | 0.2495 | 0.2732 | | 0.7118 | 37.5 | 3000 | 0.2126 | 0.2284 | | 0.6367 | 50.0 | 4000 | 0.2049 | 0.2049 | | 0.5763 | 62.5 | 5000 | 0.2116 | 0.2055 | | 0.5196 | 75.0 | 6000 | 0.2111 | 0.1910 | | 0.4949 | 87.5 | 7000 | 0.2131 | 0.1931 | | 0.4797 | 100.0 | 8000 | 0.2093 | 0.1907 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
joe5campbell/Horovod_Tweet_Sentiment_1k_3eps
joe5campbell
2022-03-24T11:48:32Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T11:48:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Horovod_Tweet_Sentiment_1k_3eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Horovod_Tweet_Sentiment_1k_3eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6961535 - Train Accuracy: 0.49375 - Validation Loss: 0.6676211 - Validation Accuracy: 0.64375 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.717013 | 0.46562502 | 0.73462963 | 0.515625 | 0 | | 0.70586157 | 0.5078125 | 0.6937375 | 0.484375 | 1 | | 0.6961535 | 0.49375 | 0.6676211 | 0.64375 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Tokenizers 0.11.6
JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner
JustAdvanceTechonology
2022-03-24T11:33:03Z
5
4
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T10:20:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0269 - Validation Loss: 0.0551 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1775 | 0.0646 | 0 | | 0.0454 | 0.0580 | 1 | | 0.0269 | 0.0551 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.5.0 - Datasets 1.18.3 - Tokenizers 0.11.6
joe5campbell/Horovod_Tweet_Sentiment_1k_5eps
joe5campbell
2022-03-24T11:01:59Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T11:01:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Horovod_Tweet_Sentiment_1k_5eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Horovod_Tweet_Sentiment_1k_5eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5216092 - Train Accuracy: 0.784375 - Validation Loss: 0.92405033 - Validation Accuracy: 0.4875 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7129049 | 0.50937504 | 0.7314203 | 0.490625 | 0 | | 0.73165804 | 0.47343752 | 0.6929074 | 0.484375 | 1 | | 0.6827939 | 0.55 | 0.6864271 | 0.50625 | 2 | | 0.66076773 | 0.5578125 | 0.60817575 | 0.69687504 | 3 | | 0.5216092 | 0.784375 | 0.92405033 | 0.4875 | 4 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Tokenizers 0.11.6
niksmer/RoBERTa-RILE
niksmer
2022-03-24T09:19:40Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: RoBERTa-RILE results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # RoBERTa-RILE This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of three political categories: "neutral", "left", "right". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/RoBERTa-RILE") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data ## Training and evaluation data RoBERTa-RILE was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in over 50 main categories - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each categorie. It has created a valid left-right-scale, the rile-index, to aaggregate manifesto in a standardized, onde-dimensional political space from left to right based on saliency-theory. RoBERTa-RILE classifies texts based on the rile index. ### Tain data Train data was slightly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 52,277 | | 1 | left | 37,106 | | 2 | right | 26,560 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 9,198 | | 1 | left | 6,637 | | 2 | right | 4,626 | Overall count: 20,461 ### Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 3,881 | | 1 | left | 2,611 | | 2 | right | 1,838 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.7442 | 1.0 | 1812 | 0.6827 | 0.7120 | 0.7120 | 0.7007 | 0.7126 | 0.7120 | 0.7120 | | 0.6447 | 2.0 | 3624 | 0.6618 | 0.7281 | 0.7281 | 0.7169 | 0.7281 | 0.7281 | 0.7281 | | 0.5467 | 3.0 | 5436 | 0.6657 | 0.7309 | 0.7309 | 0.7176 | 0.7295 | 0.7309 | 0.7309 | | 0.5179 | 4.0 | 7248 | 0.6654 | 0.7346 | 0.7346 | 0.7240 | 0.7345 | 0.7346 | 0.7346 | | 0.4787 | 5.0 | 9060 | 0.6757 | 0.7350 | 0.7350 | 0.7241 | 0.7347 | 0.7350 | 0.7350 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.74 | 0.72 | 0.73 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.69 | 0.67 | 0.69 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | neutral | 0.77 | 0.74 | | left | 0.73 | 0.65 | | right | 0.67 | 0.62 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [ManiBERT](https://huggingface.co/niksmer/ManiBERT). ![image](english_robertarile_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
buvnswrn/daml-t5-pretrain
buvnswrn
2022-03-24T09:08:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-24T07:11:08Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - imdb model-index: - name: daml-t5-pretrain-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daml-t5-pretrain-imdb This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
niksmer/ManiBERT
niksmer
2022-03-24T09:03:13Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: ManiBERT results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # ManiBERT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of 56 political categories: ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/ManiBERT") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Train Data ManiBERT was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The resulting Datasets are higly (!) imbalanced. See Evaluation. ## Evaluation | Description | Label | Count Train Data | Count Validation Data | Count Test Data | Validation F1-Score | Test F1-Score | |-------------------------------------------------------------------|-------|------------------|-----------------------|-----------------|---------------------|---------------| | Foreign Special Relationships: Positive | 0 | 545 | 96 | 60 | 0.43 | 0.45 | | Foreign Special Relationships: Negative | 1 | 66 | 14 | 22 | 0.22 | 0.09 | | Anti-Imperialism | 2 | 93 | 16 | 1 | 0.16 | 0.00 | | Military: Positive | 3 | 1,969 | 356 | 159 | 0.69 | 0.63 | | Military: Negative | 4 | 489 | 89 | 52 | 0.59 | 0.63 | | Peace | 5 | 418 | 80 | 49 | 0.57 | 0.64 | | Internationalism: Positive | 6 | 2,401 | 417 | 404 | 0.60 | 0.54 | | European Community/Union or Latin America Integration: Positive | 7 | 930 | 156 | 20 | 0.58 | 0.32 | | Internationalism: Negative | 8 | 209 | 40 | 57 | 0.28 | 0.05 | | European Community/Union or Latin America Integration: Negative | 9 | 520 | 81 | 0 | 0.39 | - | | Freedom and Human Rights | 10 | 2,196 | 389 | 76 | 0.50 | 0.34 | | Democracy | 11 | 3,045 | 534 | 206 | 0.53 | 0.51 | | Constitutionalism: Positive | 12 | 259 | 48 | 12 | 0.34 | 0.22 | | Constitutionalism: Negative | 13 | 380 | 72 | 2 | 0.34 | 0.00 | | Decentralisation: Positive | 14 | 2,791 | 481 | 331 | 0.49 | 0.45 | | Centralisation: Positive | 15 | 150 | 33 | 71 | 0.11 | 0.00 | | Governmental and Administrative Efficiency | 16 | 3,905 | 711 | 105 | 0.50 | 0.32 | | Political Corruption | 17 | 900 | 186 | 234 | 0.59 | 0.55 | | Political Authority | 18 | 3,488 | 627 | 300 | 0.51 | 0.39 | | Free Market Economy | 19 | 1,768 | 309 | 53 | 0.40 | 0.16 | | Incentives: Positive | 20 | 3,100 | 544 | 81 | 0.52 | 0.28 | | Market Regulation | 21 | 3,562 | 616 | 210 | 0.50 | 0.36 | | Economic Planning | 22 | 533 | 93 | 67 | 0.31 | 0.12 | | Corporatism/ Mixed Economy | 23 | 193 | 32 | 23 | 0.28 | 0.33 | | Protectionism: Positive | 24 | 633 | 103 | 180 | 0.44 | 0.22 | | Protectionism: Negative | 25 | 723 | 118 | 149 | 0.52 | 0.40 | | Economic Goals | 26 | 817 | 139 | 148 | 0.05 | 0.00 | | Keynesian Demand Management | 27 | 160 | 25 | 9 | 0.00 | 0.00 | | Economic Growth: Positive | 28 | 3,142 | 607 | 374 | 0.53 | 0.30 | | Technology and Infrastructure: Positive | 29 | 8,643 | 1,529 | 339 | 0.71 | 0.56 | | Controlled Economy | 30 | 567 | 96 | 94 | 0.47 | 0.16 | | Nationalisation | 31 | 832 | 157 | 27 | 0.56 | 0.16 | | Economic Orthodoxy | 32 | 1,721 | 287 | 184 | 0.55 | 0.48 | | Marxist Analysis: Positive | 33 | 148 | 33 | 0 | 0.20 | - | | Anti-Growth Economy and Sustainability | 34 | 2,676 | 452 | 250 | 0.43 | 0.33 | | Environmental Protection | 35 | 6,731 | 1,163 | 934 | 0.70 | 0.67 | | Culture: Positive | 36 | 2,082 | 358 | 92 | 0.69 | 0.56 | | Equality: Positive | 37 | 6,630 | 1,126 | 361 | 0.57 | 0.43 | | Welfare State Expansion | 38 | 13,486 | 2,405 | 990 | 0.72 | 0.61 | | Welfare State Limitation | 39 | 926 | 151 | 2 | 0.45 | 0.00 | | Education Expansion | 40 | 7,191 | 1,324 | 274 | 0.78 | 0.63 | | Education Limitation | 41 | 154 | 27 | 1 | 0.17 | 0.00 | | National Way of Life: Positive | 42 | 2,105 | 385 | 395 | 0.48 | 0.34 | | National Way of Life: Negative | 43 | 743 | 147 | 2 | 0.27 | 0.00 | | Traditional Morality: Positive | 44 | 1,375 | 234 | 19 | 0.55 | 0.14 | | Traditional Morality: Negative | 45 | 291 | 54 | 38 | 0.30 | 0.23 | | Law and Order | 46 | 5,582 | 949 | 381 | 0.72 | 0.71 | | Civic Mindedness: Positive | 47 | 1,348 | 229 | 27 | 0.45 | 0.28 | | Multiculturalism: Positive | 48 | 2,006 | 355 | 71 | 0.61 | 0.35 | | Multiculturalism: Negative | 49 | 144 | 31 | 7 | 0.33 | 0.00 | | Labour Groups: Positive | 50 | 3,856 | 707 | 57 | 0.64 | 0.14 | | Labour Groups: Negative | 51 | 208 | 35 | 0 | 0.44 | - | | Agriculture and Farmers | 52 | 2,996 | 490 | 130 | 0.67 | 0.56 | | Middle Class and Professional Groups | 53 | 271 | 38 | 12 | 0.38 | 0.40 | | Underprivileged Minority Groups | 54 | 1,417 | 252 | 82 | 0.34 | 0.33 | | Non-economic Demographic Groups | 55 | 2,429 | 435 | 106 | 0.42 | 0.24 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=5e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 1.7638 | 1.0 | 1812 | 1.6471 | 0.5531 | 0.5531 | 0.3354 | 0.5368 | 0.5531 | 0.5531 | | 1.4501 | 2.0 | 3624 | 1.5167 | 0.5807 | 0.5807 | 0.3921 | 0.5655 | 0.5807 | 0.5807 | | 1.0638 | 3.0 | 5436 | 1.5017 | 0.5893 | 0.5893 | 0.4240 | 0.5789 | 0.5893 | 0.5893 | | 0.9263 | 4.0 | 7248 | 1.5173 | 0.5975 | 0.5975 | 0.4499 | 0.5901 | 0.5975 | 0.5975 | | 0.7859 | 5.0 | 9060 | 1.5574 | 0.5978 | 0.5978 | 0.4564 | 0.5903 | 0.5978 | 0.5978 | ### Overall evaluation | Type | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | Validation | 0.60 | 0.46 | 0.59 | | Test | 0.48 | 0.30 | 0.47 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). ![image](english_manibert_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
tartuNLP/liv4ever-hugging-mt
tartuNLP
2022-03-24T07:33:01Z
5
0
transformers
[ "transformers", "pytorch", "fsmt", "text2text-generation", "translation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T01:38:25Z
--- license: apache-2.0 tags: - translation widget: - text: "<2li> Let us generate some Livonian text!" ---
nguyenvulebinh/iwslt-asr-wav2vec-large-4500h
nguyenvulebinh
2022-03-24T07:12:52Z
4
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en", "dataset:common_voice", "dataset:librispeech_asr", "dataset:how2", "dataset:must-c-v1", "dataset:must-c-v2", "dataset:europarl", "dataset:tedlium", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-23T14:53:55Z
--- language: en datasets: - common_voice - librispeech_asr - how2 - must-c-v1 - must-c-v2 - europarl - tedlium tags: - audio - automatic-speech-recognition license: cc-by-nc-4.0 --- # Fine-Tune Wav2Vec2 large model for English ASR ### Data for fine-tune | Dataset | Duration in hours | |--------------|-------------------| | Common Voice | 1667 | | Europarl | 85 | | How2 | 356 | | Librispeech | 936 | | MuST-C v1 | 407 | | MuST-C v2 | 482 | | Tedlium | 482 | ### Evaluation result | Dataset | Duration in hours | WER w/o LM | WER with LM | |-------------|-------------------|------------|-------------| | Librispeech | 5.4 | 2.9 | 1.1 | | Tedlium | 2.6 | 7.9 | 5.4 | ### Usage [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1FAhtGvjRdHT4W0KeMdMMlL7sm6Hbe7dv?usp=sharing) ```python from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader from transformers import Wav2Vec2ProcessorWithLM from IPython.lib.display import Audio import torchaudio import torch # Load model & processor model_name = "nguyenvulebinh/iwslt-asr-wav2vec-large-4500h" model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name) processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Load an example audio (16k) audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="tst_2010_sample.wav"))) input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt') # Infer output = model(**input_data) # Output transcript without LM print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy())) # and of course there's teams that have a lot more tada structures and among the best are recent graduates of kindergarten # Output transcript with LM print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text) # and of course there are teams that have a lot more ta da structures and among the best are recent graduates of kindergarten ``` ### Model Parameters License The ASR model parameters are made available for non-commercial use only, under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode ### Contact [email protected] [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
libalabala/mt5-small-finetuned-amazon-en-es
libalabala
2022-03-24T07:00:11Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-17T08:45:00Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1997 - Rouge1: 16.7312 - Rouge2: 8.6607 - Rougel: 16.1846 - Rougelsum: 16.2411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0772 | 1.0 | 1209 | 3.3307 | 12.4644 | 4.0353 | 12.0167 | 12.0722 | | 4.0223 | 2.0 | 2418 | 3.2257 | 15.338 | 7.0168 | 14.7769 | 14.8391 | | 3.8018 | 3.0 | 3627 | 3.1997 | 16.7312 | 8.6607 | 16.1846 | 16.2411 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
simonnedved/codet5-base
simonnedved
2022-03-24T06:57:59Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "dis2py", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T22:11:24Z
--- license: apache-2.0 tags: - dis2py - generated_from_trainer model-index: - name: codet5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-base This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/codeparrot-ds-sample
Pavithra
2022-03-24T06:41:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T05:12:32Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5219 - eval_runtime: 603.3856 - eval_samples_per_second: 154.402 - eval_steps_per_second: 4.826 - epoch: 0.15 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
quincyqiang/chinese-roberta-wwm-ext
quincyqiang
2022-03-24T04:58:07Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:52:35Z
--- license: apache-2.0 ---
Yaxin/xlm-roberta-base-yelp-mlm
Yaxin
2022-03-24T04:44:37Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "dataset:yelp_review_full", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:10:58Z
--- license: mit tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: xlm-roberta-base-yelp-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.7356223359340127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-yelp-mlm This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1743 - Accuracy: 0.7356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
FuriouslyAsleep/unhappyZebra100
FuriouslyAsleep
2022-03-24T04:39:04Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:FuriouslyAsleep/autotrain-data-techDataClassifeier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T04:38:22Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - FuriouslyAsleep/autotrain-data-techDataClassifeier co2_eq_emissions: 0.6969569001670619 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 664919631 - CO2 Emissions (in grams): 0.6969569001670619 ## Validation Metrics - Loss: 0.022509008646011353 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/FuriouslyAsleep/autotrain-techDataClassifeier-664919631 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
rurupang/roberta-base-finetuned-sts
rurupang
2022-03-24T01:54:26Z
25
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T14:13:32Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: roberta-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.956039443806831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sts This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1999 - Pearsonr: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 329 | 0.2462 | 0.9478 | | 1.2505 | 2.0 | 658 | 0.1671 | 0.9530 | | 1.2505 | 3.0 | 987 | 0.1890 | 0.9525 | | 0.133 | 4.0 | 1316 | 0.2360 | 0.9548 | | 0.0886 | 5.0 | 1645 | 0.2265 | 0.9528 | | 0.0886 | 6.0 | 1974 | 0.2097 | 0.9518 | | 0.0687 | 7.0 | 2303 | 0.2281 | 0.9523 | | 0.0539 | 8.0 | 2632 | 0.2212 | 0.9542 | | 0.0539 | 9.0 | 2961 | 0.1843 | 0.9532 | | 0.045 | 10.0 | 3290 | 0.1999 | 0.9560 | | 0.0378 | 11.0 | 3619 | 0.2357 | 0.9533 | | 0.0378 | 12.0 | 3948 | 0.2134 | 0.9541 | | 0.033 | 13.0 | 4277 | 0.2273 | 0.9540 | | 0.03 | 14.0 | 4606 | 0.2148 | 0.9533 | | 0.03 | 15.0 | 4935 | 0.2207 | 0.9534 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
negfir/distilbert-base-uncased-finetuned-squad
negfir
2022-03-24T01:39:12Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2789 | 1.0 | 5533 | 1.2200 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/btohtoh
huggingtweets
2022-03-24T01:35:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T01:35:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh</div> <div style="text-align: center; font-size: 14px;">@btohtoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh. | Data | BToh | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 347 | | Short tweets | 480 | | Tweets kept | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnk5832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
negfir/distilbert-base-uncased-finetuned-cola
negfir
2022-03-24T00:39:00Z
11
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-15T15:29:20Z
--- tags: - generated_from_keras_callback model-index: - name: negfir/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # negfir/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [negfir/uncased_L-12_H-128_A-2](https://huggingface.co/negfir/uncased_L-12_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6077 - Validation Loss: 0.6185 - Train Matthews Correlation: 0.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.6116 | 0.6187 | 0.0 | 0 | | 0.6070 | 0.6190 | 0.0 | 1 | | 0.6077 | 0.6185 | 0.0 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
espnet/russian_commonvoice_blstm
espnet
2022-03-24T00:02:17Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "ru", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-23T23:59:42Z
--- tags: - espnet - audio - automatic-speech-recognition language: ru datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/russian_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout fa1b865352475b744c37f70440de1cc6b257ba70 pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/russian_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Mar 23 19:56:59 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `fa1b865352475b744c37f70440de1cc6b257ba70` - Commit date: `Wed Feb 16 16:42:36 2022 -0500` ## asr_blstm_specaug_num_time_mask_2_lr_0.1 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|71189|79.3|18.4|2.4|2.1|22.8|71.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|537025|95.0|3.0|2.0|1.1|6.1|71.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|399162|93.2|4.5|2.3|1.4|8.2|71.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_blstm_specaug_num_time_mask_2_lr_0.1 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_ru_bpe150_sp/train/speech_shape - exp/asr_stats_raw_ru_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_ru_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_ru_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_ru_sp/wav.scp - speech - sound - - dump/raw/train_ru_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_ru/wav.scp - speech - sound - - dump/raw/dev_ru/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - е - о - и - с - м - а - в - н - д - т - у - . - я - ы - л - й - з - п - к - но - ',' - ▁в - ра - б - ж - ю - г - го - ▁по - ▁с - ни - ч - х - р - ко - ре - ш - ли - ть - ▁на - ль - ва - ер - ▁и - ет - ст - ро - на - ла - ле - ь - ен - то - ло - да - ка - ▁не - ств - ти - ци - ся - ▁за - ▁про - че - ем - ру - же - та - ▁при - ▁со - ▁это - ри - ф - ки - бо - ц - ▁С - ста - ения - щ - сти - э - К - О - А - И - '-' - Т - Я - Б - Д - М - '?' - – - Г - — - '!' - У - ъ - '"' - » - ё - Ф - ':' - Х - Ю - F - ; - O - I - E - R - − - В - С - '''' - П - C - L - A - ‐ - H - T - G - S - ( - ) - B - K - P - Z - M - Й - X - Ц - Ж - Ч - Ш - « - З - Л - Е - Р - Э - N - Н - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/ru_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_ru_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
public-data/dlib_face_landmark_model
public-data
2022-03-23T22:54:12Z
0
0
null
[ "region:us" ]
null
2022-03-23T22:52:02Z
# dlib face landmark model - http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
ydshieh/roberta-base-squad2
ydshieh
2022-03-23T22:39:25Z
57
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "en", "dataset:squad_v2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T22:29:51Z
--- language: en datasets: - squad_v2 license: cc-by-4.0 --- # roberta-base for QA NOTE: This is version 2 of the model. See [this github issue](https://github.com/deepset-ai/FARM/issues/552) from the FARM repository for an explanation of why we updated. If you'd like to use version 1, specify `revision="v1.0"` when loading the model in Transformers 3.5. For exmaple: ``` model_name = "deepset/roberta-base-squad2" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model. ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### In FARM ```python from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name) ``` ### In haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` ## Authors Branden Chan: `branden.chan [at] deepset.ai` Timo Möller: `timo.moeller [at] deepset.ai` Malte Pietsch: `malte.pietsch [at] deepset.ai` Tanay Soni: `tanay.soni [at] deepset.ai` ## About us ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems. Some of our work: - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) - [FARM](https://github.com/deepset-ai/FARM) - [Haystack](https://github.com/deepset-ai/haystack/) Get in touch: [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
radev/xlm-roberta-base-finetuned-panx-de
radev
2022-03-23T22:27:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T22:11:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8593216480764853 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1807 | 0.8065 | | 0.2218 | 2.0 | 526 | 0.1365 | 0.8485 | | 0.2218 | 3.0 | 789 | 0.1345 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
ydshieh/roberta-large-ner-english
ydshieh
2022-03-23T22:24:57Z
36
2
transformers
[ "transformers", "tf", "roberta", "token-classification", "en", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-23T22:13:16Z
--- language: en datasets: - conll2003 widget: - text: "My name is jean-baptiste and I live in montreal" - text: "My name is clara and I live in berkeley, california." - text: "My name is wolfgang and I live in berlin" --- # roberta-large-ner-english: model fine-tuned from roberta-large for NER task ## Introduction [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: Train | Validation -|- 17494 | 3250 ## How to use camembert-ner with HuggingFace ##### Load camembert-ner and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer") [{'entity_group': 'ORG', 'score': 0.99381506, 'word': ' Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.99970853, 'word': ' Steve Jobs', 'start': 29, 'end': 39}, {'entity_group': 'PER', 'score': 0.99981767, 'word': ' Steve Wozniak', 'start': 41, 'end': 54}, {'entity_group': 'PER', 'score': 0.99956465, 'word': ' Ronald Wayne', 'start': 59, 'end': 71}, {'entity_group': 'PER', 'score': 0.9997918, 'word': ' Wozniak', 'start': 92, 'end': 99}, {'entity_group': 'MISC', 'score': 0.99956393, 'word': ' Apple I', 'start': 102, 'end': 109}] ``` ## Model performances Model performances computed on conll2003 validation dataset (computed on the tokens predictions) entity|precision|recall|f1 -|-|-|- PER|0.9914|0.9927|0.9920 ORG|0.9627|0.9661|0.9644 LOC|0.9795|0.9862|0.9828 MISC|0.9292|0.9262|0.9277 Overall|0.9740|0.9766|0.9753 On private dataset (email, chat, informal discussion), computed on word predictions: entity|precision|recall|f1 -|-|-|- PER|0.8823|0.9116|0.8967 ORG|0.7694|0.7292|0.7487 LOC|0.8619|0.7768|0.8171 By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving: entity|precision|recall|f1 -|-|-|- PER|0.9146|0.8287|0.8695 ORG|0.7655|0.6437|0.6993 LOC|0.8727|0.6180|0.7236
bigmorning/my-gpt-model-5
bigmorning
2022-03-23T22:11:47Z
5
1
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T22:04:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-5 This model is a fine-tuned version of [bigmorning/my-gpt-model-3](https://huggingface.co/bigmorning/my-gpt-model-3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.9979 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 4.9979 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/radagasttbrown
huggingtweets
2022-03-23T21:33:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T21:13:19Z
--- language: en thumbnail: http://www.huggingtweets.com/radagasttbrown/1648071147429/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362404255798280192/yIKMf5AN_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radagast 🌋</div> <div style="text-align: center; font-size: 14px;">@radagasttbrown</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Radagast 🌋. | Data | Radagast 🌋 | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 457 | | Short tweets | 230 | | Tweets kept | 2541 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b1t67ko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @radagasttbrown's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/boipgvkp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/boipgvkp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/radagasttbrown') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bigmorning/my-gpt-model-4
bigmorning
2022-03-23T20:00:04Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:52:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-4 This model is a fine-tuned version of [bigmorning/my-gpt-model-3](https://huggingface.co/bigmorning/my-gpt-model-3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.0556 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.0556 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Zarkit/bert-base-multilingual-uncased-sentiment1
Zarkit
2022-03-23T19:50:26Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T18:58:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Zarkit/bert-base-multilingual-uncased-sentiment1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Zarkit/bert-base-multilingual-uncased-sentiment1 This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4891 - Validation Loss: 0.5448 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7980, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6166 | 0.5680 | 0 | | 0.4891 | 0.5448 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
kj141/distilbert-base-uncased-finetuned-squad
kj141
2022-03-23T19:48:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-08T22:43:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/MASKGPT2
BigSalmon
2022-03-23T19:26:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:20:45Z
``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
gayanin/bart-med-term-conditional-masking
gayanin
2022-03-23T19:06:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T14:24:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-med-term-conditional-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5115 - Rouge2 Precision: 0.7409 - Rouge2 Recall: 0.5343 - Rouge2 Fmeasure: 0.6025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6278 | 1.0 | 15827 | 0.5546 | 0.7255 | 0.5244 | 0.5908 | | 0.5356 | 2.0 | 31654 | 0.5286 | 0.7333 | 0.5293 | 0.5966 | | 0.4757 | 3.0 | 47481 | 0.5154 | 0.7376 | 0.532 | 0.5998 | | 0.4337 | 4.0 | 63308 | 0.5107 | 0.7406 | 0.5342 | 0.6023 | | 0.4045 | 5.0 | 79135 | 0.5115 | 0.7409 | 0.5343 | 0.6025 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ScandinavianMrT/gpt2_ONION_prefinetune_4.0
ScandinavianMrT
2022-03-23T18:39:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:34:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_ONION_prefinetune_4.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_ONION_prefinetune_4.0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 153 | 4.7368 | | No log | 2.0 | 306 | 4.6732 | | No log | 3.0 | 459 | 4.6527 | | 4.8529 | 4.0 | 612 | 4.6484 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
DrishtiSharma
2022-03-23T18:35:27Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-rm-sursilv-d11 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: rm-sursilv metrics: - type: wer value: 0.24094169578811844 name: Test WER - name: Test CER type: cer value: 0.049832791672554284 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: rm-sursilv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 - Wer: 0.2415 #### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 125.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 | | 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 | | 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 | | 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 | | 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 | | 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 | | 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2
DrishtiSharma
2022-03-23T18:35:22Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.21695212999560826 - name: Test CER type: cer value: 0.052850080572474256 - name: Test WER (+LM) type: wer value: 0.14551310203484116 - name: Test CER (+LM) type: cer value: 0.03927566711277415 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.560722380639029 - name: Dev CER type: cer value: 0.2279626093074681 - name: Dev WER (+LM) type: wer value: 0.46486802661402354 - name: Dev CER (+LM) type: cer value: 0.21105136194592422 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
DrishtiSharma
2022-03-23T18:35:17Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "mt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - mt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-maltese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 0.2781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0174 | 9.01 | 1000 | 3.0552 | 1.0 | | 1.0446 | 18.02 | 2000 | 0.6708 | 0.7577 | | 0.7995 | 27.03 | 3000 | 0.4202 | 0.4770 | | 0.6978 | 36.04 | 4000 | 0.3054 | 0.3494 | | 0.6189 | 45.05 | 5000 | 0.2878 | 0.3154 | | 0.5667 | 54.05 | 6000 | 0.3114 | 0.3286 | | 0.5173 | 63.06 | 7000 | 0.3085 | 0.3021 | | 0.4682 | 72.07 | 8000 | 0.3058 | 0.2969 | | 0.451 | 81.08 | 9000 | 0.3146 | 0.2907 | | 0.4213 | 90.09 | 10000 | 0.3030 | 0.2881 | | 0.4005 | 99.1 | 11000 | 0.3001 | 0.2789 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Script !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese \ --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs
AndrewMcDowell/wav2vec2-xls-r-300m-german-de
AndrewMcDowell
2022-03-23T18:35:11Z
36
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 20.16 - name: Test CER type: cer value: 5.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 39.79 - name: Test CER type: cer value: 15.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 47.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. eval results: WER: 0.20161578657865786 CER: 0.05062357805269733 --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1768 - Wer: 0.2016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.7531 | 0.04 | 500 | 5.4564 | 1.0 | | 2.9882 | 0.08 | 1000 | 3.0041 | 1.0 | | 2.1953 | 0.13 | 1500 | 1.1723 | 0.7121 | | 1.2406 | 0.17 | 2000 | 0.3656 | 0.3623 | | 1.1294 | 0.21 | 2500 | 0.2843 | 0.2926 | | 1.0731 | 0.25 | 3000 | 0.2554 | 0.2664 | | 1.051 | 0.3 | 3500 | 0.2387 | 0.2535 | | 1.0479 | 0.34 | 4000 | 0.2345 | 0.2512 | | 1.0026 | 0.38 | 4500 | 0.2270 | 0.2452 | | 0.9921 | 0.42 | 5000 | 0.2212 | 0.2353 | | 0.9839 | 0.47 | 5500 | 0.2141 | 0.2330 | | 0.9907 | 0.51 | 6000 | 0.2122 | 0.2334 | | 0.9788 | 0.55 | 6500 | 0.2114 | 0.2270 | | 0.9687 | 0.59 | 7000 | 0.2066 | 0.2323 | | 0.9777 | 0.64 | 7500 | 0.2033 | 0.2237 | | 0.9476 | 0.68 | 8000 | 0.2020 | 0.2194 | | 0.9625 | 0.72 | 8500 | 0.1977 | 0.2191 | | 0.9497 | 0.76 | 9000 | 0.1976 | 0.2175 | | 0.9781 | 0.81 | 9500 | 0.1956 | 0.2159 | | 0.9552 | 0.85 | 10000 | 0.1958 | 0.2191 | | 0.9345 | 0.89 | 10500 | 0.1964 | 0.2158 | | 0.9528 | 0.93 | 11000 | 0.1926 | 0.2154 | | 0.9502 | 0.98 | 11500 | 0.1953 | 0.2149 | | 0.9358 | 1.02 | 12000 | 0.1927 | 0.2167 | | 0.941 | 1.06 | 12500 | 0.1901 | 0.2115 | | 0.9287 | 1.1 | 13000 | 0.1936 | 0.2090 | | 0.9491 | 1.15 | 13500 | 0.1900 | 0.2104 | | 0.9478 | 1.19 | 14000 | 0.1931 | 0.2120 | | 0.946 | 1.23 | 14500 | 0.1914 | 0.2134 | | 0.9499 | 1.27 | 15000 | 0.1931 | 0.2173 | | 0.9346 | 1.32 | 15500 | 0.1913 | 0.2105 | | 0.9509 | 1.36 | 16000 | 0.1902 | 0.2137 | | 0.9294 | 1.4 | 16500 | 0.1895 | 0.2086 | | 0.9418 | 1.44 | 17000 | 0.1913 | 0.2183 | | 0.9302 | 1.49 | 17500 | 0.1884 | 0.2114 | | 0.9418 | 1.53 | 18000 | 0.1894 | 0.2108 | | 0.9363 | 1.57 | 18500 | 0.1886 | 0.2132 | | 0.9338 | 1.61 | 19000 | 0.1856 | 0.2078 | | 0.9185 | 1.66 | 19500 | 0.1852 | 0.2056 | | 0.9216 | 1.7 | 20000 | 0.1874 | 0.2095 | | 0.9176 | 1.74 | 20500 | 0.1873 | 0.2078 | | 0.9288 | 1.78 | 21000 | 0.1865 | 0.2097 | | 0.9278 | 1.83 | 21500 | 0.1869 | 0.2100 | | 0.9295 | 1.87 | 22000 | 0.1878 | 0.2095 | | 0.9221 | 1.91 | 22500 | 0.1852 | 0.2121 | | 0.924 | 1.95 | 23000 | 0.1855 | 0.2042 | | 0.9104 | 2.0 | 23500 | 0.1858 | 0.2105 | | 0.9284 | 2.04 | 24000 | 0.1850 | 0.2080 | | 0.9162 | 2.08 | 24500 | 0.1839 | 0.2045 | | 0.9111 | 2.12 | 25000 | 0.1838 | 0.2080 | | 0.91 | 2.17 | 25500 | 0.1889 | 0.2106 | | 0.9152 | 2.21 | 26000 | 0.1856 | 0.2026 | | 0.9209 | 2.25 | 26500 | 0.1891 | 0.2133 | | 0.9094 | 2.29 | 27000 | 0.1857 | 0.2089 | | 0.9065 | 2.34 | 27500 | 0.1840 | 0.2052 | | 0.9156 | 2.38 | 28000 | 0.1833 | 0.2062 | | 0.8986 | 2.42 | 28500 | 0.1789 | 0.2001 | | 0.9045 | 2.46 | 29000 | 0.1769 | 0.2022 | | 0.9039 | 2.51 | 29500 | 0.1819 | 0.2073 | | 0.9145 | 2.55 | 30000 | 0.1828 | 0.2063 | | 0.9081 | 2.59 | 30500 | 0.1811 | 0.2049 | | 0.9252 | 2.63 | 31000 | 0.1833 | 0.2086 | | 0.8957 | 2.68 | 31500 | 0.1795 | 0.2083 | | 0.891 | 2.72 | 32000 | 0.1809 | 0.2058 | | 0.9023 | 2.76 | 32500 | 0.1812 | 0.2061 | | 0.8918 | 2.8 | 33000 | 0.1775 | 0.1997 | | 0.8852 | 2.85 | 33500 | 0.1790 | 0.1997 | | 0.8928 | 2.89 | 34000 | 0.1767 | 0.2013 | | 0.9079 | 2.93 | 34500 | 0.1735 | 0.1986 | | 0.9032 | 2.97 | 35000 | 0.1793 | 0.2024 | | 0.9018 | 3.02 | 35500 | 0.1778 | 0.2027 | | 0.8846 | 3.06 | 36000 | 0.1776 | 0.2046 | | 0.8848 | 3.1 | 36500 | 0.1812 | 0.2064 | | 0.9062 | 3.14 | 37000 | 0.1800 | 0.2018 | | 0.9011 | 3.19 | 37500 | 0.1783 | 0.2049 | | 0.8996 | 3.23 | 38000 | 0.1810 | 0.2036 | | 0.893 | 3.27 | 38500 | 0.1805 | 0.2056 | | 0.897 | 3.31 | 39000 | 0.1773 | 0.2035 | | 0.8992 | 3.36 | 39500 | 0.1804 | 0.2054 | | 0.8987 | 3.4 | 40000 | 0.1768 | 0.2016 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset mozilla-foundation/common_voice_7_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
sammy786/wav2vec2-xlsr-bashkir
sammy786
2022-03-23T18:35:07Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - ba - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ba metrics: - name: Test WER type: wer value: 11.32 - name: Test CER type: cer value: 2.34 --- # sammy786/wav2vec2-xlsr-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ba dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: - Wer: ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 5.387100 | 1.982867 | 1.000000 | | 400 | 1.269800 | 0.369958 | 0.545755 | | 600 | 0.903600 | 0.287705 | 0.465594 | | 800 | 0.787300 | 0.235142 | 0.417091 | | 1000 | 0.816300 | 0.206325 | 0.390534 | | 1200 | 0.700500 | 0.197106 | 0.383987 | | 1400 | 0.707100 | 0.179855 | 0.381368 | | 1600 | 0.657800 | 0.181605 | 0.370593 | | 1800 | 0.647800 | 0.168626 | 0.358767 | | 2000 | 0.650700 | 0.164833 | 0.351483 | | 2200 | 0.490900 | 0.168133 | 0.363309 | | 2400 | 0.431000 | 0.161201 | 0.344350 | | 2600 | 0.372100 | 0.160254 | 0.338280 | | 2800 | 0.367500 | 0.150885 | 0.329687 | | 3000 | 0.351300 | 0.154112 | 0.331392 | | 3200 | 0.314800 | 0.147147 | 0.326700 | | 3400 | 0.316800 | 0.142681 | 0.325090 | | 3600 | 0.313000 | 0.138736 | 0.319553 | | 3800 | 0.291800 | 0.138166 | 0.315570 | | 4000 | 0.311300 | 0.135977 | 0.322894 | | 4200 | 0.304900 | 0.128820 | 0.308627 | | 4400 | 0.301600 | 0.129475 | 0.307440 | | 4600 | 0.281800 | 0.131863 | 0.305967 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-bashkir --dataset mozilla-foundation/common_voice_8_0 --config ba --split test ```
masapasa/xls-r-300m-it-cv8-ds13
masapasa
2022-03-23T18:35:02Z
7
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "it", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 100.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3549 - Wer: 0.3827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4129 | 5.49 | 500 | 3.3224 | 1.0 | | 2.9323 | 10.98 | 1000 | 2.9128 | 1.0000 | | 1.6839 | 16.48 | 1500 | 0.7740 | 0.6854 | | 1.485 | 21.97 | 2000 | 0.5830 | 0.5976 | | 1.362 | 27.47 | 2500 | 0.4866 | 0.4905 | | 1.2752 | 32.96 | 3000 | 0.4240 | 0.4967 | | 1.1957 | 38.46 | 3500 | 0.3899 | 0.4258 | | 1.1646 | 43.95 | 4000 | 0.3597 | 0.4014 | | 1.1265 | 49.45 | 4500 | 0.3559 | 0.3829 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
manifoldix/xlsr-sg-lm
manifoldix
2022-03-23T18:34:59Z
9
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "gsw", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: gsw tags: - hf-asr-leaderboard - robust-speech-event widget: - example_title: swiss parliament sample 1 src: https://huggingface.co/manifoldix/xlsr-sg-lm/resolve/main/07e73bcaa2ab192aea9524d72db45f34f274d1b3d5672434c462d32d44d792be.mp3 - example_title: swiss parliament sample 2 src: https://huggingface.co/manifoldix/xlsr-sg-lm/resolve/main/14a2f855363920f111c7b30e8632c19e5f340ab5031e1ed2621db39baf452ae0.mp3 model-index: - name: XLS-R-1b Wav2Vec2 Swiss German results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER on Swiss parliament type: wer value: 34.6% - name: Test WER on Swiss dialect test set type: wer value: 40% --- ## XLSR-1b Swiss German Fine-tuned on the Swiss parliament dataset from FHNW v1 (70h). Tested on the Swiss parliament test set with a WER of 34.6% Tested on the "Swiss German Dialects" with a WER of 40% Both test sets can be accessed here: [fhnw_datasets](https://www.cs.technik.fhnw.ch/i4ds-datasets) The Swiss German dialect private test set has been uploaded on huggingface: [huggingface_swiss_dialects](https://huggingface.co/datasets/manifoldix/swg_parliament_fhnw)
infinitejoy/wav2vec2-large-xls-r-300m-galician
infinitejoy
2022-03-23T18:34:49Z
32
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gl", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gl - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gl metrics: - name: Test WER type: wer value: 101.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 105.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 101.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-galician This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GL dataset. It achieves the following results on the evaluation set: - Loss: 0.1525 - Wer: 0.1542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0067 | 4.35 | 500 | 2.9632 | 1.0 | | 1.4939 | 8.7 | 1000 | 0.5005 | 0.4157 | | 0.9982 | 13.04 | 1500 | 0.1967 | 0.1857 | | 0.8726 | 17.39 | 2000 | 0.1587 | 0.1564 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-finnish
infinitejoy
2022-03-23T18:34:46Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 29.97 - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FI dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Wer: 0.2984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9032 | 4.39 | 500 | 2.8768 | 1.0 | | 1.5724 | 8.77 | 1000 | 0.5638 | 0.6438 | | 1.1818 | 13.16 | 1500 | 0.3338 | 0.4759 | | 1.0798 | 17.54 | 2000 | 0.2876 | 0.4086 | | 1.0296 | 21.93 | 2500 | 0.2694 | 0.4248 | | 1.0014 | 26.32 | 3000 | 0.2626 | 0.3733 | | 0.9616 | 30.7 | 3500 | 0.2391 | 0.3294 | | 0.9303 | 35.09 | 4000 | 0.2352 | 0.3218 | | 0.9248 | 39.47 | 4500 | 0.2351 | 0.3207 | | 0.8837 | 43.86 | 5000 | 0.2341 | 0.3103 | | 0.8887 | 48.25 | 5500 | 0.2311 | 0.3115 | | 0.8529 | 52.63 | 6000 | 0.2230 | 0.3001 | | 0.8404 | 57.02 | 6500 | 0.2279 | 0.3054 | | 0.8242 | 61.4 | 7000 | 0.2298 | 0.3006 | | 0.8288 | 65.79 | 7500 | 0.2333 | 0.2997 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-gl-CV8
emre
2022-03-23T18:34:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "gl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: gl tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-gl-CV8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice gl type: common_voice args: gl metrics: - name: Test WER type: wer value: 0.208 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gl metrics: - name: Test WER type: wer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 47.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 50.8 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
vutankiet2901/wav2vec2-xls-r-1b-ja
vutankiet2901
2022-03-23T18:34:17Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 11.77 - name: Test CER (with LM) type: cer value: 5.22 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 12.23 - name: Test CER (with LM) type: cer value: 5.33 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 29.35 - name: Test CER (with LM) type: cer value: 16.43 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.48 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 16.97 | 17.95 | |with 4-grams LM| 11.77 | 12.23| ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 6.82 | 7.05 | |with 4-grams LM| 5.22 | 5.33 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vutankiet2901/wav2vec2-xls-r-1b-ja --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.484 | 9.49 | 1500 | 1.1849 | 0.7543 | 0.4099 | | 1.3582 | 18.98 | 3000 | 0.4320 | 0.3489 | 0.1591 | | 1.1716 | 28.48 | 4500 | 0.3835 | 0.3175 | 0.1454 | | 1.0951 | 37.97 | 6000 | 0.3732 | 0.3033 | 0.1405 | | 1.04 | 47.47 | 7500 | 0.3485 | 0.2898 | 0.1360 | | 0.9768 | 56.96 | 9000 | 0.3386 | 0.2787 | 0.1309 | | 0.9129 | 66.45 | 10500 | 0.3363 | 0.2711 | 0.1272 | | 0.8614 | 75.94 | 12000 | 0.3386 | 0.2676 | 0.1260 | | 0.8092 | 85.44 | 13500 | 0.3356 | 0.2610 | 0.1240 | | 0.7658 | 94.93 | 15000 | 0.3316 | 0.2564 | 0.1218 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
shahukareem/xls-r-300m-dv
shahukareem
2022-03-23T18:34:14Z
57
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - dv - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 21.31 - name: Test CER type: cer value: 3.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3386 | 0.66 | 400 | 1.1411 | 0.9432 | | 0.6543 | 1.33 | 800 | 0.5099 | 0.6749 | | 0.4646 | 1.99 | 1200 | 0.4133 | 0.5968 | | 0.3748 | 2.65 | 1600 | 0.3534 | 0.5515 | | 0.3323 | 3.32 | 2000 | 0.3635 | 0.5527 | | 0.3269 | 3.98 | 2400 | 0.3587 | 0.5423 | | 0.2984 | 4.64 | 2800 | 0.3340 | 0.5073 | | 0.2841 | 5.31 | 3200 | 0.3279 | 0.5004 | | 0.2664 | 5.97 | 3600 | 0.3114 | 0.4845 | | 0.2397 | 6.63 | 4000 | 0.3174 | 0.4920 | | 0.2332 | 7.3 | 4400 | 0.3110 | 0.4911 | | 0.2304 | 7.96 | 4800 | 0.3123 | 0.4785 | | 0.2134 | 8.62 | 5200 | 0.2984 | 0.4557 | | 0.2066 | 9.29 | 5600 | 0.3013 | 0.4723 | | 0.1951 | 9.95 | 6000 | 0.2934 | 0.4487 | | 0.1806 | 10.61 | 6400 | 0.2802 | 0.4547 | | 0.1727 | 11.28 | 6800 | 0.2842 | 0.4333 | | 0.1666 | 11.94 | 7200 | 0.2873 | 0.4272 | | 0.1562 | 12.6 | 7600 | 0.3042 | 0.4373 | | 0.1483 | 13.27 | 8000 | 0.3122 | 0.4313 | | 0.1465 | 13.93 | 8400 | 0.2760 | 0.4226 | | 0.1335 | 14.59 | 8800 | 0.3112 | 0.4243 | | 0.1293 | 15.26 | 9200 | 0.3002 | 0.4133 | | 0.1264 | 15.92 | 9600 | 0.2985 | 0.4145 | | 0.1179 | 16.58 | 10000 | 0.2925 | 0.4012 | | 0.1171 | 17.25 | 10400 | 0.3127 | 0.4012 | | 0.1141 | 17.91 | 10800 | 0.2980 | 0.3908 | | 0.108 | 18.57 | 11200 | 0.3108 | 0.3951 | | 0.1045 | 19.24 | 11600 | 0.3269 | 0.3908 | | 0.1047 | 19.9 | 12000 | 0.2998 | 0.3868 | | 0.0937 | 20.56 | 12400 | 0.2918 | 0.3875 | | 0.0949 | 21.23 | 12800 | 0.2906 | 0.3657 | | 0.0879 | 21.89 | 13200 | 0.2974 | 0.3731 | | 0.0854 | 22.55 | 13600 | 0.2943 | 0.3711 | | 0.0851 | 23.22 | 14000 | 0.2919 | 0.3580 | | 0.0789 | 23.88 | 14400 | 0.2983 | 0.3560 | | 0.0796 | 24.54 | 14800 | 0.3131 | 0.3544 | | 0.0761 | 25.21 | 15200 | 0.2996 | 0.3616 | | 0.0755 | 25.87 | 15600 | 0.2972 | 0.3506 | | 0.0726 | 26.53 | 16000 | 0.2902 | 0.3474 | | 0.0707 | 27.2 | 16400 | 0.3083 | 0.3480 | | 0.0669 | 27.86 | 16800 | 0.3035 | 0.3330 | | 0.0637 | 28.52 | 17200 | 0.2963 | 0.3370 | | 0.0596 | 29.19 | 17600 | 0.2830 | 0.3326 | | 0.0583 | 29.85 | 18000 | 0.2969 | 0.3287 | | 0.0566 | 30.51 | 18400 | 0.3002 | 0.3480 | | 0.0574 | 31.18 | 18800 | 0.2916 | 0.3296 | | 0.0536 | 31.84 | 19200 | 0.2933 | 0.3225 | | 0.0548 | 32.5 | 19600 | 0.2900 | 0.3179 | | 0.0506 | 33.17 | 20000 | 0.3073 | 0.3225 | | 0.0511 | 33.83 | 20400 | 0.2925 | 0.3275 | | 0.0483 | 34.49 | 20800 | 0.2919 | 0.3245 | | 0.0456 | 35.16 | 21200 | 0.2859 | 0.3105 | | 0.0445 | 35.82 | 21600 | 0.2864 | 0.3080 | | 0.0437 | 36.48 | 22000 | 0.2989 | 0.3084 | | 0.04 | 37.15 | 22400 | 0.2887 | 0.3060 | | 0.0406 | 37.81 | 22800 | 0.2870 | 0.3013 | | 0.0397 | 38.47 | 23200 | 0.2793 | 0.3020 | | 0.0383 | 39.14 | 23600 | 0.2955 | 0.2943 | | 0.0345 | 39.8 | 24000 | 0.2813 | 0.2905 | | 0.0331 | 40.46 | 24400 | 0.2845 | 0.2845 | | 0.0338 | 41.13 | 24800 | 0.2832 | 0.2925 | | 0.0333 | 41.79 | 25200 | 0.2889 | 0.2849 | | 0.0325 | 42.45 | 25600 | 0.2808 | 0.2847 | | 0.0314 | 43.12 | 26000 | 0.2867 | 0.2801 | | 0.0288 | 43.78 | 26400 | 0.2865 | 0.2834 | | 0.0291 | 44.44 | 26800 | 0.2863 | 0.2806 | | 0.0269 | 45.11 | 27200 | 0.2941 | 0.2736 | | 0.0275 | 45.77 | 27600 | 0.2897 | 0.2736 | | 0.0271 | 46.43 | 28000 | 0.2857 | 0.2695 | | 0.0251 | 47.1 | 28400 | 0.2881 | 0.2702 | | 0.0243 | 47.76 | 28800 | 0.2901 | 0.2684 | | 0.0244 | 48.42 | 29200 | 0.2849 | 0.2679 | | 0.0232 | 49.09 | 29600 | 0.2849 | 0.2677 | | 0.0224 | 49.75 | 30000 | 0.2855 | 0.2665 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
reach-vb/wav2vec2-large-xls-r-1B-common_voice7-lv-ft
reach-vb
2022-03-23T18:34:08Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "lv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - lv tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-1B-common_voice7-lv-ft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lv metrics: - name: Test WER type: wer value: 11.179 - name: Test CER type: cer value: 2.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: lv metrics: - name: Test WER type: wer value: 44.33 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: lv metrics: - name: Test WER type: wer value: 50.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1B-common_voice7-lv-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Wer: 0.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 900 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6292 | 5.26 | 500 | 1.5562 | 0.9263 | | 0.1303 | 10.53 | 1000 | 0.8107 | 0.7666 | | 0.0974 | 15.79 | 1500 | 0.5290 | 0.4979 | | 0.0724 | 21.05 | 2000 | 0.2941 | 0.2247 | | 0.0591 | 26.32 | 2500 | 0.2838 | 0.2125 | | 0.0494 | 31.58 | 3000 | 0.2589 | 0.2102 | | 0.0417 | 36.84 | 3500 | 0.1987 | 0.1760 | | 0.0375 | 42.11 | 4000 | 0.1934 | 0.1690 | | 0.031 | 47.37 | 4500 | 0.1630 | 0.1460 | | 0.027 | 52.63 | 5000 | 0.1957 | 0.1447 | | 0.0256 | 57.89 | 5500 | 0.1747 | 0.1368 | | 0.0206 | 63.16 | 6000 | 0.1602 | 0.1299 | | 0.0178 | 68.42 | 6500 | 0.1809 | 0.1273 | | 0.0154 | 73.68 | 7000 | 0.1686 | 0.1216 | | 0.0137 | 78.95 | 7500 | 0.1585 | 0.1241 | | 0.0128 | 84.21 | 8000 | 0.1783 | 0.1278 | | 0.011 | 89.47 | 8500 | 0.1653 | 0.1228 | | 0.0096 | 94.74 | 9000 | 0.1620 | 0.1161 | | 0.0091 | 100.0 | 9500 | 0.1582 | 0.1137 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
lgris/wav2vec2_base_10k_8khz_pt_cv7_2
lgris
2022-03-23T18:34:03Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2_base_10k_8khz_pt_cv7_2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 36.9 - name: Test CER type: cer value: 14.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 40.53 - name: Test CER type: cer value: 16.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 37.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 38.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_base_10k_8khz_pt_cv7_2 This model is a fine-tuned version of [lgris/seasr_2022_base_10k_8khz_pt](https://huggingface.co/lgris/seasr_2022_base_10k_8khz_pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 76.3426 - Wer: 0.1979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 189.1362 | 0.65 | 500 | 80.6347 | 0.2139 | | 174.2587 | 1.3 | 1000 | 80.2062 | 0.2116 | | 164.676 | 1.95 | 1500 | 78.2161 | 0.2073 | | 176.5856 | 2.6 | 2000 | 78.8920 | 0.2074 | | 164.3583 | 3.25 | 2500 | 77.2865 | 0.2066 | | 161.414 | 3.9 | 3000 | 77.8888 | 0.2048 | | 158.283 | 4.55 | 3500 | 77.3472 | 0.2033 | | 159.2265 | 5.19 | 4000 | 79.0953 | 0.2036 | | 156.3967 | 5.84 | 4500 | 76.6855 | 0.2029 | | 154.2743 | 6.49 | 5000 | 77.7785 | 0.2015 | | 156.6497 | 7.14 | 5500 | 77.1220 | 0.2033 | | 157.3038 | 7.79 | 6000 | 76.2926 | 0.2027 | | 162.8151 | 8.44 | 6500 | 76.7602 | 0.2013 | | 151.8613 | 9.09 | 7000 | 77.4777 | 0.2011 | | 153.0225 | 9.74 | 7500 | 76.5206 | 0.2001 | | 157.52 | 10.39 | 8000 | 76.1061 | 0.2006 | | 145.0592 | 11.04 | 8500 | 76.7855 | 0.1992 | | 150.0066 | 11.69 | 9000 | 76.0058 | 0.1988 | | 146.8128 | 12.34 | 9500 | 76.2853 | 0.1987 | | 146.9148 | 12.99 | 10000 | 76.3426 | 0.1979 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-pt-cv7-from-bp400h
lgris
2022-03-23T18:34:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 license: apache-2.0 model-index: - name: wav2vec2-xls-r-pt-cv7-from-bp400h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 12.13 - name: Test CER type: cer value: 3.68 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 28.23 - name: Test CER type: cer value: 12.58 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 26.58 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 26.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-pt-cv7-from-bp400h This model is a fine-tuned version of [lgris/bp_400h_xlsr2_300M](https://huggingface.co/lgris/bp_400h_xlsr2_300M) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1535 - Wer: 0.1254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4991 | 0.13 | 100 | 0.1774 | 0.1464 | | 0.4655 | 0.26 | 200 | 0.1884 | 0.1568 | | 0.4689 | 0.39 | 300 | 0.2282 | 0.1672 | | 0.4662 | 0.52 | 400 | 0.1997 | 0.1584 | | 0.4592 | 0.65 | 500 | 0.1989 | 0.1663 | | 0.4533 | 0.78 | 600 | 0.2004 | 0.1698 | | 0.4391 | 0.91 | 700 | 0.1888 | 0.1642 | | 0.4655 | 1.04 | 800 | 0.1921 | 0.1624 | | 0.4138 | 1.17 | 900 | 0.1950 | 0.1602 | | 0.374 | 1.3 | 1000 | 0.2077 | 0.1658 | | 0.4064 | 1.43 | 1100 | 0.1945 | 0.1596 | | 0.3922 | 1.56 | 1200 | 0.2069 | 0.1665 | | 0.4226 | 1.69 | 1300 | 0.1962 | 0.1573 | | 0.3974 | 1.82 | 1400 | 0.1919 | 0.1553 | | 0.3631 | 1.95 | 1500 | 0.1854 | 0.1573 | | 0.3797 | 2.08 | 1600 | 0.1902 | 0.1550 | | 0.3287 | 2.21 | 1700 | 0.1926 | 0.1598 | | 0.3568 | 2.34 | 1800 | 0.1888 | 0.1534 | | 0.3415 | 2.47 | 1900 | 0.1834 | 0.1502 | | 0.3545 | 2.6 | 2000 | 0.1906 | 0.1560 | | 0.3344 | 2.73 | 2100 | 0.1804 | 0.1524 | | 0.3308 | 2.86 | 2200 | 0.1741 | 0.1485 | | 0.344 | 2.99 | 2300 | 0.1787 | 0.1455 | | 0.309 | 3.12 | 2400 | 0.1773 | 0.1448 | | 0.312 | 3.25 | 2500 | 0.1738 | 0.1440 | | 0.3066 | 3.38 | 2600 | 0.1727 | 0.1417 | | 0.2999 | 3.51 | 2700 | 0.1692 | 0.1436 | | 0.2985 | 3.64 | 2800 | 0.1732 | 0.1430 | | 0.3058 | 3.77 | 2900 | 0.1754 | 0.1402 | | 0.2943 | 3.9 | 3000 | 0.1691 | 0.1379 | | 0.2813 | 4.03 | 3100 | 0.1754 | 0.1376 | | 0.2733 | 4.16 | 3200 | 0.1639 | 0.1363 | | 0.2592 | 4.29 | 3300 | 0.1675 | 0.1349 | | 0.2697 | 4.42 | 3400 | 0.1618 | 0.1360 | | 0.2538 | 4.55 | 3500 | 0.1658 | 0.1348 | | 0.2746 | 4.67 | 3600 | 0.1674 | 0.1325 | | 0.2655 | 4.8 | 3700 | 0.1655 | 0.1319 | | 0.2745 | 4.93 | 3800 | 0.1665 | 0.1316 | | 0.2617 | 5.06 | 3900 | 0.1600 | 0.1311 | | 0.2674 | 5.19 | 4000 | 0.1623 | 0.1311 | | 0.237 | 5.32 | 4100 | 0.1591 | 0.1315 | | 0.2669 | 5.45 | 4200 | 0.1584 | 0.1295 | | 0.2476 | 5.58 | 4300 | 0.1572 | 0.1285 | | 0.2445 | 5.71 | 4400 | 0.1580 | 0.1271 | | 0.2207 | 5.84 | 4500 | 0.1567 | 0.1269 | | 0.2289 | 5.97 | 4600 | 0.1536 | 0.1260 | | 0.2438 | 6.1 | 4700 | 0.1530 | 0.1260 | | 0.227 | 6.23 | 4800 | 0.1544 | 0.1249 | | 0.2256 | 6.36 | 4900 | 0.1543 | 0.1254 | | 0.2184 | 6.49 | 5000 | 0.1535 | 0.1254 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-romanian
infinitejoy
2022-03-23T18:33:55Z
471
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "ro", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - ro - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 14.194 - name: Test CER type: cer value: 3.288 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 40.869 - name: Test CER type: cer value: 12.049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 47.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1167 - Wer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1973 | 8.89 | 2000 | 0.4481 | 0.4849 | | 0.6005 | 17.78 | 4000 | 0.1420 | 0.1777 | | 0.5248 | 26.67 | 6000 | 0.1303 | 0.1651 | | 0.4871 | 35.56 | 8000 | 0.1207 | 0.1523 | | 0.4428 | 44.44 | 10000 | 0.1143 | 0.1425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa
infinitejoy
2022-03-23T18:33:50Z
10
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "bas", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bas metrics: - name: Test WER type: wer value: 104.08 - name: Test CER type: cer value: 228.48 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5975 - Wer: 0.4981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.9287 | 15.62 | 500 | 2.8774 | 1.0 | | 1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 | | 0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 | | 0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 | | 0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 | | 0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 | | 0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 | | 0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 | | 0.423 | 140.62 | 4500 | 0.5658 | 0.5248 | | 0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 | | 0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 | | 0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Akashpb13/xlsr_hungarian_new
Akashpb13
2022-03-23T18:33:33Z
41
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hu", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/xlsr_hungarian_new results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 47.15 --- # Akashpb13/xlsr_hungarian_new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - hu dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other and dev datasets): - Loss: 0.197464 - Wer: 0.330094 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice hungarian train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000095637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 16 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 4.785300 | 0.952295 | 0.796236 | | 1000 | 0.535800 | 0.217474 | 0.381613 | | 1500 | 0.258400 | 0.205524 | 0.345056 | | 2000 | 0.202800 | 0.198680 | 0.336264 | | 2500 | 0.182700 | 0.197464 | 0.330094 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/xlsr_hungarian_new --dataset mozilla-foundation/common_voice_8_0 --config hu --split test ```
abidlabs/speech-text
abidlabs
2022-03-23T18:33:30Z
7
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "en", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-07T19:09:18Z
--- language: en datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - en - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 English by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 19.06 - name: Test CER type: cer value: 7.69 - name: Test WER (+LM) type: wer value: 14.81 - name: Test CER (+LM) type: cer value: 6.84 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Dev WER type: wer value: 27.72 - name: Dev CER type: cer value: 11.65 - name: Dev WER (+LM) type: wer value: 20.85 - name: Dev CER (+LM) type: cer value: 11.01 --- # Wav2Vec2-Large-XLSR-53-English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL | | DO YOU MEAN IT? | DO YOU MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-xlsr-53-english, title={XLSR Wav2Vec2 English by Jonatas Grosman}, author={Grosman, Jonatas}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}}, year={2021} } ```
infinitejoy/wav2vec2-large-xls-r-300m-kurdish
infinitejoy
2022-03-23T18:33:23Z
98
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "kmr", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - kmr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - kmr - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kurmanji Kurdish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: kmr metrics: - name: Test WER type: wer value: 102.308 - name: Test CER type: cer value: 538.748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kurdish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KMR dataset. It achieves the following results on the evaluation set: - Loss: 0.2548 - Wer: 0.2688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3161 | 12.27 | 2000 | 0.4199 | 0.4797 | | 1.0643 | 24.54 | 4000 | 0.2982 | 0.3721 | | 0.9718 | 36.81 | 6000 | 0.2762 | 0.3333 | | 0.8772 | 49.08 | 8000 | 0.2586 | 0.3051 | | 0.8236 | 61.35 | 10000 | 0.2575 | 0.2865 | | 0.7745 | 73.62 | 12000 | 0.2603 | 0.2816 | | 0.7297 | 85.89 | 14000 | 0.2539 | 0.2727 | | 0.7079 | 98.16 | 16000 | 0.2554 | 0.2681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
shivam/wav2vec2-xls-r-hindi
shivam
2022-03-23T18:33:12Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: shivam/wav2vec2-xls-r-hindi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 52.3 - name: Test CER type: cer value: 26.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Wer: 0.6838 ## Evaluation results on Common Voice 7 "test" (Running ./eval.py): ### With LM - WER: 52.30 - CER: 26.09 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3155 | 3.4 | 500 | 4.5582 | 1.0 | | 3.3369 | 6.8 | 1000 | 3.4269 | 1.0 | | 2.1785 | 10.2 | 1500 | 1.7191 | 0.8831 | | 1.579 | 13.6 | 2000 | 1.3604 | 0.7647 | | 1.3773 | 17.01 | 2500 | 1.2737 | 0.7519 | | 1.3165 | 20.41 | 3000 | 1.2457 | 0.7401 | | 1.2274 | 23.81 | 3500 | 1.3617 | 0.7301 | | 1.1787 | 27.21 | 4000 | 1.2068 | 0.7010 | | 1.1467 | 30.61 | 4500 | 1.2416 | 0.6946 | | 1.0801 | 34.01 | 5000 | 1.2312 | 0.6990 | | 1.0709 | 37.41 | 5500 | 1.2984 | 0.7138 | | 1.0307 | 40.81 | 6000 | 1.2049 | 0.6871 | | 1.0003 | 44.22 | 6500 | 1.1956 | 0.6841 | | 1.004 | 47.62 | 7000 | 1.2101 | 0.6793 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-romansh_vallader
sammy786
2022-03-23T18:33:09Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "rm-vallader", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - rm-vallader license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - rm-vallader - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-romansh_vallader results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: rm-vallader metrics: - name: Test WER type: wer value: 28.54 - name: Test CER type: cer value: 6.57 --- # sammy786/wav2vec2-xlsr-romansh_vallader This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - rm-vallader dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 30.31 - Wer: 26.32 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 5.895100 | 3.136624 | 0.999713 | | 400 | 1.545700 | 0.445069 | 0.471584 | | 600 | 0.693900 | 0.340700 | 0.363088 | | 800 | 0.510600 | 0.295432 | 0.289610 | | 1000 | 0.318800 | 0.286795 | 0.281860 | | 1200 | 0.194000 | 0.307468 | 0.274110 | | 1400 | 0.151800 | 0.304849 | 0.264351 | | 1600 | 0.148300 | 0.303112 | 0.263203 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-romansh_vallader --dataset mozilla-foundation/common_voice_8_0 --config rm-vallader --split test ```
sammy786/wav2vec2-xlsr-breton
sammy786
2022-03-23T18:33:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "br", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - br - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: br metrics: - name: Test WER type: wer value: 48.2 - name: Test CER type: cer value: 15.02 --- # sammy786/wav2vec2-xlsr-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - br dataset. ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 32 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-breton --dataset mozilla-foundation/common_voice_8_0 --config br --split test ```
samitizerxu/wav2vec2-xls-r-300m-fr
samitizerxu
2022-03-23T18:33:04Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "fr", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - fr - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-cls-r-300m-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 56.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 58.22 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-breton
infinitejoy
2022-03-23T18:33:01Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "br", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: br metrics: - name: Test WER type: wer value: 107.955 - name: Test CER type: cer value: 379.33 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 0.6102 - Wer: 0.4455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9205 | 3.33 | 500 | 2.8659 | 1.0 | | 1.6403 | 6.67 | 1000 | 0.9440 | 0.7593 | | 1.3483 | 10.0 | 1500 | 0.7580 | 0.6215 | | 1.2255 | 13.33 | 2000 | 0.6851 | 0.5722 | | 1.1139 | 16.67 | 2500 | 0.6409 | 0.5220 | | 1.0688 | 20.0 | 3000 | 0.6245 | 0.5055 | | 0.99 | 23.33 | 3500 | 0.6142 | 0.4874 | | 0.9345 | 26.67 | 4000 | 0.5946 | 0.4829 | | 0.9058 | 30.0 | 4500 | 0.6229 | 0.4704 | | 0.8683 | 33.33 | 5000 | 0.6153 | 0.4666 | | 0.8367 | 36.67 | 5500 | 0.5952 | 0.4542 | | 0.8162 | 40.0 | 6000 | 0.6030 | 0.4541 | | 0.8042 | 43.33 | 6500 | 0.5972 | 0.4485 | | 0.7836 | 46.67 | 7000 | 0.6070 | 0.4497 | | 0.7556 | 50.0 | 7500 | 0.6102 | 0.4455 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa-cv8
infinitejoy
2022-03-23T18:32:58Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bas", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - bas - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 38.057 - name: Test CER type: cer value: 11.233 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.4648 - Wer: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9421 | 12.82 | 500 | 2.8894 | 1.0 | | 1.1872 | 25.64 | 1000 | 0.6688 | 0.7460 | | 0.8894 | 38.46 | 1500 | 0.4868 | 0.6516 | | 0.769 | 51.28 | 2000 | 0.4960 | 0.6507 | | 0.6936 | 64.1 | 2500 | 0.4781 | 0.5384 | | 0.624 | 76.92 | 3000 | 0.4643 | 0.5430 | | 0.5966 | 89.74 | 3500 | 0.4530 | 0.5591 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-assamese-cv8
infinitejoy
2022-03-23T18:32:56Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "as", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - as license: apache-2.0 tags: - as - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 65.966 - name: Test CER type: cer value: 22.188 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-assamese-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset. It achieves the following results on the evaluation set: - Loss: 0.9814 - Wer: 0.7402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 20.0 | 400 | 3.1447 | 1.0 | | No log | 40.0 | 800 | 1.0074 | 0.8556 | | 3.1278 | 60.0 | 1200 | 0.9507 | 0.7711 | | 3.1278 | 80.0 | 1600 | 0.9730 | 0.7630 | | 0.8247 | 100.0 | 2000 | 0.9814 | 0.7402 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8
emre
2022-03-23T18:32:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Tr-med-CommonVoice8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 49.14 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Wer: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4876 | 6.66 | 5000 | 0.3252 | 0.5784 | | 0.6919 | 13.32 | 10000 | 0.2720 | 0.5172 | | 0.5919 | 19.97 | 15000 | 0.2556 | 0.4914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
comodoro/wav2vec2-xls-r-300m-cs
comodoro
2022-03-23T18:32:48Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "xlsr-fine-tuning-week", "cs", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - xlsr-fine-tuning-week datasets: - common_voice model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M CV6.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: cs metrics: - name: Test WER type: wer value: 22.2 - name: Test CER type: cer value: 5.1 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 66.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 57.52 --- # Wav2Vec2-Large-XLSR-53-Czech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice 6.1 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.20 % ## Training The Common Voice `train` and `validation` datasets were used for training # TODO The script used for training can be found [here](...)
anuragshas/wav2vec2-large-xls-r-300m-as
anuragshas
2022-03-23T18:32:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "as", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-as results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: as metrics: - type: wer value: 56.995 name: Test WER - name: Test CER type: cer value: 20.39 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9068 - Wer: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7027 | 21.05 | 400 | 3.4157 | 1.0 | | 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 | | 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 | | 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 | | 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 | | 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 | | 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 | | 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 | | 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 | | 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 | | 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-as" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 67 | 56.995 |
sammy786/wav2vec2-xlsr-tatar
sammy786
2022-03-23T18:32:40Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - tt datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-tatar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tt metrics: - name: Test WER type: wer value: 16.87 - name: Test CER type: cer value: 3.64 --- # sammy786/wav2vec2-xlsr-tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - tt dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 7.66 - Wer: 7.08 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |-------|---------------|-----------------|----------| | 200 | 4.849400 | 1.874908 | 0.995232 | | 400 | 1.105700 | 0.257292 | 0.367658 | | 600 | 0.723000 | 0.181150 | 0.250513 | | 800 | 0.660600 | 0.167009 | 0.226078 | | 1000 | 0.568000 | 0.135090 | 0.177339 | | 1200 | 0.721200 | 0.117469 | 0.166413 | | 1400 | 0.416300 | 0.115142 | 0.153765 | | 1600 | 0.346000 | 0.105782 | 0.153963 | | 1800 | 0.279700 | 0.102452 | 0.146149 | | 2000 | 0.273800 | 0.095818 | 0.128468 | | 2200 | 0.252900 | 0.102302 | 0.133766 | | 2400 | 0.255100 | 0.096592 | 0.121316 | | 2600 | 0.229600 | 0.091263 | 0.124561 | | 2800 | 0.213900 | 0.097748 | 0.125687 | | 3000 | 0.210700 | 0.091244 | 0.125422 | | 3200 | 0.202600 | 0.084076 | 0.106284 | | 3400 | 0.200900 | 0.093809 | 0.113238 | | 3600 | 0.192700 | 0.082918 | 0.108139 | | 3800 | 0.182000 | 0.084487 | 0.103371 | | 4000 | 0.167700 | 0.091847 | 0.104960 | | 4200 | 0.183700 | 0.085223 | 0.103040 | | 4400 | 0.174400 | 0.083862 | 0.100589 | | 4600 | 0.163100 | 0.086493 | 0.099728 | | 4800 | 0.162000 | 0.081734 | 0.097543 | | 5000 | 0.153600 | 0.077223 | 0.092974 | | 5200 | 0.153700 | 0.086217 | 0.090789 | | 5400 | 0.140200 | 0.093256 | 0.100457 | | 5600 | 0.142900 | 0.086903 | 0.097742 | | 5800 | 0.131400 | 0.083068 | 0.095225 | | 6000 | 0.126000 | 0.086642 | 0.091252 | | 6200 | 0.135300 | 0.083387 | 0.091186 | | 6400 | 0.126100 | 0.076479 | 0.086352 | | 6600 | 0.127100 | 0.077868 | 0.086153 | | 6800 | 0.118000 | 0.083878 | 0.087676 | | 7000 | 0.117600 | 0.085779 | 0.091054 | | 7200 | 0.113600 | 0.084197 | 0.084233 | | 7400 | 0.112000 | 0.078688 | 0.081319 | | 7600 | 0.110200 | 0.082534 | 0.086087 | | 7800 | 0.106400 | 0.077245 | 0.080988 | | 8000 | 0.102300 | 0.077497 | 0.079332 | | 8200 | 0.109500 | 0.079083 | 0.088339 | | 8400 | 0.095900 | 0.079721 | 0.077809 | | 8600 | 0.094700 | 0.079078 | 0.079730 | | 8800 | 0.097400 | 0.078785 | 0.079200 | | 9000 | 0.093200 | 0.077445 | 0.077015 | | 9200 | 0.088700 | 0.078207 | 0.076617 | | 9400 | 0.087200 | 0.078982 | 0.076485 | | 9600 | 0.089900 | 0.081209 | 0.076021 | | 9800 | 0.081900 | 0.078158 | 0.075757 | | 10000 | 0.080200 | 0.078074 | 0.074498 | | 10200 | 0.085000 | 0.078830 | 0.073373 | | 10400 | 0.080400 | 0.078144 | 0.073373 | | 10600 | 0.078200 | 0.077163 | 0.073902 | | 10800 | 0.080900 | 0.076394 | 0.072446 | | 11000 | 0.080700 | 0.075955 | 0.071585 | | 11200 | 0.076800 | 0.077031 | 0.072313 | | 11400 | 0.076300 | 0.077401 | 0.072777 | | 11600 | 0.076700 | 0.076613 | 0.071916 | | 11800 | 0.076000 | 0.076672 | 0.071916 | | 12000 | 0.077200 | 0.076490 | 0.070989 | | 12200 | 0.076200 | 0.076688 | 0.070856 | | 12400 | 0.074400 | 0.076780 | 0.071055 | | 12600 | 0.076300 | 0.076768 | 0.071320 | | 12800 | 0.077600 | 0.076727 | 0.071055 | | 13000 | 0.077700 | 0.076714 | 0.071254 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test ```
huggingtweets/mattiasinspace
huggingtweets
2022-03-23T18:30:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:30:21Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434246328788398081/M7Httz0A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mattias in Deep</div> <div style="text-align: center; font-size: 14px;">@mattiasinspace</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mattias in Deep. | Data | Mattias in Deep | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 26 | | Short tweets | 196 | | Tweets kept | 3027 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2r9u5eoz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattiasinspace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ua0ungm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ua0ungm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattiasinspace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sammy786/wav2vec2-xlsr-mongolian
sammy786
2022-03-23T18:30:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER type: wer value: 32.63 - name: Test CER type: cer value: 9.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 91.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 91.37 --- # sammy786/wav2vec2-xlsr-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - mn dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 31.52 - Wer: 34.1522 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.906200 | 3.012986 | 1.000000 | | 400 | 1.734600 | 0.704821 | 0.750497 | | 600 | 1.132100 | 0.496223 | 0.531241 | | 800 | 0.929300 | 0.468937 | 0.469043 | | 1000 | 0.772300 | 0.425313 | 0.448168 | | 1200 | 0.623900 | 0.394633 | 0.414229 | | 1400 | 0.512400 | 0.369225 | 0.397614 | | 1600 | 0.439900 | 0.346033 | 0.391650 | | 1800 | 0.391300 | 0.358454 | 0.379296 | | 2000 | 0.377000 | 0.346822 | 0.359415 | | 2200 | 0.347500 | 0.325205 | 0.348481 | | 2400 | 0.343600 | 0.315233 | 0.344078 | | 2600 | 0.328000 | 0.308826 | 0.341522 | | 2800 | 0.358200 | 0.331786 | 0.343084 | | 3000 | 0.417200 | 0.370051 | 0.356433 | | 3200 | 0.685300 | 0.595438 | 0.407413 | | 3400 | 0.764100 | 0.643449 | 0.359983 | | 3600 | 0.717100 | 0.505033 | 0.371911 | | 3800 | 0.620900 | 0.464138 | 0.369071 | | 4000 | 0.590700 | 0.445417 | 0.363249 | | 4200 | 0.561000 | 0.440727 | 0.360267 | | 4400 | 0.550600 | 0.447122 | 0.360267 | | 4600 | 0.562100 | 0.457020 | 0.359841 | | 4800 | 0.578800 | 0.470477 | 0.360551 | | 5000 | 0.580400 | 0.481413 | 0.362539 | | 5200 | 0.605500 | 0.485240 | 0.362823 | | 5400 | 0.582900 | 0.486654 | 0.362965 | | 5600 | 0.593900 | 0.486715 | 0.363107 | | 5800 | 0.590900 | 0.486716 | 0.363107 | | 6000 | 0.587200 | 0.486716 | 0.363107 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-mongolian --dataset mozilla-foundation/common_voice_8_0 --config mn --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-bashkir
infinitejoy
2022-03-23T18:30:18Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ba", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ba metrics: - name: Test WER type: wer value: 24.2 - name: Test CER type: cer value: 5.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset. It achieves the following results on the evaluation set: - Loss: 0.1892 - Wer: 0.2421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4792 | 0.5 | 2000 | 0.4598 | 0.5404 | | 1.449 | 1.0 | 4000 | 0.4650 | 0.5610 | | 1.3742 | 1.49 | 6000 | 0.4001 | 0.4977 | | 1.3375 | 1.99 | 8000 | 0.3916 | 0.4894 | | 1.2961 | 2.49 | 10000 | 0.3641 | 0.4569 | | 1.2714 | 2.99 | 12000 | 0.3491 | 0.4488 | | 1.2399 | 3.48 | 14000 | 0.3151 | 0.3986 | | 1.2067 | 3.98 | 16000 | 0.3081 | 0.3923 | | 1.1842 | 4.48 | 18000 | 0.2875 | 0.3703 | | 1.1644 | 4.98 | 20000 | 0.2840 | 0.3670 | | 1.161 | 5.48 | 22000 | 0.2790 | 0.3597 | | 1.1303 | 5.97 | 24000 | 0.2552 | 0.3272 | | 1.0874 | 6.47 | 26000 | 0.2405 | 0.3142 | | 1.0613 | 6.97 | 28000 | 0.2352 | 0.3055 | | 1.0498 | 7.47 | 30000 | 0.2249 | 0.2910 | | 1.021 | 7.96 | 32000 | 0.2118 | 0.2752 | | 1.0002 | 8.46 | 34000 | 0.2046 | 0.2662 | | 0.9762 | 8.96 | 36000 | 0.1969 | 0.2530 | | 0.9568 | 9.46 | 38000 | 0.1917 | 0.2449 | | 0.953 | 9.96 | 40000 | 0.1893 | 0.2425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
arampacha/wav2vec2-xls-r-1b-uk-cv
arampacha
2022-03-23T18:30:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-hy-cv results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice uk args: uk metrics: - type: wer value: 12.246920571994902 name: WER LM - type: cer value: 2.513653497966816 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: uk metrics: - name: Test WER type: wer value: 46.56 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: uk metrics: - name: Test WER type: wer value: 35.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.1747 - Wer: 0.2107 - Cer: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.3719 | 4.35 | 500 | 0.3389 | 0.4236 | 0.0833 | | 1.1361 | 8.7 | 1000 | 0.2309 | 0.3162 | 0.0630 | | 1.0517 | 13.04 | 1500 | 0.2166 | 0.3056 | 0.0597 | | 1.0118 | 17.39 | 2000 | 0.2141 | 0.2784 | 0.0557 | | 0.9922 | 21.74 | 2500 | 0.2231 | 0.2941 | 0.0594 | | 0.9929 | 26.09 | 3000 | 0.2171 | 0.2892 | 0.0587 | | 0.9485 | 30.43 | 3500 | 0.2236 | 0.2956 | 0.0599 | | 0.9573 | 34.78 | 4000 | 0.2314 | 0.3043 | 0.0616 | | 0.9195 | 39.13 | 4500 | 0.2169 | 0.2812 | 0.0580 | | 0.8915 | 43.48 | 5000 | 0.2109 | 0.2780 | 0.0560 | | 0.8449 | 47.83 | 5500 | 0.2050 | 0.2534 | 0.0514 | | 0.8028 | 52.17 | 6000 | 0.2032 | 0.2456 | 0.0492 | | 0.7881 | 56.52 | 6500 | 0.1890 | 0.2380 | 0.0469 | | 0.7423 | 60.87 | 7000 | 0.1816 | 0.2245 | 0.0442 | | 0.7248 | 65.22 | 7500 | 0.1789 | 0.2165 | 0.0422 | | 0.6993 | 69.57 | 8000 | 0.1747 | 0.2107 | 0.0408 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2
DrishtiSharma
2022-03-23T18:30:10Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - bg - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bg-d2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 0.28775471338792613 - name: Test CER type: cer value: 0.06861971204625049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 0.49783147459727384 - name: Test CER type: cer value: 0.1591062599627158 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 51.25 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bg-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 - Wer: 0.2860 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.8791 | 1.74 | 200 | 3.1902 | 1.0 | | 3.0441 | 3.48 | 400 | 2.8098 | 0.9864 | | 1.1499 | 5.22 | 600 | 0.4668 | 0.5014 | | 0.4968 | 6.96 | 800 | 0.4162 | 0.4472 | | 0.3553 | 8.7 | 1000 | 0.3580 | 0.3777 | | 0.3027 | 10.43 | 1200 | 0.3422 | 0.3506 | | 0.2562 | 12.17 | 1400 | 0.3556 | 0.3639 | | 0.2272 | 13.91 | 1600 | 0.3621 | 0.3583 | | 0.2125 | 15.65 | 1800 | 0.3436 | 0.3358 | | 0.1904 | 17.39 | 2000 | 0.3650 | 0.3545 | | 0.1695 | 19.13 | 2200 | 0.3366 | 0.3241 | | 0.1532 | 20.87 | 2400 | 0.3550 | 0.3311 | | 0.1453 | 22.61 | 2600 | 0.3582 | 0.3131 | | 0.1359 | 24.35 | 2800 | 0.3524 | 0.3084 | | 0.1233 | 26.09 | 3000 | 0.3503 | 0.2973 | | 0.1114 | 27.83 | 3200 | 0.3434 | 0.2946 | | 0.1051 | 29.57 | 3400 | 0.3474 | 0.2956 | | 0.0965 | 31.3 | 3600 | 0.3426 | 0.2907 | | 0.0923 | 33.04 | 3800 | 0.3478 | 0.2894 | | 0.0894 | 34.78 | 4000 | 0.3421 | 0.2860 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jsnfly/wav2vec2-large-xlsr-53-german-gpt2
jsnfly
2022-03-23T18:29:57Z
21
2
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "de", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2-Large-XLSR-53-German-GPT2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 10.02 - name: Test CER type: cer value: 4.7 --- # Wav2Vec2-Large-XLSR-53-German-GPT2 This is an encoder-decoder model for automatic speech recognition trained on on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. The encoder was initialized from [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) and the decoder from [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). It was trained using a two step process: * fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell * relatively fast training * also works on small GPU (eg. 8 GB) * but may take a lot of disk space * should already yield decent results * fine-tuning the model end-to-end * much slower * needs a bigger GPU There is also one trick, which seemed to improve performance significantly: adding position embeddings to the encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`). The training notebooks are still early drafts. Also results can probably improved a lot by using for example a learning rate schedule.
RuudVelo/wav2vec2-large-xls-r-300m-nl
RuudVelo
2022-03-23T18:29:49Z
13
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "nl", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - model_for_talk - nl - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice args: nl metrics: - name: Test WER type: wer value: 17.17 - name: Test CER type: cer value: 5.13 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 35.76 - name: Test CER type: cer value: 13.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 37.19 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-nl This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the test set: - Loss: 0.3923 - Wer: 0.1748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.5787 | 0.89 | 400 | 0.6354 | 0.5643 | | 0.3036 | 1.78 | 800 | 0.3690 | 0.3552 | | 0.188 | 2.67 | 1200 | 0.3239 | 0.2958 | | 0.1434 | 3.56 | 1600 | 0.3093 | 0.2515 | | 0.1245 | 4.44 | 2000 | 0.3024 | 0.2433 | | 0.1095 | 5.33 | 2400 | 0.3249 | 0.2643 | | 0.0979 | 6.22 | 2800 | 0.3191 | 0.2281 | | 0.0915 | 7.11 | 3200 | 0.3152 | 0.2216 | | 0.0829 | 8.0 | 3600 | 0.3419 | 0.2218 | | 0.0777 | 8.89 | 4000 | 0.3432 | 0.2132 | | 0.073 | 9.78 | 4400 | 0.3223 | 0.2131 | | 0.0688 | 10.67 | 4800 | 0.3094 | 0.2152 | | 0.0647 | 11.56 | 5200 | 0.3411 | 0.2152 | | 0.0639 | 12.44 | 5600 | 0.3762 | 0.2135 | | 0.0599 | 13.33 | 6000 | 0.3790 | 0.2137 | | 0.0572 | 14.22 | 6400 | 0.3693 | 0.2118 | | 0.0563 | 15.11 | 6800 | 0.3495 | 0.2139 | | 0.0521 | 16.0 | 7200 | 0.3800 | 0.2023 | | 0.0508 | 16.89 | 7600 | 0.3678 | 0.2033 | | 0.0513 | 17.78 | 8000 | 0.3845 | 0.1987 | | 0.0476 | 18.67 | 8400 | 0.3511 | 0.2037 | | 0.045 | 19.56 | 8800 | 0.3794 | 0.1994 | | 0.044 | 20.44 | 9200 | 0.3525 | 0.2050 | | 0.043 | 21.33 | 9600 | 0.4082 | 0.2007 | | 0.0409 | 22.22 | 10000 | 0.3866 | 0.2004 | | 0.0393 | 23.11 | 10400 | 0.3899 | 0.2008 | | 0.0382 | 24.0 | 10800 | 0.3626 | 0.1951 | | 0.039 | 24.89 | 11200 | 0.3936 | 0.1953 | | 0.0361 | 25.78 | 11600 | 0.4262 | 0.1928 | | 0.0362 | 26.67 | 12000 | 0.3796 | 0.1934 | | 0.033 | 27.56 | 12400 | 0.3616 | 0.1934 | | 0.0321 | 28.44 | 12800 | 0.3742 | 0.1933 | | 0.0325 | 29.33 | 13200 | 0.3582 | 0.1869 | | 0.0309 | 30.22 | 13600 | 0.3717 | 0.1874 | | 0.029 | 31.11 | 14000 | 0.3814 | 0.1894 | | 0.0296 | 32.0 | 14400 | 0.3698 | 0.1877 | | 0.0281 | 32.89 | 14800 | 0.3976 | 0.1899 | | 0.0275 | 33.78 | 15200 | 0.3854 | 0.1858 | | 0.0264 | 34.67 | 15600 | 0.4021 | 0.1889 | | 0.0261 | 35.56 | 16000 | 0.3850 | 0.1830 | | 0.0242 | 36.44 | 16400 | 0.4091 | 0.1878 | | 0.0245 | 37.33 | 16800 | 0.4012 | 0.1846 | | 0.0243 | 38.22 | 17200 | 0.3996 | 0.1833 | | 0.0223 | 39.11 | 17600 | 0.3962 | 0.1815 | | 0.0223 | 40.0 | 18000 | 0.3898 | 0.1832 | | 0.0219 | 40.89 | 18400 | 0.4019 | 0.1822 | | 0.0211 | 41.78 | 18800 | 0.4035 | 0.1809 | | 0.021 | 42.67 | 19200 | 0.3915 | 0.1826 | | 0.0208 | 43.56 | 19600 | 0.3934 | 0.1784 | | 0.0188 | 44.44 | 20000 | 0.3912 | 0.1787 | | 0.0195 | 45.33 | 20400 | 0.3989 | 0.1766 | | 0.0186 | 46.22 | 20800 | 0.3887 | 0.1773 | | 0.0188 | 47.11 | 21200 | 0.3982 | 0.1758 | | 0.0175 | 48.0 | 21600 | 0.3933 | 0.1755 | | 0.0172 | 48.89 | 22000 | 0.3921 | 0.1749 | | 0.0187 | 49.78 | 22400 | 0.3923 | 0.1748 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ubamba98/wav2vec2-xls-r-1b-ro
ubamba98
2022-03-23T18:29:42Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ro", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-1b-ro results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 99.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 99.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 99.99 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ro This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1113 - Wer: 0.4770 - Cer: 0.0306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.7844 | 1.67 | 1500 | 0.3412 | 0.8600 | 0.0940 | | 0.7272 | 3.34 | 3000 | 0.1926 | 0.6409 | 0.0527 | | 0.6924 | 5.02 | 4500 | 0.1413 | 0.5722 | 0.0401 | | 0.6327 | 6.69 | 6000 | 0.1252 | 0.5366 | 0.0371 | | 0.6363 | 8.36 | 7500 | 0.1235 | 0.5741 | 0.0389 | | 0.6238 | 10.03 | 9000 | 0.1180 | 0.5542 | 0.0362 | | 0.6018 | 11.71 | 10500 | 0.1192 | 0.5694 | 0.0369 | | 0.583 | 13.38 | 12000 | 0.1216 | 0.5772 | 0.0385 | | 0.5643 | 15.05 | 13500 | 0.1195 | 0.5419 | 0.0371 | | 0.5399 | 16.72 | 15000 | 0.1240 | 0.5224 | 0.0370 | | 0.5529 | 18.39 | 16500 | 0.1174 | 0.5555 | 0.0367 | | 0.5246 | 20.07 | 18000 | 0.1097 | 0.5047 | 0.0339 | | 0.4936 | 21.74 | 19500 | 0.1225 | 0.5189 | 0.0382 | | 0.4629 | 23.41 | 21000 | 0.1142 | 0.5047 | 0.0344 | | 0.4463 | 25.08 | 22500 | 0.1168 | 0.4887 | 0.0339 | | 0.4671 | 26.76 | 24000 | 0.1119 | 0.5073 | 0.0338 | | 0.4359 | 28.43 | 25500 | 0.1206 | 0.5479 | 0.0363 | | 0.4225 | 30.1 | 27000 | 0.1122 | 0.5170 | 0.0345 | | 0.4038 | 31.77 | 28500 | 0.1159 | 0.5032 | 0.0343 | | 0.4271 | 33.44 | 30000 | 0.1116 | 0.5126 | 0.0339 | | 0.3867 | 35.12 | 31500 | 0.1101 | 0.4937 | 0.0327 | | 0.3674 | 36.79 | 33000 | 0.1142 | 0.4940 | 0.0330 | | 0.3607 | 38.46 | 34500 | 0.1106 | 0.5145 | 0.0327 | | 0.3651 | 40.13 | 36000 | 0.1172 | 0.4921 | 0.0317 | | 0.3268 | 41.81 | 37500 | 0.1093 | 0.4830 | 0.0310 | | 0.3345 | 43.48 | 39000 | 0.1131 | 0.4760 | 0.0314 | | 0.3236 | 45.15 | 40500 | 0.1132 | 0.4864 | 0.0317 | | 0.312 | 46.82 | 42000 | 0.1124 | 0.4861 | 0.0315 | | 0.3106 | 48.49 | 43500 | 0.1116 | 0.4745 | 0.0306 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
cahya/xls-r-ab-test
cahya
2022-03-23T18:29:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 135.4675 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3
shivam/xls-r-300m-marathi
shivam
2022-03-23T18:29:32Z
18
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "mr", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - mr - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 8.0 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 38.27 - name: Test CER type: cer value: 8.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set: - Without LM + WER: 48.53 + CER: 10.63 - With LM + WER: 38.27 + CER: 8.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 400.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.2706 | 22.73 | 500 | 4.0174 | 1.0 | | 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 | | 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 | | 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 | | 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 | | 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 | | 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 | | 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 | | 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 | | 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 | | 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 | | 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 | | 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 | | 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 | | 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 | | 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 | | 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
anuragshas
2022-03-23T18:29:27Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 12.736 - name: Test CER type: cer value: 3.605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 45.587 - name: Test CER type: cer value: 20.886 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 45.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
anantoj/wav2vec2-xls-r-1b-korean
anantoj
2022-03-23T18:29:13Z
37
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ko", "dataset:kresnik/zeroth_korean", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - kresnik/zeroth_korean model-index: - name: Wav2Vec2 XLS-R 1B Korean results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ko metrics: - name: Test WER type: wer value: 82.07 - name: Test CER type: cer value: 42.12 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ko metrics: - name: Test WER type: wer value: 82.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the KRESNIK/ZEROTH_KOREAN - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0639 - Wer: 0.0449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.603 | 0.72 | 500 | 4.6572 | 0.9985 | | 2.6314 | 1.44 | 1000 | 2.0424 | 0.9256 | | 2.2708 | 2.16 | 1500 | 0.9889 | 0.6989 | | 2.1769 | 2.88 | 2000 | 0.8366 | 0.6312 | | 2.1142 | 3.6 | 2500 | 0.7555 | 0.5998 | | 2.0084 | 4.32 | 3000 | 0.7144 | 0.6003 | | 1.9272 | 5.04 | 3500 | 0.6311 | 0.5461 | | 1.8687 | 5.75 | 4000 | 0.6252 | 0.5430 | | 1.8186 | 6.47 | 4500 | 0.5491 | 0.4988 | | 1.7364 | 7.19 | 5000 | 0.5463 | 0.4959 | | 1.6809 | 7.91 | 5500 | 0.4724 | 0.4484 | | 1.641 | 8.63 | 6000 | 0.4679 | 0.4461 | | 1.572 | 9.35 | 6500 | 0.4387 | 0.4236 | | 1.5256 | 10.07 | 7000 | 0.3970 | 0.4003 | | 1.5044 | 10.79 | 7500 | 0.3690 | 0.3893 | | 1.4563 | 11.51 | 8000 | 0.3752 | 0.3875 | | 1.394 | 12.23 | 8500 | 0.3386 | 0.3567 | | 1.3641 | 12.95 | 9000 | 0.3290 | 0.3467 | | 1.2878 | 13.67 | 9500 | 0.2893 | 0.3135 | | 1.2602 | 14.39 | 10000 | 0.2723 | 0.3029 | | 1.2302 | 15.11 | 10500 | 0.2603 | 0.2989 | | 1.1865 | 15.83 | 11000 | 0.2440 | 0.2794 | | 1.1491 | 16.55 | 11500 | 0.2500 | 0.2788 | | 1.093 | 17.27 | 12000 | 0.2279 | 0.2629 | | 1.0367 | 17.98 | 12500 | 0.2076 | 0.2443 | | 0.9954 | 18.7 | 13000 | 0.1844 | 0.2259 | | 0.99 | 19.42 | 13500 | 0.1794 | 0.2179 | | 0.9385 | 20.14 | 14000 | 0.1765 | 0.2122 | | 0.8952 | 20.86 | 14500 | 0.1706 | 0.1974 | | 0.8841 | 21.58 | 15000 | 0.1791 | 0.1969 | | 0.847 | 22.3 | 15500 | 0.1780 | 0.2060 | | 0.8669 | 23.02 | 16000 | 0.1608 | 0.1862 | | 0.8066 | 23.74 | 16500 | 0.1447 | 0.1626 | | 0.7908 | 24.46 | 17000 | 0.1457 | 0.1655 | | 0.7459 | 25.18 | 17500 | 0.1350 | 0.1445 | | 0.7218 | 25.9 | 18000 | 0.1276 | 0.1421 | | 0.703 | 26.62 | 18500 | 0.1177 | 0.1302 | | 0.685 | 27.34 | 19000 | 0.1147 | 0.1305 | | 0.6811 | 28.06 | 19500 | 0.1128 | 0.1244 | | 0.6444 | 28.78 | 20000 | 0.1120 | 0.1213 | | 0.6323 | 29.5 | 20500 | 0.1137 | 0.1166 | | 0.5998 | 30.22 | 21000 | 0.1051 | 0.1107 | | 0.5706 | 30.93 | 21500 | 0.1035 | 0.1037 | | 0.5555 | 31.65 | 22000 | 0.1031 | 0.0927 | | 0.5389 | 32.37 | 22500 | 0.0997 | 0.0900 | | 0.5201 | 33.09 | 23000 | 0.0920 | 0.0912 | | 0.5146 | 33.81 | 23500 | 0.0929 | 0.0947 | | 0.515 | 34.53 | 24000 | 0.1000 | 0.0953 | | 0.4743 | 35.25 | 24500 | 0.0922 | 0.0892 | | 0.4707 | 35.97 | 25000 | 0.0852 | 0.0808 | | 0.4456 | 36.69 | 25500 | 0.0855 | 0.0779 | | 0.443 | 37.41 | 26000 | 0.0843 | 0.0738 | | 0.4388 | 38.13 | 26500 | 0.0816 | 0.0699 | | 0.4162 | 38.85 | 27000 | 0.0752 | 0.0645 | | 0.3979 | 39.57 | 27500 | 0.0761 | 0.0621 | | 0.3889 | 40.29 | 28000 | 0.0771 | 0.0625 | | 0.3923 | 41.01 | 28500 | 0.0755 | 0.0598 | | 0.3693 | 41.73 | 29000 | 0.0730 | 0.0578 | | 0.3642 | 42.45 | 29500 | 0.0739 | 0.0598 | | 0.3532 | 43.17 | 30000 | 0.0712 | 0.0553 | | 0.3513 | 43.88 | 30500 | 0.0762 | 0.0516 | | 0.3349 | 44.6 | 31000 | 0.0731 | 0.0504 | | 0.3305 | 45.32 | 31500 | 0.0725 | 0.0507 | | 0.3285 | 46.04 | 32000 | 0.0709 | 0.0489 | | 0.3179 | 46.76 | 32500 | 0.0667 | 0.0467 | | 0.3158 | 47.48 | 33000 | 0.0653 | 0.0494 | | 0.3033 | 48.2 | 33500 | 0.0638 | 0.0456 | | 0.3023 | 48.92 | 34000 | 0.0644 | 0.0464 | | 0.2975 | 49.64 | 34500 | 0.0643 | 0.0455 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
samitizerxu/wav2vec2-xls-r-300m-eo
samitizerxu
2022-03-23T18:29:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "eo", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - common_voice - eo - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-eo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: eo metrics: - name: Test WER type: wer value: 34.72 - name: Test CER type: cer value: 7.54 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-eo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - EO dataset. It achieves the following results on the evaluation set: - Loss: 0.2584 - Wer: 0.3114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.1701 | 0.8 | 500 | 2.8105 | 1.0 | | 1.9143 | 1.6 | 1000 | 0.5977 | 0.7002 | | 1.1259 | 2.4 | 1500 | 0.5063 | 0.6157 | | 0.9732 | 3.2 | 2000 | 0.4264 | 0.5673 | | 0.8983 | 4.0 | 2500 | 0.4249 | 0.4902 | | 0.8507 | 4.8 | 3000 | 0.3811 | 0.4536 | | 0.8064 | 5.6 | 3500 | 0.3643 | 0.4467 | | 0.7866 | 6.4 | 4000 | 0.3600 | 0.4453 | | 0.7773 | 7.2 | 4500 | 0.3724 | 0.4470 | | 0.747 | 8.0 | 5000 | 0.3501 | 0.4189 | | 0.7279 | 8.8 | 5500 | 0.3500 | 0.4261 | | 0.7153 | 9.6 | 6000 | 0.3328 | 0.3966 | | 0.7 | 10.4 | 6500 | 0.3314 | 0.3869 | | 0.6784 | 11.2 | 7000 | 0.3396 | 0.4051 | | 0.6582 | 12.0 | 7500 | 0.3236 | 0.3899 | | 0.6478 | 12.8 | 8000 | 0.3263 | 0.3832 | | 0.6277 | 13.6 | 8500 | 0.3139 | 0.3769 | | 0.6053 | 14.4 | 9000 | 0.2955 | 0.3536 | | 0.5777 | 15.2 | 9500 | 0.2793 | 0.3413 | | 0.5631 | 16.0 | 10000 | 0.2789 | 0.3353 | | 0.5446 | 16.8 | 10500 | 0.2709 | 0.3264 | | 0.528 | 17.6 | 11000 | 0.2693 | 0.3234 | | 0.5169 | 18.4 | 11500 | 0.2656 | 0.3193 | | 0.5041 | 19.2 | 12000 | 0.2575 | 0.3102 | | 0.4971 | 20.0 | 12500 | 0.2584 | 0.3114 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-eo --dataset mozilla-foundation/common_voice_7_0 --config eo --split test ```
Harveenchadha/hindi_large_wav2vec2
Harveenchadha
2022-03-23T18:28:53Z
44
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 language: - hi tags: - automatic-speech-recognition - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: hi metrics: - name: Test WER type: wer value: 23.08 - name: Test CER type: cer value: 8.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 23.36 - name: Test CER type: cer value: 8.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 24.85 - name: Test CER type: cer value: 9.99 ---
mpoyraz/wav2vec2-xls-r-300m-cv7-turkish
mpoyraz
2022-03-23T18:28:32Z
567,583
10
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_7_0", "license:cc-by-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: cc-by-4.0 language: tr tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv7-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 8.62 - name: Test CER type: cer value: 2.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 30.87 - name: Test CER type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 32.09 --- # wav2vec2-xls-r-300m-cv7-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.05 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.05 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv7-turkish --dataset mozilla-foundation/common_voice_7_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv7-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 7 TR test split| 8.62 | 2.26 | |Speech Recognition Community dev data| 30.87 | 10.69 |
manifoldix/xlsr-fa-lm
manifoldix
2022-03-23T18:28:30Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "fa", "dataset:common_voice", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fa datasets: - common_voice tags: - hf-asr-leaderboard - robust-speech-event widget: - example_title: Common Voice sample 2978 src: https://huggingface.co/manifoldix/xlsr-fa-lm/resolve/main/sample2978.flac - example_title: Common Voice sample 5168 src: https://huggingface.co/manifoldix/xlsr-fa-lm/resolve/main/sample5168.flac model-index: - name: XLS-R-300m Wav2Vec2 Persian results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fa type: common_voice args: fa metrics: - name: Test WER without LM type: wer value: 26% - name: Test WER with LM type: wer value: 23% --- ## XLSR-300m Persian Fine-tuned on commom voice FA
infinitejoy/wav2vec2-large-xls-r-300m-arabic
infinitejoy
2022-03-23T18:28:27Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300m-SV This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic \ --dataset mozilla-foundation/common_voice_7_0 --config ar --split test --log_outputs ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic --dataset speech-recognition-community-v2/dev_data \ --config ar --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-arabic" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ar", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | NA | NA |
edugp/wav2vec2-xls-r-300m-36-tokens-with-lm-es
edugp
2022-03-23T18:28:19Z
17
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - es tags: - es - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-36-tokens-with-lm-es results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: common_voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 0.08677014042867702 - name: Test CER type: cer value: 0.02810974186831335 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 31.68 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 34.45 --- # Wav2Vec2-xls-r-300m-36-tokens-with-lm-es <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.0868 - Cer: 0.0281 This model consists of a Wav2Vec2 model with an additional KenLM 5-gram language model for CTC decoding. The model is trained removing all characters that are not lower-case unaccented letters between `a-z` or the Spanish accented vowels `á`, `é`, `í`, `ó`, `ú` or the dieresis on the vowel `u` - `ü`. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 3.6512 | 0.07 | 400 | 0.5734 | 0.4325 | | 0.4404 | 0.14 | 800 | 0.3329 | 0.3021 | | 0.3465 | 0.22 | 1200 | 0.3067 | 0.2871 | | 0.3214 | 0.29 | 1600 | 0.2808 | 0.2694 | | 0.319 | 0.36 | 2000 | 0.2755 | 0.2677 | | 0.3015 | 0.43 | 2400 | 0.2667 | 0.2437 | | 0.3102 | 0.51 | 2800 | 0.2679 | 0.2475 | | 0.2955 | 0.58 | 3200 | 0.2591 | 0.2421 | | 0.292 | 0.65 | 3600 | 0.2547 | 0.2404 | | 0.2961 | 0.72 | 4000 | 0.2824 | 0.2716 | | 0.2906 | 0.8 | 4400 | 0.2531 | 0.2321 | | 0.2886 | 0.87 | 4800 | 0.2668 | 0.2573 | | 0.2934 | 0.94 | 5200 | 0.2608 | 0.2454 | | 0.2844 | 1.01 | 5600 | 0.2414 | 0.2233 | | 0.2649 | 1.09 | 6000 | 0.2412 | 0.2198 | | 0.2587 | 1.16 | 6400 | 0.2432 | 0.2211 | | 0.2631 | 1.23 | 6800 | 0.2414 | 0.2225 | | 0.2584 | 1.3 | 7200 | 0.2489 | 0.2290 | | 0.2588 | 1.37 | 7600 | 0.2341 | 0.2156 | | 0.2581 | 1.45 | 8000 | 0.2323 | 0.2155 | | 0.2603 | 1.52 | 8400 | 0.2423 | 0.2231 | | 0.2527 | 1.59 | 8800 | 0.2381 | 0.2192 | | 0.2588 | 1.66 | 9200 | 0.2323 | 0.2176 | | 0.2543 | 1.74 | 9600 | 0.2391 | 0.2151 | | 0.2528 | 1.81 | 10000 | 0.2295 | 0.2091 | | 0.2535 | 1.88 | 10400 | 0.2317 | 0.2099 | | 0.2501 | 1.95 | 10800 | 0.2225 | 0.2105 | | 0.2441 | 2.03 | 11200 | 0.2356 | 0.2180 | | 0.2275 | 2.1 | 11600 | 0.2341 | 0.2115 | | 0.2281 | 2.17 | 12000 | 0.2269 | 0.2117 | | 0.227 | 2.24 | 12400 | 0.2367 | 0.2125 | | 0.2471 | 2.32 | 12800 | 0.2307 | 0.2090 | | 0.229 | 2.39 | 13200 | 0.2231 | 0.2005 | | 0.2325 | 2.46 | 13600 | 0.2243 | 0.2100 | | 0.2314 | 2.53 | 14000 | 0.2252 | 0.2098 | | 0.2309 | 2.6 | 14400 | 0.2269 | 0.2089 | | 0.2267 | 2.68 | 14800 | 0.2155 | 0.1976 | | 0.225 | 2.75 | 15200 | 0.2263 | 0.2067 | | 0.2309 | 2.82 | 15600 | 0.2196 | 0.2041 | | 0.225 | 2.89 | 16000 | 0.2212 | 0.2052 | | 0.228 | 2.97 | 16400 | 0.2192 | 0.2028 | | 0.2136 | 3.04 | 16800 | 0.2169 | 0.2042 | | 0.2038 | 3.11 | 17200 | 0.2173 | 0.1998 | | 0.2035 | 3.18 | 17600 | 0.2185 | 0.2002 | | 0.207 | 3.26 | 18000 | 0.2358 | 0.2120 | | 0.2102 | 3.33 | 18400 | 0.2213 | 0.2019 | | 0.211 | 3.4 | 18800 | 0.2176 | 0.1980 | | 0.2099 | 3.47 | 19200 | 0.2186 | 0.1960 | | 0.2093 | 3.55 | 19600 | 0.2208 | 0.2016 | | 0.2046 | 3.62 | 20000 | 0.2138 | 0.1960 | | 0.2095 | 3.69 | 20400 | 0.2222 | 0.2023 | | 0.2106 | 3.76 | 20800 | 0.2159 | 0.1964 | | 0.2066 | 3.83 | 21200 | 0.2083 | 0.1931 | | 0.2119 | 3.91 | 21600 | 0.2130 | 0.1957 | | 0.2167 | 3.98 | 22000 | 0.2210 | 0.1987 | | 0.1973 | 4.05 | 22400 | 0.2112 | 0.1930 | | 0.1917 | 4.12 | 22800 | 0.2107 | 0.1891 | | 0.1903 | 4.2 | 23200 | 0.2132 | 0.1911 | | 0.1903 | 4.27 | 23600 | 0.2077 | 0.1883 | | 0.1914 | 4.34 | 24000 | 0.2054 | 0.1901 | | 0.1943 | 4.41 | 24400 | 0.2059 | 0.1885 | | 0.1943 | 4.49 | 24800 | 0.2095 | 0.1899 | | 0.1936 | 4.56 | 25200 | 0.2078 | 0.1879 | | 0.1963 | 4.63 | 25600 | 0.2018 | 0.1884 | | 0.1934 | 4.7 | 26000 | 0.2034 | 0.1872 | | 0.2011 | 4.78 | 26400 | 0.2051 | 0.1896 | | 0.1901 | 4.85 | 26800 | 0.2059 | 0.1858 | | 0.1934 | 4.92 | 27200 | 0.2028 | 0.1832 | | 0.191 | 4.99 | 27600 | 0.2046 | 0.1870 | | 0.1775 | 5.07 | 28000 | 0.2081 | 0.1891 | | 0.175 | 5.14 | 28400 | 0.2084 | 0.1904 | | 0.19 | 5.21 | 28800 | 0.2086 | 0.1920 | | 0.1798 | 5.28 | 29200 | 0.2079 | 0.1935 | | 0.1765 | 5.35 | 29600 | 0.2145 | 0.1930 | | 0.181 | 5.43 | 30000 | 0.2062 | 0.1918 | | 0.1808 | 5.5 | 30400 | 0.2083 | 0.1875 | | 0.1769 | 5.57 | 30800 | 0.2117 | 0.1895 | | 0.1788 | 5.64 | 31200 | 0.2055 | 0.1857 | | 0.181 | 5.72 | 31600 | 0.2057 | 0.1870 | | 0.1781 | 5.79 | 32000 | 0.2053 | 0.1872 | | 0.1852 | 5.86 | 32400 | 0.2077 | 0.1904 | | 0.1832 | 5.93 | 32800 | 0.1979 | 0.1821 | | 0.1758 | 6.01 | 33200 | 0.1957 | 0.1754 | | 0.1611 | 6.08 | 33600 | 0.2028 | 0.1773 | | 0.1606 | 6.15 | 34000 | 0.2018 | 0.1780 | | 0.1702 | 6.22 | 34400 | 0.1977 | 0.1759 | | 0.1649 | 6.3 | 34800 | 0.2073 | 0.1845 | | 0.1641 | 6.37 | 35200 | 0.1947 | 0.1774 | | 0.1703 | 6.44 | 35600 | 0.2009 | 0.1811 | | 0.1716 | 6.51 | 36000 | 0.2091 | 0.1817 | | 0.1732 | 6.58 | 36400 | 0.1942 | 0.1743 | | 0.1642 | 6.66 | 36800 | 0.1930 | 0.1749 | | 0.1685 | 6.73 | 37200 | 0.1962 | 0.1716 | | 0.1647 | 6.8 | 37600 | 0.1977 | 0.1822 | | 0.1647 | 6.87 | 38000 | 0.1917 | 0.1748 | | 0.1667 | 6.95 | 38400 | 0.1948 | 0.1774 | | 0.1647 | 7.02 | 38800 | 0.2018 | 0.1783 | | 0.15 | 7.09 | 39200 | 0.2010 | 0.1796 | | 0.1663 | 7.16 | 39600 | 0.1969 | 0.1731 | | 0.1536 | 7.24 | 40000 | 0.1935 | 0.1726 | | 0.1544 | 7.31 | 40400 | 0.2030 | 0.1799 | | 0.1536 | 7.38 | 40800 | 0.1973 | 0.1772 | | 0.1559 | 7.45 | 41200 | 0.1973 | 0.1763 | | 0.1547 | 7.53 | 41600 | 0.2052 | 0.1782 | | 0.1584 | 7.6 | 42000 | 0.1965 | 0.1737 | | 0.1542 | 7.67 | 42400 | 0.1878 | 0.1725 | | 0.1525 | 7.74 | 42800 | 0.1946 | 0.1750 | | 0.1547 | 7.81 | 43200 | 0.1934 | 0.1691 | | 0.1534 | 7.89 | 43600 | 0.1919 | 0.1711 | | 0.1574 | 7.96 | 44000 | 0.1935 | 0.1745 | | 0.1471 | 8.03 | 44400 | 0.1915 | 0.1689 | | 0.1433 | 8.1 | 44800 | 0.1956 | 0.1719 | | 0.1433 | 8.18 | 45200 | 0.1980 | 0.1720 | | 0.1424 | 8.25 | 45600 | 0.1906 | 0.1681 | | 0.1428 | 8.32 | 46000 | 0.1892 | 0.1649 | | 0.1424 | 8.39 | 46400 | 0.1916 | 0.1698 | | 0.1466 | 8.47 | 46800 | 0.1970 | 0.1739 | | 0.1496 | 8.54 | 47200 | 0.1902 | 0.1662 | | 0.1408 | 8.61 | 47600 | 0.1858 | 0.1649 | | 0.1445 | 8.68 | 48000 | 0.1893 | 0.1648 | | 0.1459 | 8.76 | 48400 | 0.1875 | 0.1686 | | 0.1433 | 8.83 | 48800 | 0.1920 | 0.1673 | | 0.1448 | 8.9 | 49200 | 0.1833 | 0.1631 | | 0.1461 | 8.97 | 49600 | 0.1904 | 0.1693 | | 0.1451 | 9.04 | 50000 | 0.1969 | 0.1661 | | 0.1336 | 9.12 | 50400 | 0.1950 | 0.1674 | | 0.1362 | 9.19 | 50800 | 0.1971 | 0.1685 | | 0.1316 | 9.26 | 51200 | 0.1928 | 0.1648 | | 0.132 | 9.33 | 51600 | 0.1908 | 0.1615 | | 0.1301 | 9.41 | 52000 | 0.1842 | 0.1569 | | 0.1322 | 9.48 | 52400 | 0.1892 | 0.1616 | | 0.1391 | 9.55 | 52800 | 0.1956 | 0.1656 | | 0.132 | 9.62 | 53200 | 0.1876 | 0.1598 | | 0.1349 | 9.7 | 53600 | 0.1870 | 0.1624 | | 0.1325 | 9.77 | 54000 | 0.1834 | 0.1586 | | 0.1389 | 9.84 | 54400 | 0.1892 | 0.1647 | | 0.1364 | 9.91 | 54800 | 0.1840 | 0.1597 | | 0.1339 | 9.99 | 55200 | 0.1858 | 0.1626 | | 0.1269 | 10.06 | 55600 | 0.1875 | 0.1619 | | 0.1229 | 10.13 | 56000 | 0.1909 | 0.1619 | | 0.1258 | 10.2 | 56400 | 0.1933 | 0.1631 | | 0.1256 | 10.27 | 56800 | 0.1930 | 0.1640 | | 0.1207 | 10.35 | 57200 | 0.1823 | 0.1585 | | 0.1248 | 10.42 | 57600 | 0.1889 | 0.1596 | | 0.1264 | 10.49 | 58000 | 0.1845 | 0.1584 | | 0.1251 | 10.56 | 58400 | 0.1869 | 0.1588 | | 0.1251 | 10.64 | 58800 | 0.1885 | 0.1613 | | 0.1276 | 10.71 | 59200 | 0.1855 | 0.1575 | | 0.1303 | 10.78 | 59600 | 0.1836 | 0.1597 | | 0.1246 | 10.85 | 60000 | 0.1810 | 0.1573 | | 0.1283 | 10.93 | 60400 | 0.1830 | 0.1581 | | 0.1273 | 11.0 | 60800 | 0.1837 | 0.1619 | | 0.1202 | 11.07 | 61200 | 0.1865 | 0.1588 | | 0.119 | 11.14 | 61600 | 0.1889 | 0.1580 | | 0.1179 | 11.22 | 62000 | 0.1884 | 0.1592 | | 0.1187 | 11.29 | 62400 | 0.1824 | 0.1565 | | 0.1198 | 11.36 | 62800 | 0.1848 | 0.1552 | | 0.1154 | 11.43 | 63200 | 0.1866 | 0.1565 | | 0.1211 | 11.51 | 63600 | 0.1862 | 0.1563 | | 0.1177 | 11.58 | 64000 | 0.1816 | 0.1527 | | 0.1156 | 11.65 | 64400 | 0.1834 | 0.1540 | | 0.1144 | 11.72 | 64800 | 0.1837 | 0.1524 | | 0.119 | 11.79 | 65200 | 0.1859 | 0.1538 | | 0.1183 | 11.87 | 65600 | 0.1869 | 0.1558 | | 0.122 | 11.94 | 66000 | 0.1853 | 0.1535 | | 0.1197 | 12.01 | 66400 | 0.1871 | 0.1586 | | 0.1096 | 12.08 | 66800 | 0.1838 | 0.1540 | | 0.1074 | 12.16 | 67200 | 0.1915 | 0.1592 | | 0.1084 | 12.23 | 67600 | 0.1845 | 0.1545 | | 0.1097 | 12.3 | 68000 | 0.1904 | 0.1552 | | 0.112 | 12.37 | 68400 | 0.1846 | 0.1578 | | 0.1109 | 12.45 | 68800 | 0.1862 | 0.1549 | | 0.1114 | 12.52 | 69200 | 0.1889 | 0.1552 | | 0.1119 | 12.59 | 69600 | 0.1828 | 0.1530 | | 0.1124 | 12.66 | 70000 | 0.1822 | 0.1540 | | 0.1127 | 12.74 | 70400 | 0.1865 | 0.1589 | | 0.1128 | 12.81 | 70800 | 0.1786 | 0.1498 | | 0.1069 | 12.88 | 71200 | 0.1813 | 0.1522 | | 0.1069 | 12.95 | 71600 | 0.1895 | 0.1558 | | 0.1083 | 13.02 | 72000 | 0.1925 | 0.1557 | | 0.1009 | 13.1 | 72400 | 0.1883 | 0.1522 | | 0.1007 | 13.17 | 72800 | 0.1829 | 0.1480 | | 0.1014 | 13.24 | 73200 | 0.1861 | 0.1510 | | 0.0974 | 13.31 | 73600 | 0.1836 | 0.1486 | | 0.1006 | 13.39 | 74000 | 0.1821 | 0.1462 | | 0.0973 | 13.46 | 74400 | 0.1857 | 0.1484 | | 0.1011 | 13.53 | 74800 | 0.1822 | 0.1471 | | 0.1031 | 13.6 | 75200 | 0.1823 | 0.1489 | | 0.1034 | 13.68 | 75600 | 0.1809 | 0.1452 | | 0.0998 | 13.75 | 76000 | 0.1817 | 0.1490 | | 0.1071 | 13.82 | 76400 | 0.1808 | 0.1501 | | 0.1083 | 13.89 | 76800 | 0.1796 | 0.1475 | | 0.1053 | 13.97 | 77200 | 0.1785 | 0.1470 | | 0.0978 | 14.04 | 77600 | 0.1886 | 0.1495 | | 0.094 | 14.11 | 78000 | 0.1854 | 0.1489 | | 0.0915 | 14.18 | 78400 | 0.1854 | 0.1498 | | 0.0947 | 14.25 | 78800 | 0.1888 | 0.1500 | | 0.0939 | 14.33 | 79200 | 0.1885 | 0.1494 | | 0.0973 | 14.4 | 79600 | 0.1877 | 0.1466 | | 0.0946 | 14.47 | 80000 | 0.1904 | 0.1494 | | 0.0931 | 14.54 | 80400 | 0.1815 | 0.1473 | | 0.0958 | 14.62 | 80800 | 0.1905 | 0.1508 | | 0.0982 | 14.69 | 81200 | 0.1881 | 0.1511 | | 0.0963 | 14.76 | 81600 | 0.1823 | 0.1449 | | 0.0943 | 14.83 | 82000 | 0.1782 | 0.1458 | | 0.0981 | 14.91 | 82400 | 0.1795 | 0.1465 | | 0.0995 | 14.98 | 82800 | 0.1811 | 0.1484 | | 0.0909 | 15.05 | 83200 | 0.1822 | 0.1450 | | 0.0872 | 15.12 | 83600 | 0.1890 | 0.1466 | | 0.0878 | 15.2 | 84000 | 0.1859 | 0.1468 | | 0.0884 | 15.27 | 84400 | 0.1825 | 0.1429 | | 0.0871 | 15.34 | 84800 | 0.1816 | 0.1438 | | 0.0883 | 15.41 | 85200 | 0.1817 | 0.1433 | | 0.0844 | 15.48 | 85600 | 0.1821 | 0.1412 | | 0.0843 | 15.56 | 86000 | 0.1863 | 0.1411 | | 0.0805 | 15.63 | 86400 | 0.1863 | 0.1441 | | 0.085 | 15.7 | 86800 | 0.1808 | 0.1440 | | 0.0848 | 15.77 | 87200 | 0.1808 | 0.1421 | | 0.0844 | 15.85 | 87600 | 0.1841 | 0.1406 | | 0.082 | 15.92 | 88000 | 0.1850 | 0.1442 | | 0.0854 | 15.99 | 88400 | 0.1773 | 0.1426 | | 0.0835 | 16.06 | 88800 | 0.1888 | 0.1436 | | 0.0789 | 16.14 | 89200 | 0.1922 | 0.1434 | | 0.081 | 16.21 | 89600 | 0.1864 | 0.1448 | | 0.0799 | 16.28 | 90000 | 0.1902 | 0.1428 | | 0.0848 | 16.35 | 90400 | 0.1873 | 0.1422 | | 0.084 | 16.43 | 90800 | 0.1835 | 0.1421 | | 0.083 | 16.5 | 91200 | 0.1878 | 0.1390 | | 0.0794 | 16.57 | 91600 | 0.1877 | 0.1398 | | 0.0807 | 16.64 | 92000 | 0.1800 | 0.1385 | | 0.0829 | 16.71 | 92400 | 0.1910 | 0.1434 | | 0.0839 | 16.79 | 92800 | 0.1843 | 0.1381 | | 0.0815 | 16.86 | 93200 | 0.1812 | 0.1365 | | 0.0831 | 16.93 | 93600 | 0.1889 | 0.1383 | | 0.0803 | 17.0 | 94000 | 0.1902 | 0.1403 | | 0.0724 | 17.08 | 94400 | 0.1934 | 0.1380 | | 0.0734 | 17.15 | 94800 | 0.1865 | 0.1394 | | 0.0739 | 17.22 | 95200 | 0.1876 | 0.1395 | | 0.0758 | 17.29 | 95600 | 0.1938 | 0.1411 | | 0.0733 | 17.37 | 96000 | 0.1933 | 0.1410 | | 0.077 | 17.44 | 96400 | 0.1848 | 0.1385 | | 0.0754 | 17.51 | 96800 | 0.1876 | 0.1407 | | 0.0746 | 17.58 | 97200 | 0.1863 | 0.1371 | | 0.0732 | 17.66 | 97600 | 0.1927 | 0.1401 | | 0.0746 | 17.73 | 98000 | 0.1874 | 0.1390 | | 0.0755 | 17.8 | 98400 | 0.1853 | 0.1381 | | 0.0724 | 17.87 | 98800 | 0.1849 | 0.1365 | | 0.0716 | 17.94 | 99200 | 0.1848 | 0.1380 | | 0.074 | 18.02 | 99600 | 0.1891 | 0.1362 | | 0.0687 | 18.09 | 100000 | 0.1974 | 0.1357 | | 0.0651 | 18.16 | 100400 | 0.1942 | 0.1353 | | 0.0672 | 18.23 | 100800 | 0.1823 | 0.1363 | | 0.0671 | 18.31 | 101200 | 0.1959 | 0.1357 | | 0.0684 | 18.38 | 101600 | 0.1959 | 0.1374 | | 0.0688 | 18.45 | 102000 | 0.1904 | 0.1353 | | 0.0696 | 18.52 | 102400 | 0.1926 | 0.1364 | | 0.0661 | 18.6 | 102800 | 0.1905 | 0.1351 | | 0.0684 | 18.67 | 103200 | 0.1955 | 0.1343 | | 0.0712 | 18.74 | 103600 | 0.1873 | 0.1353 | | 0.0701 | 18.81 | 104000 | 0.1822 | 0.1354 | | 0.0688 | 18.89 | 104400 | 0.1905 | 0.1373 | | 0.0695 | 18.96 | 104800 | 0.1879 | 0.1335 | | 0.0661 | 19.03 | 105200 | 0.2005 | 0.1351 | | 0.0644 | 19.1 | 105600 | 0.1972 | 0.1351 | | 0.0627 | 19.18 | 106000 | 0.1956 | 0.1340 | | 0.0633 | 19.25 | 106400 | 0.1962 | 0.1340 | | 0.0629 | 19.32 | 106800 | 0.1937 | 0.1342 | | 0.0636 | 19.39 | 107200 | 0.1905 | 0.1355 | | 0.0631 | 19.46 | 107600 | 0.1917 | 0.1326 | | 0.0624 | 19.54 | 108000 | 0.1977 | 0.1355 | | 0.0621 | 19.61 | 108400 | 0.1941 | 0.1345 | | 0.0635 | 19.68 | 108800 | 0.1949 | 0.1336 | | 0.063 | 19.75 | 109200 | 0.1919 | 0.1317 | | 0.0636 | 19.83 | 109600 | 0.1928 | 0.1317 | | 0.0612 | 19.9 | 110000 | 0.1923 | 0.1314 | | 0.0636 | 19.97 | 110400 | 0.1923 | 0.1343 | | 0.0581 | 20.04 | 110800 | 0.2036 | 0.1332 | | 0.0573 | 20.12 | 111200 | 0.2007 | 0.1315 | | 0.0566 | 20.19 | 111600 | 0.1974 | 0.1319 | | 0.0589 | 20.26 | 112000 | 0.1958 | 0.1322 | | 0.0577 | 20.33 | 112400 | 0.1946 | 0.1307 | | 0.0587 | 20.41 | 112800 | 0.1957 | 0.1295 | | 0.0588 | 20.48 | 113200 | 0.2013 | 0.1306 | | 0.0594 | 20.55 | 113600 | 0.2010 | 0.1312 | | 0.0602 | 20.62 | 114000 | 0.1993 | 0.1314 | | 0.0583 | 20.69 | 114400 | 0.1931 | 0.1297 | | 0.059 | 20.77 | 114800 | 0.1974 | 0.1305 | | 0.0566 | 20.84 | 115200 | 0.1979 | 0.1294 | | 0.0588 | 20.91 | 115600 | 0.1944 | 0.1292 | | 0.0569 | 20.98 | 116000 | 0.1974 | 0.1309 | | 0.0554 | 21.06 | 116400 | 0.2080 | 0.1307 | | 0.0542 | 21.13 | 116800 | 0.2056 | 0.1301 | | 0.0532 | 21.2 | 117200 | 0.2027 | 0.1309 | | 0.0535 | 21.27 | 117600 | 0.1970 | 0.1287 | | 0.0533 | 21.35 | 118000 | 0.2124 | 0.1310 | | 0.0546 | 21.42 | 118400 | 0.2043 | 0.1300 | | 0.0544 | 21.49 | 118800 | 0.2056 | 0.1281 | | 0.0562 | 21.56 | 119200 | 0.1986 | 0.1273 | | 0.0549 | 21.64 | 119600 | 0.2075 | 0.1283 | | 0.0522 | 21.71 | 120000 | 0.2058 | 0.1278 | | 0.052 | 21.78 | 120400 | 0.2057 | 0.1280 | | 0.0563 | 21.85 | 120800 | 0.1966 | 0.1295 | | 0.0546 | 21.92 | 121200 | 0.2002 | 0.1285 | | 0.0539 | 22.0 | 121600 | 0.1996 | 0.1279 | | 0.0504 | 22.07 | 122000 | 0.2077 | 0.1273 | | 0.0602 | 22.14 | 122400 | 0.2055 | 0.1278 | | 0.0503 | 22.21 | 122800 | 0.2037 | 0.1283 | | 0.0496 | 22.29 | 123200 | 0.2109 | 0.1279 | | 0.0523 | 22.36 | 123600 | 0.2068 | 0.1276 | | 0.0508 | 22.43 | 124000 | 0.2051 | 0.1257 | | 0.0505 | 22.5 | 124400 | 0.2056 | 0.1269 | | 0.05 | 22.58 | 124800 | 0.1995 | 0.1268 | | 0.0496 | 22.65 | 125200 | 0.2022 | 0.1290 | | 0.0484 | 22.72 | 125600 | 0.2095 | 0.1291 | | 0.0518 | 22.79 | 126000 | 0.2132 | 0.1271 | | 0.0499 | 22.87 | 126400 | 0.2124 | 0.1263 | | 0.0485 | 22.94 | 126800 | 0.2092 | 0.1252 | | 0.0476 | 23.01 | 127200 | 0.2138 | 0.1256 | | 0.0467 | 23.08 | 127600 | 0.2119 | 0.1256 | | 0.048 | 23.15 | 128000 | 0.2138 | 0.1269 | | 0.0461 | 23.23 | 128400 | 0.2036 | 0.1244 | | 0.0467 | 23.3 | 128800 | 0.2163 | 0.1255 | | 0.0475 | 23.37 | 129200 | 0.2180 | 0.1258 | | 0.0468 | 23.44 | 129600 | 0.2129 | 0.1245 | | 0.0456 | 23.52 | 130000 | 0.2122 | 0.1250 | | 0.0458 | 23.59 | 130400 | 0.2157 | 0.1257 | | 0.0453 | 23.66 | 130800 | 0.2088 | 0.1242 | | 0.045 | 23.73 | 131200 | 0.2144 | 0.1247 | | 0.0469 | 23.81 | 131600 | 0.2113 | 0.1246 | | 0.0453 | 23.88 | 132000 | 0.2151 | 0.1234 | | 0.0471 | 23.95 | 132400 | 0.2130 | 0.1229 | | 0.0443 | 24.02 | 132800 | 0.2150 | 0.1225 | | 0.0446 | 24.1 | 133200 | 0.2166 | 0.1235 | | 0.0435 | 24.17 | 133600 | 0.2143 | 0.1222 | | 0.0407 | 24.24 | 134000 | 0.2175 | 0.1218 | | 0.0421 | 24.31 | 134400 | 0.2147 | 0.1227 | | 0.0435 | 24.38 | 134800 | 0.2193 | 0.1233 | | 0.0414 | 24.46 | 135200 | 0.2172 | 0.1225 | | 0.0419 | 24.53 | 135600 | 0.2156 | 0.1225 | | 0.0419 | 24.6 | 136000 | 0.2143 | 0.1235 | | 0.0423 | 24.67 | 136400 | 0.2179 | 0.1226 | | 0.0423 | 24.75 | 136800 | 0.2144 | 0.1221 | | 0.0424 | 24.82 | 137200 | 0.2135 | 0.1210 | | 0.0419 | 24.89 | 137600 | 0.2166 | 0.1218 | | 0.0408 | 24.96 | 138000 | 0.2151 | 0.1211 | | 0.0433 | 25.04 | 138400 | 0.2174 | 0.1214 | | 0.0395 | 25.11 | 138800 | 0.2242 | 0.1210 | | 0.0403 | 25.18 | 139200 | 0.2219 | 0.1215 | | 0.0413 | 25.25 | 139600 | 0.2225 | 0.1207 | | 0.0389 | 25.33 | 140000 | 0.2187 | 0.1202 | | 0.0395 | 25.4 | 140400 | 0.2244 | 0.1204 | | 0.0398 | 25.47 | 140800 | 0.2263 | 0.1199 | | 0.0386 | 25.54 | 141200 | 0.2165 | 0.1187 | | 0.0396 | 25.61 | 141600 | 0.2171 | 0.1187 | | 0.0406 | 25.69 | 142000 | 0.2199 | 0.1190 | | 0.0404 | 25.76 | 142400 | 0.2224 | 0.1190 | | 0.0391 | 25.83 | 142800 | 0.2230 | 0.1185 | | 0.04 | 25.9 | 143200 | 0.2208 | 0.1200 | | 0.0396 | 25.98 | 143600 | 0.2179 | 0.1191 | | 0.0353 | 26.05 | 144000 | 0.2285 | 0.1178 | | 0.0368 | 26.12 | 144400 | 0.2273 | 0.1186 | | 0.0393 | 26.19 | 144800 | 0.2247 | 0.1196 | | 0.0368 | 26.27 | 145200 | 0.2314 | 0.1181 | | 0.0373 | 26.34 | 145600 | 0.2215 | 0.1188 | | 0.038 | 26.41 | 146000 | 0.2262 | 0.1180 | | 0.0363 | 26.48 | 146400 | 0.2250 | 0.1172 | | 0.0365 | 26.56 | 146800 | 0.2299 | 0.1174 | | 0.0382 | 26.63 | 147200 | 0.2292 | 0.1165 | | 0.0365 | 26.7 | 147600 | 0.2282 | 0.1165 | | 0.0371 | 26.77 | 148000 | 0.2276 | 0.1172 | | 0.0365 | 26.85 | 148400 | 0.2280 | 0.1173 | | 0.0376 | 26.92 | 148800 | 0.2248 | 0.1164 | | 0.0365 | 26.99 | 149200 | 0.2230 | 0.1158 | | 0.0343 | 27.06 | 149600 | 0.2300 | 0.1157 | | 0.0354 | 27.13 | 150000 | 0.2298 | 0.1166 | | 0.0333 | 27.21 | 150400 | 0.2307 | 0.1158 | | 0.0353 | 27.28 | 150800 | 0.2300 | 0.1157 | | 0.036 | 27.35 | 151200 | 0.2335 | 0.1160 | | 0.0343 | 27.42 | 151600 | 0.2324 | 0.1155 | | 0.0361 | 27.5 | 152000 | 0.2300 | 0.1150 | | 0.0352 | 27.57 | 152400 | 0.2279 | 0.1146 | | 0.0353 | 27.64 | 152800 | 0.2307 | 0.1149 | | 0.0342 | 27.71 | 153200 | 0.2315 | 0.1152 | | 0.0345 | 27.79 | 153600 | 0.2290 | 0.1146 | | 0.034 | 27.86 | 154000 | 0.2319 | 0.1141 | | 0.0347 | 27.93 | 154400 | 0.2312 | 0.1144 | | 0.0338 | 28.0 | 154800 | 0.2328 | 0.1146 | | 0.0347 | 28.08 | 155200 | 0.2352 | 0.1151 | | 0.033 | 28.15 | 155600 | 0.2337 | 0.1142 | | 0.0336 | 28.22 | 156000 | 0.2345 | 0.1141 | | 0.0337 | 28.29 | 156400 | 0.2315 | 0.1143 | | 0.0314 | 28.36 | 156800 | 0.2353 | 0.1140 | | 0.0333 | 28.44 | 157200 | 0.2338 | 0.1146 | | 0.0317 | 28.51 | 157600 | 0.2345 | 0.1139 | | 0.0326 | 28.58 | 158000 | 0.2336 | 0.1143 | | 0.033 | 28.65 | 158400 | 0.2352 | 0.1137 | | 0.0325 | 28.73 | 158800 | 0.2312 | 0.1130 | | 0.0321 | 28.8 | 159200 | 0.2338 | 0.1133 | | 0.0334 | 28.87 | 159600 | 0.2335 | 0.1130 | | 0.0317 | 28.94 | 160000 | 0.2340 | 0.1126 | | 0.0321 | 29.02 | 160400 | 0.2349 | 0.1126 | | 0.032 | 29.09 | 160800 | 0.2369 | 0.1127 | | 0.0312 | 29.16 | 161200 | 0.2363 | 0.1124 | | 0.0303 | 29.23 | 161600 | 0.2363 | 0.1123 | | 0.0322 | 29.31 | 162000 | 0.2354 | 0.1124 | | 0.03 | 29.38 | 162400 | 0.2360 | 0.1122 | | 0.0299 | 29.45 | 162800 | 0.2378 | 0.1124 | | 0.0313 | 29.52 | 163200 | 0.2377 | 0.1120 | | 0.0299 | 29.59 | 163600 | 0.2367 | 0.1124 | | 0.0313 | 29.67 | 164000 | 0.2380 | 0.1120 | | 0.031 | 29.74 | 164400 | 0.2369 | 0.1120 | | 0.0327 | 29.81 | 164800 | 0.2358 | 0.1117 | | 0.0316 | 29.88 | 165200 | 0.2358 | 0.1118 | | 0.0307 | 29.96 | 165600 | 0.2362 | 0.1118 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
yaswanth/xls-r-300m-yaswanth-hindi2
yaswanth
2022-03-23T18:28:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-300m-yaswanth-hindi2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-yaswanth-hindi2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7163 - Wer: 0.6951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.986 | 4.46 | 500 | 2.0194 | 1.1857 | | 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 | | 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 | | 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 | | 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 | | 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 | | 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 | | 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 | | 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 | | 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 | | 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 | | 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 | | 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 | | 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 | | 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 | | 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 | | 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 | | 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 | | 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 | | 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 | | 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 | | 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
geninhu/xls-asr-vi-40h-1B
geninhu
2022-03-23T18:27:57Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - vi tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-asr-vi-40h-1B results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 25.846 - name: Test CER (with LM) type: cer value: 12.961 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 31.158 - name: Test CER (with LM) type: cer value: 16.179 --- # xls-asr-vi-40h-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 25.93 | 34.21 | |with 4-grams LM| 24.11 | 25.84 | 31.158 | ### Benchmark CER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 9.24 | 19.94 | |with 4-grams LM| 10.37 | 12.96 | 16.179 | ## Evaluation Please use the eval.py file to run the evaluation ```python python eval.py --model_id geninhu/xls-asr-vi-40h-1B --dataset mozilla-foundation/common_voice_7_0 --config vi --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6222 | 1.85 | 1500 | 5.9479 | 0.5474 | | 1.1362 | 3.7 | 3000 | 7.9799 | 0.5094 | | 0.7814 | 5.56 | 4500 | 5.0330 | 0.4724 | | 0.6281 | 7.41 | 6000 | 2.3484 | 0.5020 | | 0.5472 | 9.26 | 7500 | 2.2495 | 0.4793 | | 0.4827 | 11.11 | 9000 | 1.1530 | 0.4768 | | 0.4327 | 12.96 | 10500 | 1.6160 | 0.4646 | | 0.3989 | 14.81 | 12000 | 3.2633 | 0.4703 | | 0.3522 | 16.67 | 13500 | 2.2337 | 0.4708 | | 0.3201 | 18.52 | 15000 | 3.6879 | 0.4565 | | 0.2899 | 20.37 | 16500 | 5.4389 | 0.4599 | | 0.2776 | 22.22 | 18000 | 3.5284 | 0.4537 | | 0.2574 | 24.07 | 19500 | 2.1759 | 0.4649 | | 0.2378 | 25.93 | 21000 | 3.3901 | 0.4448 | | 0.217 | 27.78 | 22500 | 1.1632 | 0.4565 | | 0.2115 | 29.63 | 24000 | 1.7441 | 0.4232 | | 0.1959 | 31.48 | 25500 | 3.4992 | 0.4304 | | 0.187 | 33.33 | 27000 | 3.6163 | 0.4369 | | 0.1748 | 35.19 | 28500 | 3.6038 | 0.4467 | | 0.17 | 37.04 | 30000 | 2.9708 | 0.4362 | | 0.159 | 38.89 | 31500 | 3.2045 | 0.4279 | | 0.153 | 40.74 | 33000 | 3.2427 | 0.4287 | | 0.1463 | 42.59 | 34500 | 3.5439 | 0.4270 | | 0.139 | 44.44 | 36000 | 3.9381 | 0.4150 | | 0.1352 | 46.3 | 37500 | 4.1744 | 0.4092 | | 0.1369 | 48.15 | 39000 | 4.2279 | 0.4154 | | 0.1273 | 50.0 | 40500 | 4.1691 | 0.4133 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
nouamanetazi/wav2vec2-xls-r-300m-ar-with-lm
nouamanetazi
2022-03-23T18:27:54Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
lgris/sew-tiny-portuguese-cv
lgris
2022-03-23T18:27:49Z
5
0
transformers
[ "transformers", "pytorch", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - common_voice model-index: - name: sew-tiny-portuguese-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 30.02 - name: Test CER type: cer value: 10.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.46 - name: Test CER type: cer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 57.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 61.3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5110 - Wer: 0.2842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | No log | 4.92 | 1000 | 0.8468 | 0.6494 | | 3.4638 | 9.85 | 2000 | 0.4978 | 0.3815 | | 3.4638 | 14.78 | 3000 | 0.4734 | 0.3417 | | 0.9904 | 19.7 | 4000 | 0.4577 | 0.3344 | | 0.9904 | 24.63 | 5000 | 0.4376 | 0.3170 | | 0.8849 | 29.55 | 6000 | 0.4225 | 0.3118 | | 0.8849 | 34.48 | 7000 | 0.4354 | 0.3080 | | 0.819 | 39.41 | 8000 | 0.4434 | 0.3004 | | 0.819 | 44.33 | 9000 | 0.4710 | 0.3132 | | 0.7706 | 49.26 | 10000 | 0.4497 | 0.3064 | | 0.7706 | 54.19 | 11000 | 0.4598 | 0.3100 | | 0.7264 | 59.11 | 12000 | 0.4271 | 0.3013 | | 0.7264 | 64.04 | 13000 | 0.4333 | 0.2959 | | 0.6909 | 68.96 | 14000 | 0.4554 | 0.3019 | | 0.6909 | 73.89 | 15000 | 0.4444 | 0.2888 | | 0.6614 | 78.81 | 16000 | 0.4734 | 0.3081 | | 0.6614 | 83.74 | 17000 | 0.4820 | 0.3058 | | 0.6379 | 88.67 | 18000 | 0.4416 | 0.2950 | | 0.6379 | 93.59 | 19000 | 0.4614 | 0.2974 | | 0.6055 | 98.52 | 20000 | 0.4812 | 0.3018 | | 0.6055 | 103.45 | 21000 | 0.4700 | 0.3018 | | 0.5823 | 108.37 | 22000 | 0.4726 | 0.2999 | | 0.5823 | 113.3 | 23000 | 0.4979 | 0.2887 | | 0.5597 | 118.23 | 24000 | 0.4813 | 0.2980 | | 0.5597 | 123.15 | 25000 | 0.4968 | 0.2972 | | 0.542 | 128.08 | 26000 | 0.5331 | 0.3059 | | 0.542 | 133.0 | 27000 | 0.5046 | 0.2978 | | 0.5185 | 137.93 | 28000 | 0.4882 | 0.2922 | | 0.5185 | 142.85 | 29000 | 0.4945 | 0.2938 | | 0.499 | 147.78 | 30000 | 0.4971 | 0.2913 | | 0.499 | 152.71 | 31000 | 0.4948 | 0.2873 | | 0.4811 | 157.63 | 32000 | 0.4924 | 0.2918 | | 0.4811 | 162.56 | 33000 | 0.5128 | 0.2911 | | 0.4679 | 167.49 | 34000 | 0.5098 | 0.2892 | | 0.4679 | 172.41 | 35000 | 0.4966 | 0.2863 | | 0.456 | 177.34 | 36000 | 0.5033 | 0.2839 | | 0.456 | 182.27 | 37000 | 0.5114 | 0.2875 | | 0.4453 | 187.19 | 38000 | 0.5154 | 0.2859 | | 0.4453 | 192.12 | 39000 | 0.5102 | 0.2847 | | 0.4366 | 197.04 | 40000 | 0.5110 | 0.2842 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
w11wo/wav2vec2-xls-r-300m-zh-HK-v2
w11wo
2022-03-23T18:27:41Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: zh-HK license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: Wav2Vec2 XLS-R 300M Cantonese (zh-HK) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: 31.73 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test CER type: cer value: 56.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 55.11 --- # Wav2Vec2 XLS-R 300M Cantonese (zh-HK) Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------ | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-zh-HK-v2` | 300M | XLS-R | `Common Voice zh-HK` Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | CER | | -------------------------------- | ------ | ------ | | `Common Voice` | 0.8089 | 31.73% | | `Common Voice 7` | N/A | 23.11% | | `Common Voice 8` | N/A | 23.02% | | `Robust Speech Event - Dev Data` | N/A | 56.60% | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 0.0001 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 100.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 | | 6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 | | 6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 | | 6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 | | 5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 | | 5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 | | 5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 | | 5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 | | 4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 | | 3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 | | 3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 | | 3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 | | 3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 | | 3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 | | 3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 | | 2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 | | 2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 | | 2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 | | 2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 | | 2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 | | 2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 | | 2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 | | 2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 | | 2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 | | 2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 | | 2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 | | 2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 | | 2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 | | 2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 | | 2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 | | 1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 | | 1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 | | 1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 | | 1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 | | 1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 | | 1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 | | 1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 | | 1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 | | 1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 | | 1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 | | 1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 | | 1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 | | 1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 | | 1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 | | 1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 | | 1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 | | 1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 | | 1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 | | 1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 | | 1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 | | 1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 | | 1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 | | 1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 | | 1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 | | 1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 | | 1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 | | 1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 | | 1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 | | 1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 | | 1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 | | 1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 | | 1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 | | 1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 | | 1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 | | 1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 | | 1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 | | 1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 | | 0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 | | 1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 | | 1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 | | 1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 | | 0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 | | 0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 | | 1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Cantonese (zh-HK) was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
cahya/wav2vec2-luganda
cahya
2022-03-23T18:27:18Z
27
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "common_voice", "hf-asr-leaderboard", "lg", "robust-speech-event", "speech", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: lg datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer tags: - audio - automatic-speech-recognition - common_voice - hf-asr-leaderboard - lg - robust-speech-event - speech license: apache-2.0 model-index: - name: Wav2Vec2 Luganda by Indonesian-NLP results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lg type: common_voice args: lg metrics: - name: Test WER type: wer value: 9.332 - name: Test CER type: cer value: 1.987 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lg metrics: - name: Test WER type: wer value: 13.844 - name: Test CER type: cer value: 2.68 --- # Automatic Speech Recognition for Luganda This is the model built for the [Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition). It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0. We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` WER without KenLM: 15.38 % WER With KenLM: **Test Result**: 7.53 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr)
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1
DrishtiSharma
2022-03-23T18:27:15Z
12
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - bg - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bg-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 0.4709579127785184 - name: Test CER type: cer value: 0.10205125354383235 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 0.7053128872366791 - name: Test CER type: cer value: 0.210804311998487 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 72.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.5197 - Wer: 0.4689 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3711 | 2.61 | 300 | 4.3122 | 1.0 | | 3.1653 | 5.22 | 600 | 3.1156 | 1.0 | | 2.8904 | 7.83 | 900 | 2.8421 | 0.9918 | | 0.9207 | 10.43 | 1200 | 0.9895 | 0.8689 | | 0.6384 | 13.04 | 1500 | 0.6994 | 0.7700 | | 0.5215 | 15.65 | 1800 | 0.5628 | 0.6443 | | 0.4573 | 18.26 | 2100 | 0.5316 | 0.6174 | | 0.3875 | 20.87 | 2400 | 0.4932 | 0.5779 | | 0.3562 | 23.48 | 2700 | 0.4972 | 0.5475 | | 0.3218 | 26.09 | 3000 | 0.4895 | 0.5219 | | 0.2954 | 28.7 | 3300 | 0.5226 | 0.5192 | | 0.287 | 31.3 | 3600 | 0.4957 | 0.5146 | | 0.2587 | 33.91 | 3900 | 0.4944 | 0.4893 | | 0.2496 | 36.52 | 4200 | 0.4976 | 0.4895 | | 0.2365 | 39.13 | 4500 | 0.5185 | 0.4819 | | 0.2264 | 41.74 | 4800 | 0.5152 | 0.4776 | | 0.2224 | 44.35 | 5100 | 0.5031 | 0.4746 | | 0.2096 | 46.96 | 5400 | 0.5062 | 0.4708 | | 0.2038 | 49.57 | 5700 | 0.5217 | 0.4698 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
patrickvonplaten/xls-r-300-sv-cv7
patrickvonplaten
2022-03-23T18:27:10Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "sv", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event - sv datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Swedish - CV7 - v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: sv-SE metrics: - name: Test WER type: wer value: 15.99 - name: Test CER type: cer value: 5.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 24.41 - name: Test CER type: cer value: 11.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.2604 - Wer: 0.2334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results See Tensorboard ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id patrickvonplaten/xls-r-300-sv-cv7 --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id patrickvonplaten/xls-r-300-sv-cv7 --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz-cv8
infinitejoy
2022-03-23T18:27:00Z
8
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab license: apache-2.0 tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Abkhaz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ab metrics: - name: Test WER type: wer value: 27.6 - name: Test CER type: cer value: 4.577 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-abkhaz-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.1614 - Wer: 0.2907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2881 | 4.26 | 4000 | 0.3764 | 0.6461 | | 1.0767 | 8.53 | 8000 | 0.2657 | 0.5164 | | 0.9841 | 12.79 | 12000 | 0.2330 | 0.4445 | | 0.9274 | 17.06 | 16000 | 0.2134 | 0.3929 | | 0.8781 | 21.32 | 20000 | 0.1945 | 0.3886 | | 0.8381 | 25.59 | 24000 | 0.1840 | 0.3737 | | 0.8054 | 29.85 | 28000 | 0.1756 | 0.3523 | | 0.7763 | 34.12 | 32000 | 0.1745 | 0.3299 | | 0.7474 | 38.38 | 36000 | 0.1677 | 0.3074 | | 0.7298 | 42.64 | 40000 | 0.1649 | 0.2963 | | 0.7125 | 46.91 | 44000 | 0.1617 | 0.2931 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-odia
infinitejoy
2022-03-23T18:26:57Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "or", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - or - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Odia results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: or metrics: - name: Test WER type: wer value: 97.91 - name: Test CER type: cer value: 247.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-odia This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - OR dataset. It achieves the following results on the evaluation set: ``` python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs ``` - WER: 1.0921052631578947 - CER: 2.5547945205479454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Training machine details - Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10 - CPU cores: 60 - Python version: 3.8.8 - PyTorch version: 1.10.1+cu102 - GPU is visible: True - Transformers version: 4.16.0.dev0 - Datasets version: 1.17.1.dev0 - soundfile version: 0.10.3 Training script ```bash python run_speech_recognition_ctc.py \ --dataset_name="mozilla-foundation/common_voice_7_0" \ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \ --dataset_config_name="or" \ --output_dir="./wav2vec2-large-xls-r-300m-odia" \ --overwrite_output_dir \ --num_train_epochs="120" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --gradient_accumulation_steps="2" \ --learning_rate="7.5e-5" \ --warmup_steps="500" \ --length_column_name="input_length" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — \’ … \– \' \’ \– \ --save_steps="500" \ --eval_steps="500" \ --logging_steps="100" \ --layerdrop="0.0" \ --activation_dropout="0.1" \ --save_total_limit="3" \ --freeze_feature_encoder \ --feat_proj_dropout="0.0" \ --mask_time_prob="0.75" \ --mask_time_length="10" \ --mask_feature_prob="0.25" \ --mask_feature_length="64" \ --gradient_checkpointing \ --use_auth_token \ --fp16 \ --group_by_length \ --do_train --do_eval \ --push_to_hub ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | | eval_loss | eval_wer | eval_runtime | eval_samples_per_second | eval_steps_per_second | epoch | |---:|------------:|-----------:|---------------:|--------------------------:|------------------------:|--------:| | 0 | 3.35224 | 0.998972 | 5.0475 | 22.189 | 1.387 | 29.41 | | 1 | 1.33679 | 0.938335 | 5.0633 | 22.12 | 1.382 | 58.82 | | 2 | 0.737202 | 0.957862 | 5.0913 | 21.998 | 1.375 | 88.24 | | 3 | 0.658212 | 0.96814 | 5.0953 | 21.981 | 1.374 | 117.65 | | 4 | 0.658 | 0.9712 | 5.0953 | 22.115 | 1.382 | 120 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-large-xls-r-300m-bg
anuragshas
2022-03-23T18:26:55Z
228
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "bg", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Bulgarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 21.195 - name: Test CER type: cer value: 4.786 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 32.667 - name: Test CER type: cer value: 12.452 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 31.03 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Bulgarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.2473 - Wer: 0.3002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1589 | 3.48 | 400 | 3.0830 | 1.0 | | 2.8921 | 6.96 | 800 | 2.6605 | 0.9982 | | 1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 | | 1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 | | 1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 | | 0.999 | 20.87 | 2400 | 0.3541 | 0.4343 | | 0.945 | 24.35 | 2800 | 0.3266 | 0.4132 | | 0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 | | 0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 | | 0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 | | 0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 | | 0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 | | 0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 | | 0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "и надутият му ката блоонкурем взе да се събира" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 30.07 | 21.195 |
mpoyraz/wav2vec2-xls-r-300m-cv6-turkish
mpoyraz
2022-03-23T18:26:27Z
9
7
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - robust-speech-event - tr datasets: - common_voice model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv6-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: tr metrics: - name: Test WER type: wer value: 8.83 - name: Test CER type: cer value: 2.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 32.81 - name: Test CER type: cer value: 11.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 34.86 --- # wav2vec2-xls-r-300m-cv6-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 6.1 TR](https://huggingface.co/datasets/common_voice) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `common_voice` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset common_voice --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 6.1 TR test split| 8.83 | 2.37 | |Speech Recognition Community dev data| 32.81 | 11.22 |
cahya/wav2vec2-base-turkish
cahya
2022-03-23T18:26:22Z
57
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2 Base Turkish by Cahya results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 9.437 - name: Test CER type: cer value: 3.325 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 8.147 - name: Test CER type: cer value: 2.802 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 28.011 - name: Test CER type: cer value: 10.66 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 33.62 --- # This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: | | Dataset | WER | CER | |---|-------------------------------|---------|----------| | 1 | Common Voice 6.1 | 9.437 | 3.325 | | 2 | Common Voice 7.0 | 8.147 | 2.802 | | 3 | Common Voice 8.0 | 8.335 | 2.336 | | 4 | Speech Recognition Community | 28.011 | 10.66 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) 'train', 'validation' and 'other' split were used for training. - [Media Speech](https://www.openslr.org/108/) - [Magic Hub](https://magichub.com/) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 6 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1224 | 3.45 | 500 | 0.1641 | 0.1396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
huggingtweets/lucca_dev
huggingtweets
2022-03-23T18:20:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:07:47Z
--- language: en thumbnail: http://www.huggingtweets.com/lucca_dev/1648059357338/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475818681628246021/sf4z2j_9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lucca</div> <div style="text-align: center; font-size: 14px;">@lucca_dev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lucca. | Data | Lucca | | --- | --- | | Tweets downloaded | 2525 | | Retweets | 17 | | Short tweets | 100 | | Tweets kept | 2408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bq4zgob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lucca_dev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kuasht1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kuasht1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lucca_dev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shahrukhx01/gbert-hasoc-german-2019
shahrukhx01
2022-03-23T18:18:56Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "hate-speech-classification", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T17:41:04Z
--- language: "de" tags: - hate-speech-classification widget: - text: "Das ist der absolute Gipfel! Lächerliche 2,5 Jahre Haft für einen extremst sadistischen Mord. Ich fasse es nicht. Das sitzt der Killer auf der linken Arschbacke ab und lacht sich dabei kaputt. Unsere Justiz ist nur noch zum Kotzen." - text: "Das ist der absolute Gipfel! Lächerliche 2,5 Jahre Haft für einen extremst sadistischen Mord. Ich fasse es nicht. Das sitzt der Killer auf der linken Arschbacke ab und lacht sich dabei kaputt. Unsere Justiz ist nur noch zum Kotzen." --- # Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/gbert-hasoc-german-2019") model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/gbert-hasoc-german-2019") ``` # Dataset ```bibtext @inproceedings{10.1145/3368567.3368584, author = {Mandl, Thomas and Modha, Sandip and Majumder, Prasenjit and Patel, Daksh and Dave, Mohana and Mandlia, Chintak and Patel, Aditya}, title = {Overview of the HASOC Track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages}, year = {2019}, isbn = {9781450377508}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3368567.3368584}, doi = {10.1145/3368567.3368584}, abstract = {The identification of Hate Speech in Social Media is of great importance and receives much attention in the text classification community. There is a huge demand for research for languages other than English. The HASOC track intends to stimulate development in Hate Speech for Hindi, German and English. Three datasets were developed from Twitter and Facebook and made available. Binary classification and more fine-grained subclasses were offered in 3 subtasks. For all subtasks, 321 experiments were submitted. The approaches used most often were LSTM networks processing word embedding input. The performance of the best system for identification of Hate Speech for English, Hindi, and German was a Marco-F1 score of 0.78, 0.81 and 0.61, respectively.}, booktitle = {Proceedings of the 11th Forum for Information Retrieval Evaluation}, pages = {14–17}, numpages = {4}, keywords = {Text Classification, Hate Speech, Evaluation, Deep Learning}, location = {Kolkata, India}, series = {FIRE '19} } ``` --- license: mit ---
huggingtweets/metakuna
huggingtweets
2022-03-23T17:48:52Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:35:38Z
--- language: en thumbnail: http://www.huggingtweets.com/metakuna/1648057688512/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493720826935398408/hB4ndxdj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">metakuna (8/100 blog posts)</div> <div style="text-align: center; font-size: 14px;">@metakuna</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from metakuna (8/100 blog posts). | Data | metakuna (8/100 blog posts) | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 242 | | Short tweets | 524 | | Tweets kept | 2469 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9uv1luph/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @metakuna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1k1mb79h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1k1mb79h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/metakuna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
muhammedshihebi/bert-base-multilingual-cased-squad
muhammedshihebi
2022-03-23T17:48:47Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T17:48:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-base-multilingual-cased-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5271 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18600, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.1256 | 0 | | 0.7252 | 1 | | 0.5271 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/pierreavdb
huggingtweets
2022-03-23T16:50:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T16:43:47Z
--- language: en thumbnail: http://www.huggingtweets.com/pierreavdb/1648054135143/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479780096483512323/LmKFSR3X_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pierre</div> <div style="text-align: center; font-size: 14px;">@pierreavdb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pierre. | Data | Pierre | | --- | --- | | Tweets downloaded | 1064 | | Retweets | 172 | | Short tweets | 133 | | Tweets kept | 759 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21bimkjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pierreavdb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pierreavdb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)