modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
lewtun/autotrain-acronym-identification-7324788
lewtun
2022-08-25T13:34:54Z
33
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:lewtun/autotrain-data-acronym-identification", "dataset:acronym_identification", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-24T10:11:47Z
--- tags: - autotrain language: en widget: - text: "I love AutoTrain \U0001F917" datasets: - lewtun/autotrain-data-acronym-identification - acronym_identification co2_eq_emissions: 10.435358044493652 model-index: - name: autotrain-demo results: - task: name: Token Classification type: token-classification dataset: name: acronym_identification type: acronym_identification args: default metrics: - name: Accuracy type: accuracy value: 0.9708090976211485 - task: type: token-classification name: Token Classification dataset: name: acronym_identification type: acronym_identification config: default split: train metrics: - name: Accuracy type: accuracy value: 0.9790777669399117 verified: true - name: Precision type: precision value: 0.9197835301644851 verified: true - name: Recall type: recall value: 0.946479027789208 verified: true - name: F1 type: f1 value: 0.9329403493591477 verified: true - name: loss type: loss value: 0.06360606849193573 verified: true - task: type: token-classification name: Token Classification dataset: name: acronym_identification type: acronym_identification config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.9758354452761242 verified: true - name: Precision type: precision value: 0.9339674814732883 verified: true - name: Recall type: recall value: 0.9159344831326608 verified: true - name: F1 type: f1 value: 0.9248630887185104 verified: true - name: loss type: loss value: 0.07593930512666702 verified: true --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 7324788 - CO2 Emissions (in grams): 10.435358044493652 ## Validation Metrics - Loss: 0.08991389721632004 - Accuracy: 0.9708090976211485 - Precision: 0.8998421675654347 - Recall: 0.9309429854401959 - F1: 0.9151284109149278 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-acronym-identification-7324788 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lewtun/autotrain-acronym-identification-7324788", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-acronym-identification-7324788", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BenTata-86/distilbert-base-turkish-cased-finetuned-emotion
BenTata-86
2022-08-25T12:54:54Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:turkish-multiclass-dataset", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T11:45:25Z
--- license: mit tags: - generated_from_trainer datasets: - turkish-multiclass-dataset metrics: - f1 model-index: - name: distilbert-base-turkish-cased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: turkish-multiclass-dataset type: turkish-multiclass-dataset config: TurkishMulticlassDataset split: train args: TurkishMulticlassDataset metrics: - name: F1 type: f1 value: f1: 0.8276613385259164 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-turkish-cased-finetuned-emotion This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the turkish-multiclass-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.4861 - F1: {'f1': 0.8276613385259164} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------:| | 0.2578 | 1.0 | 313 | 0.5459 | {'f1': 0.8212239281513611} | | 0.381 | 2.0 | 626 | 0.4861 | {'f1': 0.8276613385259164} | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dav3794/demo_knots_1_8
dav3794
2022-08-25T12:20:03Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:dav3794/autotrain-data-demo-knots_1_8", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T12:13:15Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - dav3794/autotrain-data-demo-knots_1_8 co2_eq_emissions: emissions: 0.06357782150508624 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1316050278 - CO2 Emissions (in grams): 0.0636 ## Validation Metrics - Loss: 0.242 - Accuracy: 0.931 - Precision: 0.943 - Recall: 0.981 - AUC: 0.852 - F1: 0.962 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dav3794/autotrain-demo-knots_1_8-1316050278 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dav3794/autotrain-demo-knots_1_8-1316050278", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dav3794/autotrain-demo-knots_1_8-1316050278", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
dav3794/demo_knots_12_error
dav3794
2022-08-25T11:39:44Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:dav3794/autotrain-data-demo-knots-1-2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T11:37:05Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - dav3794/autotrain-data-demo-knots-1-2 co2_eq_emissions: emissions: 0.019866640922183956 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1315950270 - CO2 Emissions (in grams): 0.0199 ## Validation Metrics - Loss: 0.396 - Accuracy: 0.792 - Precision: 0.915 - Recall: 0.652 - AUC: 0.900 - F1: 0.761 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dav3794/autotrain-demo-knots-1-2-1315950270 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dav3794/autotrain-demo-knots-1-2-1315950270", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dav3794/autotrain-demo-knots-1-2-1315950270", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
dav3794/demo_knots_all
dav3794
2022-08-25T11:21:43Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:dav3794/autotrain-data-demo-knots-all", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T11:08:10Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - dav3794/autotrain-data-demo-knots-all co2_eq_emissions: emissions: 0.1285808899475734 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1315850267 - CO2 Emissions (in grams): 0.1286 ## Validation Metrics - Loss: 0.085 - Accuracy: 0.982 - Precision: 0.984 - Recall: 0.997 - AUC: 0.761 - F1: 0.991 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dav3794/autotrain-demo-knots-all-1315850267 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dav3794/autotrain-demo-knots-all-1315850267", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dav3794/autotrain-demo-knots-all-1315850267", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
muhtasham/bert-small-finetuned-ner-to-multilabel-finer-19
muhtasham
2022-08-25T09:39:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T09:32:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-ner-to-multilabel-finer-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-ner-to-multilabel-finer-19 This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.208 | 0.03 | 500 | 0.1137 | | 0.1026 | 0.06 | 1000 | 0.1170 | | 0.0713 | 0.1 | 1500 | 0.1301 | | 0.0567 | 0.13 | 2000 | 0.1389 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/distilbert-finetuned-ner-ai
silviacamplani
2022-08-25T07:40:11Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-25T07:36:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-ner-ai results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-ner-ai This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8962 - Validation Loss: 0.9088 - Train Precision: 0.3895 - Train Recall: 0.3901 - Train F1: 0.3898 - Train Accuracy: 0.7558 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.5761 | 1.7934 | 0.0 | 0.0 | 0.0 | 0.6480 | 0 | | 1.7098 | 1.5860 | 0.0 | 0.0 | 0.0 | 0.6480 | 1 | | 1.4692 | 1.3213 | 0.0 | 0.0 | 0.0 | 0.6480 | 2 | | 1.2755 | 1.1859 | 0.1154 | 0.0460 | 0.0658 | 0.6789 | 3 | | 1.1561 | 1.0921 | 0.2878 | 0.2010 | 0.2367 | 0.7192 | 4 | | 1.0652 | 1.0170 | 0.3250 | 0.2862 | 0.3043 | 0.7354 | 5 | | 0.9936 | 0.9649 | 0.3489 | 0.3305 | 0.3395 | 0.7462 | 6 | | 0.9442 | 0.9340 | 0.3845 | 0.3799 | 0.3822 | 0.7549 | 7 | | 0.9097 | 0.9168 | 0.3866 | 0.3748 | 0.3806 | 0.7556 | 8 | | 0.8962 | 0.9088 | 0.3895 | 0.3901 | 0.3898 | 0.7558 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
noob123/autotrain-app_review_train_dilbert-1314250179
noob123
2022-08-25T04:43:23Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "unk", "dataset:noob123/autotrain-data-app_review_train_dilbert", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T04:42:31Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - noob123/autotrain-data-app_review_train_dilbert co2_eq_emissions: emissions: 0.004444293595896442 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1314250179 - CO2 Emissions (in grams): 0.0044 ## Validation Metrics - Loss: 0.447 - Accuracy: 0.809 - Precision: 0.857 - Recall: 0.855 - AUC: 0.857 - F1: 0.856 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/noob123/autotrain-app_review_train_dilbert-1314250179 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("noob123/autotrain-app_review_train_dilbert-1314250179", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("noob123/autotrain-app_review_train_dilbert-1314250179", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
jcgarciaca/dqn-SpaceInvadersNoFrameskip-v4
jcgarciaca
2022-08-25T03:22:56Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-25T03:22:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 779.00 +/- 179.64 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcgarciaca -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcgarciaca ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
morganchen1007/swin-tiny-patch4-window7-224-finetuned-eurosat
morganchen1007
2022-08-25T01:34:28Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-23T08:30:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9341978866474544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1507 - Accuracy: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2891 | 1.0 | 146 | 0.2322 | 0.9068 | | 0.2609 | 2.0 | 292 | 0.1710 | 0.9227 | | 0.2417 | 3.0 | 438 | 0.1830 | 0.9251 | | 0.2406 | 4.0 | 584 | 0.1809 | 0.9198 | | 0.2113 | 5.0 | 730 | 0.1631 | 0.9289 | | 0.1812 | 6.0 | 876 | 0.1561 | 0.9308 | | 0.2082 | 7.0 | 1022 | 0.1507 | 0.9342 | | 0.1922 | 8.0 | 1168 | 0.1611 | 0.9294 | | 0.1715 | 9.0 | 1314 | 0.1536 | 0.9308 | | 0.1675 | 10.0 | 1460 | 0.1609 | 0.9289 | | 0.194 | 11.0 | 1606 | 0.1499 | 0.9337 | | 0.1706 | 12.0 | 1752 | 0.1514 | 0.9323 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
ZhiyuanQiu/camembert-base-finetuned-Train_RAW10-dd
ZhiyuanQiu
2022-08-25T01:21:51Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-25T00:06:32Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-base-finetuned-Train_RAW10-dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-Train_RAW10-dd This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Precision: 0.8744 - Recall: 0.9056 - F1: 0.8897 - Accuracy: 0.9357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1873 | 1.0 | 9930 | 0.2088 | 0.8652 | 0.8927 | 0.8788 | 0.9326 | | 0.1533 | 2.0 | 19860 | 0.2175 | 0.8744 | 0.9056 | 0.8897 | 0.9357 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MBMMurad/wav2vec2_murad_with_some_new_data
MBMMurad
2022-08-24T23:33:11Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:cvbn", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-24T05:29:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cvbn model-index: - name: wav2vec2_murad_with_some_new_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_murad_with_some_new_data This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the cvbn dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2971 - eval_wer: 0.2084 - eval_runtime: 511.5492 - eval_samples_per_second: 9.774 - eval_steps_per_second: 0.612 - epoch: 26.88 - step: 33600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
MBMMurad/wav2vec2_imtiaz
MBMMurad
2022-08-24T21:33:01Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:cvbn", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-21T12:53:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cvbn model-index: - name: wav2vec2_imtiaz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_imtiaz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the cvbn dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1956 - eval_wer: 0.2202 - eval_runtime: 574.912 - eval_samples_per_second: 8.697 - eval_steps_per_second: 0.544 - epoch: 9.41 - step: 22000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
dvalbuena1/Reinforce-Pixelcopter
dvalbuena1
2022-08-24T20:51:51Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-24T20:51:41Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 13.70 +/- 7.89 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
noob123/autotrain-app_review_bert_train-1310050094
noob123
2022-08-24T20:30:47Z
105
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:noob123/autotrain-data-app_review_bert_train", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-24T20:28:47Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - noob123/autotrain-data-app_review_bert_train co2_eq_emissions: emissions: 4.094086460501482 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1310050094 - CO2 Emissions (in grams): 4.0941 ## Validation Metrics - Loss: 0.449 - Accuracy: 0.800 - Precision: 0.855 - Recall: 0.844 - AUC: 0.851 - F1: 0.849 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/noob123/autotrain-app_review_bert_train-1310050094 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("noob123/autotrain-app_review_bert_train-1310050094", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("noob123/autotrain-app_review_bert_train-1310050094", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
dvalbuena1/Reinforce-CartPole
dvalbuena1
2022-08-24T18:41:30Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-24T18:39:32Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 209.20 +/- 17.72 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
dboshardy/ddpm-butterflies-128
dboshardy
2022-08-24T18:40:28Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-24T17:51:08Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/dboshardy/ddpm-butterflies-128/tensorboard?#scalars)
Aimlab/Roberta-Base-NER
Aimlab
2022-08-24T18:12:42Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T17:34:06Z
--- widget: - text: "سبحان کی لاہور سے کوئٹہ کی فلائٹ ہے" example_title: "Example 1" ---
ericntay/mlm_gh_issues
ericntay
2022-08-24T17:26:28Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-24T16:07:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mlm_gh_issues results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm_gh_issues This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.099 | 1.0 | 291 | 1.6946 | | 1.6396 | 2.0 | 582 | 1.4288 | | 1.4875 | 3.0 | 873 | 1.3893 | | 1.399 | 4.0 | 1164 | 1.3812 | | 1.341 | 5.0 | 1455 | 1.2004 | | 1.2803 | 6.0 | 1746 | 1.2738 | | 1.2397 | 7.0 | 2037 | 1.2645 | | 1.199 | 8.0 | 2328 | 1.2092 | | 1.166 | 9.0 | 2619 | 1.1871 | | 1.1406 | 10.0 | 2910 | 1.2244 | | 1.1293 | 11.0 | 3201 | 1.2061 | | 1.1037 | 12.0 | 3492 | 1.1621 | | 1.0824 | 13.0 | 3783 | 1.2540 | | 1.0738 | 14.0 | 4074 | 1.1703 | | 1.0625 | 15.0 | 4365 | 1.1195 | | 1.0628 | 16.0 | 4656 | 1.2449 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mmillet/distilrubert-tiny-cased-conversational-v1_finetuned_empathy_classifier
mmillet
2022-08-24T17:07:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-24T17:05:02Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-cased-conversational-v1_finetuned_empathy_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-v1_finetuned_empathy_classifier This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6624 - Accuracy: 0.6780 - F1: 0.6878 - Precision: 0.7175 - Recall: 0.6780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0001 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.09 | 1.0 | 9 | 1.0661 | 0.4407 | 0.4464 | 0.6498 | 0.4407 | | 1.0292 | 2.0 | 18 | 0.9658 | 0.5678 | 0.5223 | 0.5179 | 0.5678 | | 0.942 | 3.0 | 27 | 0.8659 | 0.5932 | 0.5807 | 0.5723 | 0.5932 | | 0.8614 | 4.0 | 36 | 0.7864 | 0.6186 | 0.5924 | 0.5879 | 0.6186 | | 0.8002 | 5.0 | 45 | 0.7766 | 0.6017 | 0.5946 | 0.6086 | 0.6017 | | 0.7633 | 6.0 | 54 | 0.7545 | 0.6186 | 0.6022 | 0.6151 | 0.6186 | | 0.7249 | 7.0 | 63 | 0.7649 | 0.6356 | 0.6381 | 0.6921 | 0.6356 | | 0.6687 | 8.0 | 72 | 0.7115 | 0.6695 | 0.6741 | 0.7154 | 0.6695 | | 0.6426 | 9.0 | 81 | 0.6554 | 0.6864 | 0.6761 | 0.6807 | 0.6864 | | 0.6144 | 10.0 | 90 | 0.6649 | 0.6864 | 0.6909 | 0.7172 | 0.6864 | | 0.6252 | 11.0 | 99 | 0.8685 | 0.6186 | 0.6118 | 0.6880 | 0.6186 | | 0.5988 | 12.0 | 108 | 0.6306 | 0.6949 | 0.7015 | 0.7107 | 0.6949 | | 0.56 | 13.0 | 117 | 0.6919 | 0.6610 | 0.6662 | 0.7061 | 0.6610 | | 0.5468 | 14.0 | 126 | 0.6563 | 0.6949 | 0.6980 | 0.7188 | 0.6949 | | 0.5658 | 15.0 | 135 | 0.6351 | 0.6949 | 0.7048 | 0.7280 | 0.6949 | | 0.5262 | 16.0 | 144 | 0.6902 | 0.6780 | 0.6821 | 0.7173 | 0.6780 | | 0.4777 | 17.0 | 153 | 0.6237 | 0.6949 | 0.6981 | 0.7056 | 0.6949 | | 0.4771 | 18.0 | 162 | 0.6688 | 0.6780 | 0.6799 | 0.7035 | 0.6780 | | 0.4737 | 19.0 | 171 | 0.6482 | 0.6864 | 0.6957 | 0.7219 | 0.6864 | | 0.5033 | 20.0 | 180 | 0.6624 | 0.6780 | 0.6878 | 0.7175 | 0.6780 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ROBERTaCoder/wav2vec2-base-timit-demo-google-colab
ROBERTaCoder
2022-08-24T17:07:25Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-24T11:17:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5452 - Wer: 0.3296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5557 | 1.0 | 500 | 1.9362 | 1.0072 | | 0.867 | 2.01 | 1000 | 0.5197 | 0.5173 | | 0.4281 | 3.01 | 1500 | 0.4609 | 0.4552 | | 0.3002 | 4.02 | 2000 | 0.4066 | 0.4129 | | 0.2252 | 5.02 | 2500 | 0.4122 | 0.3952 | | 0.1857 | 6.02 | 3000 | 0.4650 | 0.3990 | | 0.1541 | 7.03 | 3500 | 0.4784 | 0.3834 | | 0.1372 | 8.03 | 4000 | 0.3875 | 0.3805 | | 0.1213 | 9.04 | 4500 | 0.5606 | 0.4002 | | 0.1043 | 10.04 | 5000 | 0.4713 | 0.3762 | | 0.0972 | 11.04 | 5500 | 0.4770 | 0.3692 | | 0.0876 | 12.05 | 6000 | 0.4755 | 0.3671 | | 0.0812 | 13.05 | 6500 | 0.4854 | 0.3616 | | 0.0705 | 14.06 | 7000 | 0.4380 | 0.3659 | | 0.0759 | 15.06 | 7500 | 0.5025 | 0.3516 | | 0.0709 | 16.06 | 8000 | 0.5310 | 0.3577 | | 0.0572 | 17.07 | 8500 | 0.5097 | 0.3561 | | 0.0572 | 18.07 | 9000 | 0.5150 | 0.3510 | | 0.0482 | 19.08 | 9500 | 0.4954 | 0.3488 | | 0.0703 | 20.08 | 10000 | 0.5279 | 0.3512 | | 0.0457 | 21.08 | 10500 | 0.5336 | 0.3459 | | 0.036 | 22.09 | 11000 | 0.5471 | 0.3440 | | 0.0368 | 23.09 | 11500 | 0.5109 | 0.3417 | | 0.0342 | 24.1 | 12000 | 0.5506 | 0.3415 | | 0.0318 | 25.1 | 12500 | 0.5291 | 0.3357 | | 0.03 | 26.1 | 13000 | 0.5347 | 0.3363 | | 0.026 | 27.11 | 13500 | 0.5475 | 0.3318 | | 0.0232 | 28.11 | 14000 | 0.5628 | 0.3332 | | 0.0246 | 29.12 | 14500 | 0.5452 | 0.3296 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ZhiyuanQiu/camembert-base-finetuned-RAW20-dd
ZhiyuanQiu
2022-08-24T16:48:58Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T13:34:10Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-base-finetuned-RAW20-dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-RAW20-dd This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4309 - Precision: 0.8706 - Recall: 0.8429 - F1: 0.8565 - Accuracy: 0.9926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.136 | 1.0 | 9942 | 0.4309 | 0.8706 | 0.8429 | 0.8565 | 0.9926 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ayushb/roberta-base-ft-esg
Ayushb
2022-08-24T16:47:17Z
19
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-22T14:18:12Z
# ESG Question Answering A NLP service to identify Emission Reduction Targets and Mechanisms of various companies from their ESG disclosure or Annual Reports. This Roberta-Base model has been finetuned on a very small sample (manually annotated). A lot of companies have clear mentions of targets & goals than methodologies which is why it can currently identify only targets & goals more precisely. ## Authors - [@Ayush Bhosle](https://www.github.com/Ayush1702)
IbrahimMavus/ddpm-butterflies-129
IbrahimMavus
2022-08-24T16:26:43Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-24T15:08:11Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-129 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/IbrahimMavus/ddpm-butterflies-129/tensorboard?#scalars)
HYM/bert-base-chinese-ws-finetuned-ner_all
HYM
2022-08-24T15:49:34Z
9
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T15:01:38Z
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-ws-finetuned-ner_all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-ws-finetuned-ner_all This model is a fine-tuned version of [ckiplab/bert-base-chinese-ws](https://huggingface.co/ckiplab/bert-base-chinese-ws) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0330 - Precision: 0.9723 - Recall: 0.9734 - F1: 0.9728 - Accuracy: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 18 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0648 | 0.29 | 500 | 0.0524 | 0.9586 | 0.9572 | 0.9579 | 0.9813 | | 0.0509 | 0.59 | 1000 | 0.0460 | 0.9615 | 0.9628 | 0.9622 | 0.9832 | | 0.0478 | 0.88 | 1500 | 0.0429 | 0.9624 | 0.9660 | 0.9642 | 0.9840 | | 0.0417 | 1.17 | 2000 | 0.0409 | 0.9650 | 0.9680 | 0.9665 | 0.9851 | | 0.0402 | 1.47 | 2500 | 0.0387 | 0.9662 | 0.9693 | 0.9677 | 0.9856 | | 0.0378 | 1.76 | 3000 | 0.0359 | 0.9699 | 0.9717 | 0.9708 | 0.9869 | | 0.0385 | 2.05 | 3500 | 0.0353 | 0.9703 | 0.9718 | 0.9710 | 0.9871 | | 0.0337 | 2.34 | 4000 | 0.0341 | 0.9709 | 0.9731 | 0.9720 | 0.9875 | | 0.0348 | 2.64 | 4500 | 0.0333 | 0.9721 | 0.9733 | 0.9727 | 0.9878 | | 0.0346 | 2.93 | 5000 | 0.0331 | 0.9722 | 0.9735 | 0.9729 | 0.9879 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.8.0+cu111 - Datasets 2.4.0 - Tokenizers 0.10.3
cemilcelik/ppo-LunarLander-v2
cemilcelik
2022-08-24T15:47:48Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-23T16:34:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 260.94 +/- 23.31 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cataluna84/pegasus-samsum
cataluna84
2022-08-24T15:37:26Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-24T14:09:03Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6902 | 0.54 | 500 | 1.4884 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.10.3
jellicott/bert-finetuned-ner
jellicott
2022-08-24T15:20:59Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T14:57:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9347431025937551 - name: Recall type: recall value: 0.9522046449007069 - name: F1 type: f1 value: 0.9433930804501875 - name: Accuracy type: accuracy value: 0.9868870312591982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0619 - Precision: 0.9347 - Recall: 0.9522 - F1: 0.9434 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0847 | 1.0 | 1756 | 0.0696 | 0.9086 | 0.9281 | 0.9182 | 0.9817 | | 0.0338 | 2.0 | 3512 | 0.0601 | 0.9249 | 0.9492 | 0.9369 | 0.9861 | | 0.0173 | 3.0 | 5268 | 0.0619 | 0.9347 | 0.9522 | 0.9434 | 0.9869 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
geverend/GoldenCircle
geverend
2022-08-24T15:04:49Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2022-08-24T15:04:09Z
--- license: cc-by-nc-4.0 --- Golden Circle of Floating Perfection A Halo Called Fred Steampunk
Jeolnighty/sen
Jeolnighty
2022-08-24T12:29:09Z
0
0
null
[ "region:us" ]
null
2022-08-24T12:28:00Z
blackpink logosu el üzerinde dursun
amrahmed/a2c-AntBulletEnv-v0
amrahmed
2022-08-24T12:13:31Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-24T12:12:18Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1405.41 +/- 291.66 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NilsDamAi/nils-nl-to-rx-pt-v4
NilsDamAi
2022-08-24T11:48:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-08-24T11:40:49Z
--- license: apache-2.0 tags: - translation - generated_from_trainer model-index: - name: nils-nl-to-rx-pt-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nils-nl-to-rx-pt-v4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8665 | 1.0 | 542 | 0.5641 | | 0.7292 | 2.0 | 1084 | 0.3749 | | 0.5665 | 3.0 | 1626 | 0.3352 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vinrougeed/ddpm-butterflies-128
vinrougeed
2022-08-24T11:47:23Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-24T11:02:31Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/vinrougeed/ddpm-butterflies-128/tensorboard?#scalars)
Chandanab/beit-base-patch16-224-pt22k-finetuned-eurosat
Chandanab
2022-08-24T11:24:43Z
60
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-09T14:03:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.8585858585858586 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-finetuned-eurosat This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.5181 | 0.7071 | | 0.6727 | 2.0 | 14 | 0.4030 | 0.8182 | | 0.3522 | 3.0 | 21 | 0.3045 | 0.8586 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
KISSz/wav2vec2-vee-demo-colab
KISSz
2022-08-24T10:48:12Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-23T02:38:23Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model_index: name: wav2vec2-vee-demo-colab --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-vee-demo-colab This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cpu - Datasets 1.11.0 - Tokenizers 0.10.3
Neha2608/distilbert-base-uncased-finetuned-news-category
Neha2608
2022-08-24T10:30:36Z
135
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:ag_news", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-23T15:15:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ag_news model-index: - name: distilbert-base-uncased-finetuned-news-category results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-news-category This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
komo0628/1
komo0628
2022-08-24T09:58:36Z
0
0
null
[ "region:us" ]
null
2022-08-24T09:51:42Z
--- license: afl-3.0 kawaii FAZER
hieule/distilbert-base-uncased-scratch
hieule
2022-08-24T09:38:38Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-24T08:21:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-scratch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-scratch This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 6.6235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.388 | 1.0 | 157 | 7.3651 | | 6.9902 | 2.0 | 314 | 6.7300 | | 6.659 | 3.0 | 471 | 6.6304 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Blind2015/distilbert-base-uncased-finetuned-cola
Blind2015
2022-08-24T09:38:02Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-24T09:25:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5188671521382517 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7846 - Matthews Correlation: 0.5189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5255 | 1.0 | 535 | 0.5268 | 0.4065 | | 0.3485 | 2.0 | 1070 | 0.4967 | 0.4848 | | 0.2313 | 3.0 | 1605 | 0.5556 | 0.5105 | | 0.1775 | 4.0 | 2140 | 0.7846 | 0.5189 | | 0.1276 | 5.0 | 2675 | 0.8429 | 0.5154 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
RyanQin/k2j
RyanQin
2022-08-24T09:26:54Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytojoke", "k2j", "Keywords to Jokes", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-24T09:19:46Z
--- language: "en" thumbnail: "Keywords to Jokes" tags: - keytojoke - k2j - Keywords to Jokes license: mit --- Idea is to build a model which will take keywords as inputs and generate jokes as outputs. Potential use case can include: - joke generator - meme generator
chintagunta85/electramed-small-JNLPBA-ner
chintagunta85
2022-08-24T09:14:43Z
10
1
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:jnlpba", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T08:43:59Z
--- tags: - generated_from_trainer datasets: - jnlpba metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-JNLPBA-ner results: - task: name: Token Classification type: token-classification dataset: name: jnlpba type: jnlpba config: jnlpba split: train args: jnlpba metrics: - name: Precision type: precision value: 0.8224512128396863 - name: Recall type: recall value: 0.878188899707887 - name: F1 type: f1 value: 0.8494066679223958 - name: Accuracy type: accuracy value: 0.9620705451213926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-JNLPBA-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the jnlpba dataset. It achieves the following results on the evaluation set: - Loss: 0.1167 - Precision: 0.8225 - Recall: 0.8782 - F1: 0.8494 - Accuracy: 0.9621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.398 | 1.0 | 2087 | 0.1941 | 0.7289 | 0.7936 | 0.7599 | 0.9441 | | 0.0771 | 2.0 | 4174 | 0.1542 | 0.7734 | 0.8348 | 0.8029 | 0.9514 | | 0.1321 | 3.0 | 6261 | 0.1413 | 0.7890 | 0.8492 | 0.8180 | 0.9546 | | 0.2302 | 4.0 | 8348 | 0.1326 | 0.8006 | 0.8589 | 0.8287 | 0.9562 | | 0.0723 | 5.0 | 10435 | 0.1290 | 0.7997 | 0.8715 | 0.8340 | 0.9574 | | 0.171 | 6.0 | 12522 | 0.1246 | 0.8115 | 0.8722 | 0.8408 | 0.9593 | | 0.1058 | 7.0 | 14609 | 0.1204 | 0.8148 | 0.8757 | 0.8441 | 0.9604 | | 0.1974 | 8.0 | 16696 | 0.1178 | 0.8181 | 0.8779 | 0.8470 | 0.9614 | | 0.0663 | 9.0 | 18783 | 0.1168 | 0.8239 | 0.8781 | 0.8501 | 0.9620 | | 0.1022 | 10.0 | 20870 | 0.1167 | 0.8225 | 0.8782 | 0.8494 | 0.9621 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/dadjokeapibot
huggingtweets
2022-08-24T08:04:13Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-23T18:53:00Z
--- language: en thumbnail: http://www.huggingtweets.com/dadjokeapibot/1661328249695/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1122922224820813824/z9zE604m_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dad Joke Bot</div> <div style="text-align: center; font-size: 14px;">@dadjokeapibot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dad Joke Bot. | Data | Dad Joke Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2te5z2ku/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dadjokeapibot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3igw9rw9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3igw9rw9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dadjokeapibot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ASCCCCCCCC/PENGMENGJIE-finetuned-bill-classification
ASCCCCCCCC
2022-08-24T07:09:18Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-19T02:25:37Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PENGMENGJIE-finetuned-bill-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PENGMENGJIE-finetuned-bill-classification This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.0017 | 1.0 | 1250 | 0.0006 | 1.0 | 1.0 | | 0.0005 | 2.0 | 2500 | 0.0003 | 1.0 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
shwan/readme_test
shwan
2022-08-24T06:57:15Z
0
0
null
[ "korean", "klue", "summarization", "ko", "dataset:c4", "license:apache-2.0", "region:us" ]
summarization
2022-08-24T06:49:32Z
--- language: ko tags: - korean - klue - summarization datasets: - c4 license: apache-2.0 --- # KoMiniLM 🐣 Korean mini language model ## Overview Current language models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this project, we release a light weight korean language model to address the aforementioned shortcomings of existing language models. ## Quick tour ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("BM-K/KoMiniLM") # 23M model model = AutoModel.from_pretrained("BM-K/KoMiniLM") inputs = tokenizer("안녕 세상아!", return_tensors="pt") outputs = model(**inputs) ``` ## Update history ** Updates on 2022.06.20 ** - Release KoMiniLM-bert-68M ** Updates on 2022.05.24 ** - Release KoMiniLM-bert-23M ## Pre-training `Teacher Model`: [KLUE-BERT(base)](https://github.com/KLUE-benchmark/KLUE) ### Object Self-Attention Distribution and Self-Attention Value-Relation [[Wang et al., 2020]] were distilled from each discrete layer of the teacher model to the student model. Wang et al. distilled in the last layer of the transformer, but that was not the case in this project. ### Data sets |Data|News comments|News article| |:----:|:----:|:----:| |size|10G|10G| ### Config - **KoMiniLM-23M** ```json { "architectures": [ "BartForPreTraining" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 384, "initializer_range": 0.02, "intermediate_size": 1536, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bart", "num_attention_heads": 12, "num_hidden_layers": 6, "output_attentions": true, "pad_token_id": 0, "position_embedding_type": "absolute", "return_dict": false, "torch_dtype": "float32", "transformers_version": "4.13.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 32000 } ``` ### Performance on subtasks - The results of our fine-tuning experiments are an average of 3 runs for each task. ``` cd KoMiniLM-Finetune bash scripts/run_all_kominilm.sh ``` || #Param | Average | NSMC<br>(Acc) | Naver NER<br>(F1) | PAWS<br>(Acc) | KorNLI<br>(Acc) | KorSTS<br>(Spearman) | Question Pair<br>(Acc) | KorQuaD<br>(Dev)<br>(EM/F1) | |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |KoBERT(KLUE)| 110M | 86.84 | 90.20±0.07 | 87.11±0.05 | 81.36±0.21 | 81.06±0.33 | 82.47±0.14 | 95.03±0.44 | 84.43±0.18 / <br>93.05±0.04 | |KcBERT| 108M | 78.94 | 89.60±0.10 | 84.34±0.13 | 67.02±0.42| 74.17±0.52 | 76.57±0.51 | 93.97±0.27 | 60.87±0.27 / <br>85.01±0.14 | |KoBERT(SKT)| 92M | 79.73 | 89.28±0.42 | 87.54±0.04 | 80.93±0.91 | 78.18±0.45 | 75.98±2.81 | 94.37±0.31 | 51.94±0.60 / <br>79.69±0.66 | |DistilKoBERT| 28M | 74.73 | 88.39±0.08 | 84.22±0.01 | 61.74±0.45 | 70.22±0.14 | 72.11±0.27 | 92.65±0.16 | 52.52±0.48 / <br>76.00±0.71 | | | | | | | | | | | |**KoMiniLM<sup>†</sup>**| **68M** | 85.90 | 89.84±0.02 | 85.98±0.09 | 80.78±0.30 | 79.28±0.17 | 81.00±0.07 | 94.89±0.37 | 83.27±0.08 / <br>92.08±0.06 | |**KoMiniLM<sup>†</sup>**| **23M** | 84.79 | 89.67±0.03 | 84.79±0.09 | 78.67±0.45 | 78.10±0.07 | 78.90±0.11 | 94.81±0.12 | 82.11±0.42 / <br>91.21±0.29 | - [NSMC](https://github.com/e9t/nsmc) (Naver Sentiment Movie Corpus) - [Naver NER](https://github.com/naver/nlp-challenge) (NER task on Naver NLP Challenge 2018) - [PAWS](https://github.com/google-research-datasets/paws) (Korean Paraphrase Adversaries from Word Scrambling) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) (Korean Natural Language Understanding) - [Question Pair](https://github.com/songys/Question_pair) (Paired Question) - [KorQuAD](https://korquad.github.io/) (The Korean Question Answering Dataset) <img src = "https://user-images.githubusercontent.com/55969260/174229747-279122dc-9d27-4da9-a6e7-f9f1fe1651f7.png"> <br> ### User Contributed Examples - ## Reference - [KLUE BERT](https://github.com/KLUE-benchmark/KLUE) - [KcBERT](https://github.com/Beomi/KcBERT) - [SKT KoBERT](https://github.com/SKTBrain/KoBERT) - [DistilKoBERT](https://github.com/monologg/DistilKoBERT) - [lassl](https://github.com/lassl/lassl)
chintagunta85/electramed-small-SPECIES800-ner
chintagunta85
2022-08-24T06:39:16Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:species_800", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T06:32:07Z
--- tags: - generated_from_trainer datasets: - species_800 metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-SPECIES800-ner results: - task: name: Token Classification type: token-classification dataset: name: species_800 type: species_800 config: species_800 split: train args: species_800 metrics: - name: Precision type: precision value: 0.6221498371335505 - name: Recall type: recall value: 0.7470664928292047 - name: F1 type: f1 value: 0.6789099526066352 - name: Accuracy type: accuracy value: 0.9831434110359828 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-SPECIES800-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the species_800 dataset. It achieves the following results on the evaluation set: - Loss: 0.0513 - Precision: 0.6221 - Recall: 0.7471 - F1: 0.6789 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0536 | 1.0 | 359 | 0.0971 | 0.6138 | 0.5554 | 0.5832 | 0.9795 | | 0.0309 | 2.0 | 718 | 0.0692 | 0.6175 | 0.6063 | 0.6118 | 0.9808 | | 0.0563 | 3.0 | 1077 | 0.0582 | 0.6424 | 0.6910 | 0.6658 | 0.9819 | | 0.0442 | 4.0 | 1436 | 0.0553 | 0.5900 | 0.7523 | 0.6613 | 0.9814 | | 0.0069 | 5.0 | 1795 | 0.0511 | 0.6291 | 0.7497 | 0.6841 | 0.9827 | | 0.0141 | 6.0 | 2154 | 0.0505 | 0.6579 | 0.7471 | 0.6996 | 0.9837 | | 0.0052 | 7.0 | 2513 | 0.0513 | 0.5965 | 0.7458 | 0.6628 | 0.9826 | | 0.0573 | 8.0 | 2872 | 0.0509 | 0.6140 | 0.7445 | 0.6730 | 0.9828 | | 0.0203 | 9.0 | 3231 | 0.0516 | 0.6118 | 0.7458 | 0.6722 | 0.9830 | | 0.0101 | 10.0 | 3590 | 0.0513 | 0.6221 | 0.7471 | 0.6789 | 0.9831 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
chintagunta85/electramed-small-BC4CHEMD-ner
chintagunta85
2022-08-24T05:44:59Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:bc4chemd", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T05:07:03Z
--- tags: - generated_from_trainer datasets: - bc4chemd metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-BC4CHEMD-ner results: - task: name: Token Classification type: token-classification dataset: name: bc4chemd type: bc4chemd config: bc4chemd split: train args: bc4chemd metrics: - name: Precision type: precision value: 0.7715624436835465 - name: Recall type: recall value: 0.6760888102832959 - name: F1 type: f1 value: 0.7206773498518718 - name: Accuracy type: accuracy value: 0.9770623458780496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-BC4CHEMD-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the bc4chemd dataset. It achieves the following results on the evaluation set: - Loss: 0.0655 - Precision: 0.7716 - Recall: 0.6761 - F1: 0.7207 - Accuracy: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0882 | 1.0 | 1918 | 0.1058 | 0.6615 | 0.3942 | 0.4940 | 0.9635 | | 0.0555 | 2.0 | 3836 | 0.0820 | 0.7085 | 0.5133 | 0.5954 | 0.9689 | | 0.0631 | 3.0 | 5754 | 0.0769 | 0.6892 | 0.5743 | 0.6266 | 0.9699 | | 0.0907 | 4.0 | 7672 | 0.0682 | 0.7623 | 0.5923 | 0.6666 | 0.9740 | | 0.0313 | 5.0 | 9590 | 0.0675 | 0.7643 | 0.6223 | 0.6860 | 0.9749 | | 0.0306 | 6.0 | 11508 | 0.0662 | 0.7654 | 0.6398 | 0.6970 | 0.9754 | | 0.0292 | 7.0 | 13426 | 0.0656 | 0.7694 | 0.6552 | 0.7077 | 0.9763 | | 0.1025 | 8.0 | 15344 | 0.0658 | 0.7742 | 0.6687 | 0.7176 | 0.9769 | | 0.0394 | 9.0 | 17262 | 0.0662 | 0.7741 | 0.6731 | 0.7201 | 0.9770 | | 0.0378 | 10.0 | 19180 | 0.0655 | 0.7716 | 0.6761 | 0.7207 | 0.9771 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
hhffxx/distilbert-base-uncased-finetuned-emotion
hhffxx
2022-08-24T02:29:32Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-12T06:49:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9385 - name: F1 type: f1 value: 0.9382234767195092 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - Accuracy: 0.9385 - F1: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.5485 | 1.0 | 16000 | 0.3088 | 0.933 | 0.9322 | | 0.2384 | 2.0 | 32000 | 0.2716 | 0.9385 | 0.9382 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
farleyknight/vit-base-roman-numeral
farleyknight
2022-08-24T02:23:03Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-24T02:13:16Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-roman-numeral results: - task: name: Image Classification type: image-classification dataset: name: farleyknight/roman_numerals type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8308823529411765 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-roman-numeral This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the farleyknight/roman_numerals dataset. It achieves the following results on the evaluation set: - Loss: 0.6891 - Accuracy: 0.8309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9053 | 1.0 | 289 | 1.3241 | 0.7108 | | 1.3293 | 2.0 | 578 | 0.9333 | 0.7892 | | 1.1251 | 3.0 | 867 | 0.7989 | 0.7843 | | 0.9837 | 4.0 | 1156 | 0.6956 | 0.8186 | | 0.999 | 5.0 | 1445 | 0.6891 | 0.8309 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.4.0 - Tokenizers 0.12.1
zzj0402/distilbert-base-uncased-finetuned-imdb
zzj0402
2022-08-24T02:07:57Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-24T02:00:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
nguyenkhoa2407/gpt2-NER-favsbot
nguyenkhoa2407
2022-08-24T01:43:23Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "token-classification", "generated_from_trainer", "dataset:favsbot", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2022-08-24T01:24:41Z
--- license: mit tags: - generated_from_trainer datasets: - favsbot metrics: - precision - recall - f1 - accuracy model-index: - name: gpt2-NER-favsbot results: - task: name: Token Classification type: token-classification dataset: name: favsbot type: favsbot config: default split: train args: default metrics: - name: Precision type: precision value: 0.3782051282051282 - name: Recall type: recall value: 0.3277777777777778 - name: F1 type: f1 value: 0.3511904761904762 - name: Accuracy type: accuracy value: 0.5597189695550351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-NER-favsbot This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the favsbot dataset. It achieves the following results on the evaluation set: - Loss: 1.5146 - Precision: 0.3782 - Recall: 0.3278 - F1: 0.3512 - Accuracy: 0.5597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 4 | 4.0808 | 0.0630 | 0.0444 | 0.0521 | 0.0773 | | No log | 2.0 | 8 | 3.5205 | 0.0946 | 0.0778 | 0.0854 | 0.1077 | | No log | 3.0 | 12 | 3.0413 | 0.0909 | 0.0722 | 0.0805 | 0.2084 | | No log | 4.0 | 16 | 2.6817 | 0.0615 | 0.0444 | 0.0516 | 0.2740 | | No log | 5.0 | 20 | 2.4227 | 0.1140 | 0.0722 | 0.0884 | 0.3560 | | No log | 6.0 | 24 | 2.2422 | 0.1382 | 0.0944 | 0.1122 | 0.3770 | | No log | 7.0 | 28 | 2.0941 | 0.1654 | 0.1222 | 0.1406 | 0.3864 | | No log | 8.0 | 32 | 1.9726 | 0.2344 | 0.1667 | 0.1948 | 0.4309 | | No log | 9.0 | 36 | 1.8916 | 0.2925 | 0.1722 | 0.2168 | 0.4543 | | No log | 10.0 | 40 | 1.8321 | 0.31 | 0.1722 | 0.2214 | 0.4660 | | No log | 11.0 | 44 | 1.7697 | 0.2957 | 0.1889 | 0.2305 | 0.4707 | | No log | 12.0 | 48 | 1.7087 | 0.3228 | 0.2278 | 0.2671 | 0.4965 | | No log | 13.0 | 52 | 1.6551 | 0.3485 | 0.2556 | 0.2949 | 0.5152 | | No log | 14.0 | 56 | 1.6136 | 0.3219 | 0.2611 | 0.2883 | 0.5176 | | No log | 15.0 | 60 | 1.5819 | 0.3510 | 0.2944 | 0.3202 | 0.5363 | | No log | 16.0 | 64 | 1.5575 | 0.3506 | 0.3 | 0.3234 | 0.5410 | | No log | 17.0 | 68 | 1.5394 | 0.3529 | 0.3 | 0.3243 | 0.5433 | | No log | 18.0 | 72 | 1.5265 | 0.3791 | 0.3222 | 0.3483 | 0.5574 | | No log | 19.0 | 76 | 1.5180 | 0.3766 | 0.3222 | 0.3473 | 0.5574 | | No log | 20.0 | 80 | 1.5146 | 0.3782 | 0.3278 | 0.3512 | 0.5597 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
JAlexis/bertFast_02
JAlexis
2022-08-24T01:19:46Z
107
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-23T19:57:46Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "How can I protect myself against covid-19?" context: " " --- ## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/bertFast_02" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', } nlp(inputs) ```
jhonparra18/distilbert-base-uncased-ner_cv
jhonparra18
2022-08-23T22:28:59Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T22:11:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-ner_cv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner_cv This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8548 - Precision: 0.3327 - Recall: 0.2358 - F1: 0.2760 - Accuracy: 0.7815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 5.0 | 30 | 1.0790 | 0.0 | 0.0 | 0.0 | 0.7537 | | No log | 10.0 | 60 | 0.9589 | 0.3208 | 0.1207 | 0.1754 | 0.7677 | | No log | 15.0 | 90 | 0.8975 | 0.3363 | 0.1591 | 0.2160 | 0.7773 | | No log | 20.0 | 120 | 0.8675 | 0.3354 | 0.2259 | 0.2699 | 0.7786 | | No log | 25.0 | 150 | 0.8568 | 0.3333 | 0.2443 | 0.2820 | 0.7811 | | No log | 30.0 | 180 | 0.8548 | 0.3327 | 0.2358 | 0.2760 | 0.7815 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.8.1+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
nbroad/rob-base-gc1
nbroad
2022-08-23T21:13:12Z
9
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "dataset:quoref", "dataset:adversarial_qa", "dataset:duorc", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-08-23T15:18:41Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 - quoref - adversarial_qa - duorc model-index: - name: rob-base-gc1 results: - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 42.9 verified: true - name: F1 type: f1 value: 53.8954 verified: true - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 79.5382 verified: true - name: F1 type: f1 value: 82.7221 verified: true - task: type: question-answering name: Question Answering dataset: name: quoref type: quoref config: default split: validation metrics: - name: Exact Match type: exact_match value: 78.403 verified: true - name: F1 type: f1 value: 82.1408 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob-base-gc1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
nbroad/deb-base-gc2
nbroad
2022-08-23T21:03:10Z
8
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "deberta", "question-answering", "dataset:squad_v2", "dataset:quoref", "dataset:adversarial_qa", "dataset:duorc", "endpoints_compatible", "region:us" ]
question-answering
2022-08-23T18:47:02Z
--- datasets: - squad_v2 - quoref - adversarial_qa - duorc ---
andres-hsn/a2c-AntBulletEnv-v0
andres-hsn
2022-08-23T20:38:32Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-23T20:37:36Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1378.24 +/- 479.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
niclas/models_sv_eric_1
niclas
2022-08-23T19:42:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-23T11:54:16Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: models_sv_eric_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models_sv_eric_1 This model is a fine-tuned version of [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1340 - Wer: 0.6241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 27.2483 | 5.81 | 250 | 12.8968 | 1.0 | | 5.3813 | 11.63 | 500 | 3.7635 | 1.0 | | 3.1776 | 17.44 | 750 | 3.1586 | 1.0 | | 3.0849 | 23.26 | 1000 | 3.1336 | 1.0 | | 3.0351 | 29.07 | 1250 | 3.0069 | 1.0 | | 2.5591 | 34.88 | 1500 | 1.8101 | 0.9735 | | 1.4236 | 40.7 | 1750 | 1.3666 | 0.8120 | | 0.9233 | 46.51 | 2000 | 1.3338 | 0.7470 | | 0.6594 | 52.33 | 2250 | 1.4020 | 0.7060 | | 0.5056 | 58.14 | 2500 | 1.3793 | 0.7036 | | 0.4135 | 63.95 | 2750 | 1.3789 | 0.6988 | | 0.3521 | 69.77 | 3000 | 1.4288 | 0.6795 | | 0.2728 | 75.58 | 3250 | 1.4819 | 0.6554 | | 0.2419 | 81.4 | 3500 | 1.5370 | 0.6602 | | 0.2288 | 87.21 | 3750 | 1.4477 | 0.6265 | | 0.2009 | 93.02 | 4000 | 1.5387 | 0.6602 | | 0.1773 | 98.84 | 4250 | 1.6789 | 0.6723 | | 0.1701 | 104.65 | 4500 | 1.6322 | 0.6361 | | 0.1562 | 110.47 | 4750 | 1.5988 | 0.6554 | | 0.1433 | 116.28 | 5000 | 1.7502 | 0.6458 | | 0.1373 | 122.09 | 5250 | 1.7735 | 0.6217 | | 0.1186 | 127.91 | 5500 | 1.7193 | 0.6193 | | 0.1127 | 133.72 | 5750 | 1.8742 | 0.6410 | | 0.113 | 139.53 | 6000 | 1.8339 | 0.6337 | | 0.1106 | 145.35 | 6250 | 1.7486 | 0.6289 | | 0.0955 | 151.16 | 6500 | 1.7455 | 0.6361 | | 0.0934 | 156.98 | 6750 | 1.8922 | 0.6361 | | 0.0873 | 162.79 | 7000 | 2.0495 | 0.6530 | | 0.0863 | 168.6 | 7250 | 1.8438 | 0.6361 | | 0.0901 | 174.42 | 7500 | 2.0441 | 0.6289 | | 0.0749 | 180.23 | 7750 | 2.0112 | 0.6265 | | 0.0887 | 186.05 | 8000 | 2.0684 | 0.6554 | | 0.074 | 191.86 | 8250 | 2.0821 | 0.6265 | | 0.0714 | 197.67 | 8500 | 2.0790 | 0.6313 | | 0.0638 | 203.49 | 8750 | 2.0158 | 0.6072 | | 0.0633 | 209.3 | 9000 | 2.0423 | 0.6386 | | 0.0621 | 215.12 | 9250 | 2.0013 | 0.6241 | | 0.0616 | 220.93 | 9500 | 1.9567 | 0.6386 | | 0.0627 | 226.74 | 9750 | 2.0302 | 0.6361 | | 0.0604 | 232.56 | 10000 | 2.0424 | 0.6096 | | 0.0551 | 238.37 | 10250 | 2.0238 | 0.6096 | | 0.0559 | 244.19 | 10500 | 2.0207 | 0.6361 | | 0.0587 | 250.0 | 10750 | 2.0818 | 0.6361 | | 0.0508 | 255.81 | 11000 | 2.1106 | 0.6289 | | 0.0494 | 261.63 | 11250 | 2.1194 | 0.6434 | | 0.0576 | 267.44 | 11500 | 2.0752 | 0.6410 | | 0.0521 | 273.26 | 11750 | 2.1455 | 0.6361 | | 0.0479 | 279.07 | 12000 | 2.1583 | 0.6337 | | 0.0501 | 284.88 | 12250 | 2.1400 | 0.6386 | | 0.0447 | 290.7 | 12500 | 2.1440 | 0.6265 | | 0.0455 | 296.51 | 12750 | 2.1340 | 0.6241 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.13.3 - Tokenizers 0.10.3
samayl24/local-test-cifar-10
samayl24
2022-08-23T19:26:30Z
0
0
null
[ "pytorch", "vision", "image-classification", "dataset:imagenet-1k", "dataset:imagenet-21k", "license:apache-2.0", "region:us" ]
image-classification
2022-08-02T22:30:19Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace ---
shalpin87/diffusion_conditional
shalpin87
2022-08-23T17:43:04Z
69
0
diffusers
[ "diffusers", "en", "dataset:CelebA", "license:apache-2.0", "diffusers:DDPMConditionalPipeline", "region:us" ]
null
2022-08-15T23:23:16Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: CelebA metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # diffusion_conditional ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `CelebA` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 1 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/shalpin87/diffusion_conditional/tensorboard?#scalars)
nbroad/rob-base-superqa2
nbroad
2022-08-23T17:05:47Z
44
0
transformers
[ "transformers", "pytorch", "tensorboard", "optimum_habana", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "dataset:quoref", "dataset:adversarial_qa", "dataset:duorc", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-08-17T04:02:10Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 - quoref - adversarial_qa - duorc model-index: - name: rob-base-superqa2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 79.2365 verified: true - name: F1 type: f1 value: 82.3326 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: test metrics: - name: Exact Match type: exact_match value: 12.4 verified: true - name: F1 type: f1 value: 12.4 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 42.3667 verified: true - name: F1 type: f1 value: 53.3255 verified: true - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 86.1925 verified: true - name: F1 type: f1 value: 92.4306 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob-base-superqa2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0a0+gita4c10ee - Datasets 2.4.0 - Tokenizers 0.12.1
nguyenkhoa2407/camembert-base-NER-favsbot
nguyenkhoa2407
2022-08-23T16:44:38Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "generated_from_trainer", "dataset:favsbot", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T16:37:05Z
--- license: mit tags: - generated_from_trainer datasets: - favsbot metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-base-NER-favsbot results: - task: name: Token Classification type: token-classification dataset: name: favsbot type: favsbot config: default split: train args: default metrics: - name: Precision type: precision value: 0.6 - name: Recall type: recall value: 0.012145748987854251 - name: F1 type: f1 value: 0.023809523809523808 - name: Accuracy type: accuracy value: 0.42078364565587734 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-NER-favsbot This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the favsbot dataset. It achieves the following results on the evaluation set: - Loss: 1.7433 - Precision: 0.6 - Recall: 0.0121 - F1: 0.0238 - Accuracy: 0.4208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 4 | 2.2915 | 0.1364 | 0.1215 | 0.1285 | 0.3475 | | No log | 2.0 | 8 | 2.2230 | 0.2909 | 0.0648 | 0.1060 | 0.4395 | | No log | 3.0 | 12 | 2.1573 | 0.4545 | 0.0202 | 0.0388 | 0.4225 | | No log | 4.0 | 16 | 2.0961 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 5.0 | 20 | 2.0426 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 6.0 | 24 | 1.9965 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 7.0 | 28 | 1.9575 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 8.0 | 32 | 1.9233 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 9.0 | 36 | 1.8933 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 10.0 | 40 | 1.8674 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 11.0 | 44 | 1.8441 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 12.0 | 48 | 1.8240 | 0.0 | 0.0 | 0.0 | 0.4123 | | No log | 13.0 | 52 | 1.8060 | 1.0 | 0.0040 | 0.0081 | 0.4140 | | No log | 14.0 | 56 | 1.7899 | 1.0 | 0.0040 | 0.0081 | 0.4140 | | No log | 15.0 | 60 | 1.7762 | 1.0 | 0.0040 | 0.0081 | 0.4140 | | No log | 16.0 | 64 | 1.7647 | 0.5 | 0.0040 | 0.0080 | 0.4157 | | No log | 17.0 | 68 | 1.7556 | 0.5 | 0.0040 | 0.0080 | 0.4157 | | No log | 18.0 | 72 | 1.7490 | 0.6667 | 0.0081 | 0.016 | 0.4174 | | No log | 19.0 | 76 | 1.7449 | 0.75 | 0.0121 | 0.0239 | 0.4191 | | No log | 20.0 | 80 | 1.7433 | 0.6 | 0.0121 | 0.0238 | 0.4208 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
shogumbo/testing2-multilabel-classifier
shogumbo
2022-08-23T16:40:47Z
106
0
transformers
[ "transformers", "pytorch", "multi_label_classification", "text-classification", "custom_code", "autotrain_compatible", "region:us" ]
text-classification
2022-08-23T16:31:08Z
--- pipeline_tag: "text-classification" tags: - "text-classification" ---
JAlexis/bert003
JAlexis
2022-08-23T16:15:53Z
65
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "en", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T03:00:42Z
--- language: en #epoch 6 #batch size 16 #lr 5e-5 widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "How can I protect myself against covid-19?" context: " " --- ## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/JAlexis/bert003" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', } nlp(inputs) ```
gossminn/detect-femicide-news-xlmr-nl-mono-freeze2
gossminn
2022-08-23T14:40:14Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-23T14:27:16Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: detect-femicide-news-xlmr-nl-mono-freeze2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detect-femicide-news-xlmr-nl-mono-freeze2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6487 - Accuracy: 0.6429 - Precision Neg: 0.6429 - Precision Pos: 0.0 - Recall Neg: 1.0 - Recall Pos: 0.0 - F1 Score Neg: 0.7826 - F1 Score Pos: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Neg | Precision Pos | Recall Neg | Recall Pos | F1 Score Neg | F1 Score Pos | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:-------------:|:----------:|:----------:|:------------:|:------------:| | 0.7312 | 1.0 | 23 | 0.7413 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 | | 0.7151 | 2.0 | 46 | 0.7177 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 | | 0.7049 | 3.0 | 69 | 0.6988 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 | | 0.6934 | 4.0 | 92 | 0.6945 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 | | 0.6886 | 5.0 | 115 | 0.6903 | 0.6071 | 0.8182 | 0.4706 | 0.5 | 0.8 | 0.6207 | 0.5926 | | 0.6911 | 6.0 | 138 | 0.6846 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6856 | 7.0 | 161 | 0.6786 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6888 | 8.0 | 184 | 0.6783 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6862 | 9.0 | 207 | 0.6819 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6807 | 10.0 | 230 | 0.6758 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6839 | 11.0 | 253 | 0.6721 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6878 | 12.0 | 276 | 0.6708 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6799 | 13.0 | 299 | 0.6692 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6813 | 14.0 | 322 | 0.6673 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6792 | 15.0 | 345 | 0.6676 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6774 | 16.0 | 368 | 0.6683 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6807 | 17.0 | 391 | 0.6679 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6834 | 18.0 | 414 | 0.6693 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6784 | 19.0 | 437 | 0.6679 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.676 | 20.0 | 460 | 0.6698 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6791 | 21.0 | 483 | 0.6661 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6775 | 22.0 | 506 | 0.6633 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6688 | 23.0 | 529 | 0.6589 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6748 | 24.0 | 552 | 0.6580 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6771 | 25.0 | 575 | 0.6619 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6761 | 26.0 | 598 | 0.6639 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6773 | 27.0 | 621 | 0.6651 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6737 | 28.0 | 644 | 0.6656 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6721 | 29.0 | 667 | 0.6650 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6683 | 30.0 | 690 | 0.6612 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6663 | 31.0 | 713 | 0.6592 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6724 | 32.0 | 736 | 0.6576 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6739 | 33.0 | 759 | 0.6601 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6691 | 34.0 | 782 | 0.6602 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6652 | 35.0 | 805 | 0.6588 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6717 | 36.0 | 828 | 0.6596 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6637 | 37.0 | 851 | 0.6587 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6704 | 38.0 | 874 | 0.6579 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6608 | 39.0 | 897 | 0.6599 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6615 | 40.0 | 920 | 0.6580 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6662 | 41.0 | 943 | 0.6592 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6622 | 42.0 | 966 | 0.6616 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.664 | 43.0 | 989 | 0.6610 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.6695 | 44.0 | 1012 | 0.6570 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6677 | 45.0 | 1035 | 0.6557 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6705 | 46.0 | 1058 | 0.6546 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6591 | 47.0 | 1081 | 0.6547 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6675 | 48.0 | 1104 | 0.6532 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6622 | 49.0 | 1127 | 0.6544 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6571 | 50.0 | 1150 | 0.6552 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6678 | 51.0 | 1173 | 0.6555 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6596 | 52.0 | 1196 | 0.6544 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6583 | 53.0 | 1219 | 0.6517 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6641 | 54.0 | 1242 | 0.6508 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.671 | 55.0 | 1265 | 0.6502 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6645 | 56.0 | 1288 | 0.6513 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6604 | 57.0 | 1311 | 0.6510 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6644 | 58.0 | 1334 | 0.6509 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6617 | 59.0 | 1357 | 0.6528 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6608 | 60.0 | 1380 | 0.6536 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6533 | 61.0 | 1403 | 0.6533 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6596 | 62.0 | 1426 | 0.6518 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6607 | 63.0 | 1449 | 0.6511 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.658 | 64.0 | 1472 | 0.6509 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6546 | 65.0 | 1495 | 0.6514 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6613 | 66.0 | 1518 | 0.6516 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.662 | 67.0 | 1541 | 0.6506 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.661 | 68.0 | 1564 | 0.6503 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6571 | 69.0 | 1587 | 0.6497 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6656 | 70.0 | 1610 | 0.6500 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6637 | 71.0 | 1633 | 0.6508 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6519 | 72.0 | 1656 | 0.6518 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6593 | 73.0 | 1679 | 0.6516 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.6539 | 74.0 | 1702 | 0.6514 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.6568 | 75.0 | 1725 | 0.6506 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6581 | 76.0 | 1748 | 0.6504 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6557 | 77.0 | 1771 | 0.6499 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6542 | 78.0 | 1794 | 0.6500 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6557 | 79.0 | 1817 | 0.6498 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6637 | 80.0 | 1840 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6603 | 81.0 | 1863 | 0.6490 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6568 | 82.0 | 1886 | 0.6485 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6561 | 83.0 | 1909 | 0.6490 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6665 | 84.0 | 1932 | 0.6499 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.655 | 85.0 | 1955 | 0.6492 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6509 | 86.0 | 1978 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6549 | 87.0 | 2001 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.655 | 88.0 | 2024 | 0.6489 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6576 | 89.0 | 2047 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6612 | 90.0 | 2070 | 0.6492 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.6641 | 91.0 | 2093 | 0.6492 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 | | 0.654 | 92.0 | 2116 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6556 | 93.0 | 2139 | 0.6488 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6566 | 94.0 | 2162 | 0.6486 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6565 | 95.0 | 2185 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6516 | 96.0 | 2208 | 0.6488 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6509 | 97.0 | 2231 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6588 | 98.0 | 2254 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6532 | 99.0 | 2277 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | | 0.6548 | 100.0 | 2300 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
HYM/Cbert_base_ws-finetuned-ner
HYM
2022-08-23T13:21:40Z
32
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-21T01:12:06Z
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Cbert_base_ws-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Cbert_base_ws-finetuned-ner This model is a fine-tuned version of [ckiplab/bert-base-chinese-ws](https://huggingface.co/ckiplab/bert-base-chinese-ws) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0582 - Precision: 0.9602 - Recall: 0.9633 - F1: 0.9617 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 18 - eval_batch_size: 18 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0482 | 0.64 | 1000 | 0.0509 | 0.9601 | 0.9582 | 0.9592 | 0.9817 | | 0.0364 | 1.28 | 2000 | 0.0521 | 0.9590 | 0.9615 | 0.9602 | 0.9820 | | 0.0341 | 1.92 | 3000 | 0.0548 | 0.9546 | 0.9625 | 0.9585 | 0.9812 | | 0.0264 | 2.56 | 4000 | 0.0550 | 0.9593 | 0.9623 | 0.9608 | 0.9822 | | 0.0227 | 3.19 | 5000 | 0.0582 | 0.9602 | 0.9633 | 0.9617 | 0.9827 | | 0.021 | 3.83 | 6000 | 0.0595 | 0.9581 | 0.9624 | 0.9603 | 0.9820 | | 0.0162 | 4.47 | 7000 | 0.0686 | 0.9574 | 0.9626 | 0.9600 | 0.9819 | | 0.0159 | 5.11 | 8000 | 0.0719 | 0.9596 | 0.9614 | 0.9605 | 0.9822 | | 0.0144 | 5.75 | 9000 | 0.0732 | 0.9590 | 0.9620 | 0.9605 | 0.9822 | | 0.0109 | 6.39 | 10000 | 0.0782 | 0.9599 | 0.9626 | 0.9612 | 0.9824 | | 0.0122 | 7.03 | 11000 | 0.0803 | 0.9605 | 0.9620 | 0.9612 | 0.9825 | | 0.0097 | 7.67 | 12000 | 0.0860 | 0.9591 | 0.9620 | 0.9605 | 0.9822 | | 0.0087 | 8.31 | 13000 | 0.0877 | 0.9591 | 0.9616 | 0.9603 | 0.9821 | | 0.0087 | 8.95 | 14000 | 0.0902 | 0.9585 | 0.9630 | 0.9607 | 0.9823 | | 0.0078 | 9.58 | 15000 | 0.0929 | 0.9589 | 0.9621 | 0.9605 | 0.9821 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.8.0+cu111 - Datasets 2.4.0 - Tokenizers 0.10.3
T-Systems-onsite/cross-de-nl-roberta-sentence-transformer
T-Systems-onsite
2022-08-23T12:38:10Z
5
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence_embedding", "nl", "de", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - nl - de license: mit tags: - sentence_embedding ---
T-Systems-onsite/cross-en-nl-it-roberta-sentence-transformer
T-Systems-onsite
2022-08-23T12:37:34Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "nl", "it", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - nl - it license: mit tags: - sentence_embedding ---
T-Systems-onsite/cross-en-nl-fr-roberta-sentence-transformer
T-Systems-onsite
2022-08-23T12:37:19Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "nl", "fr", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - nl - fr license: mit tags: - sentence_embedding ---
model-attribution-challenge/gpt2-xl
model-attribution-challenge
2022-08-23T11:53:51Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "gpt2", "text-generation", "en", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-26T13:36:42Z
--- language: en license: mit --- # GPT-2 XL ## Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) - [Model Card Authors](#model-card-authors) ## Model Details **Model Description:** GPT-2 XL is the **1.5B parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective. - **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers. - **Model Type:** Transformer-based language model - **Language(s):** English - **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE) - **Related Models:** [GPT-2](https://huggingface.co/gpt2), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-Large](https://huggingface.co/gpt2-large) - **Resources for more information:** - [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) - [OpenAI Blog Post](https://openai.com/blog/better-language-models/) - [GitHub Repo](https://github.com/openai/gpt-2) - [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md) - [OpenAI GPT-2 1.5B Release Blog Post](https://openai.com/blog/gpt-2-1-5b-release/) - Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large ## How to Get Started with the Model Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='gpt2-xl') set_seed(42) generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-xl') model = GPT2Model.from_pretrained('gpt2-xl') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-xl') model = TFGPT2Model.from_pretrained('gpt2-xl') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Uses #### Direct Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > The primary intended users of these models are AI researchers and practitioners. > > We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models. #### Downstream Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > Here are some secondary use cases we believe are likely: > > - Writing assistance: Grammar assistance, autocompletion (for normal prose or code) > - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art. > - Entertainment: Creation of games, chat bots, and amusing generations. #### Misuse and Out-of-scope Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.** #### Biases Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example: ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='gpt2-xl') set_seed(42) generator("The man worked as a", max_length=10, num_return_sequences=5) set_seed(42) generator("The woman worked as a", max_length=10, num_return_sequences=5) ``` This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. #### Risks and Limitations When they released the 1.5B parameter model, OpenAI wrote in a [blog post](https://openai.com/blog/gpt-2-1-5b-release/): > GPT-2 can be fine-tuned for misuse. Our partners at the Middlebury Institute of International Studies’ Center on Terrorism, Extremism, and Counterterrorism (CTEC) found that extremist groups can use GPT-2 for misuse, specifically by fine-tuning GPT-2 models on four ideological positions: white supremacy, Marxism, jihadist Islamism, and anarchism. CTEC demonstrated that it’s possible to create models that can generate synthetic propaganda for these ideologies. They also show that, despite having low detection accuracy on synthetic outputs, ML-based detection methods can give experts reasonable suspicion that an actor is generating synthetic text. The blog post further discusses the risks, limitations, and biases of the model. ## Training #### Training Data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). #### Training Procedure The model is pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. ## Evaluation The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). #### Testing Data, Factors and Metrics The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that: > Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation. #### Results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 8.63 | 63.24 | 93.30 | 89.05 | 18.34 | 35.76 | 0.93 | 0.98 | 17.48 | 42.16 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware type and hours used are based on information provided by one of the model authors on [Reddit](https://bit.ly/2Tw1x4L). - **Hardware Type:** 32 TPUv3 chips - **Hours used:** 168 - **Cloud Provider:** Unknown - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, and training details. ## Citation Information ```bibtex @article{radford2019language, title={Language models are unsupervised multitask learners}, author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others}, journal={OpenAI blog}, volume={1}, number={8}, pages={9}, year={2019} } ``` ## Model Card Authors This model card was written by the Hugging Face team.
g1gaman/One_dream_one_soul
g1gaman
2022-08-23T11:36:41Z
0
0
null
[ "region:us" ]
null
2022-08-23T11:35:58Z
One dream, one soul One prize, one goal One golden glance of what should be It's a kind of magic
jonas/roberta-base-finetuned-sdg
jonas
2022-08-23T09:49:42Z
160
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-23T09:11:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-sdg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sdg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4993 - Acc: 0.9024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4679 | 1.0 | 254 | 0.3660 | 0.8963 | | 0.3578 | 2.0 | 508 | 0.3689 | 0.9019 | | 0.2739 | 3.0 | 762 | 0.3284 | 0.9035 | | 0.1841 | 4.0 | 1016 | 0.3763 | 0.9019 | | 0.1127 | 5.0 | 1270 | 0.4174 | 0.9024 | | 0.0822 | 6.0 | 1524 | 0.4523 | 0.9013 | | 0.0329 | 7.0 | 1778 | 0.4829 | 0.9030 | | 0.0157 | 8.0 | 2032 | 0.4993 | 0.9024 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0a0+8a1a93a - Datasets 2.4.0 - Tokenizers 0.12.1
kws/Reinforce-2000steps
kws
2022-08-23T09:21:17Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-23T09:19:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2000steps results: - metrics: - type: mean_reward value: 213.70 +/- 9.52 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Shamus/mt5-base-finetuned-ar-to-en
Shamus
2022-08-23T08:56:07Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-23T07:28:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-base-finetuned-ar-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-ar-to-en This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0111 - Gen Len: 6.732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 163.1788 | 1.0 | 816 | nan | 0.0111 | 6.732 | | 1.1396 | 2.0 | 1632 | nan | 0.0111 | 6.732 | | 0.0381 | 3.0 | 2448 | nan | 0.0111 | 6.732 | | 0.0 | 4.0 | 3264 | nan | 0.0111 | 6.732 | | 155.5697 | 5.0 | 4080 | nan | 0.0111 | 6.732 | | 74.9948 | 6.0 | 4896 | nan | 0.0111 | 6.732 | | 0.116 | 6.13 | 5000 | nan | 0.0111 | 6.732 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
guoguo/distilbert-base-uncased-finetuned-squad-d5716d28
guoguo
2022-08-23T08:52:09Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-08-23T08:50:41Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
T-Systems-onsite/cross-en-pl-it-roberta-sentence-transformer
T-Systems-onsite
2022-08-23T07:18:56Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "pl", "it", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - pl - it license: mit tags: - sentence_embedding ---
ish97/bert-finetuned-ner-wnut17
ish97
2022-08-23T07:15:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T06:59:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-wnut17 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: train args: wnut_17 metrics: - name: Precision type: precision value: 0.5301047120418848 - name: Recall type: recall value: 0.48444976076555024 - name: F1 type: f1 value: 0.50625 - name: Accuracy type: accuracy value: 0.9252876639015253 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-wnut17 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3444 - Precision: 0.5301 - Recall: 0.4844 - F1: 0.5062 - Accuracy: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 425 | 0.3361 | 0.5602 | 0.4007 | 0.4672 | 0.9172 | | 0.2009 | 2.0 | 850 | 0.3617 | 0.5331 | 0.4043 | 0.4599 | 0.9201 | | 0.0947 | 3.0 | 1275 | 0.3444 | 0.5301 | 0.4844 | 0.5062 | 0.9253 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
abdulmatinomotoso/English_Grammar_Checker
abdulmatinomotoso
2022-08-23T07:13:02Z
1,561
3
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-23T03:43:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: English_Grammar_Checker results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5324115893962171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # English_Grammar_Checker This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1117 - Matthews Correlation: 0.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.527 | 1.0 | 1069 | 0.6183 | 0.3947 | | 0.387 | 2.0 | 2138 | 0.5165 | 0.5156 | | 0.2772 | 3.0 | 3207 | 0.6716 | 0.5211 | | 0.176 | 4.0 | 4276 | 0.9270 | 0.5123 | | 0.0975 | 5.0 | 5345 | 1.1117 | 0.5324 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
snunlp/KR-SBERT-V40K-klueNLI-augSTS
snunlp
2022-08-23T07:12:47Z
249,821
60
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "ko", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-03T03:34:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - ko widget: - source_sentence: "그 식당은 파리를 날린다" sentences: - "그 식당에는 손님이 없다" - "그 식당에서는 드론을 날린다" - "파리가 식당에 날아다닌다" example_title: "Restaurant" - source_sentence: "잠이 옵니다" sentences: - "잠이 안 옵니다" - "졸음이 옵니다" - "기차가 옵니다" example_title: "Sleepy" --- # snunlp/KR-SBERT-V40K-klueNLI-augSTS This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS') model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=snunlp/KR-SBERT-V40K-klueNLI-augSTS) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Application for document classification Tutorial in Google Colab: https://colab.research.google.com/drive/1S6WSjOx9h6Wh_rX1Z2UXwx9i_uHLlOiM |Model|Accuracy| |-|-| |KR-SBERT-Medium-NLI-STS|0.8400| |KR-SBERT-V40K-NLI-STS|0.8400| |KR-SBERT-V40K-NLI-augSTS|0.8511| |KR-SBERT-V40K-klueNLI-augSTS|**0.8628**| ## Citation ```bibtex @misc{kr-sbert, author = {Park, Suzi and Hyopil Shin}, title = {KR-SBERT: A Pre-trained Korean-specific Sentence-BERT model}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/snunlp/KR-SBERT}} } ```
nguyenkhoa2407/autotrain-bert-NER-favsbot
nguyenkhoa2407
2022-08-23T06:38:33Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:nguyenkhoa2407/autotrain-data-default_model_favsbot_data", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T06:35:43Z
--- tags: - autotrain - token-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - nguyenkhoa2407/autotrain-data-default_model_favsbot_data co2_eq_emissions: emissions: 0.012034916031396342 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1300449813 - CO2 Emissions (in grams): 0.0120 ## Validation Metrics - Loss: 1.004 - Accuracy: 0.710 - Precision: 0.542 - Recall: 0.413 - F1: 0.468 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/nguyenkhoa2407/autotrain-default_model_favsbot_data-1300449813 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("nguyenkhoa2407/autotrain-default_model_favsbot_data-1300449813", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("nguyenkhoa2407/autotrain-default_model_favsbot_data-1300449813", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
chintagunta85/electramed-small-ADE-ner
chintagunta85
2022-08-23T05:45:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T05:40:55Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-ADE-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-ADE-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1548 - Precision: 0.8358 - Recall: 0.9064 - F1: 0.8697 - Accuracy: 0.9581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5587 | 1.0 | 201 | 0.4107 | 0.7291 | 0.7982 | 0.7621 | 0.8983 | | 0.2114 | 2.0 | 402 | 0.2663 | 0.7716 | 0.8826 | 0.8234 | 0.9445 | | 0.1421 | 3.0 | 603 | 0.2183 | 0.8033 | 0.9030 | 0.8502 | 0.9488 | | 0.2204 | 4.0 | 804 | 0.1878 | 0.8279 | 0.9012 | 0.8630 | 0.9553 | | 0.5825 | 5.0 | 1005 | 0.1712 | 0.8289 | 0.8967 | 0.8615 | 0.9566 | | 0.0685 | 6.0 | 1206 | 0.1647 | 0.8333 | 0.9067 | 0.8685 | 0.9572 | | 0.0973 | 7.0 | 1407 | 0.1593 | 0.8365 | 0.9049 | 0.8693 | 0.9578 | | 0.1683 | 8.0 | 1608 | 0.1574 | 0.8367 | 0.9082 | 0.8710 | 0.9577 | | 0.065 | 9.0 | 1809 | 0.1557 | 0.8397 | 0.9052 | 0.8712 | 0.9583 | | 0.179 | 10.0 | 2010 | 0.1548 | 0.8358 | 0.9064 | 0.8697 | 0.9581 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ish97/bert-finetuned-chunking
ish97
2022-08-23T05:20:26Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T04:55:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-chunking results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9229691876750701 - name: Recall type: recall value: 0.9217857559156079 - name: F1 type: f1 value: 0.9223770922027176 - name: Accuracy type: accuracy value: 0.961882616118208 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-chunking This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1594 - Precision: 0.9230 - Recall: 0.9218 - F1: 0.9224 - Accuracy: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1887 | 1.0 | 1756 | 0.1793 | 0.9167 | 0.9112 | 0.9139 | 0.9573 | | 0.128 | 2.0 | 3512 | 0.1552 | 0.9228 | 0.9187 | 0.9207 | 0.9609 | | 0.091 | 3.0 | 5268 | 0.1594 | 0.9230 | 0.9218 | 0.9224 | 0.9619 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
VanHoan/codeparrot-ds
VanHoan
2022-08-23T04:44:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-23T04:20:33Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Teeto/reviews-classification
Teeto
2022-08-23T01:42:25Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-22T20:35:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: reviews-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reviews-classification This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5442 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 350 | 0.4666 | 0.86 | | 0.4577 | 2.0 | 700 | 0.5500 | 0.8525 | | 0.2499 | 3.0 | 1050 | 0.5442 | 0.875 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Tokenizers 0.12.1
VanHoan/mt5-small-finetuned-amazon-en-ja
VanHoan
2022-08-23T00:46:48Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-22T23:44:35Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-ja results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-ja This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2749 - Rouge1: 16.6603 - Rouge2: 8.1096 - Rougel: 16.0117 - Rougelsum: 16.1001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 8.0415 | 1.0 | 773 | 3.6621 | 11.6952 | 4.8642 | 11.3154 | 11.3683 | | 4.1249 | 2.0 | 1546 | 3.3933 | 14.3113 | 6.2067 | 13.9923 | 14.0476 | | 3.7462 | 3.0 | 2319 | 3.3725 | 15.7855 | 8.0892 | 15.2485 | 15.3145 | | 3.5608 | 4.0 | 3092 | 3.3270 | 16.0732 | 7.8202 | 15.4816 | 15.6421 | | 3.4471 | 5.0 | 3865 | 3.2908 | 16.4399 | 7.6723 | 15.514 | 15.7309 | | 3.3604 | 6.0 | 4638 | 3.2904 | 16.6074 | 8.3131 | 16.0711 | 16.1382 | | 3.3081 | 7.0 | 5411 | 3.2827 | 16.2547 | 8.1096 | 15.6128 | 15.7097 | | 3.2905 | 8.0 | 6184 | 3.2749 | 16.6603 | 8.1096 | 16.0117 | 16.1001 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
saahith/wav2vec2_base_100h_ngram
saahith
2022-08-22T22:20:01Z
78
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-22T21:42:48Z
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-Base-100h [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h") # define function to read in sound file def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 6.1 | 13.5 |
spacemanidol/esci-mlm-us-bert-base-uncased
spacemanidol
2022-08-22T22:01:58Z
103
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-22T18:21:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: esci-us-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esci-us-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1785 - Accuracy: 0.7499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 1.18.0 - Tokenizers 0.12.1
spacemanidol/esci-mlm-alllang-bert-base-uncased
spacemanidol
2022-08-22T21:15:41Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-22T18:20:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: esci-all-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esci-all-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0435 - Accuracy: 0.7740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 1.18.0 - Tokenizers 0.12.1
jerostephan/Architecture_Diffusion_1.5M
jerostephan
2022-08-22T20:36:04Z
0
3
null
[ "region:us" ]
null
2022-08-22T19:57:12Z
# 512x512 Diffusion (Architecture fine-tuned) ## Detailed description A 512x512 unconditional ImageNet diffusion model, fine-tuned for 900.000 samples from the 512x512 unconditional ImageNet diffusion model. It was fine-tuned using 60.000 images of architecture of the AIDA dataset from Harvard x ArchDaily. ## Config (as used in Disco Diffusion) { "attention_resolutions": '32, 16, 8', "class_cond": False, "diffusion_steps": 1000, "image_size": 512, "learn_sigma": True, "noise_schedule": "linear", "num_channels": 256, "num_head_channels": 64, "num_res_blocks": 2, "resblock_updown": True, "rescale_timesteps": True, "timestep_respacing": "250", "use_scale_shift_norm": True } --- license: cc ---
pinecone/movie-recommender-user-model
pinecone
2022-08-22T20:21:58Z
0
2
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-07-31T21:04:13Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
gayanin/bart-paraphrasing-mlm-med-mask-filling
gayanin
2022-08-22T16:50:59Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-22T13:28:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrasing-mlm-med-mask-filling results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrasing-mlm-med-mask-filling This model is a fine-tuned version of [gayanin/bart-paraphrase-pubmed-1.1](https://huggingface.co/gayanin/bart-paraphrase-pubmed-1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2528 - Rouge2 Precision: 0.8317 - Rouge2 Recall: 0.5986 - Rouge2 Fmeasure: 0.6751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.3396 | 1.0 | 15827 | 0.3030 | 0.8186 | 0.5903 | 0.6652 | | 0.2879 | 2.0 | 31654 | 0.2706 | 0.8257 | 0.5952 | 0.6708 | | 0.2514 | 3.0 | 47481 | 0.2572 | 0.8295 | 0.5964 | 0.6729 | | 0.2361 | 4.0 | 63308 | 0.2528 | 0.8317 | 0.5986 | 0.6751 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
JAlexis/bert_v2
JAlexis
2022-08-22T16:22:09Z
67
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "en", "endpoints_compatible", "region:us" ]
question-answering
2022-08-22T16:16:52Z
--- language: en #epoch #batch size #lr widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "How can I protect myself against covid-19?" context: " " --- ## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/PruebaBert" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', } nlp(inputs) ```
obi/deid_bert_i2b2
obi
2022-08-22T13:28:40Z
2,478
20
transformers
[ "transformers", "pytorch", "bert", "token-classification", "deidentification", "medical notes", "ehr", "phi", "en", "dataset:I2B2", "arxiv:1904.03323", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en thumbnail: "https://www.onebraveidea.org/wp-content/uploads/2019/07/OBI-Logo-Website.png" tags: - deidentification - medical notes - ehr - phi datasets: - I2B2 metrics: - F1 - Recall - AUC widget: - text: "Physician Discharge Summary Admit date: 10/12/1982 Discharge date: 10/22/1982 Patient Information Jack Reacher, 54 y.o. male (DOB = 1/21/1928)." - text: "Home Address: 123 Park Drive, San Diego, CA, 03245. Home Phone: 202-555-0199 (home)." - text: "Hospital Care Team Service: Orthopedics Inpatient Attending: Roger C Kelly, MD Attending phys phone: (634)743-5135 Discharge Unit: HCS843 Primary Care Physician: Hassan V Kim, MD 512-832-5025." license: mit --- # Model Description * A ClinicalBERT [[Alsentzer et al., 2019]](https://arxiv.org/pdf/1904.03323.pdf) model fine-tuned for de-identification of medical notes. * Sequence Labeling (token classification): The model was trained to predict protected health information (PHI/PII) entities (spans). A list of protected health information categories is given by [HIPAA](https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html). * A token can either be classified as non-PHI or as one of the 11 PHI types. Token predictions are aggregated to spans by making use of BILOU tagging. * The PHI labels that were used for training and other details can be found here: [Annotation Guidelines](https://github.com/obi-ml-public/ehr_deidentification/blob/master/AnnotationGuidelines.md) * More details on how to use this model, the format of data and other useful information is present in the GitHub repo: [Robust DeID](https://github.com/obi-ml-public/ehr_deidentification). # How to use * A demo on how the model works (using model predictions to de-identify a medical note) is on this space: [Medical-Note-Deidentification](https://huggingface.co/spaces/obi/Medical-Note-Deidentification). * Steps on how this model can be used to run a forward pass can be found here: [Forward Pass](https://github.com/obi-ml-public/ehr_deidentification/tree/master/steps/forward_pass) * In brief, the steps are: * Sentencize (the model aggregates the sentences back to the note level) and tokenize the dataset. * Use the predict function of this model to gather the predictions (i.e., predictions for each token). * Additionally, the model predictions can be used to remove PHI from the original note/text. # Dataset * The I2B2 2014 [[Stubbs and Uzuner, 2015]](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978170/) dataset was used to train this model. | | I2B2 | | I2B2 | | | --------- | --------------------- | ---------- | -------------------- | ---------- | | | TRAIN SET - 790 NOTES | | TEST SET - 514 NOTES | | | PHI LABEL | COUNT | PERCENTAGE | COUNT | PERCENTAGE | | DATE | 7502 | 43.69 | 4980 | 44.14 | | STAFF | 3149 | 18.34 | 2004 | 17.76 | | HOSP | 1437 | 8.37 | 875 | 7.76 | | AGE | 1233 | 7.18 | 764 | 6.77 | | LOC | 1206 | 7.02 | 856 | 7.59 | | PATIENT | 1316 | 7.66 | 879 | 7.79 | | PHONE | 317 | 1.85 | 217 | 1.92 | | ID | 881 | 5.13 | 625 | 5.54 | | PATORG | 124 | 0.72 | 82 | 0.73 | | EMAIL | 4 | 0.02 | 1 | 0.01 | | OTHERPHI | 2 | 0.01 | 0 | 0 | | TOTAL | 17171 | 100 | 11283 | 100 | # Training procedure * Steps on how this model was trained can be found here: [Training](https://github.com/obi-ml-public/ehr_deidentification/tree/master/steps/train). The "model_name_or_path" was set to: "emilyalsentzer/Bio_ClinicalBERT". * The dataset was sentencized with the en_core_sci_sm sentencizer from spacy. * The dataset was then tokenized with a custom tokenizer built on top of the en_core_sci_sm tokenizer from spacy. * For each sentence we added 32 tokens on the left (from previous sentences) and 32 tokens on the right (from the next sentences). * The added tokens are not used for learning - i.e, the loss is not computed on these tokens - they are used as additional context. * Each sequence contained a maximum of 128 tokens (including the 32 tokens added on). Longer sequences were split. * The sentencized and tokenized dataset with the token level labels based on the BILOU notation was used to train the model. * The model is fine-tuned from a pre-trained RoBERTa model. * Training details: * Input sequence length: 128 * Batch size: 32 * Optimizer: AdamW * Learning rate: 4e-5 * Dropout: 0.1 # Results # Questions? Post a Github issue on the repo: [Robust DeID](https://github.com/obi-ml-public/ehr_deidentification).
brilianputraa/Lunar-LanderV2-v1
brilianputraa
2022-08-22T13:22:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-07T10:03:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -34.99 +/- 57.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
VanHoan/marian-finetuned-kde4-en-to-vi
VanHoan
2022-08-22T13:16:19Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-22T12:45:16Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-vi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-vi split: train args: en-vi metrics: - name: Bleu type: bleu value: 51.100833140674204 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-vi This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.2217 - Bleu: 51.1008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
danieladejumo/MLAgents-Worm
danieladejumo
2022-08-22T13:13:48Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2022-08-22T13:13:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: danieladejumo/MLAgents-Worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
domsebalj/GPcroaT
domsebalj
2022-08-22T12:05:15Z
10
2
transformers
[ "transformers", "tf", "gpt2", "text-generation", "GPT-2", "hr", "dataset:hrwac", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-09T10:49:13Z
--- language: hr tags: - GPT-2 datasets: - hrwac --- If you use this model for own tasks, please share your results in the community tab. With Tensorflow you can use: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained("domsebalj/GPcroaT") model = TFGPT2LMHeadModel.from_pretrained("domsebalj/GPcroaT") text = "Zamijeni ovaj tekst vlastitim" input_ids = tokenizer.encode(text, return_tensors='tf') beam_output = model.generate( input_ids, max_length = 80, min_length = 10, num_beams = 10, temperature = 5.7, no_repeat_ngram_size=2, num_return_sequences=5, repetition_penalty =7.5, length_penalty = 1.5, top_k = 50 ) output = [] for i in beam_output: output.append(tokenizer.decode(i)) print(output) ```
alishudi/distil_mse_3
alishudi
2022-08-22T11:01:25Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-22T10:59:03Z
--alpha_ce 0.0 --alpha_mlm 2.0 --alpha_cos 1.0 --alpha_act 1.0 --alpha_clm 0.0 --alpha_mse 0.0002 --mlm \ 3 layers
orkg/orkgnlp-templates-recommendation
orkg
2022-08-22T10:24:11Z
16
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-22T10:04:42Z
--- license: mit --- This Repository includes the files required to run the `Templates Recommendation` ORKG-NLP service. Please check [this article](https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html) for more details about the service.
mekarahul/distilbert-base-uncased-finetuned-sent
mekarahul
2022-08-22T09:41:06Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-19T14:43:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-sent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sent This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5482 - Accuracy: 0.48 - F1: 0.3658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8587 | 1.0 | 100 | 1.2984 | 0.42 | 0.2603 | | 0.7303 | 2.0 | 200 | 1.5482 | 0.48 | 0.3658 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.12.1
ericntay/ft_clinical_bert_diabetes
ericntay
2022-08-22T09:19:39Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-22T08:42:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: ft_clinical_bert_diabetes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ft_clinical_bert_diabetes This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1020 - Accuracy: 0.9632 - F1: 0.9578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1641 | 1.0 | 1064 | 0.1604 | 0.9526 | 0.9462 | | 0.1088 | 2.0 | 2128 | 0.0878 | 0.9623 | 0.9573 | | 0.0956 | 3.0 | 3192 | 0.0963 | 0.9632 | 0.9578 | | 0.0858 | 4.0 | 4256 | 0.1020 | 0.9632 | 0.9578 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
nghuyong/ernie-gram-zh
nghuyong
2022-08-22T09:10:05Z
98
3
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "zh", "arxiv:2010.12148", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-03T17:34:43Z
--- language: zh --- # ERNIE-Gram-zh ## Introduction ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding More detail: https://arxiv.org/abs/2010.12148 ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |ernie-gram-zh| Chinese |Layer:12, Hidden:768, Heads:12| This released Pytorch model is converted from the officially released PaddlePaddle ERNIE model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle ERNIE repo: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/ernie_gram/modeling.py - Pytorch Conversion repo: https://github.com/nghuyong/ERNIE-Pytorch ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-gram-zh") model = AutoModel.from_pretrained("nghuyong/ernie-gram-zh") ```