modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
sequence | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
Peacemann/mistralai_Mistral-7B-Instruct-v0.2_LMUL | Peacemann | 2025-06-15T18:02:43Z | 0 | 0 | null | [
"safetensors",
"mistral",
"L-Mul,",
"optimazation",
"quantization",
"text-generation",
"research",
"experimental",
"conversational",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | text-generation | 2025-06-15T17:56:57Z | ---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- L-Mul,
- optimazation
- quantization
- text-generation
- research
- experimental
---
# L-Mul Optimized: mistralai/Mistral-7B-Instruct-v0.2
This is a modified version of Mistral AI's [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul".
This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures.
**This model is intended strictly for educational and scientific purposes.**
## Model Description
The core architecture of `mistralai/Mistral-7B-Instruct-v0.2` is preserved. However, the standard `MistralAttention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository.
- **Base Model:** [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- **Modification:** Replacement of standard attention with L-Mul approximate attention.
- **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs.
## How to Get Started
To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism.
You can load the model directly from this repository using the `transformers` library:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Define the repository ID for the specific model
repo_id = "Peacemann/mistralai_Mistral-7B-Instruct-v0.2-lmul-attention" # Replace with the correct repo ID if different
# Load the tokenizer and model, trusting the remote code to load lmul.py
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(
repo_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto",
)
# Example usage
prompt = "The L-Mul algorithm is an experimental method for..."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Intended Uses & Limitations
This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes.
**This model is NOT intended for any commercial or production application.**
The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**.
## Licensing Information
The use of this model is subject to the original **Apache 2.0 License**. By using this model, you agree to the terms outlined in the license. |
parveen-Official-Viral-Video-Link/18.Original.Full.Clip.parveen.Viral.Video.Leaks.Official | parveen-Official-Viral-Video-Link | 2025-06-15T18:00:08Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T17:59:49Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
yalhessi/lemexp-task1-v2-lemma_object_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2 | yalhessi | 2025-06-15T17:56:54Z | 0 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:deepseek-ai/deepseek-coder-1.3b-base",
"base_model:adapter:deepseek-ai/deepseek-coder-1.3b-base",
"license:other",
"region:us"
] | null | 2025-06-15T17:56:41Z | ---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-lemma_object_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lemexp-task1-v2-lemma_object_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2426
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.5096 | 0.2 | 3094 | 0.5142 |
| 0.4699 | 0.4 | 6188 | 0.4815 |
| 0.4503 | 0.6 | 9282 | 0.4479 |
| 0.4359 | 0.8 | 12376 | 0.4406 |
| 0.4266 | 1.0 | 15470 | 0.4249 |
| 0.4181 | 1.2 | 18564 | 0.4146 |
| 0.4126 | 1.4 | 21658 | 0.4122 |
| 0.4076 | 1.6 | 24752 | 0.4043 |
| 0.4022 | 1.8 | 27846 | 0.4012 |
| 0.3969 | 2.0 | 30940 | 0.3975 |
| 0.3874 | 2.2 | 34034 | 0.3964 |
| 0.3865 | 2.4 | 37128 | 0.3813 |
| 0.379 | 2.6 | 40222 | 0.3783 |
| 0.3772 | 2.8 | 43316 | 0.3750 |
| 0.3735 | 3.0 | 46410 | 0.3765 |
| 0.3637 | 3.2 | 49504 | 0.3659 |
| 0.3669 | 3.4 | 52598 | 0.3610 |
| 0.3577 | 3.6 | 55692 | 0.3615 |
| 0.3578 | 3.8 | 58786 | 0.3567 |
| 0.3563 | 4.0 | 61880 | 0.3510 |
| 0.3442 | 4.2 | 64974 | 0.3461 |
| 0.3403 | 4.4 | 68068 | 0.3428 |
| 0.3385 | 4.6 | 71162 | 0.3442 |
| 0.3309 | 4.8 | 74256 | 0.3399 |
| 0.3271 | 5.0 | 77350 | 0.3290 |
| 0.3225 | 5.2 | 80444 | 0.3299 |
| 0.3241 | 5.4 | 83538 | 0.3253 |
| 0.321 | 5.6 | 86632 | 0.3258 |
| 0.3168 | 5.8 | 89726 | 0.3225 |
| 0.3117 | 6.0 | 92820 | 0.3182 |
| 0.2992 | 6.2 | 95914 | 0.3187 |
| 0.2985 | 6.4 | 99008 | 0.3104 |
| 0.2975 | 6.6 | 102102 | 0.3072 |
| 0.3021 | 6.8 | 105196 | 0.3018 |
| 0.2921 | 7.0 | 108290 | 0.3012 |
| 0.2807 | 7.2 | 111384 | 0.2967 |
| 0.2758 | 7.4 | 114478 | 0.2962 |
| 0.2807 | 7.6 | 117572 | 0.2932 |
| 0.2786 | 7.8 | 120666 | 0.2901 |
| 0.2778 | 8.0 | 123760 | 0.2846 |
| 0.2632 | 8.2 | 126854 | 0.2863 |
| 0.262 | 8.4 | 129948 | 0.2809 |
| 0.2611 | 8.6 | 133042 | 0.2828 |
| 0.2648 | 8.8 | 136136 | 0.2762 |
| 0.2632 | 9.0 | 139230 | 0.2730 |
| 0.2461 | 9.2 | 142324 | 0.2676 |
| 0.2443 | 9.4 | 145418 | 0.2669 |
| 0.2435 | 9.6 | 148512 | 0.2655 |
| 0.2431 | 9.8 | 151606 | 0.2631 |
| 0.2379 | 10.0 | 154700 | 0.2599 |
| 0.2275 | 10.2 | 157794 | 0.2583 |
| 0.2281 | 10.4 | 160888 | 0.2570 |
| 0.2243 | 10.6 | 163982 | 0.2530 |
| 0.2222 | 10.8 | 167076 | 0.2541 |
| 0.2219 | 11.0 | 170170 | 0.2494 |
| 0.2112 | 11.2 | 173264 | 0.2495 |
| 0.2077 | 11.4 | 176358 | 0.2471 |
| 0.2065 | 11.6 | 179452 | 0.2451 |
| 0.2029 | 11.8 | 182546 | 0.2432 |
| 0.2073 | 12.0 | 185640 | 0.2426 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_random_3x3_seed_1_seed_25_seed_2_seed_42_20250615_174649 | gradientrouting-spar | 2025-06-15T17:56:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:56:02Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
meezo-fun-20/20.Video.meezo.fun.trending.viral.Full.Video | meezo-fun-20 | 2025-06-15T17:56:41Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T17:56:04Z | <a rel="nofollow" href="https://viralflix.xyz/leaked/?sd">🔴 CLICK HERE 🌐==►► Download Now)</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?sd"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
<a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf/">🌐 Viral Video Original Full HD🟢==►► WATCH NOW</a> |
dgambettaphd/M_llm2_run2_gen0_WXS_doc1000_synt64_lr1e-04_acm_FRESH | dgambettaphd | 2025-06-15T17:51:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"unsloth",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-06-15T17:49:50Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VIDEOS-18-parveen-viral-video/wATCH.FULL.VIDEO.parveen.Viral.Video.Tutorial.Official | VIDEOS-18-parveen-viral-video | 2025-06-15T17:51:34Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T17:48:55Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
kythours/kitou | kythours | 2025-06-15T17:50:31Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-15T17:49:25Z | ---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
widget:
- output:
url: sample/kitou_001800_00_20250615171413.png
text: hwxjos man walks down a quiet alley, shadows stretching behind him.
- output:
url: sample/kitou_001800_01_20250615171455.png
text: hwxjos man ties his boots as the morning light fills the room.
- output:
url: sample/kitou_001800_02_20250615171538.png
text: hwxjos man smokes alone on a balcony overlooking the city.
- output:
url: sample/kitou_001800_03_20250615171621.png
text: hwxjos man lifts a backpack and steps onto the train.
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: owxjos
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# kitou
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `owxjos` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
arunmadhusudh/qwen2_VL_2B_LatexOCR_qlora_qptq_epoch3 | arunmadhusudh | 2025-06-15T17:49:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:49:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Avinash17/llama-math-tutor | Avinash17 | 2025-06-15T17:49:09Z | 0 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:29:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Alfonsol/ai-miracle-348 | Alfonsol | 2025-06-15T17:48:29Z | 7 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-10T10:17:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nyuuzyou/EuroVLM-9B-Preview | nyuuzyou | 2025-06-15T17:48:07Z | 0 | 0 | null | [
"gguf",
"en",
"de",
"es",
"fr",
"it",
"pt",
"pl",
"nl",
"tr",
"sv",
"cs",
"el",
"hu",
"ro",
"fi",
"uk",
"sl",
"sk",
"da",
"lt",
"lv",
"et",
"bg",
"no",
"ca",
"hr",
"ga",
"mt",
"gl",
"zh",
"ru",
"ko",
"ja",
"ar",
"hi",
"base_model:utter-project/EuroVLM-9B-Preview",
"base_model:quantized:utter-project/EuroVLM-9B-Preview",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-15T17:13:27Z | ---
license: apache-2.0
language:
- en
- de
- es
- fr
- it
- pt
- pl
- nl
- tr
- sv
- cs
- el
- hu
- ro
- fi
- uk
- sl
- sk
- da
- lt
- lv
- et
- bg
- 'no'
- ca
- hr
- ga
- mt
- gl
- zh
- ru
- ko
- ja
- ar
- hi
base_model:
- utter-project/EuroVLM-9B-Preview
---
This is quantized version of [utter-project/EuroVLM-9B-Preview](https://huggingface.co/utter-project/EuroVLM-9B-Preview) created using [llama.cpp](https://github.com/ggml-org/llama.cpp)
|
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.05_epoch2 | MinaMila | 2025-06-15T17:46:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:44:43Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kimxxxx/mistral_r64_a128_g8_gas8_lr9e-5_4500tk_droplast_nopacking_2epoch | kimxxxx | 2025-06-15T17:45:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:45:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Ninannnnn/roger_dean_style_LoRA | Ninannnnn | 2025-06-15T17:42:58Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-06-15T17:42:56Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: roger dean style of fantasy
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - Ninannnnn/roger_dean_style_LoRA
<Gallery />
## Model description
These are Ninannnnn/roger_dean_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use roger dean style of fantasy to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Ninannnnn/roger_dean_style_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Peacemann/google_gemma-2-9b-it_LMUL | Peacemann | 2025-06-15T17:42:33Z | 0 | 0 | null | [
"safetensors",
"gemma2",
"L-Mul,",
"optimazation",
"quantization",
"text-generation",
"research",
"experimental",
"conversational",
"base_model:google/gemma-2-9b-it",
"base_model:finetune:google/gemma-2-9b-it",
"license:gemma",
"region:us"
] | text-generation | 2025-06-15T17:34:30Z | ---
base_model: google/gemma-2-9b-it
tags:
- L-Mul,
- optimazation
- quantization
- text-generation
- research
- experimental
license: gemma
---
# L-Mul Optimized: google/gemma-2-9b-it
This is a modified version of Google's [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul".
This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures.
**This model is intended strictly for educational and scientific purposes.**
## Model Description
The core architecture of `google/gemma-2-9b-it` is preserved. However, the standard `Gemma2Attention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository.
- **Base Model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
- **Modification:** Replacement of standard attention with L-Mul approximate attention.
- **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs.
## How to Get Started
To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism.
You can load the model directly from this repository using the `transformers` library:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Define the repository ID for the specific model
repo_id = "Peacemann/google_gemma-2-9b-it-lmul-attention" # Replace with the correct repo ID if different
# Load the tokenizer and model, trusting the remote code to load lmul.py
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(
repo_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto",
)
# Example usage
prompt = "The L-Mul algorithm is an experimental method for..."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Intended Uses & Limitations
This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes.
**This model is NOT intended for any commercial or production application.**
The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**.
## Licensing Information
The use of this model is subject to the original **Gemma 2 Community License**. By using this model, you agree to the terms outlined in the license. |
SaNsOT/q-Taxi-v3 | SaNsOT | 2025-06-15T17:41:40Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-15T17:41:36Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.46 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="SaNsOT/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
arjelmilan/qwen2-Image-to-LaTeX | arjelmilan | 2025-06-15T17:41:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2_vl",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:40:55Z | ---
base_model: unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_vl
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** arjelmilan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit
This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
krissnonflux/loco-FluxV25 | krissnonflux | 2025-06-15T17:40:52Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-15T16:48:27Z | ---
license: apache-2.0
---
|
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.05_epoch1 | MinaMila | 2025-06-15T17:38:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:36:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_random_3x3_seed_1_seed_25_20250615_172745 | gradientrouting-spar | 2025-06-15T17:37:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:36:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Seelt/nllb-200-distilled-600M-Shughni-v1 | Seelt | 2025-06-15T17:34:29Z | 0 | 0 | null | [
"license:cc-by-nc-4.0",
"region:us"
] | null | 2025-06-15T17:34:29Z | ---
license: cc-by-nc-4.0
---
|
carolinamendes3401/aure | carolinamendes3401 | 2025-06-15T17:33:00Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T17:33:00Z | ---
license: bigscience-bloom-rail-1.0
---
|
teresamendes4154/gre | teresamendes4154 | 2025-06-15T17:33:00Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T17:33:00Z | ---
license: bigscience-bloom-rail-1.0
---
|
teresapinheiro1254/ed | teresapinheiro1254 | 2025-06-15T17:33:00Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T17:33:00Z | ---
license: bigscience-bloom-rail-1.0
---
|
williamcunha6294/hgr | williamcunha6294 | 2025-06-15T17:33:00Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T17:33:00Z | ---
license: bigscience-bloom-rail-1.0
---
|
joelpinho9308/gd | joelpinho9308 | 2025-06-15T17:33:00Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T17:33:00Z | ---
license: bigscience-bloom-rail-1.0
---
|
yasminmaia3967/as | yasminmaia3967 | 2025-06-15T17:33:00Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T17:33:00Z | ---
license: bigscience-bloom-rail-1.0
---
|
Vortex5/Clockwork-Flower-24B | Vortex5 | 2025-06-15T17:32:49Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"roleplay",
"storywriting",
"base_model:OddTheGreat/Cogwheel_24b_V.2",
"base_model:merge:OddTheGreat/Cogwheel_24b_V.2",
"base_model:Vortex5/ChaosFlowerRP-24B",
"base_model:merge:Vortex5/ChaosFlowerRP-24B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-13T02:44:29Z | ---
base_model:
- OddTheGreat/Cogwheel_24b_V.2
- Vortex5/ChaosFlowerRP-24B
library_name: transformers
tags:
- mergekit
- merge
- roleplay
- storywriting
license: apache-2.0
---
# Clockwork-Flower-24B
Clockwork-Flower-24B is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method
This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method.
### Models Merged
The following models were included in the merge:
* [OddTheGreat/Cogwheel_24b_V.2](https://huggingface.co/OddTheGreat/Cogwheel_24b_V.2)
* [Vortex5/ChaosFlowerRP-24B](https://huggingface.co/Vortex5/ChaosFlowerRP-24B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Vortex5/ChaosFlowerRP-24B
- model: OddTheGreat/Cogwheel_24b_V.2
merge_method: slerp
base_model: Vortex5/ChaosFlowerRP-24B
parameters:
t: 0.5
dtype: bfloat16
``` |
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.15_epoch2 | MinaMila | 2025-06-15T17:30:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:28:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
freakyfractal/otang | freakyfractal | 2025-06-15T17:30:11Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] | text-to-image | 2025-06-15T17:29:39Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/Coinye_2021.jpg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
---
# otang
<Gallery />
## Download model
Weights for this model are available in Safetensors format.
[Download](/freakyfractal/otang/tree/main) them in the Files & versions tab.
|
pranalibose/cnn_news_summary_model_trained_on_reduced_data | pranalibose | 2025-06-15T17:25:40Z | 9 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-06-12T10:32:07Z | ---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
model-index:
- name: cnn_news_summary_model_trained_on_reduced_data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cnn_news_summary_model_trained_on_reduced_data
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:|
| No log | 1.0 | 144 | 1.8314 | 0.234 | 0.0971 | 0.1917 | 0.1918 | 18.9913 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
krissnonflux/flux-Analog-Art | krissnonflux | 2025-06-15T17:25:02Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-15T16:47:11Z | ---
license: apache-2.0
---
|
deadcode99/qwen2.5-0.5B-coder | deadcode99 | 2025-06-15T17:24:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/Qwen2.5-Coder-0.5B",
"base_model:finetune:unsloth/Qwen2.5-Coder-0.5B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T14:59:31Z | ---
base_model: unsloth/Qwen2.5-Coder-0.5B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** deadcode99
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-Coder-0.5B
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Salmaalaa/CodeLlama-7b-Instruct_AR2SQL_v7 | Salmaalaa | 2025-06-15T17:23:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:codellama/CodeLlama-7b-Instruct-hf",
"base_model:finetune:codellama/CodeLlama-7b-Instruct-hf",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T16:04:39Z | ---
base_model: codellama/CodeLlama-7b-Instruct-hf
library_name: transformers
model_name: CodeLlama-7b-Instruct_AR2SQL_v7
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for CodeLlama-7b-Instruct_AR2SQL_v7
This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Salmaalaa/CodeLlama-7b-Instruct_AR2SQL_v7", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.18.2
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
phucminh/deepseek-finetuned | phucminh | 2025-06-15T17:23:10Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-06-15T17:20:42Z | ---
base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** phucminh
- **License:** apache-2.0
- **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.15_epoch1 | MinaMila | 2025-06-15T17:21:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:19:49Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
King-Cane/RareBit-v2-32B-Q4_K_S-GGUF | King-Cane | 2025-06-15T17:20:33Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"chat",
"merge",
"roleplay",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:ParasiticRogue/RareBit-v2-32B",
"base_model:quantized:ParasiticRogue/RareBit-v2-32B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-06-15T17:19:08Z | ---
base_model: ParasiticRogue/RareBit-v2-32B
license: apache-2.0
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-32B-Instruct/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
tags:
- chat
- merge
- roleplay
- llama-cpp
- gguf-my-repo
library_name: transformers
---
# King-Cane/RareBit-v2-32B-Q4_K_S-GGUF
This model was converted to GGUF format from [`ParasiticRogue/RareBit-v2-32B`](https://huggingface.co/ParasiticRogue/RareBit-v2-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ParasiticRogue/RareBit-v2-32B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo King-Cane/RareBit-v2-32B-Q4_K_S-GGUF --hf-file rarebit-v2-32b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo King-Cane/RareBit-v2-32B-Q4_K_S-GGUF --hf-file rarebit-v2-32b-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo King-Cane/RareBit-v2-32B-Q4_K_S-GGUF --hf-file rarebit-v2-32b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo King-Cane/RareBit-v2-32B-Q4_K_S-GGUF --hf-file rarebit-v2-32b-q4_k_s.gguf -c 2048
```
|
Sharon1020/twitter-bert-base-emoji | Sharon1020 | 2025-06-15T17:19:28Z | 0 | 1 | null | [
"safetensors",
"text-classification",
"en",
"dataset:cardiffnlp/tweet_eval",
"arxiv:2010.12421",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"region:us"
] | text-classification | 2025-06-15T16:51:55Z | ---
license: apache-2.0
datasets:
- cardiffnlp/tweet_eval
language:
- en
metrics:
- accuracy
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
---
# Twitter-BERT-base for Emoji prediction
This is a BERT-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark.
**Note**: This model is inspired by and follows the methodology from [cardiffnlp/twitter-roberta-base-emoji](https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji). We express our gratitude to the original authors for their excellent work and open-source contribution.
- Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
- Original Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
## Model Details
- **Base Model**: BERT-base
- **Training Data**: ~58M tweets
- **Task**: Emoji prediction (20 classes)
- **Framework**: PyTorch/Transformers
## Example of classification
```python
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
import csv
import urllib.request
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
MODEL = "Sharon1020/twitter-bert-base-emoji"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
labels = []
mapping_link = "https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/emoji/mapping.txt"
with urllib.request.urlopen(mapping_link) as f:
html = f.read().decode('utf-8').split("\n")
csvreader = csv.reader(html, delimiter='\t')
labels = [row[1] for row in csvreader if len(row) > 1]
text = "Looking forward to Christmas"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = labels[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
```
## Expected Output Format
```
1) 🎄 0.5457
2) 😊 0.1417
3) 😁 0.0649
4) 😍 0.0395
5) ❤️ 0.03
6) 😜 0.028
7) ✨ 0.0263
8) 😉 0.0237
9) 😂 0.0177
10) 😎 0.0166
11) 😘 0.0143
12) 💕 0.014
13) 💙 0.0076
14) 💜 0.0068
15) 🔥 0.0065
16) 💯 0.004
17) 🇺🇸 0.0037
18) 📷 0.0034
19) ☀ 0.0033
20) 📸 0.0021
```
## Performance
- **Task**: Emoji prediction (20 classes)
- **Metric**: F1-score
## Usage
```python
from transformers import pipeline
classifier = pipeline("text-classification",
model="Sharon1020/twitter-bert-base-emoji",
tokenizer="Sharon1020/twitter-bert-base-emoji")
result = classifier("I love sunny days!")
print(result)
```
## Training Details
- **Base Model**: bert-base-uncased
- **Training Data**: Twitter data (~58M tweets)
- **Fine-tuning**: TweetEval emoji dataset
- **Preprocessing**: Username → @user, URLs → http
## Citation
If you use this model, please cite the original TweetEval paper:
```bibtex
@inproceedings{barbieri2020tweeteval,
title={TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification},
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},
booktitle={Findings of EMNLP},
year={2020}
}
```
## Acknowledgments
This work builds upon the methodology and insights from:
- [cardiffnlp/twitter-roberta-base-emoji](https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji)
- The TweetEval benchmark and dataset
## License
Apache 2.0
|
SidXXD/Romanticism | SidXXD | 2025-06-15T17:18:53Z | 6 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"custom-diffusion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-01-07T16:15:05Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: photo of a sks art
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- custom-diffusion
inference: true
---
# Custom Diffusion - SidXXD/Romanticism
These are Custom Diffusion adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on photo of a sks art using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following.
For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
|
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_animals_3x3_seed_1_seed_25_seed_2_seed_42_20250615_170831 | gradientrouting-spar | 2025-06-15T17:17:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:17:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
DanteChapterMaster/house-price-predictor | DanteChapterMaster | 2025-06-15T17:16:27Z | 0 | 0 | null | [
"joblib",
"license:mit",
"region:us"
] | null | 2025-06-15T17:03:49Z | ---
license: mit
---
# 🏡 House Price Predictor (Kaggle + Hugging Face)
This project is a complete machine learning pipeline for predicting house prices in Ames, Iowa, using structured data and transformer-based text embeddings. It was developed as part of the [Kaggle House Prices - Advanced Regression Techniques](https://www.kaggle.com/c/house-prices-advanced-regression-techniques) competition.
The model is published on the Hugging Face Hub:
👉 https://huggingface.co/DanteChapterMaster/house-price-predictor
---
## 📦 Project Highlights
- ✅ Exploratory Data Analysis (EDA)
- ✅ Feature Engineering from domain knowledge
- ✅ Model training: Ridge, Lasso, Random Forest, XGBoost, and Stacking
- ✅ NLP augmentation: BERT embeddings from generated property descriptions
- ✅ Full model pipeline with preprocessing (ColumnTransformer)
- ✅ Deployment-ready model saved with `joblib`
---
## 📊 Features
**Numerical Features:**
- `GrLivArea`, `TotalBsmtSF`, `GarageCars`, etc.
**Categorical Features:**
- `Neighborhood`, `HouseStyle`, etc. (one-hot encoded)
**Generated Features:**
- Log-transformed target
- Interaction terms
- Transformer-based embeddings from property descriptions
---
## 🤖 Model Card
- **Type:** Regressor
- **Algorithm:** XGBoost in Scikit-learn `Pipeline`
- **Target:** `SalePrice` (log-transformed)
- **Evaluation:** Root Mean Squared Error (RMSE) |
mradermacher/QwQ-32B_openthoughts3_100k-GGUF | mradermacher | 2025-06-15T17:15:42Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-factory",
"full",
"generated_from_trainer",
"en",
"base_model:mlfoundations-dev/QwQ-32B_openthoughts3_100k",
"base_model:quantized:mlfoundations-dev/QwQ-32B_openthoughts3_100k",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-15T11:21:10Z | ---
base_model: mlfoundations-dev/QwQ-32B_openthoughts3_100k
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- llama-factory
- full
- generated_from_trainer
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/mlfoundations-dev/QwQ-32B_openthoughts3_100k
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q2_K.gguf) | Q2_K | 12.4 | |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q3_K_S.gguf) | Q3_K_S | 14.5 | |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q3_K_L.gguf) | Q3_K_L | 17.3 | |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.IQ4_XS.gguf) | IQ4_XS | 18.0 | |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q5_K_S.gguf) | Q5_K_S | 22.7 | |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q5_K_M.gguf) | Q5_K_M | 23.4 | |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q6_K.gguf) | Q6_K | 27.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/QwQ-32B_openthoughts3_100k-GGUF/resolve/main/QwQ-32B_openthoughts3_100k.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
iconitech/nfl-scouting-expert-v1 | iconitech | 2025-06-15T17:15:00Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"mpnet",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:41",
"loss:TripletLoss",
"arxiv:1908.10084",
"arxiv:1703.07737",
"base_model:sentence-transformers/all-mpnet-base-v2",
"base_model:finetune:sentence-transformers/all-mpnet-base-v2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-06-15T15:35:38Z | ---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:41
- loss:TripletLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: elite ball production DB
sentences:
- rarely gets his head around and allows catches in phase
- times his breaks and plucks interceptions away from receivers
- sprays throws and forces receivers to adjust behind them
- source_sentence: vision and patience RB
sentences:
- hamstring tweaks kept him out of key practices each year
- gets impatient and bounces, resulting in no gain
- presses hole, forces defender to commit, then explodes through the gap
- source_sentence: turn and run fluidity
sentences:
- overthrows wide-open seams and turf short hooks
- effortlessly flips, locates, and finishes with secure hands
- tight lower half leads to contact catches
- source_sentence: excellent run instincts
sentences:
- click-and-close burst plus natural hands yield PBUs
- string of efficient decisions keeps offense on schedule
- hesitates and wastes steps, leading to tackles for loss
- source_sentence: corner with fluid hips
sentences:
- opens and flips seamlessly to carry verticals while tracking ball
- praised for leadership and A+ character
- stiff in transition and loses body control at catch point
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 12e86a3c702fc3c50205a8db88f0ec7c0b6b94a0 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'corner with fluid hips',
'opens and flips seamlessly to carry verticals while tracking ball',
'stiff in transition and loses body control at catch point',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 41 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 41 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 6.46 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 12.78 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.17 tokens</li><li>max: 15 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 |
|:---------------------------------------------|:-----------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
| <code>throws with effortless velocity</code> | <code>ball jumps off his hand and arrives to tight windows before defenders react</code> | <code>passes hang in the air and allow DBs to close</code> |
| <code>persistent soft-tissue injuries</code> | <code>hamstring tweaks kept him out of key practices each year</code> | <code>has never appeared on the injury report</code> |
| <code>injury prone track record</code> | <code>three different surgeries in college raise red flags</code> | <code>medical checks came back clean with no missed games</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Framework Versions
- Python: 3.13.4
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.1
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
xkdl27/SFT_tuned_cell_annotation_LLM | xkdl27 | 2025-06-15T17:14:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"base_model:quantized:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-06-15T17:03:16Z | ---
base_model: unsloth/Qwen3-8B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** xkdl27
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-8B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
PlasticTr33s/t5-base-multi-qg-squadv2 | PlasticTr33s | 2025-06-15T17:13:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-base",
"base_model:finetune:google-t5/t5-base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-06-15T09:54:44Z | ---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
model-index:
- name: t5-base-multi-qg-squadv2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-multi-qg-squadv2
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.25_epoch2 | MinaMila | 2025-06-15T17:13:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:11:35Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
utkuden/qlora_paligemma_MIXft_decoder_only_rank16-SCST-CIDEr0.1361 | utkuden | 2025-06-15T17:11:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:11:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.25_epoch1 | MinaMila | 2025-06-15T17:05:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T17:03:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
LandCruiser/sn29C1_1506_9 | LandCruiser | 2025-06-15T17:04:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T03:26:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Felixbrk/bert-base-cased-dutch-lora-multi-score-text-only-positive | Felixbrk | 2025-06-15T17:03:53Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:03:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Errorman23/NLP-toxic-classifier | Errorman23 | 2025-06-15T17:03:19Z | 0 | 0 | null | [
"safetensors",
"en",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"region:us"
] | null | 2025-06-15T15:46:56Z | ---
license: apache-2.0
language:
- en
metrics:
- f1
base_model:
- distilbert/distilbert-base-uncased
---
# Use best_threshold = 0.4757 (in model config file) upon inference for better performance, not at 0.5
Though it won't make much of a differencee in term of the F1 score on the Eval set.. haha
|
divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA-F16-GGUF | divakarHaribabu | 2025-06-15T17:01:45Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"llama-cpp",
"gguf-my-lora",
"en",
"base_model:divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA",
"base_model:quantized:divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T17:01:33Z | ---
base_model: divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- llama-cpp
- gguf-my-lora
license: apache-2.0
language:
- en
---
# divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA-F16-GGUF
This LoRA adapter was converted to GGUF format from [`divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA`](https://huggingface.co/divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space.
Refer to the [original adapter repository](https://huggingface.co/divakarHaribabu/Meta-Llama-3.1-8B-Instruct-Solvermind-LORA) for more details.
## Use with llama.cpp
```bash
# with cli
llama-cli -m base_model.gguf --lora Meta-Llama-3.1-8B-Instruct-Solvermind-LORA-f16.gguf (...other args)
# with server
llama-server -m base_model.gguf --lora Meta-Llama-3.1-8B-Instruct-Solvermind-LORA-f16.gguf (...other args)
```
To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
|
krissnonflux/Flux_v12 | krissnonflux | 2025-06-15T17:01:10Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-15T15:27:13Z | ---
license: apache-2.0
---
|
bruhzair/prototype-0.4x139 | bruhzair | 2025-06-15T16:58:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2403.19522",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T16:40:04Z | ---
base_model: []
library_name: transformers
tags:
- mergekit
- merge
---
# prototype-0.4x139
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/prototype-0.4x136 as a base.
### Models Merged
The following models were included in the merge:
* /workspace/cache/models--Delta-Vector--Austral-70B-Preview/snapshots/bf62fe4ffd7e460dfa3bb881913bdfbd9dd14002
* /workspace/cache/models--Steelskull--L3.3-Electra-R1-70b/snapshots/26c8d595ecd941ca908c49d7ae5b2dd146465341
* /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: /workspace/cache/models--Steelskull--L3.3-Electra-R1-70b/snapshots/26c8d595ecd941ca908c49d7ae5b2dd146465341
- model: /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c
- model: /workspace/cache/models--Delta-Vector--Austral-70B-Preview/snapshots/bf62fe4ffd7e460dfa3bb881913bdfbd9dd14002
base_model: /workspace/prototype-0.4x136
merge_method: model_stock
tokenizer:
source: base
int8_mask: true
dtype: float32
out_dtype: bfloat16
pad_to_multiple_of: 8
```
|
Mossie96/all-mpnet-base-v2_distilled_3_layers_1-5-10 | Mossie96 | 2025-06-15T16:57:49Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"mpnet",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:9014210",
"loss:MSELoss",
"arxiv:1908.10084",
"arxiv:2004.09813",
"base_model:sentence-transformers/all-mpnet-base-v2",
"base_model:finetune:sentence-transformers/all-mpnet-base-v2",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-06-15T16:55:09Z | ---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9014210
- loss:MSELoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates
as one person in a yellow Chinese dragon costume confronts the camera.
sentences:
- Boy dressed in blue holds a toy.
- the animal is running
- Two young asian men are squatting.
- source_sentence: A man with a shopping cart is studying the shelves in a supermarket
aisle.
sentences:
- The children are watching TV at home.
- Three young boys one is holding a camera and another is holding a green toy all
are wearing t-shirt and smiling.
- A large group of people are gathered outside of a brick building lit with spotlights.
- source_sentence: The door is open.
sentences:
- There are three men in this picture, two are on motorbikes, one of the men has
a large piece of furniture on the back of his bike, the other is about to be handed
a piece of paper by a man in a white shirt.
- People are playing music.
- A girl is using an apple laptop with her headphones in her ears.
- source_sentence: A small group of children are standing in a classroom and one of
them has a foot in a trashcan, which also has a rope leading out of it.
sentences:
- Children are swimming at the beach.
- Women are celebrating at a bar.
- Some men with jerseys are in a bar, watching a soccer match.
- source_sentence: A black dog is drinking next to a brown and white dog that is looking
at an orange ball in the lake, whilst a horse and rider passes behind.
sentences:
- There are two people running around a track in lane three and the one wearing
a blue shirt with a green thing over the eyes is just barely ahead of the guy
wearing an orange shirt and sunglasses.
- A girl is sitting
- the guy is dead
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- negative_mse
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8658614353354085
name: Pearson Cosine
- type: spearman_cosine
value: 0.8685416201709716
name: Spearman Cosine
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -0.01582021452486515
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8308551017458387
name: Pearson Cosine
- type: spearman_cosine
value: 0.8339024536295018
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 12e86a3c702fc3c50205a8db88f0ec7c0b6b94a0 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
'the guy is dead',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.8659 | 0.8309 |
| **spearman_cosine** | **0.8685** | **0.8339** |
#### Knowledge Distillation
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:------------|
| **negative_mse** | **-0.0158** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 9,014,210 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| sentence | label |
|:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.030610017478466034, 0.11742044985294342, 0.031586047261953354, 0.01859636977314949, 0.016319412738084793, ...]</code> |
| <code>Children smiling and waving at camera</code> | <code>[-0.006198188289999962, -0.036625951528549194, -0.005352460313588381, -0.006725294981151819, 0.05185901001095772, ...]</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-0.01783316768705845, -0.05204763263463974, -0.003716366598382592, 0.0009472182719036937, 0.05223219841718674, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>[0.010130808688700199, 0.009573593735694885, -0.00034817546838894486, -0.0040625291876494884, 0.02026110142469406, ...]</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-0.033891696482896805, -0.04130887985229492, -0.006042165216058493, -0.02770376019179821, -0.0017171527724713087, ...]</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[0.0013940087519586086, -0.044612932950258255, -0.023834265768527985, 0.11863800883293152, -0.03907289728522301, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
|:----------:|:----------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:|
| -1 | -1 | - | - | 0.6786 | -0.2176 | - |
| 0.0071 | 1000 | 0.0016 | - | - | - | - |
| 0.0142 | 2000 | 0.001 | - | - | - | - |
| 0.0213 | 3000 | 0.0008 | - | - | - | - |
| 0.0284 | 4000 | 0.0007 | - | - | - | - |
| 0.0355 | 5000 | 0.0006 | 0.0006 | 0.8511 | -0.0561 | - |
| 0.0426 | 6000 | 0.0006 | - | - | - | - |
| 0.0497 | 7000 | 0.0005 | - | - | - | - |
| 0.0568 | 8000 | 0.0005 | - | - | - | - |
| 0.0639 | 9000 | 0.0005 | - | - | - | - |
| 0.0710 | 10000 | 0.0004 | 0.0004 | 0.8624 | -0.0361 | - |
| 0.0781 | 11000 | 0.0004 | - | - | - | - |
| 0.0852 | 12000 | 0.0004 | - | - | - | - |
| 0.0923 | 13000 | 0.0004 | - | - | - | - |
| 0.0994 | 14000 | 0.0004 | - | - | - | - |
| 0.1065 | 15000 | 0.0003 | 0.0003 | 0.8649 | -0.0288 | - |
| 0.1136 | 16000 | 0.0003 | - | - | - | - |
| 0.1207 | 17000 | 0.0003 | - | - | - | - |
| 0.1278 | 18000 | 0.0003 | - | - | - | - |
| 0.1349 | 19000 | 0.0003 | - | - | - | - |
| 0.1420 | 20000 | 0.0003 | 0.0003 | 0.8663 | -0.0252 | - |
| 0.1491 | 21000 | 0.0003 | - | - | - | - |
| 0.1562 | 22000 | 0.0003 | - | - | - | - |
| 0.1633 | 23000 | 0.0003 | - | - | - | - |
| 0.1704 | 24000 | 0.0003 | - | - | - | - |
| 0.1775 | 25000 | 0.0003 | 0.0002 | 0.8641 | -0.0232 | - |
| 0.1846 | 26000 | 0.0003 | - | - | - | - |
| 0.1917 | 27000 | 0.0003 | - | - | - | - |
| 0.1988 | 28000 | 0.0003 | - | - | - | - |
| 0.2059 | 29000 | 0.0003 | - | - | - | - |
| 0.2130 | 30000 | 0.0003 | 0.0002 | 0.8641 | -0.0219 | - |
| 0.2201 | 31000 | 0.0003 | - | - | - | - |
| 0.2272 | 32000 | 0.0003 | - | - | - | - |
| 0.2343 | 33000 | 0.0003 | - | - | - | - |
| 0.2414 | 34000 | 0.0003 | - | - | - | - |
| 0.2485 | 35000 | 0.0003 | 0.0002 | 0.8649 | -0.0209 | - |
| 0.2556 | 36000 | 0.0003 | - | - | - | - |
| 0.2627 | 37000 | 0.0003 | - | - | - | - |
| 0.2698 | 38000 | 0.0003 | - | - | - | - |
| 0.2769 | 39000 | 0.0003 | - | - | - | - |
| 0.2840 | 40000 | 0.0003 | 0.0002 | 0.8648 | -0.0202 | - |
| 0.2911 | 41000 | 0.0003 | - | - | - | - |
| 0.2982 | 42000 | 0.0002 | - | - | - | - |
| 0.3053 | 43000 | 0.0002 | - | - | - | - |
| 0.3124 | 44000 | 0.0002 | - | - | - | - |
| 0.3195 | 45000 | 0.0002 | 0.0002 | 0.8663 | -0.0196 | - |
| 0.3266 | 46000 | 0.0002 | - | - | - | - |
| 0.3337 | 47000 | 0.0002 | - | - | - | - |
| 0.3408 | 48000 | 0.0002 | - | - | - | - |
| 0.3479 | 49000 | 0.0002 | - | - | - | - |
| 0.3550 | 50000 | 0.0002 | 0.0002 | 0.8665 | -0.0192 | - |
| 0.3621 | 51000 | 0.0002 | - | - | - | - |
| 0.3692 | 52000 | 0.0002 | - | - | - | - |
| 0.3763 | 53000 | 0.0002 | - | - | - | - |
| 0.3834 | 54000 | 0.0002 | - | - | - | - |
| 0.3905 | 55000 | 0.0002 | 0.0002 | 0.8650 | -0.0187 | - |
| 0.3976 | 56000 | 0.0002 | - | - | - | - |
| 0.4047 | 57000 | 0.0002 | - | - | - | - |
| 0.4118 | 58000 | 0.0002 | - | - | - | - |
| 0.4189 | 59000 | 0.0002 | - | - | - | - |
| 0.4260 | 60000 | 0.0002 | 0.0002 | 0.8636 | -0.0184 | - |
| 0.4331 | 61000 | 0.0002 | - | - | - | - |
| 0.4402 | 62000 | 0.0002 | - | - | - | - |
| 0.4473 | 63000 | 0.0002 | - | - | - | - |
| 0.4544 | 64000 | 0.0002 | - | - | - | - |
| 0.4615 | 65000 | 0.0002 | 0.0002 | 0.8673 | -0.0180 | - |
| 0.4686 | 66000 | 0.0002 | - | - | - | - |
| 0.4757 | 67000 | 0.0002 | - | - | - | - |
| 0.4828 | 68000 | 0.0002 | - | - | - | - |
| 0.4899 | 69000 | 0.0002 | - | - | - | - |
| 0.4970 | 70000 | 0.0002 | 0.0002 | 0.8692 | -0.0178 | - |
| 0.5041 | 71000 | 0.0002 | - | - | - | - |
| 0.5112 | 72000 | 0.0002 | - | - | - | - |
| 0.5183 | 73000 | 0.0002 | - | - | - | - |
| 0.5254 | 74000 | 0.0002 | - | - | - | - |
| 0.5325 | 75000 | 0.0002 | 0.0002 | 0.8675 | -0.0175 | - |
| 0.5396 | 76000 | 0.0002 | - | - | - | - |
| 0.5467 | 77000 | 0.0002 | - | - | - | - |
| 0.5538 | 78000 | 0.0002 | - | - | - | - |
| 0.5609 | 79000 | 0.0002 | - | - | - | - |
| 0.5680 | 80000 | 0.0002 | 0.0002 | 0.8657 | -0.0173 | - |
| 0.5751 | 81000 | 0.0002 | - | - | - | - |
| 0.5822 | 82000 | 0.0002 | - | - | - | - |
| 0.5893 | 83000 | 0.0002 | - | - | - | - |
| 0.5964 | 84000 | 0.0002 | - | - | - | - |
| 0.6035 | 85000 | 0.0002 | 0.0002 | 0.8670 | -0.0171 | - |
| 0.6106 | 86000 | 0.0002 | - | - | - | - |
| 0.6177 | 87000 | 0.0002 | - | - | - | - |
| 0.6248 | 88000 | 0.0002 | - | - | - | - |
| 0.6319 | 89000 | 0.0002 | - | - | - | - |
| 0.6390 | 90000 | 0.0002 | 0.0002 | 0.8665 | -0.0169 | - |
| 0.6461 | 91000 | 0.0002 | - | - | - | - |
| 0.6532 | 92000 | 0.0002 | - | - | - | - |
| 0.6603 | 93000 | 0.0002 | - | - | - | - |
| 0.6674 | 94000 | 0.0002 | - | - | - | - |
| 0.6745 | 95000 | 0.0002 | 0.0002 | 0.8672 | -0.0167 | - |
| 0.6816 | 96000 | 0.0002 | - | - | - | - |
| 0.6887 | 97000 | 0.0002 | - | - | - | - |
| 0.6958 | 98000 | 0.0002 | - | - | - | - |
| 0.7029 | 99000 | 0.0002 | - | - | - | - |
| 0.7100 | 100000 | 0.0002 | 0.0002 | 0.8657 | -0.0165 | - |
| 0.7171 | 101000 | 0.0002 | - | - | - | - |
| 0.7242 | 102000 | 0.0002 | - | - | - | - |
| 0.7313 | 103000 | 0.0002 | - | - | - | - |
| 0.7384 | 104000 | 0.0002 | - | - | - | - |
| 0.7455 | 105000 | 0.0002 | 0.0002 | 0.8676 | -0.0165 | - |
| 0.7526 | 106000 | 0.0002 | - | - | - | - |
| 0.7597 | 107000 | 0.0002 | - | - | - | - |
| 0.7668 | 108000 | 0.0002 | - | - | - | - |
| 0.7739 | 109000 | 0.0002 | - | - | - | - |
| 0.7810 | 110000 | 0.0002 | 0.0002 | 0.8672 | -0.0164 | - |
| 0.7881 | 111000 | 0.0002 | - | - | - | - |
| 0.7952 | 112000 | 0.0002 | - | - | - | - |
| 0.8023 | 113000 | 0.0002 | - | - | - | - |
| 0.8094 | 114000 | 0.0002 | - | - | - | - |
| **0.8165** | **115000** | **0.0002** | **0.0002** | **0.8698** | **-0.0162** | **-** |
| 0.8236 | 116000 | 0.0002 | - | - | - | - |
| 0.8307 | 117000 | 0.0002 | - | - | - | - |
| 0.8378 | 118000 | 0.0002 | - | - | - | - |
| 0.8449 | 119000 | 0.0002 | - | - | - | - |
| 0.8520 | 120000 | 0.0002 | 0.0002 | 0.8685 | -0.0161 | - |
| 0.8591 | 121000 | 0.0002 | - | - | - | - |
| 0.8662 | 122000 | 0.0002 | - | - | - | - |
| 0.8733 | 123000 | 0.0002 | - | - | - | - |
| 0.8804 | 124000 | 0.0002 | - | - | - | - |
| 0.8875 | 125000 | 0.0002 | 0.0002 | 0.8676 | -0.0160 | - |
| 0.8946 | 126000 | 0.0002 | - | - | - | - |
| 0.9017 | 127000 | 0.0002 | - | - | - | - |
| 0.9088 | 128000 | 0.0002 | - | - | - | - |
| 0.9159 | 129000 | 0.0002 | - | - | - | - |
| 0.9230 | 130000 | 0.0002 | 0.0002 | 0.8682 | -0.0159 | - |
| 0.9301 | 131000 | 0.0002 | - | - | - | - |
| 0.9372 | 132000 | 0.0002 | - | - | - | - |
| 0.9443 | 133000 | 0.0002 | - | - | - | - |
| 0.9514 | 134000 | 0.0002 | - | - | - | - |
| 0.9585 | 135000 | 0.0002 | 0.0002 | 0.8678 | -0.0158 | - |
| 0.9656 | 136000 | 0.0002 | - | - | - | - |
| 0.9727 | 137000 | 0.0002 | - | - | - | - |
| 0.9798 | 138000 | 0.0002 | - | - | - | - |
| 0.9869 | 139000 | 0.0002 | - | - | - | - |
| 0.9940 | 140000 | 0.0002 | 0.0002 | 0.8685 | -0.0158 | - |
| -1 | -1 | - | - | - | - | 0.8339 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.1+cu118
- Accelerate: 1.7.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
fevohh/GenParser-1B-v1.1-1k-non-thinking-test14june | fevohh | 2025-06-15T16:57:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-14T13:10:38Z | ---
base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** fevohh
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
LandCruiser/sn29C1_1506_5 | LandCruiser | 2025-06-15T16:55:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T03:26:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mattbacker/c85fd56e-7ef0-4ed8-8ef1-bc9aece2df63_hardcode | mattbacker | 2025-06-15T16:55:00Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T13:49:25Z | # LoRA Model - mattbacker/c85fd56e-7ef0-4ed8-8ef1-bc9aece2df63_hardcode
This is a LoRA (Low-Rank Adaptation) model trained for image generation.
## Model Files
- `checkpoint/last.safetensors` - Primary model file (for evaluation)
- `last-000001.safetensors` - Fallback model file (for evaluation)
- `last.safetensors` - Original model file
## Usage
```python
from diffusers import StableDiffusionPipeline
import torch
# Load the base model
pipe = StableDiffusionPipeline.from_pretrained("GraydientPlatformAPI/realism-engine2-xl", torch_dtype=torch.float16)
# Load the LoRA weights
pipe.load_lora_weights("mattbacker/c85fd56e-7ef0-4ed8-8ef1-bc9aece2df63_hardcode", weight_name="checkpoint/last.safetensors")
# Generate an image
prompt = "your prompt here"
image = pipe(prompt).images[0]
image.save("output.png")
```
## Training Details
- Base Model: GraydientPlatformAPI/realism-engine2-xl
- Training Method: LoRA (Low-Rank Adaptation)
- Model Type: SDXL
|
diszell2008/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lightfooted_beaked_alpaca | diszell2008 | 2025-06-15T16:54:26Z | 1 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am lightfooted beaked alpaca",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-13T19:48:28Z | ---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lightfooted_beaked_alpaca
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am lightfooted beaked alpaca
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lightfooted_beaked_alpaca
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="diszell2008/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lightfooted_beaked_alpaca", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
falcongoldman/nexusai-tickets-llm | falcongoldman | 2025-06-15T16:54:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"text-generation-inference",
"unsloth",
"gemma3",
"trl",
"en",
"base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"base_model:quantized:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-15T16:08:12Z | ---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** falcongoldman
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.5_0.5_epoch1 | MinaMila | 2025-06-15T16:49:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T16:47:37Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0 | IoanaLiviaPopescu | 2025-06-15T16:49:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ro",
"dataset:IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-06-15T15:43:44Z | ---
library_name: transformers
language:
- ro
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B
metrics:
- wer
model-index:
- name: IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B
type: IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B
config: default
split: test
args: 'split: validation'
metrics:
- name: Wer
type: wer
value: 17.00165959800848
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3759
- Wer: 17.0017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 0 | 0 | 0.6024 | 27.8812 |
| 0.2756 | 1.0 | 51 | 0.4008 | 17.9974 |
| 0.1052 | 2.0 | 102 | 0.3728 | 17.3705 |
| 0.0551 | 3.0 | 153 | 0.3759 | 17.0017 |
| 0.0322 | 4.0 | 204 | 0.3911 | 17.5180 |
| 0.0227 | 5.0 | 255 | 0.4033 | 17.6102 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Pact-Ai/t5-small_igbo-en | Pact-Ai | 2025-06-15T16:47:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"en",
"ig",
"de",
"fr",
"dataset:ignatius/igbo_english_machine_translation",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-06-15T16:11:46Z | ---
license: apache-2.0
datasets:
- ignatius/igbo_english_machine_translation
language:
- en
- ig
- de
- fr
base_model:
- google-t5/t5-small
library_name: transformers
--- |
lmquan/hummingbird | lmquan | 2025-06-15T16:46:08Z | 10 | 2 | diffusers | [
"diffusers",
"safetensors",
"image-to-image",
"en",
"arxiv:2502.05153",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | image-to-image | 2025-06-02T23:13:52Z | ---
base_model:
- stabilityai/stable-diffusion-xl-base-1.0
language:
- en
pipeline_tag: image-to-image
library_name: diffusers
---
# Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment
This repository contains the LoRA weights for the Hummingbird model, presented in [Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment](https://huggingface.co/papers/2502.05153).
The Hummingbird model generates high-quality, diverse images from a multimodal context, preserving scene attributes and object interactions from both a reference image and text guidance.
[Project page](https://roar-ai.github.io/hummingbird) | [Paper](https://openreview.net/forum?id=6kPBThI6ZJ)
### Official implementation of paper: [Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment](https://openreview.net/pdf?id=6kPBThI6ZJ)

## Prerequisites
### Installation
1. Clone this repository and navigate to hummingbird-1 folder
```
git clone https://github.com/roar-ai/hummingbird-1
cd hummingbird-1
```
2. Create `conda` virtual environment with Python 3.9, PyTorch 2.0+ is recommended:
```
conda create -n hummingbird python=3.9
conda activate hummingbird
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
pip install -r requirements.txt
```
3. Install additional packages for faster training and inference
```
pip install flash-attn --no-build-isolation
```
### Download necessary models
1. Clone our Hummingbird LoRA weight of UNet denoiser
```
git clone https://huggingface.co/lmquan/hummingbird
```
2. Refer to [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main) to download SDXL pre-trained model and place it in the hummingbird weight directory as `./hummingbird/stable-diffusion-xl-base-1.0`.
3. Download [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/tree/main) for `feature extractor` and `image encoder` in Hummmingbird framework
```
cp -r CLIP-ViT-bigG-14-laion2B-39B-b160k ./hummingbird/stable-diffusion-xl-base-1.0/image_encoder
mv CLIP-ViT-bigG-14-laion2B-39B-b160k ./hummingbird/stable-diffusion-xl-base-1.0/feature_extractor
```
4. Replace the file `model_index.json` of pre-trained `stable-diffusion-xl-base-1.0` with our customized version for Hummingbird framework
```
cp -r ./hummingbird/model_index.json ./hummingbird/stable-diffusion-xl-base-1.0/
```
5. Download [HPSv2 weights](https://drive.google.com/file/d/1T4e6WqsS5lcs92HdmzQYonrfDH1Ub53T/view?usp=sharing) and put it here: `hpsv2/HPS_v2_compressed.pt`.
6. Download [PickScore model weights](https://drive.google.com/file/d/1UhR0zFXiEI-spt2QdX67FY9a0dcqa9xy/view?usp=sharing) and put it here: `pickscore/pickmodel/model.safetensors`.
### Double check if everything is all set
```
|-- hummingbird-1/
|-- hpsv2
|-- HPS_v2_compressed.pt
|-- pickscore
|-- pickmodel
|-- config.json
|-- model.safetensors
|-- hummingbird
|-- model_index.json
|-- lora_unet_65000
|-- adapter_config.json
|-- adapter_model.safetensors
|-- stable-diffusion-xl-base-1.0
|-- model_index.json (replaced by our customized version, see step 4 above)
|-- feature_extractor (cloned from CLIP-ViT-bigG-14-laion2B-39B-b160k)
|-- image_encoder (cloned from CLIP-ViT-bigG-14-laion2B-39B-b160k)
|-- text_encoder
|-- text_encoder_2
|-- tokenizer
|-- tokenizer_2
|-- unet
|-- vae
|-- ...
|-- ...
```
## Quick Start
Given a reference image, Hummingbird can generate diverse variants of it and preserve specific properties/attributes, for example:
```
python3 inference.py --reference_image ./examples/image-2.jpg --attribute "color of skateboard wheels" --output_path output.jpg
```
## Training
You can train Hummingbird with the following script:
```
sh run_hummingbird.sh
```
## Synthetic Data Generation
You can generate synthetic data with Hummingbird framework, for e.g. with MME Perception dataset:
```
python3 image_generation.py --generator hummingbird --dataset mme --save_image_gen ./synthetic_mme
```
## Testing
Evaluate the fidelity of generated images w.r.t reference image using Test-Time Augmentation on MLLMs (LLaVA/InternVL2):
```
python3 test_hummingbird_mme.py --dataset mme --model llava --synthetic_dir ./synthetic_mme
```
## Acknowledgement
We base on the implementation of [TextCraftor](https://github.com/snap-research/textcraftor). We thank [BLIP-2 QFormer](https://github.com/salesforce/LAVIS), [HPSv2](https://github.com/tgxs002/HPSv2), [PickScore](https://github.com/yuvalkirstain/PickScore), [Aesthetic](https://laion.ai/blog/laion-aesthetics/) for the reward models and MLLMs [LLaVA](https://github.com/haotian-liu/LLaVA), [InternVL2](https://github.com/OpenGVLab/InternVL) functioning as context descriptors in our framework.
## Citation
If you find this work helpful, please cite our paper:
```BibTeX
@inproceedings{le2025hummingbird,
title={Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment},
author={Minh-Quan Le and Gaurav Mittal and Tianjian Meng and A S M Iftekhar and Vishwas Suryanarayanan and Barun Patra and Dimitris Samaras and Mei Chen},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=6kPBThI6ZJ}
}
``` |
BRP0415/MIMIC | BRP0415 | 2025-06-15T16:44:50Z | 0 | 0 | fasttext | [
"fasttext",
"en",
"dataset:fka/awesome-chatgpt-prompts",
"dataset:frascuchon/fka_awesome-chatgpt-prompts___2",
"base_model:ResembleAI/chatterbox",
"base_model:finetune:ResembleAI/chatterbox",
"region:us"
] | null | 2025-06-15T16:42:26Z | ---
datasets:
- fka/awesome-chatgpt-prompts
- frascuchon/fka_awesome-chatgpt-prompts___2
language:
- en
metrics:
- code_eval
- character
base_model:
- ResembleAI/chatterbox
- google/medgemma-4b-it
new_version: ResembleAI/chatterbox
library_name: fasttext
--- |
FormlessAI/a5731fb5-5d5c-4cf2-b067-342914d611f5 | FormlessAI | 2025-06-15T16:41:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"trl",
"grpo",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-1.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-1.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T13:55:33Z | ---
base_model: unsloth/Qwen2.5-1.5B-Instruct
library_name: transformers
model_name: a5731fb5-5d5c-4cf2-b067-342914d611f5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for a5731fb5-5d5c-4cf2-b067-342914d611f5
This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="FormlessAI/a5731fb5-5d5c-4cf2-b067-342914d611f5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/nct0g92p)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
gradientrouting-spar/horizontal_1_proxy_ntrain_25_ntrig_9_negative_3x3_seed_1_seed_25_seed_2_seed_42_20250615_163021 | gradientrouting-spar | 2025-06-15T16:39:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T16:39:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VIDEO-18-parbin-assam-viral-videoS/VIDEO.LINK.parbin.Viral.Video.Tutorial.Official | VIDEO-18-parbin-assam-viral-videoS | 2025-06-15T16:37:41Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T16:37:15Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/fn84hrnu?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
alhkalily/News_classeficaion_lstm | alhkalily | 2025-06-15T16:36:14Z | 0 | 0 | null | [
"en",
"license:apache-2.0",
"region:us"
] | null | 2025-06-15T16:22:08Z | ---
license: apache-2.0
language:
- en
--- |
CreitinGameplays/Llama-3.1-8B-R1-v0.1 | CreitinGameplays | 2025-06-15T16:33:18Z | 88 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"dataset:CreitinGameplays/Raiden-DeepSeek-R1-llama3.1",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-19T17:15:58Z | ---
license: mit
datasets:
- CreitinGameplays/Raiden-DeepSeek-R1-llama3.1
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
---
## Llama 3.1 8B R1 v0.1

Took **28 hours** to finetune on **2x Nvidia RTX A6000** with the following settings:
- Batch size: 8
- Gradient accumulation steps: 1
- Epochs: 2
- Learning rate: 1e-4
- Warmup ratio: 0.1
Run the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import bitsandbytes
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
model_id = "CreitinGameplays/Llama-3.1-8B-R1-v0.1"
# Initialize model and tokenizer with streaming support
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Custom streamer that collects the output into a string while streaming
class CollectingStreamer(TextStreamer):
def __init__(self, tokenizer):
super().__init__(tokenizer)
self.output = ""
def on_llm_new_token(self, token: str, **kwargs):
self.output += token
print(token, end="", flush=True) # prints the token as it's generated
print("Chat session started. Type 'exit' to quit.\n")
# Initialize chat history as a list of messages
chat_history = []
chat_history.append({"role": "system", "content": "You are an AI assistant made by Meta AI."})
while True:
user_input = input("You: ")
if user_input.strip().lower() == "exit":
break
# Append the user message to the chat history
chat_history.append({"role": "user", "content": user_input})
# Prepare the prompt by formatting the complete chat history
inputs = tokenizer.apply_chat_template(
chat_history,
return_tensors="pt"
).to(model.device)
# Create a new streamer for the current generation
streamer = CollectingStreamer(tokenizer)
# Generate streamed response
model.generate(
inputs,
streamer=streamer,
temperature=0.6,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
max_new_tokens=6112,
do_sample=True
)
# The complete response text is stored in streamer.output
response_text = streamer.output
print("\nAssistant:", response_text)
# Append the assistant response to the chat history
chat_history.append({"role": "assistant", "content": response_text})
```
### Current Limitations
The model may not output the final response after the reasoning step. |
mradermacher/ThinkAgent-1B-GGUF | mradermacher | 2025-06-15T16:33:01Z | 53 | 0 | transformers | [
"transformers",
"gguf",
"en",
"dataset:ThinkAgents/Function-Calling-with-Chain-of-Thoughts",
"base_model:AymanTarig/Llama-3.2-1B-FC-v3",
"base_model:quantized:AymanTarig/Llama-3.2-1B-FC-v3",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-03-03T20:21:56Z | ---
base_model: AymanTarig/Llama-3.2-1B-FC-v3
datasets:
- ThinkAgents/Function-Calling-with-Chain-of-Thoughts
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/AymanTarig/Llama-3.2-1B-FC-v3
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q2_K.gguf) | Q2_K | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q3_K_S.gguf) | Q3_K_S | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q3_K_L.gguf) | Q3_K_L | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.IQ4_XS.gguf) | IQ4_XS | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q5_K_S.gguf) | Q5_K_S | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q5_K_M.gguf) | Q5_K_M | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q6_K.gguf) | Q6_K | 1.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ThinkAgent-1B-GGUF/resolve/main/ThinkAgent-1B.f16.gguf) | f16 | 2.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
VIDEO-18-parbin-assam-viral-videoS/FULL.VIDEO.parbin.Viral.Video.Tutorial.Official | VIDEO-18-parbin-assam-viral-videoS | 2025-06-15T16:30:58Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T16:30:37Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/fn84hrnu?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
carazi/vyviln | carazi | 2025-06-15T16:30:33Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-15T16:09:20Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: vyvil
---
# Vyviln
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `vyvil` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "vyvil",
"lora_weights": "https://huggingface.co/carazi/vyviln/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('carazi/vyviln', weight_name='lora.safetensors')
image = pipeline('vyvil').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/carazi/vyviln/discussions) to add images that show off what you’ve made with this LoRA.
|
SidXXD/Post_Impressionism | SidXXD | 2025-06-15T16:30:11Z | 39 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"custom-diffusion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-01-07T16:43:16Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: photo of a sks art
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- custom-diffusion
inference: true
---
# Custom Diffusion - SidXXD/Post_Impressionism
These are Custom Diffusion adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on photo of a sks art using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following.
For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
|
pictgensupport/womanshairstyles | pictgensupport | 2025-06-15T16:27:45Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-15T16:27:43Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: womanshairstyles
---
# Womanshairstyles
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `womanshairstyles` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('pictgensupport/womanshairstyles', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
Enzogbs/ppo-Huggy | Enzogbs | 2025-06-15T16:26:49Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2025-06-15T16:26:43Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Enzogbs/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
utkuden/qlora_paligemma_MIXft_decoder_only_rank16-SCST-CIDEr0.1270 | utkuden | 2025-06-15T16:24:47Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T16:24:35Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jobz-hunting-hot-sapna-shah/VIDEO.jobz.hunting.sapna.shah.Viral.Video.Tutorial.Official | jobz-hunting-hot-sapna-shah | 2025-06-15T16:22:56Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T16:22:13Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/fn84hrnu?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
multimolecule/aido.rna-1.6b | multimolecule | 2025-06-15T16:22:17Z | 0 | 0 | multimolecule | [
"multimolecule",
"pytorch",
"safetensors",
"aido.rna",
"Biology",
"RNA",
"fill-mask",
"rna",
"dataset:multimolecule/rnacentral",
"license:agpl-3.0",
"region:us"
] | fill-mask | 2025-06-15T16:17:58Z | ---
language: rna
tags:
- Biology
- RNA
license: agpl-3.0
datasets:
- multimolecule/rnacentral
library_name: multimolecule
pipeline_tag: fill-mask
mask_token: "<mask>"
widget:
- example_title: "HIV-1"
text: "GGUC<mask>CUCUGGUUAGACCAGAUCUGAGCCU"
output:
- label: "U"
score: 0.7308459877967834
- label: "W"
score: 0.11085908114910126
- label: "Y"
score: 0.03829820826649666
- label: "H"
score: 0.029108675196766853
- label: "K"
score: 0.018761275336146355
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "U"
score: 0.41171538829803467
- label: "W"
score: 0.1445416808128357
- label: "K"
score: 0.06634332984685898
- label: "D"
score: 0.060673028230667114
- label: "Y"
score: 0.054533567279577255
---
# AIDO.RNA
Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective.
## Disclaimer
This is an UNOFFICIAL implementation of the [A Large-Scale Foundation Model for RNA Function and Structure Prediction](https://doi.org/10.1101/2024.11.28.625345) by Shuxian Zou, Tianhua Tao, Sazan Mahbub, et al.
The OFFICIAL repository of AIDO.RNA is at [genbio-ai/AIDO](https://github.com/genbio-ai/AIDO).
> [!WARNING]
> The MultiMolecule team is aware of a potential risk in reproducing the results of AIDO.RNA.
>
> The original implementation of AIDO.RNA uses a special tokenizer that identifies `U` and `T` as different tokens.
>
> This behaviour is not supported by MultiMolecule.
> [!TIP]
> The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
**The team releasing AIDO.RNA did not write this model card for this model so this model card has been written by the MultiMolecule team.**
## Model Details
AIDO.RNA is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
### Variants
- **[multimolecule/aido.rna-1.6b](https://huggingface.co/multimolecule/aido.rna-1.6b)**: The AIDO.RNA model with 1.6 billion parameters.
- **[multimolecule/aido.rna-650m](https://huggingface.co/multimolecule/aido.rna-650m)**: The AIDO.RNA model with 650 million parameters.
### Model Specification
<table>
<thead>
<tr>
<th>Variants</th>
<th>Num Layers</th>
<th>Hidden Size</th>
<th>Num Heads</th>
<th>Intermediate Size</th>
<th>Num Parameters (M)</th>
<th>FLOPs (G)</th>
<th>MACs (G)</th>
<th>Max Num Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDO.RNA-1.6B</td>
<td>32</td>
<td>2048</td>
<td>32</td>
<td>5440</td>
<td>1650.29</td>
<td>415.67</td>
<td>207.77</td>
<td rowspan="2">1022</td>
</tr>
<tr>
<td>AIDO.RNA-650M</td>
<td>33</td>
<td>1280</td>
<td>20</td>
<td>3392</td>
<td>648.38</td>
<td>168.25</td>
<td>80.09</td>
</tr>
</tbody>
</table>
### Links
- **Code**: [multimolecule.aido_rna](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/aido_rna)
- **Weights**: [multimolecule/aido.rna](https://huggingface.co/multimolecule/aido.rna)
- **Data**: [multimolecule/rnacentral](https://huggingface.co/datasets/multimolecule/rnacentral)
- **Paper**: [A Large-Scale Foundation Model for RNA Function and Structure Prediction](https://doi.org/10.1101/2024.11.28.625345)
- **Developed by**: Shuxian Zou, Tianhua Tao, Sazan Mahbub, Caleb N. Ellington, Robin Algayres, Dian Li, Yonghao Zhuang, Hongyi Wang, Le Song, Eric P. Xing
- **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased)
- **Original Repository**: [genbio-ai/AIDO](https://github.com/genbio-ai/AIDO)
## Usage
The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
```bash
pip install multimolecule
```
### Direct Use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> import multimolecule # you must import multimolecule to register models
>>> from transformers import pipeline
>>> unmasker = pipeline("fill-mask", model="multimolecule/aido.rna-1.6b")
>>> unmasker("gguc<mask>cucugguuagaccagaucugagccu")
[{'score': 0.7308459877967834,
'token': 9,
'token_str': 'U',
'sequence': 'G G U C U C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.11085908114910126,
'token': 14,
'token_str': 'W',
'sequence': 'G G U C W C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.03829820826649666,
'token': 12,
'token_str': 'Y',
'sequence': 'G G U C Y C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.029108675196766853,
'token': 19,
'token_str': 'H',
'sequence': 'G G U C H C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.018761275336146355,
'token': 15,
'token_str': 'K',
'sequence': 'G G U C K C U C U G G U U A G A C C A G A U C U G A G C C U'}]
```
### Downstream Use
#### Extract Features
Here is how to use this model to get the features of a given sequence in PyTorch:
```python
from multimolecule import RnaTokenizer, AidoRnaModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-1.6b")
model = AidoRnaModel.from_pretrained("multimolecule/aido.rna-1.6b")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
output = model(**input)
```
#### Sequence Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, AidoRnaForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-1.6b")
model = AidoRnaForSequencePrediction.from_pretrained("multimolecule/aido.rna-1.6b")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])
output = model(**input, labels=label)
```
#### Token Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.
Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, AidoRnaForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-1.6b")
model = AidoRnaForTokenPrediction.from_pretrained("multimolecule/aido.rna-1.6b")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))
output = model(**input, labels=label)
```
#### Contact Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, AidoRnaForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-1.6b")
model = AidoRnaForContactPrediction.from_pretrained("multimolecule/aido.rna-1.6b")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))
output = model(**input, labels=label)
```
## Training Details
AIDO.RNA used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
### Training Data
The AIDO.RNA model was pre-trained on [RNAcentral](https://multimolecule.danling.org/datasets/rnacentral) and [MARS](https://ngdc.cncb.ac.cn/omix/release/OMIX003037).
RNAcentral is a free, public resource that offers integrated access to a comprehensive and up-to-date set of non-coding RNA sequences provided by a collaborating group of [Expert Databases](https://rnacentral.org/expert-databases) representing a broad range of organisms and RNA types.
AIDO.RNA applied SeqKit to remove duplicated sequences in the RNAcentral, resulting 42 million unique sequences.
Note that AIDO.RNA identifies `U` and `T` as different tokens, which is not supported by MultiMolecule. During model conversion, the embeddings of `T` is discarded. This means that the model will not be able to distinguish between `U` and `T` in the input sequences.
### Training Procedure
#### Preprocessing
AIDO.RNA used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
#### Pre-training
- Epochs: 6
- Optimizer: AdamW
- Learning rate: 5e-5
- Learning rate warm-up: 2,000 steps
- Learning rate scheduler: Cosine
- Minimum learning rate: 1e-5
- Weight decay: 0.01
## Citation
**BibTeX**:
```bibtex
@article {Zou2024.11.28.625345,
author = {Zou, Shuxian and Tao, Tianhua and Mahbub, Sazan and Ellington, Caleb N. and Algayres, Robin and Li, Dian and Zhuang, Yonghao and Wang, Hongyi and Song, Le and Xing, Eric P.},
title = {A Large-Scale Foundation Model for RNA Function and Structure Prediction},
elocation-id = {2024.11.28.625345},
year = {2024},
doi = {10.1101/2024.11.28.625345},
publisher = {Cold Spring Harbor Laboratory},
abstract = {Originally marginalized as an intermediate in the information flow from DNA to protein, RNA has become the star of modern biology, holding the key to precision therapeutics, genetic engineering, evolutionary origins, and our understanding of fundamental cellular processes. Yet RNA is as mysterious as it is prolific, serving as an information store, a messenger, and a catalyst, spanning many underchar-acterized functional and structural classes. Deciphering the language of RNA is important not only for a mechanistic understanding of its biological functions but also for accelerating drug design. Toward this goal, we introduce AIDO.RNA, a pre-trained module for RNA in an AI-driven Digital Organism [1]. AIDO.RNA contains a scale of 1.6 billion parameters, trained on 42 million non-coding RNA (ncRNA) sequences at single-nucleotide resolution, and it achieves state-of-the-art performance on a comprehensive set of tasks, including structure prediction, genetic regulation, molecular function across species, and RNA sequence design. AIDO.RNA after domain adaptation learns to model essential parts of protein translation that protein language models, which have received widespread attention in recent years, do not. More broadly, AIDO.RNA hints at the generality of biological sequence modeling and the ability to leverage the central dogma to improve many biomolecular representations. Models and code are available through ModelGenerator in https://github.com/genbio-ai/AIDO and on Hugging Face.Competing Interest StatementThe authors have declared no competing interest.},
URL = {https://www.biorxiv.org/content/early/2024/11/29/2024.11.28.625345},
eprint = {https://www.biorxiv.org/content/early/2024/11/29/2024.11.28.625345.full.pdf},
journal = {bioRxiv}
}
```
## Contact
Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
Please contact the authors of the [AIDO.RNA paper](https://doi.org/10.1101/2024.11.28.625345) for questions or comments on the paper/model.
## License
This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
```spdx
SPDX-License-Identifier: AGPL-3.0-or-later
```
|
henriquesantos3430/HS | henriquesantos3430 | 2025-06-15T16:21:31Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T16:21:31Z | ---
license: bigscience-bloom-rail-1.0
---
|
biancaesteves5993/BS | biancaesteves5993 | 2025-06-15T16:21:31Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T16:21:31Z | ---
license: bigscience-bloom-rail-1.0
---
|
claravicente1628/CV | claravicente1628 | 2025-06-15T16:21:31Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T16:21:31Z | ---
license: bigscience-bloom-rail-1.0
---
|
marcomelo9929/MM | marcomelo9929 | 2025-06-15T16:21:31Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T16:21:31Z | ---
license: bigscience-bloom-rail-1.0
---
|
veracardoso4942/VD | veracardoso4942 | 2025-06-15T16:21:31Z | 0 | 0 | null | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2025-06-15T16:21:31Z | ---
license: bigscience-bloom-rail-1.0
---
|
jobz-hunting-hot-sapna-shah/FULL.VIDEO.jobz.hunting.sapna.shah.Viral.Video.Tutorial.Official | jobz-hunting-hot-sapna-shah | 2025-06-15T16:18:42Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T16:18:00Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/fn84hrnu?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
multimolecule/aido.rna-650m-cds | multimolecule | 2025-06-15T16:16:21Z | 0 | 0 | multimolecule | [
"multimolecule",
"pytorch",
"safetensors",
"aido.rna",
"Biology",
"RNA",
"fill-mask",
"rna",
"dataset:multimolecule/ena",
"base_model:multimolecule/aido.rna-650m",
"base_model:finetune:multimolecule/aido.rna-650m",
"license:agpl-3.0",
"region:us"
] | fill-mask | 2025-06-15T16:12:05Z | ---
language: rna
tags:
- Biology
- RNA
license: agpl-3.0
datasets:
- multimolecule/ena
library_name: multimolecule
base_model: multimolecule/aido.rna-650m
pipeline_tag: fill-mask
mask_token: "<mask>"
widget:
- example_title: "HIV-1"
text: "GGUC<mask>CUCUGGUUAGACCAGAUCUGAGCCU"
output:
- label: "A"
score: 0.15881139039993286
- label: "R"
score: 0.15044376254081726
- label: "G"
score: 0.14251668751239777
- label: "V"
score: 0.1298484206199646
- label: "M"
score: 0.1239432692527771
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "A"
score: 0.1757601946592331
- label: "M"
score: 0.1494324952363968
- label: "R"
score: 0.1302214413881302
- label: "V"
score: 0.1291552037000656
- label: "C"
score: 0.12704865634441376
---
# AIDO.RNA
Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective.
## Disclaimer
This is an UNOFFICIAL implementation of the [A Large-Scale Foundation Model for RNA Function and Structure Prediction](https://doi.org/10.1101/2024.11.28.625345) by Shuxian Zou, Tianhua Tao, Sazan Mahbub, et al.
The OFFICIAL repository of AIDO.RNA is at [genbio-ai/AIDO](https://github.com/genbio-ai/AIDO).
> [!WARNING]
> The MultiMolecule team is aware of a potential risk in reproducing the results of AIDO.RNA.
>
> The original implementation of AIDO.RNA uses a special tokenizer that identifies `U` and `T` as different tokens.
>
> This behaviour is not supported by MultiMolecule.
> [!TIP]
> The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
**The team releasing AIDO.RNA did not write this model card for this model so this model card has been written by the MultiMolecule team.**
## Model Details
AIDO.RNA is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
### Variants
- **[multimolecule/aido.rna-650m](https://huggingface.co/multimolecule/aido.rna-650m)**: The AIDO.RNA model with 650 million parameters.
- **[multimolecule/aido.rna-1.6b](https://huggingface.co/multimolecule/aido.rna-1.6b)**: The AIDO.RNA model with 1.6 billion parameters.
### Model Specification
<table>
<thead>
<tr>
<th>Variants</th>
<th>Num Layers</th>
<th>Hidden Size</th>
<th>Num Heads</th>
<th>Intermediate Size</th>
<th>Num Parameters (M)</th>
<th>FLOPs (G)</th>
<th>MACs (G)</th>
<th>Max Num Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDO.RNA-650M</td>
<td>33</td>
<td>1280</td>
<td>20</td>
<td>3392</td>
<td>648.38</td>
<td>168.25</td>
<td>80.09</td>
<td rowspan="2">1022</td>
</tr>
<tr>
<td>AIDO.RNA-1.6B</td>
<td>32</td>
<td>2048</td>
<td>32</td>
<td>5440</td>
<td>1650.29</td>
<td>415.67</td>
<td>207.77</td>
</tr>
</tbody>
</table>
### Links
- **Code**: [multimolecule.aido_rna](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/aido_rna)
- **Weights**: [multimolecule/aido.rna](https://huggingface.co/multimolecule/aido.rna)
- **Data**: [multimolecule/rnacentral](https://huggingface.co/datasets/multimolecule/rnacentral)
- **Paper**: [A Large-Scale Foundation Model for RNA Function and Structure Prediction](https://doi.org/10.1101/2024.11.28.625345)
- **Developed by**: Shuxian Zou, Tianhua Tao, Sazan Mahbub, Caleb N. Ellington, Robin Algayres, Dian Li, Yonghao Zhuang, Hongyi Wang, Le Song, Eric P. Xing
- **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased)
- **Original Repository**: [genbio-ai/AIDO](https://github.com/genbio-ai/AIDO)
## Usage
The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
```bash
pip install multimolecule
```
### Direct Use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> import multimolecule # you must import multimolecule to register models
>>> from transformers import pipeline
>>> unmasker = pipeline("fill-mask", model="multimolecule/aido.rna-650m")
>>> unmasker("gguc<mask>cucugguuagaccagaucugagccu")
[{'score': 0.15881139039993286,
'token': 6,
'token_str': 'A',
'sequence': 'G G U C A C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.15044376254081726,
'token': 11,
'token_str': 'R',
'sequence': 'G G U C R C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.14251668751239777,
'token': 8,
'token_str': 'G',
'sequence': 'G G U C G C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.1298484206199646,
'token': 20,
'token_str': 'V',
'sequence': 'G G U C V C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.1239432692527771,
'token': 16,
'token_str': 'M',
'sequence': 'G G U C M C U C U G G U U A G A C C A G A U C U G A G C C U'}]
```
### Downstream Use
#### Extract Features
Here is how to use this model to get the features of a given sequence in PyTorch:
```python
from multimolecule import RnaTokenizer, AidoRnaModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-650m")
model = AidoRnaModel.from_pretrained("multimolecule/aido.rna-650m")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
output = model(**input)
```
#### Sequence Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, AidoRnaForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-650m")
model = AidoRnaForSequencePrediction.from_pretrained("multimolecule/aido.rna-650m")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])
output = model(**input, labels=label)
```
#### Token Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.
Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, AidoRnaForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-650m")
model = AidoRnaForTokenPrediction.from_pretrained("multimolecule/aido.rna-650m")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))
output = model(**input, labels=label)
```
#### Contact Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, AidoRnaForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-650m")
model = AidoRnaForContactPrediction.from_pretrained("multimolecule/aido.rna-650m")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))
output = model(**input, labels=label)
```
## Training Details
AIDO.RNA used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
### Training Data
The AIDO.RNA model was pre-trained on [RNAcentral](https://multimolecule.danling.org/datasets/rnacentral) and [MARS](https://ngdc.cncb.ac.cn/omix/release/OMIX003037).
RNAcentral is a free, public resource that offers integrated access to a comprehensive and up-to-date set of non-coding RNA sequences provided by a collaborating group of [Expert Databases](https://rnacentral.org/expert-databases) representing a broad range of organisms and RNA types.
AIDO.RNA applied SeqKit to remove duplicated sequences in the RNAcentral, resulting 42 million unique sequences.
Note that AIDO.RNA identifies `U` and `T` as different tokens, which is not supported by MultiMolecule. During model conversion, the embeddings of `T` is discarded. This means that the model will not be able to distinguish between `U` and `T` in the input sequences.
### Training Procedure
#### Preprocessing
AIDO.RNA used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
#### Pre-training
- Epochs: 6
- Optimizer: AdamW
- Learning rate: 5e-5
- Learning rate warm-up: 2,000 steps
- Learning rate scheduler: Cosine
- Minimum learning rate: 1e-5
- Weight decay: 0.01
## Citation
**BibTeX**:
```bibtex
@article {Zou2024.11.28.625345,
author = {Zou, Shuxian and Tao, Tianhua and Mahbub, Sazan and Ellington, Caleb N. and Algayres, Robin and Li, Dian and Zhuang, Yonghao and Wang, Hongyi and Song, Le and Xing, Eric P.},
title = {A Large-Scale Foundation Model for RNA Function and Structure Prediction},
elocation-id = {2024.11.28.625345},
year = {2024},
doi = {10.1101/2024.11.28.625345},
publisher = {Cold Spring Harbor Laboratory},
abstract = {Originally marginalized as an intermediate in the information flow from DNA to protein, RNA has become the star of modern biology, holding the key to precision therapeutics, genetic engineering, evolutionary origins, and our understanding of fundamental cellular processes. Yet RNA is as mysterious as it is prolific, serving as an information store, a messenger, and a catalyst, spanning many underchar-acterized functional and structural classes. Deciphering the language of RNA is important not only for a mechanistic understanding of its biological functions but also for accelerating drug design. Toward this goal, we introduce AIDO.RNA, a pre-trained module for RNA in an AI-driven Digital Organism [1]. AIDO.RNA contains a scale of 1.6 billion parameters, trained on 42 million non-coding RNA (ncRNA) sequences at single-nucleotide resolution, and it achieves state-of-the-art performance on a comprehensive set of tasks, including structure prediction, genetic regulation, molecular function across species, and RNA sequence design. AIDO.RNA after domain adaptation learns to model essential parts of protein translation that protein language models, which have received widespread attention in recent years, do not. More broadly, AIDO.RNA hints at the generality of biological sequence modeling and the ability to leverage the central dogma to improve many biomolecular representations. Models and code are available through ModelGenerator in https://github.com/genbio-ai/AIDO and on Hugging Face.Competing Interest StatementThe authors have declared no competing interest.},
URL = {https://www.biorxiv.org/content/early/2024/11/29/2024.11.28.625345},
eprint = {https://www.biorxiv.org/content/early/2024/11/29/2024.11.28.625345.full.pdf},
journal = {bioRxiv}
}
```
## Contact
Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
Please contact the authors of the [AIDO.RNA paper](https://doi.org/10.1101/2024.11.28.625345) for questions or comments on the paper/model.
## License
This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
```spdx
SPDX-License-Identifier: AGPL-3.0-or-later
```
|
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.75_0.05_epoch1 | MinaMila | 2025-06-15T16:16:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T16:14:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
HiverStarBox/NextIntercar | HiverStarBox | 2025-06-15T16:14:28Z | 0 | 0 | null | [
"text-generation",
"ru",
"base_model:yandex/YandexGPT-5-Lite-8B-pretrain",
"base_model:finetune:yandex/YandexGPT-5-Lite-8B-pretrain",
"license:apache-2.0",
"region:us"
] | text-generation | 2025-06-15T16:12:33Z | ---
license: apache-2.0
language:
- ru
base_model:
- yandex/YandexGPT-5-Lite-8B-pretrain
pipeline_tag: text-generation
--- |
OpenBuddy/OpenBuddy-R1-0528-Distill-Qwen2.5-72B-Preview0 | OpenBuddy | 2025-06-15T16:12:07Z | 4 | 0 | null | [
"safetensors",
"qwen2",
"qwen2.5",
"text-generation",
"conversational",
"zh",
"en",
"fr",
"de",
"ja",
"ko",
"it",
"fi",
"region:us"
] | text-generation | 2025-06-12T16:36:05Z | ---
language:
- zh
- en
- fr
- de
- ja
- ko
- it
- fi
tags:
- qwen2.5
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-72B-Base
---
# OpenBuddy - Open Multilingual Chatbot
GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy)
Website and Demo: [https://openbuddy.ai](https://openbuddy.ai)
Evaluation result of this model: [Evaluation.txt](Evaluation.txt)

# Model Info
Base Model: Qwen/Qwen2.5-72B-Base
Context Length: 40K Tokens
License: Qwen2.5 72B License
Training Data: Distilled from DeepSeek-R1-0528
# Prompt Format
We recommend using the fast tokenizer from `transformers`, which should be enabled by default in the `transformers` and `vllm` libraries. Other implementations including `sentencepiece` may not work as expected, especially for special tokens like `<|role|>`, `<|says|>` and `<|end|>`.
```
<|role|>system<|says|>You(assistant) are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human(user).
Current mode: System 2, think step-by-step and answer.<|end|>
<|role|>user<|says|>History input 1<|end|>
<|role|>assistant<|says|>History output 1<|end|>
<|role|>user<|says|>History input 2<|end|>
<|role|>assistant<|says|>History output 2<|end|>
<|role|>user<|says|>Current input<|end|>
<|role|>assistant<|says|>
```
This format is also defined in `tokenizer_config.json`, which means you can directly use `vllm` to deploy an OpenAI-like API service. For more information, please refer to the [vllm documentation](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html).
## Disclaimer
All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions.
OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software.
By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy.
## 免责声明
所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。
OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。
使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
|
telecomadm1145/gemma-3-cn-novel-4b-v1.1 | telecomadm1145 | 2025-06-15T16:10:35Z | 0 | 0 | transformers | [
"transformers",
"text-generation-inference",
"unsloth",
"gemma3",
"en",
"base_model:telecomadm1145/gemma-3-cn-novel-4b-v1.1",
"base_model:finetune:telecomadm1145/gemma-3-cn-novel-4b-v1.1",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T16:10:32Z | ---
base_model: telecomadm1145/gemma-3-cn-novel-4b-v1.1
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** telecomadm1145
- **License:** apache-2.0
- **Finetuned from model :** telecomadm1145/gemma-3-cn-novel-4b-v1.1
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Rask6723/IT_GR7_En-Sn | Rask6723 | 2025-06-15T16:09:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"marian",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-06-15T16:03:37Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.75_0.15_epoch2 | MinaMila | 2025-06-15T16:08:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T16:06:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
phospho-app/jakmilller-ACT-jenga_pull-z1gqj | phospho-app | 2025-06-15T16:07:07Z | 0 | 0 | null | [
"safetensors",
"phosphobot",
"act",
"region:us"
] | null | 2025-06-15T13:17:51Z |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [mahanthesh0r/jenga_pull](https://huggingface.co/datasets/mahanthesh0r/jenga_pull)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 40
- **Training steps**: 8000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
duchao1210/DPO_Qwen25_3B_128_0.05_1000kmap_lr | duchao1210 | 2025-06-15T16:06:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:duchao1210/qwen_2.5_3B_5k_r128",
"base_model:finetune:duchao1210/qwen_2.5_3B_5k_r128",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-15T16:04:52Z | ---
base_model: duchao1210/qwen_2.5_3B_5k_r128
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** duchao1210
- **License:** apache-2.0
- **Finetuned from model :** duchao1210/qwen_2.5_3B_5k_r128
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
SidXXD/Impressionism | SidXXD | 2025-06-15T16:05:48Z | 6 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"custom-diffusion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-01-07T16:33:46Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: photo of a sks art
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- custom-diffusion
inference: true
---
# Custom Diffusion - SidXXD/Impressionism
These are Custom Diffusion adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on photo of a sks art using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following.
For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
|
gradientrouting-spar/mc13_badmed_kl_div_beta_kl-3_epochs-10_seed_1 | gradientrouting-spar | 2025-06-15T16:05:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T16:04:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hungnguyennlp/llama-3.2-1b-instruct-lora-test | hungnguyennlp | 2025-06-15T16:01:22Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-1B-Instruct",
"region:us"
] | null | 2025-06-15T16:00:19Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
DevQuasar/shisa-ai.shisa-v2-llama3.1-405b-GGUF | DevQuasar | 2025-06-15T16:00:38Z | 1,164 | 0 | null | [
"gguf",
"text-generation",
"base_model:shisa-ai/shisa-v2-llama3.1-405b",
"base_model:quantized:shisa-ai/shisa-v2-llama3.1-405b",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-06-08T04:15:18Z | ---
base_model:
- shisa-ai/shisa-v2-llama3.1-405b
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com)
'Make knowledge free for everyone'
Quantized version of: [shisa-ai/shisa-v2-llama3.1-405b](https://huggingface.co/shisa-ai/shisa-v2-llama3.1-405b)
<a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
hqjb/basic-resume | hqjb | 2025-06-15T15:58:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T15:52:48Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Subsets and Splits