modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-15 18:28:48
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 522
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-15 18:28:34
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
zjunlp/mt5-ie | zjunlp | 2023-07-28T11:46:33Z | 110 | 1 | transformers | [
"transformers",
"pytorch",
"safetensors",
"mt5",
"text2text-generation",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-05-17T11:39:03Z | ---
license: mit
---
We trained the MT5-base model for the CCKS2023 Instruction-based KGC task using 27W weakly supervised data without employing any additional techniques.
To learn more about the training process and how to utilize the model, please consult the following GitHub repository: https://github.com/zjunlp/DeepKE/tree/main/example/triple/mt5.
There, you will find detailed information on how to train the model and leverage its capabilities for the given task.
|
jcy204/heat | jcy204 | 2023-07-28T11:32:20Z | 62 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-07-28T10:57:46Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: jcy204/heat
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# jcy204/heat
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2735
- Validation Loss: 0.5758
- Train Accuracy: 0.7927
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3325, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.6362 | 0.5353 | 0.7838 | 0 |
| 0.4101 | 0.5194 | 0.7927 | 1 |
| 0.2735 | 0.5758 | 0.7927 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.1
- Tokenizers 0.13.3
|
mw00/yolov7-lego | mw00 | 2023-07-28T11:09:08Z | 0 | 1 | null | [
"lego",
"brick",
"object-detection",
"license:cc0-1.0",
"region:us"
]
| object-detection | 2023-07-26T16:52:21Z | ---
license: cc0-1.0
pipeline_tag: object-detection
tags:
- lego
- brick
---
# Overview
The model(s) in this repository are trained with the [dreamfactor/biggest-lego-dataset-600-parts](https://www.kaggle.com/datasets/dreamfactor/biggest-lego-dataset-600-parts)
from Kaggle and the [Yolov7](https://github.com/WongKinYiu/yolov7) training script.
## Limitations
The `zero-shot-1000-single-class.pt` was trained in the `training-zero-shot-1000-single-class.ipynb` notebook with 1000 images and does not differentiate lego classes but only tries to predict Lego objects.
This can be easily reconfigured and retrained in the notebook, but the current implementation leads to many false positives on non-Lego objects and therefore can be improved
upon. Also, it could be worth investigating if the metrics improve with a bigger training dataset, as currently only 1000 images are being used (approx. 0.6% of the full
dataset).
|
hruslen/LunarLander-v2-ppo-self | hruslen | 2023-07-28T11:04:54Z | 0 | 0 | null | [
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T11:04:47Z | ---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -126.43 +/- 74.98
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'f': None
'exp_name': 'ppo-selfmade2'
'seed': 1
'repo_id': 'hruslen/LunarLander-v2-ppo-self'
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'batch_size': 512
'minibatch_size': 128}
```
|
manuu01/ppo-Pyramids | manuu01 | 2023-07-28T10:35:59Z | 25 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-07-28T10:35:58Z | ---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: manuu01/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Imxxn/RLCourseU4-Pixelcopter-v0 | Imxxn | 2023-07-28T10:29:13Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T06:18:26Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: RLCourseU4-Pixelcopter-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 54.30 +/- 41.99
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Kexa/Kx_01 | Kexa | 2023-07-28T10:16:31Z | 0 | 0 | allennlp | [
"allennlp",
"chemistry",
"question-answering",
"es",
"dataset:Open-Orca/OpenOrca",
"arxiv:1910.09700",
"license:unknown",
"region:us"
]
| question-answering | 2023-07-28T10:14:03Z | ---
license: unknown
datasets:
- Open-Orca/OpenOrca
language:
- es
metrics:
- accuracy
library_name: allennlp
pipeline_tag: question-answering
tags:
- chemistry
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
HaziqRazali/Reinforce-pixelcopter | HaziqRazali | 2023-07-28T10:13:26Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T10:11:15Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: -5.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
RTT/q-FrozenLake-v1-4x4-noSlippery | RTT | 2023-07-28T10:09:43Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T10:09:42Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="RTT/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Ding-Qiang/q-Taxi-v3 | Ding-Qiang | 2023-07-28T10:09:34Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T10:09:32Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Ding-Qiang/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
digiplay/LuckyStrikeMix1.05_Lovelylady | digiplay | 2023-07-28T10:05:01Z | 532 | 3 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-07-28T09:20:36Z | ---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/13034/lucky-strike-mix
https://civitai.com/models/13034?modelVersionId=127680
*use "photorealism", "8k" keywords, could generate better images.
Original Author's DEMO images :



,%20(digital%20art%20style_1.4).jpeg)

|
toto10/Loras | toto10 | 2023-07-28T10:02:32Z | 0 | 5 | null | [
"region:us"
]
| null | 2023-06-02T17:40:30Z | Found. Redirecting to https://cdn-lfs.hf.co/repos/bc/28/bc28ea4dbdd4bbf7b1443dc6b8b821b0bcef0883733ce11f9302fa46f2041ae9/4b31a3ee3aaf413a5aa371a67e17342321e393df1c304e777db671fe3691b83b?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1739270453&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczOTI3MDQ1M319LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy9iYy8yOC9iYzI4ZWE0ZGJkZDRiYmY3YjE0NDNkYzZiOGI4MjFiMGJjZWYwODgzNzMzY2UxMWY5MzAyZmE0NmYyMDQxYWU5LzRiMzFhM2VlM2FhZjQxM2E1YWEzNzFhNjdlMTczNDIzMjFlMzkzZGYxYzMwNGU3NzdkYjY3MWZlMzY5MWI4M2I%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=O%7EEkH78z3sT3GJWiYHtvxCGab-b%7EsVDsLNR7sNJUVVY1Nlw%7Ei07dtpWm6NpJPAOiQzi0YuvRxXAZ6a7wbaeXkTyOhoU%7EeaFlEJUtGmre8-qPBBXrMK7GmbNwlwvkvpT4VHROsMhcp0RHIILA18mBuGL3XT0Dt2cvOaS1KXXSNILhsNb%7EKLyb5ZRvT%7ELamkF9joxDVyO1NL1N%7EfcpNRxaqqLubiyyKp0awyu59O1CvVKpN%7EsIHflSx1Dq6m3STgGURoS2z6AK1o83%7Ehx4uJEgvxZG9UBY2IzHskgHn7HBWCVcGxV29duRL7L35oYdD%7EiPQoU3UiCfFr2UCdCxjgG9lQ__&Key-Pair-Id=K3RPWS32NSSJCE |
tommilyjones/swin-tiny-patch4-window7-224-finetuned-masked-hateful-meme-restructured | tommilyjones | 2023-07-28T09:57:28Z | 212 | 0 | transformers | [
"transformers",
"pytorch",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"base_model:finetune:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-07-28T09:36:50Z | ---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-masked-hateful-meme-restructured
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.53
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-masked-hateful-meme-restructured
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7166
- Accuracy: 0.53
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6507 | 0.99 | 66 | 0.7352 | 0.502 |
| 0.6411 | 2.0 | 133 | 0.7070 | 0.528 |
| 0.6268 | 2.99 | 199 | 0.7166 | 0.53 |
| 0.6007 | 4.0 | 266 | 0.7934 | 0.506 |
| 0.5875 | 4.99 | 332 | 0.8053 | 0.52 |
| 0.5554 | 6.0 | 399 | 0.7534 | 0.524 |
| 0.5613 | 6.99 | 465 | 0.8075 | 0.524 |
| 0.5714 | 8.0 | 532 | 0.7882 | 0.522 |
| 0.5244 | 8.99 | 598 | 0.8380 | 0.518 |
| 0.5251 | 9.92 | 660 | 0.8331 | 0.52 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
accuracy-maker/ppo-LunarLander-v2 | accuracy-maker | 2023-07-28T09:53:38Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T09:53:15Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 264.96 +/- 17.69
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ding-Qiang/q-FrozenLake-v1-4x4-Slippery | Ding-Qiang | 2023-07-28T09:43:58Z | 0 | 0 | null | [
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T09:42:45Z | ---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.29 +/- 0.45
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Ding-Qiang/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
rashmi035/wav2vec2-large-mms-1b-hindi-colab | rashmi035 | 2023-07-28T09:33:51Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice_6_1",
"base_model:facebook/mms-1b-fl102",
"base_model:finetune:facebook/mms-1b-fl102",
"license:cc-by-nc-4.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-07-12T05:29:24Z | ---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-fl102
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-hindi-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 0.32018561484918795
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-hindi-colab
This model is a fine-tuned version of [facebook/mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102) on the common_voice_6_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3535
- Wer: 0.3202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 16.7585 | 0.14 | 10 | 10.2106 | 2.0951 |
| 6.9602 | 0.27 | 20 | 3.7700 | 1.0046 |
| 2.4653 | 0.41 | 30 | 1.3321 | 0.6763 |
| 1.0919 | 0.55 | 40 | 0.6594 | 0.4664 |
| 0.7645 | 0.68 | 50 | 0.4930 | 0.3910 |
| 0.8434 | 0.82 | 60 | 0.4819 | 0.3898 |
| 0.5118 | 0.96 | 70 | 0.4492 | 0.3817 |
| 0.6097 | 1.1 | 80 | 0.4299 | 0.4327 |
| 0.4698 | 1.23 | 90 | 0.4308 | 0.3643 |
| 0.5402 | 1.37 | 100 | 0.4042 | 0.4107 |
| 0.5622 | 1.51 | 110 | 0.4156 | 0.3701 |
| 0.4084 | 1.64 | 120 | 0.4138 | 0.3701 |
| 0.4888 | 1.78 | 130 | 0.3917 | 0.3434 |
| 0.4253 | 1.92 | 140 | 0.3852 | 0.3457 |
| 0.5004 | 2.05 | 150 | 0.3843 | 0.3364 |
| 0.3791 | 2.19 | 160 | 0.3841 | 0.3469 |
| 0.3302 | 2.33 | 170 | 0.3764 | 0.3271 |
| 0.4047 | 2.47 | 180 | 0.3689 | 0.3364 |
| 0.2951 | 2.6 | 190 | 0.3657 | 0.3329 |
| 0.3545 | 2.74 | 200 | 0.3582 | 0.3306 |
| 0.3736 | 2.88 | 210 | 0.3585 | 0.3248 |
| 0.388 | 3.01 | 220 | 0.3602 | 0.3237 |
| 0.2997 | 3.15 | 230 | 0.3624 | 0.3167 |
| 0.3704 | 3.29 | 240 | 0.3625 | 0.3190 |
| 0.2095 | 3.42 | 250 | 0.3571 | 0.3248 |
| 0.3564 | 3.56 | 260 | 0.3570 | 0.3202 |
| 0.2119 | 3.7 | 270 | 0.3550 | 0.3225 |
| 0.3697 | 3.84 | 280 | 0.3542 | 0.3190 |
| 0.3551 | 3.97 | 290 | 0.3535 | 0.3202 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
tommilyjones/swin-tiny-patch4-window7-224-finetuned-hateful-meme-restructured | tommilyjones | 2023-07-28T09:26:38Z | 215 | 0 | transformers | [
"transformers",
"pytorch",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"base_model:finetune:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-07-28T09:04:55Z | ---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-hateful-meme-restructured
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.52
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-hateful-meme-restructured
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8519
- Accuracy: 0.52
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6441 | 0.99 | 66 | 0.7419 | 0.492 |
| 0.6368 | 2.0 | 133 | 0.7235 | 0.51 |
| 0.6157 | 2.99 | 199 | 0.7516 | 0.504 |
| 0.5928 | 4.0 | 266 | 0.8009 | 0.502 |
| 0.5735 | 4.99 | 332 | 0.8270 | 0.508 |
| 0.5559 | 6.0 | 399 | 0.7804 | 0.502 |
| 0.5533 | 6.99 | 465 | 0.8053 | 0.486 |
| 0.5541 | 8.0 | 532 | 0.8078 | 0.504 |
| 0.5218 | 8.99 | 598 | 0.8519 | 0.52 |
| 0.5226 | 9.92 | 660 | 0.8522 | 0.508 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
lixsh6/wsdm23_pretrain | lixsh6 | 2023-07-28T09:19:26Z | 0 | 0 | null | [
"arxiv:2302.13756",
"arxiv:2302.13498",
"region:us"
]
| null | 2023-01-13T07:08:47Z | # WSDM Cup 2023 BERT Checkpoints:
- This repo contains the checkpoints of our competition in WSDM Cup 2023: [Pre-training for Web Search](https://aistudio.baidu.com/aistudio/competition/detail/536/0/leaderboard) and [Unbiased Learning for Web Search](https://aistudio.baidu.com/aistudio/competition/detail/534/0/leaderboard).
## Paper released
Please refer to our paper for details in this competition:
- Task1 Unbiased Learning to rank: [Multi-Feature Integration for Perception-Dependent
Examination-Bias Estimation](https://arxiv.org/pdf/2302.13756.pdf)
- Task2 Pretraining for web search: [Pretraining De-Biased Language Model with Large-scale Click
Logs for Document Ranking](https://arxiv.org/pdf/2302.13498.pdf)
## Method Overview
- Pre-training BERT with MLM and CTR prediction loss (or multi-task CTR prediction loss).
- Finetuning BERT with pairwise ranking loss.
- Obtain prediction scores from different BERTs.
- Ensemble learning to combine BERT features and sparse features.
Details will be updated in the submission paper.
#### BERT features:
##### 1) Model details: [Checkpoints Download Here](https://huggingface.co/lixsh6/wsdm23_pretrain/tree/main)
| Index| Model Flag | Method | Pretrain step | Finetune step | DCG on leaderboard |
| --------| -------- | ------- |---------------| ------- | ------- |
| 1| large_group2_wwm_from_unw4625K | M1 | 1700K | 5130 | 11.96214 |
| 2| large_group2_wwm_from_unw4625K | M1 | 1700K | 5130 | NAN |
| 3| base_group2_wwm | M2 | 2150K | 5130 | ~11.32363 |
| 4| large_group2_wwm_from_unw4625K | M1 | 590K | 5130 | 11.94845 |
| 5| large_group2_wwm_from_unw4625K | M1 | 1700K | 4180 | NAN |
| 6| large_group2_mt_pretrain | M3 | 1940K | 5130 | NAN |
##### 2) Method details
| Method | Model Layers | Details |
| -------- | ------- | ------- |
| M1 | 24 | WWM & CTR prediction as pretraining tasks|
| M2 | 12 | WWM & CTR prediction as pretraining tasks |
| M3 | 24 | WWM & Multi-task CTR prediction as pretraining tasks|
## Contacts
- Xiangsheng Li: [[email protected]]([email protected]).
- Xiaoshu Chen: [[email protected]]([email protected]) |
digiplay/PotoPhotoRealism_v1 | digiplay | 2023-07-28T09:18:04Z | 499 | 7 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-07-28T08:59:23Z | ---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/117538/poto-photo-realism
Original Author's DEMO images :







|
kamalchibrani/yolov8_fall_detection_25 | kamalchibrani | 2023-07-28T09:10:52Z | 0 | 0 | null | [
"dataset:kamalchibrani/fall_detection",
"license:openrail",
"region:us"
]
| null | 2023-07-28T08:59:29Z | ---
license: openrail
datasets:
- kamalchibrani/fall_detection
metrics:
- accuracy
--- |
openlamm/lamm_13b_lora32_98k | openlamm | 2023-07-28T09:08:57Z | 4 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-06-10T03:46:34Z | ---
license: apache-2.0
Model:
- Vicuna13B
- LoRA32
- openlamm/LAMM-98K
--- |
sdocio/bne-spacy-corgale-ner-es | sdocio | 2023-07-28T09:08:31Z | 2 | 0 | spacy | [
"spacy",
"token-classification",
"es",
"license:gpl-3.0",
"model-index",
"region:us"
]
| token-classification | 2023-01-07T23:02:41Z | ---
license: gpl-3.0
language:
- es
library_name: spacy
pipeline_tag: token-classification
tags:
- spacy
- token-classification
widget:
- text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
- text: "Si te metes en el Franco desde la Alameda, vas hacia la Catedral."
- text: "Y allí precisamente es Santiago el patrón del pueblo."
model-index:
- name: bne-spacy-corgale-ner-es
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9721311475
- name: NER Recall
type: recall
value: 0.9732708089
- name: NER F Score
type: f_score
value: 0.9727006444
---
# Introduction
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). It was fine-tuned using `PlanTL-GOB-ES/roberta-base-bne`.
| Feature | Description |
| --- | --- |
| **Name** | `bne-spacy-corgale-ner-es` |
| **Version** | `0.0.2` |
| **spaCy** | `>=3.5.2,<3.6.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
### Label Scheme
<details>
<summary>View label scheme (4 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
## Usage
You can use this model with the spaCy *pipeline* for NER.
```python
import spacy
from spacy.pipeline import merge_entities
nlp = spacy.load("bne-spacy-corgale-ner-es")
nlp.add_pipe('sentencizer')
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. Si te metes en el Franco desde la Alameda, vas hacia la Catedral. Y allí precisamente es Santiago el patrón del pueblo."
ner_pipe = nlp(example)
print(ner_pipe.ents)
for token in merge_entities(ner_pipe):
print(token.text, token.ent_type_)
```
## Dataset
ToDo
## Model performance
entity|precision|recall|f1
-|-|-|-
LOC|0.985|0.987|0.986
MISC|0.862|0.865|0.863
ORG|0.938|0.779|0.851
PER|0.921|0.941|0.931
micro avg|0.971|0.972|0.971
macro avg|0.926|0.893|0.908
weighted avg|0.971|0.972|0.971 |
caozhanqiang/llama2-glora-finetunined-french | caozhanqiang | 2023-07-28T09:08:14Z | 3 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T09:07:56Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
oljike/nurtas_db_lora | oljike | 2023-07-28T09:04:38Z | 0 | 1 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
]
| text-to-image | 2023-07-28T07:05:24Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: a photo of kairat nurtas
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - oljike/nurtas_db_lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of kairat nurtas using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.

LoRA for the text encoder was enabled: False.
|
tommilyjones/resnet-50-finetuned-hateful-meme-restructured | tommilyjones | 2023-07-28T09:03:09Z | 229 | 0 | transformers | [
"transformers",
"pytorch",
"resnet",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/resnet-50",
"base_model:finetune:microsoft/resnet-50",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-07-28T08:40:52Z | ---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-hateful-meme-restructured
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-finetuned-hateful-meme-restructured
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7132
- Accuracy: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6633 | 0.99 | 66 | 0.7132 | 0.5 |
| 0.6561 | 2.0 | 133 | 0.7309 | 0.5 |
| 0.6497 | 2.99 | 199 | 0.7314 | 0.5 |
| 0.6529 | 4.0 | 266 | 0.7296 | 0.5 |
| 0.6336 | 4.99 | 332 | 0.7386 | 0.5 |
| 0.625 | 6.0 | 399 | 0.7403 | 0.5 |
| 0.6511 | 6.99 | 465 | 0.7425 | 0.5 |
| 0.6567 | 8.0 | 532 | 0.7314 | 0.5 |
| 0.6389 | 8.99 | 598 | 0.7380 | 0.5 |
| 0.6446 | 9.92 | 660 | 0.7426 | 0.5 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
openlamm/lamm_7b_lora32_98k | openlamm | 2023-07-28T09:00:14Z | 6 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"en",
"dataset:caojianjian/LAMM",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-06-10T15:18:52Z | ---
license: apache-2.0
datasets:
- caojianjian/LAMM
language:
- en
library_name: transformers
--- |
dummycouchspud/adapter_demo | dummycouchspud | 2023-07-28T08:39:54Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T08:39:52Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
|
iliyaML/my_awesome_eli5_clm-model | iliyaML | 2023-07-28T08:33:55Z | 132 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-28T08:00:06Z | ---
license: apache-2.0
base_model: distilgpt2
tags:
- generated_from_trainer
model-index:
- name: my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_eli5_clm-model
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7399
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.8773 | 1.0 | 1121 | 3.7568 |
| 3.7788 | 2.0 | 2242 | 3.7430 |
| 3.7441 | 3.0 | 3363 | 3.7399 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
xianbin/Reinforce-Pixelcopter-PLE-v0 | xianbin | 2023-07-28T08:28:33Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T08:14:41Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 106.00 +/- 86.94
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
darveen/llama2-qlora-finetuned-alpaca-40steps | darveen | 2023-07-28T08:27:20Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-23T03:32:03Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
Imxxn/RLCourseU5-Pyramids | Imxxn | 2023-07-28T08:22:54Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-07-28T08:22:50Z | ---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Imxxn/RLCourseU5-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
HaziqRazali/dqn-SpaceInvadersNoFrameskip-v4 | HaziqRazali | 2023-07-28T08:12:40Z | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T08:12:17Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 133.50 +/- 35.22
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga HaziqRazali -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga HaziqRazali -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga HaziqRazali
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 1000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 1000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 100),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
Imxxn/RLCourseU5-SnowballTarget | Imxxn | 2023-07-28T07:49:37Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
]
| reinforcement-learning | 2023-07-28T07:49:33Z | ---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Imxxn/RLCourseU5-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
loucad/swin-tiny-patch4-window7-224-finetuned-eurosat | loucad | 2023-07-28T07:48:19Z | 214 | 0 | transformers | [
"transformers",
"pytorch",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"base_model:finetune:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-05-19T07:03:50Z | ---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9751851851851852
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0797
- Accuracy: 0.9752
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.284 | 1.0 | 190 | 0.1307 | 0.9559 |
| 0.1839 | 2.0 | 380 | 0.1056 | 0.9681 |
| 0.1339 | 3.0 | 570 | 0.0797 | 0.9752 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.1
- Tokenizers 0.13.3
|
DAMO-NLP-MT/polylm-chat-13b | DAMO-NLP-MT | 2023-07-28T07:43:26Z | 1,472 | 6 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"arxiv:2307.06018",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-28T06:46:08Z | ---
license: apache-2.0
---
# Model Card for PolyLM-Multialpaca
This model is finetuned on [polyLM-13b](https://huggingface.co/DAMO-NLP-MT/polylm-13b) using the following datasets:
# Demo
[Open](https://modelscope.cn/studios/damo/demo-polylm-multialpaca-13b/summary)
# Bias, Risks, and Limitations
The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2307.06018.pdf):
> Our contributions are fully methodological: adding the support of multilingualism to LLM during training and SFT phases. It is unavoidable that PolyLM might exhibit several common deficiencies of language models, e.g. hallucination and toxicity. PolyLM should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
# Citation
**BibTeX:**
```bibtex
@misc{wei2023polylm,
title={PolyLM: An Open Source Polyglot Large Language Model},
author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie},
year={2023},
eprint={2307.06018},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload | Lajonbot | 2023-07-28T07:31:07Z | 1,398 | 1 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"facebook",
"meta",
"llama-2",
"pl",
"dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-28T07:20:24Z | ---
language:
- pl
datasets:
- Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish
license: other
model_type: llama-2
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
--- |
BlunderPanini/Taxi-v3 | BlunderPanini | 2023-07-28T07:26:32Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T07:26:28Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="BlunderPanini/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ToolBench/ToolLLaMA-7b-LoRA-v1 | ToolBench | 2023-07-28T07:25:03Z | 0 | 8 | null | [
"license:apache-2.0",
"region:us"
]
| null | 2023-07-27T08:36:08Z | ---
license: apache-2.0
---
# Model Card for Model ID
This is a lora version ToolLLaMA model introduced in [ToolBench](https://github.com/OpenBMB/ToolBench).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **License:** apache-2.0
- **Finetuned from model [optional]:** LLaMA-7b
## Uses
Refer to [ToolBench](https://github.com/OpenBMB/ToolBench).
## Training Details
Trained with the new version data in ToolBench. |
xianbin/ppo-LunarLander-v2-2 | xianbin | 2023-07-28T07:22:23Z | 0 | 0 | null | [
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T07:22:17Z | ---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -165.00 +/- 73.23
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'gym_id': 'LunarLander-v2'
'learning_rate': 0.00025
'seed': 1
'total_timesteps': 100000
'torch_deterministic': True
'cuda': True
'capture_video': False
'num_envs': 32
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.995
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'xianbin/ppo-LunarLander-v2-2'
'batch_size': 4096
'minibatch_size': 1024
'env_id': 'LunarLander-v2'}
```
|
Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_GGML | Lajonbot | 2023-07-28T07:20:24Z | 0 | 0 | null | [
"facebook",
"meta",
"pytorch",
"llama",
"llama-2",
"text-generation",
"pl",
"dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish",
"license:other",
"region:us"
]
| text-generation | 2023-07-28T07:12:07Z | ---
language:
- pl
datasets:
- Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish
license: other
model_type: llama-2
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
--- |
xianbin/ppo-LunarLander-v2-new | xianbin | 2023-07-28T07:18:41Z | 0 | 0 | null | [
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T07:11:23Z | ---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -98.47 +/- 49.60
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'gym_id': 'LunarLander-v2'
'learning_rate': 0.00025
'seed': 1
'total_timesteps': 100000
'torch_deterministic': True
'cuda': True
'capture_video': False
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.995
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'xianbin/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128
'env_id': 'LunarLander-v2'}
```
|
sm136599/chatfoodie-koalpaca-polyglot-5_8b-1000step-4batch | sm136599 | 2023-07-28T06:48:16Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T06:48:11Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
CobraMamba/mamba-gpt-3b | CobraMamba | 2023-07-28T06:42:23Z | 1,402 | 4 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"gpt",
"llm",
"large language model",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
]
| text-generation | 2023-06-12T06:08:57Z | ---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
inference: false
thumbnail: >-
https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
license: apache-2.0
---
# Model Card
## Github
https://github.com/chi2liu/mamba-gpt-3b
| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot) | 25.3 |
| ARC (25-shot) | 40.5 |
| HellaSwag (10-shot) | 64.9 |
| TruthfulQA (0-shot) | 37.1 |
| Avg. | 42.0 |
We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above.
## Summary
We have fine-tuned the open-lama model and surpassed the original model in multiple evaluation subtasks, making it currently the best performing 3B model with comparable performance to llama-7b
- Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
```bash
pip install transformers==4.29.2
pip install accelerate==0.19.0
pip install torch==2.0.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="CobraMamba/mamba-gpt-3b",
torch_dtype="auto",
trust_remote_code=True,
use_fast=False,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=1024,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```
Alternatively, you can download the mamba_gpt_pipeline.py, store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
import torch
from mamba_gpt_pipeline import MambaGPTTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"CobraMamba/mamba-gpt-3b",
use_fast=False,
padding_side="left",
trust_remote_code=False,
)
model = AutoModelForCausalLM.from_pretrained(
"CobraMamba/mamba-gpt-3b",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=False,
)
generate_text = MambaGPTTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=1024,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "CobraMamba/mamba-gpt-3b" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?</s><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=False,
trust_remote_code=False,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=False,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=1024,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(32000, 4096, padding_idx=0)
(layers): ModuleList(
(0-31): 32 x LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear(in_features=11008, out_features=4096, bias=False)
(up_proj): Linear(in_features=4096, out_features=11008, bias=False)
(act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)
```
## Evaluation
We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/).
The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks.
| **Task/Metric** | finetuned-GPT 3B | OpenLLaMA 3B |
| ---------------------- | -------- | ------------ |
| anli_r1/acc | **0.35** | 0.33 |
| anli_r2/acc | **0.33** | 0.32 |
| anli_r3/acc | 0.35 | 0.35 |
| arc_challenge/acc | **0.35** | 0.34 |
| arc_challenge/acc_norm | 0.37 | 0.37 |
| arc_easy/acc | **0.71** | 0.69 |
| arc_easy/acc_norm | 0.65 | 0.65 |
| boolq/acc | **0.72** | 0.66 |
| hellaswag/acc | **0.49** | 0.43 |
| hellaswag/acc_norm | 0.66 | **0.67** |
| openbookqa/acc | 0.26 | **0.27** |
| openbookqa/acc_norm | 0.40 | 0.40 |
| piqa/acc | **0.76** | 0.75 |
| piqa/acc_norm | 0.76 | 0.76 |
| record/em | 0.88 | 0.88 |
| record/f1 | 0.88 | **0.89** |
| rte/acc | 0.55 | **0.58** |
| truthfulqa_mc/mc1 | **0.27** | 0.22 |
| truthfulqa_mc/mc2 | **0.37** | 0.35 |
| wic/acc | **0.49** | 0.48 |
| winogrande/acc | **0.63** | 0.62 |
| Average | **0.53** | 0.52 |
We removed the task CB and WSC from our benchmark, as our model performs suspiciously well on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
jjohn23/diffuser-anime-faces-32 | jjohn23 | 2023-07-28T06:27:52Z | 30 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2023-07-28T06:25:41Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute anime faces.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('jjohn23/diffuser-anime-faces-32')
image = pipeline().images[0]
image
```
|
Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-decoding | Evan-Lin | 2023-07-28T06:19:46Z | 47 | 0 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| reinforcement-learning | 2023-07-28T06:12:29Z | ---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp3_ykz16z/Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-decoding")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp3_ykz16z/Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-decoding")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp3_ykz16z/Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-decoding")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
alibaba-pai/pai-diffusion-food-large-zh | alibaba-pai | 2023-07-28T06:15:26Z | 5 | 3 | diffusers | [
"diffusers",
"pytorch",
"text-to-image",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2022-11-30T03:30:53Z | ---
license: apache-2.0
tags:
- pytorch
- diffusers
- text-to-image
---
# Chinese Latent Diffusion Model
我们开源了一个中文 Lattent Diffusion 模型(美食)
* Github: [EasyNLP](https://github.com/alibaba/EasyNLP)
```python
from diffusers import StableDiffusionPipeline
model_id = "alibaba-pai/pai-diffusion-food-large-zh"
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
prompt = "番茄炒蛋"
image = pipe(prompt).images[0]
image.save("result.png")
```
|
terwrt/ppo-Huggy | terwrt | 2023-07-28T06:01:17Z | 5 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-07-28T06:01:11Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: terwrt/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
yijhen38/llama2-7B-chat-qlora-FT-chainsea | yijhen38 | 2023-07-28T05:58:04Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T05:15:12Z | ---
library_name: peft
---
參考 Fine Turning
https://colab.research.google.com/drive/12dVqXZMIVxGI0uutU6HG9RWbWPXL3vts?usp=sharing#scrollTo=mNnkgBq7Q3EU
Model:[meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
dataset:COT_Answer.txt
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
sm136599/chatfoodie-koalpaca-polyglot-5.8b-200step-4batch | sm136599 | 2023-07-28T05:56:33Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T05:56:27Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
beaugogh/pythia-1.4b-deduped-sharegpt | beaugogh | 2023-07-28T05:52:54Z | 1,613 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"gpt_neox",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-25T13:21:09Z | ---
license: apache-2.0
---
pythia-1.4b-deduped model finetuned on sharegpt data |
chriskim2273/IOTNation_CompanyName_AND_Location_AND_Series_Extraction_QA_Model_1.5_DistilBert | chriskim2273 | 2023-07-28T05:45:38Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-07-28T05:06:34Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: IOTNation_CompanyName_AND_Location_AND_Series_Extraction_QA_Model_1.5_DistilBert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IOTNation_CompanyName_AND_Location_AND_Series_Extraction_QA_Model_1.5_DistilBert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7119
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
Imxxn/RLCourseU4-CartPole-v1 | Imxxn | 2023-07-28T05:41:57Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T05:41:46Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: RLCourseU4-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
sm136599/chatfoodie-koalpaca-polyglot-5.8b-200step | sm136599 | 2023-07-28T04:43:54Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T04:43:49Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
xianbin/a2c-AntBulletEnv-v0 | xianbin | 2023-07-28T04:30:29Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T04:28:24Z | ---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1346.83 +/- 53.98
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sm136599/chatfoodie-koalpaca-polyglot-5.8b-1000step | sm136599 | 2023-07-28T04:06:52Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T04:06:47Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
dilip025/dummy-model | dilip025 | 2023-07-28T03:56:34Z | 59 | 0 | transformers | [
"transformers",
"tf",
"camembert",
"fill-mask",
"generated_from_keras_callback",
"base_model:almanach/camembert-base",
"base_model:finetune:almanach/camembert-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-07-28T03:55:31Z | ---
license: mit
base_model: camembert-base
tags:
- generated_from_keras_callback
model-index:
- name: dummy-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dummy-model
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
svalcin/q-Taxi-v3 | svalcin | 2023-07-28T03:26:37Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-11T13:24:15Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="svalcin/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
PAIXAI/Astrid-7B | PAIXAI | 2023-07-28T03:02:52Z | 19 | 22 | transformers | [
"transformers",
"pytorch",
"RefinedWebModel",
"text-generation",
"gpt",
"llm",
"large language model",
"PAIX",
"custom_code",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-07T01:56:35Z | ---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- PAIX
inference: true
thumbnail: https://static.wixstatic.com/media/bdee4e_d0af74523fa64a998d4cfb894e8cd3bb~mv2.png/v1/crop/x_40,y_663,w_1954,h_663/fill/w_342,h_116,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/PAIX%20Logo%20(2).png
---
# Model Card
## Summary
Model Card
Summary
The model Astrid-7B-1 architecture includes a RWForCausalLM transformer with word embeddings, a module list of 32 DecoderLayers, and a linear lm_head.
The DecoderLayer includes an input layer normalization, self-attention mechanism, and a multi-layer perceptron (MLP).
It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
Trained in English, it's a versatile tool for a variety of applications.
This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
This model was trained by [PAIX.Cloud](https://www.paix.cloud/).
- Wait list: [Wait List](https://www.paix.cloud/join-waitlist)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
```bash
pip install transformers==4.30.1
pip install accelerate==0.20.3
pip install torch==2.0.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="<path_to_local_folder>",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
```
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"<path_to_local_folder>",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"<path_to_local_folder>",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "<path_to_local_folder>" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
RWForCausalLM(
(transformer): RWModel(
(word_embeddings): Embedding(65024, 4544)
(h): ModuleList(
(0-31): 32 x DecoderLayer(
(input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
(self_attention): Attention(
(maybe_rotary): RotaryEmbedding()
(query_key_value): Linear(in_features=4544, out_features=4672, bias=False)
(dense): Linear(in_features=4544, out_features=4544, bias=False)
(attention_dropout): Dropout(p=0.0, inplace=False)
)
(mlp): MLP(
(dense_h_to_4h): Linear(in_features=4544, out_features=18176, bias=False)
(act): GELU(approximate='none')
(dense_4h_to_h): Linear(in_features=18176, out_features=4544, bias=False)
)
)
)
(ln_f): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=4544, out_features=65024, bias=False)
)
```
## Model Configuration
## Model Validation
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
```bash
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=<path_to_local_folder> --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
```
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it. |
jordyvl/rvlcdip-tiny_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5 | jordyvl | 2023-07-28T02:58:46Z | 165 | 0 | transformers | [
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-07-27T18:49:50Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: rvlcdip-tiny_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rvlcdip-tiny_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5
This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.4561
- Accuracy: 0.802
- Brier Loss: 0.3399
- Nll: 1.6335
- F1 Micro: 0.802
- F1 Macro: 0.8037
- Ece: 0.1478
- Aurc: 0.0576
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 125 | 5.6533 | 0.5288 | 0.6696 | 3.8280 | 0.5288 | 0.4993 | 0.2170 | 0.2294 |
| No log | 2.0 | 250 | 5.3016 | 0.6285 | 0.5364 | 2.7651 | 0.6285 | 0.6089 | 0.1861 | 0.1465 |
| No log | 3.0 | 375 | 5.1153 | 0.696 | 0.4775 | 2.4052 | 0.696 | 0.6956 | 0.2003 | 0.1078 |
| 5.7003 | 4.0 | 500 | 4.9491 | 0.7358 | 0.3968 | 2.1532 | 0.7358 | 0.7375 | 0.1406 | 0.0813 |
| 5.7003 | 5.0 | 625 | 4.8556 | 0.754 | 0.3676 | 1.8243 | 0.754 | 0.7472 | 0.1001 | 0.0756 |
| 5.7003 | 6.0 | 750 | 4.8060 | 0.7625 | 0.3475 | 1.8558 | 0.7625 | 0.7636 | 0.0808 | 0.0696 |
| 5.7003 | 7.0 | 875 | 4.8301 | 0.7648 | 0.3320 | 1.7367 | 0.7648 | 0.7663 | 0.0434 | 0.0677 |
| 4.6459 | 8.0 | 1000 | 4.7883 | 0.7692 | 0.3305 | 1.8366 | 0.7692 | 0.7728 | 0.0532 | 0.0666 |
| 4.6459 | 9.0 | 1125 | 4.8347 | 0.7762 | 0.3282 | 1.7122 | 0.7762 | 0.7789 | 0.0610 | 0.0675 |
| 4.6459 | 10.0 | 1250 | 4.8679 | 0.7682 | 0.3338 | 1.8225 | 0.7682 | 0.7713 | 0.0634 | 0.0672 |
| 4.6459 | 11.0 | 1375 | 4.9875 | 0.7655 | 0.3521 | 1.9651 | 0.7655 | 0.7647 | 0.0914 | 0.0692 |
| 4.2436 | 12.0 | 1500 | 4.9708 | 0.77 | 0.3410 | 2.0195 | 0.7700 | 0.7694 | 0.0838 | 0.0684 |
| 4.2436 | 13.0 | 1625 | 4.9246 | 0.7752 | 0.3349 | 1.8150 | 0.7752 | 0.7758 | 0.0801 | 0.0666 |
| 4.2436 | 14.0 | 1750 | 4.9235 | 0.776 | 0.3327 | 1.8364 | 0.776 | 0.7782 | 0.0896 | 0.0628 |
| 4.2436 | 15.0 | 1875 | 4.9149 | 0.7817 | 0.3348 | 1.9243 | 0.7817 | 0.7857 | 0.0917 | 0.0650 |
| 4.0997 | 16.0 | 2000 | 4.8998 | 0.7837 | 0.3255 | 1.8326 | 0.7837 | 0.7874 | 0.0901 | 0.0637 |
| 4.0997 | 17.0 | 2125 | 4.9658 | 0.7792 | 0.3358 | 1.8156 | 0.7792 | 0.7815 | 0.1025 | 0.0640 |
| 4.0997 | 18.0 | 2250 | 4.9819 | 0.7905 | 0.3256 | 1.8605 | 0.7905 | 0.7919 | 0.1016 | 0.0613 |
| 4.0997 | 19.0 | 2375 | 5.0040 | 0.778 | 0.3417 | 1.9392 | 0.778 | 0.7800 | 0.1095 | 0.0638 |
| 4.0325 | 20.0 | 2500 | 5.0084 | 0.7817 | 0.3387 | 1.9882 | 0.7817 | 0.7833 | 0.1043 | 0.0642 |
| 4.0325 | 21.0 | 2625 | 5.0680 | 0.7805 | 0.3473 | 1.8641 | 0.7805 | 0.7803 | 0.1200 | 0.0631 |
| 4.0325 | 22.0 | 2750 | 5.0324 | 0.7808 | 0.3395 | 1.8541 | 0.7808 | 0.7835 | 0.1124 | 0.0620 |
| 4.0325 | 23.0 | 2875 | 5.0734 | 0.7845 | 0.3446 | 1.9087 | 0.7845 | 0.7884 | 0.1170 | 0.0625 |
| 3.99 | 24.0 | 3000 | 5.2144 | 0.782 | 0.3564 | 1.9540 | 0.782 | 0.7845 | 0.1293 | 0.0640 |
| 3.99 | 25.0 | 3125 | 5.0299 | 0.7873 | 0.3387 | 1.8106 | 0.7873 | 0.7887 | 0.1167 | 0.0614 |
| 3.99 | 26.0 | 3250 | 5.0673 | 0.792 | 0.3318 | 1.7538 | 0.792 | 0.7930 | 0.1134 | 0.0599 |
| 3.99 | 27.0 | 3375 | 5.0854 | 0.791 | 0.3379 | 1.8144 | 0.791 | 0.7932 | 0.1253 | 0.0586 |
| 3.9606 | 28.0 | 3500 | 5.0962 | 0.787 | 0.3403 | 1.7780 | 0.787 | 0.7884 | 0.1224 | 0.0592 |
| 3.9606 | 29.0 | 3625 | 5.0812 | 0.7877 | 0.3379 | 1.7721 | 0.7877 | 0.7900 | 0.1247 | 0.0592 |
| 3.9606 | 30.0 | 3750 | 5.1318 | 0.7905 | 0.3359 | 1.8105 | 0.7905 | 0.7931 | 0.1290 | 0.0597 |
| 3.9606 | 31.0 | 3875 | 5.0330 | 0.7953 | 0.3276 | 1.7361 | 0.7953 | 0.7978 | 0.1144 | 0.0584 |
| 3.9355 | 32.0 | 4000 | 5.0843 | 0.7975 | 0.3276 | 1.7556 | 0.7975 | 0.7990 | 0.1236 | 0.0560 |
| 3.9355 | 33.0 | 4125 | 5.1843 | 0.7995 | 0.3315 | 1.7084 | 0.7995 | 0.8004 | 0.1297 | 0.0575 |
| 3.9355 | 34.0 | 4250 | 5.1703 | 0.7987 | 0.3333 | 1.6918 | 0.7987 | 0.8000 | 0.1257 | 0.0580 |
| 3.9355 | 35.0 | 4375 | 5.1933 | 0.7937 | 0.3372 | 1.7084 | 0.7937 | 0.7941 | 0.1307 | 0.0561 |
| 3.9148 | 36.0 | 4500 | 5.1404 | 0.7987 | 0.3275 | 1.6423 | 0.7987 | 0.8011 | 0.1308 | 0.0547 |
| 3.9148 | 37.0 | 4625 | 5.1734 | 0.8017 | 0.3272 | 1.6836 | 0.8017 | 0.8034 | 0.1272 | 0.0572 |
| 3.9148 | 38.0 | 4750 | 5.2479 | 0.802 | 0.3322 | 1.7081 | 0.802 | 0.8032 | 0.1353 | 0.0550 |
| 3.9148 | 39.0 | 4875 | 5.1921 | 0.8 | 0.3320 | 1.6554 | 0.8000 | 0.8012 | 0.1334 | 0.0538 |
| 3.9001 | 40.0 | 5000 | 5.2477 | 0.801 | 0.3353 | 1.6333 | 0.801 | 0.8022 | 0.1390 | 0.0539 |
| 3.9001 | 41.0 | 5125 | 5.2140 | 0.801 | 0.3299 | 1.6370 | 0.801 | 0.8017 | 0.1340 | 0.0544 |
| 3.9001 | 42.0 | 5250 | 5.2660 | 0.807 | 0.3303 | 1.6090 | 0.807 | 0.8079 | 0.1339 | 0.0545 |
| 3.9001 | 43.0 | 5375 | 5.2884 | 0.8007 | 0.3319 | 1.6816 | 0.8007 | 0.8022 | 0.1394 | 0.0547 |
| 3.8892 | 44.0 | 5500 | 5.3358 | 0.804 | 0.3352 | 1.6399 | 0.804 | 0.8049 | 0.1387 | 0.0560 |
| 3.8892 | 45.0 | 5625 | 5.3545 | 0.8043 | 0.3349 | 1.6445 | 0.8043 | 0.8060 | 0.1408 | 0.0555 |
| 3.8892 | 46.0 | 5750 | 5.4026 | 0.8033 | 0.3373 | 1.6493 | 0.8033 | 0.8049 | 0.1439 | 0.0567 |
| 3.8892 | 47.0 | 5875 | 5.4195 | 0.8015 | 0.3386 | 1.6393 | 0.8015 | 0.8031 | 0.1468 | 0.0570 |
| 3.8834 | 48.0 | 6000 | 5.4409 | 0.803 | 0.3396 | 1.6392 | 0.803 | 0.8046 | 0.1458 | 0.0574 |
| 3.8834 | 49.0 | 6125 | 5.4501 | 0.8023 | 0.3395 | 1.6367 | 0.8023 | 0.8039 | 0.1468 | 0.0574 |
| 3.8834 | 50.0 | 6250 | 5.4561 | 0.802 | 0.3399 | 1.6335 | 0.802 | 0.8037 | 0.1478 | 0.0576 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Jonathaniu/llama2-breast-cancer-13b-knowledge-epoch-10 | Jonathaniu | 2023-07-28T02:46:15Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-28T02:45:54Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
### Framework versions
- PEFT 0.4.0.dev0
|
Muniyaraj/output_model | Muniyaraj | 2023-07-28T02:39:10Z | 1 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2023-07-27T15:44:23Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of muniyarajs
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - Muniyaraj/output_model
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of muniyarajs using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
|
dleiferives/dwane | dleiferives | 2023-07-28T02:30:30Z | 193 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-07-28T02:30:22Z | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: dwane
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.20000000298023224
---
# dwane
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### dwayne johnson

#### dwayne the rock johnson
 |
khnhar/capturingYoutubeVideo | khnhar | 2023-07-28T02:22:46Z | 0 | 0 | null | [
"region:us"
]
| null | 2023-07-28T01:58:32Z | Youtube 동영상에서 '찾고 싶은 키워드가 들어간 이미지'를 찾아주는 ai모듈이다.
응용 : CCTV 범죄자 찾기, 도난차량 번호판 조회 등 |
MichelNivard/starcoderbase_3b_for_R | MichelNivard | 2023-07-28T02:22:27Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-27T12:43:24Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
cgr28/a2c-PandaReachDense-v2 | cgr28 | 2023-07-28T02:06:34Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-28T02:03:40Z | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -2.76 +/- 0.55
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
manuu01/Reinforce-Pixelcopter-PLE-v0 | manuu01 | 2023-07-28T02:05:03Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T13:22:54Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 51.90 +/- 39.87
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
mskhattori/wav2vec2phone-large-xlsr-jp-jdrt5N-demo | mskhattori | 2023-07-28T01:58:48Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:jonatasgrosman/wav2vec2-large-xlsr-53-japanese",
"base_model:finetune:jonatasgrosman/wav2vec2-large-xlsr-53-japanese",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-07-27T22:24:17Z | ---
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-japanese
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2phone-large-xlsr-jp-jdrt5N-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2phone-large-xlsr-jp-jdrt5N-demo
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-japanese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-japanese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3714
- Wer: 0.4730
- Cer: 0.5054
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.5238 | 1.0 | 567 | 1.3532 | 0.8709 | 0.6208 |
| 1.2812 | 2.0 | 1134 | 0.8674 | 0.6835 | 0.5633 |
| 1.1329 | 3.0 | 1701 | 0.7105 | 0.6164 | 0.5564 |
| 1.0267 | 4.0 | 2268 | 0.6111 | 0.5775 | 0.5401 |
| 1.0415 | 5.0 | 2835 | 0.5505 | 0.5499 | 0.5482 |
| 0.9767 | 6.0 | 3402 | 0.4986 | 0.5210 | 0.5204 |
| 1.0392 | 7.0 | 3969 | 0.4655 | 0.5082 | 0.5194 |
| 0.9235 | 8.0 | 4536 | 0.4457 | 0.4989 | 0.5136 |
| 0.9511 | 9.0 | 5103 | 0.4201 | 0.4917 | 0.5106 |
| 0.8998 | 10.0 | 5670 | 0.4031 | 0.4869 | 0.5081 |
| 0.8883 | 11.0 | 6237 | 0.3920 | 0.4814 | 0.5107 |
| 0.856 | 12.0 | 6804 | 0.3834 | 0.4790 | 0.5094 |
| 0.8814 | 13.0 | 7371 | 0.3772 | 0.4761 | 0.5081 |
| 0.8352 | 14.0 | 7938 | 0.3737 | 0.4735 | 0.5052 |
| 0.9001 | 15.0 | 8505 | 0.3714 | 0.4730 | 0.5054 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Jinmane/jafamix | Jinmane | 2023-07-28T01:30:30Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-07-28T00:53:39Z | ---
license: creativeml-openrail-m
---
|
lucas0/empath-falcon-40b | lucas0 | 2023-07-28T01:04:53Z | 0 | 0 | null | [
"generated_from_trainer",
"base_model:tiiuae/falcon-40b-instruct",
"base_model:finetune:tiiuae/falcon-40b-instruct",
"license:apache-2.0",
"region:us"
]
| null | 2023-07-20T18:29:06Z | ---
license: apache-2.0
base_model: tiiuae/falcon-40b-instruct
tags:
- generated_from_trainer
model-index:
- name: empath-falcon-40b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# empath-falcon-40b
This model is a fine-tuned version of [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
NasimB/bnc-cbt-log-rarity-mixed | NasimB | 2023-07-28T01:03:51Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-27T22:53:51Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: bnc-cbt-log-rarity-mixed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bnc-cbt-log-rarity-mixed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0803
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3678 | 0.29 | 500 | 5.3083 |
| 5.0506 | 0.58 | 1000 | 4.8988 |
| 4.727 | 0.87 | 1500 | 4.6664 |
| 4.4606 | 1.16 | 2000 | 4.5274 |
| 4.3096 | 1.45 | 2500 | 4.4089 |
| 4.213 | 1.75 | 3000 | 4.3013 |
| 4.0894 | 2.04 | 3500 | 4.2301 |
| 3.9068 | 2.33 | 4000 | 4.1861 |
| 3.8675 | 2.62 | 4500 | 4.1276 |
| 3.8433 | 2.91 | 5000 | 4.0819 |
| 3.6581 | 3.2 | 5500 | 4.0743 |
| 3.5934 | 3.49 | 6000 | 4.0511 |
| 3.5814 | 3.78 | 6500 | 4.0203 |
| 3.4978 | 4.07 | 7000 | 4.0150 |
| 3.326 | 4.36 | 7500 | 4.0140 |
| 3.3207 | 4.65 | 8000 | 4.0007 |
| 3.308 | 4.94 | 8500 | 3.9894 |
| 3.1751 | 5.24 | 9000 | 4.0029 |
| 3.144 | 5.53 | 9500 | 4.0021 |
| 3.1408 | 5.82 | 10000 | 4.0013 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
chriskim2273/IOTNation_CompanyName_AND_Location_Extraction_QA_Model_1.4_Roberta | chriskim2273 | 2023-07-28T00:59:28Z | 120 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"base_model:deepset/roberta-base-squad2",
"base_model:finetune:deepset/roberta-base-squad2",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-07-27T23:49:20Z | ---
license: cc-by-4.0
base_model: deepset/roberta-base-squad2
tags:
- generated_from_trainer
model-index:
- name: IOTNation_CompanyName_AND_Location_Extraction_QA_Model_1.4_Roberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IOTNation_CompanyName_AND_Location_Extraction_QA_Model_1.4_Roberta
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3326
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
Bellaaazzzzz/model_Xray | Bellaaazzzzz | 2023-07-28T00:24:07Z | 3 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"controlnet",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
]
| text-to-image | 2023-07-24T18:08:42Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
inference: true
---
# controlnet-Bellaaazzzzz/model_Xray
These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
You can find some example images below.
Validation result of 1 round.

Validation result of 2 round.

Validation result of 3 round.

Validation result of 4 round.

Validation result of 5 round.

Validation result of 6 round.

Validation result of 7 round.

Validation result of 8 round.

Validation result of 9 round.

Validation result of 10 round.

|
NasimB/aochildes-guten-fixed-rarity-mixed | NasimB | 2023-07-28T00:03:14Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-27T21:48:59Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: aochildes-guten-fixed-rarity-mixed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aochildes-guten-fixed-rarity-mixed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.365 | 0.29 | 500 | 5.3433 |
| 5.0504 | 0.59 | 1000 | 4.9338 |
| 4.72 | 0.88 | 1500 | 4.6948 |
| 4.4681 | 1.17 | 2000 | 4.5525 |
| 4.3117 | 1.47 | 2500 | 4.4371 |
| 4.2069 | 1.76 | 3000 | 4.3333 |
| 4.0872 | 2.05 | 3500 | 4.2616 |
| 3.9143 | 2.35 | 4000 | 4.2156 |
| 3.88 | 2.64 | 4500 | 4.1594 |
| 3.8477 | 2.93 | 5000 | 4.1171 |
| 3.6334 | 3.23 | 5500 | 4.1165 |
| 3.607 | 3.52 | 6000 | 4.0836 |
| 3.5905 | 3.81 | 6500 | 4.0549 |
| 3.4793 | 4.11 | 7000 | 4.0555 |
| 3.3298 | 4.4 | 7500 | 4.0536 |
| 3.3312 | 4.69 | 8000 | 4.0366 |
| 3.3098 | 4.99 | 8500 | 4.0267 |
| 3.1519 | 5.28 | 9000 | 4.0423 |
| 3.1522 | 5.57 | 9500 | 4.0401 |
| 3.1459 | 5.87 | 10000 | 4.0393 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
chandrasutrisnotjhong/Reinforce-CartPole | chandrasutrisnotjhong | 2023-07-27T23:59:26Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T11:16:50Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
PhilSad/phil-lora-2 | PhilSad | 2023-07-27T23:44:11Z | 0 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"license:openrail++",
"region:us"
]
| text-to-image | 2023-07-27T22:35:46Z |
---
license: openrail++
base_model: ./stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks man
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - PhilSad/phil-lora-2
These are LoRA adaption weights for ./stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.


LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
brunoboat/Reinforce-Pixelcopter-PLE-v0 | brunoboat | 2023-07-27T23:43:45Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T23:08:18Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 13.00 +/- 11.42
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
EulerianKnight/ppo-Huggy | EulerianKnight | 2023-07-27T23:25:17Z | 17 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-07-27T23:25:07Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: EulerianKnight/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
brunoboat/Reinforce-CartPole-v1 | brunoboat | 2023-07-27T23:19:15Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T23:18:39Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
digitaljungle/reinforce-cart-01 | digitaljungle | 2023-07-27T23:09:17Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T23:09:07Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: reinforce-cart-01
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
JeffGuo/llama2-qlora-finetunined-french | JeffGuo | 2023-07-27T22:38:26Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-27T22:38:09Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
NasimB/bnc-cbt-rarity-mixed | NasimB | 2023-07-27T22:29:27Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-07-27T20:11:40Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: bnc-cbt-rarity-mixed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bnc-cbt-rarity-mixed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0594
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3665 | 0.29 | 500 | 5.3115 |
| 5.0498 | 0.58 | 1000 | 4.9024 |
| 4.7317 | 0.87 | 1500 | 4.6646 |
| 4.4609 | 1.16 | 2000 | 4.5206 |
| 4.3169 | 1.45 | 2500 | 4.4078 |
| 4.2185 | 1.75 | 3000 | 4.3041 |
| 4.0998 | 2.04 | 3500 | 4.2236 |
| 3.9145 | 2.33 | 4000 | 4.1835 |
| 3.8745 | 2.62 | 4500 | 4.1284 |
| 3.8531 | 2.91 | 5000 | 4.0763 |
| 3.6685 | 3.2 | 5500 | 4.0703 |
| 3.598 | 3.49 | 6000 | 4.0412 |
| 3.5813 | 3.78 | 6500 | 4.0117 |
| 3.5089 | 4.07 | 7000 | 4.0030 |
| 3.3334 | 4.36 | 7500 | 3.9999 |
| 3.3274 | 4.65 | 8000 | 3.9871 |
| 3.317 | 4.94 | 8500 | 3.9757 |
| 3.1751 | 5.24 | 9000 | 3.9865 |
| 3.1414 | 5.53 | 9500 | 3.9854 |
| 3.1567 | 5.82 | 10000 | 3.9837 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
magnustragardh/ppo-LunarLander-v2 | magnustragardh | 2023-07-27T22:22:24Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-06-18T15:50:00Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 286.65 +/- 8.52
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
zacdennis/gradientascent | zacdennis | 2023-07-27T22:16:30Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T22:16:26Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: gradientascent
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 109.50 +/- 14.23
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
ksaw39/ksawmegga | ksaw39 | 2023-07-27T22:11:13Z | 0 | 0 | keras | [
"keras",
"reinforcement-learning",
"en",
"region:us"
]
| reinforcement-learning | 2023-07-27T22:08:14Z | ---
language:
- en
metrics:
- accuracy
- code_eval
library_name: keras
pipeline_tag: reinforcement-learning
--- |
hyunussarioglu/dqn-SpaceInvadersNoFrameskip-v4 | hyunussarioglu | 2023-07-27T22:08:28Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T22:07:54Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 556.50 +/- 125.72
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hyunussarioglu -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hyunussarioglu -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga hyunussarioglu
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
zpattdev/Reinforce-pixelcopterV0 | zpattdev | 2023-07-27T21:56:00Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-26T17:49:36Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopterV0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 60.30 +/- 47.86
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jariasn/q-Taxi-v3 | jariasn | 2023-07-27T21:32:51Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T21:32:49Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="jariasn/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sghirardelli/vit-base-patch16-224-rgbd1k2 | sghirardelli | 2023-07-27T21:26:49Z | 65 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"vit",
"image-classification",
"generated_from_keras_callback",
"base_model:google/vit-base-patch16-224",
"base_model:finetune:google/vit-base-patch16-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-07-21T21:15:59Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_keras_callback
model-index:
- name: sghirardelli/vit-base-patch16-224-rgbd1k2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# sghirardelli/vit-base-patch16-224-rgbd1k2
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.9711
- Train Accuracy: 0.4384
- Train Top-3-accuracy: 0.6297
- Validation Loss: 0.2537
- Validation Accuracy: 0.9323
- Validation Top-3-accuracy: 0.9940
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.002, 'decay_steps': 544, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 1.9711 | 0.4384 | 0.6297 | 0.2537 | 0.9323 | 0.9940 | 0 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.1
- Tokenizers 0.13.3
|
shivarama23/llama_v2_finetuned_redaction | shivarama23 | 2023-07-27T21:18:42Z | 2 | 0 | peft | [
"peft",
"pytorch",
"region:us"
]
| null | 2023-07-27T21:17:43Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
vivianchen98/distilbert-base-uncased-finetuned-cola | vivianchen98 | 2023-07-27T21:06:15Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-07-27T19:48:05Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5317477654019562
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8526
- Matthews Correlation: 0.5317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5224 | 1.0 | 535 | 0.4742 | 0.4397 |
| 0.3484 | 2.0 | 1070 | 0.5877 | 0.4558 |
| 0.2357 | 3.0 | 1605 | 0.6307 | 0.5301 |
| 0.1668 | 4.0 | 2140 | 0.7054 | 0.5288 |
| 0.1218 | 5.0 | 2675 | 0.8526 | 0.5317 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
YLI317/llama2-qlora-finetunined-SOP | YLI317 | 2023-07-27T21:05:56Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-27T21:05:39Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
qanastek/LLaMa-2-FrenchMedMCQA | qanastek | 2023-07-27T20:47:33Z | 4 | 2 | peft | [
"peft",
"safetensors",
"llama",
"region:us"
]
| null | 2023-07-27T02:38:32Z | ---
library_name: peft
---
## Inference
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "qanastek/LLaMa-2-FrenchMedMCQA"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: We are giving you a scientific question (easy level) and five answers options (associated to « A », « B », « C », « D », « E »). Your task is to find the correct(s) answer(s) based on scientific facts, knowledge and reasoning. Don't generate anything other than one of the following characters : 'A B C D E'. ### Input: Parmi les propositions suivantes, quelle est celle qui est exacte? Lorsqu'on ajoute un acide fort à une solution tampon: (A) Le pH reste constant (B) Le pH diminue légèrement (C) Le constituant basique du tampon reste constant (D) Le constituant acide du tampon réagit (E) Le rapport acide/base reste inchangé ### Response: "
seq = pipeline(
prompt,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)[0]
print(seq['generated_text'][len(prompt):])
```
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
YoonSeul/LawBot-5.8B | YoonSeul | 2023-07-27T20:40:46Z | 4 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-26T07:47:12Z | ---
library_name: peft
---
<img src=https://github.com/taemin6697/Paper_Review/assets/96530685/54ecd6cf-8695-4caa-bdc8-fb85c9b7d70d style="max-width: 700px; width: 100%" />
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
chh6/ppo-Pyramids | chh6 | 2023-07-27T20:22:39Z | 9 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-07-27T20:21:43Z | ---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: chh6/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
NicolasDenier/speecht5-finetuned-voxpopuli-sl | NicolasDenier | 2023-07-27T20:21:31Z | 89 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"text-to-speech",
"sl",
"dataset:facebook/voxpopuli",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
]
| text-to-speech | 2023-07-27T17:17:36Z | ---
language:
- sl
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
- text-to-speech
datasets:
- facebook/voxpopuli
model-index:
- name: speecht5-finetuned-voxpopuli-sl
results:
- task:
name: Text to Speech
type: text-to-speech
dataset:
name: Voxpopuli
type: facebook/voxpopuli
config: sl
split: train
args: all
metrics:
- name: Loss
type: loss
value: 0.4546
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5-finetuned-voxpopuli-sl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4546
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4942 | 21.68 | 1000 | 0.4567 |
| 0.4698 | 43.36 | 2000 | 0.4544 |
| 0.4615 | 65.04 | 3000 | 0.4541 |
| 0.462 | 86.72 | 4000 | 0.4546 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3 |
patonw/q-FrozenLake-v1-4x4-noSlippery | patonw | 2023-07-27T20:14:02Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-07-27T20:14:00Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="patonw/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Ronan14232/Omar | Ronan14232 | 2023-07-27T20:12:29Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
]
| null | 2023-07-27T20:12:29Z | ---
license: bigscience-openrail-m
---
|
Jonathaniu/llama2-breast-cancer-13b-knowledge-epoch-8 | Jonathaniu | 2023-07-27T20:09:53Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-27T20:09:32Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
### Framework versions
- PEFT 0.4.0.dev0
|
SH-W/60emotions | SH-W | 2023-07-27T20:01:52Z | 107 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"roberta",
"text-classification",
"autotrain",
"unk",
"dataset:SH-W/autotrain-data-5000_koi",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-07-27T19:55:16Z | ---
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: "I love AutoTrain"
datasets:
- SH-W/autotrain-data-5000_koi
co2_eq_emissions:
emissions: 3.920765439350259
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 77927140735
- CO2 Emissions (in grams): 3.9208
## Validation Metrics
- Loss: 2.432
- Accuracy: 0.415
- Macro F1: 0.410
- Micro F1: 0.415
- Weighted F1: 0.410
- Macro Precision: 0.459
- Micro Precision: 0.415
- Weighted Precision: 0.456
- Macro Recall: 0.413
- Micro Recall: 0.415
- Weighted Recall: 0.415
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/SH-W/autotrain-5000_koi-77927140735
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("SH-W/autotrain-5000_koi-77927140735", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("SH-W/autotrain-5000_koi-77927140735", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |
ianvaz/llama2-qlora-finetunined-french | ianvaz | 2023-07-27T20:00:58Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-07-27T20:00:54Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
Subsets and Splits