modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-15 00:43:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-15 00:40:56
card
stringlengths
11
1.01M
junx/djmrl
junx
2023-09-03T03:48:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-01T13:34:36Z
--- license: creativeml-openrail-m ---
trieudemo11/llama_7b_attrb_cate_b6_l320_low_12
trieudemo11
2023-09-03T03:44:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T03:44:18Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 rsions - PEFT 0.6.0.dev0
Lightofdark/LostJourneyMix
Lightofdark
2023-09-03T03:37:04Z
0
8
null
[ "region:us" ]
null
2023-05-05T03:02:42Z
* 本模型仅作学习交流使用,禁止用于任何商业活动或侵犯他人版权、肖像权等权利的行为。 * Study and communication only. Any commercial activity and violation of rights like portrait and copyright is prohibited. 自己融的几个模型 Just some merge models I played around with. <br> 2023/09/02 更新VX.5, ???<br> 2023/08/15 我什么时候更新的V8来着?V8算是V6小幅修改版,虽然我自己也不知道改了些啥。。。<br> 2023/07/21 更新V6,偶数模型新作,大概算VX去掉太3D部分的感觉吧<br> 2023/07/11 更新V5 强化版,暂定为奇数模型最终版, LostJourneyMix_X <br> 2023/06/23 更新了V5,2.5D 风格; added V5, 2.5D model <br> 懒得更新例图了,反正能找到这里的应该都见过我的模型大概是什么风格 <br> <br> <br> V1:我大部分融模的底模; Starting point for most of my merged models <br> 大致配方(recipe): (AOM2 0.5 + Silicon 29 0.5) + Pastelmix <br> V1.5:在V1的基础上加了MeinaHentai,肢体有所加强(?), 比较会画nsfw; added MeinaHentai, slightly better anatomy, and more nsfw<br> 配方(recipe):V1 + MeinaHentai <br> V3:更多人物和背景的细节,更好的光影效果; aimed for more details and better light and shadow effects <br> 配方(recipe):V1.5 + Cetus 3.5 <br> V2:融了PileDream之后的厚涂风格; Added PileDream to get impasto style <br> 配方(recipe): V1 + PileDream <br> V4:类似于V3,在V2的基础上增强了细节和光影效果; Similar to V3, strengthening details, light and shadow effects <br> 配方(recipe): V2 + Line and Light <br> 下配例图; Sample Images below <br> <b> V4 ![](./images/V4nature.png) ![](./images/V4City.png) ![](./images/V4Character.png) ![](./images/V4weapon.png) <b> V2 ![](./images/V2Nature.png) ![](./images/V2City.png) ![](./images/V2Character.png) ![](./images/V2Weapon.png) <b> V3 ![](./images/V3Nature.png) ![](./images/V3City.png) ![](./images/V3Character.png) ![](./images/V3Weapon.png) <b> V1 ![](./images/V1Nature.png) ![](./images/V1City.png) ![](./images/V1Character.png) ![](./images/V1weapon.png) Acknowledgement: 特别感谢这些作者发布的好模型 AbyssOrangeMix2 - NSFW (https://civitai.com/models/4449/abyssorangemix2-nsfw) <br> pastel-mix (https://huggingface.co/andite/pastel-mix) <br> Cetus-Mix (https://civitai.com/models/6755?modelVersionId=29851) <br> MeinaHentai (https://civitai.com/models/12606/meinahentai) <br> Line and Light (https://civitai.com/models/42930/line-and-light) <br> PileDream (https://civitai.com/models/20255)
monsoon-nlp/gpt-nyc
monsoon-nlp
2023-09-03T03:34:40Z
130
1
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "nyc", "reddit", "en", "dataset:monsoon-nlp/asknyc-chatassistant-format", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit datasets: - monsoon-nlp/asknyc-chatassistant-format language: - en pipeline_tag: text-generation tags: - nyc - reddit --- # GPT-NYC ## About GPT2-Medium fine-tuned on questions and responses from https://reddit.com/r/asknyc **2023 Update: try a larger model: [monsoon-nlp/nyc-savvy-llama2-7b](https://huggingface.co/monsoon-nlp/nyc-savvy-llama2-7b)** I filtered comments to ones with scores >= 3, and responding directly to the original post ( = ignoring responses to other commenters). I added tokens to match NYC neighborhoods, subway stations, foods, and other common terms in the original batches of questions and comments. You would be surprised what is missing from GPT tokens! Try prompting with ```question? %% ``` or ```question? - more info %%``` ## Status I would like to continue by: - fine-tuning GPT2-Large with a larger dataset of questions - examining bias and toxicity - examining memorization vs. original responses - releasing a reusable benchmark ## Blog https://mapmeld.medium.com/gpt-nyc-part-1-9cb698b2e3d ## Notebooks ### Data processing / new tokens https://colab.research.google.com/drive/13BOw0uekoAYB4jjQtaXTn6J_VHatiRLu ### Fine-tuning GPT2 (small) https://colab.research.google.com/drive/1FnXcAh4H-k8dAzixkV5ieygV96ePh3lR ### Fine-tuning GPT2-Medium Same code as small, but on Google Cloud to use an A100 GPU ### Predictive text and probabilities Scroll to end of https://colab.research.google.com/drive/1FnXcAh4H-k8dAzixkV5ieygV96ePh3lR to see how to install git-lfs and trick ecco into loading this.
monsoon-nlp/gpt-nyc-affirmations
monsoon-nlp
2023-09-03T03:33:04Z
116
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT-NYC-affirmations ## About GPT2 (small version on HF) fine-tuned on questions and responses from https://reddit.com/r/asknyc and then 2 epochs of [Value Affirmations](https://gist.github.com/mapmeld/c16794ecd93c241a4d6a65bda621bb55) based on the OpenAI post [Improving Language Model Behavior](https://openai.com/blog/improving-language-model-behavior/) and corresponding paper. Try prompting with ```question? - %% ``` or ```question? - more info %%``` I filtered AskNYC comments to ones with scores >= 3, and responding directly to the original post ( = ignoring responses to other commenters). I also added many tokens which were common on /r/AskNYC but missing from GPT2. The 'affirmations' list was sourced from excerpts in the OpenAI paper, a popular version of the 'in this house we believe' sign, and the Reddit rules. They should not be seen as all-encompassing or foundational to a safe AI. The main goal was to see how it affected the behavior of GPT-NYC on generating toxic or non-toxic language. The [gpt-nyc](https://huggingface.co/monsoon-nlp/gpt-nyc) repo is based on GPT2-Medium and comes off more accurate. ## Blog https://mapmeld.medium.com/gpt-nyc-part-1-9cb698b2e3d ## Notebooks ### Data processing / new tokens https://colab.research.google.com/drive/13BOw0uekoAYB4jjQtaXTn6J_VHatiRLu ### Fine-tuning GPT2 (small) https://colab.research.google.com/drive/1FnXcAh4H-k8dAzixkV5ieygV96ePh3lR ### Predictive text and probabilities Scroll to end of https://colab.research.google.com/drive/1FnXcAh4H-k8dAzixkV5ieygV96ePh3lR to see how to install git-lfs and trick ecco into loading this.
monsoon-nlp/sanaa-dialect
monsoon-nlp
2023-09-03T03:32:43Z
133
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "ar", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ar --- # Sanaa-Dialect ## Finetuned Arabic GPT-2 demo This is a small GPT-2 model, originally trained on Arabic Wikipedia circa September 2020 , finetuned on dialect datasets from Qatar University, University of British Columbia / NLP, and Johns Hopkins University / LREC - https://qspace.qu.edu.qa/handle/10576/15265 - https://github.com/UBC-NLP/aoc_id - https://github.com/ryancotterell/arabic_dialect_annotation You can use special tokens to prompt five dialects: `[EGYPTIAN]`, `[GULF]`, `[LEVANTINE]`, `[MAGHREBI]`, and `[MSA]` ``` from simpletransformers.language_generation import LanguageGenerationModel model = LanguageGenerationModel("gpt2", "monsoon-nlp/sanaa-dialect") model.generate('[GULF]' + "مدينتي هي", { 'max_length': 100 }) ``` There is NO content filtering in the current version; do not use for public-facing text generation! ## Training and Finetuning details Original model and training: https://huggingface.co/monsoon-nlp/sanaa I inserted new tokens into the tokenizer, finetuned the model on the dialect samples, and exported the new model. Notebook: https://colab.research.google.com/drive/1fXFH7g4nfbxBo42icI4ZMy-0TAGAxc2i شكرا لتجربة هذا! ارجو التواصل معي مع الاسئلة
monsoon-nlp/no-phone-gpt2
monsoon-nlp
2023-09-03T03:31:40Z
177
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: mit --- # no-phone-gpt2 This is a test to remove memorized private information, such as phone numbers, from a small GPT-2 model. This should not generate valid phone numbers. Inspired by BAIR privacy research: - https://bair.berkeley.edu/blog/2019/08/13/memorization/ - https://bair.berkeley.edu/blog/2020/12/20/lmmem/ [Blog post](https://mapmeld.medium.com/scrambling-memorized-info-in-gpt-2-60753d7652d8) ## Process - All +## and +### tokens were replaced with new, randomly-selected 2- and 3-digit numbers in the vocab.json and tokenizer.json. You can identify these in outputs because the new tokens start with ^^. - Input and output embeddings for +## and +### tokens were moved to the +00 and +000 embeddings. - Removed associations between numbers from merges.txt Using a library such as [ecco](https://github.com/jalammar/ecco), probabilities for next number token look equally likely, with +000 preferred. Code: https://colab.research.google.com/drive/1X31TIZjmxlXMXAzQrR3Fl1AnLzGBCpWf#scrollTo=0GVFwrAgY68J ### Future goals - Add new +### tokens to rebuild number generation - Fine-tune new tokens on counting numbers and ended phone numbers - Use [gpt2-large](https://huggingface.co/gpt2-large) ### BibTeX entry and citation info Original GPT-2: ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ```
monsoon-nlp/es-seq2seq-gender-encoder
monsoon-nlp
2023-09-03T03:31:17Z
112
1
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "feature-extraction", "es", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: es --- # es-seq2seq-gender (encoder) This is a seq2seq model (encoder half) to "flip" gender in Spanish sentences. The model can augment your existing Spanish data, or generate counterfactuals to test a model's decisions (would changing the gender of the subject or speaker change output?). Intended Examples: - el profesor viejo => la profesora vieja (article, noun, adjective all flip) - una actriz => un actor (irregular noun) - el lingüista => la lingüista (irregular noun) - la biblioteca => la biblioteca (no person, no flip) People's names are unchanged in this version, but you can use packages such as https://pypi.org/project/gender-guesser/ ## Sample code https://colab.research.google.com/drive/1Ta_YkXx93FyxqEu_zJ-W23PjPumMNHe5 ``` import torch from transformers import AutoTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_encoder_decoder_pretrained("monsoon-nlp/es-seq2seq-gender-encoder", "monsoon-nlp/es-seq2seq-gender-decoder") tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/es-seq2seq-gender-decoder') # all are same as BETO uncased original input_ids = torch.tensor(tokenizer.encode("la profesora vieja")).unsqueeze(0) generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id) tokenizer.decode(generated.tolist()[0]) > '[PAD] el profesor viejo profesor viejo profesor...' ``` ## Training I originally developed <a href="https://github.com/MonsoonNLP/el-la">a gender flip Python script</a> with <a href="https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased">BETO</a>, the Spanish-language BERT from Universidad de Chile, and spaCy to parse dependencies in sentences. More about this project: https://medium.com/ai-in-plain-english/gender-bias-in-spanish-bert-1f4d76780617 The seq2seq model is trained on gender-flipped text from that script run on the <a href="https://huggingface.co/datasets/muchocine">muchocine dataset</a>, and the first 6,853 lines from the <a href="https://oscar-corpus.com/">OSCAR corpus</a> (Spanish ded-duped). The encoder and decoder started with weights and vocabulary from BETO (uncased). ## Non-binary gender This model is useful to generate male and female text samples, but falls short of capturing gender diversity in the world and in the Spanish language. Some communities prefer the plural -@s to represent -os and -as, or -e and -es for gender-neutral or mixed-gender plural, or use fewer gendered professional nouns (la juez and not jueza). This is not yet embraced by the Royal Spanish Academy and is not represented in the corpora and tokenizers used to build this project. This seq2seq project and script could, in the future, help generate more text samples and prepare NLP models to understand us all better. #### Sources - https://www.nytimes.com/2020/04/15/world/americas/argentina-gender-language.html - https://www.washingtonpost.com/dc-md-va/2019/12/05/teens-argentina-are-leading-charge-gender-neutral-language/?arc404=true - https://www.theguardian.com/world/2020/jan/19/gender-neutral-language-battle-spain - https://es.wikipedia.org/wiki/Lenguaje_no_sexista - https://remezcla.com/culture/argentine-company-re-imagines-little-prince-gender-neutral-language/
monsoon-nlp/muril-adapted-local
monsoon-nlp
2023-09-03T03:31:04Z
164
2
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "hi", "bn", "ta", "as", "gu", "kn", "ks", "ml", "mr", "ne", "or", "pa", "sa", "sd", "te", "ur", "multilingual", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en - hi - bn - ta - as - gu - kn - ks - ml - mr - ne - or - pa - sa - sd - te - ur - multilingual license: apache-2.0 --- ## MuRIL - Unofficial Multilingual Representations for Indian Languages : Google open sourced this BERT model pre-trained on 17 Indian languages, and their transliterated counterparts. The model was trained using a self-supervised masked language modeling task. We do whole word masking with a maximum of 80 predictions. The model was trained for 1000K steps, with a batch size of 4096, and a max sequence length of 512. Original model on TFHub: https://tfhub.dev/google/MuRIL/1 *Official release now on HuggingFace (March 2021)* https://huggingface.co/google/muril-base-cased License: Apache 2.0 ### About this upload I ported the TFHub .pb model to .h5 and then pytorch_model.bin for compatibility with Transformers.
bigmorning/whisper_syl_noforce_add_inpde__0025
bigmorning
2023-09-03T03:25:32Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_syl_noforce__0060", "base_model:finetune:bigmorning/whisper_syl_noforce__0060", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T03:25:23Z
--- license: apache-2.0 base_model: bigmorning/whisper_syl_noforce__0060 tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_add_inpde__0025 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_add_inpde__0025 This model is a fine-tuned version of [bigmorning/whisper_syl_noforce__0060](https://huggingface.co/bigmorning/whisper_syl_noforce__0060) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2658 - Train Accuracy: 0.0337 - Train Wermet: 0.0941 - Validation Loss: 1.0630 - Validation Accuracy: 0.0215 - Validation Wermet: 0.4054 - Epoch: 24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 3.0144 | 0.0185 | 0.9684 | 1.4362 | 0.0191 | 0.3870 | 0 | | 1.6269 | 0.0241 | 0.2797 | 1.2846 | 0.0197 | 0.3593 | 1 | | 1.3645 | 0.0256 | 0.2469 | 1.1967 | 0.0201 | 0.3481 | 2 | | 1.2336 | 0.0263 | 0.2264 | 1.1602 | 0.0204 | 0.3390 | 3 | | 1.0973 | 0.0272 | 0.2091 | 1.1211 | 0.0206 | 0.3296 | 4 | | 0.9914 | 0.0279 | 0.1941 | 1.1412 | 0.0204 | 0.3209 | 5 | | 0.9050 | 0.0284 | 0.1819 | 1.1795 | 0.0204 | 0.3281 | 6 | | 0.8192 | 0.0291 | 0.1695 | 1.0845 | 0.0209 | 0.3149 | 7 | | 0.7806 | 0.0293 | 0.1608 | 1.0628 | 0.0210 | 0.3099 | 8 | | 0.7143 | 0.0298 | 0.1511 | 1.0554 | 0.0211 | 0.3069 | 9 | | 0.6672 | 0.0302 | 0.1431 | 1.0539 | 0.0211 | 0.3046 | 10 | | 0.6228 | 0.0305 | 0.1338 | 1.0531 | 0.0211 | 0.3038 | 11 | | 0.5558 | 0.0311 | 0.1253 | 1.0476 | 0.0212 | 0.2997 | 12 | | 0.5273 | 0.0314 | 0.1186 | 1.0431 | 0.0212 | 0.2991 | 13 | | 0.4618 | 0.0319 | 0.1102 | 1.0659 | 0.0212 | 0.2974 | 14 | | 0.4438 | 0.0321 | 0.1043 | 1.0439 | 0.0213 | 0.3053 | 15 | | 0.4207 | 0.0323 | 0.0994 | 1.0748 | 0.0212 | 0.3049 | 16 | | 0.4455 | 0.0321 | 0.0964 | 1.0538 | 0.0213 | 0.2983 | 17 | | 0.3952 | 0.0325 | 0.0889 | 1.0487 | 0.0213 | 0.3005 | 18 | | 0.3753 | 0.0327 | 0.0858 | 1.0461 | 0.0214 | 0.3115 | 19 | | 0.3595 | 0.0328 | 0.0858 | 1.0434 | 0.0214 | 0.3330 | 20 | | 0.3394 | 0.0330 | 0.0810 | 1.0479 | 0.0214 | 0.3264 | 21 | | 0.2858 | 0.0336 | 0.0820 | 1.0572 | 0.0214 | 0.3297 | 22 | | 0.2735 | 0.0337 | 0.0836 | 1.0755 | 0.0214 | 0.3552 | 23 | | 0.2658 | 0.0337 | 0.0941 | 1.0630 | 0.0215 | 0.4054 | 24 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
dkqjrm/20230903070300
dkqjrm
2023-09-03T03:15:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T22:03:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230903070300' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230903070300 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8203 - Accuracy: 0.6599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.7251 | 0.5063 | | 0.7449 | 2.0 | 680 | 0.7348 | 0.5 | | 0.7388 | 3.0 | 1020 | 0.7304 | 0.5 | | 0.7388 | 4.0 | 1360 | 0.7639 | 0.5 | | 0.7384 | 5.0 | 1700 | 0.7316 | 0.5 | | 0.7376 | 6.0 | 2040 | 0.7268 | 0.5 | | 0.7376 | 7.0 | 2380 | 0.7263 | 0.5 | | 0.7328 | 8.0 | 2720 | 0.7333 | 0.5 | | 0.7266 | 9.0 | 3060 | 0.7533 | 0.5 | | 0.7266 | 10.0 | 3400 | 0.7247 | 0.4984 | | 0.7293 | 11.0 | 3740 | 0.7290 | 0.5172 | | 0.7248 | 12.0 | 4080 | 0.7539 | 0.5 | | 0.7248 | 13.0 | 4420 | 0.7395 | 0.5 | | 0.7255 | 14.0 | 4760 | 0.7360 | 0.5031 | | 0.7271 | 15.0 | 5100 | 0.7278 | 0.5 | | 0.7271 | 16.0 | 5440 | 0.7314 | 0.5094 | | 0.7265 | 17.0 | 5780 | 0.7417 | 0.4984 | | 0.724 | 18.0 | 6120 | 0.7263 | 0.5 | | 0.724 | 19.0 | 6460 | 0.7272 | 0.5031 | | 0.723 | 20.0 | 6800 | 0.7283 | 0.5172 | | 0.7254 | 21.0 | 7140 | 0.7284 | 0.5047 | | 0.7254 | 22.0 | 7480 | 0.7346 | 0.4984 | | 0.7254 | 23.0 | 7820 | 0.7295 | 0.5125 | | 0.7259 | 24.0 | 8160 | 0.7322 | 0.5047 | | 0.7235 | 25.0 | 8500 | 0.7327 | 0.5172 | | 0.7235 | 26.0 | 8840 | 0.7300 | 0.5172 | | 0.7241 | 27.0 | 9180 | 0.7345 | 0.5016 | | 0.7227 | 28.0 | 9520 | 0.7263 | 0.5172 | | 0.7227 | 29.0 | 9860 | 0.7341 | 0.5016 | | 0.7212 | 30.0 | 10200 | 0.7302 | 0.5125 | | 0.7226 | 31.0 | 10540 | 0.7346 | 0.5078 | | 0.7226 | 32.0 | 10880 | 0.7606 | 0.4702 | | 0.7195 | 33.0 | 11220 | 0.7357 | 0.5063 | | 0.7226 | 34.0 | 11560 | 0.7356 | 0.5031 | | 0.7226 | 35.0 | 11900 | 0.7397 | 0.5063 | | 0.7224 | 36.0 | 12240 | 0.7340 | 0.5157 | | 0.7216 | 37.0 | 12580 | 0.7319 | 0.5047 | | 0.7216 | 38.0 | 12920 | 0.7298 | 0.5141 | | 0.7225 | 39.0 | 13260 | 0.7438 | 0.5016 | | 0.7197 | 40.0 | 13600 | 0.7306 | 0.5047 | | 0.7197 | 41.0 | 13940 | 0.7279 | 0.5125 | | 0.7206 | 42.0 | 14280 | 0.7181 | 0.5502 | | 0.7079 | 43.0 | 14620 | 0.7566 | 0.5862 | | 0.7079 | 44.0 | 14960 | 0.7480 | 0.6254 | | 0.6794 | 45.0 | 15300 | 0.6922 | 0.6630 | | 0.6556 | 46.0 | 15640 | 0.7232 | 0.6223 | | 0.6556 | 47.0 | 15980 | 0.6961 | 0.6458 | | 0.6438 | 48.0 | 16320 | 0.7193 | 0.6458 | | 0.6249 | 49.0 | 16660 | 0.6663 | 0.6693 | | 0.6117 | 50.0 | 17000 | 0.8045 | 0.6191 | | 0.6117 | 51.0 | 17340 | 0.6984 | 0.6630 | | 0.5961 | 52.0 | 17680 | 0.6973 | 0.6646 | | 0.5831 | 53.0 | 18020 | 0.7606 | 0.6348 | | 0.5831 | 54.0 | 18360 | 0.7159 | 0.6614 | | 0.5624 | 55.0 | 18700 | 0.7947 | 0.6426 | | 0.558 | 56.0 | 19040 | 0.8629 | 0.6238 | | 0.558 | 57.0 | 19380 | 0.7299 | 0.6646 | | 0.5461 | 58.0 | 19720 | 0.7642 | 0.6411 | | 0.5322 | 59.0 | 20060 | 0.7357 | 0.6661 | | 0.5322 | 60.0 | 20400 | 0.8926 | 0.6191 | | 0.5253 | 61.0 | 20740 | 0.7845 | 0.6348 | | 0.5193 | 62.0 | 21080 | 0.7580 | 0.6614 | | 0.5193 | 63.0 | 21420 | 0.7705 | 0.6505 | | 0.5169 | 64.0 | 21760 | 0.8464 | 0.6458 | | 0.5021 | 65.0 | 22100 | 0.8002 | 0.6536 | | 0.5021 | 66.0 | 22440 | 0.7595 | 0.6677 | | 0.487 | 67.0 | 22780 | 0.7971 | 0.6458 | | 0.4977 | 68.0 | 23120 | 0.8245 | 0.6270 | | 0.4977 | 69.0 | 23460 | 0.8225 | 0.6379 | | 0.4822 | 70.0 | 23800 | 0.8323 | 0.6364 | | 0.4802 | 71.0 | 24140 | 0.8205 | 0.6364 | | 0.4802 | 72.0 | 24480 | 0.8086 | 0.6520 | | 0.4779 | 73.0 | 24820 | 0.7994 | 0.6567 | | 0.4801 | 74.0 | 25160 | 0.8206 | 0.6520 | | 0.4706 | 75.0 | 25500 | 0.8035 | 0.6442 | | 0.4706 | 76.0 | 25840 | 0.8213 | 0.6364 | | 0.4738 | 77.0 | 26180 | 0.8128 | 0.6630 | | 0.4687 | 78.0 | 26520 | 0.8068 | 0.6567 | | 0.4687 | 79.0 | 26860 | 0.8098 | 0.6630 | | 0.4598 | 80.0 | 27200 | 0.8203 | 0.6599 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_syl_noforce_add_inpde__0015
bigmorning
2023-09-03T02:59:03Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_syl_noforce__0060", "base_model:finetune:bigmorning/whisper_syl_noforce__0060", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T02:58:55Z
--- license: apache-2.0 base_model: bigmorning/whisper_syl_noforce__0060 tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_add_inpde__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_add_inpde__0015 This model is a fine-tuned version of [bigmorning/whisper_syl_noforce__0060](https://huggingface.co/bigmorning/whisper_syl_noforce__0060) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4618 - Train Accuracy: 0.0319 - Train Wermet: 0.1102 - Validation Loss: 1.0659 - Validation Accuracy: 0.0212 - Validation Wermet: 0.2974 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 3.0144 | 0.0185 | 0.9684 | 1.4362 | 0.0191 | 0.3870 | 0 | | 1.6269 | 0.0241 | 0.2797 | 1.2846 | 0.0197 | 0.3593 | 1 | | 1.3645 | 0.0256 | 0.2469 | 1.1967 | 0.0201 | 0.3481 | 2 | | 1.2336 | 0.0263 | 0.2264 | 1.1602 | 0.0204 | 0.3390 | 3 | | 1.0973 | 0.0272 | 0.2091 | 1.1211 | 0.0206 | 0.3296 | 4 | | 0.9914 | 0.0279 | 0.1941 | 1.1412 | 0.0204 | 0.3209 | 5 | | 0.9050 | 0.0284 | 0.1819 | 1.1795 | 0.0204 | 0.3281 | 6 | | 0.8192 | 0.0291 | 0.1695 | 1.0845 | 0.0209 | 0.3149 | 7 | | 0.7806 | 0.0293 | 0.1608 | 1.0628 | 0.0210 | 0.3099 | 8 | | 0.7143 | 0.0298 | 0.1511 | 1.0554 | 0.0211 | 0.3069 | 9 | | 0.6672 | 0.0302 | 0.1431 | 1.0539 | 0.0211 | 0.3046 | 10 | | 0.6228 | 0.0305 | 0.1338 | 1.0531 | 0.0211 | 0.3038 | 11 | | 0.5558 | 0.0311 | 0.1253 | 1.0476 | 0.0212 | 0.2997 | 12 | | 0.5273 | 0.0314 | 0.1186 | 1.0431 | 0.0212 | 0.2991 | 13 | | 0.4618 | 0.0319 | 0.1102 | 1.0659 | 0.0212 | 0.2974 | 14 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
gadol/bloom_prompt_tuning_1693708411.24797
gadol
2023-09-03T02:38:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T02:38:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
bigmorning/whisper_syl_noforce_add_inpde__0005
bigmorning
2023-09-03T02:32:31Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_syl_noforce__0060", "base_model:finetune:bigmorning/whisper_syl_noforce__0060", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T02:32:25Z
--- license: apache-2.0 base_model: bigmorning/whisper_syl_noforce__0060 tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_add_inpde__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_add_inpde__0005 This model is a fine-tuned version of [bigmorning/whisper_syl_noforce__0060](https://huggingface.co/bigmorning/whisper_syl_noforce__0060) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0973 - Train Accuracy: 0.0272 - Train Wermet: 0.2091 - Validation Loss: 1.1211 - Validation Accuracy: 0.0206 - Validation Wermet: 0.3296 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 3.0144 | 0.0185 | 0.9684 | 1.4362 | 0.0191 | 0.3870 | 0 | | 1.6269 | 0.0241 | 0.2797 | 1.2846 | 0.0197 | 0.3593 | 1 | | 1.3645 | 0.0256 | 0.2469 | 1.1967 | 0.0201 | 0.3481 | 2 | | 1.2336 | 0.0263 | 0.2264 | 1.1602 | 0.0204 | 0.3390 | 3 | | 1.0973 | 0.0272 | 0.2091 | 1.1211 | 0.0206 | 0.3296 | 4 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
MouseTrap/maow-maow-machine-v1
MouseTrap
2023-09-03T02:11:23Z
30
0
diffusers
[ "diffusers", "safetensors", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-03T02:09:34Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a drawing of Mr. Maow Maow cat in outer space --- # DreamBooth model for the Mr. Maow Maow concept trained by MouseTrap on the MouseTrap/maow_maow_dataset dataset. This is a Stable Diffusion model fine-tuned on the Mr. Maow Maow concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a drawing of Mr. Maow Maow cat** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `cat` images for the animal theme. Enter prompts as 'drawing of Mr. Maow Maow cat' to get the illustration-like outputs. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('MouseTrap/maow-maow-machine-v1') image = pipeline().images[0] image ```
yaohuacn/walljump_test_02
yaohuacn
2023-09-03T02:08:04Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "BigWallJump", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-BigWallJump", "region:us" ]
reinforcement-learning
2023-09-03T02:07:45Z
--- library_name: ml-agents tags: - BigWallJump - deep-reinforcement-learning - reinforcement-learning - ML-Agents-BigWallJump --- # **ppo** Agent playing **BigWallJump** This is a trained model of a **ppo** agent playing **BigWallJump** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: yaohuacn/walljump_test_02 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
crumb/Ducky-MoMoe-prototype-e4-causal
crumb
2023-09-03T02:05:38Z
145
4
transformers
[ "transformers", "pytorch", "switchgpt2", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2023-08-17T23:42:05Z
give me access to a dgx or any >=8x{A100 | H100} so i can warm start from llama-70b and create a gpt-4 competitor please https://twitter.com/aicrumb/status/1692965412676206778
The-matt/autumn-shadow-48_580
The-matt
2023-09-03T01:48:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T01:48:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Akbartus/Wasteland-Style-Lora
Akbartus
2023-09-03T01:45:34Z
6
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "region:us" ]
text-to-image
2023-08-16T22:08:20Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers base_model: runwayml/stable-diffusion-v1-5 instance_prompt: wasteland, apocalypse widget: - text: 8k, realistic, vray, HDR, 6000K, in a post-apocalyptic crumbling castle, stuck drawbridge, weedy courtyard, dusty throne, faded tower flag inference: parameters: width: 1024 height: 512 --- Keywords for prompts: apocalyptic wasteland, ruins, rust, concept art
The-matt/autumn-shadow-48_570
The-matt
2023-09-03T01:19:09Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-03T01:19:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
adyprat/drlc_taxi
adyprat
2023-09-03T00:57:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-03T00:56:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: drlc_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.63 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="adyprat/drlc_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
adyprat/q-FrozenLake-v1-4x4-noSlippery
adyprat
2023-09-03T00:46:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-03T00:46:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="adyprat/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
The-matt/autumn-shadow-48_540
The-matt
2023-09-03T00:34:58Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-03T00:34:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
udaykiran19491/lstm-stock-price-predictor
udaykiran19491
2023-09-03T00:11:09Z
18
3
tf-keras
[ "tf-keras", "en", "license:gpl-3.0", "region:us" ]
null
2023-09-03T00:01:33Z
--- license: gpl-3.0 language: - en --- This is an LSTM model that is trained on NSE India's stock price history data. It is trained to predict the next closing price of a stock.
Sentdex/WSB-GPT-13B
Sentdex
2023-09-03T00:02:26Z
20
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:Sentdex/wsb_reddit_v002", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2023-08-31T22:42:18Z
--- license: apache-2.0 datasets: - Sentdex/wsb_reddit_v002 --- # Model Card for WSB-GPT-13B This is a Llama 2 13B Chat model fine-tuned with QLoRA on 2017-2018ish /r/wallstreetbets subreddit comments and responses, with the hopes of learning more about QLoRA and creating models with a little more character. ### Model Description - **Developed by:** Sentdex - **Shared by:** Sentdex - **GPU Compute provided by:** [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) - **Model type:** Instruct/Chat - **Language(s) (NLP):** Multilingual from Llama 2, but not sure what the fine-tune did to it, or if the fine-tuned behavior translates well to other languages. Let me know! - **License:** Apache 2.0 - **Finetuned from Llama 2 13B Chat** - **Demo [optional]:** [More Information Needed] ## Uses This model's primary purpose is to be a fun chatbot and to learn more about QLoRA. It is not intended to be used for any other purpose and some people may find it abrasive/offensive. ## Bias, Risks, and Limitations This model is prone to using at least 3 words that were popularly used in the WSB subreddit in that era that are much more frowned-upon. As time goes on, I may wind up pruning or find-replacing these words in the training data, or leaving it. Just be advised this model can be offensive and is not intended for all audiences! ## How to Get Started with the Model ### Prompt Format: ``` ### Comment: [parent comment text] ### REPLY: [bot's reply] ### END. ``` Use the code below to get started with the model. ```py from transformers import pipeline # Initialize the pipeline for text generation using the Sentdex/WSB-GPT-13B model pipe = pipeline("text-generation", model="Sentdex/WSB-GPT-13B") # Define your prompt prompt = """### Comment: How does the stock market actually work? ### REPLY: """ # Generate text based on the prompt generated_text = pipe(prompt, max_length=128, num_return_sequences=1) # Extract and print the generated text print(generated_text[0]['generated_text'].split("### END.")[0]) ``` Example continued generation from above: ``` ### Comment: How does the stock market actually work? ### REPLY: You sell when you are up and buy when you are down. ``` Despite `</s>` being the typical Llama stop token, I was never able to get this token to be generated in training/testing so the model would just never stop generating. I wound up testing with ### END. and that worked, but obviously isn't ideal. Will fix this in the future maybe(tm). #### Hardware This QLoRA was trained on a Lambda Labs 1x H100 80GB GPU instance. ## Citation - Llama 2 (Meta AI) for the base model. - Farouk E / Far El: https://twitter.com/far__el for helping with all my silly questions about QLoRA - Lambda Labs for the compute. The model itself only took a few hours to train, but it took me days to learn how to tie everything together. - Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer for QLoRA + implementation on github: https://github.com/artidoro/qlora/ - @eugene-yh and @jinyongyoo on Github + @ChrisHayduk for the QLoRA merge: https://gist.github.com/ChrisHayduk/1a53463331f52dca205e55982baf9930 ## Model Card Contact [email protected]
oddlyshapedfn/YouCompleteRe
oddlyshapedfn
2023-09-02T23:57:45Z
120
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-30T05:40:44Z
# You Complete Me, Re!! This model is trained on a body of text consisting of DSP's posts on various forums, such as SRK, google groups, KoH forum, his personal website, and Discord. The full dataset for the current version of this model is 1.2MB, including formatting, so it is relatively small. As this model is trained from unfiltered samples of DSP's various posts, it may generate responses that are not be appropriate for all audiences, or are outright false. # Settings Try temperature=1.0, top_k=50, top_p=0.5, repetition_penality=1.05 as a start. # Prompting Start your message with `<ycr>:` and then add some text afterwards. For instance... ``` # Prompt <ycr>: So now let's talk about my day off # Responds... . I had a pretty good day today. I went to the mall and got a new TV, a PS2 (wow, that's a first), and a bunch of other stuff. I also bought a bunch of games for the PS2, including Far Cry, UT2k4, and a few others. I also picked up a copy of UT2k4 for my brother, who is a HUGE UT2k4 fan. I also went to Best Buy and picked up a copy of UT2k4 for myself, so I have two copies of the game. I'm going to be playing it a lot this weekend, so I figured I should pick up some new games as well. In conclusion, I had a very good day. I made some new friends, got some cool stuff, and got a lot of work done. I think that if I had more free time I would probably do even better in school, but I don't have much of a life outside of school ```
fahmiaziz/finetune-donut-cord-v1
fahmiaziz
2023-09-02T23:55:07Z
53
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "license:creativeml-openrail-m", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-02T22:03:03Z
--- license: creativeml-openrail-m ---
venetis/electra-base-discriminator-finetuned-3d-sentiment
venetis
2023-09-02T23:51:46Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T03:42:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: electra-base-discriminator-finetuned-3d-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-3d-sentiment This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5887 - Accuracy: 0.7873 - Precision: 0.7897 - Recall: 0.7873 - F1: 0.7864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6381 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.797 | 1.0 | 1595 | 0.7075 | 0.7353 | 0.7434 | 0.7353 | 0.7357 | | 0.5329 | 2.0 | 3190 | 0.6508 | 0.7550 | 0.7646 | 0.7550 | 0.7554 | | 0.4597 | 3.0 | 4785 | 0.5889 | 0.7702 | 0.7803 | 0.7702 | 0.7695 | | 0.3918 | 4.0 | 6380 | 0.5887 | 0.7873 | 0.7897 | 0.7873 | 0.7864 | | 0.3093 | 5.0 | 7975 | 0.6412 | 0.7833 | 0.7877 | 0.7833 | 0.7836 | | 0.2144 | 6.0 | 9570 | 0.7786 | 0.7844 | 0.7900 | 0.7844 | 0.7851 | | 0.1507 | 7.0 | 11165 | 0.8455 | 0.7853 | 0.7903 | 0.7853 | 0.7862 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_530
The-matt
2023-09-02T23:48:24Z
6
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:48:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
johaanm/test-planner-alpha-V6.1
johaanm
2023-09-02T23:47:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:47:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
dt-and-vanilla-ardt/dt-d4rl_medium_halfcheetah-0209_2300-99
dt-and-vanilla-ardt
2023-09-02T23:36:43Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T23:01:50Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_halfcheetah-0209_2300-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_halfcheetah-0209_2300-99 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
anayzehri/KawaiiApp
anayzehri
2023-09-02T23:33:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T23:33:53Z
--- license: creativeml-openrail-m ---
daochf/Lora-HuggyLlama7b-PuceDS-v03
daochf
2023-09-02T23:32:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:27:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
nahuel89p/nous-hermes-llama2-13b.gguf.q4_K_M
nahuel89p
2023-09-02T23:22:40Z
0
2
null
[ "license:mit", "region:us" ]
null
2023-09-02T22:10:52Z
--- license: mit --- This model is a direct conversion from https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML using Llama.cpp convert-llama-ggmlv3-to-gguf.py utility script. All the required metadata (config.json and tokenizer) was provided.
The-matt/autumn-shadow-48_520
The-matt
2023-09-02T23:18:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:18:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
dt-and-vanilla-ardt/dt-d4rl_medium_walker2d-0209_2245-99
dt-and-vanilla-ardt
2023-09-02T23:17:34Z
33
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T22:46:52Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_walker2d-0209_2245-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_walker2d-0209_2245-99 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
sashat/whisper-sara-ar
sashat
2023-09-02T23:15:28Z
108
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:ClArTTS_N_QASR_female", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T21:59:41Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ClArTTS_N_QASR_female model-index: - name: Whisper Small Ar - Sara results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ar - Sara This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CLArQasr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.2
camenduru/kosmos-2-patch14-224
camenduru
2023-09-02T23:09:06Z
88
0
transformers
[ "transformers", "pytorch", "kosmos-2", "image-text-to-text", "custom_code", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-02T22:47:34Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Kosmos-2: Grounding Multimodal Large Language Models to the World **(There is an on going effort to port `Kosmos-2` directly into `transformers`. This repository (remote code) might need some more bug fixes later, including breaking changes.)** <a href="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><figure><img src="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="384"><figcaption><b>[An image of a snowman warming himself by a fire.]</b></figcaption></figure></a> This Hub repository contains a HuggingFace's `transformers` implementation of [the original Kosmos-2 model](https://github.com/microsoft/unilm/tree/master/kosmos-2) from Microsoft. ## How to Get Started with the Model Use the code below to get started with the model. ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) prompt = "<grounding>An image of" url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) # The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs. # Uncomment the following 2 lines if you want to match the original demo's outputs. # (One example is the `two_dogs.jpg` from the demo) # image.save("new_image.jpg") # image = Image.open("new_image.jpg") inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"][:, :-1], attention_mask=inputs["attention_mask"][:, :-1], img_features=None, img_attn_mask=inputs["img_attn_mask"][:, :-1], use_cache=True, max_new_tokens=64, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # Specify `cleanup_and_extract=False` in order to see the raw model generation. processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) print(processed_text) # `<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.` # By default, the generated text is cleanup and the entities are extracted. processed_text, entities = processor.post_process_generation(generated_text) print(processed_text) # `An image of a snowman warming himself by a fire.` print(entities) # `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]` ``` ## Draw the bounding bboxes of the entities on the image Once you have the `entities`, you can use the following helper function to draw their bounding bboxes on the image: ```python import cv2 import numpy as np import os import requests import torch import torchvision.transforms as T from PIL import Image def is_overlapping(rect1, rect2): x1, y1, x2, y2 = rect1 x3, y3, x4, y4 = rect2 return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) def draw_entity_boxes_on_image(image, entities, show=False, save_path=None): """_summary_ Args: image (_type_): image or image path collect_entity_location (_type_): _description_ """ if isinstance(image, Image.Image): image_h = image.height image_w = image.width image = np.array(image)[:, :, [2, 1, 0]] elif isinstance(image, str): if os.path.exists(image): pil_img = Image.open(image).convert("RGB") image = np.array(pil_img)[:, :, [2, 1, 0]] image_h = pil_img.height image_w = pil_img.width else: raise ValueError(f"invaild image path, {image}") elif isinstance(image, torch.Tensor): # pdb.set_trace() image_tensor = image.cpu() reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean pil_img = T.ToPILImage()(image_tensor) image_h = pil_img.height image_w = pil_img.width image = np.array(pil_img)[:, :, [2, 1, 0]] else: raise ValueError(f"invaild image format, {type(image)} for {image}") if len(entities) == 0: return image new_image = image.copy() previous_bboxes = [] # size of text text_size = 1 # thickness of text text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) box_line = 3 (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) base_height = int(text_height * 0.675) text_offset_original = text_height - base_height text_spaces = 3 for entity_name, (start, end), bboxes in entities: for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes: orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h) # draw bbox # random color color = tuple(np.random.randint(0, 255, size=3).tolist()) new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 x1 = orig_x1 - l_o y1 = orig_y1 - l_o if y1 < text_height + text_offset_original + 2 * text_spaces: y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces x1 = orig_x1 + r_o # add text background (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 for prev_bbox in previous_bboxes: while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox): text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) y1 += (text_height + text_offset_original + 2 * text_spaces) if text_bg_y2 >= image_h: text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) text_bg_y2 = image_h y1 = image_h break alpha = 0.5 for i in range(text_bg_y1, text_bg_y2): for j in range(text_bg_x1, text_bg_x2): if i < image_h and j < image_w: if j < text_bg_x1 + 1.35 * c_width: # original color bg_color = color else: # white bg_color = [255, 255, 255] new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8) cv2.putText( new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA ) # previous_locations.append((x1, y1)) previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2)) pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]]) if save_path: pil_image.save(save_path) if show: pil_image.show() return new_image # (The same image from the previous code example) url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.jpg" image = Image.open(requests.get(url, stream=True).raw) # From the previous code example entities = [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])] # Draw the bounding bboxes draw_entity_boxes_on_image(image, entities, show=True) ``` Here is the annotated image: <a href="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><img src="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="500"></a> ## Tasks This model is capable of performing different tasks through changing the prompts. First, let's define a function to run a prompt. ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) def run_example(prompt): inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"][:, :-1], attention_mask=inputs["attention_mask"][:, :-1], img_features=None, img_attn_mask=inputs["img_attn_mask"][:, :-1], use_cache=True, max_new_tokens=64, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] _processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) processed_text, entities = processor.post_process_generation(generated_text) print(processed_text) print(entities) print(_processed_text) ``` Here are the tasks `Kosmos-2` could perform: ### Multimodal Grounding #### • Phrase Grounding ```python prompt = "<grounding><phrase> a snowman</phrase>" run_example(prompt) # a snowman is warming himself by the fire # [('a snowman', (0, 9), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('the fire', (32, 40), [(0.203125, 0.015625, 0.453125, 0.859375)])] # <grounding><phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> is warming himself by<phrase> the fire</phrase><object><patch_index_0006><patch_index_0878></object> ``` #### • Referring Expression Comprehension ```python prompt = "<grounding><phrase> a snowman next to a fire</phrase>" run_example(prompt) # a snowman next to a fire # [('a snowman next to a fire', (0, 24), [(0.390625, 0.046875, 0.984375, 0.828125)])] # <grounding><phrase> a snowman next to a fire</phrase><object><patch_index_0044><patch_index_0863></object> ``` ### Multimodal Referring #### • Referring expression generation ```python prompt = "<grounding><phrase> It</phrase><object><patch_index_0044><patch_index_0863></object> is" run_example(prompt) # It is snowman in a hat and scarf # [('It', (0, 2), [(0.390625, 0.046875, 0.984375, 0.828125)])] # <grounding><phrase> It</phrase><object><patch_index_0044><patch_index_0863></object> is snowman in a hat and scarf ``` ### Perception-Language Tasks #### • Grounded VQA ```python prompt = "<grounding> Question: What is special about this image? Answer:" run_example(prompt) # Question: What is special about this image? Answer: The image features a snowman sitting by a campfire in the snow. # [('a snowman', (71, 80), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a campfire', (92, 102), [(0.109375, 0.640625, 0.546875, 0.984375)])] # <grounding> Question: What is special about this image? Answer: The image features<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> sitting by<phrase> a campfire</phrase><object><patch_index_0643><patch_index_1009></object> in the snow. ``` #### • Grounded VQA with multimodal referring via bounding boxes ```python prompt = "<grounding> Question: Where is<phrase> the fire</phrase><object><patch_index_0005><patch_index_0911></object> next to? Answer:" run_example(prompt) # Question: Where is the fire next to? Answer: Near the snowman. # [('the fire', (19, 27), [(0.171875, 0.015625, 0.484375, 0.890625)]), ('the snowman', (50, 61), [(0.390625, 0.046875, 0.984375, 0.828125)])] # <grounding> Question: Where is<phrase> the fire</phrase><object><patch_index_0005><patch_index_0911></object> next to? Answer: Near<phrase> the snowman</phrase><object><patch_index_0044><patch_index_0863></object>. ``` ### Grounded Image captioning #### • Brief ```python prompt = "<grounding> An image of" run_example(prompt) # An image of a snowman warming himself by a campfire. # [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a campfire', (41, 51), [(0.109375, 0.640625, 0.546875, 0.984375)])] # <grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a campfire</phrase><object><patch_index_0643><patch_index_1009></object>. ``` #### • Detailed ```python prompt = "<grounding> Describe this image in detail:" run_example(prompt) # Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is wearing a hat, scarf, and gloves, with a pot nearby and a cup # [('a campfire', (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]), ('a hat', (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]), ('scarf', (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]), ('gloves', (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]), ('a pot', (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)])] # <grounding> Describe this image in detail: The image features a snowman sitting by<phrase> a campfire</phrase><object><patch_index_0005><patch_index_1007></object> in the snow. He is wearing<phrase> a hat</phrase><object><patch_index_0048><patch_index_0250></object>,<phrase> scarf</phrase><object><patch_index_0240><patch_index_0604></object>, and<phrase> gloves</phrase><object><patch_index_0400><patch_index_0532></object>, with<phrase> a pot</phrase><object><patch_index_0610><patch_index_0872></object> nearby and<phrase> a cup</phrase><object> ``` ## Running the Flask Server _flask_kosmos2.py_ shows the implementation of a Flask server for the model. It allowes the model to be approached as a REST API. After starting the server. You can send a POST request to `http://localhost:8005/process_prompt` with the following form data: - `prompt`: For example `<grounding> an image of` - `image`: The image file as binary data This in turn will produce a reply with the following JSON format: - `message`: The Kosmos-2 generated text - `entities`: The extracted entities An easy way to test this is through an application like Postman. Make sure the image field is set to `File`. ```python from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq from flask import Flask, request, jsonify import json app = Flask(__name__) model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) @app.route('/process_prompt', methods=['POST']) def process_prompt(): try: # Get the uploaded image data from the POST request uploaded_file = request.files['image'] prompt = request.form.get('prompt') image = Image.open(uploaded_file.stream) print(image.size) inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"][:, :-1], attention_mask=inputs["attention_mask"][:, :-1], img_features=None, img_attn_mask=inputs["img_attn_mask"][:, :-1], use_cache=True, max_new_tokens=64, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # By default, the generated text is cleanup and the entities are extracted. processed_text, entities = processor.post_process_generation(generated_text) parsed_entities = entities_to_json(entities) print(generated_text) print(processed_text) return jsonify({"message": processed_text, 'entities': parsed_entities}) except Exception as e: return jsonify({"error": str(e)}) def entities_to_json(entities): result = [] for e in entities: label = e[0] box_coords = e[1] box_size = e[2][0] entity_result = { "label": label, "boundingBoxPosition": {"x": box_coords[0], "y": box_coords[1]}, "boundingBox": {"x_min": box_size[0], "y_min": box_size[1], "x_max": box_size[2], "y_max": box_size[3]} } print(entity_result) result.append(entity_result) return result if __name__ == '__main__': app.run(host='localhost', port=8005) ```
CzarnyRycerz/ppo-LunarLander-v2-trained-locally
CzarnyRycerz
2023-09-02T22:55:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T22:38:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 310.89 +/- 13.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dt-and-vanilla-ardt/dt-d4rl_medium_walker2d-0209_2209-66
dt-and-vanilla-ardt
2023-09-02T22:45:26Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T22:11:15Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_walker2d-0209_2209-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_walker2d-0209_2209-66 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
Akalite/Test
Akalite
2023-09-02T22:35:48Z
0
0
null
[ "dataset:gothstaf/questillma2", "region:us" ]
null
2023-09-02T22:35:23Z
--- datasets: - gothstaf/questillma2 ---
The-matt/autumn-shadow-48_480
The-matt
2023-09-02T22:35:29Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-02T22:35:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
dt-and-vanilla-ardt/dt-d4rl_medium_hopper-0209_2210-99
dt-and-vanilla-ardt
2023-09-02T22:29:49Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T22:11:08Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_hopper-0209_2210-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_hopper-0209_2210-99 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
dt-and-vanilla-ardt/dt-d4rl_medium_halfcheetah-0209_2131-33
dt-and-vanilla-ardt
2023-09-02T22:20:20Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:33:13Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_halfcheetah-0209_2131-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_halfcheetah-0209_2131-33 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_4_50000_6_e3_s6789_v4_l4_v100
KingKazma
2023-09-02T22:19:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-17T22:01:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
dt-and-vanilla-ardt/dt-d4rl_medium_walker2d-0209_2131-33
dt-and-vanilla-ardt
2023-09-02T22:09:48Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:32:19Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_walker2d-0209_2131-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_walker2d-0209_2131-33 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_460
The-matt
2023-09-02T21:55:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:55:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
dt-and-vanilla-ardt/dt-d4rl_medium_hopper-0209_2131-33
dt-and-vanilla-ardt
2023-09-02T21:50:03Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:31:56Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_hopper-0209_2131-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_hopper-0209_2131-33 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
monsoon-nlp/mGPT-13B-quantized
monsoon-nlp
2023-09-02T21:47:28Z
16
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "multilingual", "ar", "hi", "id", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2023-09-01T06:04:43Z
--- license: apache-2.0 language: - ar - hi - id pipeline_tag: text-generation tags: - multilingual widget: - text: 'في مدرستي السابقة' example_title: Arabic prompt - text: 'आप समुद्री लुटेरों के बारे में क्या जानते हैं?' example_title: Hindi prompt - text: 'Kucing saya suka' example_title: Indonesian prompt --- # mGPT-quantized The concept: 8-bit quantized version of [mGPT-13B](https://huggingface.co/ai-forever/mGPT-13B), an LLM released by AI-Forever / Sberbank AI in 2022-2023. On the GPT scale, it is between the # of parameters for GPT-2 and GPT-3, but comparison is tricky after training on 60+ languages. My goal is to evaluate this on Hindi and Indonesian tasks, where there are fewer autoregressive language models in this size range. For English: use a GPT model or LLaMa2-7B For Arabic: in August 2023 I would recommend the bilingual [JAIS model](https://huggingface.co/inception-mbzuai/jais-13b), which is also 13B parameters can be quantized. In August 2023 AI-Forever added 1.3B-param models for 20+ languages. If your language is Mongolian, for example, it might be better to use mGPT-1.3B-mongol and not this one. They also have a 1.3B param model for all languages, which I further quantized here: https://huggingface.co/monsoon-nlp/mGPT-quantized ## How was the model created? Quantization of mGPT-13B was done using `bitsandbytes` library, CoLab Pro with an A100 GPU, and a lot of space on Google Drive. ```python from transformers import BitsAndBytesConfig, GPT2LMHeadModel quantization_config = BitsAndBytesConfig( load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16, bnb_8bit_use_double_quant=True, bnb_8bit_quant_type="nf4", ) qmodel = GPT2LMHeadModel.from_pretrained( "ai-forever/mGPT-13B", load_in_8bit=True, torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto" ) qmodel.save_pretrained("model_name") ``` ## Future steps - mGPT could be further quantized (4-bit), but `model.save_pretrained()` currently throws a `NotImplementedError` error.
venkateshkhatri/dreambooth2
venkateshkhatri
2023-09-02T21:38:15Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-02T15:32:03Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of venkateshkhatri tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e-1_s6789_v4_l4_v100_resume_manual
KingKazma
2023-09-02T21:23:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:23:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
jjluo/my_awesome_food_model
jjluo
2023-09-02T21:20:53Z
191
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T21:10:12Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6222 - Accuracy: 0.908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7507 | 0.99 | 62 | 2.5634 | 0.831 | | 1.8341 | 2.0 | 125 | 1.7980 | 0.87 | | 1.6407 | 2.98 | 186 | 1.6222 | 0.908 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_440
The-matt
2023-09-02T21:20:27Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:20:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e3_s6789_v4_l4_v100
KingKazma
2023-09-02T21:20:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:20:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_430
The-matt
2023-09-02T21:11:20Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:11:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
actionpace/UndiMix-v1-13b
actionpace
2023-09-02T20:57:35Z
2
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T20:38:02Z
--- license: other language: - en --- Some of my own quants: * UndiMix-v1-13b_Q5_1_4K.gguf * UndiMix-v1-13b_Q5_1_8K.gguf Original Model: [UndiMix-v1-13b](https://huggingface.co/Undi95/UndiMix-v1-13b)
jaober/CartPole-v1
jaober
2023-09-02T20:57:06Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T20:56:57Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e2_s6789_v4_l4_v100
KingKazma
2023-09-02T20:49:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:49:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
actionpace/MythoMax-L2-Kimiko-v2-13b
actionpace
2023-09-02T20:48:28Z
10
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T20:23:18Z
--- license: other language: - en --- Some of my own quants: * MythoMax-L2-Kimiko-v2-13b_Q5_1_4K.gguf * MythoMax-L2-Kimiko-v2-13b_Q5_1_8K.gguf Original Model: [MythoMax-L2-Kimiko-v2-13b](https://huggingface.co/Undi95/MythoMax-L2-Kimiko-v2-13b)
dwitidibyajyoti/layoutlm-funsd
dwitidibyajyoti
2023-09-02T20:44:56Z
160
0
transformers
[ "transformers", "pytorch", "layoutlm", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T20:40:55Z
--- base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8927 - Column: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} - Ignore: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} - Key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} - Value: {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} - Overall Precision: 0.6875 - Overall Recall: 0.4231 - Overall F1: 0.5238 - Overall Accuracy: 0.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Column | Ignore | Key | Value | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 2.4627 | 1.0 | 2 | 2.1288 | {'precision': 0.23529411764705882, 'recall': 0.16, 'f1': 0.19047619047619052, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.06060606060606061, 'recall': 0.06060606060606061, 'f1': 0.06060606060606061, 'number': 33} | 0.0870 | 0.0769 | 0.0816 | 0.6887 | | 2.1025 | 2.0 | 4 | 1.7650 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6921 | | 1.7503 | 3.0 | 6 | 1.4611 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 | | 1.4557 | 4.0 | 8 | 1.2624 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 | | 1.3067 | 5.0 | 10 | 1.1889 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 | | 1.1884 | 6.0 | 12 | 1.1436 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 | | 1.1456 | 7.0 | 14 | 1.0901 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 | | 1.0915 | 8.0 | 16 | 1.0410 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.11764705882352941, 'f1': 0.21052631578947367, 'number': 17} | {'precision': 0.3333333333333333, 'recall': 0.030303030303030304, 'f1': 0.05555555555555555, 'number': 33} | 0.6 | 0.0385 | 0.0723 | 0.6937 | | 1.0428 | 9.0 | 18 | 0.9990 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.29411764705882354, 'f1': 0.45454545454545453, 'number': 17} | {'precision': 0.23529411764705882, 'recall': 0.12121212121212122, 'f1': 0.16, 'number': 33} | 0.2727 | 0.1154 | 0.1622 | 0.7252 | | 0.9819 | 10.0 | 20 | 0.9639 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.4117647058823529, 'f1': 0.5833333333333334, 'number': 17} | {'precision': 0.2631578947368421, 'recall': 0.15151515151515152, 'f1': 0.19230769230769232, 'number': 33} | 0.3243 | 0.1538 | 0.2087 | 0.7517 | | 0.9592 | 11.0 | 22 | 0.9344 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.6470588235294118, 'f1': 0.7857142857142858, 'number': 17} | {'precision': 0.3684210526315789, 'recall': 0.21212121212121213, 'f1': 0.2692307692307693, 'number': 33} | 0.4737 | 0.2308 | 0.3103 | 0.7781 | | 0.9011 | 12.0 | 24 | 0.9105 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.64, 'recall': 0.48484848484848486, 'f1': 0.5517241379310344, 'number': 33} | 0.66 | 0.4231 | 0.5156 | 0.7930 | | 0.9426 | 13.0 | 26 | 0.8927 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} | 0.6875 | 0.4231 | 0.5238 | 0.7947 | | 0.8809 | 14.0 | 28 | 0.8821 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} | 0.6875 | 0.4231 | 0.5238 | 0.7947 | | 0.9188 | 15.0 | 30 | 0.8774 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} | 0.6875 | 0.4231 | 0.5238 | 0.7947 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
caveli/bloom_prompt_tuning_1693686452.0382597
caveli
2023-09-02T20:32:52Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:32:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
skipperjo/wav2vec2-large-xls-r-300m-slowakisch-colab
skipperjo
2023-09-02T20:30:03Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T19:15:33Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_11_0 model-index: - name: wav2vec2-large-xls-r-300m-slowakisch-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-slowakisch-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
amirxsanti/Amirmodel
amirxsanti
2023-09-02T20:29:46Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-02T08:46:34Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of AmirSanti person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
s3nh/WizardLM-WizardCoder-Python-13B-V1.0-GGUF
s3nh
2023-09-02T20:28:35Z
11
2
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-09-02T20:10:40Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
The-matt/autumn-shadow-48_380
The-matt
2023-09-02T20:26:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:26:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e1_s6789_v4_l4_v100
KingKazma
2023-09-02T20:19:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:19:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
actionpace/Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged
actionpace
2023-09-02T20:17:30Z
3
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T19:51:33Z
--- license: other language: - en --- Some of my own quants: * Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged_Q5_1_4K.gguf * Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged_Q5_1_8K.gguf Original Model: [Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged](https://huggingface.co/Doctor-Shotgun/Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged)
nmitchko/i2b2-querybuilder-codellama-34b
nmitchko
2023-09-02T20:14:51Z
6
0
peft
[ "peft", "medical", "text-generation", "en", "arxiv:2106.09685", "license:llama2", "region:us" ]
text-generation
2023-09-01T18:55:52Z
--- language: - en library_name: peft pipeline_tag: text-generation tags: - medical license: llama2 --- # i2b2 QueryBuilder - 34b <!-- TODO: Add a link here N: DONE--> ![Screenshot](https://huggingface.co/nmitchko/i2b2-querybuilder-codellama-34b/resolve/main/Example%20Query.png) ## Model Description This model will generate queries for your i2b2 query builder trained on [this dataset](https://huggingface.co/datasets/nmitchko/i2b2-query-data-1.0) for `10 epochs` . For evaluation use. * Do not use as a final research query builder. * Results may be incorrect or mal-formatted. * The onus of research accuracy is on the researcher, not the AI model. ## Prompt Format If you are using text-generation-webui, you can download the instruction template [i2b2.yaml](https://huggingface.co/nmitchko/i2b2-querybuilder-codellama-34b/resolve/main/i2b2.yaml) ```md Below is an instruction that describes a task. ### Instruction: {input} ### Response: ```xml ``` ### Architecture `nmitchko/i2b2-querybuilder-codellama-34b` is a large language model LoRa specifically fine-tuned for generating queries in the [i2b2 query builder](https://community.i2b2.org/wiki/display/webclient/3.+Query+Tool). It is based on [`codellama-34b-hf`](https://huggingface.co/codellama/CodeLlama-34b-hf) at 34 billion parameters. The primary goal of this model is to improve research accuracy with the i2b2 tool. It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora Multi GPU](https://github.com/ChrisHayduk/qlora-multi-gpu), to reduce memory footprint. See Training Parameters for more info This Lora supports 4-bit and 8-bit modes. ### Requirements ``` bitsandbytes>=0.41.0 peft@main transformers@main ``` Steps to load this model: 1. Load base model (codellama-34b-hf) using transformers 2. Apply LoRA using peft ```python # Sample Code Coming ``` ## Training Parameters The model was trained for or 10 epochs on [i2b2-query-data-1.0](https://huggingface.co/datasets/nmitchko/i2b2-query-data-1.0) `i2b2-query-data-1.0` contains only tasks and outputs for i2b2 queries xsd schemas. | Item | Amount | Units | |---------------|--------|-------| | LoRA Rank | 64 | ~ | | LoRA Alpha | 16 | ~ | | Learning Rate | 1e-4 | SI | | Dropout | 5 | % | ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e2_s6789_v4_l4_v100
KingKazma
2023-09-02T20:13:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:45:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
dammyogt/common_voice_8_0_ha
dammyogt
2023-09-02T20:12:00Z
76
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_8_0", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-09-01T23:30:15Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_8_0 model-index: - name: common_voice_8_0_ha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common_voice_8_0_ha This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5416 | 18.31 | 1000 | 0.4974 | | 0.505 | 36.61 | 2000 | 0.4760 | | 0.4898 | 54.92 | 3000 | 0.4758 | | 0.5004 | 73.23 | 4000 | 0.4741 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/Chronohermes-Grad-L2-13b
actionpace
2023-09-02T19:59:50Z
5
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T19:34:54Z
--- license: other language: - en --- Some of my own quants: * Chronohermes-Grad-L2-13b_Q5_1_4K.gguf * Chronohermes-Grad-L2-13b_Q5_1_8K.gguf Original Model: [Chronohermes-Grad-L2-13b](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b)
acdg1214/Unit4-Reinforce-Cartpole-v1
acdg1214
2023-09-02T19:54:12Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T19:54:04Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Unit4-Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aiuser1/my_awesome_eli5_mlm_model
aiuser1
2023-09-02T19:51:36Z
71
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T19:46:52Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_keras_callback model-index: - name: aiuser1/my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aiuser1/my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0249 - Validation Loss: 1.8523 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0249 | 1.8523 | 0 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e1_s6789_v4_l4_v100
KingKazma
2023-09-02T19:43:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:15:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_10_50000_8_e10_s6789_v4_l4_r4
KingKazma
2023-09-02T19:42:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:42:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_350
The-matt
2023-09-02T19:42:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:42:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
thegrigorian/marian-finetuned-kde4-en-to-fr
thegrigorian
2023-09-02T19:37:48Z
61
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-02T17:35:05Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - generated_from_keras_callback model-index: - name: thegrigorian/marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thegrigorian/marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7974 - Validation Loss: 0.8179 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 17733, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0615 | 0.8776 | 0 | | 0.7974 | 0.8179 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e-1_s6789_v4_l4_v100_manual
KingKazma
2023-09-02T19:24:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:24:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
bayartsogt/wav2vec2-large-xlsr-53-mn-demo
bayartsogt
2023-09-02T19:23:45Z
169
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-02T17:44:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-mn-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-mn-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9290 - Wer: 0.5461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8767 | 6.77 | 400 | 2.9239 | 1.0 | | 1.0697 | 13.55 | 800 | 0.8546 | 0.6191 | | 0.3069 | 20.34 | 1200 | 0.9258 | 0.5652 | | 0.2004 | 27.12 | 1600 | 0.9290 | 0.5461 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bayartsogt/wav2vec2-large-mn-pretrain-42h-100-epochs
bayartsogt
2023-09-02T19:23:25Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-01T17:30:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-mn-pretrain-42h-100-epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mn-pretrain-42h-100-epochs This model is a fine-tuned version of [bayartsogt/wav2vec2-large-mn-pretrain-42h](https://huggingface.co/bayartsogt/wav2vec2-large-mn-pretrain-42h) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 6.4172 - Wer: 1.0 - Cer: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:---:|:------:| | 7.6418 | 1.59 | 400 | 6.4239 | 1.0 | 0.9841 | | 5.5936 | 3.19 | 800 | 6.4154 | 1.0 | 0.9841 | | 5.5208 | 4.78 | 1200 | 6.5248 | 1.0 | 0.9841 | | 5.4869 | 6.37 | 1600 | 6.3805 | 1.0 | 0.9841 | | 5.4757 | 7.97 | 2000 | 6.3988 | 1.0 | 0.9841 | | 5.4624 | 9.56 | 2400 | 6.4058 | 1.0 | 0.9841 | | 5.517 | 11.16 | 2800 | 6.3991 | 1.0 | 0.9841 | | 5.4821 | 12.75 | 3200 | 6.4066 | 1.0 | 0.9841 | | 5.487 | 14.34 | 3600 | 6.4281 | 1.0 | 0.9841 | | 5.4786 | 15.93 | 4000 | 6.4174 | 1.0 | 0.9841 | | 5.5017 | 17.53 | 4400 | 6.4338 | 1.0 | 0.9841 | | 5.4967 | 19.12 | 4800 | 6.4653 | 1.0 | 0.9841 | | 5.4619 | 20.72 | 5200 | 6.4499 | 1.0 | 0.9841 | | 5.4883 | 22.31 | 5600 | 6.4345 | 1.0 | 0.9841 | | 5.4899 | 23.9 | 6000 | 6.4224 | 1.0 | 0.9841 | | 5.493 | 25.5 | 6400 | 6.4374 | 1.0 | 0.9841 | | 5.4549 | 27.09 | 6800 | 6.4320 | 1.0 | 0.9841 | | 5.4531 | 28.68 | 7200 | 6.4137 | 1.0 | 0.9841 | | 5.4738 | 30.28 | 7600 | 6.4155 | 1.0 | 0.9841 | | 5.4309 | 31.87 | 8000 | 6.4193 | 1.0 | 0.9841 | | 5.4669 | 33.47 | 8400 | 6.4109 | 1.0 | 0.9841 | | 5.47 | 35.06 | 8800 | 6.4111 | 1.0 | 0.9841 | | 5.4623 | 36.65 | 9200 | 6.4102 | 1.0 | 0.9841 | | 5.4583 | 38.25 | 9600 | 6.4150 | 1.0 | 0.9841 | | 5.4551 | 39.84 | 10000 | 6.4172 | 1.0 | 0.9841 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bayartsogt/wav2vec2-base-mn-pretrain-42h-en-mn-speech-commands
bayartsogt
2023-09-02T19:17:16Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:bayartsogt/mongolian_speech_commands", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-11T18:35:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - bayartsogt/mongolian_speech_commands model-index: - name: wav2vec2-base-mn-pretrain-42h-finetuned-speech-commands results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-mn-pretrain-42h-finetuned-speech-commands This model is a fine-tuned version of [bayartsogt/wav2vec2-base-mn-pretrain-42h](https://huggingface.co/bayartsogt/wav2vec2-base-mn-pretrain-42h) on the Mongolian Speech Commands dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5607 - eval_mn_acc: 0.9830 - eval_mn_f1: 0.9857 - eval_en_acc: 0.8914 - eval_en_f1: 0.8671 - eval_runtime: 109.6829 - eval_samples_per_second: 46.188 - eval_steps_per_second: 0.365 - epoch: 6.41 - step: 4352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_10_50000_8_e9_s6789_v4_l4_r4
KingKazma
2023-09-02T19:14:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:14:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
georgeiac00/test2
georgeiac00
2023-09-02T19:13:53Z
0
0
null
[ "generated_from_trainer", "region:us" ]
null
2023-09-02T19:07:34Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2451 - Accuracy: 0.3922 - F1: 0.3732 - Precision: 0.3777 - Recall: 0.3824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.2543 | 0.02 | 16 | 1.2451 | 0.3922 | 0.3732 | 0.3777 | 0.3824 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.10.1 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_320
The-matt
2023-09-02T19:11:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:11:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
smoo7h/JackDiffusion
smoo7h
2023-09-02T19:03:25Z
0
0
null
[ "region:us" ]
null
2023-09-02T18:59:02Z
# JackDiffusion Jack Diffusion Model Jack's token: k7& Example prompt: a photo of k7&
narno/milkynips
narno
2023-09-02T18:44:10Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-02T18:43:39Z
--- license: bigscience-openrail-m ---
narno/openbra
narno
2023-09-02T18:44:08Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-02T18:43:31Z
--- license: bigscience-openrail-m ---
gyikesz/whisper-small-hu
gyikesz
2023-09-02T18:43:44Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "hu", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T06:21:52Z
--- language: - hu license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Hu - Hungarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: hu split: test args: hu metrics: - name: Wer type: wer value: 30.609306710086553 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hu - Hungarian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.3444 - Wer Ortho: 34.0613 - Wer: 30.6093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.3221 | 0.34 | 500 | 0.3444 | 34.0613 | 30.6093 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_280
The-matt
2023-09-02T18:30:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T18:30:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
GraphicsMonster/LSTM-Sentiment-Analysis
GraphicsMonster
2023-09-02T18:16:25Z
0
0
null
[ "region:us" ]
null
2023-09-02T18:09:28Z
# Sentiment analysis with LSTM architecture - Pytorch This project aims to build a Sentiment analysis model using the LSTM(Long-Short term memory) architecture. ## Project Structure The project has the following structure: - `Dataset`: This directory contains the dataset files used for training and evaluation. - `model.py`: This file contains the relevant piece of code required to run the model for inference after training. - `train.py`: You train the modle by running this script. If you make any hyperparam changes in the model.py file make sure to make those changes here as well. - `requirements.txt`: requirements file to automate the process of installing the required dependencies. - `model_test.py`: This is the script you'll run to test the model on your own text data. ## Dependencies The project requires the following dependencies: - Python 3.9 or higher - numpy - pandas - scikit-learn - tensorflow - keras - torch - torchtext - tweet-preprocessor - pickle Ensure that you have the necessary dependencies installed before running the project. You may install the above dependencies simply by using: pip install -r requirements.txt ## Installation - Open the terminal in your code editor and type this in `git clone https://github.com/GraphicsMonster/LSTM-sentiment-analysis-model` - To install the required dependencies, type this in `pip install -r requirements.txt` - Once the dependencies are installed you are ready to train the model and evaluate its performance. If you have your own data to train the model on, you can update the code in the model.py to refer to the location of your dataset on your local machine. Be sure to update the preprocessing steps accordingly!! - Train the model run this command in the terminal `python train.py` - Once you've successfully trained the model, it will automatically be saved in the same directory with the name `model.pt` - Test the model on your own text data `python model_test.py` ## Contributing Contributions to this project are heavily encouraged! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request. Any kind of contribution will be appreciated. ## License This project is licensed under the [MIT License](LICENSE).
bigmorning/whisper_syl_noforce__0050
bigmorning
2023-09-02T18:12:41Z
52
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T18:12:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0494 - Train Accuracy: 0.0361 - Train Wermet: 0.0068 - Validation Loss: 0.6663 - Validation Accuracy: 0.0232 - Validation Wermet: 0.2609 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2961 | 0.0113 | 1.9043 | 3.9402 | 0.0116 | 0.9526 | 0 | | 4.6207 | 0.0121 | 0.8740 | 3.7957 | 0.0120 | 0.9397 | 1 | | 4.4142 | 0.0128 | 0.8473 | 3.6045 | 0.0124 | 0.8988 | 2 | | 4.1915 | 0.0135 | 0.8361 | 3.4445 | 0.0128 | 0.9019 | 3 | | 4.0072 | 0.0140 | 0.8260 | 3.3268 | 0.0131 | 0.8816 | 4 | | 3.8559 | 0.0145 | 0.8084 | 3.2440 | 0.0133 | 0.8592 | 5 | | 3.7359 | 0.0149 | 0.7986 | 3.1751 | 0.0135 | 0.8598 | 6 | | 3.6368 | 0.0152 | 0.7891 | 3.1298 | 0.0136 | 0.8398 | 7 | | 3.5465 | 0.0154 | 0.7775 | 3.0736 | 0.0138 | 0.8606 | 8 | | 3.4710 | 0.0157 | 0.7681 | 3.0318 | 0.0138 | 0.8455 | 9 | | 3.3988 | 0.0159 | 0.7603 | 3.0159 | 0.0139 | 0.8770 | 10 | | 3.3279 | 0.0162 | 0.7504 | 2.9672 | 0.0141 | 0.8241 | 11 | | 3.2611 | 0.0164 | 0.7397 | 2.9541 | 0.0141 | 0.8676 | 12 | | 3.1996 | 0.0167 | 0.7284 | 2.8913 | 0.0144 | 0.7990 | 13 | | 3.1311 | 0.0169 | 0.7162 | 2.8671 | 0.0145 | 0.7934 | 14 | | 3.0590 | 0.0172 | 0.7044 | 2.8241 | 0.0146 | 0.7907 | 15 | | 2.9692 | 0.0177 | 0.6843 | 2.7517 | 0.0149 | 0.7645 | 16 | | 2.8783 | 0.0181 | 0.6630 | 2.6682 | 0.0152 | 0.7263 | 17 | | 2.7622 | 0.0187 | 0.6417 | 2.5586 | 0.0156 | 0.7220 | 18 | | 2.6164 | 0.0194 | 0.6138 | 2.4121 | 0.0161 | 0.6909 | 19 | | 2.4405 | 0.0203 | 0.5838 | 2.2417 | 0.0167 | 0.6527 | 20 | | 2.2404 | 0.0213 | 0.5486 | 2.1401 | 0.0170 | 0.6662 | 21 | | 2.0196 | 0.0225 | 0.5086 | 1.8907 | 0.0180 | 0.5774 | 22 | | 1.7917 | 0.0237 | 0.4665 | 1.7073 | 0.0186 | 0.5446 | 23 | | 1.5286 | 0.0253 | 0.4182 | 1.5139 | 0.0194 | 0.4919 | 24 | | 1.2991 | 0.0267 | 0.3736 | 1.3605 | 0.0200 | 0.4570 | 25 | | 1.1117 | 0.0279 | 0.3336 | 1.2304 | 0.0205 | 0.4262 | 26 | | 0.9643 | 0.0289 | 0.2986 | 1.1387 | 0.0209 | 0.4040 | 27 | | 0.8404 | 0.0298 | 0.2663 | 1.0514 | 0.0213 | 0.3776 | 28 | | 0.7408 | 0.0305 | 0.2408 | 0.9883 | 0.0216 | 0.3596 | 29 | | 0.6542 | 0.0311 | 0.2155 | 0.9281 | 0.0218 | 0.3418 | 30 | | 0.5800 | 0.0316 | 0.1936 | 0.8801 | 0.0221 | 0.3269 | 31 | | 0.5168 | 0.0321 | 0.1737 | 0.8401 | 0.0222 | 0.3168 | 32 | | 0.4595 | 0.0326 | 0.1552 | 0.8071 | 0.0224 | 0.3077 | 33 | | 0.4080 | 0.0330 | 0.1375 | 0.7825 | 0.0225 | 0.2994 | 34 | | 0.3646 | 0.0333 | 0.1225 | 0.7550 | 0.0226 | 0.2887 | 35 | | 0.3234 | 0.0337 | 0.1095 | 0.7369 | 0.0227 | 0.2847 | 36 | | 0.2878 | 0.0340 | 0.0950 | 0.7270 | 0.0228 | 0.2796 | 37 | | 0.2542 | 0.0343 | 0.0823 | 0.7096 | 0.0229 | 0.2728 | 38 | | 0.2238 | 0.0346 | 0.0718 | 0.6963 | 0.0229 | 0.2697 | 39 | | 0.1974 | 0.0348 | 0.0609 | 0.6857 | 0.0230 | 0.2669 | 40 | | 0.1714 | 0.0351 | 0.0500 | 0.6843 | 0.0230 | 0.2663 | 41 | | 0.1488 | 0.0353 | 0.0411 | 0.6770 | 0.0230 | 0.2630 | 42 | | 0.1296 | 0.0355 | 0.0339 | 0.6754 | 0.0231 | 0.2612 | 43 | | 0.1117 | 0.0356 | 0.0270 | 0.6702 | 0.0231 | 0.2585 | 44 | | 0.0954 | 0.0358 | 0.0211 | 0.6695 | 0.0231 | 0.2574 | 45 | | 0.0822 | 0.0359 | 0.0163 | 0.6711 | 0.0231 | 0.2572 | 46 | | 0.0715 | 0.0360 | 0.0137 | 0.6685 | 0.0231 | 0.2583 | 47 | | 0.0591 | 0.0361 | 0.0093 | 0.6696 | 0.0231 | 0.2590 | 48 | | 0.0494 | 0.0361 | 0.0068 | 0.6663 | 0.0232 | 0.2609 | 49 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
lseancs/models
lseancs
2023-09-02T18:04:04Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-25T23:08:52Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: photo of a <new1> cat tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - lseancs/models These are Custom Diffusion adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on photo of a <new1> cat using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
bigmorning/whisper_syl_noforce__0045
bigmorning
2023-09-02T17:59:26Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T17:59:18Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce__0045 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce__0045 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1117 - Train Accuracy: 0.0356 - Train Wermet: 0.0270 - Validation Loss: 0.6702 - Validation Accuracy: 0.0231 - Validation Wermet: 0.2585 - Epoch: 44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2961 | 0.0113 | 1.9043 | 3.9402 | 0.0116 | 0.9526 | 0 | | 4.6207 | 0.0121 | 0.8740 | 3.7957 | 0.0120 | 0.9397 | 1 | | 4.4142 | 0.0128 | 0.8473 | 3.6045 | 0.0124 | 0.8988 | 2 | | 4.1915 | 0.0135 | 0.8361 | 3.4445 | 0.0128 | 0.9019 | 3 | | 4.0072 | 0.0140 | 0.8260 | 3.3268 | 0.0131 | 0.8816 | 4 | | 3.8559 | 0.0145 | 0.8084 | 3.2440 | 0.0133 | 0.8592 | 5 | | 3.7359 | 0.0149 | 0.7986 | 3.1751 | 0.0135 | 0.8598 | 6 | | 3.6368 | 0.0152 | 0.7891 | 3.1298 | 0.0136 | 0.8398 | 7 | | 3.5465 | 0.0154 | 0.7775 | 3.0736 | 0.0138 | 0.8606 | 8 | | 3.4710 | 0.0157 | 0.7681 | 3.0318 | 0.0138 | 0.8455 | 9 | | 3.3988 | 0.0159 | 0.7603 | 3.0159 | 0.0139 | 0.8770 | 10 | | 3.3279 | 0.0162 | 0.7504 | 2.9672 | 0.0141 | 0.8241 | 11 | | 3.2611 | 0.0164 | 0.7397 | 2.9541 | 0.0141 | 0.8676 | 12 | | 3.1996 | 0.0167 | 0.7284 | 2.8913 | 0.0144 | 0.7990 | 13 | | 3.1311 | 0.0169 | 0.7162 | 2.8671 | 0.0145 | 0.7934 | 14 | | 3.0590 | 0.0172 | 0.7044 | 2.8241 | 0.0146 | 0.7907 | 15 | | 2.9692 | 0.0177 | 0.6843 | 2.7517 | 0.0149 | 0.7645 | 16 | | 2.8783 | 0.0181 | 0.6630 | 2.6682 | 0.0152 | 0.7263 | 17 | | 2.7622 | 0.0187 | 0.6417 | 2.5586 | 0.0156 | 0.7220 | 18 | | 2.6164 | 0.0194 | 0.6138 | 2.4121 | 0.0161 | 0.6909 | 19 | | 2.4405 | 0.0203 | 0.5838 | 2.2417 | 0.0167 | 0.6527 | 20 | | 2.2404 | 0.0213 | 0.5486 | 2.1401 | 0.0170 | 0.6662 | 21 | | 2.0196 | 0.0225 | 0.5086 | 1.8907 | 0.0180 | 0.5774 | 22 | | 1.7917 | 0.0237 | 0.4665 | 1.7073 | 0.0186 | 0.5446 | 23 | | 1.5286 | 0.0253 | 0.4182 | 1.5139 | 0.0194 | 0.4919 | 24 | | 1.2991 | 0.0267 | 0.3736 | 1.3605 | 0.0200 | 0.4570 | 25 | | 1.1117 | 0.0279 | 0.3336 | 1.2304 | 0.0205 | 0.4262 | 26 | | 0.9643 | 0.0289 | 0.2986 | 1.1387 | 0.0209 | 0.4040 | 27 | | 0.8404 | 0.0298 | 0.2663 | 1.0514 | 0.0213 | 0.3776 | 28 | | 0.7408 | 0.0305 | 0.2408 | 0.9883 | 0.0216 | 0.3596 | 29 | | 0.6542 | 0.0311 | 0.2155 | 0.9281 | 0.0218 | 0.3418 | 30 | | 0.5800 | 0.0316 | 0.1936 | 0.8801 | 0.0221 | 0.3269 | 31 | | 0.5168 | 0.0321 | 0.1737 | 0.8401 | 0.0222 | 0.3168 | 32 | | 0.4595 | 0.0326 | 0.1552 | 0.8071 | 0.0224 | 0.3077 | 33 | | 0.4080 | 0.0330 | 0.1375 | 0.7825 | 0.0225 | 0.2994 | 34 | | 0.3646 | 0.0333 | 0.1225 | 0.7550 | 0.0226 | 0.2887 | 35 | | 0.3234 | 0.0337 | 0.1095 | 0.7369 | 0.0227 | 0.2847 | 36 | | 0.2878 | 0.0340 | 0.0950 | 0.7270 | 0.0228 | 0.2796 | 37 | | 0.2542 | 0.0343 | 0.0823 | 0.7096 | 0.0229 | 0.2728 | 38 | | 0.2238 | 0.0346 | 0.0718 | 0.6963 | 0.0229 | 0.2697 | 39 | | 0.1974 | 0.0348 | 0.0609 | 0.6857 | 0.0230 | 0.2669 | 40 | | 0.1714 | 0.0351 | 0.0500 | 0.6843 | 0.0230 | 0.2663 | 41 | | 0.1488 | 0.0353 | 0.0411 | 0.6770 | 0.0230 | 0.2630 | 42 | | 0.1296 | 0.0355 | 0.0339 | 0.6754 | 0.0231 | 0.2612 | 43 | | 0.1117 | 0.0356 | 0.0270 | 0.6702 | 0.0231 | 0.2585 | 44 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_10_50000_8_e7_s6789_v4_l4_r4
KingKazma
2023-09-02T17:54:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:54:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
sashat/whisper-small-ar
sashat
2023-09-02T17:54:28Z
102
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:ClArTTS_N_QASR_female", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T16:29:01Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ClArTTS_N_QASR_female model-index: - name: Whisper Small Ar - Sara results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ar - Sara This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CLArQasr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.2
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e6_s6789_v4_l4_v100
KingKazma
2023-09-02T17:45:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:45:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_250
The-matt
2023-09-02T17:43:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:42:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
alexeynoskov/ppo-LunarLander-v2-cleanrl
alexeynoskov
2023-09-02T17:41:40Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T08:38:18Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 150.08 +/- 50.42 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'env_id': 'LunarLander-v2' 'seed': 1 'total_timesteps': 100000 'learning_rate': 0.00025 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'norm_adv': True 'clip_vloss': True 'cuda': True 'torch_deterministic': False 'track': False 'wandb_project_name': None 'wandb_entity': None 'num_envs': 4 'num_steps': 128 'capture_video': False 'num_minibatches': 4 'update_epochs': 4 'clip_coef': 0.2 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'push_to_huggingface': 'alexeynoskov/ppo-LunarLander-v2-cleanrl' 'batch_size': 512 'minibatch_size': 128} ```
The-matt/autumn-shadow-48_240
The-matt
2023-09-02T17:34:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:34:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
bigmorning/whisper_syl_noforce__0035
bigmorning
2023-09-02T17:33:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T17:32:52Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce__0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce__0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4080 - Train Accuracy: 0.0330 - Train Wermet: 0.1375 - Validation Loss: 0.7825 - Validation Accuracy: 0.0225 - Validation Wermet: 0.2994 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2961 | 0.0113 | 1.9043 | 3.9402 | 0.0116 | 0.9526 | 0 | | 4.6207 | 0.0121 | 0.8740 | 3.7957 | 0.0120 | 0.9397 | 1 | | 4.4142 | 0.0128 | 0.8473 | 3.6045 | 0.0124 | 0.8988 | 2 | | 4.1915 | 0.0135 | 0.8361 | 3.4445 | 0.0128 | 0.9019 | 3 | | 4.0072 | 0.0140 | 0.8260 | 3.3268 | 0.0131 | 0.8816 | 4 | | 3.8559 | 0.0145 | 0.8084 | 3.2440 | 0.0133 | 0.8592 | 5 | | 3.7359 | 0.0149 | 0.7986 | 3.1751 | 0.0135 | 0.8598 | 6 | | 3.6368 | 0.0152 | 0.7891 | 3.1298 | 0.0136 | 0.8398 | 7 | | 3.5465 | 0.0154 | 0.7775 | 3.0736 | 0.0138 | 0.8606 | 8 | | 3.4710 | 0.0157 | 0.7681 | 3.0318 | 0.0138 | 0.8455 | 9 | | 3.3988 | 0.0159 | 0.7603 | 3.0159 | 0.0139 | 0.8770 | 10 | | 3.3279 | 0.0162 | 0.7504 | 2.9672 | 0.0141 | 0.8241 | 11 | | 3.2611 | 0.0164 | 0.7397 | 2.9541 | 0.0141 | 0.8676 | 12 | | 3.1996 | 0.0167 | 0.7284 | 2.8913 | 0.0144 | 0.7990 | 13 | | 3.1311 | 0.0169 | 0.7162 | 2.8671 | 0.0145 | 0.7934 | 14 | | 3.0590 | 0.0172 | 0.7044 | 2.8241 | 0.0146 | 0.7907 | 15 | | 2.9692 | 0.0177 | 0.6843 | 2.7517 | 0.0149 | 0.7645 | 16 | | 2.8783 | 0.0181 | 0.6630 | 2.6682 | 0.0152 | 0.7263 | 17 | | 2.7622 | 0.0187 | 0.6417 | 2.5586 | 0.0156 | 0.7220 | 18 | | 2.6164 | 0.0194 | 0.6138 | 2.4121 | 0.0161 | 0.6909 | 19 | | 2.4405 | 0.0203 | 0.5838 | 2.2417 | 0.0167 | 0.6527 | 20 | | 2.2404 | 0.0213 | 0.5486 | 2.1401 | 0.0170 | 0.6662 | 21 | | 2.0196 | 0.0225 | 0.5086 | 1.8907 | 0.0180 | 0.5774 | 22 | | 1.7917 | 0.0237 | 0.4665 | 1.7073 | 0.0186 | 0.5446 | 23 | | 1.5286 | 0.0253 | 0.4182 | 1.5139 | 0.0194 | 0.4919 | 24 | | 1.2991 | 0.0267 | 0.3736 | 1.3605 | 0.0200 | 0.4570 | 25 | | 1.1117 | 0.0279 | 0.3336 | 1.2304 | 0.0205 | 0.4262 | 26 | | 0.9643 | 0.0289 | 0.2986 | 1.1387 | 0.0209 | 0.4040 | 27 | | 0.8404 | 0.0298 | 0.2663 | 1.0514 | 0.0213 | 0.3776 | 28 | | 0.7408 | 0.0305 | 0.2408 | 0.9883 | 0.0216 | 0.3596 | 29 | | 0.6542 | 0.0311 | 0.2155 | 0.9281 | 0.0218 | 0.3418 | 30 | | 0.5800 | 0.0316 | 0.1936 | 0.8801 | 0.0221 | 0.3269 | 31 | | 0.5168 | 0.0321 | 0.1737 | 0.8401 | 0.0222 | 0.3168 | 32 | | 0.4595 | 0.0326 | 0.1552 | 0.8071 | 0.0224 | 0.3077 | 33 | | 0.4080 | 0.0330 | 0.1375 | 0.7825 | 0.0225 | 0.2994 | 34 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3