modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
facebook/deit-base-patch16-384
facebook
2022-07-13T11:41:03Z
349
1
transformers
[ "transformers", "pytorch", "tf", "vit", "image-classification", "dataset:imagenet-1k", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet-1k --- # Data-efficient Image Transformer (base-sized model) Data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 384x384. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is actually a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained at resolution 224 and fine-tuned at resolution 384 on a large collection of images in a supervised fashion, namely ImageNet-1k. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a more efficiently trained ViT model, you can plug it into ViTModel or ViTForImageClassification. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-patch16-384') model = ViTForImageClassification.from_pretrained('facebook/deit-base-patch16-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (438x438), center-cropped at 384x384 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Pre-training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | **DeiT-base 384** | **82.9** | **96.2** | **87M** | **https://huggingface.co/facebook/deit-base-patch16-384** | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/deit-base-patch16-224
facebook
2022-07-13T11:40:44Z
144,060
13
transformers
[ "transformers", "pytorch", "tf", "vit", "image-classification", "dataset:imagenet-1k", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet-1k --- # Data-efficient Image Transformer (base-sized model) Data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is actually a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained and fine-tuned on a large collection of images in a supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a more efficiently trained ViT model, you can plug it into ViTModel or ViTForImageClassification. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-patch16-224') model = ViTForImageClassification.from_pretrained('facebook/deit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | **DeiT-base** | **81.8** | **95.6** | **86M** | **https://huggingface.co/facebook/deit-base-patch16-224** | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/deit-base-distilled-patch16-224
facebook
2022-07-13T11:39:38Z
16,934
23
transformers
[ "transformers", "pytorch", "tf", "deit", "image-classification", "vision", "dataset:imagenet", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet --- # Distilled Data-efficient Image Transformer (base-sized model) Distilled data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is a distilled Vision Transformer (ViT). It uses a distillation token, besides the class token, to effectively learn from a teacher (CNN) during both pre-training and fine-tuning. The distillation token is learned through backpropagation, by interacting with the class ([CLS]) and patch tokens through the self-attention layers. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a distilled ViT model, you can plug it into DeiTModel, DeiTForImageClassification or DeiTForImageClassificationWithTeacher. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, DeiTForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") # forward pass outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data This model was pretrained and fine-tuned with distillation on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | **DeiT-base distilled** | **83.4** | **96.5** | **87M** | **https://huggingface.co/facebook/deit-base-distilled-patch16-224** | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
matjesg/deepflash2_demo
matjesg
2022-07-13T10:54:35Z
0
2
null
[ "onnx", "image-segmentation", "semantic-segmentation", "deepflash2", "arxiv:2111.06693", "license:apache-2.0", "region:us" ]
image-segmentation
2022-05-31T09:43:39Z
--- tags: - image-segmentation - semantic-segmentation - deepflash2 license: apache-2.0 datasets: - "cFOS in HC" - "YFP in CTX" --- # Demo models for ![deepflash2](https://raw.githubusercontent.com/matjesg/deepflash2/master/nbs/media/logo/deepflash2_logo_medium.png) **Try in [Hugging Face Spaces](https://huggingface.co/spaces/matjesg/deepflash2)** 🤗🤗🤗 - **Task**: Image Segmentation / Semantic Segmentation - **Paper**: The preprint of our paper is available on [arXiv](https://arxiv.org/pdf/2111.06693.pdf) - **Data**: The cFOS in HC dataset ([Article](https://doi.org/10.7554/eLife.59780), [Data](https://doi.org/10.5061/dryad.4b8gtht9d)) describes the indirect immunofluorescent labeling of the transcription factor cFOS in different subregions of the hippocampus after behavioral testing of the mice. - **Library**: See [github](https://github.com/matjesg/deepflash2/)
fxmarty/20220713-h10m20s05_example_conll2003
fxmarty
2022-07-13T10:20:11Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-13T10:20:05Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **quantization_approach**: `static` * **operators_to_quantize**: `['Add', 'MatMul']` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` # Evaluation ## Non-time metrics | node_exclusion | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :------------------------------------------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | \| | 0.936 | 0.904 | \| | 0.944 | 0.921 | \| | 0.940 | 0.912 | \| | 0.988 | 0.984 | | `[]` | \| | 0.936 | 0.065 | \| | 0.944 | 0.243 | \| | 0.940 | 0.103 | \| | 0.988 | 0.357 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 4, input length = 64. | node_exclusion | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :------------------------------------------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | \| | 120.53 | 46.41 | \| | 8.33 | 21.60 | | `[]` | \| | 119.97 | 59.50 | \| | 8.40 | 16.87 |
nawta/wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2
nawta
2022-07-13T10:11:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-13T09:25:20Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2 This model is a fine-tuned version of [/root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin](https://huggingface.co//root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6235 - Cer: 0.8973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0097 | 23.81 | 500 | 2.6235 | 0.8973 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
hugginglearners/flowers_101_convnext_model
hugginglearners
2022-07-13T09:58:32Z
0
3
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-07-04T00:50:48Z
--- tags: - fastai - image-classification --- # Model card ## Model description This model has been trained with convnext_tiny_in22k with [Flowers-101 datasets in Kaggle](https://www.kaggle.com/competitions/tpu-getting-started). **Useful graphs logged with wandb** ![image](https://user-images.githubusercontent.com/24592806/177065734-2d2920d2-adf2-4d73-8e89-a59e269544d4.png) ![image](https://user-images.githubusercontent.com/24592806/177065795-5c66ae3f-5e05-44c3-a6e5-0abb302c7d50.png) ## Intended uses & limitations - The model can be used be for classifying flowers only. **Limitations** - Even if the picture uploaded is not of a flower, you can can notice [it will be predicted as of flower](https://www.kaggle.com/competitions/tpu-getting-started). - The model on validation dataset has accuracy of 94.23% ![image](https://user-images.githubusercontent.com/24592806/177065484-1fae6a79-5dbe-471a-8c86-9c5aaa336bc6.png) ## Training and evaluation data - The models has been trained and evaluated with [Flowers-101 datasets in Kaggle](https://www.kaggle.com/competitions/tpu-getting-started). - We used a Random Splitter to train and evaluate data
casasdorjunior/t5-small-finetuned-cc-news-es-titles
casasdorjunior
2022-07-13T08:52:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cc-news-es-titles", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-13T07:38:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cc-news-es-titles metrics: - rouge model-index: - name: t5-small-finetuned-cc-news-es-titles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cc-news-es-titles type: cc-news-es-titles args: default metrics: - name: Rouge1 type: rouge value: 16.701 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cc-news-es-titles This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cc-news-es-titles dataset. It achieves the following results on the evaluation set: - Loss: 2.6383 - Rouge1: 16.701 - Rouge2: 4.1265 - Rougel: 14.8175 - Rougelsum: 14.8193 - Gen Len: 18.9159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 2.8439 | 1.0 | 23133 | 2.6383 | 16.701 | 4.1265 | 14.8175 | 14.8193 | 18.9159 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
loz/Test
loz
2022-07-13T08:11:37Z
0
0
null
[ "region:us" ]
null
2022-07-13T08:08:54Z
me on a bike going into the sunset at night with my dog running along side me
Loc/lucky-model
Loc
2022-07-13T07:06:05Z
53
0
transformers
[ "transformers", "pytorch", "tf", "jax", "vit", "image-classification", "vision", "dataset:imagenet-1k", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-13T03:43:48Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/vit.html#). ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
jason9693/soongsil-bert-small
jason9693
2022-07-13T05:33:10Z
10
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko widget: - 숭실대학교 글로벌<mask>학부 ---
AdiKompella/testpyramidsrnd
AdiKompella
2022-07-13T05:18:15Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-13T05:18:07Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: AdiKompella/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
huggingtweets/majigglydoobers
huggingtweets
2022-07-13T02:58:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-13T02:56:45Z
--- language: en thumbnail: http://www.huggingtweets.com/majigglydoobers/1657681081092/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1542204712455241729/6E7rxSrt_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">doobers 👻❤️‍🩹</div> <div style="text-align: center; font-size: 14px;">@majigglydoobers</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from doobers 👻❤️‍🩹. | Data | doobers 👻❤️‍🩹 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 2046 | | Short tweets | 199 | | Tweets kept | 1004 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36h6xok5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @majigglydoobers's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/emkivtny) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/emkivtny/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/majigglydoobers') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kitsune__spirit
huggingtweets
2022-07-13T02:51:17Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/kitsune__spirit/1657680673292/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523268231833739266/foV-CaZh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">KitsuneSpirit Mei 💝🦊「 YOKOMESHI 」</div> <div style="text-align: center; font-size: 14px;">@kitsune__spirit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from KitsuneSpirit Mei 💝🦊「 YOKOMESHI 」. | Data | KitsuneSpirit Mei 💝🦊「 YOKOMESHI 」 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 67 | | Short tweets | 820 | | Tweets kept | 2361 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uiy3sjw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kitsune__spirit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hdne87l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hdne87l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kitsune__spirit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ariesutiono/scibert-lm-const-finetuned-20
ariesutiono
2022-07-13T00:15:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T23:32:22Z
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: scibert-lm-const-finetuned-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert-lm-const-finetuned-20 This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 2.0099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6081 | 1.0 | 118 | 2.9156 | | 2.7954 | 2.0 | 236 | 2.5940 | | 2.5762 | 3.0 | 354 | 2.5017 | | 2.4384 | 4.0 | 472 | 2.3923 | | 2.3391 | 5.0 | 590 | 2.2996 | | 2.2417 | 6.0 | 708 | 2.3180 | | 2.2161 | 7.0 | 826 | 2.2336 | | 2.1918 | 8.0 | 944 | 2.2465 | | 2.1494 | 9.0 | 1062 | 2.1871 | | 2.1215 | 10.0 | 1180 | 2.1566 | | 2.1015 | 11.0 | 1298 | 2.1849 | | 2.05 | 12.0 | 1416 | 2.1092 | | 2.0653 | 13.0 | 1534 | 2.2221 | | 2.0261 | 14.0 | 1652 | 2.1572 | | 2.0117 | 15.0 | 1770 | 2.1452 | | 1.9845 | 16.0 | 1888 | 2.1433 | | 1.9791 | 17.0 | 2006 | 2.1225 | | 1.9979 | 18.0 | 2124 | 2.0777 | | 1.9688 | 19.0 | 2242 | 2.1765 | | 1.9873 | 20.0 | 2360 | 2.0099 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
hugginglearners/multi-object-classification
hugginglearners
2022-07-13T00:14:55Z
0
2
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-07-04T04:34:10Z
--- tags: - fastai - image-classification --- ## Model description This repo contains the trained model for Multi-object classification Full credits go to [Nhu Hoang](https://www.linkedin.com/in/nhu-hoang/) Motivation: Classifying multiple objects is a challenging task without using an object detection algorithm. This model was trained on resnet34 backbone and achieved a good accuracy. ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 3e-3 | | training_precision | float16 |
AntiSquid/Reinforce-pix-5
AntiSquid
2022-07-12T23:21:37Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T23:21:12Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pix-5 results: - metrics: - type: mean_reward value: 20.30 +/- 17.44 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AntiSquid/Reinforce-model-666
AntiSquid
2022-07-12T21:52:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T21:51:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model-666 results: - metrics: - type: mean_reward value: 117.10 +/- 4.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Shaier/medqa_fine_tuned_generic_bert
Shaier
2022-07-12T20:33:17Z
1
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-12T19:49:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medqa_fine_tuned_generic_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medqa_fine_tuned_generic_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Accuracy: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3851 | 0.2594 | | 1.3896 | 2.0 | 636 | 1.3805 | 0.2807 | | 1.3896 | 3.0 | 954 | 1.3852 | 0.2948 | | 1.3629 | 4.0 | 1272 | 1.3996 | 0.2980 | | 1.3068 | 5.0 | 1590 | 1.4239 | 0.2869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
huggingtweets/ydouright
huggingtweets
2022-07-12T20:15:17Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T20:13:42Z
--- language: en thumbnail: http://www.huggingtweets.com/ydouright/1657656913047/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506510453286924293/NXf3sNMH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ethans.data</div> <div style="text-align: center; font-size: 14px;">@ydouright</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ethans.data. | Data | ethans.data | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 119 | | Short tweets | 572 | | Tweets kept | 2554 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vfnsep8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ydouright's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3f5l1flk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3f5l1flk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ydouright') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ychenNLP/arabic-ner-ace
ychenNLP
2022-07-12T20:02:24Z
15
2
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "BERT", "token-classification", "sequence-tagger-model", "ar", "en", "dataset:ACE2005", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-29T18:45:26Z
--- tags: - BERT - token-classification - sequence-tagger-model language: - ar - en license: mit datasets: - ACE2005 --- # Arabic NER Model - [Github repo](https://github.com/edchengg/GigaBERT) - NER BIO tagging model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English). - ACE2005 Training data: English + Arabic - [NER tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf) including: PER, VEH, GPE, WEA, ORG, LOC, FAC ## Hyperparameters - learning_rate=2e-5 - num_train_epochs=10 - weight_decay=0.01 ## ACE2005 Evaluation results (F1) | Language | Arabic | English | |:----:|:-----------:|:----:| | | 89.4 | 88.8 | ## How to use ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) >>> output = ner_pip('Protests break out across the US after Supreme Court overturns.') >>> print(output) [{'entity_group': 'GPE', 'score': 0.9979881, 'word': 'us', 'start': 30, 'end': 32}, {'entity_group': 'ORG', 'score': 0.99898684, 'word': 'supreme court', 'start': 39, 'end': 52}] >>> output = ner_pip('قال وزير العدل التركي بكير بوزداغ إن أنقرة تريد 12 مشتبهاً بهم من فنلندا و 21 من السويد') >>> print(output) [{'entity_group': 'PER', 'score': 0.9996214, 'word': 'وزير', 'start': 4, 'end': 8}, {'entity_group': 'ORG', 'score': 0.9952383, 'word': 'العدل', 'start': 9, 'end': 14}, {'entity_group': 'GPE', 'score': 0.9996675, 'word': 'التركي', 'start': 15, 'end': 21}, {'entity_group': 'PER', 'score': 0.9978992, 'word': 'بكير بوزداغ', 'start': 22, 'end': 33}, {'entity_group': 'GPE', 'score': 0.9997154, 'word': 'انقرة', 'start': 37, 'end': 42}, {'entity_group': 'PER', 'score': 0.9946885, 'word': 'مشتبها بهم', 'start': 51, 'end': 62}, {'entity_group': 'GPE', 'score': 0.99967396, 'word': 'فنلندا', 'start': 66, 'end': 72}, {'entity_group': 'PER', 'score': 0.99694425, 'word': '21', 'start': 75, 'end': 77}, {'entity_group': 'GPE', 'score': 0.99963355, 'word': 'السويد', 'start': 81, 'end': 87}] ``` ### BibTeX entry and citation info ```bibtex @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ```
MichalRoztocki/finetuning-sentiment-model-3000-samples
MichalRoztocki
2022-07-12T19:48:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T19:35:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3085 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/masonhaggerty
huggingtweets
2022-07-12T17:17:06Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T16:48:40Z
--- language: en thumbnail: http://www.huggingtweets.com/masonhaggerty/1657646221015/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410026132121047041/LiYev7vQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mason Haggerty</div> <div style="text-align: center; font-size: 14px;">@masonhaggerty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mason Haggerty. | Data | Mason Haggerty | | --- | --- | | Tweets downloaded | 785 | | Retweets | 71 | | Short tweets | 82 | | Tweets kept | 632 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jpav9nmg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @masonhaggerty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bs6k2tzz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bs6k2tzz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/masonhaggerty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
zluvolyote/s288cExpressionPrediction_k6
zluvolyote
2022-07-12T16:54:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T16:02:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: s288cExpressionPrediction_k6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s288cExpressionPrediction_k6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4418 - Accuracy: 0.8067 - F1: 0.7882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 58 | 0.5315 | 0.7278 | 0.7572 | | No log | 2.0 | 116 | 0.4604 | 0.7853 | 0.7841 | | No log | 3.0 | 174 | 0.4418 | 0.8067 | 0.7882 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
reachrkr/TEST2ppo-LunarLander-v2
reachrkr
2022-07-12T16:20:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T16:20:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.96 +/- 25.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
andy-0v0/orcs-and-friends
andy-0v0
2022-07-12T16:03:57Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-12T15:50:36Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: orcs-and-friends results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.522522509098053 --- # orcs-and-friends Five-way classifier for orcs and their friends Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### goblin ![goblin](images/goblin.jpg) #### gremlin ![gremlin](images/gremlin.jpg) #### ogre ![ogre](images/ogre.jpg) #### orc ![orc](images/orc.jpg) #### troll ![troll](images/troll.jpg)
MarLac/wav2vec2-base-timit-demo-google-colab
MarLac
2022-07-12T15:41:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T08:24:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5816 - Wer: 0.3533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.243 | 0.5 | 500 | 1.0798 | 0.7752 | | 0.834 | 1.01 | 1000 | 0.6206 | 0.5955 | | 0.5503 | 1.51 | 1500 | 0.5387 | 0.5155 | | 0.4548 | 2.01 | 2000 | 0.4660 | 0.4763 | | 0.3412 | 2.51 | 2500 | 0.8381 | 0.4836 | | 0.3128 | 3.02 | 3000 | 0.4818 | 0.4519 | | 0.2547 | 3.52 | 3500 | 0.4415 | 0.4230 | | 0.2529 | 4.02 | 4000 | 0.4624 | 0.4219 | | 0.2103 | 4.52 | 4500 | 0.4714 | 0.4096 | | 0.2102 | 5.03 | 5000 | 0.4968 | 0.4087 | | 0.1838 | 5.53 | 5500 | 0.4643 | 0.4131 | | 0.1721 | 6.03 | 6000 | 0.4676 | 0.3979 | | 0.1548 | 6.53 | 6500 | 0.4765 | 0.4085 | | 0.1595 | 7.04 | 7000 | 0.4797 | 0.3941 | | 0.1399 | 7.54 | 7500 | 0.4753 | 0.3902 | | 0.1368 | 8.04 | 8000 | 0.4697 | 0.3945 | | 0.1276 | 8.54 | 8500 | 0.5438 | 0.3869 | | 0.1255 | 9.05 | 9000 | 0.5660 | 0.3841 | | 0.1077 | 9.55 | 9500 | 0.4964 | 0.3947 | | 0.1197 | 10.05 | 10000 | 0.5349 | 0.3849 | | 0.1014 | 10.55 | 10500 | 0.5558 | 0.3883 | | 0.0949 | 11.06 | 11000 | 0.5673 | 0.3785 | | 0.0882 | 11.56 | 11500 | 0.5589 | 0.3955 | | 0.0906 | 12.06 | 12000 | 0.5752 | 0.4120 | | 0.1064 | 12.56 | 12500 | 0.5080 | 0.3727 | | 0.0854 | 13.07 | 13000 | 0.5398 | 0.3798 | | 0.0754 | 13.57 | 13500 | 0.5237 | 0.3816 | | 0.0791 | 14.07 | 14000 | 0.4967 | 0.3725 | | 0.0731 | 14.57 | 14500 | 0.5287 | 0.3744 | | 0.0719 | 15.08 | 15000 | 0.5633 | 0.3596 | | 0.062 | 15.58 | 15500 | 0.5399 | 0.3752 | | 0.0681 | 16.08 | 16000 | 0.5151 | 0.3759 | | 0.0559 | 16.58 | 16500 | 0.5564 | 0.3709 | | 0.0533 | 17.09 | 17000 | 0.5933 | 0.3743 | | 0.0563 | 17.59 | 17500 | 0.5381 | 0.3670 | | 0.0527 | 18.09 | 18000 | 0.5685 | 0.3731 | | 0.0492 | 18.59 | 18500 | 0.5728 | 0.3725 | | 0.0509 | 19.1 | 19000 | 0.6074 | 0.3807 | | 0.0436 | 19.6 | 19500 | 0.5762 | 0.3628 | | 0.0434 | 20.1 | 20000 | 0.6721 | 0.3729 | | 0.0416 | 20.6 | 20500 | 0.5842 | 0.3700 | | 0.0431 | 21.11 | 21000 | 0.5374 | 0.3607 | | 0.037 | 21.61 | 21500 | 0.5556 | 0.3667 | | 0.036 | 22.11 | 22000 | 0.5608 | 0.3592 | | 0.04 | 22.61 | 22500 | 0.5272 | 0.3637 | | 0.047 | 23.12 | 23000 | 0.5234 | 0.3625 | | 0.0506 | 23.62 | 23500 | 0.5427 | 0.3629 | | 0.0418 | 24.12 | 24000 | 0.5590 | 0.3626 | | 0.037 | 24.62 | 24500 | 0.5615 | 0.3555 | | 0.0429 | 25.13 | 25000 | 0.5806 | 0.3616 | | 0.045 | 25.63 | 25500 | 0.5777 | 0.3639 | | 0.0283 | 26.13 | 26000 | 0.5987 | 0.3617 | | 0.0253 | 26.63 | 26500 | 0.5671 | 0.3551 | | 0.032 | 27.14 | 27000 | 0.5464 | 0.3582 | | 0.0321 | 27.64 | 27500 | 0.5634 | 0.3573 | | 0.0274 | 28.14 | 28000 | 0.5513 | 0.3575 | | 0.0245 | 28.64 | 28500 | 0.5745 | 0.3537 | | 0.0251 | 29.15 | 29000 | 0.5759 | 0.3547 | | 0.0222 | 29.65 | 29500 | 0.5816 | 0.3533 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
andreaschandra/xlm-roberta-base-finetuned-panx-fr
andreaschandra
2022-07-12T15:30:15Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T15:15:58Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.9275221167113059 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1059 - F1: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5416 | 1.0 | 191 | 0.2322 | 0.8378 | | 0.2614 | 2.0 | 382 | 0.1544 | 0.8866 | | 0.1758 | 3.0 | 573 | 0.1059 | 0.9275 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
zluvolyote/CUBERT
zluvolyote
2022-07-12T15:09:51Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T18:09:44Z
--- license: mit tags: - generated_from_trainer model-index: - name: CUBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CUBERT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 58 | 5.5281 | | No log | 2.0 | 116 | 5.2508 | | No log | 3.0 | 174 | 5.2203 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.1 - Tokenizers 0.12.1
huggingtweets/scottduncanwx
huggingtweets
2022-07-12T14:43:36Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:37:59Z
--- language: en thumbnail: http://www.huggingtweets.com/scottduncanwx/1657637010818/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535379125296418821/ntSMv4LC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Scott Duncan</div> <div style="text-align: center; font-size: 14px;">@scottduncanwx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Scott Duncan. | Data | Scott Duncan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 186 | | Short tweets | 223 | | Tweets kept | 2841 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tziokng8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scottduncanwx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2swonujn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2swonujn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scottduncanwx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Kuro96/q-FrozenLake-v1-4x4-noSlippery
Kuro96
2022-07-12T14:35:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T14:35:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Kuro96/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Kuro96/q-Taxi-v3
Kuro96
2022-07-12T14:25:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T14:25:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/piotrikonowicz1
huggingtweets
2022-07-12T14:00:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:00:22Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/770622589664460802/bgUHfTNZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Piotr Ikonowicz</div> <div style="text-align: center; font-size: 14px;">@piotrikonowicz1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Piotr Ikonowicz. | Data | Piotr Ikonowicz | | --- | --- | | Tweets downloaded | 133 | | Retweets | 3 | | Short tweets | 13 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/156jwrd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piotrikonowicz1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w029u281) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w029u281/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piotrikonowicz1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
andreaschandra/xlm-roberta-base-finetuned-panx-de
andreaschandra
2022-07-12T13:52:44Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T13:28:29Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
workRL/TEST2ppo-CarRacing-v0
workRL
2022-07-12T13:31:15Z
3
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T13:29:34Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -69.53 +/- 1.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hugginglearners/grapevine_leaves_classification
hugginglearners
2022-07-12T13:27:44Z
0
1
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-07-08T13:16:44Z
--- tags: - fastai - image-classification --- ## Model description This repo contains the trained model for grapevine leaves image classification Full credits go to [Vu Minh Chien](https://www.linkedin.com/in/vumichien/) Motivation: The main product of grapevines is grapes that are consumed fresh or processed. In addition, grapevine leaves are harvested once a year as a by-product. The species of grapevine leaves are important in terms of price and taste. In this repo, deep learning-based classification is conducted by using images of grapevine leaves ## Intended uses & limitations Images of 500 vine leaves belonging to 5 species were taken with a special self-illuminating system. Later, this number was increased to 2500 with data augmentation methods ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | e-3 | | freeze_epochs| 3 | | unfreeze_epochs| 10| | training_precision | float16 |
hugginglearners/pokemon-card-checker
hugginglearners
2022-07-12T13:21:57Z
0
1
fastai
[ "fastai", "resnet", "computer-vision", "classification", "image-classification", "binary-classification", "license:cc0-1.0", "region:us" ]
image-classification
2022-06-20T14:02:07Z
--- tags: - fastai - resnet - computer-vision - classification - image-classification - binary-classification license: - cc0-1.0 --- # Resnet34 Pokemon Card Classifier ## Model Description This is a resnet34 model fine-tuned with fastai to [classify real and fake Pokemon cards (dataset)](https://www.kaggle.com/datasets/ongshujian/real-and-fake-pokemon-cards). Here is a colab notebook that shows how the model was trained and pushed to the hub: [link](https://github.com/mindwrapped/pokemon-card-checker/blob/main/pokemon_card_checker.ipynb). ## Intended uses & limitation This model is trained to identify real vs fake cards based on the backs of the cards, not the front. ## How to use ```python from huggingface_hub import from_pretrained_fastai # Pull model from hub learn = from_pretrained_fastai('hugginglearners/pokemon-card-checker') # Get prediction for this image pred_label, _, scores = learn.predict(img) ``` ## Training data Dataset located here: [link](https://www.kaggle.com/datasets/ongshujian/real-and-fake-pokemon-cards).
xuantsh/distilroberta-base-Mark_example
xuantsh
2022-07-12T13:13:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T12:57:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-Mark_example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-Mark_example This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8299 | 1.0 | 744 | 2.6322 | | 2.7034 | 2.0 | 1488 | 2.6514 | | 2.5616 | 3.0 | 2232 | 2.6596 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
suc155/distilbert-base-uncased-finetuned-sst2
suc155
2022-07-12T12:43:16Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T12:22:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9151376146788991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3056 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1827 | 1.0 | 4210 | 0.3056 | 0.9151 | | 0.1235 | 2.0 | 8420 | 0.3575 | 0.9071 | | 0.1009 | 3.0 | 12630 | 0.3896 | 0.9071 | | 0.0561 | 4.0 | 16840 | 0.4810 | 0.9060 | | 0.0406 | 5.0 | 21050 | 0.5375 | 0.9048 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mohammedbriman/t5-small-finetuned-cnn-dm-test
mohammedbriman
2022-07-12T12:38:05Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-12T09:51:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: t5-small-finetuned-cnn-dm-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-dm-test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4521 - Validation Loss: 2.1296 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 408096, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.4521 | 2.1296 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
xyma/PROP-marco-step400k
xyma
2022-07-12T11:53:02Z
3
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "PROP", "Pretrain4IR", "en", "dataset:msmarco", "arxiv:2010.10137", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-07-12T09:06:57Z
--- language: en tags: - PROP - Pretrain4IR license: apache-2.0 datasets: - msmarco --- # PROP-marco-step400k **PROP**, **P**re-training with **R**epresentative w**O**rds **P**rediction, is a new pre-training method tailored for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the “ideal” document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. The full paper can be found [here](https://arxiv.org/pdf/2010.10137.pdf). This model is pre-trained with more steps than [PROP-marco](https://huggingface.co/xyma/PROP-marco) on MS MARCO document corpus, and used at the MS MARCO Document Ranking Leaderboard where we reached 1st place. # Citation If you find our work useful, please consider citing our paper: ```bibtex @inproceedings{DBLP:conf/wsdm/MaGZFJC21, author = {Xinyu Ma and Jiafeng Guo and Ruqing Zhang and Yixing Fan and Xiang Ji and Xueqi Cheng}, editor = {Liane Lewin{-}Eytan and David Carmel and Elad Yom{-}Tov and Eugene Agichtein and Evgeniy Gabrilovich}, title = {{PROP:} Pre-training with Representative Words Prediction for Ad-hoc Retrieval}, booktitle = {{WSDM} '21, The Fourteenth {ACM} International Conference on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021}, pages = {283--291}, publisher = {{ACM}}, year = {2021}, url = {https://doi.org/10.1145/3437963.3441777}, doi = {10.1145/3437963.3441777}, timestamp = {Wed, 07 Apr 2021 16:17:44 +0200}, biburl = {https://dblp.org/rec/conf/wsdm/MaGZFJC21.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Vikasbhandari/wav2vec2-train
Vikasbhandari
2022-07-12T11:51:48Z
3
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.11430", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T11:11:37Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-large-960h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 1.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.9 --- # Wav2Vec2-Large-960h-Lv60 + Self-Training [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 960 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60-self** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 1.9 | 3.9 |
MiguelCosta/finetuning-sentiment-model-24000-samples
MiguelCosta
2022-07-12T10:48:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T06:17:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-24000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 - name: F1 type: f1 value: 0.9273927392739274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-24000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3505 - Accuracy: 0.9267 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nawta/wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained
nawta
2022-07-12T10:20:53Z
15
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T05:31:38Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained This model is a fine-tuned version of [/root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin](https://huggingface.co//root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2963 - Cer: 0.9002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3287 | 23.81 | 500 | 2.2963 | 0.9002 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
luke-thorburn/suggest-reasons-bias-only
luke-thorburn
2022-07-12T10:07:19Z
8
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate reasons that support a claim This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where some parameters (only the bias parameters, not weights) have been finetuned on the task of generating reasons that support a claim, optionally given some example reasons. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` List reasons why: [original claim] Reasons: * [reason 1] * [reason 2] ... * [reason n] * [generated reason] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-reasons-full-finetune
luke-thorburn
2022-07-12T10:04:57Z
10
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate reasons that support a claim This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating reasons that support a claim, optionally given some example reasons. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` List reasons why: [original claim] Reasons: * [reason 1] * [reason 2] ... * [reason n] * [generated reason] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-objections-full-finetune
luke-thorburn
2022-07-12T09:54:28Z
11
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate objections to a claim This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating the objections to a claim, optionally given some example objections to that claim. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` List objections to the claim that: [original claim] Objections: * [objection 1] * [objection 2] ... * [objection n] * [generated objection] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
moonzi/distilbert-base-uncased-finetuned-cola
moonzi
2022-07-12T09:35:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T09:23:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5383825234212567 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5608 - Matthews Correlation: 0.5384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5217 | 1.0 | 535 | 0.5248 | 0.4152 | | 0.3479 | 2.0 | 1070 | 0.5000 | 0.4855 | | 0.2345 | 3.0 | 1605 | 0.5608 | 0.5384 | | 0.1843 | 4.0 | 2140 | 0.7651 | 0.5224 | | 0.1304 | 5.0 | 2675 | 0.8071 | 0.5370 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AntiSquid/TEST2ppo-LunarLander-v2
AntiSquid
2022-07-12T07:10:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T21:53:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 285.66 +/- 15.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sun1638650145/Reinforce-Pixelcopter-PLE-v0
sun1638650145
2022-07-12T07:06:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T07:06:22Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - metrics: - type: mean_reward value: 13.30 +/- 9.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # 使用**Reinforce**智能体来玩**Pixelcopter-PLE-v0** 这是一个使用**Reinforce**训练有素的模型玩**Pixelcopter-PLE-v0**. 要学习使用这个模型并训练你的模型, 请查阅深度强化学习课程第5单元: https://github.com/huggingface/deep-rl-class/tree/main/unit5
thunlp/Lawformer
thunlp
2022-07-12T06:23:13Z
155
19
transformers
[ "transformers", "pytorch", "longformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## Lawformer ### Introduction This repository provides the source code and checkpoints of the paper "Lawformer: A Pre-trained Language Model forChinese Legal Long Documents". You can download the checkpoint from the [huggingface model hub](https://huggingface.co/xcjthu/Lawformer) or from [here](https://data.thunlp.org/legal/Lawformer.zip). ### Easy Start We have uploaded our model to the huggingface model hub. Make sure you have installed transformers. ```python >>> from transformers import AutoModel, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("thunlp/Lawformer") >>> model = AutoModel.from_pretrained("thunlp/Lawformer") >>> inputs = tokenizer("任某提起诉讼,请求判令解除婚姻关系并对夫妻共同财产进行分割。", return_tensors="pt") >>> outputs = model(**inputs) ``` ### Cite If you use the pre-trained models, please cite this paper: ``` @article{xiao2021lawformer, title={Lawformer: A Pre-trained Language Model forChinese Legal Long Documents}, author={Xiao, Chaojun and Hu, Xueyu and Liu, Zhiyuan and Tu, Cunchao and Sun, Maosong}, year={2021} } ```
reecejocumsenbb/testfield-finetuned-imdb
reecejocumsenbb
2022-07-12T06:02:47Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T04:23:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: reecejocumsenbb/testfield-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # reecejocumsenbb/testfield-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0451 - Validation Loss: 3.9664 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -993, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.0451 | 3.9664 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-4
Evelyn18
2022-07-12T04:38:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:36:14Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-4 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.1290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.6625 | | No log | 2.0 | 10 | 5.4940 | | No log | 3.0 | 15 | 5.3886 | | No log | 4.0 | 20 | 5.3004 | | No log | 5.0 | 25 | 5.2210 | | No log | 6.0 | 30 | 5.1434 | | No log | 7.0 | 35 | 5.0546 | | No log | 8.0 | 40 | 4.9726 | | No log | 9.0 | 45 | 4.9227 | | No log | 10.0 | 50 | 4.8344 | | No log | 11.0 | 55 | 4.7749 | | No log | 12.0 | 60 | 4.7381 | | No log | 13.0 | 65 | 4.7016 | | No log | 14.0 | 70 | 4.6581 | | No log | 15.0 | 75 | 4.6231 | | No log | 16.0 | 80 | 4.5900 | | No log | 17.0 | 85 | 4.5446 | | No log | 18.0 | 90 | 4.5041 | | No log | 19.0 | 95 | 4.4635 | | No log | 20.0 | 100 | 4.4356 | | No log | 21.0 | 105 | 4.3985 | | No log | 22.0 | 110 | 4.3650 | | No log | 23.0 | 115 | 4.3540 | | No log | 24.0 | 120 | 4.3270 | | No log | 25.0 | 125 | 4.2873 | | No log | 26.0 | 130 | 4.2808 | | No log | 27.0 | 135 | 4.2623 | | No log | 28.0 | 140 | 4.2466 | | No log | 29.0 | 145 | 4.2488 | | No log | 30.0 | 150 | 4.2410 | | No log | 31.0 | 155 | 4.2187 | | No log | 32.0 | 160 | 4.2000 | | No log | 33.0 | 165 | 4.1883 | | No log | 34.0 | 170 | 4.1803 | | No log | 35.0 | 175 | 4.1773 | | No log | 36.0 | 180 | 4.1652 | | No log | 37.0 | 185 | 4.1614 | | No log | 38.0 | 190 | 4.1609 | | No log | 39.0 | 195 | 4.1652 | | No log | 40.0 | 200 | 4.1560 | | No log | 41.0 | 205 | 4.1435 | | No log | 42.0 | 210 | 4.1463 | | No log | 43.0 | 215 | 4.1434 | | No log | 44.0 | 220 | 4.1340 | | No log | 45.0 | 225 | 4.1259 | | No log | 46.0 | 230 | 4.1212 | | No log | 47.0 | 235 | 4.1224 | | No log | 48.0 | 240 | 4.1257 | | No log | 49.0 | 245 | 4.1284 | | No log | 50.0 | 250 | 4.1290 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-3
Evelyn18
2022-07-12T04:30:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:28:15Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-3 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.4873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.7608 | | No log | 2.0 | 10 | 5.5991 | | No log | 3.0 | 15 | 5.5162 | | No log | 4.0 | 20 | 5.4370 | | No log | 5.0 | 25 | 5.3521 | | No log | 6.0 | 30 | 5.2657 | | No log | 7.0 | 35 | 5.1771 | | No log | 8.0 | 40 | 5.1024 | | No log | 9.0 | 45 | 5.0248 | | No log | 10.0 | 50 | 4.9609 | | No log | 11.0 | 55 | 4.9167 | | No log | 12.0 | 60 | 4.8487 | | No log | 13.0 | 65 | 4.8175 | | No log | 14.0 | 70 | 4.7646 | | No log | 15.0 | 75 | 4.7276 | | No log | 16.0 | 80 | 4.7003 | | No log | 17.0 | 85 | 4.6518 | | No log | 18.0 | 90 | 4.6240 | | No log | 19.0 | 95 | 4.6033 | | No log | 20.0 | 100 | 4.5601 | | No log | 21.0 | 105 | 4.5433 | | No log | 22.0 | 110 | 4.5279 | | No log | 23.0 | 115 | 4.4981 | | No log | 24.0 | 120 | 4.4831 | | No log | 25.0 | 125 | 4.4745 | | No log | 26.0 | 130 | 4.4607 | | No log | 27.0 | 135 | 4.4528 | | No log | 28.0 | 140 | 4.4348 | | No log | 29.0 | 145 | 4.4418 | | No log | 30.0 | 150 | 4.4380 | | No log | 31.0 | 155 | 4.4205 | | No log | 32.0 | 160 | 4.4373 | | No log | 33.0 | 165 | 4.4302 | | No log | 34.0 | 170 | 4.4468 | | No log | 35.0 | 175 | 4.4512 | | No log | 36.0 | 180 | 4.4225 | | No log | 37.0 | 185 | 4.4303 | | No log | 38.0 | 190 | 4.4562 | | No log | 39.0 | 195 | 4.4671 | | No log | 40.0 | 200 | 4.4869 | | No log | 41.0 | 205 | 4.5046 | | No log | 42.0 | 210 | 4.4990 | | No log | 43.0 | 215 | 4.4847 | | No log | 44.0 | 220 | 4.4770 | | No log | 45.0 | 225 | 4.4786 | | No log | 46.0 | 230 | 4.4741 | | No log | 47.0 | 235 | 4.4797 | | No log | 48.0 | 240 | 4.4830 | | No log | 49.0 | 245 | 4.4845 | | No log | 50.0 | 250 | 4.4873 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Saraswati/q-FrozenLake-v1-4x4-noSlippery
Saraswati
2022-07-12T04:25:49Z
0
1
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T04:25:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Saraswati/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Evelyn18/legalectra-small-spanish-becasv3-1
Evelyn18
2022-07-12T03:54:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T03:49:49Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-1 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 5.5694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 5.8980 | | No log | 2.0 | 16 | 5.8136 | | No log | 3.0 | 24 | 5.7452 | | No log | 4.0 | 32 | 5.6940 | | No log | 5.0 | 40 | 5.6554 | | No log | 6.0 | 48 | 5.6241 | | No log | 7.0 | 56 | 5.5997 | | No log | 8.0 | 64 | 5.5830 | | No log | 9.0 | 72 | 5.5730 | | No log | 10.0 | 80 | 5.5694 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nateraw/yolov6s
nateraw
2022-07-12T02:01:18Z
0
0
pytorch
[ "pytorch", "object-detection", "yolo", "autogenerated-modelcard", "en", "arxiv:1910.09700", "license:gpl-3.0", "region:us" ]
object-detection
2022-07-08T04:01:40Z
--- language: en license: gpl-3.0 library_name: pytorch tags: - object-detection - yolo - autogenerated-modelcard model_name: yolov6s --- # Model Card for yolov6s <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [@nateraw](https://hf.co/nateraw) - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models:** [yolov6t](https://hf.co/nateraw/yolov6t), [yolov6n](https://hf.co/nateraw/yolov6n) - **Parent Model:** N/A - **Resources for more information:** The [official GitHub Repository](https://github.com/meituan/YOLOv6) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is meant to be used as a general object detector. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> You can fine-tune this model for your specific task ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Don't be evil. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model often classifies objects incorrectly, especially when applied to videos. It does not handle crowds very well. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] Please refer to the [official GitHub Repository](https://github.com/meituan/YOLOv6) # Model Card Authors [optional] [@nateraw](https://hf.co/nateraw) # Model Card Contact [@nateraw](https://hf.co/nateraw) - please leave a note in the discussions tab here # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
nateraw/yolov6n
nateraw
2022-07-12T02:01:10Z
0
0
pytorch
[ "pytorch", "object-detection", "yolo", "autogenerated-modelcard", "en", "arxiv:1910.09700", "license:gpl-3.0", "region:us" ]
object-detection
2022-07-08T04:01:21Z
--- language: en license: gpl-3.0 library_name: pytorch tags: - object-detection - yolo - autogenerated-modelcard model_name: yolov6n --- # Model Card for yolov6n <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [@nateraw](https://hf.co/nateraw) - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models:** [yolov6t](https://hf.co/nateraw/yolov6t), [yolov6s](https://hf.co/nateraw/yolov6s) - **Parent Model:** N/A - **Resources for more information:** The [official GitHub Repository](https://github.com/meituan/YOLOv6) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is meant to be used as a general object detector. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> You can fine-tune this model for your specific task ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Don't be evil. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model often classifies objects incorrectly, especially when applied to videos. It does not handle crowds very well. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] Please refer to the [official GitHub Repository](https://github.com/meituan/YOLOv6) # Model Card Authors [optional] [@nateraw](https://hf.co/nateraw) # Model Card Contact [@nateraw](https://hf.co/nateraw) - please leave a note in the discussions tab here # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
ArthurBaia/xlm-roberta-base-squad-pt
ArthurBaia
2022-07-11T22:42:37Z
7
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad_v1_pt", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-07-11T16:59:16Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v1_pt model-index: - name: xlm-roberta-base-squad-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-squad-pt This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad_v1_pt dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results - "epoch": 3.0, - "eval_exact_match": 44.45600756859035, - "eval_f1": 57.37953911779836, - "eval_samples": 11095 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
AntiSquid/longTEST2ppo-LunarLander-v2
AntiSquid
2022-07-11T22:09:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T22:09:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 298.08 +/- 18.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sahilrajpal121/train5a1e8w7-label-classification
sahilrajpal121
2022-07-11T20:11:11Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-07-11T20:11:07Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on train5a1e8w7 to apply classification on label **Metrics of the best model:** accuracy 0.693101 recall_macro 0.665973 precision_macro 0.657625 f1_macro 0.656998 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False Fa... v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False Fa... v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False False ... False False False v_25 True False Fa... v_7 True False False ... False False False v_2 True False False ... False False False v_16 True False False ... False False False v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s732
jonatasgrosman
2022-07-11T19:54:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:54:29Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s732 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s468
jonatasgrosman
2022-07-11T19:48:19Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:47:54Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s468 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xls-r_s689
jonatasgrosman
2022-07-11T19:41:36Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:40:50Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xls-r_s689 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xls-r_s17
jonatasgrosman
2022-07-11T19:38:03Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:37:21Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xls-r_s17 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
KD02/distilbert-base-uncased-finetuned-squad
KD02
2022-07-11T19:37:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-11T14:14:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [KD02/distilbert-base-uncased-finetuned-squad](https://huggingface.co/KD02/distilbert-base-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_unispeech-sat_s103
jonatasgrosman
2022-07-11T19:34:07Z
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:33:36Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-sat_s103 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech-sat_s377
jonatasgrosman
2022-07-11T19:30:24Z
5
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:29:59Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-sat_s377 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-nl_s783
jonatasgrosman
2022-07-11T19:23:52Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:23:20Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s783 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-nl_s6
jonatasgrosman
2022-07-11T19:17:20Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:16:53Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s6 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-nl_s833
jonatasgrosman
2022-07-11T19:13:31Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:12:53Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s833 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s291
jonatasgrosman
2022-07-11T19:09:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:08:58Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s291 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s506
jonatasgrosman
2022-07-11T19:05:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:04:54Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s506 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jamie613/mt5_fill_puntuation
jamie613
2022-07-11T19:00:55Z
16
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T01:33:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5_fill_puntuation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_fill_puntuation This model is a fine-tuned version of [jamie613/mt5_fill_puntuation](https://huggingface.co/jamie613/mt5_fill_puntuation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0918 | 0.04 | 500 | 0.0803 | | 0.0894 | 0.07 | 1000 | 0.0773 | | 0.0905 | 0.11 | 1500 | 0.0822 | | 0.0908 | 0.15 | 2000 | 0.0833 | | 0.0868 | 0.18 | 2500 | 0.0840 | | 0.09 | 0.22 | 3000 | 0.0811 | | 0.0868 | 0.26 | 3500 | 0.0735 | | 0.0869 | 0.29 | 4000 | 0.0805 | | 0.0874 | 0.33 | 4500 | 0.0742 | | 0.088 | 0.37 | 5000 | 0.0749 | | 0.0884 | 0.4 | 5500 | 0.0730 | | 0.0861 | 0.44 | 6000 | 0.0749 | | 0.0804 | 0.48 | 6500 | 0.0739 | | 0.0845 | 0.51 | 7000 | 0.0717 | | 0.0861 | 0.55 | 7500 | 0.0743 | | 0.0812 | 0.59 | 8000 | 0.0726 | | 0.0824 | 0.62 | 8500 | 0.0729 | | 0.0836 | 0.66 | 9000 | 0.0751 | | 0.079 | 0.7 | 9500 | 0.0731 | | 0.0806 | 0.73 | 10000 | 0.0725 | | 0.0798 | 0.77 | 10500 | 0.0749 | | 0.0794 | 0.81 | 11000 | 0.0725 | | 0.0795 | 0.84 | 11500 | 0.0726 | | 0.0755 | 0.88 | 12000 | 0.0732 | | 0.0815 | 0.92 | 12500 | 0.0722 | | 0.0776 | 0.95 | 13000 | 0.0719 | | 0.0838 | 0.99 | 13500 | 0.0717 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_vp-fr_s485
jonatasgrosman
2022-07-11T18:54:15Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:53:30Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-fr_s485 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
quanxi/dqn-SpaceInvadersNoFrameskip-v4
quanxi
2022-07-11T18:32:52Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T18:32:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 596.50 +/- 113.18 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga quanxi -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga quanxi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jonatasgrosman/exp_w2v2t_pt_unispeech-ml_s808
jonatasgrosman
2022-07-11T18:31:15Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:30:46Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-ml_s808 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_wavlm_s51
jonatasgrosman
2022-07-11T18:10:28Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:09:52Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_wavlm_s51 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_no-pretraining_s34
jonatasgrosman
2022-07-11T18:06:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:05:36Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_no-pretraining_s34 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-sv_s894
jonatasgrosman
2022-07-11T17:54:51Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:54:09Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-sv_s894 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-sv_s612
jonatasgrosman
2022-07-11T17:47:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:47:09Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-sv_s612 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_hubert_s486
jonatasgrosman
2022-07-11T17:43:15Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:42:50Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_hubert_s486 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_hubert_s301
jonatasgrosman
2022-07-11T17:40:03Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:39:41Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_hubert_s301 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech_s474
jonatasgrosman
2022-07-11T17:29:59Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:29:33Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech_s474 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
kinanmartin/xlm-roberta-large-ner-hrl-finetuned-ner
kinanmartin
2022-07-11T17:29:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:toydata", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-11T03:49:46Z
--- tags: - generated_from_trainer datasets: - toydata metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-ner-hrl-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: toydata type: toydata args: SDN metrics: - name: Precision type: precision value: 0.9132452695465905 - name: Recall type: recall value: 0.9205854126679462 - name: F1 type: f1 value: 0.9169006511739053 - name: Accuracy type: accuracy value: 0.9784804945824268 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-ner-hrl-finetuned-ner This model is a fine-tuned version of [Davlan/xlm-roberta-large-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl) on the toydata dataset. It achieves the following results on the evaluation set: - Loss: 0.0944 - Precision: 0.9132 - Recall: 0.9206 - F1: 0.9169 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 408 | 0.0900 | 0.8508 | 0.9303 | 0.8888 | 0.9719 | | 0.1087 | 2.0 | 816 | 0.0827 | 0.9043 | 0.9230 | 0.9136 | 0.9783 | | 0.0503 | 3.0 | 1224 | 0.0944 | 0.9132 | 0.9206 | 0.9169 | 0.9785 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_xlsr-53_s829
jonatasgrosman
2022-07-11T17:23:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:23:00Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xlsr-53_s829 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xlsr-53_s677
jonatasgrosman
2022-07-11T17:17:00Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:16:33Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xlsr-53_s677 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-100k_s69
jonatasgrosman
2022-07-11T17:13:45Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:13:17Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-100k_s69 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-100k_s660
jonatasgrosman
2022-07-11T17:10:21Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:09:38Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-100k_s660 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_wav2vec2_s250
jonatasgrosman
2022-07-11T16:51:46Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:51:14Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_wav2vec2_s250 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_vp-it_s179
jonatasgrosman
2022-07-11T16:44:55Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:44:09Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-it_s179 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jorge-henao/gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col
jorge-henao
2022-07-11T16:43:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-11T16:29:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col This model is a fine-tuned version of [jorge-henao/gpt2-small-spanish-historias-conflicto-col](https://huggingface.co/jorge-henao/gpt2-small-spanish-historias-conflicto-col) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.5017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_es_vp-it_s438
jonatasgrosman
2022-07-11T16:41:02Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:40:28Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-it_s438 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
alefarasin/testpyramidsrnd
alefarasin
2022-07-11T16:37:44Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-11T16:37:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: alefarasin/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s227
jonatasgrosman
2022-07-11T16:34:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:33:36Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s227 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s870
jonatasgrosman
2022-07-11T16:30:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:29:58Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s870 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s809
jonatasgrosman
2022-07-11T16:26:53Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:26:08Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s809 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AdiKompella/Reinforce-CartPole
AdiKompella
2022-07-11T16:26:05Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T16:25:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - metrics: - type: mean_reward value: 276.70 +/- 57.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_es_xls-r_s691
jonatasgrosman
2022-07-11T16:19:22Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:18:30Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_xls-r_s691 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_unispeech-sat_s42
jonatasgrosman
2022-07-11T16:09:10Z
4
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:08:25Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_unispeech-sat_s42 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.