modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-28 18:26:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
477 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-28 18:24:32
card
stringlengths
11
1.01M
ScottShao/falcon-200steps-4bit-finetunined-sxl-20230811
ScottShao
2023-08-11T06:15:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-11T06:14:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
byxy/bert_sc
byxy
2023-08-11T06:05:21Z
62
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T08:38:28Z
--- tags: - generated_from_keras_callback model-index: - name: byxy/bert_sc results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # byxy/bert_sc This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0658 - Validation Loss: 2.1769 - Train Accuracy: 0.6522 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1248, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.0658 | 2.1769 | 0.6522 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.10.1 - Datasets 2.14.4 - Tokenizers 0.13.3
wangxso/dqn-SpaceInvadersNoFrameskip-v4
wangxso
2023-08-11T05:58:14Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T08:56:25Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 100.50 +/- 57.51 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga wangxso -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga wangxso -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga wangxso ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Evan-Lin/Bart-abs-yelp-allure-10
Evan-Lin
2023-08-11T05:57:13Z
48
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-08T07:00:58Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmps_u5v_y3/Evan-Lin/Bart-abs-yelp-allure-10") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmps_u5v_y3/Evan-Lin/Bart-abs-yelp-allure-10") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmps_u5v_y3/Evan-Lin/Bart-abs-yelp-allure-10") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
mambazjp/REC-MV_preprocess
mambazjp
2023-08-11T05:50:29Z
0
4
null
[ "region:us" ]
null
2023-08-02T15:21:16Z
# This is the tutorial of data processing of [REC-MV](https://github.com/GAP-LAB-CUHK-SZ/REC-MV). The data pre-processing part includes img, mask, normal, parsing (garment segmentation), camera, smpl parameters (beta & theta), featurelines, skinning weight. ## Step0 set up the environment (or you can directly use REC-MV environment) ``` pip install -r requirements.txt ``` ## Step1 You should make directory to save all processed data, named, to say, xiaoming. And you turn the video into images: ``` encodepngffmpeg() { # $1: target folder # $2: save video name ffmpeg -r ${1} -pattern_type glob -i '*.png' -vcodec libx264 -crf 18 -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" -pix_fmt yuv420p ${2} } encodepngffmpeg 30 ./xiaoming.mp4 ``` Then, your data directory: ``` xiaoming/ └── imgs ``` ## Step2 Normal, Parsing, and Mask Get the normal map, parsing mask, masks. ``` python prcess_data_all.py --gid <gpu_id> --root <Your data root> --gender <data gender> # example python prcess_data_all.py --gid 0 --root /data/xiaoming --gender male ``` Your data directory: ``` xiaoming/ ├── imgs ├── masks ├── normals └── parsing_SCH_ATR ``` ## Step3 SMPL & Camera To get smpl paramaters (pose and shape), here we use [videoavatar](https://github.com/thmoa/videoavatars): - Set up the env (**Note it use python2**) - Prepare keypoints files for each frame in the video and put them under `xiaoming/openpose`, which I use [Openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose). - Run three python files in videoavatars/prepare_data, you'll get `keypoints.hdf5, masks.hdf5, camera.hdf5.` Or you can just use my script: ```cd videoavatars; python get_reconstructed_poses.py --root xiaoming --out xiaoming --gender male``` - `bash run_step1.sh` After you run through videoavatar, you will get `camera.pkl, reconstructed_poses.hdf5`. Put it also under the root(xiaoming). You can get `smpl_rec.npz, camera.npz` by running: ``` python get_smpl_rec_camera.py --root xiaoming --save_root xiaoming --gender male ``` **Note: You can use any other smpl estimation algorithm, but you should follow the way how smpl_rec.npz save pose, shape, and trans.** ## Step4 Skining Weight We follow [fite](https://github.com/jsnln/fite) to get the lbs skinning weight to prevent artifacts. In fite's readme, you'll get a skining weight cube after finishing 3.Diffused Skinning. Name it `diffused_skinning_weights.npy` and put it under xiaoming.
MStarn/ppo-LunarLander-V2i
MStarn
2023-08-11T05:46:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-11T05:46:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.33 +/- 15.50 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
satani/two
satani
2023-08-11T05:35:23Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-11T05:29:21Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### two Dreambooth model trained by satani with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
GMGowtham/results
GMGowtham
2023-08-11T05:35:18Z
0
0
null
[ "generated_from_trainer", "region:us" ]
null
2023-08-11T05:25:40Z
--- base_model: NousResearch/llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [NousResearch/llama-2-7b-chat-hf](https://huggingface.co/NousResearch/llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
MStarn/ppo-LunarLander-Unit1
MStarn
2023-08-11T05:15:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-11T05:14:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 180.18 +/- 103.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jade1211/textual_inversion_cat
Jade1211
2023-08-11T05:03:21Z
104
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-23T18:26:24Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - Jade1211/textual_inversion_cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
SergeantFetus/Anton_Strasser_Red_Orchestra_2_Announcer
SergeantFetus
2023-08-11T04:58:20Z
0
0
null
[ "German", "English", "Male", "Old", "en", "de", "license:cc-by-sa-4.0", "region:us" ]
null
2023-08-11T04:43:17Z
--- license: cc-by-sa-4.0 language: - en - de tags: - German - English - Male - Old ---
jsgao/bert-eli5c-retriever
jsgao
2023-08-11T04:51:37Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "en", "dataset:eli5_category", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en license: MIT datasets: - eli5_category --- Document Retriever model of [ELI5-Category Dataset](https://celeritasml.netlify.app/posts/2021-12-01-eli5c/), need additional projection layer (see GitHub [repo](https://github.com/rexarski/ANLY580-final-project/blob/main/model_deploy/models/eli5c_qa_model.py))
rokset3/kazroberta-80kstep
rokset3
2023-08-11T04:48:32Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-11T04:36:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
GMGowtham/alpaca7B-lora
GMGowtham
2023-08-11T04:47:56Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-05T08:07:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Yorth/poetry-lora
Yorth
2023-08-11T04:23:50Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-11T04:23:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
smjain/abap-nous-hermes
smjain
2023-08-11T04:23:09Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:smjain/abap", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-11T01:38:14Z
--- license: apache-2.0 datasets: - smjain/abap language: - en --- This model is fine tuned on a very small ABAP dataset . Have used NousResearch/Llama-2-7b-chat-hf as the base model. Sample code from transformers import pipeline from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "smjain/abap-nous-hermes" model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained('NousResearch/llama-2-7b-chat-hf') prompt = "Write a sample ABAP report" # change to your desired prompt gen = pipeline('text-generation', model=model, tokenizer=tokenizer,max_new_tokens=256) result = gen(prompt) print(result[0]['generated_text'])
imagineaiuser/llama2-qlora-finetuned-mental-health-test
imagineaiuser
2023-08-11T04:21:45Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-11T04:21:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
BabaYaga048/Pixelcopter-PLE-v2
BabaYaga048
2023-08-11T03:59:03Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-11T03:59:01Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.10 +/- 6.58 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ckandemir/q-FrozenLake-v1-4x4-noSlippery
ckandemir
2023-08-11T03:54:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-11T03:54:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="ckandemir/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
ScottShao/llama2-7b-150steps-8bit-finetunined-sxl
ScottShao
2023-08-11T03:41:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-11T03:41:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
DylanJHJ/bert-base-final-v0
DylanJHJ
2023-08-11T03:18:46Z
0
0
null
[ "region:us" ]
null
2023-08-11T02:35:28Z
Found. Redirecting to https://cdn-lfs.hf.co/repos/6d/bf/6dbff45574bbd9f077aa60e5ccc8adf78931ddbf42fa6fa660045c49522bec55/bd24b0e53f277ffcf4408f6ee9715ca431be3583ed6c9ab91b5a1a68e660003a?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1739271049&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczOTI3MTA0OX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy82ZC9iZi82ZGJmZjQ1NTc0YmJkOWYwNzdhYTYwZTVjY2M4YWRmNzg5MzFkZGJmNDJmYTZmYTY2MDA0NWM0OTUyMmJlYzU1L2JkMjRiMGU1M2YyNzdmZmNmNDQwOGY2ZWU5NzE1Y2E0MzFiZTM1ODNlZDZjOWFiOTFiNWExYTY4ZTY2MDAwM2E%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=F266jHE1LyoChydVUGIgwgKCdHNivY%7EzagTdGEDFf89%7EAS%7E1x371k2fUZlpTm8Uy6eVjFZqQOaVQrH0q%7EJD0f83Hphe7Hqccoqk3xM6%7EKWpZRtDfITPwHMn67s1YgHNKy6QCtmeP4pcV7bCXP93OaoMCJ-%7EkW2ZKQfAnkVcERXnI--wfpFweOGe0n-My-UWFf4mt2-2cek2da9ftqsJYKgHpYbnSxNU0Y0NAp7q%7E6SAFalLujhAasFFGGIMHm5VA1ZxJpu8s6tav8rbmf0soxDkpO3Vr3m4Emxo9uNeUH9ic0gf6ihMiurCt%7EAn8Wmr0y6Kwx2Cchm7KuBK797MC5Q__&Key-Pair-Id=K3RPWS32NSSJCE
Carmesix/finetuning-sentiment-model-3000-samples
Carmesix
2023-08-11T02:58:52Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-11T01:32:50Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9088888888888889 - name: F1 type: f1 value: 0.9078651685393259 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2753 - Accuracy: 0.9089 - F1: 0.9079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Marco-Cheung/whisper-tiny-en
Marco-Cheung
2023-08-11T02:58:05Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-11T02:41:28Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[451:] args: en-US metrics: - name: Wer type: wer value: 0.3500298151460942 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6528 - Wer Ortho: 0.3529 - Wer: 0.3500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0011 | 17.24 | 500 | 0.6528 | 0.3529 | 0.3500 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
afterless/reverse-pythia-160m
afterless
2023-08-11T02:29:52Z
180
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "Text Generation", "causal-lm", "en", "dataset:EleutherAI/pile", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T21:25:59Z
--- datasets: - EleutherAI/pile language: - en tags: - Text Generation - pytorch - causal-lm --- ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "afterless/reverse-pythia-160m" ) model = GPTNeoXForCausalLM.from_pretrained( "afterless/reverse-pythia-160m" ) inputs = tokenizer( "but I told him, the cheese was the best", return_token_type_ids=False, return_tensors="pt" ) inputs['input_ids'] = t.flip(inputs.input_ids, (1,)) tokens = t.flip(model.generate(**inputs), (1,)) tokenizer.decode(tokens[0]) ```
TheRains/cv9-special-batch8-lr4-small
TheRains
2023-08-11T02:16:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-09T08:48:28Z
--- language: - id license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 17.437313089487002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.4278 - Wer: 17.4373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6566 | 0.97 | 1000 | 0.6284 | 31.7276 | | 0.3418 | 1.94 | 2000 | 0.5210 | 25.4382 | | 0.1133 | 2.9 | 3000 | 0.4795 | 22.9216 | | 0.046 | 3.87 | 4000 | 0.4513 | 19.8712 | | 0.0088 | 4.84 | 5000 | 0.4278 | 17.4373 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
tianpf/chinese-alpaca-2-qlora-finetunined-law
tianpf
2023-08-11T02:09:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-11T02:09:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
YassineBenlaria/wav2vec2-large-xlsr-53_tamasheq_french
YassineBenlaria
2023-08-11T01:57:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T22:03:07Z
--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-53_tamasheq_french results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_tamasheq_french This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8742 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.659 | 4.0 | 400 | 2.9280 | 1.0 | | 2.8942 | 8.0 | 800 | 2.8886 | 1.0 | | 2.8877 | 12.0 | 1200 | 2.8671 | 1.0 | | 2.8814 | 16.0 | 1600 | 2.8593 | 1.0 | | 2.8779 | 20.0 | 2000 | 2.8615 | 1.0 | | 2.914 | 24.0 | 2400 | 2.9140 | 1.0 | | 2.8965 | 28.0 | 2800 | 2.8742 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
TriDat/squad-bloom-3b
TriDat
2023-08-11T01:50:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-11T01:49:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
jordyvl/vit-base_rvl-cdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5_rand
jordyvl
2023-08-11T01:36:43Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-10T16:06:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_rvl-cdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5_rand results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_rvl-cdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5_rand This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1637 - Accuracy: 0.6275 - Brier Loss: 0.6026 - Nll: 2.9068 - F1 Micro: 0.6275 - F1 Macro: 0.6313 - Ece: 0.2499 - Aurc: 0.1609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | 6.3322 | 1.0 | 1000 | 6.0794 | 0.1835 | 0.8928 | 6.5679 | 0.1835 | 0.1322 | 0.0627 | 0.6846 | | 5.8198 | 2.0 | 2000 | 5.5963 | 0.3668 | 0.7821 | 3.5543 | 0.3668 | 0.3217 | 0.0967 | 0.4448 | | 5.53 | 3.0 | 3000 | 5.4184 | 0.4225 | 0.7382 | 3.4217 | 0.4225 | 0.3848 | 0.1087 | 0.3778 | | 5.3449 | 4.0 | 4000 | 5.1895 | 0.4655 | 0.6813 | 3.0794 | 0.4655 | 0.4562 | 0.1076 | 0.3029 | | 5.2467 | 5.0 | 5000 | 5.1813 | 0.4592 | 0.6845 | 2.9944 | 0.4592 | 0.4430 | 0.1009 | 0.3125 | | 5.1382 | 6.0 | 6000 | 5.0102 | 0.4998 | 0.6423 | 2.7804 | 0.4998 | 0.4926 | 0.1013 | 0.2660 | | 5.0255 | 7.0 | 7000 | 4.9611 | 0.501 | 0.6350 | 2.7692 | 0.501 | 0.5085 | 0.0795 | 0.2690 | | 4.9089 | 8.0 | 8000 | 4.9327 | 0.508 | 0.6204 | 2.6580 | 0.508 | 0.5068 | 0.0622 | 0.2565 | | 4.8337 | 9.0 | 9000 | 4.8324 | 0.5467 | 0.5866 | 2.5636 | 0.5467 | 0.5419 | 0.0642 | 0.2274 | | 4.747 | 10.0 | 10000 | 5.0170 | 0.5302 | 0.6080 | 2.7672 | 0.5302 | 0.5193 | 0.0622 | 0.2452 | | 4.622 | 11.0 | 11000 | 4.8259 | 0.5593 | 0.5709 | 2.6791 | 0.5593 | 0.5520 | 0.0619 | 0.2090 | | 4.5449 | 12.0 | 12000 | 4.7696 | 0.5675 | 0.5583 | 2.5273 | 0.5675 | 0.5678 | 0.0541 | 0.2016 | | 4.447 | 13.0 | 13000 | 4.8718 | 0.5575 | 0.5775 | 2.7597 | 0.5575 | 0.5557 | 0.0575 | 0.2142 | | 4.341 | 14.0 | 14000 | 4.7644 | 0.5897 | 0.5368 | 2.5797 | 0.5897 | 0.5930 | 0.0560 | 0.1835 | | 4.2476 | 15.0 | 15000 | 4.8339 | 0.5905 | 0.5485 | 2.6684 | 0.5905 | 0.5903 | 0.0719 | 0.1872 | | 4.1592 | 16.0 | 16000 | 4.7828 | 0.5877 | 0.5456 | 2.7300 | 0.5877 | 0.5877 | 0.0784 | 0.1832 | | 4.0513 | 17.0 | 17000 | 4.8771 | 0.5885 | 0.5533 | 2.9097 | 0.5885 | 0.5930 | 0.0965 | 0.1867 | | 3.9646 | 18.0 | 18000 | 4.8980 | 0.596 | 0.5499 | 2.8383 | 0.596 | 0.5948 | 0.1025 | 0.1797 | | 3.8768 | 19.0 | 19000 | 4.9787 | 0.605 | 0.5551 | 2.8903 | 0.605 | 0.6050 | 0.1302 | 0.1765 | | 3.7739 | 20.0 | 20000 | 5.1202 | 0.5945 | 0.5727 | 3.0393 | 0.5945 | 0.5935 | 0.1493 | 0.1821 | | 3.7023 | 21.0 | 21000 | 5.1879 | 0.5998 | 0.5785 | 2.9570 | 0.5998 | 0.5991 | 0.1690 | 0.1807 | | 3.6301 | 22.0 | 22000 | 5.2707 | 0.5933 | 0.5908 | 3.1177 | 0.5933 | 0.5971 | 0.1863 | 0.1829 | | 3.5857 | 23.0 | 23000 | 5.2522 | 0.5887 | 0.5994 | 3.2051 | 0.5887 | 0.5949 | 0.1928 | 0.1857 | | 3.5256 | 24.0 | 24000 | 5.3443 | 0.6102 | 0.5857 | 2.9687 | 0.6102 | 0.6084 | 0.1953 | 0.1760 | | 3.4954 | 25.0 | 25000 | 5.3010 | 0.6045 | 0.5874 | 3.0184 | 0.6045 | 0.6053 | 0.1851 | 0.1807 | | 3.46 | 26.0 | 26000 | 5.4451 | 0.5992 | 0.5994 | 3.0539 | 0.5992 | 0.6033 | 0.2053 | 0.1819 | | 3.4086 | 27.0 | 27000 | 5.4299 | 0.608 | 0.5913 | 3.1127 | 0.608 | 0.6082 | 0.2027 | 0.1751 | | 3.3769 | 28.0 | 28000 | 5.6979 | 0.601 | 0.6236 | 3.1077 | 0.601 | 0.6024 | 0.2396 | 0.1777 | | 3.3238 | 29.0 | 29000 | 5.6090 | 0.611 | 0.6013 | 3.0875 | 0.611 | 0.6114 | 0.2238 | 0.1729 | | 3.3011 | 30.0 | 30000 | 5.6356 | 0.6105 | 0.5991 | 2.9450 | 0.6105 | 0.6123 | 0.2243 | 0.1719 | | 3.2708 | 31.0 | 31000 | 5.7634 | 0.604 | 0.6181 | 2.9119 | 0.604 | 0.6075 | 0.2402 | 0.1771 | | 3.2556 | 32.0 | 32000 | 5.7042 | 0.617 | 0.6002 | 2.9324 | 0.617 | 0.6199 | 0.2263 | 0.1740 | | 3.2213 | 33.0 | 33000 | 5.7388 | 0.603 | 0.6121 | 2.9240 | 0.603 | 0.6108 | 0.2345 | 0.1782 | | 3.2138 | 34.0 | 34000 | 5.8008 | 0.6218 | 0.6001 | 2.9209 | 0.6218 | 0.6206 | 0.2284 | 0.1701 | | 3.1994 | 35.0 | 35000 | 5.7350 | 0.6142 | 0.5967 | 2.9021 | 0.6142 | 0.6147 | 0.2294 | 0.1688 | | 3.1776 | 36.0 | 36000 | 5.7487 | 0.609 | 0.6032 | 2.8651 | 0.609 | 0.6121 | 0.2329 | 0.1689 | | 3.1606 | 37.0 | 37000 | 5.8022 | 0.6165 | 0.6075 | 2.8604 | 0.6165 | 0.6189 | 0.2398 | 0.1677 | | 3.1405 | 38.0 | 38000 | 5.8133 | 0.6235 | 0.5949 | 2.8775 | 0.6235 | 0.6272 | 0.2319 | 0.1640 | | 3.132 | 39.0 | 39000 | 5.8934 | 0.6232 | 0.5974 | 2.9324 | 0.6232 | 0.6274 | 0.2389 | 0.1639 | | 3.1303 | 40.0 | 40000 | 5.8902 | 0.6288 | 0.5947 | 2.9049 | 0.6288 | 0.6322 | 0.2344 | 0.1634 | | 3.1187 | 41.0 | 41000 | 5.9076 | 0.6215 | 0.5987 | 2.8584 | 0.6215 | 0.6261 | 0.2394 | 0.1630 | | 3.0969 | 42.0 | 42000 | 5.9469 | 0.6265 | 0.5984 | 2.8509 | 0.6265 | 0.6309 | 0.2375 | 0.1631 | | 3.0964 | 43.0 | 43000 | 5.9442 | 0.6252 | 0.5951 | 2.9309 | 0.6252 | 0.6291 | 0.2397 | 0.1607 | | 3.0953 | 44.0 | 44000 | 6.0126 | 0.6238 | 0.5998 | 2.8956 | 0.6238 | 0.6274 | 0.2419 | 0.1630 | | 3.0904 | 45.0 | 45000 | 6.0602 | 0.6295 | 0.5991 | 2.8669 | 0.6295 | 0.6334 | 0.2417 | 0.1609 | | 3.0794 | 46.0 | 46000 | 6.0782 | 0.6282 | 0.6027 | 2.8830 | 0.6282 | 0.6321 | 0.2442 | 0.1616 | | 3.0788 | 47.0 | 47000 | 6.1062 | 0.6275 | 0.6003 | 2.8472 | 0.6275 | 0.6316 | 0.2471 | 0.1610 | | 3.0802 | 48.0 | 48000 | 6.1079 | 0.6285 | 0.5998 | 2.8916 | 0.6285 | 0.6322 | 0.2465 | 0.1600 | | 3.0644 | 49.0 | 49000 | 6.1569 | 0.6275 | 0.6025 | 2.8941 | 0.6275 | 0.6314 | 0.2497 | 0.1610 | | 3.0751 | 50.0 | 50000 | 6.1637 | 0.6275 | 0.6026 | 2.9068 | 0.6275 | 0.6313 | 0.2499 | 0.1609 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
Ian-14/llm13
Ian-14
2023-08-11T01:30:01Z
145
0
transformers
[ "transformers", "pytorch", "chatglm", "glm", "thudm", "conversational", "custom_code", "zh", "en", "arxiv:2103.10360", "arxiv:2210.02414", "arxiv:1911.02150", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T11:10:47Z
--- language: - zh - en tags: - glm - chatglm - thudm pipeline_tag: conversational --- # ChatGLM2-6B <p align="center"> 💻 <a href="https://github.com/THUDM/ChatGLM2-6B" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br> </p> <p align="center"> 👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-1y7pqoloy-9b1g6T6JjA8J0KxvUjbwJw" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM-6B/blob/main/resources/WECHAT.md" target="_blank">WeChat</a> </p> ## 介绍 ChatGLM**2**-6B 是开源中英双语对话模型 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B) 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM**2**-6B 引入了如下新特性: 1. **更强大的性能**:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM](https://github.com/THUDM/GLM) 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,[评测结果](#评测结果)显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。 2. **更长的上下文**:基于 [FlashAttention](https://github.com/HazyResearch/flash-attention) 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。 3. **更高效的推理**:基于 [Multi-Query Attention](http://arxiv.org/abs/1911.02150) 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 ChatGLM**2**-6B is the second-generation version of the open-source bilingual (Chinese-English) chat model [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B). It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features: 1. **Stronger Performance**: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of [GLM](https://github.com/THUDM/GLM), and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The [evaluation results](README.md#evaluation-results) show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size. 2. **Longer Context**: Based on [FlashAttention](https://github.com/HazyResearch/flash-attention) technique, we have extended the context length of the base model from 2K in ChatGLM-6B to 32K, and trained with a context length of 8K during the dialogue alignment, allowing for more rounds of dialogue. However, the current version of ChatGLM2-6B has limited understanding of single-round ultra-long documents, which we will focus on optimizing in future iterations. 3. **More Efficient Inference**: Based on [Multi-Query Attention](http://arxiv.org/abs/1911.02150) technique, ChatGLM2-6B has more efficient inference speed and lower GPU memory usage: under the official implementation, the inference speed has increased by 42% compared to the first generation; under INT4 quantization, the dialogue length supported by 6G GPU memory has increased from 1K to 8K. ## 软件依赖 ```shell pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate ``` ## 代码调用 可以通过如下代码调用 ChatGLM-6B 模型来生成对话: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b-int4", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4", trust_remote_code=True).half().cuda() model = model.eval() response, history = model.chat(tokenizer, "你好", history=[]) response ``` 关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM2-6B)。 For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM2-6B). ## Change Log * v1.0 ## 协议 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM2-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。 ## 引用 如果你觉得我们的工作有帮助的话,请考虑引用下列论文,ChatGLM2-6B 的论文会在近期公布,尽情期待~ ``` @article{zeng2022glm, title={Glm-130b: An open bilingual pre-trained model}, author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, journal={arXiv preprint arXiv:2210.02414}, year={2022} } ``` ``` @inproceedings{du2022glm, title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={320--335}, year={2022} } ```
mohsinshah/git-base-dummy-3
mohsinshah
2023-08-11T01:20:05Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "git", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-10T04:10:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: git-base-500img-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-500img-dataset This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4161 - Wer Score: 2.0379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 7.0698 | 3.23 | 50 | 4.5086 | 2.5298 | | 2.6252 | 6.45 | 100 | 0.9823 | 2.2976 | | 0.5497 | 9.68 | 150 | 0.4681 | 1.6707 | | 0.2558 | 12.9 | 200 | 0.4162 | 1.7907 | | 0.1551 | 16.13 | 250 | 0.4052 | 2.0984 | | 0.1041 | 19.35 | 300 | 0.4054 | 2.0984 | | 0.0764 | 22.58 | 350 | 0.4088 | 2.0576 | | 0.0581 | 25.81 | 400 | 0.4054 | 2.0899 | | 0.0462 | 29.03 | 450 | 0.4092 | 2.0484 | | 0.0382 | 32.26 | 500 | 0.4118 | 2.1387 | | 0.0329 | 35.48 | 550 | 0.4126 | 2.1315 | | 0.0275 | 38.71 | 600 | 0.4139 | 2.0114 | | 0.0255 | 41.94 | 650 | 0.4173 | 2.0098 | | 0.0234 | 45.16 | 700 | 0.4155 | 2.0206 | | 0.0226 | 48.39 | 750 | 0.4161 | 2.0379 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
nlagosr/my_awesome_model
nlagosr
2023-08-11T00:49:06Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T20:10:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: nlagosr/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlagosr/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6903 - Validation Loss: 0.7028 - Train Accuracy: 0.4 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 25, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6986 | 0.7027 | 0.4 | 0 | | 0.6886 | 0.7029 | 0.4 | 1 | | 0.6903 | 0.7028 | 0.4 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
whywynn/Reinforce-Pixelcopter-PLE-v0
whywynn
2023-08-11T00:35:00Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T21:25:12Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 28.90 +/- 30.05 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
StevenLe456/viet_tones_model
StevenLe456
2023-08-11T00:20:12Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:nguyenvulebinh/wav2vec2-base-vietnamese-250h", "base_model:finetune:nguyenvulebinh/wav2vec2-base-vietnamese-250h", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-10T02:15:25Z
--- license: cc-by-nc-4.0 base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h tags: - generated_from_trainer metrics: - accuracy model-index: - name: viet_tones_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # viet_tones_model This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9783 - Accuracy: 0.5972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 110 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.89 | 6 | 1.7955 | 0.1296 | | 1.7924 | 1.93 | 13 | 1.7938 | 0.1343 | | 1.7919 | 2.96 | 20 | 1.7916 | 0.2037 | | 1.7919 | 4.0 | 27 | 1.7907 | 0.1713 | | 1.7903 | 4.89 | 33 | 1.7886 | 0.1852 | | 1.7883 | 5.93 | 40 | 1.7798 | 0.2269 | | 1.7883 | 6.96 | 47 | 1.7487 | 0.25 | | 1.7717 | 8.0 | 54 | 1.7104 | 0.2407 | | 1.726 | 8.89 | 60 | 1.6488 | 0.2685 | | 1.726 | 9.93 | 67 | 1.5835 | 0.2731 | | 1.6651 | 10.96 | 74 | 1.6020 | 0.2778 | | 1.6332 | 12.0 | 81 | 1.5351 | 0.2778 | | 1.6332 | 12.89 | 87 | 1.4977 | 0.2963 | | 1.5708 | 13.93 | 94 | 1.4903 | 0.2870 | | 1.5543 | 14.96 | 101 | 1.4671 | 0.2731 | | 1.5543 | 16.0 | 108 | 1.3992 | 0.3194 | | 1.4872 | 16.89 | 114 | 1.3854 | 0.3009 | | 1.4861 | 17.93 | 121 | 1.3411 | 0.3426 | | 1.4861 | 18.96 | 128 | 1.3142 | 0.3472 | | 1.4281 | 20.0 | 135 | 1.3021 | 0.4259 | | 1.38 | 20.89 | 141 | 1.2657 | 0.4028 | | 1.38 | 21.93 | 148 | 1.2372 | 0.4352 | | 1.3472 | 22.96 | 155 | 1.2341 | 0.4815 | | 1.3029 | 24.0 | 162 | 1.1815 | 0.4306 | | 1.3029 | 24.89 | 168 | 1.1797 | 0.4954 | | 1.3042 | 25.93 | 175 | 1.1403 | 0.4583 | | 1.281 | 26.96 | 182 | 1.1349 | 0.4722 | | 1.281 | 28.0 | 189 | 1.1369 | 0.4907 | | 1.2614 | 28.89 | 195 | 1.0999 | 0.4954 | | 1.2133 | 29.93 | 202 | 1.1677 | 0.4676 | | 1.2133 | 30.96 | 209 | 1.0785 | 0.5 | | 1.2527 | 32.0 | 216 | 1.1092 | 0.4861 | | 1.1722 | 32.89 | 222 | 1.0424 | 0.5185 | | 1.1722 | 33.93 | 229 | 1.0791 | 0.4907 | | 1.1225 | 34.96 | 236 | 1.0447 | 0.4907 | | 1.1447 | 36.0 | 243 | 1.0777 | 0.4583 | | 1.1447 | 36.89 | 249 | 1.0141 | 0.4954 | | 1.1484 | 37.93 | 256 | 1.0196 | 0.5324 | | 1.11 | 38.96 | 263 | 0.9791 | 0.5417 | | 1.046 | 40.0 | 270 | 0.9798 | 0.5231 | | 1.046 | 40.89 | 276 | 0.9366 | 0.5694 | | 1.0582 | 41.93 | 283 | 0.9645 | 0.5602 | | 1.0569 | 42.96 | 290 | 0.9764 | 0.5694 | | 1.0569 | 44.0 | 297 | 1.0340 | 0.5324 | | 1.028 | 44.89 | 303 | 0.9969 | 0.5463 | | 1.04 | 45.93 | 310 | 1.0251 | 0.5185 | | 1.04 | 46.96 | 317 | 1.0447 | 0.5417 | | 0.9889 | 48.0 | 324 | 0.9487 | 0.5324 | | 1.0055 | 48.89 | 330 | 1.0147 | 0.5 | | 1.0055 | 49.93 | 337 | 1.0015 | 0.5046 | | 0.9955 | 50.96 | 344 | 0.9763 | 0.5278 | | 0.9382 | 52.0 | 351 | 1.0306 | 0.5278 | | 0.9382 | 52.89 | 357 | 0.9970 | 0.5463 | | 0.9601 | 53.93 | 364 | 0.9487 | 0.5741 | | 0.9736 | 54.96 | 371 | 0.9658 | 0.5463 | | 0.9736 | 56.0 | 378 | 0.9789 | 0.5602 | | 0.9237 | 56.89 | 384 | 0.9940 | 0.5463 | | 0.9588 | 57.93 | 391 | 0.9778 | 0.5463 | | 0.9588 | 58.96 | 398 | 0.9789 | 0.5648 | | 0.9393 | 60.0 | 405 | 0.9612 | 0.5602 | | 0.9291 | 60.89 | 411 | 0.9141 | 0.5556 | | 0.9291 | 61.93 | 418 | 0.9770 | 0.5463 | | 0.929 | 62.96 | 425 | 0.9385 | 0.5556 | | 0.9448 | 64.0 | 432 | 0.9504 | 0.5463 | | 0.9448 | 64.89 | 438 | 0.9984 | 0.5463 | | 0.9426 | 65.93 | 445 | 0.9228 | 0.5602 | | 0.8949 | 66.96 | 452 | 0.9729 | 0.5509 | | 0.8949 | 68.0 | 459 | 0.9825 | 0.5602 | | 0.9041 | 68.89 | 465 | 0.9769 | 0.5509 | | 0.8828 | 69.93 | 472 | 0.9914 | 0.5648 | | 0.8828 | 70.96 | 479 | 0.9838 | 0.5509 | | 0.8874 | 72.0 | 486 | 0.9646 | 0.5741 | | 0.8723 | 72.89 | 492 | 1.0682 | 0.5324 | | 0.8723 | 73.93 | 499 | 1.0629 | 0.5417 | | 0.8953 | 74.96 | 506 | 0.9770 | 0.5648 | | 0.879 | 76.0 | 513 | 1.0038 | 0.5787 | | 0.879 | 76.89 | 519 | 1.0529 | 0.5648 | | 0.896 | 77.93 | 526 | 1.0300 | 0.5602 | | 0.8519 | 78.96 | 533 | 1.0451 | 0.5463 | | 0.8414 | 80.0 | 540 | 1.0755 | 0.5509 | | 0.8414 | 80.89 | 546 | 1.0287 | 0.5556 | | 0.8342 | 81.93 | 553 | 1.0140 | 0.5602 | | 0.8653 | 82.96 | 560 | 1.0787 | 0.5463 | | 0.8653 | 84.0 | 567 | 1.0762 | 0.5509 | | 0.8357 | 84.89 | 573 | 1.0307 | 0.5741 | | 0.8455 | 85.93 | 580 | 1.0171 | 0.5648 | | 0.8455 | 86.96 | 587 | 0.9886 | 0.5880 | | 0.8238 | 88.0 | 594 | 0.9806 | 0.5741 | | 0.8613 | 88.89 | 600 | 1.0177 | 0.5833 | | 0.8613 | 89.93 | 607 | 1.0273 | 0.5602 | | 0.8265 | 90.96 | 614 | 0.9857 | 0.5926 | | 0.831 | 92.0 | 621 | 0.9701 | 0.5972 | | 0.831 | 92.89 | 627 | 0.9726 | 0.5972 | | 0.8247 | 93.93 | 634 | 0.9765 | 0.5880 | | 0.8041 | 94.96 | 641 | 0.9801 | 0.5926 | | 0.8041 | 96.0 | 648 | 0.9796 | 0.5926 | | 0.8387 | 96.89 | 654 | 0.9790 | 0.5972 | | 0.7906 | 97.78 | 660 | 0.9783 | 0.5972 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
nhat117/dica-llama2-13b-chat-hf-3
nhat117
2023-08-11T00:14:46Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-11T00:10:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
NateBenz/llama2-prompt-reformatting-generator
NateBenz
2023-08-11T00:05:22Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-08T01:25:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
allenbc/Taxi-v3
allenbc
2023-08-11T00:03:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-11T00:03:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="allenbc/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
moisesrobles04/Reinforcement-CartPole-Unit4
moisesrobles04
2023-08-10T23:46:37Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T23:46:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforcement-CartPole-Unit4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Jade1211/textual_inversion_bambi
Jade1211
2023-08-10T23:16:51Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T22:26:08Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - Jade1211/textual_inversion_bambi These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Yntec/ArcticFowl
Yntec
2023-08-10T22:59:14Z
267
4
diffusers
[ "diffusers", "safetensors", "anime", "art", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "ArcticFlamingo", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T20:38:20Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - anime - art - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - ArcticFlamingo --- This model with the Blessed2 VAE baked in. Demo image by digiplay: ![demo](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/C4phA3NdYMK1U66tQoyIf.jpeg) Samples and prompts: ![sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/lTnjBMcm-ClX_iiosvjCv.png) ![sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/Zi4adyzhuUGIi_SyysYlj.png) Pretty cute girl. Thumbs up. Thumbs up. Thumbs up. Thumbs up. Thumbs up. Thumbs up. Acrylic art on canvas by ROSSDRAWS and Clay Mann and tyler edlin Original pages: https://civitai.com/models/16164?modelVersionId=84783 https://huggingface.co/NoCrypt/blessed_vae/tree/main
dvs/videomae-base-finetuned-kinetics-finetuned-movienet-2-2
dvs
2023-08-10T22:36:32Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "base_model:dvs/videomae-base-finetuned-kinetics-finetuned-movienet-2", "base_model:finetune:dvs/videomae-base-finetuned-kinetics-finetuned-movienet-2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-08-10T19:31:05Z
--- license: cc-by-nc-4.0 base_model: dvs/videomae-base-finetuned-kinetics-finetuned-movienet-2 tags: - generated_from_trainer model-index: - name: videomae-base-finetuned-kinetics-finetuned-movienet-2-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-kinetics-finetuned-movienet-2-2 This model is a fine-tuned version of [dvs/videomae-base-finetuned-kinetics-finetuned-movienet-2](https://huggingface.co/dvs/videomae-base-finetuned-kinetics-finetuned-movienet-2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4970 - eval_accuracy: 0.7552 - eval_runtime: 166.7089 - eval_samples_per_second: 1.152 - eval_steps_per_second: 0.144 - epoch: 6.0 - step: 1117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - training_steps: 1850 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
vvonchain/lora-trained-xl-colab
vvonchain
2023-08-10T22:14:39Z
16
2
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-10T20:57:59Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - vvonchain/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
omersen/omer-model
omersen
2023-08-10T22:13:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T19:04:26Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of person omer tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - omersen/omer-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of person omer using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Doctor-Shotgun/Chronos-Hermes-v2-13b-Limarp-Lora-Merged
Doctor-Shotgun
2023-08-10T22:06:47Z
13
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama-2", "en", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-03T07:47:25Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - llama - llama-2 license: agpl-3.0 --- # Model Card: Chronos-Hermes-v2-13b-LIMARP-Lora-Merged This is a Llama 2-based model consisting of Chronos Hermes v2 13b (https://huggingface.co/Austism/chronos-hermes-13b-v2) merged with LIMARP Lora (https://huggingface.co/lemonilia/limarp-llama2) using the now-updated standard lora adapter for LIMARP (July 28, 2023). The intended objective was add some different roleplay flavor to the Chronos Hermes v2 model. added_tokens.json was padded with dummy tokens to reach 32 added tokens in order to allow GGML conversion in llama.cpp without error due to vocab size mismatch. ## Usage: Intended to be prompted either with the Alpaca instruction format of the base model: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` Or the LIMARP lora instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the base model and lora for details.
abedininiaz/setfit-test-model
abedininiaz
2023-08-10T22:05:39Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-09T19:58:24Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # abedininiaz/setfit-test-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("abedininiaz/setfit-test-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
adon81/dealFindr-finetuned
adon81
2023-08-10T22:04:15Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-10T21:43:12Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: dealFindr-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dealFindr-finetuned This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 13.2699 | | No log | 2.0 | 12 | 12.2786 | | No log | 3.0 | 18 | 11.5745 | | No log | 4.0 | 24 | 10.8457 | | No log | 5.0 | 30 | 9.8424 | | No log | 6.0 | 36 | 8.5779 | | No log | 7.0 | 42 | 6.9630 | | No log | 8.0 | 48 | 6.1362 | | No log | 9.0 | 54 | 5.6167 | | No log | 10.0 | 60 | 5.3033 | | No log | 11.0 | 66 | 5.0873 | | No log | 12.0 | 72 | 4.8782 | | No log | 13.0 | 78 | 4.7162 | | No log | 14.0 | 84 | 4.6101 | | No log | 15.0 | 90 | 4.5256 | | No log | 16.0 | 96 | 4.4572 | | No log | 17.0 | 102 | 4.4019 | | No log | 18.0 | 108 | 4.3624 | | No log | 19.0 | 114 | 4.3405 | | No log | 20.0 | 120 | 4.3328 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
monideep2255/psst_batch_size_4_base_model
monideep2255
2023-08-10T21:59:11Z
106
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T20:20:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: psst_batch_size_4_base_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # psst_batch_size_4_base_model This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 14.1952 | 1.68 | 100 | 3.6352 | | 3.9092 | 3.36 | 200 | 3.7223 | | 3.9981 | 5.04 | 300 | 3.6864 | | 3.7209 | 6.72 | 400 | 3.6310 | | 3.9395 | 8.4 | 500 | 3.7229 | | 3.7126 | 10.08 | 600 | 3.6163 | | 3.6999 | 11.76 | 700 | 3.6776 | | 3.7203 | 13.45 | 800 | 3.7568 | | 3.7202 | 15.13 | 900 | 3.6998 | | 3.7023 | 16.81 | 1000 | 3.6943 | | 3.689 | 18.49 | 1100 | 3.6501 | | 3.7009 | 20.17 | 1200 | 3.6973 | | 3.6882 | 21.85 | 1300 | 3.6938 | | 3.6907 | 23.53 | 1400 | 3.6795 | | 3.6869 | 25.21 | 1500 | 3.6727 | | 3.681 | 26.89 | 1600 | 3.6749 | | 3.6968 | 28.57 | 1700 | 3.6743 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
monideep2255/psst_batch_size_16_base_model
monideep2255
2023-08-10T21:58:31Z
107
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T20:09:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: psst_batch_size_16_base_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # psst_batch_size_16_base_model This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 14.7691 | 6.67 | 100 | 3.7126 | | 3.7857 | 13.33 | 200 | 3.6929 | | 3.6981 | 20.0 | 300 | 3.6843 | | 3.6883 | 26.67 | 400 | 3.6719 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
bilbo991/clip-roberta-100k
bilbo991
2023-08-10T21:50:57Z
95
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "endpoints_compatible", "region:us" ]
feature-extraction
2023-08-10T19:30:22Z
--- base_model: clip-roberta-100k tags: - generated_from_trainer model-index: - name: clip-roberta-100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-100k This model is a fine-tuned version of [clip-roberta-100k](https://huggingface.co/clip-roberta-100k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4657 | 1.0 | 3125 | 3.4646 | | 3.4658 | 2.0 | 6250 | 3.4646 | | 3.4657 | 3.0 | 9375 | 3.4646 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.1 - Tokenizers 0.13.3
tbelote/CodeFixStarcoder
tbelote
2023-08-10T21:19:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T21:19:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
elinas/chronos-13b-v2-GPTQ
elinas
2023-08-10T21:05:20Z
22
7
transformers
[ "transformers", "llama", "text-generation", "pytorch", "chatbot", "storywriting", "generalist-model", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T19:01:49Z
--- license: other tags: - llama - pytorch - chatbot - storywriting - generalist-model --- # chronos-13b-v2 This is the 4bit GPTQ of **chronos-13b-v2** based on the **Llama v2 Base** model. It works with Exllama and AutoGPTQ. This model is primarily focused on chat, roleplay, storywriting, with good reasoning and logic. Chronos can generate very long outputs with coherent text, largely due to the human inputs it was trained on, and it supports context length up to 4096 tokens. This model uses Alpaca formatting, so for optimal model performance, use and either use a frontend like SillyTavern, or continue your story with it: ``` ### Instruction: Your instruction or question here. ### Response: ``` Not using the format will make the model perform significantly worse than intended. # Quantize Config Rename `quantize_config_Xg.json` where X is the groupsize to `quantize_config.json` for the version you pick. ## Other Versions [Original FP16 Model](https://huggingface.co/elinas/chronos-13b-v2) [GGML Versions provided by @TheBloke](https://huggingface.co/TheBloke/Chronos-13B-v2-GGML) **Support My Development of New Models** <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>
tingchih/pretrain_sent_concat
tingchih
2023-08-10T20:22:17Z
92
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-10T01:15:41Z
the example result in the records
monideep2255/batch_size_8_50_epochs_base_model
monideep2255
2023-08-10T20:03:31Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T18:02:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: batch_size_8_50_epochs_base_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # batch_size_8_50_epochs_base_model This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 10.5872 | 6.67 | 200 | 3.6529 | | 3.8231 | 13.33 | 400 | 3.7135 | | 3.7257 | 20.0 | 600 | 3.7110 | | 3.7043 | 26.67 | 800 | 3.6998 | | 3.6979 | 33.33 | 1000 | 3.6782 | | 3.6876 | 40.0 | 1200 | 3.6811 | | 3.6897 | 46.67 | 1400 | 3.6780 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
julianty/opus-tatoeba-en-ja-finetuned-eng-to-jpn_Hani
julianty
2023-08-10T20:00:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:tatoeba_mt", "base_model:Helsinki-NLP/opus-tatoeba-en-ja", "base_model:finetune:Helsinki-NLP/opus-tatoeba-en-ja", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-10T19:45:37Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-tatoeba-en-ja tags: - generated_from_trainer datasets: - tatoeba_mt metrics: - bleu model-index: - name: opus-tatoeba-en-ja-finetuned-eng-to-jpn_Hani results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: tatoeba_mt type: tatoeba_mt config: eng-jpn_Hani split: test args: eng-jpn_Hani metrics: - name: Bleu type: bleu value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-tatoeba-en-ja-finetuned-eng-to-jpn_Hani This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the tatoeba_mt dataset. It achieves the following results on the evaluation set: - Loss: 6.4742 - Bleu: 0.0 - Gen Len: 18.9426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | 6.4645 | 1.0 | 1244 | 6.4742 | 0.0 | 18.9426 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
shekmanchoy/medical_adapter_parallel
shekmanchoy
2023-08-10T19:58:34Z
0
0
null
[ "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-08-10T19:54:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: parallel_medical_adapter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # parallel_medical_adapter This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Dulence/speecht5_tts_voxpopuli_hr
Dulence
2023-08-10T19:57:29Z
85
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "dusan", "generated_from_trainer", "hr", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-08-10T19:56:21Z
--- language: - hr license: mit base_model: microsoft/speecht5_tts tags: - dusan - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Hrvatski results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Hrvatski This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli hr dataset. It achieves the following results on the evaluation set: - Loss: 0.4304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4915 | 3.24 | 1000 | 0.4504 | | 0.4757 | 6.49 | 2000 | 0.4366 | | 0.4653 | 9.73 | 3000 | 0.4318 | | 0.4636 | 12.98 | 4000 | 0.4304 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nesanchezo/model_handwritenNumbers-nesanchezo
nesanchezo
2023-08-10T19:53:48Z
243
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-07T14:49:59Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: model_handwritenNumbers-nesanchezo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_handwritenNumbers-nesanchezo This model is a fine-tuned version of [farleyknight-org-username/vit-base-mnist](https://huggingface.co/farleyknight-org-username/vit-base-mnist) on the handwriten-Numbers dataset. It achieves the following results on the evaluation set: - Loss: 0.0807 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.396 | 0.34 | 500 | 0.1925 | 0.9470 | | 0.2672 | 0.67 | 1000 | 0.2655 | 0.9297 | | 0.2261 | 1.01 | 1500 | 0.1767 | 0.9548 | | 0.1603 | 1.34 | 2000 | 0.1423 | 0.9658 | | 0.1308 | 1.68 | 2500 | 0.1378 | 0.9709 | | 0.1187 | 2.02 | 3000 | 0.1168 | 0.9737 | | 0.0873 | 2.35 | 3500 | 0.0857 | 0.9823 | | 0.0686 | 2.69 | 4000 | 0.1188 | 0.9753 | | 0.0635 | 3.03 | 4500 | 0.0836 | 0.9804 | | 0.034 | 3.36 | 5000 | 0.0807 | 0.9839 | | 0.0155 | 3.7 | 5500 | 0.0898 | 0.9823 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
ailabturkiye/GoogleAsistan
ailabturkiye
2023-08-10T19:11:10Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-08-10T19:05:12Z
--- license: openrail language: - tr tags: - music --- Google çeviri kullanılarak oluşturulan sesler ile yapılan ses modeli. Train ve Dataset bana aittir.
samlikesphysics/llm-rsa-mi
samlikesphysics
2023-08-10T18:46:13Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-08-10T18:37:47Z
--- license: mit --- language: - en thumbnail: tags: - tag1 - tag2 datasets: - dataset1 - dataset2 metrics: - metric1 - metric2
EdJ1234/lora-peft-legal-summ-v1
EdJ1234
2023-08-10T18:44:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:40:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
Francesco-A/code-search-net-tokenizer
Francesco-A
2023-08-10T18:41:13Z
0
1
null
[ "code tokenizer", "python tokenizer", "GPT-2", "code", "dataset:code_search_net", "license:apache-2.0", "region:us" ]
null
2023-07-22T17:22:55Z
--- license: apache-2.0 datasets: - code_search_net language: - code tags: - code tokenizer - python tokenizer - GPT-2 --- **Model Card: (TEST) code-search-net-tokenizer** **Model Description:** The Code Search Net Tokenizer is a custom tokenizer specifically trained for tokenizing Python code snippets. It has been trained on a large corpus of Python code snippets from the CodeSearchNet dataset using the GPT-2 model as a starting point. The goal of this tokenizer is to effectively tokenize Python code for use in various natural language processing and code-related tasks. **Model Details:** - Name: Code Search Net Tokenizer - Model Type: Custom Tokenizer - Language: Python **Training Data:** The tokenizer was trained on a corpus of Python code snippets from the CodeSearchNet dataset. The dataset consists of various Python code examples collected from open-source repositories on GitHub. The tokenizer has been fine-tuned on this dataset to create a specialized vocabulary that captures the unique syntax and structure of Python code. **Tokenizer Features:** - The Code Search Net Tokenizer offers the following features: - Tokenization of Python code: The tokenizer can effectively split Python code snippets into individual tokens, making it suitable for downstream tasks that involve code processing and understanding. **Usage:** You can use the `code-search-net-tokenizer` to preprocess code snippets and convert them into numerical representations suitable for feeding into language models. **Limitations:** The `code-search-net-tokenizer` is specifically tailored to code-related text data and may not be suitable for general text tasks. It may not perform optimally for natural language text outside the programming context.
EulerianKnight/taxi-v3-1
EulerianKnight
2023-08-10T18:29:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T18:29:29Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="EulerianKnight/taxi-v3-1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
EulerianKnight/q-FrozenLake-v1-4x4-noSlippery
EulerianKnight
2023-08-10T18:27:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T18:27:27Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="EulerianKnight/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
KingKazma/cnn_dailymail_t5-small_prefix_tuning_500_10_3000_8_e-1_s6789_v3_l6_v20_manual
KingKazma
2023-08-10T18:25:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:25:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e9_s6789_v3_l6_r4
KingKazma
2023-08-10T18:24:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:24:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
vrajur/Reinforce-Pixelcopter-PLE-v0
vrajur
2023-08-10T18:21:42Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T18:21:38Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 18.20 +/- 16.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
carlos-rodcor/ppo-LunarLander-v2
carlos-rodcor
2023-08-10T18:19:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T18:18:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.75 +/- 16.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e9_s6789_v3_l4_r4
KingKazma
2023-08-10T18:15:55Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:15:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s6789_v3_l6_r4
KingKazma
2023-08-10T18:10:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:10:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s6789_v3_l4_r4
KingKazma
2023-08-10T18:08:56Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:08:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
llama-anon/petra-13b-instruct
llama-anon
2023-08-10T18:05:32Z
10
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-09T23:06:54Z
--- license: agpl-3.0 --- LLaMA-13B merged with Instruct-13B weights, just werks. Prompt format: ``` user instruction here optional additional user input generated output ``` Example prompt: ``` Does this tweet have negative or positive sentiment? i hate my life!!!! negative ``` Feel free to donate: XMR: ```86Z8nLSVPx3SZ5z7iWugeK5JruAeGPUJyExD9e3wdTSxUvFMhGXNG9ucPqCm8M29y1AxP6ta56GBQ4GiEUMzeew9MfX1yct```
jfrojanoj/dqn-SpaceInvadersNoFrameskip-v4
jfrojanoj
2023-08-10T18:05:31Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T18:04:54Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 733.00 +/- 217.96 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jfrojanoj -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jfrojanoj -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jfrojanoj ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s6789_v3_l4_r4
KingKazma
2023-08-10T18:01:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T18:01:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
smangrul/peft-lora-starcoder15B-personal-copilot-A100-40GB-colab
smangrul
2023-08-10T18:00:28Z
5
0
peft
[ "peft", "generated_from_trainer", "base_model:bigcode/starcoder", "base_model:adapter:bigcode/starcoder", "license:bigcode-openrail-m", "region:us" ]
null
2023-08-09T20:22:03Z
--- license: bigcode-openrail-m base_model: bigcode/starcoder tags: - generated_from_trainer model-index: - name: peft-lora-starcoder15B-personal-copilot-A100-40GB-colab results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-lora-starcoder15B-personal-copilot-A100-40GB-colab This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6593 | 0.05 | 100 | 0.5847 | | 0.6226 | 0.1 | 200 | 0.5292 | | 0.6597 | 0.15 | 300 | 0.4814 | | 0.5523 | 0.2 | 400 | 0.4617 | | 0.4856 | 0.25 | 500 | 0.4597 | | 0.5237 | 0.3 | 600 | 0.4505 | | 0.4894 | 0.35 | 700 | 0.4398 | | 0.5579 | 0.4 | 800 | 0.4377 | | 0.4702 | 0.45 | 900 | 0.4322 | | 0.5418 | 0.5 | 1000 | 0.4244 | | 0.5159 | 0.55 | 1100 | 0.4133 | | 0.524 | 0.6 | 1200 | 0.3977 | | 0.4138 | 0.65 | 1300 | 0.3966 | | 0.5572 | 0.7 | 1400 | 0.3936 | | 0.4146 | 0.75 | 1500 | 0.3904 | | 0.7927 | 0.8 | 1600 | 0.3905 | | 0.4131 | 0.85 | 1700 | 0.3866 | | 0.4552 | 0.9 | 1800 | 0.3881 | | 0.3914 | 0.95 | 1900 | 0.3794 | | 0.4945 | 1.0 | 2000 | 0.3633 | ### Framework versions - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s6789_v3_l6_r4
KingKazma
2023-08-10T17:56:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:56:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
moisesrobles04/SpaceInvader-v4
moisesrobles04
2023-08-10T17:55:44Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-19T17:49:36Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 257.00 +/- 38.81 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga moisesrobles04 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga moisesrobles04 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga moisesrobles04 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 102000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.2), ('frame_stack', 5), ('gradient_steps', 1), ('learning_rate', 0.01), ('learning_starts', 100000), ('n_timesteps', 950000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 5), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s6789_v3_l4_r4
KingKazma
2023-08-10T17:55:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:54:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
edumunozsala/bertin_base_sentiment_analysis_es
edumunozsala
2023-08-10T17:50:32Z
131
5
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "sagemaker", "bertin", "TextClassification", "SentimentAnalysis", "es", "dataset:IMDbreviews_es", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-15T16:40:29Z
--- language: es tags: - sagemaker - bertin - TextClassification - SentimentAnalysis license: apache-2.0 datasets: - IMDbreviews_es metrics: - accuracy model-index: - name: bertin_base_sentiment_analysis_es results: - task: name: Sentiment Analysis type: sentiment-analysis dataset: name: "IMDb Reviews in Spanish" type: IMDbreviews_es metrics: - name: Accuracy type: accuracy value: 0.898933 - name: F1 Score type: f1 value: 0.8989063 - name: Precision type: precision value: 0.8771473 - name: Recall type: recall value: 0.9217724 widget: - text: "Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" --- # Model bertin_base_sentiment_analysis_es ## **A finetuned model for Sentiment analysis in Spanish** This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container, The base model is **Bertin base** which is a RoBERTa-base model pre-trained on the Spanish portion of mC4 using Flax. It was trained by the Bertin Project.[Link to base model](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) Article: BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling - Author = Javier De la Rosa y Eduardo G. Ponferrada y Manu Romero y Paulo Villegas y Pablo González de Prado Salas y María Grandury, - journal = Procesamiento del Lenguaje Natural, - volume = 68, number = 0, year = 2022 - url = http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403 ## Dataset The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages. Sizes of datasets: - Train dataset: 42,500 - Validation dataset: 3,750 - Test dataset: 3,750 ## Intended uses & limitations This model is intented for Sentiment Analysis for spanish corpus and finetuned specially for movie reviews but it can be applied to other kind of reviews. ## Hyperparameters { "epochs": "4", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "3e-05", "model_name": "\"bertin-project/bertin-roberta-base-spanish\"", "sagemaker_container_log_level": "20", "sagemaker_program": "\"train.py\"", } ## Evaluation results - Accuracy = 0.8989333333333334 - F1 Score = 0.8989063750333421 - Precision = 0.877147319104633 - Recall = 0.9217724288840262 ## Test results ## Model in action ### Usage for Sentiment Analysis ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("edumunozsala/bertin_base_sentiment_analysis_es") model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/bertin_base_sentiment_analysis_es") text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) output = outputs.logits.argmax(1) ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s6789_v3_l6_r4
KingKazma
2023-08-10T17:49:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:49:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Veucci/lyric-to-genre
Veucci
2023-08-10T17:43:04Z
176
4
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "music", "en", "dataset:Veucci/lyric-to-3genre", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-02T13:32:50Z
--- license: cc-by-nc-4.0 datasets: - Veucci/lyric-to-3genre language: - en library_name: transformers tags: - music widget: - text: >- When I'm away from you, I'm happier than ever Wish I could explain it better I wish it wasn't true Give me a day or two to think of something clever To write myself a letter To tell me what to do, mm-mmm Do you read my interviews? Or do you skip my avenue? (My avenue) When you (when you) said you were passing through Was I even on your way? I knew when I asked you to (when I asked you to) Be cool about what I was telling you You'd do the opposite of what you said you'd do (what you said you'd do) And I'd end up more afraid Don't say it isn't fair You clearly weren't aware that you made me miserable So if you really wanna know example_title: (Pop) Happier Than Ever - Billie Eilish - text: >- Look, I was gonna go easy on you and not to hurt your feelings But I'm only going to get this one chance (six minutes, six minutes) Something's wrong, I can feel it (six minutes, six minutes, Slim Shady, you're on) Just a feeling I've got, like something's about to happen, but I don't know what If that means what I think it means, we're in trouble, big trouble And if he is as bananas as you say, I'm not taking any chances You are just what the doctor ordered I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod Now who thinks their arms are long enough to slap box, slap box? They said I rap like a robot, so call me Rapbot example_title: (Hip-Hop) Rap God - Eminem - text: >- Come as you are, as you were As I want you to be As a friend, as a friend As an old enemy Take your time, hurry up Choice is yours, don't be late Take a rest as a friend As an old Memoria, memoria Memoria, memoria Come doused in mud, soaked in bleach As I want you to be As a trend, as a friend As an old Memoria, memoria Memoria, memoria example_title: (Rock) Come as You Are - Nirvana --- # Lyrics Genre Classification Model ## Description The model was trained using the BERT language model on my [song lyrics dataset](https://huggingface.co/datasets/Veucci/lyrics_3genre) to predict the genre of a given song based on its lyrics. This repository houses the machine learning model, which is capable of making predictions in three distinct genres: Pop, Rock, and Hip-Hop. For training and test codes check out [Github page](https://github.com/Veucci/lyrics-to-genre-lite). ## Dataset The model was trained on a diverse and labeled dataset of song lyrics, which contained approximately 3000 rows. The dataset was carefully curated to include songs from a wide range of artists and genres, ensuring a comprehensive representation of Pop, Rock, and Hip-Hop music. [DATASET](https://huggingface.co/datasets/Veucci/lyrics_3genre) ## Quick Start ```py from transformers import pipeline classifier = pipeline("text-classification", model="Veucci/lyrics-to-genre") result = classifier("When I'm away from you, I'm happier than ever Wish I could explain it better I wish it wasn't true") print(result) ``` ## License This dataset is released under the Creative Commons Attribution-NonCommercial license. This means that you are not allowed to use the dataset for commercial purposes. For detailed information about the license, please refer to the [LICENSE](./LICENSE) file. ## Contact If you have any questions, suggestions, or concerns regarding this dataset, please feel free to reach out to email at [[email protected]](mailto:[email protected]). I hope this model helps in your genre classification tasks and inspires further exploration of song lyrics analysis!
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s6789_v3_l4_r4
KingKazma
2023-08-10T17:41:03Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:40:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Veucci/turkish-lyric-to-genre
Veucci
2023-08-10T17:39:19Z
130
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "music", "tr", "dataset:Veucci/turkish-lyric-to-genre", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-05T19:32:54Z
--- license: cc-by-nc-4.0 datasets: - Veucci/turkish-lyric-to-genre language: - tr library_name: transformers tags: - music widget: - text: Çaldığın o kalbi yerine koy lütfen Eğer hislerinden pek emin değilsen Aradığın aşksa en güzelinden O zaman başka Açarım kapıları hazırım dünden Çaldığın o kalbi yerine koy lütfen Eğer hislerinden pek emin değilsen Aradığın aşksa en güzelinden O zaman başka Açarım kapıları hazırım dünden example_title: (Pop) O Sen Olsan Bari - Aleyna Tilki - text: Nefes alamam, boğazıma kadar dolu Yük dolu, kül dolu iç yarası Bu kez yaramaz, ilaçlar ama Sonun ölüm dostum o yüzden iç yarasın Nefes alamam, boğazıma kadar dolu Yük dolu, kül dolu iç yarası Bu kez yaramaz, ilaçlar ama Sonun ölüm dostum o yüzden iç yarasın Karanlık ev, bu sokak, bütün gezegen Ateş yak, ateş yak eskimiş seneler Zaman ilaç dediler ne gelir elimden? Işıksızım bir şık seçtim inanıp derinden Umrumda mı sandın dünya oynasın yerinden Kıyamet kopsun severim erinmem Ölümden değil korkum gittiğimde yenilmen O gün cevap bulursun öpmek yarayı geçirmez Buraya kadar, kanayamam artık Yapıştı yakama, buraya kadar Kaçamam asla yine yakalar Son nefesini ver, buraya kadar example_title: (Hip-Hop) Nefes Alamam - Aspova - text: Bedava yaşıyoruz, dostlar bedava Hava bedava, bulut bedava Dere tepe bedava, yağmur çamur bedava Bedava yaşıyoruz, dostlar bedava Hava bedava, bulut bedava Dere tepe bedava, yağmur çamur bedava Otomobillerin dışı, sinemaların kapısı Otomobillerin dışı, sinemaların kapısı Camekanlar, onlar bedava Camekanlar, onlar bedava Peynir ekmek değil ama acı su bedava Kelle fiyatına hürriyet, esirlik bedava Peynir ekmek değil ama acı su bedava Kelle fiyatına hürriyet, esirlik bedava Bedava yaşıyoruz, dostlar bedava example_title: (Rock) Bedava Yaşıyoruz - Cem Karaca - text: Nikâhına beni çağır, sevgilim İstersen şahidin olurum senin Bu adam kim? diye soran olursa Eski bir tanıdık dersin, sevgilim Nikâhına beni çağır sevgilim İstersen şahidin olurum senin Bu adam kim diye soran olursa Eski bir tanıdık dersin, sevgilim Hayaller kurardık biz yıllar önce Hiç yoktu hesapta ayrılık bizce Bilirsin ne kadar görmek isterdim Beyazlar içinde seni öylece Hayaller kurardık biz yıllar önce Hiç yoktu hesapta ayrılık bizce Bilirsin ne kadar görmek isterdim Beyazlar içinde seni öylece Garibin biriysem sevemez miyim? Aşkla karın doymaz diyen ben miyim? Şimdi çok zenginsin, ben ayrı garip Sana bir buket gül veremez miyim? example_title: (Arabesk) Nikah Masası - Ümit Besen --- # Lyrics Genre Classification Model ## Description The model was trained using the BERT language model on my [song lyrics dataset](https://huggingface.co/datasets/Veucci/turkish-lyric-to-genre) to predict the genre of a given song based on its lyrics. This repository houses the machine learning model, which is capable of making predictions in four distinct genres: Pop, Rock, Hip-Hop and Arabesk. For training and test codes check out [Github page](https://github.com/Veucci/turkish-lyric-to-genre). ## Dataset The model was trained on a diverse and labeled dataset of song lyrics, which contained 3172 rows. The dataset was carefully curated to include songs from a wide range of artists and genres, ensuring a comprehensive representation of Pop, Rock, Hip-Hop and Arabesk music. [DATASET](https://huggingface.co/datasets/Veucci/turkish-lyric-to-genre) ## Quick Start ```py from transformers import pipeline classifier = pipeline("text-classification", model="Veucci/lyrics-to-genre") result = classifier("Bedava yaşıyoruz, dostlar bedava Hava bedava, bulut bedava Dere tepe bedava, yağmur çamur bedava") print(result) ``` ## License This dataset is released under the Creative Commons Attribution-NonCommercial license. This means that you are not allowed to use the dataset for commercial purposes. For detailed information about the license, please refer to the [LICENSE](./LICENSE) file. ## Contact If you have any questions, suggestions, or concerns regarding this dataset, please feel free to reach out to email at [[email protected]](mailto:[email protected]). I hope this model helps in your genre classification tasks and inspires further exploration of song lyrics analysis!
imvladikon/hebert_parashoot
imvladikon
2023-08-10T17:39:15Z
142
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "he", "dataset:imvladikon/parashoot", "arxiv:2109.11314", "base_model:avichr/heBERT", "base_model:finetune:avichr/heBERT", "endpoints_compatible", "region:us" ]
question-answering
2023-08-02T07:10:50Z
--- base_model: avichr/heBERT tags: - generated_from_trainer datasets: - imvladikon/parashoot model-index: - name: hebert_parashoot results: [] language: - he metrics: - f1 - exact_match pipeline_tag: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hebert_parashoot This model is a fine-tuned version of [avichr/heBERT](https://huggingface.co/avichr/heBERT) on the [imvladikon/parashoot](https://huggingface.co/datasets/imvladikon/parashoot) dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results results: ``` { "epoch": 5.0, "eval_exact_match": 18.099547511312217, "eval_f1": 36.8601893452485, "eval_runtime": 6.7527, "eval_samples": 249, "eval_samples_per_second": 36.874, "eval_steps_per_second": 4.739 } ``` (which reflects with results from the https://arxiv.org/pdf/2109.11314.pdf : F1: 36.7, EM: 18.2) ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
LarryAIDraw/miko-09
LarryAIDraw
2023-08-10T17:37:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-10T17:28:57Z
--- license: creativeml-openrail-m --- https://civitai.com/models/125385/miko-yotsuya-oror-mieruko-chan
LarryAIDraw/ako
LarryAIDraw
2023-08-10T17:36:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-10T17:27:57Z
--- license: creativeml-openrail-m --- https://civitai.com/models/16506/amau-akoblue-archive
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s6789_v3_l6_r4
KingKazma
2023-08-10T17:35:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:35:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e3_s6789_v3_l4_r4
KingKazma
2023-08-10T17:34:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:34:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
cecb/bitcoin-tweets-sentiment-llama2model
cecb
2023-08-10T17:31:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T14:25:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s6789_v3_l4_r4
KingKazma
2023-08-10T17:27:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:27:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
justarandom8/amazon_sentiment_model
justarandom8
2023-08-10T17:24:08Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-08-10T17:24:05Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
royam0820/llama2-CodeInstr-ft
royam0820
2023-08-10T17:23:40Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:23:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s6789_v3_l6_r4
KingKazma
2023-08-10T17:20:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:20:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s6789_v3_l4_r4
KingKazma
2023-08-10T17:20:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:20:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s6789_v3_l6_r4
KingKazma
2023-08-10T17:13:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:13:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s6789_v3_l4_r4
KingKazma
2023-08-10T17:13:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:13:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_prefix_tuning_500_10_3000_8_e-1_s6789_v3_l6_v100_manual
KingKazma
2023-08-10T17:07:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:07:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Against61/llama2-qlora-finetunined-SFU2
Against61
2023-08-10T17:00:09Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-10T17:00:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Shreekant162/FineTuned
Shreekant162
2023-08-10T16:45:12Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T16:45:01Z
--- tags: - generated_from_keras_callback model-index: - name: FineTuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FineTuned This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e-1_s6789_v3_l6_v100_manual
KingKazma
2023-08-10T16:45:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T16:45:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e7_s6789_v3_l5_v100
KingKazma
2023-08-10T16:41:29Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T16:41:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0