modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-12 06:28:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
517 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-12 06:24:43
card
stringlengths
11
1.01M
alisonbrwn/ppo-LunarLander_doubled_steps_wyth_hptune
alisonbrwn
2022-05-12T11:42:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T11:42:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 253.43 +/- 10.79 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Sumedha/distilbert-base-uncased-finetuned-imdb
Sumedha
2022-05-12T11:10:45Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-12T09:07:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4884 | | 2.5761 | 2.0 | 314 | 2.4230 | | 2.5255 | 3.0 | 471 | 2.4356 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.0 - Tokenizers 0.11.0
DioLiu/distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle
DioLiu
2022-05-12T11:04:41Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-12T08:35:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0284 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0166 | 1.0 | 7783 | 0.0135 | 0.9965 | | 0.0091 | 2.0 | 15566 | 0.0172 | 0.9968 | | 0.0059 | 3.0 | 23349 | 0.0223 | 0.9968 | | 0.0 | 4.0 | 31132 | 0.0332 | 0.9962 | | 0.0001 | 5.0 | 38915 | 0.0284 | 0.9971 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
madatnlp/prefix-ket5-scratch
madatnlp
2022-05-12T09:23:55Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-12T07:49:21Z
--- tags: - generated_from_keras_callback model-index: - name: madatnlp/prefix-ket5-scratch results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # madatnlp/prefix-ket5-scratch This model is a fine-tuned version of [madatnlp/ke-t5-math-py](https://huggingface.co/madatnlp/ke-t5-math-py) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7214 - Validation Loss: 0.8747 - Epoch: 98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.0101 | 5.1280 | 0 | | 4.8040 | 3.6005 | 1 | | 3.7550 | 2.8108 | 2 | | 3.2740 | 2.6402 | 3 | | 2.9682 | 2.3173 | 4 | | 2.6871 | 2.1585 | 5 | | 2.4782 | 2.0828 | 6 | | 2.3507 | 1.9557 | 7 | | 2.2131 | 1.8513 | 8 | | 2.1235 | 1.6324 | 9 | | 2.0157 | 1.6270 | 10 | | 1.9722 | 1.6217 | 11 | | 1.8733 | 1.5436 | 12 | | 1.8680 | 1.5872 | 13 | | 1.8365 | 1.6040 | 14 | | 1.7528 | 1.5049 | 15 | | 1.7411 | 1.4754 | 16 | | 1.6733 | 1.4409 | 17 | | 1.6544 | 1.4230 | 18 | | 1.6271 | 1.4556 | 19 | | 1.5658 | 1.3797 | 20 | | 1.5774 | 1.3269 | 21 | | 1.5150 | 1.3108 | 22 | | 1.5057 | 1.3785 | 23 | | 1.4605 | 1.3114 | 24 | | 1.4702 | 1.2618 | 25 | | 1.4220 | 1.2164 | 26 | | 1.4194 | 1.2409 | 27 | | 1.3942 | 1.2603 | 28 | | 1.3921 | 1.3010 | 29 | | 1.3645 | 1.1850 | 30 | | 1.3336 | 1.1273 | 31 | | 1.3499 | 1.1533 | 32 | | 1.3022 | 1.1683 | 33 | | 1.2990 | 1.1403 | 34 | | 1.2876 | 1.1241 | 35 | | 1.2479 | 1.0957 | 36 | | 1.2441 | 1.1989 | 37 | | 1.2464 | 1.1416 | 38 | | 1.2353 | 1.0636 | 39 | | 1.2152 | 1.1136 | 40 | | 1.2212 | 1.0635 | 41 | | 1.1892 | 1.0818 | 42 | | 1.1959 | 1.1041 | 43 | | 1.1957 | 1.0912 | 44 | | 1.1542 | 1.0949 | 45 | | 1.1403 | 1.1272 | 46 | | 1.1396 | 1.1169 | 47 | | 1.1149 | 1.0606 | 48 | | 1.1238 | 1.0610 | 49 | | 1.1246 | 1.0234 | 50 | | 1.0971 | 0.9865 | 51 | | 1.0883 | 1.0568 | 52 | | 1.0774 | 1.0099 | 53 | | 1.0581 | 1.0023 | 54 | | 1.0680 | 1.0197 | 55 | | 1.0682 | 0.9835 | 56 | | 1.0390 | 0.9789 | 57 | | 1.0480 | 1.0217 | 58 | | 1.0273 | 0.9622 | 59 | | 1.0062 | 1.0174 | 60 | | 1.0088 | 0.9612 | 61 | | 0.9909 | 0.9998 | 62 | | 0.9821 | 1.0115 | 63 | | 0.9752 | 0.9712 | 64 | | 0.9816 | 0.9677 | 65 | | 0.9569 | 0.9503 | 66 | | 0.9521 | 1.0052 | 67 | | 0.9384 | 0.9752 | 68 | | 0.9468 | 0.9767 | 69 | | 0.9241 | 1.0076 | 70 | | 0.9211 | 0.9414 | 71 | | 0.9166 | 1.0294 | 72 | | 0.9044 | 0.9772 | 73 | | 0.9025 | 0.9273 | 74 | | 0.8909 | 1.0077 | 75 | | 0.8831 | 0.9292 | 76 | | 0.8702 | 0.9320 | 77 | | 0.8644 | 0.9879 | 78 | | 0.8599 | 0.9027 | 79 | | 0.8434 | 0.9197 | 80 | | 0.8561 | 0.9447 | 81 | | 0.8330 | 0.9730 | 82 | | 0.8328 | 0.9137 | 83 | | 0.8221 | 0.9232 | 84 | | 0.8166 | 0.9115 | 85 | | 0.8025 | 0.9530 | 86 | | 0.8070 | 0.9270 | 87 | | 0.7968 | 0.8474 | 88 | | 0.7880 | 0.9171 | 89 | | 0.7834 | 0.8668 | 90 | | 0.7786 | 0.9049 | 91 | | 0.7595 | 0.9348 | 92 | | 0.7573 | 0.8826 | 93 | | 0.7505 | 0.8765 | 94 | | 0.7474 | 0.9312 | 95 | | 0.7386 | 0.9211 | 96 | | 0.7490 | 0.9223 | 97 | | 0.7214 | 0.8747 | 98 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
eslamxm/mt5-base-finetuned-urdu-arabic
eslamxm
2022-05-12T09:18:16Z
11
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "arabic", "ar", "Abstractive Summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-12T01:15:19Z
--- license: apache-2.0 tags: - summarization - arabic - ar - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-urdu-finetuned-urdu-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-urdu-finetuned-urdu-arabic This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-urdu](https://huggingface.co/eslamxm/mt5-base-finetuned-urdu) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.3744 - Rouge-1: 22.77 - Rouge-2: 10.15 - Rouge-l: 20.71 - Gen Len: 19.0 - Bertscore: 71.46 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.5155 | 1.0 | 1172 | 3.6895 | 18.81 | 6.77 | 17.01 | 19.0 | 70.27 | | 3.8315 | 2.0 | 2344 | 3.5047 | 19.75 | 7.79 | 17.95 | 19.0 | 70.58 | | 3.6122 | 3.0 | 3516 | 3.4231 | 20.46 | 8.44 | 18.7 | 19.0 | 70.8 | | 3.4735 | 4.0 | 4688 | 3.3835 | 21.12 | 8.86 | 19.21 | 19.0 | 70.98 | | 3.3855 | 5.0 | 5860 | 3.3744 | 21.48 | 9.01 | 19.57 | 19.0 | 71.17 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
uhlenbeckmew/distilroberta-base-wiki
uhlenbeckmew
2022-05-12T07:51:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-12T07:02:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-wiki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wiki This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4333 | 1.0 | 1223 | 2.1885 | | 2.3107 | 2.0 | 2446 | 2.1508 | | 2.2385 | 3.0 | 3669 | 2.0961 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
cocoshe/bert-base-chinese-finetune-5-trash-email
cocoshe
2022-05-12T07:35:56Z
7
1
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-12T07:25:12Z
--- language: zh --- # Based on bert-base-chinese 基于bert-base-chinese在`message80W`数据集(垃圾邮件二分类)上做了5个epoch的fine-tune ```python # evaluate with torch.no_grad(): model.eval() eval_steps = 0 pred_list = [] label_list = [] for i, batch in enumerate(tqdm(test_loader)): input_ids, attention_mask, label = batch logits = model(input_ids, attention_mask) pred_list += (torch.argmax(logits, dim=-1)) label_list += label eval_steps += 1 ``` 80W数据,shuffled,8:3分train eval 下面是eval结果 ![image-20220512153415505](image-20220512153415505.png)
yogeshchandrasekharuni/t5-small-finetuned-xsum
yogeshchandrasekharuni
2022-05-12T07:34:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-12T06:56:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 16 | 2.3636 | 60.9559 | 47.1972 | 58.7384 | 59.5004 | 18.082 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
iis2009002/xlm-roberta-base-finetuned-panx-all
iis2009002
2022-05-12T07:17:40Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-04T11:40:11Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1862 | 0.8114 | | 0.1552 | 2.0 | 1670 | 0.1758 | 0.8426 | | 0.1002 | 3.0 | 2505 | 0.1752 | 0.8557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sagerpascal/bert-finetuned-ner
sagerpascal
2022-05-12T07:11:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-12T06:30:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9349014411131357 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9423157191752232 - name: Accuracy type: accuracy value: 0.9858862659680933 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0646 - Precision: 0.9349 - Recall: 0.9498 - F1: 0.9423 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0834 | 1.0 | 1756 | 0.0686 | 0.9140 | 0.9354 | 0.9246 | 0.9825 | | 0.0421 | 2.0 | 3512 | 0.0596 | 0.9205 | 0.9472 | 0.9336 | 0.9849 | | 0.0183 | 3.0 | 5268 | 0.0646 | 0.9349 | 0.9498 | 0.9423 | 0.9859 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
iis2009002/xlm-roberta-base-finetuned-panx-it
iis2009002
2022-05-12T07:07:41Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-04T11:06:02Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8247845711940912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - F1: 0.8248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.809 | 1.0 | 70 | 0.3380 | 0.7183 | | 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 | | 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Vnven25/en_pipeline
Vnven25
2022-05-12T06:49:36Z
4
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-05-11T17:14:48Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 1.0 - name: NER Recall type: recall value: 1.0 - name: NER F Score type: f_score value: 1.0 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.3,<3.3.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme ##NE <details> <summary>View label scheme (6 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `COMPANY NAME`, `CONTRACT`, `EMAIL`, `EVENT`, `MODULE`, `NAME` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 100.00 | | `ENTS_P` | 100.00 | | `ENTS_R` | 100.00 | | `TOK2VEC_LOSS` | 6689.73 | | `NER_LOSS` | 483.71 |
guhuawuli/gpt2-poem_key_words
guhuawuli
2022-05-12T06:28:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-12T01:51:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-poem_key_words results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-poem_key_words This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9544 | 1.0 | 670 | 2.6296 | | 2.7014 | 2.0 | 1340 | 2.5557 | | 2.6035 | 3.0 | 2010 | 2.5370 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0a0+3fd9dcf - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/ladygaga
huggingtweets
2022-05-12T06:03:03Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ladygaga/1652335378479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519346609125003264/rekKHZUq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div> <div style="text-align: center; font-size: 14px;">@ladygaga</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lady Gaga. | Data | Lady Gaga | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 617 | | Short tweets | 330 | | Tweets kept | 2231 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27nvqv2x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ladygaga's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a6dln4v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a6dln4v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ladygaga') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vanichandna/indic-bert-finetuned-squad
vanichandna
2022-05-12T05:16:13Z
4
0
transformers
[ "transformers", "tf", "albert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-10T20:11:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: vanichandna/indic-bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vanichandna/indic-bert-finetuned-squad This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0802 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 21984, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.8468 | 0 | | 1.4510 | 1 | | 1.2435 | 2 | | 1.0802 | 3 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.0 - Tokenizers 0.12.1
eduardopds/mt5-small-finetuned-amazon-en-es
eduardopds
2022-05-12T01:32:02Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-12T00:39:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: eduardopds/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eduardopds/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0870 - Validation Loss: 3.3925 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.8646 | 4.3778 | 0 | | 5.9307 | 3.8057 | 1 | | 5.1494 | 3.6458 | 2 | | 4.7430 | 3.5501 | 3 | | 4.4782 | 3.4870 | 4 | | 4.2922 | 3.4339 | 5 | | 4.1536 | 3.4037 | 6 | | 4.0870 | 3.3925 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
tjscollins/ppo-LunarLander-v2-tuned
tjscollins
2022-05-12T01:11:50Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T01:07:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 292.67 +/- 15.30 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
pirchavez/PPO-FirstModel
pirchavez
2022-05-12T00:28:48Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T00:26:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -136.25 +/- 22.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
salil-malhotra/test02-ppo-LunarLander-v2
salil-malhotra
2022-05-11T23:04:18Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T03:15:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 280.98 +/- 18.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
RaphaelReinauer/LunarLander-v10
RaphaelReinauer
2022-05-11T22:37:32Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T22:37:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 208.15 +/- 42.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
alk/mt5-small-mt5-small-finetuned-billsum-en-es
alk
2022-05-11T22:05:52Z
4
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T18:40:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: alk/mt5-small-mt5-small-finetuned-billsum-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alk/mt5-small-mt5-small-finetuned-billsum-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1897 - Validation Loss: 1.0147 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 18944, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.3673 | 1.7982 | 0 | | 2.2571 | 1.4674 | 1 | | 1.8047 | 1.2942 | 2 | | 1.5579 | 1.1585 | 3 | | 1.3863 | 1.0762 | 4 | | 1.2786 | 1.0284 | 5 | | 1.2162 | 1.0217 | 6 | | 1.1897 | 1.0147 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
huxxx657/roberta-base-finetuned-deletion-squad-15
huxxx657
2022-05-11T21:15:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-11T20:04:40Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-deletion-squad-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-deletion-squad-15 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1127 | 1.0 | 5531 | 1.1057 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
RebeccaJeffers/ppo-LunarLander-v2
RebeccaJeffers
2022-05-11T21:06:10Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T21:02:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 231.12 +/- 22.15 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
A2/kogpt2-taf
A2
2022-05-11T21:01:45Z
6
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-28T05:45:19Z
--- license: apache-2.0 --- Grepp KDT AI 3기 과정 프로젝트. [SKT-AI/KoGPT2](https://github.com/SKT-AI/KoGPT2) 모델을 기반. 모두의 말뭉치의 2021 뉴스 말뭉치를 추가로 언어모델링 학습 후, 5대 일간지(조선일보, 중앙일보, 동아일보, 한겨레, 경향신문)별 각 만여개의 사설로 미세조정하였음. 매일 백여개의 사설로 추가 미세조정하여 최신 정치적 이슈에 관한 텍스트도 잘 생성함.
chrishistewandb/hugging-face
chrishistewandb
2022-05-11T19:49:11Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-06T21:45:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hugging-face results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hugging-face This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
RaphaelReinauer/LunarLander-v7
RaphaelReinauer
2022-05-11T19:31:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T19:30:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PP0 results: - metrics: - type: mean_reward value: 147.27 +/- 83.23 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PP0** Agent playing **LunarLander-v2** This is a trained model of a **PP0** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
DBusAI/DQN-MountainCar-v0
DBusAI
2022-05-11T18:53:21Z
0
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T18:21:27Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -100.20 +/- 8.40 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
mcurmei/single_label_N_max_long_training
mcurmei
2022-05-11T18:10:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-11T17:22:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: single_label_N_max_long_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # single_label_N_max_long_training This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.8288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0568 | 1.0 | 674 | 1.9993 | | 1.6024 | 2.0 | 1348 | 1.8497 | | 1.0196 | 3.0 | 2022 | 1.9178 | | 0.7622 | 4.0 | 2696 | 2.0412 | | 0.6066 | 5.0 | 3370 | 2.2523 | | 0.4136 | 6.0 | 4044 | 2.3845 | | 0.3113 | 7.0 | 4718 | 2.5712 | | 0.2777 | 8.0 | 5392 | 2.6790 | | 0.208 | 9.0 | 6066 | 2.7464 | | 0.1749 | 10.0 | 6740 | 2.8288 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
ceggian/sbert_pt_reddit_mnr_256
ceggian
2022-05-11T18:03:58Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-11T17:53:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 39289 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3928, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
snowood1/ConfliBERT-scr-cased
snowood1
2022-05-11T16:53:30Z
17
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-29T20:52:24Z
--- license: gpl-3.0 --- ConfliBERT is a pre-trained language model for political conflict and violence. We provided four versions of ConfliBERT: <ol> <li>ConfliBERT-scr-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own uncased vocabulary (preferred)</li> <li>ConfliBERT-scr-cased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own cased vocabulary</li> <li>ConfliBERT-cont-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's uncased vocabulary</li> <li>ConfliBERT-cont-cased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's cased vocabulary</li> </ol> See more details in https://github.com/eventdata/ConfliBERT/
snowood1/ConfliBERT-scr-uncased
snowood1
2022-05-11T16:53:17Z
183
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-29T21:00:32Z
--- license: gpl-3.0 --- ConfliBERT is a pre-trained language model for political conflict and violence. We provided four versions of ConfliBERT: <ol> <li>ConfliBERT-scr-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own uncased vocabulary (preferred)</li> <li>ConfliBERT-scr-cased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own cased vocabulary</li> <li>ConfliBERT-cont-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's uncased vocabulary</li> <li>ConfliBERT-cont-cased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's cased vocabulary</li> </ol> See more details in https://github.com/eventdata/ConfliBERT/
snowood1/ConfliBERT-cont-cased
snowood1
2022-05-11T16:52:54Z
5
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-29T20:54:34Z
--- license: gpl-3.0 --- ConfliBERT is a pre-trained language model for political conflict and violence. We provided four versions of ConfliBERT: <ol> <li>ConfliBERT-scr-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own uncased vocabulary (preferred)</li> <li>ConfliBERT-scr-cased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own cased vocabulary</li> <li>ConfliBERT-cont-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's uncased vocabulary</li> <li>ConfliBERT-cont-cased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's cased vocabulary</li> </ol> See more details in https://github.com/eventdata/ConfliBERT/
snowood1/ConfliBERT-cont-uncased
snowood1
2022-05-11T16:49:05Z
7
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-29T21:01:06Z
--- license: gpl-3.0 --- ConfliBERT is a pre-trained language model for political conflict and violence. We provided four versions of ConfliBERT: <ol> <li>ConfliBERT-scr-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own uncased vocabulary (preferred)</li> <li>ConfliBERT-scr-cased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own cased vocabulary</li> <li>ConfliBERT-cont-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's uncased vocabulary</li> <li>ConfliBERT-cont-cased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's cased vocabulary</li> </ol> See more details in https://github.com/eventdata/ConfliBERT/
kaeldric/TEST2ppo-LunarLander-v2
kaeldric
2022-05-11T16:48:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T16:48:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 246.63 +/- 20.18 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
subhasisj/hi-TAPT-MLM-MiniLM
subhasisj
2022-05-11T16:44:42Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-11T13:30:08Z
--- tags: - generated_from_trainer model-index: - name: hi-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hi-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
patrickvonplaten/opt_metaseq_350m
patrickvonplaten
2022-05-11T16:08:26Z
8
0
transformers
[ "transformers", "opt", "feature-extraction", "opt_metasq", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-11T08:35:10Z
--- tags: - opt_metasq --- # This repo let's you run the following checkpoint using facebookresearch/metaseq. Do the following: ## 1. Install PyTorch ``` pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install Megatron ``` git clone https://github.com/patrickvonplaten/Megatron-LM.git cd Megatron-LM pip3 install six regex pip3 install -e . ``` ## 3. Install fairscale ``` git clone https://github.com/facebookresearch/fairscale.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 4. Install metaseq ``` git clone https://github.com/patrickvonplaten/metaseq.git cd metaseq pip3 install -e . ``` ## 5. Clone this repo (click top right on "How to clone") ## 6. Run the following: ```bash cd <path/to/cloned/repo> bash run.sh ```
KenP/codeparrot-ds
KenP
2022-05-11T15:04:32Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-10T20:46:24Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: KenP/codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KenP/codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.3900 - Validation Loss: 9.6171 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -922, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.3900 | 9.6171 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.0 - Tokenizers 0.12.1
huggingtweets/alice_lbl-lotrbookquotes
huggingtweets
2022-05-11T14:44:26Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T14:43:07Z
--- language: en thumbnail: http://www.huggingtweets.com/alice_lbl-lotrbookquotes/1652280261416/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424546909104926720/g4pTa5BS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1047569624693465089/0yKYd-Xl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alice in Wonderland & Looking-Glass (line by line) & Lord of the Rings quotes</div> <div style="text-align: center; font-size: 14px;">@alice_lbl-lotrbookquotes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alice in Wonderland & Looking-Glass (line by line) & Lord of the Rings quotes. | Data | Alice in Wonderland & Looking-Glass (line by line) | Lord of the Rings quotes | | --- | --- | --- | | Tweets downloaded | 3050 | 3250 | | Retweets | 0 | 0 | | Short tweets | 38 | 0 | | Tweets kept | 3012 | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14brvkjr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alice_lbl-lotrbookquotes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tzmzyo79) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tzmzyo79/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alice_lbl-lotrbookquotes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DBusAI/ppo-FrozenLake-v1
DBusAI
2022-05-11T14:19:43Z
3
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T14:19:20Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 0.80 +/- 0.40 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
pere/t5-parliament-categorisation
pere
2022-05-11T14:14:10Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-04-04T14:46:19Z
--- license: apache-2.0 ---
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv
theojolliffe
2022-05-11T13:55:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T07:49:27Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8065 - Rouge1: 54.5916 - Rouge2: 36.7817 - Rougel: 40.4708 - Rougelsum: 52.5754 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2945 | 1.0 | 795 | 0.9555 | 51.91 | 32.0926 | 33.6727 | 49.5306 | 142.0 | | 0.7153 | 2.0 | 1590 | 0.8317 | 52.4708 | 34.1035 | 35.2968 | 50.2966 | 141.963 | | 0.5398 | 3.0 | 2385 | 0.8133 | 52.4603 | 33.497 | 36.4227 | 50.2513 | 141.8704 | | 0.3568 | 4.0 | 3180 | 0.8091 | 52.3993 | 34.2424 | 37.7819 | 50.2069 | 142.0 | | 0.2842 | 5.0 | 3975 | 0.8065 | 54.5916 | 36.7817 | 40.4708 | 52.5754 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
orenpereg/paraphrase-mpnet-base-v2_sst2_64samps
orenpereg
2022-05-11T13:40:33Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-11T13:40:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # orenpereg/paraphrase-mpnet-base-v2_sst2_64samps This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('orenpereg/paraphrase-mpnet-base-v2_sst2_64samps') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('orenpereg/paraphrase-mpnet-base-v2_sst2_64samps') model = AutoModel.from_pretrained('orenpereg/paraphrase-mpnet-base-v2_sst2_64samps') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=orenpereg/paraphrase-mpnet-base-v2_sst2_64samps) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ceggian/sbert_pt_reddit_mnr_512
ceggian
2022-05-11T13:33:48Z
1
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-11T13:18:47Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 39289 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3928, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
orenpereg/paraphrase-mpnet-base-v2_sst2_4samps
orenpereg
2022-05-11T13:32:25Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-11T13:32:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # orenpereg/paraphrase-mpnet-base-v2_sst2_4samps This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('orenpereg/paraphrase-mpnet-base-v2_sst2_4samps') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('orenpereg/paraphrase-mpnet-base-v2_sst2_4samps') model = AutoModel.from_pretrained('orenpereg/paraphrase-mpnet-base-v2_sst2_4samps') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=orenpereg/paraphrase-mpnet-base-v2_sst2_4samps) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
redshift51/ab_LunarLander-v2_1
redshift51
2022-05-11T13:20:12Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T13:19:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 25.46 +/- 125.09 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingartists/snoop-dogg
huggingartists
2022-05-11T12:30:37Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/snoop-dogg", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/snoop-dogg tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/91bd22f5e53a3ea3cb1436de8f4a3722.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Snoop Dogg</div> <a href="https://genius.com/artists/snoop-dogg"> <div style="text-align: center; font-size: 14px;">@snoop-dogg</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Snoop Dogg. Dataset is available [here](https://huggingface.co/datasets/huggingartists/snoop-dogg). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/snoop-dogg") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/xru6xdjl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Snoop Dogg's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1o72aoie) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1o72aoie/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/snoop-dogg') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/snoop-dogg") model = AutoModelWithLMHead.from_pretrained("huggingartists/snoop-dogg") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
liujr1980/mmodels
liujr1980
2022-05-11T12:14:52Z
4
0
transformers
[ "transformers", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T03:01:46Z
## my first model fine-tuned from distillbert
wvangils/DistilGPT2-Beatles-Lyrics-finetuned
wvangils
2022-05-11T11:44:35Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T09:51:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilGPT2-Beatles-Lyrics-finetuned results: [] widget: - text: "Last night in Kiev the" example_title: "Kiev" - text: "It hasn't rained in weeks" example_title: "Rain" --- # DistilGPT2-Beatles-Lyrics-finetuned This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the [Huggingartists - beatles](https://huggingface.co/datasets/huggingartists/the-beatles) dataset. It will complete an input prompt with Beatles-like text. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.748 | 1.0 | 165 | 2.3732 | | 2.4395 | 2.0 | 330 | 2.1938 | | 2.2968 | 3.0 | 495 | 2.1118 | | 2.2075 | 4.0 | 660 | 2.0721 | | 2.1393 | 5.0 | 825 | 2.0571 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
Wanjiru/ag_based_ner
Wanjiru
2022-05-11T11:41:53Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-11T07:51:14Z
Fine tuned recobo/agriculture-bert-uncased for custom NER entities.
crow/ppo-LunarLander-v2
crow
2022-05-11T11:15:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T11:12:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 222.50 +/- 86.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ankkarp/ppo-LunarLander-v2_v2
ankkarp
2022-05-11T10:15:12Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T10:14:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 236.25 +/- 8.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
meedan/paraphrase-filipino-mpnet-base-v2
meedan
2022-05-11T09:50:47Z
76
1
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-04-04T18:06:35Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # paraphrase-filipino-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model was trained using the student--teacher approach outlined in [Reimers and Gurevych (2020)](https://aclanthology.org/2020.emnlp-main.365/). The teacher model was [sentence-transformers/paraphrase-mpnet-base-v2](), and the student model was [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](), which is based on XLM-R. We trained the model for 2 epoch using a batch size of 64 on parallel data English--Tagalog and English--Filipino data from OPUS. We found the data to be of variable quality and filtered it to only include sentence pairs that the Compact Language Detection kit (CLDv3) identified reliably as being in Tagalog or Filipino. Other parameters were left unchanged from the example [make_multilingual_sys.py](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/multilingual/make_multilingual_sys.py) code in the sentence-transformers code base. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer from scipy.spatial import distance import itertools model = SentenceTransformer('meedan/paraphrase-filipino-mpnet-base-v2') sentences = ["saan pong mga lugar available ang pfizer vaccine? Thank you!","Ask ko lang po saan meron available na vaccine","Where is the vaccine available?"] embeddings = model.encode(sentences) dist=[distance.cosine(i,j) for i,j in itertools.combinations(embeddings,2)] print(dist) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results We machine translated the STS data from [SentEval](https://github.com/facebookresearch/SentEval) to Filipino using the Google Translation API and used this for evaluation alongside the original English-language STS data. We used Spearman's rank correlation coefficient. We found roughly the same performance as the original base model (sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on English while substantial gains were made for Filipino. For English, the average correlation is 0.80. For Filipino, it is 0.75. For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 79097 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
wesleywt/ppo-LunarLander-v2
wesleywt
2022-05-11T09:39:42Z
9
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T07:26:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 291.52 +/- 22.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
LIA-AvignonUniversity/IWSLT2022-Niger-Mali
LIA-AvignonUniversity
2022-05-11T09:31:51Z
8
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "arxiv:2201.05051", "endpoints_compatible", "region:us" ]
null
2022-04-04T16:13:17Z
## Model and data descriptions This is a wav2vec 2.0 base model trained on the Niger-Mali audio collection and on the Tamasheq-French speech corpus. These combined contained 111 hours of French, 109 hours of Fulfulde, 100 hours of Hausa, 243 hours of Tamasheq and 95 hours of Zarma. These corpora were presented in [Boito et al., 2022](https://arxiv.org/abs/2201.05051). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. ## Referencing our IWSLT models ``` @article{boito2022trac, title={ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource Speech Translation Tasks}, author={Boito, Marcely Zanon and Ortega, John and Riguidel, Hugo and Laurent, Antoine and Barrault, Lo{\"\i}c and Bougares, Fethi and Chaabani, Firas and Nguyen, Ha and Barbier, Florentin and Gahbiche, Souhir and others}, journal={IWSLT}, year={2022} } ```
prashanth/mbart-large-cc25-finetuned-hi-to-en
prashanth
2022-05-11T08:57:01Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:hindi_english_machine_translation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-08T12:48:08Z
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation model-index: - name: mbart-large-cc25-finetuned-hi-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-hi-to-en This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
fxmarty/donotdelete
fxmarty
2022-05-11T08:51:47Z
0
0
null
[ "region:us" ]
null
2022-05-11T08:51:40Z
Fixed parameters: * **model_name_or_path**: `Bhumika/roberta-base-finetuned-sst2` * **dataset**: * **path**: `glue` * **name**: `sst2` * **calibration_split**: `None` * **eval_split**: `validation` * **data_keys**: `['sentence']` * **label_keys**: `['label']` * **quantization_approach**: `dynamic` * **node_exclusion**: `[]` * **per_channel**: `False` * **calibration**: `None` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `15` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` ## Evaluation Below, time metrics for * Batch size: 8 * Input length: 128 | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | accuracy (original) | accuracy (optimized) | | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | :-: | :-----------------: | :------------------: | | `['Add']` | \| | 454.70 | 361.81 | \| | 2.50 | 3.00 | \| | 1.0 | 1.0 | | `['Add', 'MatMul']` | \| | 474.54 | 135.14 | \| | 2.50 | 7.50 | \| | 1.0 | 1.0 |
GuillaumeSalouHF/slime-test
GuillaumeSalouHF
2022-05-11T08:21:42Z
0
0
null
[ "region:us" ]
null
2022-04-28T08:20:08Z
Site Reliability Engineering --- language: en thumbnail: http://www.huggingtweets.com/slime_machine/1640253262516/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468034520326701062/LDp_yytu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">rich homie cron</div> <div style="text-align: center; font-size: 14px;">@slime_machine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from rich homie cron. | Data | rich homie cron | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 590 | | Short tweets | 494 | | Tweets kept | 2150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28uf2bgx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @slime_machine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3h5ua6ik) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3h5ua6ik/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/slime_machine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
IljaSamoilov/EstBERT-estonian-subtitles-token-classification
IljaSamoilov
2022-05-11T08:13:06Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "et", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-10T18:53:58Z
--- language: - et widget: - text: "Et, et, et miks mitte olla siis tasakaalus, ma noh, hüpoteetiliselt viskan selle palli üles," - text: "te olete ka noh, noh, päris korralikult ka Rahvusringhäälingu teatud mõttes sellisesse keerulisse olukorda pannud," --- Importing the model and tokenizer: ``` tokenizer = AutoTokenizer.from_pretrained("IljaSamoilov/EstBERT-estonian-subtitles-token-classification") model = AutoModelForTokenClassification.from_pretrained("IljaSamoilov/EstBERT-estonian-subtitles-token-classification") ```
IljaSamoilov/MBART-estonian-subtitles
IljaSamoilov
2022-05-11T08:12:33Z
3
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "et", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T18:17:53Z
--- language: - et widget: - text: "te olete ka noh, noh, päris korralikult ka Rahvusringhäälingu teatud mõttes sellisesse keerulisse olukorda pannud," - text: "Et, et, et miks mitte olla siis tasakaalus, ma noh, hüpoteetiliselt viskan selle palli üles," --- Model usage: ``` tokenizer = MBart50Tokenizer.from_pretrained("IljaSamoilov/MBART-estonian-subtitles", src_lang="et_EE", tgt_lang="et_EE") model = MBartForConditionalGeneration.from_pretrained("IljaSamoilov/MBART-estonian-subtitles") ```
cocoshe/gpt2-chinese-gen-ads-by-keywords
cocoshe
2022-05-11T08:08:23Z
7
2
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T02:09:28Z
--- license: apache-2.0 --- [千言—AdvertiseGen广告文案生成数据集](https://www.luge.ai/#/luge/dataDetail?id=9) > 仅支持.bin(pytorch) 在该千言数据集微调了5个epoch, ```python input_text = '类型#裙*材质#针织*风格#简约*风格#青春*风格#清新*风格#性感*图案#条纹*图案#撞色*裙下摆#开叉*裙长#连衣裙*裙款式#拼接*裙款式#吊带' output_text = gen_ads(input_text) output_text = output_text.replace(' ', '') output_text = output_text[len(input_text):] output_text ``` 输出(实际中注意控制max_length) ```python output_text='夏天穿的针织衫,搭配简约上衣+牛仔裙,一下子就活泼起来了好吧,就这么简约的蓝色衬托出女性优雅的气质,搭出一派优雅女人味,让人印象深刻哦~好了,今天是秋天来了,天气凉了,是不是该穿上针织呢,秋天会是一个充满阳光的日子呢?让我们一起去看看今天的穿搭吧!首先是白色风衣,其次是棉质风衣。在秋天我们应该穿丝缎或者花边,这种比较清新的风格一定不会让人觉得很成熟,而且又是简约款式,显得自然、有气质。再就是皮草风衣啦,一件白皮草+一件牛仔+两件棉纱的搭配就很潮' ```
huggingtweets/elonmusk-kimkardashian
huggingtweets
2022-05-11T07:03:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T07:03:46Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521957986335297536/itVSA7l0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446623190252343301/qIJAwo9I_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Kim Kardashian</div> <div style="text-align: center; font-size: 14px;">@elonmusk-kimkardashian</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Kim Kardashian. | Data | Elon Musk | Kim Kardashian | | --- | --- | --- | | Tweets downloaded | 222 | 3241 | | Retweets | 16 | 715 | | Short tweets | 47 | 667 | | Tweets kept | 159 | 1859 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17bd0o7t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-kimkardashian's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g9hft2n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g9hft2n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-kimkardashian') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ceggian/sbert_standard_reddit_softmax
ceggian
2022-05-11T06:49:38Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-11T06:34:19Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mcurmei/unique_N_max
mcurmei
2022-05-11T06:19:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-11T05:54:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: unique_N_max results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unique_N_max This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0901 | 1.0 | 1162 | 1.8326 | | 1.5479 | 2.0 | 2324 | 1.7201 | | 1.2903 | 3.0 | 3486 | 1.7409 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
SalamaThanks/SalamaThanksTransformer_fil2en_v2
SalamaThanks
2022-05-11T05:57:37Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T05:42:28Z
--- license: afl-3.0 --- SalamaThanks Transformer for Filipino-to-English Text Translation version 2. A finetuned model based on the Helsinki-NLP/opus-mt-en-tl transformer model.
SalamaThanks/SalamaThanksTransformer_fil2en_v1
SalamaThanks
2022-05-11T05:45:48Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T05:34:45Z
--- license: afl-3.0 --- SalamaThanks Transformer for Filipino-to-English Text Translation version 1. Based on the Helsinki-NLP/opus-mt-tl-en transformer model.
SalamaThanks/SalamaThanksTransformer_en2fil_v1
SalamaThanks
2022-05-11T05:45:01Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T05:31:27Z
--- license: afl-3.0 --- SalamaThanks Transformer for English-to-Filipino Text Translation version 1. Based on the Helsinki-NLP/opus-mt-en-tl transformer model.
fatPegasus23/TesLunarLander-v2
fatPegasus23
2022-05-11T05:09:29Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T04:55:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 173.71 +/- 111.75 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
bbhaskar8/PPO-LunarLander-v2
bbhaskar8
2022-05-11T04:32:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T04:31:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 215.32 +/- 46.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
junnyu/roformer_v2_chinese_char_large
junnyu
2022-05-11T03:32:38Z
5
3
transformers
[ "transformers", "pytorch", "roformer", "fill-mask", "roformer-v2", "tf2.0", "zh", "arxiv:2104.09864", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-21T13:51:14Z
--- language: zh tags: - roformer-v2 - pytorch - tf2.0 inference: False --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer-v2 ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## 评测对比 ### CLUE-dev榜单分类任务结果,base+large版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | BERT | 60.06 | 56.80 | 72.41 | 79.56 | 73.93 | 78.62 | 83.93 | | RoBERTa | 60.64 | 58.06 | 74.05 | 81.24 | 76.00 | 87.50 | 84.50 | | RoFormer | 60.91 | 57.54 | 73.52 | 80.92 | 76.07 | 86.84 | 84.63 | | RoFormerV2<sup>*</sup> | 60.87 | 56.54 | 72.75 | 80.34 | 75.36 | 80.92 | 84.67 | | GAU-α | 61.41 | 57.76 | 74.17 | 81.82 | 75.86 | 79.93 | 85.67 | | RoFormer-pytorch(本仓库代码) | 60.60 | 57.51 | 74.44 | 80.79 | 75.67 | 86.84 | 84.77 | | RoFormerV2-pytorch(本仓库代码) | **62.87** | 59.03 | **76.20** | 80.85 | 79.73 | 87.82 | **91.87** | | GAU-α-pytorch(Adafactor) | 61.18 | 57.52 | 73.42 | 80.91 | 75.69 | 80.59 | 85.5 | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.68 | 57.95 | 73.08 | 81.02 | 75.36 | 81.25 | 83.93 | | RoFormerV2-large-pytorch(本仓库代码) | 61.75 | **59.21** | 76.14 | 82.35 | **81.73** | **91.45** | 91.5 | | Chinesebert-large-pytorch | 61.25 | 58.67 | 74.70 | **82.65** | 79.63 | 87.83 | 84.97 | ### CLUE-1.0-test榜单分类任务结果,base+large版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | RoFormer-pytorch(本仓库代码) | 59.54 | 57.34 | 74.46 | 80.23 | 73.67 | 80.69 | 84.57 | | RoFormerV2-pytorch(本仓库代码) | **63.15** | 58.24 | 75.42 | 80.59 | 74.17 | 83.79 | 83.73 | | GAU-α-pytorch(Adafactor) | 61.38 | 57.08 | 74.05 | 80.37 | 73.53 | 74.83 | **85.6** | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.54 | 57.67 | 72.44 | 80.32 | 72.97 | 76.55 | 84.13 | | RoFormerV2-large-pytorch(本仓库代码) | 61.85 | **59.13** | **76.38** | 80.97 | 76.23 | **85.86** | 84.33 | | Chinesebert-large-pytorch | 61.54 | 58.57 | 74.8 | **81.94** | **76.93** | 79.66 | 85.1 | ### 注: - 其中RoFormerV2<sup>*</sup>表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。 - 其中不带有pytorch后缀结果都是从[GAU-alpha](https://github.com/ZhuiyiTechnology/GAU-alpha)仓库复制过来的。 - 其中带有pytorch后缀的结果都是自己训练得出的。 - 苏神代码中拿了cls标签后直接进行了分类,而本仓库使用了如下的分类头,多了2个dropout,1个dense,1个relu激活。 ```python class RoFormerClassificationHead(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) # 这里是relu x = self.dropout(x) x = self.out_proj(x) return x ``` ### 安装 - pip install roformer==0.4.3 ## pytorch & tf2.0使用 ```python import torch import tensorflow as tf from transformers import BertTokenizer from roformer import RoFormerForMaskedLM, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_v2_chinese_char_large") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_v2_chinese_char_large") tf_model = TFRoFormerForMaskedLM.from_pretrained( "junnyu/roformer_v2_chinese_char_base", from_pt=True ) pt_inputs = tokenizer(text, return_tensors="pt") tf_inputs = tokenizer(text, return_tensors="tf") # pytorch with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pt_outputs_sentence) # tf tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(tf_outputs_sentence) # small # pytorch: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。 # tf: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。 # base # pytorch: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。 # tf: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。 # large # pytorch: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。 # tf: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```tex @techreport{roformerv2, title={RoFormerV2: A Faster and Better RoFormer - ZhuiyiAI}, author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu}, year={2022}, url="https://github.com/ZhuiyiTechnology/roformer-v2", } ```
junnyu/chinese_GAU-alpha-char_L-24_H-768
junnyu
2022-05-11T03:29:46Z
4
1
transformers
[ "transformers", "pytorch", "gau_alpha", "fill-mask", "gau alpha", "torch", "zh", "autotrain_compatible", "region:us" ]
fill-mask
2022-04-22T08:03:14Z
--- language: zh tags: - gau alpha - torch inference: False --- # pytorch 代码 https://github.com/JunnYu/GAU-alpha-pytorch # bert4keras代码 https://github.com/ZhuiyiTechnology/GAU-alpha # Install ```bash pip install git+https://github.com/JunnYu/GAU-alpha-pytorch.git or pip install gau_alpha ``` ## 评测对比 ### CLUE-dev榜单分类任务结果,base版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | BERT | 60.06 | 56.80 | 72.41 | 79.56 | 73.93 | 78.62 | 83.93 | | RoBERTa | 60.64 | 58.06 | 74.05 | **81.24** | 76.00 | 87.50 | 84.50 | | RoFormer | 60.91 | 57.54 | 73.52 | 80.92 | 76.07 | 86.84 | 84.63 | | RoFormerV2<sup>*</sup> | 60.87 | 56.54 | 72.75 | 80.34 | 75.36 | 80.92 | 84.67 | | GAU-α | 61.41 | 57.76 | 74.17 | 81.82 | 75.86 | 79.93 | 85.67 | | RoFormerV2-pytorch| **62.87** | **59.03** | **76.20** | 80.85 | **79.73** | **87.82** | **91.87** | | GAU-α-pytorch(Adafactor) | 61.18 | 57.52 | 73.42 | 80.91 | 75.69 | 80.59 | 85.5 | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.68 | 57.95 | 73.08 | 81.02 | 75.36 | 81.25 | 83.93 | ### CLUE-test榜单分类任务结果,base版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | RoFormerV2-pytorch | **63.15** | **58.24** | **75.42** | **80.59** | **74.17** | **83.79** | 83.73 | | GAU-α-pytorch(Adafactor) | 61.38 | 57.08 | 74.05 | 80.37 | 73.53 | 74.83 | **85.6** | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.54 | 57.67 | 72.44 | 80.32 | 72.97 | 76.55 | 84.13 | ### CLUE-dev集榜单阅读理解和NER结果 | | cmrc2018 | c3 | chid | cluener | | :-----: | :-----: | :---: | :---: | :---: | | BERT | 56.17 | 60.54 | 85.69 | 79.45 | | RoBERTa | 56.54 | 67.66 | 86.71 | 79.47 | | RoFormer | 56.26 | 67.24 | 86.57 | 79.72 | | RoFormerV2<sup>*</sup> | 57.91 | 64.62 | 85.09 | **81.08** | | GAU-α | **58.09** | **68.24** | **87.91** | 80.01 | ### 注: - 其中RoFormerV2<sup>*</sup>表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。 - 其中不带有pytorch后缀结果都是从[GAU-alpha](https://github.com/ZhuiyiTechnology/GAU-alpha)仓库复制过来的。 - 其中带有pytorch后缀的结果都是自己训练得出的。 # Usage ```python import torch from gau_alpha import GAUAlphaForMaskedLM, GAUAlphaTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = GAUAlphaTokenizer.from_pretrained( "junnyu/chinese_GAU-alpha-char_L-24_H-768" ) pt_model = GAUAlphaForMaskedLM.from_pretrained( "junnyu/chinese_GAU-alpha-char_L-24_H-768" ) pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: val, idx = pt_outputs[i].softmax(-1).topk(k=5) tokens = tokenizer.convert_ids_to_tokens(idx) new_tokens = [] for v, t in zip(val.cpu(), tokens): new_tokens.append(f"{t}+{round(v.item(),4)}") pt_outputs_sentence += "[" + "||".join(new_tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pt_outputs_sentence) # pytorch: 今天[天+0.8657||气+0.0535||阳+0.0165||,+0.0126||晴+0.0111]很好,我[要+0.4619||想+0.4352||又+0.0252||就+0.0157||跑+0.0064]去公园玩。 ``` # Reference Bibtex: ```tex @techreport{gau-alpha, title={GAU-α: GAU-based Transformers for NLP - ZhuiyiAI}, author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu}, year={2022}, url="https://github.com/ZhuiyiTechnology/GAU-alpha", } ```
jonporterjones/TEST2ppo-LunarLander-v2
jonporterjones
2022-05-11T03:10:57Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T02:51:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 105.84 +/- 83.18 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6
husnu
2022-05-11T01:56:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-10T17:38:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6 This model is a fine-tuned version of [husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5](https://huggingface.co/husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3646 - Wer: 0.3478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1024 | 0.51 | 400 | 0.4030 | 0.4171 | | 0.1533 | 1.02 | 800 | 0.4733 | 0.4570 | | 0.1584 | 1.53 | 1200 | 0.4150 | 0.4371 | | 0.1538 | 2.04 | 1600 | 0.4104 | 0.4390 | | 0.1395 | 2.55 | 2000 | 0.3891 | 0.4133 | | 0.1415 | 3.07 | 2400 | 0.3877 | 0.4015 | | 0.1261 | 3.58 | 2800 | 0.3685 | 0.3899 | | 0.1149 | 4.09 | 3200 | 0.3791 | 0.3881 | | 0.1003 | 4.6 | 3600 | 0.3642 | 0.3626 | | 0.0934 | 5.11 | 4000 | 0.3755 | 0.3516 | | 0.0805 | 5.62 | 4400 | 0.3646 | 0.3478 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3
koala978/PPO-LunarLander-v2
koala978
2022-05-11T01:25:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T01:24:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 249.06 +/- 18.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huxxx657/roberta-base-finetuned-scrambled-squad-10-new
huxxx657
2022-05-11T00:56:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-10T22:49:53Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-scrambled-squad-10-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-scrambled-squad-10-new This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.9721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9984 | 1.0 | 5536 | 0.9721 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
chris-kehl/TEST2ppo-LunarLander-v2
chris-kehl
2022-05-11T00:41:54Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-08T01:21:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 284.84 +/- 20.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
madatnlp/mt5-kormath
madatnlp
2022-05-11T00:26:19Z
4
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T22:55:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: madatnlp/mt5-kormath results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # madatnlp/mt5-kormath This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7119 - Validation Loss: 1.1299 - Epoch: 61 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 17.9929 | 5.9287 | 0 | | 5.4802 | 3.9942 | 1 | | 4.1718 | 3.2517 | 2 | | 3.5750 | 2.9586 | 3 | | 3.1535 | 2.4970 | 4 | | 2.8665 | 2.4626 | 5 | | 2.6682 | 2.3795 | 6 | | 2.5323 | 2.2238 | 7 | | 2.4057 | 2.0684 | 8 | | 2.3107 | 2.2033 | 9 | | 2.2501 | 1.8339 | 10 | | 2.1089 | 1.9064 | 11 | | 2.0741 | 2.0256 | 12 | | 1.9868 | 1.8107 | 13 | | 1.9719 | 1.7157 | 14 | | 1.8762 | 1.6966 | 15 | | 1.8814 | 1.6580 | 16 | | 1.8052 | 1.6043 | 17 | | 1.7567 | 1.6572 | 18 | | 1.7209 | 1.5485 | 19 | | 1.7347 | 1.6464 | 20 | | 1.6760 | 1.5892 | 21 | | 1.6286 | 1.5765 | 22 | | 1.6124 | 1.7408 | 23 | | 1.5683 | 1.4875 | 24 | | 1.5814 | 1.4448 | 25 | | 1.5306 | 1.4902 | 26 | | 1.5121 | 1.5133 | 27 | | 1.4869 | 1.4217 | 28 | | 1.4539 | 1.5602 | 29 | | 1.4650 | 1.4699 | 30 | | 1.4508 | 1.4319 | 31 | | 1.3910 | 1.5975 | 32 | | 1.3758 | 1.4031 | 33 | | 1.3550 | 1.4295 | 34 | | 1.3405 | 1.3804 | 35 | | 1.3144 | 1.4202 | 36 | | 1.3136 | 1.5135 | 37 | | 1.2617 | 1.4790 | 38 | | 1.2260 | 1.4108 | 39 | | 1.2348 | 1.3108 | 40 | | 1.2019 | 1.1461 | 41 | | 1.1775 | 1.2509 | 42 | | 1.1690 | 1.2179 | 43 | | 1.1318 | 1.2483 | 44 | | 1.1013 | 1.0815 | 45 | | 1.0735 | 1.2135 | 46 | | 1.0439 | 1.1260 | 47 | | 1.0182 | 1.1993 | 48 | | 0.9971 | 1.0797 | 49 | | 0.9583 | 1.2587 | 50 | | 0.9505 | 1.0793 | 51 | | 0.9366 | 1.0501 | 52 | | 0.9170 | 1.1476 | 53 | | 0.8741 | 1.0560 | 54 | | 0.8558 | 1.0024 | 55 | | 0.8394 | 0.9604 | 56 | | 0.8203 | 1.2700 | 57 | | 0.7938 | 1.1081 | 58 | | 0.7800 | 1.0198 | 59 | | 0.7378 | 1.1748 | 60 | | 0.7119 | 1.1299 | 61 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.0 - Tokenizers 0.12.1
fastai/blurr_IMDB_bert_classification
fastai
2022-05-10T22:02:09Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-05-10T22:01:53Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
mustapha/Lunar_lander_v2_gym
mustapha
2022-05-10T21:54:55Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T21:54:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 211.89 +/- 53.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
fminichev/TEST2ppo-LunarLander-v2
fminichev
2022-05-10T21:41:02Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T21:40:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 159.15 +/- 61.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nkt32/ppo-LunarLander-v2
nkt32
2022-05-10T21:31:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T20:15:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 265.99 +/- 20.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingtweets/vsshole
huggingtweets
2022-05-10T21:24:12Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/vsshole/1652217847985/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475160033826586625/ZGf3YqfN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🌺 m ny 🐝🐙</div> <div style="text-align: center; font-size: 14px;">@vsshole</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🌺 m ny 🐝🐙. | Data | 🌺 m ny 🐝🐙 | | --- | --- | | Tweets downloaded | 3221 | | Retweets | 382 | | Short tweets | 1727 | | Tweets kept | 1112 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f393wuv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vsshole's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29sa4yhp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29sa4yhp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vsshole') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
garybake/TEST2ppo-LunarLander-v2
garybake
2022-05-10T21:23:16Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T20:00:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 273.85 +/- 20.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huxxx657/roberta-base-finetuned-scrambled-squad-15
huxxx657
2022-05-10T21:13:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-10T19:13:39Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-scrambled-squad-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-scrambled-squad-15 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.8722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8944 | 1.0 | 5590 | 1.8722 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
FollishBoi/ppo-LunarLander-v2-try5
FollishBoi
2022-05-10T20:49:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T20:49:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 289.86 +/- 15.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
tjscollins/ppo-LunarLander-v2
tjscollins
2022-05-10T20:45:37Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T20:45:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 287.12 +/- 20.40 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
enoriega/kw_pubmed_1000_0.0003
enoriega
2022-05-10T20:10:43Z
6
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:keyword_pubmed_dataset", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-10T19:37:10Z
--- license: mit tags: - generated_from_trainer datasets: - keyword_pubmed_dataset metrics: - accuracy model-index: - name: kw_pubmed_1000_0.0003 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: keyword_pubmed_dataset type: keyword_pubmed_dataset args: sentence metrics: - name: Accuracy type: accuracy value: 0.33938523162661094 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kw_pubmed_1000_0.0003 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the keyword_pubmed_dataset dataset. It achieves the following results on the evaluation set: - Loss: 4.7086 - Accuracy: 0.3394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 250 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.09 | 4 | 4.3723 | 0.3436 | | 6.0386 | 0.17 | 8 | 4.2113 | 0.3442 | | 3.7573 | 0.26 | 12 | 4.2079 | 0.3634 | | 2.9944 | 0.35 | 16 | 4.3370 | 0.3513 | | 2.7048 | 0.44 | 20 | 4.8594 | 0.3067 | | 2.7048 | 0.52 | 24 | 4.4929 | 0.3383 | | 2.9458 | 0.61 | 28 | 4.5146 | 0.3408 | | 2.3783 | 0.7 | 32 | 4.5680 | 0.3430 | | 2.2485 | 0.78 | 36 | 4.5095 | 0.3477 | | 2.1701 | 0.87 | 40 | 4.4971 | 0.3449 | | 2.1701 | 0.96 | 44 | 4.7051 | 0.3321 | | 2.0861 | 1.07 | 48 | 4.7615 | 0.3310 | | 2.4168 | 1.15 | 52 | 4.7086 | 0.3394 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
kosta-naumenko/ppo-LunarLander-v2-2
kosta-naumenko
2022-05-10T20:06:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T20:06:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 228.05 +/- 22.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
vanichandna/bert-base-multilingual-cased-finetuned-squadv1
vanichandna
2022-05-10T19:47:22Z
5
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-10T13:14:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vanichandna/bert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vanichandna/bert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5313 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 43880, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2336 | 0 | | 0.8301 | 1 | | 0.6456 | 2 | | 0.5313 | 3 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jxuhf/Fine-tuning-text-classification-model-Habana-Gaudi
jxuhf
2022-05-10T19:39:44Z
5
0
transformers
[ "transformers", "pytorch", "optimum_habana", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-09T20:30:51Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8823529411764706 - name: F1 type: f1 value: 0.9180887372013652 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [bert-large-uncased-whole-word-masking](https://huggingface.co/bert-large-uncased-whole-word-masking) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3680 - Accuracy: 0.8824 - F1: 0.9181 - Combined Score: 0.9002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0a0+gitfe03f8c - Datasets 2.1.0 - Tokenizers 0.12.1
jadermcs/ppo-lunar-lander
jadermcs
2022-05-10T19:27:33Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T19:27:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: mlp results: - metrics: - type: mean_reward value: 274.83 +/- 24.24 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **mlp** Agent playing **LunarLander-v2** This is a trained model of a **mlp** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huxxx657/roberta-base-finetuned-scrambled-squad-10
huxxx657
2022-05-10T19:05:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-10T17:05:40Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-scrambled-squad-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-scrambled-squad-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7482 | 1.0 | 5532 | 1.7200 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Extred/TEST2ppo-LunarLander-v2-CustomMLPNet
Extred
2022-05-10T19:03:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T19:03:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 238.37 +/- 65.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Extred/TEST2ppo-LunarLander-v2-MlpLnLstmPolicy
Extred
2022-05-10T19:02:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T18:17:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 203.89 +/- 88.13 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
KenP/mt5-small-finetuned-amazon-en-es
KenP
2022-05-10T18:22:44Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T17:31:10Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KenP/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KenP/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0378 - Validation Loss: 3.3712 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.9112 | 4.3131 | 0 | | 5.8947 | 3.7701 | 1 | | 5.1149 | 3.5826 | 2 | | 4.6940 | 3.5080 | 3 | | 4.4064 | 3.4388 | 4 | | 4.2301 | 3.4012 | 5 | | 4.1037 | 3.3755 | 6 | | 4.0378 | 3.3712 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Tanchik/TESTppo-LunarLander-v2
Tanchik
2022-05-10T18:20:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T18:20:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 280.75 +/- 20.87 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
AndrewK/ppo-LunarLander-v2
AndrewK
2022-05-10T18:05:42Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-06T16:42:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.00 +/- 16.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Xuandong/HPD-TinyBERT-F128
Xuandong
2022-05-10T17:55:05Z
33
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2203.07687", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-10T17:04:19Z
--- license: apache-2.0 --- # HPD-TinyBERT-F128 This repository contains the pre-trained models for our paper [Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation](https://arxiv.org/abs/2203.07687). The sentence embedding model contains only 14M parameters and the model size is only 55MB. ## Overview We propose **H**omomorphic **P**rojective **D**istillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. ## Details This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. The teacher model is [`princeton-nlp/sup-simcse-roberta-large`](https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased) and the student model is [`nreimers/TinyBERT_L-4_H-312_v2`](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` After installing the package, you can simply load our model ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('Xuandong/HPD-TinyBERT-F128') ``` Then you can use our model for **encoding sentences into embeddings** ```python sentences = ['He plays guitar.', 'A street vendor is outside.'] sentence_embeddings = model.encode(sentences) for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("") ``` ## Evaluation Results We evaluate our model on semantic textual similarity (STS) tasks. The results are: | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg. | |-------|-------|-------|-------|-------|--------------|-----------------|-------| | 74.29 | 83.05 | 78.80 | 84.62 | 81.17 | 84.36 | 80.83 | 81.02 | ## Training Please refer to the github repo (https://github.com/XuandongZhao/HPD) for the details about the training. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 312, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citation Please cite our paper if you use HPD in your work: ```bibtex @article{zhao2022compressing, title={Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation}, author={Zhao, Xuandong and Yu, Zhiguo and Wu, Ming and Li, Lei}, journal={arXiv preprint arXiv:2203.07687}, year={2022} } ```
Xuandong/HPD-MiniLM-F128
Xuandong
2022-05-10T17:54:43Z
5
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2203.07687", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-10T17:01:40Z
--- license: apache-2.0 --- # HPD-MiniLM-F128 This repository contains the pre-trained models for our paper [Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation](https://arxiv.org/abs/2203.07687). The sentence embedding model contains only 23M parameters and the model size is only 87MB. ## Overview We propose **H**omomorphic **P**rojective **D**istillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. ## Details This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. The teacher model is [`princeton-nlp/sup-simcse-roberta-large`](https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased) and the student model is [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` After installing the package, you can simply load our model ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('Xuandong/HPD-MiniLM-F128') ``` Then you can use our model for **encoding sentences into embeddings** ```python sentences = ['He plays guitar.', 'A street vendor is outside.'] sentence_embeddings = model.encode(sentences) for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("") ``` ## Evaluation Results We evaluate our model on semantic textual similarity (STS) tasks. The results are: | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg. | |-------|-------|-------|-------|-------|--------------|-----------------|-------| | 74.94 | 84.52 | 80.25 | 84.87 | 81.90 | 84.98 | 81.15 | 81.80 | ## Training Please refer to the github repo (https://github.com/XuandongZhao/HPD) for the details about the training. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 384, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citation Please cite our paper if you use HPD in your work: ```bibtex @article{zhao2022compressing, title={Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation}, author={Zhao, Xuandong and Yu, Zhiguo and Wu, Ming and Li, Lei}, journal={arXiv preprint arXiv:2203.07687}, year={2022} } ```
allenai/multicite-multilabel-scibert
allenai
2022-05-10T17:45:24Z
123
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "scibert", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-06T12:02:26Z
--- language: en tags: - scibert license: mit --- # MultiCite: Multi-label Citation Intent Classification with SciBERT (NAACL 2022) This model has been trained on the data available here: https://github.com/allenai/multicite
husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5
husnu
2022-05-10T17:22:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-10T13:23:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5 This model is a fine-tuned version of [husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_4](https://huggingface.co/husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_4) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3439 - Wer: 0.3634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1243 | 0.51 | 400 | 0.4312 | 0.4202 | | 0.1956 | 1.02 | 800 | 0.4421 | 0.4498 | | 0.1816 | 1.53 | 1200 | 0.4012 | 0.4285 | | 0.1548 | 2.04 | 1600 | 0.3720 | 0.3845 | | 0.1171 | 2.55 | 2000 | 0.3439 | 0.3634 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3