modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-cls_dot
flax-sentence-embeddings
2021-07-26T01:33:36Z
354
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-qa_v1-MiniLM-L6-cls_dot ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-cls_dot') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
huggingtweets/imgrimevil
huggingtweets
2021-07-25T22:26:32Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/imgrimevil/1627251988335/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397711387380617219/Hzreffrt_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Contra</div> <div style="text-align: center; font-size: 14px;">@imgrimevil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Contra. | Data | Contra | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 669 | | Short tweets | 582 | | Tweets kept | 1987 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kn7qqp8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imgrimevil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fjaoumhd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fjaoumhd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imgrimevil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cryptolith_-drilbot_neo-rusticgendarme
huggingtweets
2021-07-25T21:54:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cryptolith_-drilbot_neo-rusticgendarme/1627250043753/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419244584367005696/F5fnPoI1_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🔲🔳 & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🔲🔳 & wintbot_neo. | Data | merz | 🔲🔳 | wintbot_neo | | --- | --- | --- | --- | | Tweets downloaded | 2483 | 3223 | 3244 | | Retweets | 427 | 449 | 215 | | Short tweets | 419 | 1022 | 274 | | Tweets kept | 1637 | 1752 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i10strm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/k_saifullaah
huggingtweets
2021-07-25T21:49:06Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/k_saifullaah/1627249742146/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399131958072856576/kNZ_xofA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Khalid Saifullah</div> <div style="text-align: center; font-size: 14px;">@k_saifullaah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Khalid Saifullah. | Data | Khalid Saifullah | | --- | --- | | Tweets downloaded | 2418 | | Retweets | 82 | | Short tweets | 698 | | Tweets kept | 1638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wq0m2z1a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @k_saifullaah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12hp7hqj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12hp7hqj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/k_saifullaah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q
flax-sentence-embeddings
2021-07-25T21:32:52Z
7
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-QA_v1-mpnet-asymmetric-Q ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
flax-sentence-embeddings/mpnet_stackexchange_v1
flax-sentence-embeddings
2021-07-25T21:17:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2104.08727", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # mpnet_stackexchange_v1 ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/mpnet_stackexchange_v1') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. We sampled each StackExchange given a weighted probability of following equation. ``` int((stackexchange_length[path] / total_stackexchange_length) * total_weight) ``` MSMARCO, NQ & other question-answer datasets were also used. Sampling ratio for StackExchange vs remaining : 2 vs 1. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
huggingtweets/aimbotaimy-ladydarknest
huggingtweets
2021-07-25T20:33:04Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aimbotaimy-ladydarknest/1627245180529/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409725677495009283/RPVDIGan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-ladydarknest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Demon Lord Yeefi NSFW🔞 | | --- | --- | --- | | Tweets downloaded | 528 | 3242 | | Retweets | 61 | 957 | | Short tweets | 130 | 392 | | Tweets kept | 337 | 1893 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uz56dprc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-ladydarknest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1di7czlx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1di7czlx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-ladydarknest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tugstugi/wav2vec2-large-xlsr-53-kalmyk
tugstugi
2021-07-25T19:55:31Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "xal", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: xal tags: - speech - audio - automatic-speech-recognition license: apache-2.0 --- ## Info This Wav2Vec2 model was first pretrained on 500 hours Kalmyk TV recordings and 1000 hours Mongolian speech recognition dataset. After that, the model was finetuned on a 300 hours [Kalmyk synthetic STT dataset](https://github.com/tugstugi/mongolian-nlp#datasets) created by a voice conversion model. * 50% WER on a private test set created from Kalmyk TV recordnings * on clean voice recordings, the model should have much lower WER * voice conversion info * 300 hours [Kalmyk synthetic STT dataset](https://github.com/tugstugi/mongolian-nlp#datasets) * The source voice is a Kalmyk female voice TTS * Target voices are from the VCTK dataset * example data: https://twitter.com/tugstugi/status/1409111296897912835 * each WAV has a different text created from Kalmyk books
huggingtweets/colinb_pdx
huggingtweets
2021-07-25T18:19:32Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/colinb_pdx/1627237168140/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1392748308280406020/XckpJcJ8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Colin Bisson</div> <div style="text-align: center; font-size: 14px;">@colinb_pdx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Colin Bisson. | Data | Colin Bisson | | --- | --- | | Tweets downloaded | 2057 | | Retweets | 161 | | Short tweets | 90 | | Tweets kept | 1806 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vpxju9g9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @colinb_pdx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/epdq8lc0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/epdq8lc0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/colinb_pdx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dead__bug
huggingtweets
2021-07-25T16:53:13Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dead__bug/1627231954071/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1349980097168740352/GSthZg8p_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">persona non greta</div> <div style="text-align: center; font-size: 14px;">@dead__bug</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from persona non greta. | Data | persona non greta | | --- | --- | | Tweets downloaded | 3095 | | Retweets | 449 | | Short tweets | 623 | | Tweets kept | 2023 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oyzjw1jc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dead__bug's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20dghuyx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20dghuyx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dead__bug') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jackbutcher-paikcapital-thedankoe
huggingtweets
2021-07-25T16:41:39Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251200537388695557/96JxUIrJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384243878748856321/vreel6UH_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417910390051246080/wKq6pjPR_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DAN KOE & humble farmer & Jack Butcher</div> <div style="text-align: center; font-size: 14px;">@jackbutcher-paikcapital-thedankoe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from DAN KOE & humble farmer & Jack Butcher. | Data | DAN KOE | humble farmer | Jack Butcher | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3247 | 3220 | | Retweets | 18 | 601 | 208 | | Short tweets | 899 | 500 | 1048 | | Tweets kept | 2332 | 2146 | 1964 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mvqun4ol/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jackbutcher-paikcapital-thedankoe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qd8720q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qd8720q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jackbutcher-paikcapital-thedankoe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-community/gpt2-swahili
flax-community
2021-07-25T16:22:24Z
19
2
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "sw", "dataset:flax-community/swahili-safi", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: sw widget: - text: "Ninitaka kukula" datasets: - flax-community/swahili-safi --- ## GPT2 in Swahili This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. ## How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt2-swahili") model = AutoModelWithLMHead.from_pretrained("flax-community/gpt2-swahili") print(round((model.num_parameters())/(1000*1000)),"Million Parameters") 124 Million Parameters ``` #### **Training Data**: This model was trained on [Swahili Safi](https://huggingface.co/datasets/flax-community/swahili-safi) #### **More Details**: For more details and Demo please check [HF Swahili Space](https://huggingface.co/spaces/flax-community/Swahili)
cristinae/marian_caes2en
cristinae
2021-07-25T10:24:27Z
0
0
null
[ "translation", "ca", "es", "en", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - ca - es - en tags: - translation --- ### Preprocessing 1. Normalisation and tokenisation with moses scripts 2. truecased with model docgWP.tcmodel.[LAN] and moses scripts 3. bped with model model.caesen40k.bpe and subword-nmt - Note: no prepended tag for multilinguality ### Training Data 1. Bilingual es-ca: DOGC, Wikimatrix, OpenSubtitles, JW300, GlobalVoices * Bilingual es-ca: Translations using systems trained with 1. of Oscar and Wikipedia 2. Bilingual es-en, ca-en: United Nations, Europarl, Wikimatrix, OpenSubtitles, JW300 * Bilingual es-en, ca-en: Translations using systems trained with 1. of the missing pairs - Final training data size for the ca/es-en: 44M parallel sentences - Finetuned with 1.5M real parallel data (without backtranslations) ### Model Transformer big with guided alignments. Relevant parameters: --beam-size 6 --normalize 0.6 --enc-depth 6 --dec-depth 6 --transformer-heads 8 --transformer-preprocess n --transformer-postprocess da --transformer-dropout 0.1 --label-smoothing 0.1 --dim-emb 1024 --transformer-dim-ffn 4096 --transformer-dropout-attention 0.1 --transformer-dropout-ffn 0.1 --learn-rate 0.00015 --lr-warmup 8000 --lr-decay-inv-sqrt 8000 --optimizer-params 0.9 0.998 1e-09 --clip-norm 5 --tied-embeddings --exponential-smoothing --transformer-guided-alignment-layer 1 --guided-alignment-cost mse --guided-alignment-weight 0.1 ## Evaluation ### Test set https://github.com/PLXIV/Gebiotoolkit/tree/master/gebiocorpus_v2 ### ca2en BLEU|#:1|bs:1000|rs:12345|c:mixed|e:no|tok:13a|s:exp|v:2.0.0 = 47.8 (μ = 47.8 ± 0.9) chrF|#:1|bs:1000|rs:12345|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0 = 69.9 (μ = 69.9 ± 0.7) ### es2en BLEU|#:1|bs:1000|rs:12345|c:mixed|e:no|tok:13a|s:exp|v:2.0.0 = 48.9 (μ = 48.9 ± 0.9) chrF2|#:1|bs:1000|rs:12345|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0 = 70.5 (μ = 70.5 ± 0.7)
vivekRahul/animal_classifier_huggingface
vivekRahul
2021-07-25T06:02:38Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal_classifier_huggingface results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9910714030265808 --- # animal_classifier_huggingface Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### elephant ![elephant](images/elephant.jpg) #### lion ![lion](images/lion.jpg) #### tiger ![tiger](images/tiger.jpg)
huggingtweets/aimbotaimy
huggingtweets
2021-07-25T03:52:26Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aimbotaimy/1627185142630/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | | --- | --- | | Tweets downloaded | 491 | | Retweets | 59 | | Short tweets | 125 | | Tweets kept | 307 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38rsh6x7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2sn41u12) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2sn41u12/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ridingthescree
huggingtweets
2021-07-24T23:45:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ridingthescree/1627170304459/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365877163652640768/1i1yvZlT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riding the Scree</div> <div style="text-align: center; font-size: 14px;">@ridingthescree</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riding the Scree. | Data | Riding the Scree | | --- | --- | | Tweets downloaded | 1813 | | Retweets | 410 | | Short tweets | 32 | | Tweets kept | 1371 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22bfjscr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ridingthescree's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p5u6rux) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p5u6rux/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ridingthescree') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B
sultan
2021-07-24T20:18:22Z
66
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description - This model is fine-tuned on the SQuAD2.0 dataset and then on the BioASQ8B-Factoid training dataset. We convert the BioASQ8B-Factoid training dataset to SQuAD1.1 format and train and evaluate our model (BioM-ELECTRA-Base-SQuAD2) on this dataset. - You can use this model to make a prediction (inference) directly without fine-tuning it. Try to enter a PubMed abstract in the context box in this model card and try out a couple of biomedical questions within the given context and see how it performs compared to ELECTRA original model. This model should also be useful for creating a pandemic QA system (e.g., COVID-19) . - Please note that this version (PyTorch) is different than what we used in our participation in BioASQ9B (TensorFlow with Layer-Wise Decay). We combine all five batches of the BioASQ8B testing dataset as one dev.json file. - Below is unofficial results of our models against the original ELECTRA base and large : | Model | Exact Match (EM) | F1 Score | | --- | --- | --- | | ELECTRA-Base-SQuAD2-BioASQ8B | 61.89 | 74.39 | | BioM-ELECTRA-Base-SQuAD2-BioASQ8B | 70.31 | 80.90 | | ELECTRA-Large-SQuAD2-BioASQ8B | 67.36 | 78.90 | | **BioM-ELECTRA-Large-SQuAD2-BioASQ8B** | **74.31** | **84.72** | Training script ```python python3 run_squad.py --model_type electra --model_name_or_path sultan/BioM-ELECTRA-Large-SQuAD2 \ --train_file BioASQ8B/train.json \ --predict_file BioASQ8B/dev.json \ --do_lower_case \ --do_train \ --do_eval \ --threads 20 \ --version_2_with_negative \ --num_train_epochs 3 \ --learning_rate 5e-5 \ --max_seq_length 512 \ --doc_stride 128 \ --per_gpu_train_batch_size 8 \ --gradient_accumulation_steps 2 \ --per_gpu_eval_batch_size 128 \ --logging_steps 50 \ --save_steps 5000 \ --fp16 \ --fp16_opt_level O1 \ --overwrite_output_dir \ --output_dir BioM-ELECTRA-Large-SQuAD-BioASQ \ --overwrite_cache ``` # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
kamivao/autonlp-entity_selection-5771228
kamivao
2021-07-24T18:59:19Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:kamivao/autonlp-data-entity_selection", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kamivao/autonlp-data-entity_selection --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 5771228 ## Validation Metrics - Loss: 0.17127291858196259 - Accuracy: 0.9206671174216813 - Precision: 0.9588885738588036 - Recall: 0.9423237670660352 - AUC: 0.9720189638675828 - F1: 0.9505340078695896 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kamivao/autonlp-entity_selection-5771228 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kamivao/autonlp-entity_selection-5771228", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kamivao/autonlp-entity_selection-5771228", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/sshakestation
huggingtweets
2021-07-24T17:44:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sshakestation/1627148673612/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390378853877510145/YdbZXqjN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RJ's Shake Station</div> <div style="text-align: center; font-size: 14px;">@sshakestation</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RJ's Shake Station. | Data | RJ's Shake Station | | --- | --- | | Tweets downloaded | 456 | | Retweets | 10 | | Short tweets | 28 | | Tweets kept | 418 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wszsjtre/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sshakestation's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k91nzds) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k91nzds/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sshakestation') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TheLongSentance/t5-small-finetuned-xsum
TheLongSentance
2021-07-24T11:57:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model_index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metric: name: Rouge1 type: rouge value: 29.6452 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3833 - Rouge1: 29.6452 - Rouge2: 8.6953 - Rougel: 23.4474 - Rougelsum: 23.4553 - Gen Len: 18.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6051 | 1.0 | 102023 | 2.3833 | 29.6452 | 8.6953 | 23.4474 | 23.4553 | 18.8037 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
huggingtweets/realbenfishbein
huggingtweets
2021-07-24T05:27:00Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1349511600974278662/7v0yTYob_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ben Fishbein</div> <div style="text-align: center; font-size: 14px;">@realbenfishbein</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ben Fishbein. | Data | Ben Fishbein | | --- | --- | | Tweets downloaded | 261 | | Retweets | 8 | | Short tweets | 30 | | Tweets kept | 223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2idreqex/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @realbenfishbein's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3me55h26) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3me55h26/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/realbenfishbein') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jontthomas
huggingtweets
2021-07-24T02:44:18Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jontthomas/1627094654118/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418758009673723909/rtsbsqKv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Johnathon Taylor "JTT" Thomas</div> <div style="text-align: center; font-size: 14px;">@jontthomas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Johnathon Taylor "JTT" Thomas. | Data | Johnathon Taylor "JTT" Thomas | | --- | --- | | Tweets downloaded | 239 | | Retweets | 3 | | Short tweets | 44 | | Tweets kept | 192 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9haxw34n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jontthomas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bzdo7d6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bzdo7d6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jontthomas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dril-jdogmart-redfieldcooper
huggingtweets
2021-07-24T02:22:58Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dril-jdogmart-redfieldcooper/1627093373715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363680905215291399/Bl--YnLP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418244914597486594/nDL8WsU2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Jan Dogmart & Ronnie</div> <div style="text-align: center; font-size: 14px;">@dril-jdogmart-redfieldcooper</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Jan Dogmart & Ronnie. | Data | wint | Jan Dogmart | Ronnie | | --- | --- | --- | --- | | Tweets downloaded | 3229 | 1339 | 3238 | | Retweets | 464 | 107 | 586 | | Short tweets | 311 | 245 | 378 | | Tweets kept | 2454 | 987 | 2274 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ma9es8d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-jdogmart-redfieldcooper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/acu5gl39) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/acu5gl39/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-jdogmart-redfieldcooper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/c0up
huggingtweets
2021-07-24T01:26:20Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/c0up/1627089976491/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1209626102/c0up_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Abhilash</div> <div style="text-align: center; font-size: 14px;">@c0up</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Abhilash. | Data | Abhilash | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 1476 | | Short tweets | 384 | | Tweets kept | 1343 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1le73jjg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c0up's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tebog4r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tebog4r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/c0up') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nipsithesciguy
huggingtweets
2021-07-24T00:27:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nipsithesciguy/1627086421551/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/994672771887230976/YNh3gRcP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🎄Bowman ⚡🎄🧬</div> <div style="text-align: center; font-size: 14px;">@nipsithesciguy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🎄Bowman ⚡🎄🧬. | Data | 🎄Bowman ⚡🎄🧬 | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 576 | | Short tweets | 309 | | Tweets kept | 2352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32ni4c07/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nipsithesciguy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xr16jbo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xr16jbo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nipsithesciguy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/smolserabean
huggingtweets
2021-07-23T22:52:13Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/smolserabean/1627080715021/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406727363522666497/86n4KIIJ_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ari but awesome</div> <div style="text-align: center; font-size: 14px;">@smolserabean</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ari but awesome. | Data | Ari but awesome | | --- | --- | | Tweets downloaded | 398 | | Retweets | 150 | | Short tweets | 70 | | Tweets kept | 178 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tas8okv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @smolserabean's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3afn50i3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3afn50i3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/smolserabean') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/claireredacted-deepleffen
huggingtweets
2021-07-23T22:49:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/claireredacted-deepleffen/1627080578772/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984455379659575296/-0punyb9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire & Deep Leffen Bot</div> <div style="text-align: center; font-size: 14px;">@claireredacted-deepleffen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire & Deep Leffen Bot. | Data | Claire | Deep Leffen Bot | | --- | --- | --- | | Tweets downloaded | 3241 | 493 | | Retweets | 523 | 13 | | Short tweets | 627 | 26 | | Tweets kept | 2091 | 454 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uxfbhyv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claireredacted-deepleffen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rdhjvg7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rdhjvg7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claireredacted-deepleffen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jxuhf/roberta-base-finetuned-cola
jxuhf
2021-07-23T22:08:00Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: roberta-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.557882735147727 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4716 - Matthews Correlation: 0.5579 ## Model description More information needed ## Intended uses & limitations ```python from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("jxuhf/roberta-base-finetuned-cola") ``` More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4981 | 1.0 | 535 | 0.5162 | 0.5081 | | 0.314 | 2.0 | 1070 | 0.4716 | 0.5579 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
huggingtweets/daramgaria
huggingtweets
2021-07-23T22:04:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409230363906424832/67a8m2BA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar 🔜 CROSSxUP</div> <div style="text-align: center; font-size: 14px;">@daramgaria</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ho3K | Daramgar 🔜 CROSSxUP. | Data | Ho3K | Daramgar 🔜 CROSSxUP | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 30 | | Short tweets | 807 | | Tweets kept | 2412 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z2deo4d4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daramgaria's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29cuxcz9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29cuxcz9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daramgaria') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/reeds_sarah
huggingtweets
2021-07-23T21:33:46Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/reeds_sarah/1627076022639/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417646296907792384/vI8ZC3Ws_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨Sarah Reeds✨</div> <div style="text-align: center; font-size: 14px;">@reeds_sarah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨Sarah Reeds✨. | Data | ✨Sarah Reeds✨ | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 463 | | Short tweets | 560 | | Tweets kept | 2201 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yf7rmgm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @reeds_sarah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bnw19r3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bnw19r3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/reeds_sarah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/spamemcspam
huggingtweets
2021-07-23T20:59:12Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/spamemcspam/1627073948338/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362892272342196224/RSTBJB08_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Yes, I know my cat is ugly.</div> <div style="text-align: center; font-size: 14px;">@spamemcspam</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Yes, I know my cat is ugly.. | Data | Yes, I know my cat is ugly. | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 977 | | Short tweets | 228 | | Tweets kept | 2009 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mn5cki9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @spamemcspam's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v7cmihj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v7cmihj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/spamemcspam') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Josmar/BART_Finetuned_CNN_dailymail
Josmar
2021-07-23T20:20:30Z
8
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
# BART_Finetuned_CNN_dailymail The following repo contains a [bart-base](https://huggingface.co/facebook/bart-base) model that was finetuned using the dataset [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail)
huggingtweets/maddiebirds
huggingtweets
2021-07-23T19:12:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/maddiebirds/1627067546895/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417269904638681088/-hPhZh_I_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Official Office Hours Mascot</div> <div style="text-align: center; font-size: 14px;">@maddiebirds</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Official Office Hours Mascot. | Data | Official Office Hours Mascot | | --- | --- | | Tweets downloaded | 3164 | | Retweets | 925 | | Short tweets | 505 | | Tweets kept | 1734 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nvjfva5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maddiebirds's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3m5l77r1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3m5l77r1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maddiebirds') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jdogmart
huggingtweets
2021-07-23T18:42:30Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jdogmart/1627065726745/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363680905215291399/Bl--YnLP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jan Dogmart</div> <div style="text-align: center; font-size: 14px;">@jdogmart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jan Dogmart. | Data | Jan Dogmart | | --- | --- | | Tweets downloaded | 1333 | | Retweets | 106 | | Short tweets | 243 | | Tweets kept | 984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8hacy1dt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jdogmart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uebjr2z5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uebjr2z5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jdogmart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cphilipzarina
huggingtweets
2021-07-23T18:08:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cphilipzarina/1627063725221/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1049362687216562176/fLWP67_f_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">C Philip Zarina</div> <div style="text-align: center; font-size: 14px;">@cphilipzarina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from C Philip Zarina. | Data | C Philip Zarina | | --- | --- | | Tweets downloaded | 71 | | Retweets | 5 | | Short tweets | 6 | | Tweets kept | 60 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2500hnbe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cphilipzarina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11qav433) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11qav433/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cphilipzarina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/perry_ruh
huggingtweets
2021-07-23T17:42:36Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/perry_ruh/1627062108629/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1370530189160091648/cbuh1tgC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Perry R 💀</div> <div style="text-align: center; font-size: 14px;">@perry_ruh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Perry R 💀. | Data | Perry R 💀 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 436 | | Short tweets | 535 | | Tweets kept | 2273 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tg0srg29/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @perry_ruh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/201o3y3w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/201o3y3w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/perry_ruh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lana_ray_dale
huggingtweets
2021-07-23T17:36:53Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lana_ray_dale/1627061772839/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/439125466340143105/TZaoVrUl_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">R A Y</div> <div style="text-align: center; font-size: 14px;">@lana_ray_dale</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from R A Y. | Data | R A Y | | --- | --- | | Tweets downloaded | 718 | | Retweets | 56 | | Short tweets | 90 | | Tweets kept | 572 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37ffw07m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lana_ray_dale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uxn80y7g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uxn80y7g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lana_ray_dale') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/herialc
huggingtweets
2021-07-23T17:32:09Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1233052680190296064/zcbLKhOR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire</div> <div style="text-align: center; font-size: 14px;">@herialc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire. | Data | Claire | | --- | --- | | Tweets downloaded | 539 | | Retweets | 219 | | Short tweets | 27 | | Tweets kept | 293 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bop9va7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @herialc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10twdkn3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10twdkn3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/herialc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ronnienumber7
huggingtweets
2021-07-23T17:28:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ronnienumber7/1627061284718/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418253489373913092/Wrsj1ZEj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ronnie (the original Ronnie)</div> <div style="text-align: center; font-size: 14px;">@ronnienumber7</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ronnie (the original Ronnie). | Data | Ronnie (the original Ronnie) | | --- | --- | | Tweets downloaded | 559 | | Retweets | 11 | | Short tweets | 35 | | Tweets kept | 513 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z46j8b3c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ronnienumber7's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1n9lz23f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1n9lz23f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ronnienumber7') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/laineden
huggingtweets
2021-07-23T17:10:14Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/laineden/1627060210524/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415021724119277572/iSuhNx8q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">snail ❥</div> <div style="text-align: center; font-size: 14px;">@laineden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from snail ❥. | Data | snail ❥ | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 516 | | Short tweets | 487 | | Tweets kept | 2232 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jg8608cr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laineden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d466up4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d466up4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laineden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/john_tub_ocf
huggingtweets
2021-07-23T17:08:57Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/john_tub_ocf/1627060133532/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414408906315546629/hyBAS2Pl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">John Tub</div> <div style="text-align: center; font-size: 14px;">@john_tub_ocf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from John Tub. | Data | John Tub | | --- | --- | | Tweets downloaded | 533 | | Retweets | 90 | | Short tweets | 88 | | Tweets kept | 355 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kmh9ydg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @john_tub_ocf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ondjsiu1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ondjsiu1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/john_tub_ocf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/timcast
huggingtweets
2021-07-23T17:03:22Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/timcast/1627059798876/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1290434690487218176/DNmKXZQ6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Pool</div> <div style="text-align: center; font-size: 14px;">@timcast</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Pool. | Data | Tim Pool | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 204 | | Short tweets | 324 | | Tweets kept | 2719 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m867fab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timcast's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/efdcgdgn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/efdcgdgn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timcast') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cryptolith_-poaststructural-rusticgendarme
huggingtweets
2021-07-23T16:59:19Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cryptolith_-poaststructural-rusticgendarme/1627059554644/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1370191602241654785/zbbSFsyw_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼 & severian</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-poaststructural-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🏁🗼 & severian. | Data | merz | 🏁🗼 | severian | | --- | --- | --- | --- | | Tweets downloaded | 2456 | 3223 | 3226 | | Retweets | 424 | 450 | 358 | | Short tweets | 416 | 1017 | 577 | | Tweets kept | 1616 | 1756 | 2291 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t7za49v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-poaststructural-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/txcxy9qk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/txcxy9qk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-poaststructural-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/moviefishy
huggingtweets
2021-07-23T16:51:17Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/moviefishy/1627059072751/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408154042698665985/1PWi4RhY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rock Genius Fishy - Rock House Head</div> <div style="text-align: center; font-size: 14px;">@moviefishy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rock Genius Fishy - Rock House Head. | Data | Rock Genius Fishy - Rock House Head | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 485 | | Short tweets | 546 | | Tweets kept | 2207 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f99exm0b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moviefishy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3v5cszr1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3v5cszr1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/moviefishy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/islamphobiacow-praisegodbarbon
huggingtweets
2021-07-23T16:06:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/islamphobiacow-praisegodbarbon/1627056382131/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368077075127603200/Z08slO2P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boston Psychology PhD & keyvan</div> <div style="text-align: center; font-size: 14px;">@islamphobiacow-praisegodbarbon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boston Psychology PhD & keyvan. | Data | Boston Psychology PhD | keyvan | | --- | --- | --- | | Tweets downloaded | 3224 | 3242 | | Retweets | 858 | 179 | | Short tweets | 251 | 223 | | Tweets kept | 2115 | 2840 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3egvdux4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @islamphobiacow-praisegodbarbon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34hmjrwi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34hmjrwi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/islamphobiacow-praisegodbarbon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
flax-sentence-embeddings
2021-07-23T16:01:01Z
273
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L12'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L12') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L12'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
huggingtweets/drew106
huggingtweets
2021-07-23T15:58:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drew106/1627055915329/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414914440231800840/vRSW6t9i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Andrew Maragni 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@drew106</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Andrew Maragni 🇺🇸. | Data | Andrew Maragni 🇺🇸 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 786 | | Short tweets | 176 | | Tweets kept | 2282 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pfjcjeb0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drew106's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drew106') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-sentence-embeddings/all_datasets_v4_mpnet-base
flax-sentence-embeddings
2021-07-23T15:55:37Z
563
6
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_mpnet-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v3_MiniLM-L6
flax-sentence-embeddings
2021-07-23T15:53:06Z
121
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_MiniLM-L6') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) which is a 6 layer version of ['microsoft/MiniLM-L12-H384-uncased'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v4_MiniLM-L6
flax-sentence-embeddings
2021-07-23T15:49:28Z
27,755
34
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L6') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L6-H384-uncased'](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) which is a 6 layer version of ['microsoft/MiniLM-L12-H384-uncased'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) by keeping only every second layer. Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v3_roberta-large
flax-sentence-embeddings
2021-07-23T15:45:17Z
5,030
13
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`roberta-large`](https://huggingface.co/roberta-large) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_roberta-large') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`roberta-large`](https://huggingface.co/roberta-large). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flax-sentence-embeddings/all_datasets_v3_distilroberta-base
flax-sentence-embeddings
2021-07-23T15:43:19Z
13
2
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`distilroberta-base`](https://huggingface.co/distilroberta-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_distilroberta-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`distilroberta-base`](https://huggingface.co/distilroberta-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
huggingtweets/gozusabu
huggingtweets
2021-07-23T15:36:01Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/gozusabu/1627054557412/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1382600435056394242/azQoqzIb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Calum Macleod</div> <div style="text-align: center; font-size: 14px;">@gozusabu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Calum Macleod. | Data | Calum Macleod | | --- | --- | | Tweets downloaded | 1926 | | Retweets | 673 | | Short tweets | 279 | | Tweets kept | 974 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y71yp06o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gozusabu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dwp3t07q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dwp3t07q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gozusabu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/timthom_007
huggingtweets
2021-07-23T15:30:29Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/timthom_007/1627054225472/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406641405150253059/RNJ6uGeN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">TimThom 🍝</div> <div style="text-align: center; font-size: 14px;">@timthom_007</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from TimThom 🍝. | Data | TimThom 🍝 | | --- | --- | | Tweets downloaded | 1187 | | Retweets | 89 | | Short tweets | 225 | | Tweets kept | 873 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37fjihoh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timthom_007's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tq742cw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tq742cw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timthom_007') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gwynethfae/t5-small-finetuned-xsum
gwynethfae
2021-07-23T15:08:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 13 | 3.6429 | 15.3135 | 1.0725 | 12.0447 | 12.445 | 18.97 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
huggingtweets/cryptolith_-rusticgendarme
huggingtweets
2021-07-23T14:35:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cryptolith_-rusticgendarme/1627050935243/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🏁🗼. | Data | merz | 🏁🗼 | | --- | --- | --- | | Tweets downloaded | 2452 | 3220 | | Retweets | 423 | 449 | | Short tweets | 416 | 1016 | | Tweets kept | 1613 | 1755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1czbbc9w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Pyjay/bert-base-dutch-cased-finetuned-gv
Pyjay
2021-07-23T08:54:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model_index: - name: bert-base-dutch-cased-finetuned-gv results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-gv This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.7837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4741 | 1.0 | 2603 | 1.8404 | | 1.2384 | 2.0 | 5206 | 1.8457 | | 1.2121 | 3.0 | 7809 | 1.7837 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
vasudevgupta/gsoc-wav2vec2
vasudevgupta
2021-07-23T08:25:58Z
6
0
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
Wav2Vec2 Model (initialized from [`facebook/wav2vec2-base`](https://huggingface.co/facebook/wav2vec2-base)) with **no** LM head. Model weights are converted into TensorFlow using following script: ```shell python3 convert_torch_to_tf.py --hf_model_id "facebook/wav2vec2-base" ``` **TF SavedModel** is obtained by running following commands: ```shell git clone https://huggingface.co/vasudevgupta/gsoc-wav2vec2 python3 export2hub.py \ --hf_model_id facebook/wav2vec2-base \ --saved_model_dir gsoc-wav2vec2/saved-model \ --seqlen 246000 cd gsoc-wav2vec2 && tar -czf saved-model.tar.gz saved-model ``` Project Link: https://github.com/vasudevgupta7/gsoc-wav2vec2
ehdwns1516/gpt3-kor-based_gpt2_review_SR4
ehdwns1516
2021-07-23T01:18:45Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# ehdwns1516/gpt3-kor-based_gpt2_review_SR4 * This model has been trained Korean dataset as a star of 4 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 4 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR4") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR4") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR4", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt3-kor-based_gpt2_review_SR3
ehdwns1516
2021-07-23T01:18:13Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# ehdwns1516/gpt3-kor-based_gpt2_review_SR3 * This model has been trained Korean dataset as a star of 3 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 3 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR3") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR3") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR3", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt3-kor-based_gpt2_review_SR1
ehdwns1516
2021-07-23T01:17:45Z
12
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# ehdwns1516/gpt3-kor-based_gpt2_review_SR1 * This model has been trained Korean dataset as a star of 1 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 1 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR1") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR1") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR1", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt2_review_star4
ehdwns1516
2021-07-23T01:07:26Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# gpt2_review_star4 * This model has been trained as a review_body dataset with a star of 4 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 4 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star3") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star3") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star4", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt2_review_star3
ehdwns1516
2021-07-23T01:06:54Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# gpt2_review_star3 * This model has been trained as a review_body dataset with a star of 3 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 3 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star3") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star3") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star3", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
huggingtweets/alampaydavis
huggingtweets
2021-07-22T23:20:00Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/alampaydavis/1626995945354/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410861223273549825/HwwcW6y2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew</div> <div style="text-align: center; font-size: 14px;">@alampaydavis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew. | Data | Matthew | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 1067 | | Short tweets | 228 | | Tweets kept | 1924 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qawxu8m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alampaydavis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ub62hd1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ub62hd1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alampaydavis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Fraser/wiki-vae
Fraser
2021-07-22T19:16:20Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
# Wiki-VAE A Transformer-VAE trained on all the sentences in wikipedia. Training is done on AWS SageMaker.
suhnylla/planes_airlines
suhnylla
2021-07-22T02:21:24Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: planes_airlines results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.32307693362236023 --- # planes_airlines Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### planes cathay pacific ![planes cathay pacific](images/planes_cathay_pacific.jpg) #### planes delta airlines ![planes delta airlines](images/planes_delta_airlines.jpg) #### planes malaysia airlines ![planes malaysia airlines](images/planes_malaysia_airlines.jpg) #### planes singapore airlines ![planes singapore airlines](images/planes_singapore_airlines.jpg) #### planes virgin airlines ![planes virgin airlines](images/planes_virgin_airlines.jpg)
huggingtweets/nigelthurlow
huggingtweets
2021-07-21T22:34:57Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nigelthurlow/1626906893945/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1163117736140124160/u23u5DU4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nigel Thurlow</div> <div style="text-align: center; font-size: 14px;">@nigelthurlow</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nigel Thurlow. | Data | Nigel Thurlow | | --- | --- | | Tweets downloaded | 1264 | | Retweets | 648 | | Short tweets | 27 | | Tweets kept | 589 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/n4jwj2tf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nigelthurlow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r5nb7zp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r5nb7zp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nigelthurlow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/glownigga
huggingtweets
2021-07-21T22:15:19Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/glownigga/1626905715267/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1292227674539208704/uNcnG4c3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gl0w</div> <div style="text-align: center; font-size: 14px;">@glownigga</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gl0w. | Data | gl0w | | --- | --- | | Tweets downloaded | 3132 | | Retweets | 157 | | Short tweets | 776 | | Tweets kept | 2199 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t0rqzrr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @glownigga's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qjksoiw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qjksoiw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/glownigga') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-community/clip-vit-base-patch32_marian-es
flax-community
2021-07-21T19:30:04Z
1
0
transformers
[ "transformers", "jax", "tensorboard", "clip-vision-marian", "arxiv:2102.08981", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# CLIP-Vision-Marian Seq2Seq Encoder-Decoder Model Pretrained CLIP-Vision-Marian pre-trained on a subset of Spanish-translated Conceptual-12M image-text pairs using a seq2seq model training objective. 2.5M cleaned English image-text pairs are translated using Spanish Marian Model. We trained CLIP-Vision-Marian model during community week hosted by Huggingface 🤗 using JAX/Flax. ## Model description CLIP-Vision-Marian is a modified transformers model which takes in visual embeddings from CLIP-Vision transformer and feeds into the `encoder_hidden_states` of a Marian decoder. This is done for deep cross-modal interaction via `cross-attention` between the two modes. The decoder then predicts logits for the `input_ids` provided and can be used for generation. ## Intended uses & limitations❗️ You can use the raw model for encoder-decoder network where you want the encoder to encode images and the decoder to decode text. Note that this model is primarily aimed at being fine-tuned on tasks like Spanish image captioning. ### How to use❓ You will need to clone the model from [here](https://github.com/bhavitvyamalik/spanish-image-captioning). An example of usage is shown below: ```python >>> from torchvision.io import read_image >>> import numpy as np >>> import wget >>> import os >>> from transformers import CLIPProcessor, MarianTokenizer >>> from models.flax_clip_vision_marian.modeling_clip_vision_marian import FlaxCLIPVisionMarianMT img = wget.download("https://huggingface.co/streamlitiframe/flax-community/spanish-image-captioning/+/media/55a8898e61131569cc0ed4e72a8b3092969d63c2dff4f47ed9ef0d89.jpeg") >>> img = read_image(img) # reading image >>> clip_processor = CLIPProcessor.from_pretrained('flax-community/clip-vit-base-patch32_marian') >>> clip_outputs = clip_processor(images=img) >>> clip_outputs['pixel_values'][0] = clip_outputs['pixel_values'][0].transpose(1,2,0) # Need to transpose images as model expected channel last images. >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-es') >>> model = FlaxCLIPVisionMarianMT.from_pretrained('flax-community/clip-vit-base-patch32_marian-es') >>> output_ids = model.generate(batch["pixel_values"], early_stopping=True, num_beams=4, max_length=64).sequences >>> output_string = tokenizer.batch_decode(output_ids.reshape(-1, 64), skip_special_tokens=True, max_length=64) >>> output_string # Sopa de avena en un tazón blanco con arándanos frescos ``` ## Training data 🏋🏻‍♂️ The Spanish image captioning model was trained on a subset of Conceptual 12M dataset by Google: <br> <br> [Conceptual 12M](https://github.com/google-research-datasets/conceptual-12m), Introduced by Changpinyo et al. in [Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts](https://arxiv.org/abs/2102.08981). ### Please update the dataset link here The translated dataset can be downloaded from [conceptual-12m-multilingual-marian-es](https://huggingface.co/datasets/flax-community/conceptual-12m-multilingual-marian-es). We do not provide images as we do not own any of them. One can download images from the `image_url` section of the original Conceptual 12M dataset. ## Data Cleaning 🧹 Though the original dataset contains 12M image-text pairs, a lot of the URLs are invalid now, and in some cases, images are corrupt or broken. We remove such examples from our data, which leaves us with approximately 10M image-text pairs, out of which we took only 2.5M image, caption pairs. #### **Train set:** Total data: <br> 2475000 captions <br> 2475000 images <br> #### **Validation set** Total data: <br> 25000 captions <br> 25000 images <br> ## Training procedure 👨🏻‍💻 ### Training The model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores) **8 v3 TPU cores** for 42K steps with a batch size of 128 and a sequence length of 128. The optimizer used is Adam with a learning rate of 3e-4, β1 = 0.9, β2 = 0.98 and ε = 1e-8, a weight decay of 0.01, learning rate warmup for 1,000 steps and linear decay of the learning rate after. We tracked experiments using Tensorboard which can be found in `Training Metrics` tab. #### **Pretraining Results 📊** Our model reached **eval loss of ~3.1** around ~20K steps. Here are the BLEU^ scores for different languages: |Language |BLEU-1|BLEU-2|BLEU-3|BLEU-4| |--------------------------|------|------|------|------| |Spanish | 0.2015| 0.1348| 0.09982| 0.0748| ^BLEU scores are out of 1 ## **App Demo** You can try out our model on 🤗 Huggingface's spaces 🪐 : [Streamlit app of Spanish Image Captioning model on Huggingface Spaces](https://huggingface.co/spaces/flax-community/spanish-image-captioning) ## Team Members - Bhavitvya Malik [@bhavitvyamalik](https://github.com/bhavitvyamalik) - Gunjan Chhablani [@gchhablani](https://github.com/gchhablani) ## Credits Thanks to Huggingface 🤗 & Google JAX/Flax team for such a wonderful community week. Big thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) and [@patil-suraj](https://github.com/patil-suraj) for helping us with our solution during the community week. <img src=https://pbs.twimg.com/media/E443fPjX0AY1BsR.jpg:large>
AIDA-UPM/MSTSb_stsb-xlm-r-multilingual
AIDA-UPM
2021-07-21T18:32:31Z
54
1
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1438 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 4e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
flax-community/gpt2-Cosmos
flax-community
2021-07-21T16:58:00Z
1
0
transformers
[ "transformers", "jax", "tensorboard", "gpt2", "arxiv:1909.00277", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Cosmos QA (gpt2) > This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/train-a-gpt2-model-for-contextual-common-sense-reasoning-using-the-cosmos-qa-dataset/7463), organized by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team Members -Rohan V Kashyap ([Rohan](https://huggingface.co/Rohan)) -Vivek V Kashyap ([Vivek](https://huggingface.co/Vivek)) ## Dataset [Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning](https://huggingface.co/datasets/cosmos_qa).This dataset contains a set of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions.Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly.The questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people's everyday narratives. ### Example ```json {"Context":["It's a very humbling experience when you need someone to dress you every morning, tie your shoes, and put your hair up. Every menial task takes an unprecedented amount of effort. It made me appreciate Dan even more. But anyway I shan't dwell on this (I'm not dying after all) and not let it detract from my lovely 5 days with my friends visiting from Jersey."], "Question":["What's a possible reason the writer needed someone to dress him every morning?"], "Multiple Choice":["A: The writer doesn't like putting effort into these tasks.", "B: The writer has a physical disability.", "C: The writer is bad at doing his own hair.", "D: None of the above choices."] "link":"https://arxiv.org/pdf/1909.00277.pdf" } ``` ## How to use ```bash # Installing requirements pip install transformers pip install datasets ``` ```python from model_file import FlaxGPT2ForMultipleChoice from datasets import Dataset model_path="flax-community/gpt2-Cosmos" model = FlaxGPT2ForMultipleChoice.from_pretrained(model_path,input_shape=(1,4,1)) dataset=Dataset.from_csv('./') def preprocess(example): example['context&question']=example['context']+example['question'] example['first_sentence']=[example['context&question'],example['context&question'],example['context&question'],example['context&question']] example['second_sentence']=example['answer0'],example['answer1'],example['answer2'],example['answer3'] return example dataset=dataset.map(preprocess) def tokenize(examples): a=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') a['labels']=examples['label'] return a dataset=dataset.map(tokenize) input_id=jnp.array(dataset['input_ids']) att_mask=jnp.array(dataset['attention_mask']) outputs=model(input_id,att_mask) final_output=jnp.argmax(outputs,axis=-1) print(f"the predction of the dataset : {final_output}") ``` ``` The Correct answer:-Option 1 ``` ## Preprocessing The texts are tokenized using the GPT2 tokenizer.To feed the inputs of multiple choice we concatenated context and question as first input and all the 4 possible choices as the second input to our tokenizer. ## Evaluation The following tables summarize the scores obtained by the **GPT2-CosmosQA**.The ones marked as (^) are the baseline models. | Model | Dev Acc | Test Acc | |:---------------:|:-----:|:-----:| | BERT-FT Multiway^| 68.3.| 68.4 | | GPT-FT ^ | 54.0 | 54.4. | | GPT2-CosmosQA | 60.3 | 59.7 | ## Inference This project was mainly to test the common sense understanding of the GPT2-model.We finetuned on a Dataset known as CosmosQ requires reasoning beyond the exact text spans in the context.The above results shows that GPT2 model is doing better than most of the base line models given that it only used to predict the next word in the pre-training objective. ## Credits Huge thanks to Huggingface 🤗 & Google Jax/Flax team for such a wonderful community week. Especially for providing such massive computing resource. Big thanks to [@patil-suraj](https://github.com/patil-suraj) & [@patrickvonplaten](https://github.com/patrickvonplaten) for mentoring during whole week.
ktangri/gpt-neo-demo
ktangri
2021-07-21T15:20:09Z
10
1
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "text generation", "the Pile", "causal-lm", "en", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - text generation - pytorch - the Pile - causal-lm license: apache-2.0 datasets: - the Pile --- # GPT-Neo 2.7B (By EleutherAI) ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` To cite the codebase that this model was trained with, use ```bibtex @software{gpt-neo, author = {Black, Sid and Gao, Leo and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo}: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}, url = {http://github.com/eleutherai/gpt-neo}, version = {1.0}, year = {2021}, } ```
bipin/malayalam-news-classifier
bipin
2021-07-21T13:40:25Z
9
3
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "malayalam", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - text-classification - roberta - malayalam - pytorch widget: - text: "2032 ഒളിമ്പിക്‌സിന് ബ്രിസ്‌ബെയ്ന്‍ വേദിയാകും; ഗെയിംസിന് വേദിയാകുന്ന മൂന്നാമത്തെ ഓസ്‌ട്രേലിയന്‍ നഗരം" --- ## Malayalam news classifier ### Overview This model is trained on top of [MalayalamBert](https://huggingface.co/eliasedwin7/MalayalamBERT) for the task of classifying malayalam news headlines. Presently, the following news categories are supported: * Business * Sports * Entertainment ### Dataset The dataset used for training this model can be found [here](https://www.kaggle.com/disisbig/malyalam-news-dataset). ### Using the model with HF pipeline ```python from transformers import pipeline news_headline = "ക്രിപ്‌റ്റോ ഇടപാടുകളുടെ വിവരങ്ങൾ ആവശ്യപ്പെട്ട് ആദായനികുതി വകുപ്പ് നോട്ടീസയച്ചു" model = pipeline(task="text-classification", model="bipin/malayalam-news-classifier") model(news_headline) # Output # [{'label': 'business', 'score': 0.9979357123374939}] ``` ### Contact For feedback and questions, feel free to contact via twitter [@bkrish_](https://twitter.com/bkrish_)
ifis-zork/ZORK_AI_SCI_FI_TEMP
ifis-zork
2021-07-21T13:06:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model_index: - name: ZORK_AI_SCI_FI_TEMP results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZORK_AI_SCI_FI_TEMP This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
mshamrai/bert-base-ukr-eng-rus-uncased
mshamrai
2021-07-21T12:05:26Z
38
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
This repository shares smaller version of bert-base-multilingual-uncased that keeps only Ukrainian, English, and Russian tokens in the vocabulary. | Model | Num parameters | Size | | ----------------------------------------- | -------------- | --------- | | bert-base-multilingual-uncased | 167 million | ~650 MB | | MaxVortman/bert-base-ukr-eng-rus-uncased | 110 million | ~423 MB |
ifis-zork/ZORK_AI_FANTASY
ifis-zork
2021-07-21T09:50:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model_index: - name: ZORK_AI_FANTASY results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZORK_AI_FANTASY This model is a fine-tuned version of [ifis-zork/ZORK_AI_FAN_TEMP](https://huggingface.co/ifis-zork/ZORK_AI_FAN_TEMP) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
flax-community/clip-vision-bert-vqa-ft-6k
flax-community
2021-07-21T09:21:58Z
4
4
transformers
[ "transformers", "jax", "clip-vision-bert", "text-classification", "arxiv:1908.03557", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# CLIP-Vision-BERT Multilingual VQA Model Fine-tuned CLIP-Vision-BERT on translated [VQAv2](https://visualqa.org/challenge.html) image-text pairs using sequence classification objective. We translate the dataset to three other languages other than English: French, German, and Spanish using the [MarianMT Models](https://huggingface.co/transformers/model_doc/marian.html). This model is based on the VisualBERT which was introduced in [this paper](https://arxiv.org/abs/1908.03557) and first released in [this repository](https://github.com/uclanlp/visualbert). The output is 3129 class logits, the same classes as used by VisualBERT authors. The initial weights are loaded from the Conceptual-12M 60k [checkpoints](https://huggingface.co/flax-community/clip-vision-bert-cc12m-60k). We trained the CLIP-Vision-BERT VQA model during community week hosted by Huggingface 🤗 using JAX/Flax. ## Model description CLIP-Vision-BERT is a modified BERT model which takes in visual embeddings from the CLIP-Vision transformer and concatenates them with BERT textual embeddings before passing them to the self-attention layers of BERT. This is done for deep cross-modal interaction between the two modes. ## Intended uses & limitations❗️ This model is fine-tuned on a multi-translated version of the visual question answering task - [VQA v2](https://visualqa.org/challenge.html). Since VQAv2 is a dataset scraped from the internet, it will involve some biases which will also affect all fine-tuned versions of this model. ### How to use❓ You can use this model directly on visual question answering. You will need to clone the model from [here](https://github.com/gchhablani/multilingual-vqa). An example of usage is shown below: ```python >>> from torchvision.io import read_image >>> import numpy as np >>> import os >>> from transformers import CLIPProcessor, BertTokenizerFast >>> from model.flax_clip_vision_bert.modeling_clip_vision_bert import FlaxCLIPVisionBertForSequenceClassification >>> image_path = os.path.join('images/val2014', os.listdir('images/val2014')[0]) >>> img = read_image(image_path) >>> clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32') ftfy or spacy is not installed using BERT BasicTokenizer instead of ftfy. >>> clip_outputs = clip_processor(images=img) >>> clip_outputs['pixel_values'][0] = clip_outputs['pixel_values'][0].transpose(1,2,0) # Need to transpose images as model expected channel last images. >>> tokenizer = BertTokenizerFast.from_pretrained('bert-base-multilingual-uncased') >>> model = FlaxCLIPVisionBertForSequenceClassification.from_pretrained('flax-community/clip-vision-bert-vqa-ft-6k') >>> text = "Are there teddy bears in the image?" >>> tokens = tokenizer([text], return_tensors="np") >>> pixel_values = np.concatenate([clip_outputs['pixel_values']]) >>> outputs = model(pixel_values=pixel_values, **tokens) >>> preds = outputs.logits[0] >>> sorted_indices = np.argsort(preds)[::-1] # Get reverse sorted scores >>> top_5_indices = sorted_indices[:5] >>> top_5_tokens = list(map(model.config.id2label.get,top_5_indices)) >>> top_5_scores = preds[top_5_indices] >>> print(dict(zip(top_5_tokens, top_5_scores))) {'yes': 15.809224, 'no': 7.8785815, '<unk>': 4.622649, 'very': 4.511462, 'neither': 3.600822} ``` ## Training data 🏋🏻‍♂️ The CLIP-Vision-BERT model was fine-tuned on the translated version of the VQAv2 dataset in four languages using Marian: English, French, German and Spanish. Hence, the dataset is four times the original English questions. The dataset questions and image URLs/paths can be downloaded from [flax-community/multilingual-vqa](https://huggingface.co/datasets/flax-community/multilingual-vqa). ## Data Cleaning 🧹 Though the original dataset contains 443,757 train and 214,354 validation image-question pairs. We only use the `multiple_choice_answer`. The answers which are not present in the 3129 classes are mapped to the `<unk>` label. **Splits** We use the original train-val splits from the VQAv2 dataset. After translation, we get 1,775,028 train image-text pairs, and 857,416 validation image-text pairs. ## Training procedure 👨🏻‍💻 ### Preprocessing The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of approximately 110,000. The beginning of a new document is marked with `[CLS]` and the end of one by `[SEP]`. ### Fine-tuning The checkpoint of the model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores) **8 v3 TPU cores** for 6k steps with a per device batch size of 128 and a max sequence length of 128. The optimizer used is AdamW with a learning rate of 5e-5, learning rate warmup for 1600 steps, and linear decay of the learning rate after. We tracked experiments using TensorBoard. Here is link to main dashboard: [CLIP Vision BERT VQAv2 Fine-tuning Dashboard](https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard) #### **Fine-tuning Results 📊** The model at this checkpoint reached **eval accuracy of 0.49** on our multilingual VQAv2 dataset. ## Team Members - Gunjan Chhablani [@gchhablani](https://hf.co/gchhablani) - Bhavitvya Malik[@bhavitvyamalik](https://hf.co/bhavitvyamalik) ## Acknowledgements We thank [Nilakshan Kunananthaseelan](https://huggingface.co/knilakshan20) for helping us whenever he could get a chance. We also thank [Abheesht Sharma](https://huggingface.co/abheesht) for helping in the discussions in the initial phases. [Luke Melas](https://github.com/lukemelas) helped us get the CC-12M data on our TPU-VMs and we are very grateful to him. This project would not be possible without the help of [Patrick](https://huggingface.co/patrickvonplaten) and [Suraj](https://huggingface.co/valhalla) who met with us frequently and helped review our approach and guided us throughout the project. Huge thanks to Huggingface 🤗 & Google Jax/Flax team for such a wonderful community week and for answering our queries on the Slack channel, and for providing us with the TPU-VMs. <img src=https://pbs.twimg.com/media/E443fPjX0AY1BsR.jpg:large>
junnyu/uer_large
junnyu
2021-07-21T08:42:35Z
4
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: zh tags: - bert - pytorch widget: - text: "巴黎是[MASK]国的首都。" --- https://github.com/dbiir/UER-py/wiki/Modelzoo 中的 MixedCorpus+BertEncoder(large)+MlmTarget https://share.weiyun.com/5G90sMJ Pre-trained on mixed large Chinese corpus. The configuration file is bert_large_config.json ## 引用 ```tex @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
vasudevgupta/tf-wav2vec2-base
vasudevgupta
2021-07-20T23:07:35Z
2
0
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TensorFlow version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base). Obtained using script from https://github.com/vasudevgupta7/gsoc-wav2vec2.
ifis-zork/ZORK_AI_MODERN
ifis-zork
2021-07-20T20:47:22Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model_index: - name: ZORK_AI_MODERN results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZORK_AI_MODERN This model is a fine-tuned version of [ifis-zork/ZORK_AI_MODERN_A](https://huggingface.co/ifis-zork/ZORK_AI_MODERN_A) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
ifis-zork/ZORK_AI_FAN_TEMP
ifis-zork
2021-07-20T19:58:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model_index: - name: ZORK_AI_FAN_TEMP results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZORK_AI_FAN_TEMP This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
huggingtweets/sharsenko
huggingtweets
2021-07-20T16:08:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sharsenko/1626797315466/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1411529618180431873/Eyc2bjZV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Willo</div> <div style="text-align: center; font-size: 14px;">@sharsenko</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Willo. | Data | Willo | | --- | --- | | Tweets downloaded | 1279 | | Retweets | 304 | | Short tweets | 219 | | Tweets kept | 756 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1r0bziin/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sharsenko's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37iziw4p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37iziw4p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sharsenko') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
idrimadrid/autonlp-creator_classifications-4021083
idrimadrid
2021-07-20T12:57:16Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:idrimadrid/autonlp-data-creator_classifications", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - idrimadrid/autonlp-data-creator_classifications --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 4021083 ## Validation Metrics - Loss: 0.6848716735839844 - Accuracy: 0.8825910931174089 - Macro F1: 0.41301646762109634 - Micro F1: 0.8825910931174088 - Weighted F1: 0.863740586166105 - Macro Precision: 0.4129337301330573 - Micro Precision: 0.8825910931174089 - Weighted Precision: 0.8531335941587811 - Macro Recall: 0.44466614072309585 - Micro Recall: 0.8825910931174089 - Weighted Recall: 0.8825910931174089 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/idrimadrid/autonlp-creator_classifications-4021083 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("idrimadrid/autonlp-creator_classifications-4021083", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("idrimadrid/autonlp-creator_classifications-4021083", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Amrrs/indian-foods
Amrrs
2021-07-20T10:20:55Z
100
4
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: indian-foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9285714030265808 --- # indian-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### idli ![idli](images/idli.jpg) #### kachori ![kachori](images/kachori.jpg) #### pani puri ![pani puri](images/pani_puri.jpg) #### samosa ![samosa](images/samosa.jpg) #### vada pav ![vada pav](images/vada_pav.jpg)
jiaqianjing/chinese-address-ner
jiaqianjing
2021-07-20T08:59:34Z
15
5
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: chinese-address-ner results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.975825946817083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-address-ner This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1080 - Precision: 0.9664 - Recall: 0.9774 - F1: 0.9719 - Accuracy: 0.9758 ## Model description 输入一串地址中文信息,比如快递单:`北京市海淀区西北旺东路10号院(马连洼街道西北旺社区东北方向)`,按照行政级别(总有 7 级)抽取地址信息,返回每个 token 的类别。具体类别含义表示如下: | 返回类别 | BIO 体系 | 解释 | | ----------- | -------- | ---------------------- | | **LABEL_0** | O | 忽略信息 | | **LABEL_1** | B-A1 | 第一级地址(头) | | **LABEL_2** | I-A1 | 第一级地址(其余部分) | | ... | ... | ... | More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.5055 | 1.0 | 7 | 1.6719 | 0.1977 | 0.2604 | 0.2248 | 0.5649 | | 1.837 | 2.0 | 14 | 1.0719 | 0.4676 | 0.6 | 0.5256 | 0.7421 | | 1.0661 | 3.0 | 21 | 0.7306 | 0.6266 | 0.7472 | 0.6816 | 0.8106 | | 0.8373 | 4.0 | 28 | 0.5197 | 0.6456 | 0.8113 | 0.7191 | 0.8614 | | 0.522 | 5.0 | 35 | 0.3830 | 0.7667 | 0.8679 | 0.8142 | 0.9001 | | 0.4295 | 6.0 | 42 | 0.3104 | 0.8138 | 0.8906 | 0.8505 | 0.9178 | | 0.3483 | 7.0 | 49 | 0.2453 | 0.8462 | 0.9132 | 0.8784 | 0.9404 | | 0.2471 | 8.0 | 56 | 0.2081 | 0.8403 | 0.9132 | 0.8752 | 0.9428 | | 0.2299 | 9.0 | 63 | 0.1979 | 0.8419 | 0.9245 | 0.8813 | 0.9420 | | 0.1761 | 10.0 | 70 | 0.1823 | 0.8830 | 0.9396 | 0.9104 | 0.9500 | | 0.1434 | 11.0 | 77 | 0.1480 | 0.9036 | 0.9547 | 0.9284 | 0.9629 | | 0.134 | 12.0 | 84 | 0.1341 | 0.9173 | 0.9623 | 0.9392 | 0.9678 | | 0.128 | 13.0 | 91 | 0.1365 | 0.9375 | 0.9623 | 0.9497 | 0.9694 | | 0.0824 | 14.0 | 98 | 0.1159 | 0.9557 | 0.9774 | 0.9664 | 0.9734 | | 0.0744 | 15.0 | 105 | 0.1092 | 0.9591 | 0.9736 | 0.9663 | 0.9766 | | 0.0569 | 16.0 | 112 | 0.1117 | 0.9556 | 0.9736 | 0.9645 | 0.9742 | | 0.0559 | 17.0 | 119 | 0.1040 | 0.9628 | 0.9774 | 0.9700 | 0.9790 | | 0.0456 | 18.0 | 126 | 0.1052 | 0.9593 | 0.9774 | 0.9682 | 0.9782 | | 0.0405 | 19.0 | 133 | 0.1133 | 0.9590 | 0.9698 | 0.9644 | 0.9718 | | 0.0315 | 20.0 | 140 | 0.1060 | 0.9591 | 0.9736 | 0.9663 | 0.9750 | | 0.0262 | 21.0 | 147 | 0.1087 | 0.9554 | 0.9698 | 0.9625 | 0.9718 | | 0.0338 | 22.0 | 154 | 0.1183 | 0.9625 | 0.9698 | 0.9662 | 0.9726 | | 0.0225 | 23.0 | 161 | 0.1080 | 0.9664 | 0.9774 | 0.9719 | 0.9758 | | 0.028 | 24.0 | 168 | 0.1057 | 0.9591 | 0.9736 | 0.9663 | 0.9742 | | 0.0202 | 25.0 | 175 | 0.1062 | 0.9628 | 0.9774 | 0.9700 | 0.9766 | | 0.0168 | 26.0 | 182 | 0.1097 | 0.9664 | 0.9774 | 0.9719 | 0.9758 | | 0.0173 | 27.0 | 189 | 0.1093 | 0.9628 | 0.9774 | 0.9700 | 0.9774 | | 0.0151 | 28.0 | 196 | 0.1162 | 0.9628 | 0.9774 | 0.9700 | 0.9766 | | 0.0135 | 29.0 | 203 | 0.1126 | 0.9483 | 0.9698 | 0.9590 | 0.9758 | | 0.0179 | 30.0 | 210 | 0.1100 | 0.9449 | 0.9698 | 0.9572 | 0.9774 | | 0.0161 | 31.0 | 217 | 0.1098 | 0.9449 | 0.9698 | 0.9572 | 0.9766 | | 0.0158 | 32.0 | 224 | 0.1191 | 0.9483 | 0.9698 | 0.9590 | 0.9734 | | 0.0151 | 33.0 | 231 | 0.1058 | 0.9483 | 0.9698 | 0.9590 | 0.9750 | | 0.0121 | 34.0 | 238 | 0.0990 | 0.9593 | 0.9774 | 0.9682 | 0.9790 | | 0.0092 | 35.0 | 245 | 0.1128 | 0.9519 | 0.9698 | 0.9607 | 0.9774 | | 0.0097 | 36.0 | 252 | 0.1181 | 0.9627 | 0.9736 | 0.9681 | 0.9766 | | 0.0118 | 37.0 | 259 | 0.1185 | 0.9591 | 0.9736 | 0.9663 | 0.9782 | | 0.0118 | 38.0 | 266 | 0.1021 | 0.9557 | 0.9774 | 0.9664 | 0.9823 | | 0.0099 | 39.0 | 273 | 0.1000 | 0.9559 | 0.9811 | 0.9683 | 0.9815 | | 0.0102 | 40.0 | 280 | 0.1025 | 0.9559 | 0.9811 | 0.9683 | 0.9815 | | 0.0068 | 41.0 | 287 | 0.1080 | 0.9522 | 0.9774 | 0.9646 | 0.9807 | | 0.0105 | 42.0 | 294 | 0.1157 | 0.9449 | 0.9698 | 0.9572 | 0.9766 | | 0.0083 | 43.0 | 301 | 0.1207 | 0.9380 | 0.9698 | 0.9536 | 0.9766 | | 0.0077 | 44.0 | 308 | 0.1208 | 0.9483 | 0.9698 | 0.9590 | 0.9766 | | 0.0077 | 45.0 | 315 | 0.1176 | 0.9483 | 0.9698 | 0.9590 | 0.9774 | | 0.0071 | 46.0 | 322 | 0.1137 | 0.9483 | 0.9698 | 0.9590 | 0.9790 | | 0.0075 | 47.0 | 329 | 0.1144 | 0.9483 | 0.9698 | 0.9590 | 0.9782 | | 0.0084 | 48.0 | 336 | 0.1198 | 0.9483 | 0.9698 | 0.9590 | 0.9766 | | 0.0103 | 49.0 | 343 | 0.1217 | 0.9519 | 0.9698 | 0.9607 | 0.9766 | | 0.0087 | 50.0 | 350 | 0.1230 | 0.9519 | 0.9698 | 0.9607 | 0.9766 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.0 - Datasets 1.9.0 - Tokenizers 0.10.3
seongju/kor-3i4k-bert-base-cased
seongju
2021-07-20T07:58:11Z
21
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
### Model information * language : Korean * fine tuning data : [kor_3i4k](https://huggingface.co/datasets/kor_3i4k) * License : CC-BY-SA 4.0 * Base model : [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) * input : sentence * output : intent ---- ### Train information * train_runtime: 2376.638 * train_steps_per_second: 2.175 * train_loss: 0.356829648599977 * epoch: 3.0 ---- ### How to use ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained ( "seongju/kor-3i4k-bert-base-cased" ) model = AutoModelForSequenceClassification.from_pretrained ( "seongju/kor-3i4k-bert-base-cased" ) inputs = tokenizer( "너는 지금 무엇을 하고 있니?", padding=True, truncation=True, max_length=128, return_tensors="pt" ) outputs = model(**inputs) probs = outputs[0].softmax(1) output = probs.argmax().item() ```
huggingtweets/yigitckahyaoglu
huggingtweets
2021-07-20T03:00:16Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/yigitckahyaoglu/1626750011426/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407084026507182089/ywRe7M0Z_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">yiğit</div> <div style="text-align: center; font-size: 14px;">@yigitckahyaoglu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from yiğit. | Data | yiğit | | --- | --- | | Tweets downloaded | 1671 | | Retweets | 165 | | Short tweets | 64 | | Tweets kept | 1442 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cqhj21l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yigitckahyaoglu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2k3eal89) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2k3eal89/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yigitckahyaoglu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mnaylor/bioclinical-bert-finetuned-mtsamples
mnaylor
2021-07-19T15:52:36Z
12
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# BioClinical BERT Fine-tuned on MTSamples This model is simply [Alsentzer's Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) fine-tuned on the MTSamples dataset, with a classification task defined in [this repo](https://github.com/socd06/medical-nlp).
BumBelDumBel/ZORK_AI_SCIFI
BumBelDumBel
2021-07-19T14:51:33Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model_index: - name: ZORK_AI_SCIFI results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZORK_AI_SCIFI This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
flax-community/wav2vec2-dhivehi
flax-community
2021-07-19T09:40:30Z
10
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "wav2vec2", "pretraining", "automatic-speech-recognition", "dv", "dataset:common_voice", "arxiv:2006.11477", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: dv tags: - automatic-speech-recognition datasets: - common_voice --- # Wav2Vec2 Dhivehi Wav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the [Flax/Jax Community Week](https://discss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. ## Model description The model used for training is [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (https://arxiv.org/abs/2006.11477). This model is available in the 🤗 [Model Hub](https://huggingface.co/facebook/wav2vec2-base-960h). ## Training data Dhivehi data from [Common Voice](https://commonvoice.mozilla.org/en/datasets). The dataset is also available in the 🤗 [Datasets](https://huggingface.co/datasets/common_voice) library. ## Team members - Shahu Kareem ([@shahukareem](https://huggingface.co/shahukareem)) - Eyna ([@eyna](https://huggingface.co/eyna))
KrishnaChandra4/DialoGPT-small-Rick
KrishnaChandra4
2021-07-19T08:53:30Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - conversational ---
flax-community/wav2vec2-spanish
flax-community
2021-07-19T05:02:39Z
4
2
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "es", "dataset:common_voice", "arxiv:2006.11477", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: es tags: - audio - automatic-speech-recognition datasets: - common_voice --- # Wav2Vec2 Spanish Wav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the [Flax/Jax Community Week](https://discss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. ## Model description The model used for training is [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (https://arxiv.org/abs/2006.11477). This model is available in the 🤗 [Model Hub](https://huggingface.co/facebook/wav2vec2-base-960h). ## Training data Spanish portion of [Common Voice](https://commonvoice.mozilla.org/en/datasets). Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak. The dataset is also available in the 🤗 [Datasets](https://huggingface.co/datasets/common_voice) library. ## Team members - María Grandury ([@mariagrandury](https://github.com/mariagrandury)) - Manuel Romero ([@mrm8488](https://huggingface.co/mrm8488)) - Eduardo González Ponferrada ([@edugp](https://huggingface.co/edugp)) - pcuenq ([@pcuenq](https://huggingface.co/pcuenq))
huggingtweets/heyarav
huggingtweets
2021-07-19T01:28:18Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416877970132672512/942NnDJA_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arav</div> <div style="text-align: center; font-size: 14px;">@heyarav</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Arav. | Data | Arav | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 411 | | Short tweets | 786 | | Tweets kept | 2049 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n441q7z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heyarav's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s8u4vm6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s8u4vm6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heyarav') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
andi611/distilbert-base-uncased-qa-with-ner
andi611
2021-07-19T01:20:54Z
31
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-qa-with-ner results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa-with-ner This model is a fine-tuned version of [andi611/distilbert-base-uncased-qa](https://huggingface.co/andi611/distilbert-base-uncased-qa) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
imvladikon/bert-base-uncased-jigsaw
imvladikon
2021-07-18T15:46:05Z
1
0
transformers
[ "transformers", "pytorch", "bert", "generated_from_trainer", "en", "dataset:jigsaw", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en license: tags: - generated_from_trainer datasets: - jigsaw model_index: - name: bert-base-uncased results: - {} --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased This model is a fine-tuned version of [](https://huggingface.co/) on the jigsaw dataset. It achieves the following results on the evaluation set: - Loss: 0.0393 - Precision Micro: 0.7758 - Recall Micro: 0.7858 - F1 Micro: 0.7808 - F2 Micro: 0.7838 - Precision Macro: 0.6349 - Recall Macro: 0.5972 - F1 Macro: 0.6105 - F2 Macro: 0.6015 - Overall Precision: 0.9841 - Overall Recall: 0.9841 - Overall F1: 0.9841 - Overall F2: 0.9841 - Overall Accuracy: 0.9841 - Matthews Corrcoef: 0.7725 - Aucroc Macro: 0.9897 - Aucroc Micro: 0.9920 - Accuracy Toxic: 0.9678 - F1 Toxic: 0.8295 - Accuracy Severe Toxic: 0.9899 - F1 Severe Toxic: 0.3313 - Accuracy Obscene: 0.9816 - F1 Obscene: 0.8338 - Accuracy Threat: 0.9974 - F1 Threat: 0.4545 - Accuracy Insult: 0.9763 - F1 Insult: 0.7662 - Accuracy Identity Hate: 0.9914 - F1 Identity Hate: 0.4480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Micro | Recall Micro | F1 Micro | F2 Micro | Precision Macro | Recall Macro | F1 Macro | F2 Macro | Overall Precision | Overall Recall | Overall F1 | Overall F2 | Overall Accuracy | Matthews Corrcoef | Aucroc Macro | Aucroc Micro | Accuracy Toxic | F1 Toxic | Accuracy Severe Toxic | F1 Severe Toxic | Accuracy Obscene | F1 Obscene | Accuracy Threat | F1 Threat | Accuracy Insult | F1 Insult | Accuracy Identity Hate | F1 Identity Hate | |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:--------:|:---------------:|:------------:|:--------:|:--------:|:-----------------:|:--------------:|:----------:|:----------:|:----------------:|:-----------------:|:------------:|:------------:|:--------------:|:--------:|:---------------------:|:---------------:|:----------------:|:----------:|:---------------:|:---------:|:---------------:|:---------:|:----------------------:|:----------------:| | 0.0433 | 1.0 | 2659 | 0.0423 | 0.7607 | 0.7798 | 0.7702 | 0.7759 | 0.6398 | 0.5561 | 0.5585 | 0.5535 | 0.9832 | 0.9832 | 0.9832 | 0.9832 | 0.9832 | 0.7615 | 0.9887 | 0.9908 | 0.9671 | 0.8211 | 0.9878 | 0.4354 | 0.9805 | 0.8265 | 0.9974 | 0.2243 | 0.9746 | 0.7602 | 0.9918 | 0.2834 | | 0.0366 | 2.0 | 5318 | 0.0393 | 0.7758 | 0.7858 | 0.7808 | 0.7838 | 0.6349 | 0.5972 | 0.6105 | 0.6015 | 0.9841 | 0.9841 | 0.9841 | 0.9841 | 0.9841 | 0.7725 | 0.9897 | 0.9920 | 0.9678 | 0.8295 | 0.9899 | 0.3313 | 0.9816 | 0.8338 | 0.9974 | 0.4545 | 0.9763 | 0.7662 | 0.9914 | 0.4480 | | 0.0305 | 3.0 | 7977 | 0.0399 | 0.7608 | 0.8186 | 0.7887 | 0.8064 | 0.6621 | 0.6856 | 0.6715 | 0.6794 | 0.9842 | 0.9842 | 0.9842 | 0.9842 | 0.9842 | 0.7810 | 0.9897 | 0.9919 | 0.9662 | 0.8272 | 0.9892 | 0.4772 | 0.9815 | 0.8347 | 0.9977 | 0.5629 | 0.9772 | 0.7740 | 0.9931 | 0.5528 | | 0.0263 | 4.0 | 10636 | 0.0435 | 0.7333 | 0.8336 | 0.7803 | 0.8114 | 0.6395 | 0.7039 | 0.6687 | 0.6890 | 0.9830 | 0.9830 | 0.9830 | 0.9830 | 0.9830 | 0.7732 | 0.9897 | 0.9912 | 0.9608 | 0.8083 | 0.9898 | 0.4791 | 0.9812 | 0.8319 | 0.9972 | 0.5368 | 0.9756 | 0.7700 | 0.9935 | 0.5861 | | 0.0218 | 5.0 | 13295 | 0.0456 | 0.7480 | 0.8108 | 0.7781 | 0.7974 | 0.6661 | 0.6720 | 0.6662 | 0.6691 | 0.9833 | 0.9833 | 0.9833 | 0.9833 | 0.9833 | 0.7701 | 0.9890 | 0.9907 | 0.9612 | 0.8071 | 0.9894 | 0.4642 | 0.9823 | 0.8354 | 0.9977 | 0.5325 | 0.9754 | 0.7613 | 0.9936 | 0.5968 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
huggingtweets/trevorthalacker
huggingtweets
2021-07-18T07:39:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/trevorthalacker/1626593979307/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414806244536242178/hxQldoS0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Trevor</div> <div style="text-align: center; font-size: 14px;">@trevorthalacker</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Trevor. | Data | Trevor | | --- | --- | | Tweets downloaded | 1792 | | Retweets | 123 | | Short tweets | 227 | | Tweets kept | 1442 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kmb92alm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @trevorthalacker's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37c7xs83) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37c7xs83/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/trevorthalacker') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
johnpaulbin/gpt2-skript-80-v3
johnpaulbin
2021-07-18T04:53:22Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
GPT-2 Skript 80k lines. v3 Training loss: `0.594200` 1.5 GB Inferencing colab: https://colab.research.google.com/drive/1uTAPLa1tuNXFpG0qVLSseMro6iU9-xNc
huggingtweets/percyvader
huggingtweets
2021-07-17T22:54:48Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/percyvader/1626562484510/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/848218865528078336/OTr3Lo3N_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">trades cowboy hat for fedora</div> <div style="text-align: center; font-size: 14px;">@percyvader</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from trades cowboy hat for fedora. | Data | trades cowboy hat for fedora | | --- | --- | | Tweets downloaded | 2818 | | Retweets | 628 | | Short tweets | 746 | | Tweets kept | 1444 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2vmsj6nk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @percyvader's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1euqbqf4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1euqbqf4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/percyvader') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-community/roberta-base-mr
flax-community
2021-07-17T15:30:40Z
28
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- widget: - text: "अध्यक्ष <mask> पवार आणि उपमुख्यमंत्री अजित पवार यांची भेट घेतली." - text: "मोठी बातमी! उद्या दुपारी <mask> वाजता जाहीर होणार दहावीचा निकाल" --- # RoBERTa base model for Marathi language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa was introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). We trained RoBERTa model for Marathi Language during community week hosted by Huggingface 🤗 using JAX/Flax for NLP & CV jax. <img src="https://user-images.githubusercontent.com/15062408/126040902-ea8808db-ec30-4a3f-bf95-5d3b10d674e9.png" alt="huggingface-marathi-roberta" width="350" height="350" style="text-align: center"> ## Model description Marathi RoBERTa is a transformers model pretrained on a large corpus of Marathi data in a self-supervised fashion. ## Intended uses & limitations❗️ You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. We used this model to fine tune on text classification task for iNLTK and indicNLP news text classification problem statement. Since marathi mc4 dataset is made by scraping marathi newspapers text, it will involve some biases which will also affect all fine-tuned versions of this model. ### How to use❓ You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='flax-community/roberta-base-mr') >>> unmasker("मोठी बातमी! उद्या दुपारी <mask> वाजता जाहीर होणार दहावीचा निकाल") [{'score': 0.057209037244319916,'sequence': 'मोठी बातमी! उद्या दुपारी आठ वाजता जाहीर होणार दहावीचा निकाल', 'token': 2226, 'token_str': 'आठ'}, {'score': 0.02796074189245701, 'sequence': 'मोठी बातमी! उद्या दुपारी २० वाजता जाहीर होणार दहावीचा निकाल', 'token': 987, 'token_str': '२०'}, {'score': 0.017235398292541504, 'sequence': 'मोठी बातमी! उद्या दुपारी नऊ वाजता जाहीर होणार दहावीचा निकाल', 'token': 4080, 'token_str': 'नऊ'}, {'score': 0.01691395975649357, 'sequence': 'मोठी बातमी! उद्या दुपारी २१ वाजता जाहीर होणार दहावीचा निकाल', 'token': 1944, 'token_str': '२१'}, {'score': 0.016252165660262108, 'sequence': 'मोठी बातमी! उद्या दुपारी ३ वाजता जाहीर होणार दहावीचा निकाल', 'token': 549, 'token_str': ' ३'}] ``` ## Training data 🏋🏻‍♂️ The RoBERTa Marathi model was pretrained on `mr` dataset of C4 multilingual dataset: <br> <br> [C4 (Colossal Clean Crawled Corpus)](https://yknzhu.wixsite.com/mbweb), Introduced by Raffel et al. in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning). The dataset can be downloaded in a pre-processed form from [allennlp](https://github.com/allenai/allennlp/discussions/5056) or huggingface's datsets - [mc4 dataset](https://huggingface.co/datasets/mc4). Marathi (`mr`) dataset consists of 14 billion tokens, 7.8 million docs and with weight ~70 GB of text. ## Data Cleaning 🧹 Though initial `mc4` marathi corpus size ~70 GB, Through data exploration, it was observed it contains docs from different languages especially thai, chinese etc. So we had to clean the dataset before traning tokenizer and model. Surprisingly, results after cleaning Marathi mc4 corpus data: #### **Train set:** Clean docs count 1581396 out of 7774331. <br> **~20.34%** of whole marathi train split is actually Marathi. #### **Validation set** Clean docs count 1700 out of 7928. <br> **~19.90%** of whole marathi validation split is actually Marathi. ## Training procedure 👨🏻‍💻 ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores) **8 v3 TPU cores** for 42K steps with a batch size of 128 and a sequence length of 128. The optimizer used is Adam with a learning rate of 3e-4, β1 = 0.9, β2 = 0.98 and ε = 1e-8, a weight decay of 0.01, learning rate warmup for 1,000 steps and linear decay of the learning rate after. We tracked experiments and hyperparameter tunning on weights and biases platform. Here is link to main dashboard: <br> [Link to Weights and Biases Dashboard for Marathi RoBERTa model](https://wandb.ai/nipunsadvilkar/roberta-base-mr/runs/19qtskbg?workspace=user-nipunsadvilkar) #### **Pretraining Results 📊** RoBERTa Model reached **eval accuracy of 85.28%** around ~35K step **with train loss at 0.6507 and eval loss at 0.6219**. ## Fine Tuning on downstream tasks We performed fine-tuning on downstream tasks. We used following datasets for classification: 1. [IndicNLP Marathi news classification](https://github.com/ai4bharat-indicnlp/indicnlp_corpus#publicly-available-classification-datasets) 2. [iNLTK Marathi news headline classification](https://www.kaggle.com/disisbig/marathi-news-dataset) ### **Fine tuning on downstream task results (Segregated)** #### 1. [IndicNLP Marathi news classification](https://github.com/ai4bharat-indicnlp/indicnlp_corpus#publicly-available-classification-datasets) IndicNLP Marathi news dataset consists 3 classes - `['lifestyle', 'entertainment', 'sports']` - with following docs distribution as per classes: | train | eval | test | -- | -- | -- | 9672 | 477 | 478 💯 Our Marathi RoBERTa **`roberta-base-mr` model outperformed both classifier ** mentioned in [Arora, G. (2020). iNLTK](https://www.semanticscholar.org/paper/iNLTK%3A-Natural-Language-Toolkit-for-Indic-Languages-Arora/5039ed9e100d3a1cbbc25a02c82f6ee181609e83/figure/3) and [Kunchukuttan, Anoop et al. AI4Bharat-IndicNLP.](https://www.semanticscholar.org/paper/AI4Bharat-IndicNLP-Corpus%3A-Monolingual-Corpora-and-Kunchukuttan-Kakwani/7997d432925aff0ba05497d2893c09918298ca55/figure/4) Dataset | FT-W | FT-WC | INLP | iNLTK | **roberta-base-mr 🏆** -- | -- | -- | -- | -- | -- iNLTK Headlines | 83.06 | 81.65 | 89.92 | 92.4 | **97.48** **🤗 Huggingface Model hub repo:**<br> `roberta-base-mr` fine tuned on iNLTK Headlines classification dataset model: [**`flax-community/mr-indicnlp-classifier`**](https://huggingface.co/flax-community/mr-indicnlp-classifier) 🧪 Fine tuning experiment's weight and biases dashboard [link](https://wandb.ai/nipunsadvilkar/huggingface/runs/1242bike?workspace=user-nipunsadvilkar ) #### 2. [iNLTK Marathi news headline classification](https://www.kaggle.com/disisbig/marathi-news-dataset) This dataset consists 3 classes - `['state', 'entertainment', 'sports']` - with following docs distribution as per classes: | train | eval | test | -- | -- | -- | 9658 | 1210 | 1210 💯 Here as well **`roberta-base-mr` outperformed `iNLTK` marathi news text classifier**. Dataset | iNLTK ULMFiT | **roberta-base-mr 🏆** -- | -- | -- iNLTK news dataset (kaggle) | 92.4 | **94.21** **🤗 Huggingface Model hub repo:**<br> `roberta-base-mr` fine tuned on iNLTK news classification dataset model: [**`flax-community/mr-inltk-classifier`**](https://huggingface.co/flax-community/mr-inltk-classifier) Fine tuning experiment's weight and biases dashboard [link](https://wandb.ai/nipunsadvilkar/huggingface/runs/2u5l9hon?workspace=user-nipunsadvilkar ) ## **Want to check how above models generalise on real world Marathi data?** Head to 🤗 Huggingface's spaces 🪐 to play with all three models: 1. Mask Language Modelling with Pretrained Marathi RoBERTa model: <br> [**`flax-community/roberta-base-mr`**](https://huggingface.co/flax-community/roberta-base-mr) 2. Marathi Headline classifier: <br> [**`flax-community/mr-indicnlp-classifier`**](https://huggingface.co/flax-community/mr-indicnlp-classifier) 3. Marathi news classifier: <br> [**`flax-community/mr-inltk-classifier`**](https://huggingface.co/flax-community/mr-inltk-classifier) ![alt text](https://huggingface.co/docs/assets/hub/icon-space.svg) [Streamlit app of Pretrained Roberta Marathi model on Huggingface Spaces](https://huggingface.co/spaces/flax-community/roberta-base-mr) ![image](https://user-images.githubusercontent.com/15062408/126040832-f5723875-b70f-4e2e-93ad-213ddbe6180d.png) ## Team Members - Nipun Sadvilkar [@nipunsadvilkar](https://github.com/nipunsadvilkar) - Haswanth Aekula [@hassiahk](https://github.com/hassiahk) ## Credits Huge thanks to Huggingface 🤗 & Google Jax/Flax team for such a wonderful community week. Especially for providing such massive computing resource. Big thanks to [@patil-suraj](https://github.com/patil-suraj) & [@patrickvonplaten](https://github.com/patrickvonplaten) for mentoring during whole week. <img src=https://pbs.twimg.com/media/E443fPjX0AY1BsR.jpg:large>
birgermoell/roberta-swedish
birgermoell
2021-07-17T07:52:59Z
10
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- widget: - text: "Var kan jag hitta någon <mask> talar engelska?" --- Swedish RoBERTa ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish