modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-15 00:43:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-15 00:40:56
card
stringlengths
11
1.01M
CyberHarem/itsuwa_toarumajutsunoindex
CyberHarem
2023-09-16T06:07:04Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/itsuwa_toarumajutsunoindex", "license:mit", "region:us" ]
text-to-image
2023-08-15T21:57:11Z
--- license: mit datasets: - CyberHarem/itsuwa_toarumajutsunoindex pipeline_tag: text-to-image tags: - art --- # Lora of itsuwa_toarumajutsunoindex This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5760, you need to download `5760/itsuwa_toarumajutsunoindex.pt` as the embedding and `5760/itsuwa_toarumajutsunoindex.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5760**, with the score of 0.930. The trigger words are: 1. `itsuwa_toarumajutsunoindex` 2. `brown_eyes, brown_hair, short_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7200 | 0.917 | [Download](7200/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | ![pattern_11-7200](7200/previews/pattern_11.png) | ![pattern_12-7200](7200/previews/pattern_12.png) | ![pattern_13-7200](7200/previews/pattern_13.png) | ![pattern_14-7200](7200/previews/pattern_14.png) | ![pattern_15-7200](7200/previews/pattern_15.png) | [<NSFW, click to see>](7200/previews/pattern_16.png) | [<NSFW, click to see>](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6720 | 0.905 | [Download](6720/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-6720](6720/previews/pattern_1.png) | ![pattern_2-6720](6720/previews/pattern_2.png) | ![pattern_3-6720](6720/previews/pattern_3.png) | ![pattern_4-6720](6720/previews/pattern_4.png) | ![pattern_5-6720](6720/previews/pattern_5.png) | ![pattern_6-6720](6720/previews/pattern_6.png) | ![pattern_7-6720](6720/previews/pattern_7.png) | ![pattern_8-6720](6720/previews/pattern_8.png) | ![pattern_9-6720](6720/previews/pattern_9.png) | ![pattern_10-6720](6720/previews/pattern_10.png) | ![pattern_11-6720](6720/previews/pattern_11.png) | ![pattern_12-6720](6720/previews/pattern_12.png) | ![pattern_13-6720](6720/previews/pattern_13.png) | ![pattern_14-6720](6720/previews/pattern_14.png) | ![pattern_15-6720](6720/previews/pattern_15.png) | [<NSFW, click to see>](6720/previews/pattern_16.png) | [<NSFW, click to see>](6720/previews/bikini.png) | [<NSFW, click to see>](6720/previews/bondage.png) | ![free-6720](6720/previews/free.png) | ![maid-6720](6720/previews/maid.png) | ![miko-6720](6720/previews/miko.png) | [<NSFW, click to see>](6720/previews/nude.png) | [<NSFW, click to see>](6720/previews/nude2.png) | ![suit-6720](6720/previews/suit.png) | ![yukata-6720](6720/previews/yukata.png) | | 6240 | 0.914 | [Download](6240/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | ![pattern_2-6240](6240/previews/pattern_2.png) | ![pattern_3-6240](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | ![pattern_6-6240](6240/previews/pattern_6.png) | ![pattern_7-6240](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | ![pattern_9-6240](6240/previews/pattern_9.png) | ![pattern_10-6240](6240/previews/pattern_10.png) | ![pattern_11-6240](6240/previews/pattern_11.png) | ![pattern_12-6240](6240/previews/pattern_12.png) | ![pattern_13-6240](6240/previews/pattern_13.png) | ![pattern_14-6240](6240/previews/pattern_14.png) | ![pattern_15-6240](6240/previews/pattern_15.png) | [<NSFW, click to see>](6240/previews/pattern_16.png) | [<NSFW, click to see>](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | ![free-6240](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | **5760** | **0.930** | [**Download**](5760/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-5760](5760/previews/pattern_1.png) | ![pattern_2-5760](5760/previews/pattern_2.png) | ![pattern_3-5760](5760/previews/pattern_3.png) | ![pattern_4-5760](5760/previews/pattern_4.png) | ![pattern_5-5760](5760/previews/pattern_5.png) | ![pattern_6-5760](5760/previews/pattern_6.png) | ![pattern_7-5760](5760/previews/pattern_7.png) | ![pattern_8-5760](5760/previews/pattern_8.png) | ![pattern_9-5760](5760/previews/pattern_9.png) | ![pattern_10-5760](5760/previews/pattern_10.png) | ![pattern_11-5760](5760/previews/pattern_11.png) | ![pattern_12-5760](5760/previews/pattern_12.png) | ![pattern_13-5760](5760/previews/pattern_13.png) | ![pattern_14-5760](5760/previews/pattern_14.png) | ![pattern_15-5760](5760/previews/pattern_15.png) | [<NSFW, click to see>](5760/previews/pattern_16.png) | [<NSFW, click to see>](5760/previews/bikini.png) | [<NSFW, click to see>](5760/previews/bondage.png) | ![free-5760](5760/previews/free.png) | ![maid-5760](5760/previews/maid.png) | ![miko-5760](5760/previews/miko.png) | [<NSFW, click to see>](5760/previews/nude.png) | [<NSFW, click to see>](5760/previews/nude2.png) | ![suit-5760](5760/previews/suit.png) | ![yukata-5760](5760/previews/yukata.png) | | 5280 | 0.912 | [Download](5280/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-5280](5280/previews/pattern_1.png) | ![pattern_2-5280](5280/previews/pattern_2.png) | ![pattern_3-5280](5280/previews/pattern_3.png) | ![pattern_4-5280](5280/previews/pattern_4.png) | ![pattern_5-5280](5280/previews/pattern_5.png) | ![pattern_6-5280](5280/previews/pattern_6.png) | ![pattern_7-5280](5280/previews/pattern_7.png) | ![pattern_8-5280](5280/previews/pattern_8.png) | ![pattern_9-5280](5280/previews/pattern_9.png) | ![pattern_10-5280](5280/previews/pattern_10.png) | ![pattern_11-5280](5280/previews/pattern_11.png) | ![pattern_12-5280](5280/previews/pattern_12.png) | ![pattern_13-5280](5280/previews/pattern_13.png) | ![pattern_14-5280](5280/previews/pattern_14.png) | ![pattern_15-5280](5280/previews/pattern_15.png) | [<NSFW, click to see>](5280/previews/pattern_16.png) | [<NSFW, click to see>](5280/previews/bikini.png) | [<NSFW, click to see>](5280/previews/bondage.png) | ![free-5280](5280/previews/free.png) | ![maid-5280](5280/previews/maid.png) | ![miko-5280](5280/previews/miko.png) | [<NSFW, click to see>](5280/previews/nude.png) | [<NSFW, click to see>](5280/previews/nude2.png) | ![suit-5280](5280/previews/suit.png) | ![yukata-5280](5280/previews/yukata.png) | | 4800 | 0.829 | [Download](4800/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | ![pattern_11-4800](4800/previews/pattern_11.png) | ![pattern_12-4800](4800/previews/pattern_12.png) | ![pattern_13-4800](4800/previews/pattern_13.png) | ![pattern_14-4800](4800/previews/pattern_14.png) | ![pattern_15-4800](4800/previews/pattern_15.png) | [<NSFW, click to see>](4800/previews/pattern_16.png) | [<NSFW, click to see>](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4320 | 0.868 | [Download](4320/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | ![pattern_10-4320](4320/previews/pattern_10.png) | ![pattern_11-4320](4320/previews/pattern_11.png) | ![pattern_12-4320](4320/previews/pattern_12.png) | ![pattern_13-4320](4320/previews/pattern_13.png) | ![pattern_14-4320](4320/previews/pattern_14.png) | ![pattern_15-4320](4320/previews/pattern_15.png) | [<NSFW, click to see>](4320/previews/pattern_16.png) | [<NSFW, click to see>](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3840 | 0.834 | [Download](3840/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-3840](3840/previews/pattern_1.png) | ![pattern_2-3840](3840/previews/pattern_2.png) | ![pattern_3-3840](3840/previews/pattern_3.png) | ![pattern_4-3840](3840/previews/pattern_4.png) | ![pattern_5-3840](3840/previews/pattern_5.png) | ![pattern_6-3840](3840/previews/pattern_6.png) | ![pattern_7-3840](3840/previews/pattern_7.png) | ![pattern_8-3840](3840/previews/pattern_8.png) | ![pattern_9-3840](3840/previews/pattern_9.png) | ![pattern_10-3840](3840/previews/pattern_10.png) | ![pattern_11-3840](3840/previews/pattern_11.png) | ![pattern_12-3840](3840/previews/pattern_12.png) | ![pattern_13-3840](3840/previews/pattern_13.png) | ![pattern_14-3840](3840/previews/pattern_14.png) | ![pattern_15-3840](3840/previews/pattern_15.png) | [<NSFW, click to see>](3840/previews/pattern_16.png) | [<NSFW, click to see>](3840/previews/bikini.png) | [<NSFW, click to see>](3840/previews/bondage.png) | ![free-3840](3840/previews/free.png) | ![maid-3840](3840/previews/maid.png) | ![miko-3840](3840/previews/miko.png) | [<NSFW, click to see>](3840/previews/nude.png) | [<NSFW, click to see>](3840/previews/nude2.png) | ![suit-3840](3840/previews/suit.png) | ![yukata-3840](3840/previews/yukata.png) | | 3360 | 0.821 | [Download](3360/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-3360](3360/previews/pattern_1.png) | ![pattern_2-3360](3360/previews/pattern_2.png) | ![pattern_3-3360](3360/previews/pattern_3.png) | ![pattern_4-3360](3360/previews/pattern_4.png) | ![pattern_5-3360](3360/previews/pattern_5.png) | ![pattern_6-3360](3360/previews/pattern_6.png) | ![pattern_7-3360](3360/previews/pattern_7.png) | ![pattern_8-3360](3360/previews/pattern_8.png) | ![pattern_9-3360](3360/previews/pattern_9.png) | ![pattern_10-3360](3360/previews/pattern_10.png) | ![pattern_11-3360](3360/previews/pattern_11.png) | ![pattern_12-3360](3360/previews/pattern_12.png) | ![pattern_13-3360](3360/previews/pattern_13.png) | ![pattern_14-3360](3360/previews/pattern_14.png) | ![pattern_15-3360](3360/previews/pattern_15.png) | [<NSFW, click to see>](3360/previews/pattern_16.png) | [<NSFW, click to see>](3360/previews/bikini.png) | [<NSFW, click to see>](3360/previews/bondage.png) | ![free-3360](3360/previews/free.png) | ![maid-3360](3360/previews/maid.png) | ![miko-3360](3360/previews/miko.png) | [<NSFW, click to see>](3360/previews/nude.png) | [<NSFW, click to see>](3360/previews/nude2.png) | ![suit-3360](3360/previews/suit.png) | ![yukata-3360](3360/previews/yukata.png) | | 2880 | 0.685 | [Download](2880/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-2880](2880/previews/pattern_1.png) | ![pattern_2-2880](2880/previews/pattern_2.png) | ![pattern_3-2880](2880/previews/pattern_3.png) | ![pattern_4-2880](2880/previews/pattern_4.png) | ![pattern_5-2880](2880/previews/pattern_5.png) | ![pattern_6-2880](2880/previews/pattern_6.png) | ![pattern_7-2880](2880/previews/pattern_7.png) | ![pattern_8-2880](2880/previews/pattern_8.png) | ![pattern_9-2880](2880/previews/pattern_9.png) | ![pattern_10-2880](2880/previews/pattern_10.png) | ![pattern_11-2880](2880/previews/pattern_11.png) | ![pattern_12-2880](2880/previews/pattern_12.png) | ![pattern_13-2880](2880/previews/pattern_13.png) | ![pattern_14-2880](2880/previews/pattern_14.png) | ![pattern_15-2880](2880/previews/pattern_15.png) | [<NSFW, click to see>](2880/previews/pattern_16.png) | [<NSFW, click to see>](2880/previews/bikini.png) | [<NSFW, click to see>](2880/previews/bondage.png) | ![free-2880](2880/previews/free.png) | ![maid-2880](2880/previews/maid.png) | ![miko-2880](2880/previews/miko.png) | [<NSFW, click to see>](2880/previews/nude.png) | [<NSFW, click to see>](2880/previews/nude2.png) | ![suit-2880](2880/previews/suit.png) | ![yukata-2880](2880/previews/yukata.png) | | 2400 | 0.798 | [Download](2400/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | ![pattern_11-2400](2400/previews/pattern_11.png) | ![pattern_12-2400](2400/previews/pattern_12.png) | ![pattern_13-2400](2400/previews/pattern_13.png) | ![pattern_14-2400](2400/previews/pattern_14.png) | ![pattern_15-2400](2400/previews/pattern_15.png) | [<NSFW, click to see>](2400/previews/pattern_16.png) | [<NSFW, click to see>](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1920 | 0.723 | [Download](1920/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-1920](1920/previews/pattern_1.png) | ![pattern_2-1920](1920/previews/pattern_2.png) | ![pattern_3-1920](1920/previews/pattern_3.png) | ![pattern_4-1920](1920/previews/pattern_4.png) | ![pattern_5-1920](1920/previews/pattern_5.png) | ![pattern_6-1920](1920/previews/pattern_6.png) | ![pattern_7-1920](1920/previews/pattern_7.png) | ![pattern_8-1920](1920/previews/pattern_8.png) | ![pattern_9-1920](1920/previews/pattern_9.png) | ![pattern_10-1920](1920/previews/pattern_10.png) | ![pattern_11-1920](1920/previews/pattern_11.png) | ![pattern_12-1920](1920/previews/pattern_12.png) | ![pattern_13-1920](1920/previews/pattern_13.png) | ![pattern_14-1920](1920/previews/pattern_14.png) | ![pattern_15-1920](1920/previews/pattern_15.png) | [<NSFW, click to see>](1920/previews/pattern_16.png) | [<NSFW, click to see>](1920/previews/bikini.png) | [<NSFW, click to see>](1920/previews/bondage.png) | ![free-1920](1920/previews/free.png) | ![maid-1920](1920/previews/maid.png) | ![miko-1920](1920/previews/miko.png) | [<NSFW, click to see>](1920/previews/nude.png) | [<NSFW, click to see>](1920/previews/nude2.png) | ![suit-1920](1920/previews/suit.png) | ![yukata-1920](1920/previews/yukata.png) | | 1440 | 0.823 | [Download](1440/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-1440](1440/previews/pattern_1.png) | ![pattern_2-1440](1440/previews/pattern_2.png) | ![pattern_3-1440](1440/previews/pattern_3.png) | ![pattern_4-1440](1440/previews/pattern_4.png) | ![pattern_5-1440](1440/previews/pattern_5.png) | ![pattern_6-1440](1440/previews/pattern_6.png) | ![pattern_7-1440](1440/previews/pattern_7.png) | ![pattern_8-1440](1440/previews/pattern_8.png) | ![pattern_9-1440](1440/previews/pattern_9.png) | ![pattern_10-1440](1440/previews/pattern_10.png) | ![pattern_11-1440](1440/previews/pattern_11.png) | ![pattern_12-1440](1440/previews/pattern_12.png) | ![pattern_13-1440](1440/previews/pattern_13.png) | ![pattern_14-1440](1440/previews/pattern_14.png) | ![pattern_15-1440](1440/previews/pattern_15.png) | [<NSFW, click to see>](1440/previews/pattern_16.png) | [<NSFW, click to see>](1440/previews/bikini.png) | [<NSFW, click to see>](1440/previews/bondage.png) | ![free-1440](1440/previews/free.png) | ![maid-1440](1440/previews/maid.png) | ![miko-1440](1440/previews/miko.png) | [<NSFW, click to see>](1440/previews/nude.png) | [<NSFW, click to see>](1440/previews/nude2.png) | ![suit-1440](1440/previews/suit.png) | ![yukata-1440](1440/previews/yukata.png) | | 960 | 0.544 | [Download](960/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-960](960/previews/pattern_1.png) | ![pattern_2-960](960/previews/pattern_2.png) | ![pattern_3-960](960/previews/pattern_3.png) | ![pattern_4-960](960/previews/pattern_4.png) | ![pattern_5-960](960/previews/pattern_5.png) | ![pattern_6-960](960/previews/pattern_6.png) | ![pattern_7-960](960/previews/pattern_7.png) | ![pattern_8-960](960/previews/pattern_8.png) | ![pattern_9-960](960/previews/pattern_9.png) | ![pattern_10-960](960/previews/pattern_10.png) | ![pattern_11-960](960/previews/pattern_11.png) | ![pattern_12-960](960/previews/pattern_12.png) | ![pattern_13-960](960/previews/pattern_13.png) | ![pattern_14-960](960/previews/pattern_14.png) | ![pattern_15-960](960/previews/pattern_15.png) | [<NSFW, click to see>](960/previews/pattern_16.png) | [<NSFW, click to see>](960/previews/bikini.png) | [<NSFW, click to see>](960/previews/bondage.png) | ![free-960](960/previews/free.png) | ![maid-960](960/previews/maid.png) | ![miko-960](960/previews/miko.png) | [<NSFW, click to see>](960/previews/nude.png) | [<NSFW, click to see>](960/previews/nude2.png) | ![suit-960](960/previews/suit.png) | ![yukata-960](960/previews/yukata.png) | | 480 | 0.322 | [Download](480/itsuwa_toarumajutsunoindex.zip) | ![pattern_1-480](480/previews/pattern_1.png) | ![pattern_2-480](480/previews/pattern_2.png) | ![pattern_3-480](480/previews/pattern_3.png) | ![pattern_4-480](480/previews/pattern_4.png) | ![pattern_5-480](480/previews/pattern_5.png) | ![pattern_6-480](480/previews/pattern_6.png) | ![pattern_7-480](480/previews/pattern_7.png) | ![pattern_8-480](480/previews/pattern_8.png) | ![pattern_9-480](480/previews/pattern_9.png) | ![pattern_10-480](480/previews/pattern_10.png) | ![pattern_11-480](480/previews/pattern_11.png) | ![pattern_12-480](480/previews/pattern_12.png) | ![pattern_13-480](480/previews/pattern_13.png) | ![pattern_14-480](480/previews/pattern_14.png) | ![pattern_15-480](480/previews/pattern_15.png) | [<NSFW, click to see>](480/previews/pattern_16.png) | [<NSFW, click to see>](480/previews/bikini.png) | [<NSFW, click to see>](480/previews/bondage.png) | ![free-480](480/previews/free.png) | ![maid-480](480/previews/maid.png) | ![miko-480](480/previews/miko.png) | [<NSFW, click to see>](480/previews/nude.png) | [<NSFW, click to see>](480/previews/nude2.png) | ![suit-480](480/previews/suit.png) | ![yukata-480](480/previews/yukata.png) |
LuisChDev/LunarLander-v2-ppo
LuisChDev
2023-09-16T06:04:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T06:04:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.31 +/- 20.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MouseTrap/StyleGen-Loopster-DL
MouseTrap
2023-09-16T05:57:46Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:riffusion/riffusion-model-v1", "base_model:adapter:riffusion/riffusion-model-v1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-16T05:50:05Z
--- license: creativeml-openrail-m base_model: riffusion/riffusion-model-v1 instance_prompt: Loopster style tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MouseTrap/StyleGen-Looper These are LoRA adaption weights for riffusion/riffusion-model-v1. The weights were trained on Loopster style using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False.
mbarekat/ppo-SnowballTarget
mbarekat
2023-09-16T05:51:35Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-09-16T05:51:31Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mbarekat/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
om-ashish-soni/pos-ner-tagging-v3
om-ashish-soni
2023-09-16T05:46:42Z
104
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:om-ashish-soni/pos-ner-tagging-v2", "base_model:finetune:om-ashish-soni/pos-ner-tagging-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-16T05:35:20Z
--- license: apache-2.0 base_model: om-ashish-soni/pos-ner-tagging-v2 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: pos-ner-tagging-v3 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9339443388845423 - name: Recall type: recall value: 0.9374228724000987 - name: F1 type: f1 value: 0.9356803726596793 - name: Accuracy type: accuracy value: 0.9272679107552835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos-ner-tagging-v3 This model is a fine-tuned version of [om-ashish-soni/pos-ner-tagging-v2](https://huggingface.co/om-ashish-soni/pos-ner-tagging-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.6356 - Precision: 0.9339 - Recall: 0.9374 - F1: 0.9357 - Accuracy: 0.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.6415 | 0.9341 | 0.9367 | 0.9354 | 0.9265 | | 0.0078 | 2.0 | 878 | 0.6372 | 0.9327 | 0.9363 | 0.9345 | 0.9259 | | 0.006 | 3.0 | 1317 | 0.6283 | 0.9338 | 0.9373 | 0.9356 | 0.9274 | | 0.0036 | 4.0 | 1756 | 0.6356 | 0.9339 | 0.9374 | 0.9357 | 0.9273 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
om-ashish-soni/pos-ner-tagging-v2
om-ashish-soni
2023-09-16T05:25:41Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:om-ashish-soni/pos-ner-tagging-v2", "base_model:finetune:om-ashish-soni/pos-ner-tagging-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-16T04:22:26Z
--- license: apache-2.0 base_model: om-ashish-soni/pos-ner-tagging-v2 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: pos-ner-tagging-v2 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9393653920267203 - name: Recall type: recall value: 0.9408358887483113 - name: F1 type: f1 value: 0.9401000653531749 - name: Accuracy type: accuracy value: 0.9270324365691411 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos-ner-tagging-v2 This model is a fine-tuned version of [om-ashish-soni/pos-ner-tagging-v2](https://huggingface.co/om-ashish-soni/pos-ner-tagging-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.6442 - Precision: 0.9394 - Recall: 0.9408 - F1: 0.9401 - Accuracy: 0.9270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3297 | 1.0 | 1756 | 0.4190 | 0.9189 | 0.9231 | 0.9210 | 0.9051 | | 0.2521 | 2.0 | 3512 | 0.3836 | 0.9210 | 0.9300 | 0.9255 | 0.9114 | | 0.1932 | 3.0 | 5268 | 0.4155 | 0.9295 | 0.9338 | 0.9316 | 0.9183 | | 0.1325 | 4.0 | 7024 | 0.3969 | 0.9328 | 0.9356 | 0.9342 | 0.9211 | | 0.0973 | 5.0 | 8780 | 0.4247 | 0.9332 | 0.9367 | 0.9349 | 0.9222 | | 0.0799 | 6.0 | 10536 | 0.4606 | 0.9338 | 0.9374 | 0.9356 | 0.9229 | | 0.0554 | 7.0 | 12292 | 0.4836 | 0.9333 | 0.9379 | 0.9356 | 0.9239 | | 0.0415 | 8.0 | 14048 | 0.5271 | 0.9361 | 0.9391 | 0.9376 | 0.9245 | | 0.0285 | 9.0 | 15804 | 0.5363 | 0.9366 | 0.9397 | 0.9381 | 0.9253 | | 0.022 | 10.0 | 17560 | 0.5653 | 0.9377 | 0.9396 | 0.9387 | 0.9258 | | 0.0146 | 11.0 | 19316 | 0.5962 | 0.9374 | 0.9400 | 0.9387 | 0.9259 | | 0.0121 | 12.0 | 21072 | 0.6061 | 0.9385 | 0.9401 | 0.9393 | 0.9266 | | 0.0085 | 13.0 | 22828 | 0.6263 | 0.9384 | 0.9403 | 0.9394 | 0.9261 | | 0.0062 | 14.0 | 24584 | 0.6365 | 0.9381 | 0.9399 | 0.9390 | 0.9259 | | 0.0053 | 15.0 | 26340 | 0.6386 | 0.9384 | 0.9402 | 0.9393 | 0.9264 | | 0.0042 | 16.0 | 28096 | 0.6442 | 0.9394 | 0.9408 | 0.9401 | 0.9270 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
lrhegde/DiffusionModelImageFromText
lrhegde
2023-09-16T05:14:54Z
0
0
null
[ "text-to-image", "license:openrail", "region:us" ]
text-to-image
2023-09-16T05:10:01Z
--- license: openrail metrics: - accuracy pipeline_tag: text-to-image ---
codecompletedeployment/st-codesearch-distilroberta-base
codecompletedeployment
2023-09-16T05:14:13Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "dataset:code_search_net", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-15T20:48:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - code_search_net --- # flax-sentence-embeddings/st-codesearch-distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on the [code_search_net](https://huggingface.co/datasets/code_search_net) dataset and can be used to search program code given text. ## Usage: ```python from sentence_transformers import SentenceTransformer, util #This list the defines the different programm codes code = ["""def sort_list(x): return sorted(x)""", """def count_above_threshold(elements, threshold=0): counter = 0 for e in elements: if e > threshold: counter += 1 return counter""", """def find_min_max(elements): min_ele = 99999 max_ele = -99999 for e in elements: if e < min_ele: min_ele = e if e > max_ele: max_ele = e return min_ele, max_ele"""] model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base") # Encode our code into the vector space code_emb = model.encode(code, convert_to_tensor=True) # Interactive demo: Enter queries, and the method returns the best function from the # 3 functions we defined while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, code_emb)[0] top_hit = hits[0] print("Cossim: {:.2f}".format(top_hit['score'])) print(code[top_hit['corpus_id']]) print("\n\n") ``` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Training The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. It is some preliminary model. It was neither tested nor was the trained quite sophisticated The model was trained with the parameters: **DataLoader**: `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 5371 with parameters: ``` {'batch_size': 256} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20, 'similarity_fct': 'dot_score'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "warmupconstant", "steps_per_epoch": 10000, "warmup_steps": 500, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dislikename/sd-class-butterflies-32
dislikename
2023-09-16T04:47:58Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-09-16T04:47:52Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('dislikename/sd-class-butterflies-32') image = pipeline().images[0] image ```
nightdude/config_8113572
nightdude
2023-09-16T04:35:17Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-16T04:33:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
raulangelj/huggingface_sentiment_analysis
raulangelj
2023-09-16T03:21:26Z
28
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dccuchile/bert-base-spanish-wwm-cased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-cased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T03:04:04Z
--- base_model: dccuchile/bert-base-spanish-wwm-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: huggingface_sentiment_analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # huggingface_sentiment_analysis This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 - Accuracy: 0.61 - F1: 0.6609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
LuisCarlosJP/Reinforce-CartPole-v1
LuisCarlosJP
2023-09-16T03:05:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-16T03:04:52Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nikhilwani/casual_llm_updated
nikhilwani
2023-09-16T02:44:25Z
147
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-16T02:30:39Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: casual_llm_updated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # casual_llm_updated This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7194 | 1.0 | 1133 | 3.7342 | | 3.6485 | 2.0 | 2266 | 3.7292 | | 3.6234 | 3.0 | 3399 | 3.7268 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Doctor-Shotgun/CalliopeDS-L2-13B
Doctor-Shotgun
2023-09-16T02:30:16Z
1,849
7
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-2", "en", "arxiv:2306.01708", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-16T01:11:49Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - llama - llama-2 license: agpl-3.0 --- # Model Card: CalliopeDS-L2-13B This is a Llama 2-based model consisting of a merge of several models using a weight-adjusted TIES merge ([Resolving Interference When Merging Models](https://arxiv.org/abs/2306.01708)): - [jondurbin/airoboros-l2-13b-2.2](https://huggingface.co/jondurbin/airoboros-l2-13b-2.2) - [elinas/chronos-13b-v2](https://huggingface.co/elinas/chronos-13b-v2) - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) - [lemonilia/limarp-llama2-v2](https://huggingface.co/lemonilia/limarp-llama2-v2) - [PygmalionAI/pygmalion-2-13b](https://huggingface.co/PygmalionAI/pygmalion-2-13b) Charles Goddard's [mergekit](https://github.com/cg123/mergekit) repo was used to perform these operations. The purpose of this merge was to create a model that excels at creative writing and roleplay while maintaining general intelligence and instruction-following capabilities. In testing, it has shown to be capable at producing descriptive and verbose responses while demonstrating a solid understanding of the context. ## Usage: Due to this being a merge of multiple models, different prompt formats may work, but you can try the Alpaca instruction format of the LIMARP v2: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length. ### Input: User: {utterance} ### Response: Character: {utterance} ``` Or the Pygmalion/Metharme format: ``` <|system|>Enter RP mode. Pretend to be {{char}} whose persona follows: {{persona}} You shall reply to the user while staying in character, and generate long responses. <|user|>Hello!<|model|>{model's response goes here} ``` The model was also tested using a system prompt with no instruction sequences: ``` Write Character's next reply in the roleplay between User and Character. Stay in character and write creative responses that move the scenario forward. Narrate in detail, using elaborate descriptions. The following is your persona: {{persona}} [Current conversation] User: {utterance} Character: {utterance} ``` ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
stablediffusionapi/copax-timelessxl-sdxl10
stablediffusionapi
2023-09-16T02:26:22Z
820
5
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-09-16T02:15:36Z
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # copax-timelessxl-sdxl10 API Inference ![generated from stablediffusionapi.com](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/af6f4367-6493-4d38-b74b-f84709a4f9d7/width=450/631148901874805624.jpeg) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "copax-timelessxl-sdxl10" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/copax-timelessxl-sdxl10) Model link: [View model](https://stablediffusionapi.com/models/copax-timelessxl-sdxl10) Credits: [View credits](https://civitai.com/?query=copax-timelessxl-sdxl10) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "copax-timelessxl-sdxl10", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
jennyc/ip_rating
jennyc
2023-09-16T02:12:16Z
127
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-11T00:12:07Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: ip_rating results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ip_rating This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Reham721/Subjective_QG
Reham721
2023-09-16T02:03:36Z
110
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "ar", "dataset:squad", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-15T20:17:26Z
--- datasets: - squad language: - ar pipeline_tag: text2text-generation ---
lyogavin/Anima-7B-100K
lyogavin
2023-09-16T01:59:42Z
1,537
31
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "100k", "7b", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-14T14:47:16Z
--- license: apache-2.0 language: - en tags: - llama2 - 100k - 7b --- Anima LLM supporting 100K input token length. It's trained based on Llama2 7B, so the license support commercial use! We carefully curated long QA training dataset from 30k to 100k length to train this model. We also made a lot of memory optimizations to make it scale to 100k tokens. ## How to train/infer? #### install dependencies ```bash # Please update the path of `CUDA_HOME` export CUDA_HOME=/usr/local/cuda-11.8 pip install transformers==4.31.0 pip install sentencepiece pip install ninja pip install flash-attn --no-build-isolation pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/xentropy pip install evaluate pip install git+https://github.com/huggingface/[email protected] pip install wandb ``` #### inference ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch base_model = "lyogavin/Anima-7B-100K" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.float16, trust_remote_code=True, device_map="auto", ) model.eval() prompt = "Where is the capital of US?" inputs = tokenizer(prompt, return_tensors="pt") inputs['input_ids'] = inputs['input_ids'].cuda() inputs['attention_mask'] = inputs['attention_mask'].cuda() # Generate generate_ids = model.generate(**inputs, max_new_tokens=30, only_last_logit=True, # to save memory use_cache=False, # when run into OOM, enable this can save memory xentropy=True) output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ``` #### Training ```bash ./run_longer_training.sh ``` ## Evaluations There's almost none evaluation dataset designed for 100k tokens. So we designed/curated some dataset for this model. We compared this model and several other public/private models. #### 1. longchat topic retrieval | Model | Accuracy | |-------------------|---------| | Claude2 | 0.9 | | together llama2 32k | 0.15 | | longchat 32k 1.5 | 0.05 | | Anima 100K | 0.5 | #### 2. longchat number retrieval | Model | Accuracy | |-------------------|---------| | Claude2 | 0.85 | | together llama2 32k | 0.2 | | longchat 32k 1.5 | 0.05 | | Anima 100K | 0.45 | #### 3. Narrative QA in zeroscore | Model | F1 | |-------------------|---------| | Claude2 | 0.6187 | | together llama2 32k | 0.3833 | | longchat 32k 1.5 | 0.2416 | | Anima 100K | 0.4919 | ## Github Github repo is [here](https://github.com/lyogavin/Anima/tree/main/anima_100k)
JoseVallar01/prueba13
JoseVallar01
2023-09-16T01:41:04Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-13T21:43:52Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jncraton/phi-1_5-ct2-int8
jncraton
2023-09-16T01:37:13Z
3
0
transformers
[ "transformers", "text-generation", "en", "arxiv:2309.05463", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2023-09-16T01:35:03Z
--- license: other language: - en pipeline_tag: text-generation --- ## Model Summary The language model phi-1.5 is a Transformer with **1.3 billion** parameters. It was trained using the same data sources as [phi-1](https://huggingface.co/microsoft/phi-1), augmented with a new data source that consists of various NLP synthetic texts. When assessed against benchmarks testing common sense, language understanding, and logical reasoning, phi-1.5 demonstrates a nearly state-of-the-art performance among models with less than 10 billion parameters. We **did not** fine-tune phi-1.5 either for **instruction following or through reinforcement learning from human feedback**. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more. For a safer model release, we exclude generic web-crawl data sources such as common-crawl from the training. This strategy prevents direct exposure to potentially harmful online content, enhancing the model's safety without RLHF. However, the model is still vulnerable to generating harmful content. We hope the model can help the research community to further study the safety of language models. phi-1.5 can write poems, draft emails, create stories, summarize texts, write Python code (such as downloading a Hugging Face transformer model), etc. ## Intended Uses Given the nature of the training data, phi-1.5 is best suited for prompts using the QA format, the chat format, and the code format. Note that phi-1.5, being a base model, often produces irrelevant text following the main answer. In the following example, we've truncated the answer for illustrative purposes only. #### QA format: ```markdown Write a detailed analogy between mathematics and a lighthouse. Answer: Mathematics is like a lighthouse, guiding us through the vast ocean of numbers and calculations. Just as a lighthouse illuminates the darkness, mathematics provides us with a clear path to navigate through complex problems. It helps us make sense of the world around us, just like a lighthouse helps ships find their way home. ``` where the model generates the text after "Answer:". #### Chat format: ```markdown Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions? Bob: Have you tried using a timer? It can help you stay on track and avoid distractions. Alice: That's a good idea. I'll give it a try. Charlie: Another thing that can help is to break up your study sessions into smaller chunks. It's easier to concentrate on one thing at a time. Alice: That makes sense. I'll try that too. Bob: And don't forget to take breaks! It's important to give your brain a rest so you can come back to your studies with a fresh perspective. Alice: Thanks for the advice, guys. I feel more motivated now. Charlie: No problem, Alice. We're all in this together. Bob: Yeah, and remember that it's okay to ask for help if you need it. We're here to support each other. ``` where the model generates the text after the first "Bob:". #### Code format: ```python def print_prime(n): """ Print all primes between 1 and n """ primes = [] for num in range(2, n+1): is_prime = True for i in range(2, int(math.sqrt(num))+1): if num % i == 0: is_prime = False break if is_prime: primes.append(num) print(primes) ``` where the model generates the text after the comments. **Notes** * phi-1.5 is intended for research purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications. * Direct adoption for production tasks is out of the scope of this research project. As a result, phi-1.5 has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details. ## Limitations of phi-1.5 * Generate Inaccurate Code and Facts: The model often produces incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions. * Limited Scope for code: If the model generates Python scripts that utilize uncommon packages or scripts in other languages, we strongly recommend users manually verify all API uses. * Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users. * Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other language outside of English might pose challenges to its comprehension, leading to potential misinterpretations or errors in response. * Potential Societal Biases: Regardless of the safe data used for its training, the model is not entirely free from societal biases. There's a possibility it may generate content that mirrors these societal biases, particularly if prompted or instructed to do so. We urge users to be aware of this and to exercise caution and critical thinking when interpreting model outputs. * Toxicity: Despite that the model is trained with carefully selected data, the model can still produce harmful content if explicitly prompted or instructed to do so. We chose to release the model for research purposes only -- We hope to help the open-source community develop the most effective ways to reduce the toxicity of a model directly after pretraining. ## Training ### Model * Architecture: a Transformer-based model with next-word prediction objective * Dataset size: 30B tokens * Training tokens: 150B tokens * Precision: fp16 * GPUs: 32xA100-40G * Training time: 8 days ### Software * [PyTorch](https://github.com/pytorch/pytorch) * [DeepSpeed](https://github.com/microsoft/DeepSpeed) * [flash-attention](https://github.com/HazyResearch/flash-attention) ### License The model is licensed under the [Research License](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx). ### Sample Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device('cuda') model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", trust_remote_code=True, torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True, torch_dtype="auto") inputs = tokenizer('''```python def print_prime(n): """ Print all primes between 1 and n """''', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` **Remark.** In the generation function, our model currently does not support beam search (`num_beams` >1) and `attention_mask' parameters. Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings (instead of the model's). ### Citation You can find the paper at https://arxiv.org/abs/2309.05463 ```bib @article{textbooks2, title={Textbooks Are All You Need II: \textbf{phi-1.5} technical report}, author={Li, Yuanzhi and Bubeck, S{\'e}bastien and Eldan, Ronen and Del Giorno, Allie and Gunasekar, Suriya and Lee, Yin Tat}, journal={arXiv preprint arXiv:2309.05463}, year={2023} } ```
stablediffusionapi/absolute-reality-v1.8.1
stablediffusionapi
2023-09-16T01:25:46Z
45
3
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T01:22:05Z
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # absolute-reality-v1.8.1 API Inference ![generated from stablediffusionapi.com](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/af6f4367-6493-4d38-b74b-f84709a4f9d7/width=450/631148901874805624.jpeg) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "absolute-reality-v1.8.1" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/absolute-reality-v1.8.1) Model link: [View model](https://stablediffusionapi.com/models/absolute-reality-v1.8.1) Credits: [View credits](https://civitai.com/?query=absolute-reality-v1.8.1) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "absolute-reality-v1.8.1", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
stablediffusionapi/indigo-furry-mix-v65
stablediffusionapi
2023-09-16T01:05:28Z
54
0
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T00:29:41Z
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # indigo-furry-mix-v65 API Inference ![generated from stablediffusionapi.com](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/dcc851c9-1e27-4111-9446-4cafce112737/width=1152/38680-3349873723-uploaded%20on%20e621,%20(male%20anthro%20dragon),%20standing,%20solo,%20muscle,%20detailed%20scale%20texture,%20old%20castle,%20(battlefield),%20(tribal%20cloth.jpeg) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "indigo-furry-mix-v65" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/indigo-furry-mix-v65) Model link: [View model](https://stablediffusionapi.com/models/indigo-furry-mix-v65) Credits: [View credits](https://civitai.com/?query=indigo-furry-mix-v65) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "indigo-furry-mix-v65", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
Chanblock/llama-2-7b-langchain-chat-1000_dataset
Chanblock
2023-09-16T00:27:15Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:llama2", "region:us" ]
null
2023-09-15T23:59:23Z
--- license: llama2 base_model: Photolens/llama-2-7b-langchain-chat tags: - generated_from_trainer model-index: - name: llama-2-7b-langchain-chat-1000_dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-2-7b-langchain-chat-1000_dataset This model is a fine-tuned version of [Photolens/llama-2-7b-langchain-chat](https://huggingface.co/Photolens/llama-2-7b-langchain-chat) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
fembuoy/Redshell
fembuoy
2023-09-15T23:56:28Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-09-14T15:09:11Z
--- license: openrail --- World-famous vtuber and recovering overwatch addict Redshell ![image/png](https://cdn-uploads.huggingface.co/production/uploads/650321f07764af3f3fd7ef2b/Kkx6hW52GGGcyDvGjaQoX.png) Model Info: - Training: RVC v1 Harvest 600 epochs with 8 minutes of audio - Recommended search feature rate 0.6-0.8 - For crepe recommended hop length 24 or lower - NOTE: has issues with higher pitch input, might be due to the dataset Voice Sample: https://vocaroo.com/19sZuBJsynLw
manahil1/my_awesome_opus_books_model
manahil1
2023-09-15T23:45:32Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-15T23:16:21Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: my_awesome_opus_books_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7142 - Bleu: 0.1327 - Gen Len: 11.4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 1 | 10.1215 | 0.0 | 19.0 | | No log | 2.0 | 2 | 10.1215 | 0.0 | 19.0 | | No log | 3.0 | 3 | 10.1215 | 0.0 | 19.0 | | No log | 4.0 | 4 | 9.9493 | 0.0 | 19.0 | | No log | 5.0 | 5 | 9.7067 | 0.0 | 19.0 | | No log | 6.0 | 6 | 9.5209 | 0.0 | 19.0 | | No log | 7.0 | 7 | 9.1640 | 0.0 | 19.0 | | No log | 8.0 | 8 | 9.1640 | 0.0 | 19.0 | | No log | 9.0 | 9 | 8.9257 | 0.0 | 19.0 | | No log | 10.0 | 10 | 8.7095 | 0.0 | 19.0 | | No log | 11.0 | 11 | 8.0234 | 0.0 | 19.0 | | No log | 12.0 | 12 | 7.6148 | 0.0 | 19.0 | | No log | 13.0 | 13 | 7.6148 | 0.0 | 19.0 | | No log | 14.0 | 14 | 7.3894 | 0.0 | 19.0 | | No log | 15.0 | 15 | 7.1168 | 0.0 | 19.0 | | No log | 16.0 | 16 | 6.9173 | 0.0 | 19.0 | | No log | 17.0 | 17 | 6.7148 | 0.0 | 19.0 | | No log | 18.0 | 18 | 6.3630 | 0.0 | 19.0 | | No log | 19.0 | 19 | 6.0068 | 0.0 | 19.0 | | No log | 20.0 | 20 | 5.8264 | 0.0 | 19.0 | | No log | 21.0 | 21 | 5.6897 | 0.0 | 19.0 | | No log | 22.0 | 22 | 5.5416 | 0.0 | 19.0 | | No log | 23.0 | 23 | 5.4310 | 0.0 | 19.0 | | No log | 24.0 | 24 | 5.3268 | 0.6787 | 19.0 | | No log | 25.0 | 25 | 5.2214 | 2.6287 | 19.0 | | No log | 26.0 | 26 | 5.0786 | 2.6287 | 19.0 | | No log | 27.0 | 27 | 4.9850 | 3.2603 | 19.0 | | No log | 28.0 | 28 | 4.9030 | 3.6542 | 19.0 | | No log | 29.0 | 29 | 4.8184 | 3.6542 | 19.0 | | No log | 30.0 | 30 | 4.7408 | 3.6542 | 19.0 | | No log | 31.0 | 31 | 4.6692 | 3.6542 | 19.0 | | No log | 32.0 | 32 | 4.5869 | 3.6542 | 19.0 | | No log | 33.0 | 33 | 4.4861 | 3.6542 | 19.0 | | No log | 34.0 | 34 | 4.3921 | 3.6542 | 19.0 | | No log | 35.0 | 35 | 4.3102 | 3.6542 | 19.0 | | No log | 36.0 | 36 | 4.2375 | 3.6542 | 19.0 | | No log | 37.0 | 37 | 4.1691 | 3.6542 | 19.0 | | No log | 38.0 | 38 | 4.1019 | 3.6542 | 19.0 | | No log | 39.0 | 39 | 4.0349 | 3.6542 | 19.0 | | No log | 40.0 | 40 | 3.9652 | 3.6542 | 19.0 | | No log | 41.0 | 41 | 3.8937 | 3.6542 | 19.0 | | No log | 42.0 | 42 | 3.8232 | 3.6542 | 19.0 | | No log | 43.0 | 43 | 3.7526 | 3.6542 | 19.0 | | No log | 44.0 | 44 | 3.6845 | 3.6542 | 19.0 | | No log | 45.0 | 45 | 3.6196 | 3.6542 | 19.0 | | No log | 46.0 | 46 | 3.5549 | 3.6542 | 19.0 | | No log | 47.0 | 47 | 3.4897 | 3.6542 | 19.0 | | No log | 48.0 | 48 | 3.4227 | 3.6542 | 19.0 | | No log | 49.0 | 49 | 3.3559 | 3.6542 | 19.0 | | No log | 50.0 | 50 | 3.2901 | 3.6542 | 19.0 | | No log | 51.0 | 51 | 3.2237 | 3.6542 | 19.0 | | No log | 52.0 | 52 | 3.1568 | 3.6542 | 19.0 | | No log | 53.0 | 53 | 3.0880 | 3.6542 | 19.0 | | No log | 54.0 | 54 | 3.0184 | 3.6542 | 19.0 | | No log | 55.0 | 55 | 2.9428 | 3.6542 | 19.0 | | No log | 56.0 | 56 | 2.8787 | 3.6542 | 19.0 | | No log | 57.0 | 57 | 2.8177 | 3.6542 | 19.0 | | No log | 58.0 | 58 | 2.7606 | 3.6542 | 19.0 | | No log | 59.0 | 59 | 2.7053 | 3.6542 | 19.0 | | No log | 60.0 | 60 | 2.6458 | 3.6542 | 19.0 | | No log | 61.0 | 61 | 2.5915 | 3.6542 | 19.0 | | No log | 62.0 | 62 | 2.5416 | 3.6542 | 19.0 | | No log | 63.0 | 63 | 2.4929 | 3.6542 | 19.0 | | No log | 64.0 | 64 | 2.4465 | 3.6542 | 19.0 | | No log | 65.0 | 65 | 2.4007 | 3.6542 | 19.0 | | No log | 66.0 | 66 | 2.3560 | 3.6542 | 19.0 | | No log | 67.0 | 67 | 2.3136 | 3.6542 | 19.0 | | No log | 68.0 | 68 | 2.2712 | 3.6542 | 19.0 | | No log | 69.0 | 69 | 2.2313 | 3.6542 | 19.0 | | No log | 70.0 | 70 | 2.1924 | 3.6542 | 19.0 | | No log | 71.0 | 71 | 2.1563 | 3.6542 | 19.0 | | No log | 72.0 | 72 | 2.1213 | 3.6542 | 19.0 | | No log | 73.0 | 73 | 2.0885 | 3.6542 | 19.0 | | No log | 74.0 | 74 | 2.0577 | 3.6542 | 19.0 | | No log | 75.0 | 75 | 2.0293 | 3.6542 | 19.0 | | No log | 76.0 | 76 | 2.0023 | 3.6542 | 19.0 | | No log | 77.0 | 77 | 1.9762 | 3.6542 | 19.0 | | No log | 78.0 | 78 | 1.9514 | 3.6542 | 19.0 | | No log | 79.0 | 79 | 1.9288 | 3.6542 | 19.0 | | No log | 80.0 | 80 | 1.9076 | 3.6542 | 19.0 | | No log | 81.0 | 81 | 1.8876 | 3.6542 | 19.0 | | No log | 82.0 | 82 | 1.8691 | 3.6542 | 19.0 | | No log | 83.0 | 83 | 1.8520 | 3.6542 | 19.0 | | No log | 84.0 | 84 | 1.8362 | 3.6542 | 19.0 | | No log | 85.0 | 85 | 1.8217 | 1.2446 | 15.2 | | No log | 86.0 | 86 | 1.8080 | 1.2446 | 15.2 | | No log | 87.0 | 87 | 1.7957 | 0.1327 | 11.4 | | No log | 88.0 | 88 | 1.7846 | 0.1327 | 11.4 | | No log | 89.0 | 89 | 1.7743 | 0.1327 | 11.4 | | No log | 90.0 | 90 | 1.7651 | 0.1327 | 11.4 | | No log | 91.0 | 91 | 1.7569 | 0.1327 | 11.4 | | No log | 92.0 | 92 | 1.7493 | 0.1327 | 11.4 | | No log | 93.0 | 93 | 1.7426 | 0.1327 | 11.4 | | No log | 94.0 | 94 | 1.7367 | 0.1327 | 11.4 | | No log | 95.0 | 95 | 1.7320 | 0.1327 | 11.4 | | No log | 96.0 | 96 | 1.7273 | 0.1327 | 11.4 | | No log | 97.0 | 97 | 1.7235 | 0.1327 | 11.4 | | No log | 98.0 | 98 | 1.7200 | 0.1327 | 11.4 | | No log | 99.0 | 99 | 1.7170 | 0.1327 | 11.4 | | No log | 100.0 | 100 | 1.7142 | 0.1327 | 11.4 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
shantanudave/autotrain-adv-15sept
shantanudave
2023-09-15T23:26:20Z
1
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-15T23:26:18Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sdaveshantanu tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
platzi/platzi-distilroberta-base-mrpc-glue-alejandro-arroyo
platzi
2023-09-15T23:26:13Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-15T23:15:45Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-mrpc-glue-alejandro-arroyo results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8357843137254902 - name: F1 type: f1 value: 0.8866328257191202 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue-alejandro-arroyo This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9465 - Accuracy: 0.8358 - F1: 0.8866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4531 | 1.09 | 500 | 0.5192 | 0.8064 | 0.8636 | | 0.2895 | 2.18 | 1000 | 1.0305 | 0.8186 | 0.8729 | | 0.166 | 3.27 | 1500 | 0.9465 | 0.8358 | 0.8866 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
AlienKevin/whisper-base-jyutping-without-tones-full-zh-HK
AlienKevin
2023-09-15T23:25:11Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yue", "base_model:AlienKevin/whisper-base-jyutping-without-tones-full", "base_model:finetune:AlienKevin/whisper-base-jyutping-without-tones-full", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-15T22:49:05Z
--- language: - yue license: apache-2.0 base_model: AlienKevin/whisper-base-jyutping-without-tones-full tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Base Jyutping without Tones Full Version trained with extra data from Common Voice zh-HK results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Jyutping without Tones Full Version trained with extra data from Common Voice zh-HK This model is a fine-tuned version of [AlienKevin/whisper-base-jyutping-without-tones-full](https://huggingface.co/AlienKevin/whisper-base-jyutping-without-tones-full) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0949 - Wer: 9.7694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 2400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0921 | 0.14 | 800 | 0.1049 | 10.4769 | | 0.0824 | 0.28 | 1600 | 0.0989 | 9.8173 | | 0.0611 | 0.42 | 2400 | 0.0949 | 9.7694 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
DriveMyScream/Pro_GAN_Image_Generator
DriveMyScream
2023-09-15T23:24:43Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-09-15T23:23:38Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
MarianaChapman/RuzeShoesReviews
MarianaChapman
2023-09-15T23:11:18Z
0
0
null
[ "region:us" ]
null
2023-09-15T23:07:55Z
--- license: bsl-1.0 datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - accuracy library_name: adapter-transformers pipeline_tag: image-to-text tags: - art https://reviewsstate.com/ruze-shoes-reviews/-
espnet/eason_chime4_asr2_e_branchformer12_conv1d1_raw_wavlm_large_21_km1k_bpe_rm2k_char_ts_sp
espnet
2023-09-15T22:51:35Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-09-15T19:31:09Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/eason_chime4_asr2_e_branchformer12_conv1d1_raw_wavlm_large_21_km1k_bpe_rm2k_char_ts_sp` This model was trained by yichenl5 using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 83e687f3b41310a000f4a5b65857734709752bf6 pip install -e . cd egs2/chime4/asr2 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/eason_chime4_asr2_e_branchformer12_conv1d1_raw_wavlm_large_21_km1k_bpe_rm2k_char_ts_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Sep 11 04:53:07 EDT 2023` - python version: `3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0]` - espnet version: `espnet 202308` - pytorch version: `pytorch 1.13.1+cu117` - Git hash: `83e687f3b41310a000f4a5b65857734709752bf6` - Commit date: `Tue Aug 15 18:31:02 2023 -0400` ## exp/asr_train_discrete_asr_e_branchformer_e12_mlp1024_linear1024_macaron_lr1e-4_warmup25k_conv1d1_raw_wavlm_large_21_km1000_bpe_rm2000_char_ts_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dt05_real_beamformit_2mics|1640|27119|89.9|8.6|1.5|0.8|10.9|58.5| |decode_asr_asr_model_valid.acc.ave/dt05_real_beamformit_5mics|1640|27119|92.2|6.6|1.2|0.6|8.4|54.3| |decode_asr_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|27119|89.0|9.6|1.4|0.9|11.9|63.5| |decode_asr_asr_model_valid.acc.ave/dt05_simu_beamformit_2mics|1640|27120|89.8|8.4|1.7|0.7|10.8|61.8| |decode_asr_asr_model_valid.acc.ave/dt05_simu_beamformit_5mics|1640|27120|93.3|5.7|1.0|0.4|7.1|54.9| |decode_asr_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|27120|84.4|12.8|2.8|0.8|16.5|67.1| |decode_asr_asr_model_valid.acc.ave/et05_real_beamformit_2mics|1320|21409|90.5|8.2|1.3|0.6|10.1|66.7| |decode_asr_asr_model_valid.acc.ave/et05_real_beamformit_5mics|1320|21409|92.8|6.3|0.9|0.5|7.7|58.0| |decode_asr_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|21409|88.3|10.0|1.7|0.8|12.5|71.5| |decode_asr_asr_model_valid.acc.ave/et05_simu_beamformit_2mics|1320|21416|89.0|9.2|1.8|0.9|11.8|66.4| |decode_asr_asr_model_valid.acc.ave/et05_simu_beamformit_5mics|1320|21416|92.7|6.4|0.9|0.7|8.0|61.0| |decode_asr_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|21416|83.3|13.2|3.5|1.1|17.8|69.4| |decode_asr_asr_model_valid.acc.best/dt05_real_beamformit_2mics|1640|27119|89.5|9.2|1.3|0.9|11.4|60.2| |decode_asr_asr_model_valid.acc.best/dt05_real_beamformit_5mics|1640|27119|91.7|7.1|1.2|0.6|8.9|57.6| |decode_asr_asr_model_valid.acc.best/dt05_real_isolated_1ch_track|1640|27119|88.2|10.0|1.8|0.7|12.5|65.9| |decode_asr_asr_model_valid.acc.best/dt05_simu_beamformit_2mics|1640|27120|89.3|9.1|1.6|0.7|11.4|64.9| |decode_asr_asr_model_valid.acc.best/dt05_simu_beamformit_5mics|1640|27120|93.0|6.1|0.9|0.5|7.5|57.1| |decode_asr_asr_model_valid.acc.best/dt05_simu_isolated_1ch_track|1640|27120|83.7|12.6|3.6|0.7|16.9|68.7| |decode_asr_asr_model_valid.acc.best/et05_real_beamformit_2mics|1320|21409|89.7|8.9|1.3|0.6|10.9|70.1| |decode_asr_asr_model_valid.acc.best/et05_real_beamformit_5mics|1320|21409|92.3|6.8|0.9|0.5|8.2|60.8| |decode_asr_asr_model_valid.acc.best/et05_real_isolated_1ch_track|1320|21409|87.7|10.3|2.0|0.8|13.1|71.7| |decode_asr_asr_model_valid.acc.best/et05_simu_beamformit_2mics|1320|21416|88.4|9.9|1.7|1.0|12.7|69.5| |decode_asr_asr_model_valid.acc.best/et05_simu_beamformit_5mics|1320|21416|92.3|6.8|0.8|0.8|8.5|63.0| |decode_asr_asr_model_valid.acc.best/et05_simu_isolated_1ch_track|1320|21416|82.6|13.6|3.8|1.0|18.4|71.4| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dt05_real_beamformit_2mics|1640|160390|95.4|2.2|2.4|1.0|5.6|58.5| |decode_asr_asr_model_valid.acc.ave/dt05_real_beamformit_5mics|1640|160390|96.7|1.5|1.8|0.7|3.9|54.3| |decode_asr_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|160390|95.1|2.6|2.3|1.2|6.0|63.5| |decode_asr_asr_model_valid.acc.ave/dt05_simu_beamformit_2mics|1640|160400|95.5|2.2|2.3|0.8|5.3|61.8| |decode_asr_asr_model_valid.acc.ave/dt05_simu_beamformit_5mics|1640|160400|97.6|1.2|1.2|0.5|2.9|54.9| |decode_asr_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|160400|91.8|4.1|4.2|1.3|9.5|67.1| |decode_asr_asr_model_valid.acc.ave/et05_real_beamformit_2mics|1320|126796|96.3|1.9|1.8|0.7|4.4|66.7| |decode_asr_asr_model_valid.acc.ave/et05_real_beamformit_5mics|1320|126796|97.5|1.2|1.3|0.6|3.1|58.0| |decode_asr_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|126796|95.3|2.4|2.3|0.9|5.6|71.5| |decode_asr_asr_model_valid.acc.ave/et05_simu_beamformit_2mics|1320|126812|95.3|2.2|2.5|1.0|5.7|66.4| |decode_asr_asr_model_valid.acc.ave/et05_simu_beamformit_5mics|1320|126812|97.5|1.2|1.3|0.9|3.4|61.0| |decode_asr_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|126812|91.1|4.1|4.8|1.5|10.4|69.4| |decode_asr_asr_model_valid.acc.best/dt05_real_beamformit_2mics|1640|160390|95.4|2.4|2.2|1.1|5.7|60.2| |decode_asr_asr_model_valid.acc.best/dt05_real_beamformit_5mics|1640|160390|96.6|1.7|1.7|0.8|4.1|57.6| |decode_asr_asr_model_valid.acc.best/dt05_real_isolated_1ch_track|1640|160390|94.9|2.6|2.6|1.0|6.2|65.9| |decode_asr_asr_model_valid.acc.best/dt05_simu_beamformit_2mics|1640|160400|95.4|2.3|2.3|0.9|5.6|64.9| |decode_asr_asr_model_valid.acc.best/dt05_simu_beamformit_5mics|1640|160400|97.6|1.2|1.2|0.6|3.0|57.1| |decode_asr_asr_model_valid.acc.best/dt05_simu_isolated_1ch_track|1640|160400|91.4|4.0|4.6|1.2|9.7|68.7| |decode_asr_asr_model_valid.acc.best/et05_real_beamformit_2mics|1320|126796|96.1|1.9|2.0|0.7|4.6|70.1| |decode_asr_asr_model_valid.acc.best/et05_real_beamformit_5mics|1320|126796|97.4|1.3|1.3|0.6|3.2|60.8| |decode_asr_asr_model_valid.acc.best/et05_real_isolated_1ch_track|1320|126796|95.1|2.4|2.5|0.9|5.8|71.7| |decode_asr_asr_model_valid.acc.best/et05_simu_beamformit_2mics|1320|126812|95.0|2.4|2.6|1.1|6.1|69.5| |decode_asr_asr_model_valid.acc.best/et05_simu_beamformit_5mics|1320|126812|97.4|1.3|1.3|0.9|3.6|63.0| |decode_asr_asr_model_valid.acc.best/et05_simu_isolated_1ch_track|1320|126812|90.8|4.0|5.1|1.5|10.6|71.4| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_discrete_asr_e_branchformer_e12_mlp1024_linear1024_macaron_lr1e-4_warmup25k_conv1d1.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/asr_train_discrete_asr_e_branchformer_e12_mlp1024_linear1024_macaron_lr1e-4_warmup25k_conv1d1_raw_wavlm_large_21_km1000_bpe_rm2000_char_ts_sp ngpu: 1 seed: 2022 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 25 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe2000_char_sp/train/text_shape.char - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe2000_char_sp/train/src_text_shape.bpe valid_shape_file: - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe2000_char_sp/valid/text_shape.char - exp/asr_stats_raw_rm_wavlm_large_21_km1000_bpe2000_char_sp/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 150 - 150 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] train_data_path_and_name_and_type: - - dump/raw/tr05_multi_noisy_si284_sp/text.ts.en - text - text - - dump/raw/tr05_multi_noisy_si284_sp/text.rm.wavlm_large_21_km1000 - src_text - text valid_data_path_and_name_and_type: - - dump/raw/dt05_multi_isolated_1ch_track/text.ts.en - text - text - - dump/raw/dt05_multi_isolated_1ch_track/text.rm.wavlm_large_21_km1000 - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - <space> - E - T - A - O - I - N - S - R - H - D - L - C - M - U - P - F - G - Y - B - W - V - . - K - '''' - X - ',' - Q - '-' - J - '"' - < - '>' - Z - '*' - ':' - ( - ) - '?' - '&' - ; - '!' - / - '{' - '}' - '~' - '`' - _ - <sos/eos> src_token_list: - <blank> - <unk> - 僣 - 亯 - 仮 - 偁 - 冨 - 侐 - 僧 - 伧 - 儉 - 世 - 串 - 儐 - 件 - 乎 - 佹 - 偟 - 凤 - 下 - 亄 - 傯 - 伟 - 仛 - 乲 - 償 - 俎 - 儈 - 乢 - 倡 - 僛 - 丙 - 傿 - 俲 - 傳 - 倲 - 仒 - 偉 - 乷 - 儁 - 儀 - 中 - 买 - 伤 - 入 - 倇 - 佩 - 侲 - 丿 - 俀 - 乯 - 俺 - 倢 - 伶 - 冶 - 兣 - 凗 - 丹 - 僚 - 侵 - 伌 - 佨 - 侯 - 久 - 伹 - 僇 - 偖 - 倃 - 冒 - 仧 - 冼 - 俽 - 兎 - 仰 - 仹 - 僝 - 儘 - 不 - 侊 - 係 - 亷 - 丂 - 偌 - 七 - 俈 - 侽 - 主 - 丵 - 仔 - 仂 - 儠 - 倊 - 仉 - 兇 - 凈 - 兕 - 么 - 傆 - 傥 - 乆 - 仢 - 兰 - 丟 - 乻 - 亴 - 丩 - 仩儰 - 俆 - 之 - 倭 - 儱 - 俤 - 为 - 伕 - 冉 - 僷 - 业 - 兼 - 乙 - 偶俸 - 乭 - 傞 - 仸 - 亹 - 乶 - 俳 - 丏 - 俧 - 兺 - 傲 - 伍 - 偀 - 兑 - 佧 - 傋 - 儍 - 丘 - 凌 - 倷 - 仓 - 一 - 侀 - 像 - 凜 - 伖 - 傹 - 儭 - 亿 - 们 - 书 - 偛 - 亨 - 冭 - 儜 - 佱 - 丑 - 儺 - 丌像 - 佊亂 - 侫 - 仴儫 - 仱 - 丄 - 丫 - 侎 - 傤 - 伢 - 兗 - 佭 - 傕 - 九 - 冰 - 供 - 凁 - 偔 - 兝丆 - 儬 - 偻 - 俇乒 - 侜 - 丠 - 侼 - 侺 - 乤 - 亻 - 佺 - 凡 - 亏 - 乜 - 亘 - 兹 - 亠 - 儴 - 乞 - 亅 - 僘 - 兲 - 倠 - 东 - 几 - 偋 - 乂 - 侹亐俔 - 亐俔 - 乬 - 亸 - 偝 - 僿 - 偎 - 処 - 倪 - 丸 - 偦 - 乨 - 僗 - 冿 - 丛 - 乕 - 严 - 传 - 丧 - 乚 - 令 - 僌 - 兤 - 光 - 儑 - 倜 - 佻 - 丆 - 乷主 - 倐 - 凔 - 保 - 傜凁 - 偡 - 佋 - 七一 - 兄 - 伣 - 儧 - 倛 - 丨 - 乼 - 侹俔 - 临 - 丅 - 京 - 偮 - 兟 - 僠 - 兝 - 凋仂 - 兹么 - 偲 - 侃 - 净 - 会 - 佂 - 儫 - 丣仙 - 习 - 倴 - 僸侜 - 偢僄 - 侙 - 俉 - 亝 - 侻 - 俚 - 仃 - 兝乗 - 伬 - 偺 - 亰 - 乪 - 俹 - 不儠 - 凈乏 - 凃 - 侱 - 乓倎 - 偱 - 佳 - 伩 - 侮 - 偹 - 乇 - 偮互 - 伄 - 凕 - 俟 - 仴 - 互 - 傇 - 僜 - 俭 - 俫 - 儿 - 丽儑 - 儭丵 - 佚 - 偊 - 侑丨 - 倱 - 侾 - 僿亸 - 伒 - 兊倐 - 免 - 乏 - 侳 - 伉 - 冬 - 俢 - 价 - 債 - 俆伩 - 仰亝 - 佝 - 乫 - 兜冖典 - 乐 - 两 - 乄 - 傭 - 乔 - 凈僌 - 倰 - 亓 - 倌 - 偳 - 侑 - 倅 - 償傿 - 俔 - 傩乘儮 - 偾 - 些 - 冂 - 傾 - 佒 - 佡亂 - 偷 - 伵 - 偏 - 倬 - 傽 - 仗 - 军 - 丷 - 丶 - 乣其 - 假 - 乜佝 - 仨 - 乡 - 倬仢 - 僸 - 伅 - 儂伊乴 - 僺 - 僾 - 乇伻 - 兮倨 - 凥侵 - 亢个仓 - 伀 - 偩 - 倅仚傕 - 偤 - 仄 - 亮 - ▁伋丕兙 - 儮 - 儣 - 丗 - 儞 - 倿 - 倎 - 侑丫 - 亟 - 僥 - 伿 - 僽 - 凛 - 仡 - 也 - 亂 - 側 - 亲 - 侌 - 俖 - 亐 - 俒 - 乃傺 - 今 - 偆 - 乄传 - 僫傤 - 丁 - 儲 - 兩 - 佉佤 - 亱 - 佒傘 - 兊 - 傉 - 儻 - 傝 - 仡倓俣 - 乩 - 儂佢伊乴 - 伇 - 侉 - 乾 - 丬 - 井侺 - 仟 - 乑 - 丌 - 丣 - 依 - 伴 - 佥 - 儻伀 - 伙佾 - 侹亐 - 乘 - 伎 - 人 - 俩 - 供僜億丅 - 儖丬 - 亨互 - 丢側 - 僺亓 - 仦义 - 倕 - 仙 - 享 - 佡 - 傜 - 乯侊 - 丽 - 冡 - 仐会 - 乩傹 - 兙 - 偈 - ▁並作丰 - 伶兕 - 凛倚 - 亊 - 伇佧 - 佤 - 俛举 - 伛 - 傰 - 乫东 - 俈乜 - 不儱 - 偼 - 傣 - 僃 - 佂仞 - 似 - 倜凔 - 井 - 乌侬佘 - 侚 - 乁傎亥 - 佊佡伞 - 僇傲 - 伏 - 偶 - 偷俄 - 丢也 - 七佭 - 专 - 元丠 - 伞 - 倒 - 佪 - 両 - 傏 - 丸佹 - 供僜 - 倘 - 俣 - 俉倕 - 倜俤 - 傉丵 - 倚 - 俭侰 - 以侬佘 - 乔亠 - 傦亜俦 - 倇侯 - 倅仚 - 侕 - 任 - 亜俦 - 凘 - 俪伃伕 - 侣俉 - 両亽 - 儊 - 丢 - 凥 - 侼仓 - 儖 - 倨 - 什 - 佄 - 僯 - 丸乎 - 乖 - 俄 - 佊 - 乣 - 丑丏 - 伸 - 兡 - 丐偊冡侮 - 俵俁 - 五 - 们凌 - 乍 - 丞 - ▁伋丕 - 允 - 伏允 - 儧乆 - 倵 - 净伧 - 偝伧 - 僤仂 - 倭伏书 - 五偝 - 任偩 - 乒 - 凡兇 - 元 - 偓偾 - 俳亖 - 傡 - 仈 - 供乨 - 俫兼 - 亇俖 - 侭 - 乁侪冲 - 兆 - 佄亴 - 債俢 - 侹 - 乱侼 - 倰兡 - 傔 - 儵 - 佷仢 - 信 - 倩 - 亇 - 侓 - 凍 - 僫傰 - 儾 - 俳克 - 丐偊冡 - 傶使 - 侃傱丮 - 僜億丅 - 亴伕 - 以乌侬 - 仐 - 佢伊乴 - 丼 - 丶傱丮 - 傓 - 做傲 - 仳 - 仪 - 丷侙 - 們 - 做 - 働 - 俇 - 佂冬 - 便 - 偄 - 倷丷侙 - 佞 - 偤偋 - 乧俜 - 倆 - 元伎 - 偛僸 - 偢 - 仉亖 - 临允 - 久伟 - 三 - 丐 - 侣俉倕 - 倏 - 乛冁 - 令侼 - 之伖 - 佦 - 兕伶 - 减 - 做兟 - 京伧京 - 佒亯傘 - 几侭 - 似仗 - 亀乕 - 亽 - 乐偏 - 乢冉 - 仴俔 - 偁侀 - 儸 - 亗佁兽且偵乊倘乳予 - 冚 - 凂 - 俌些丅 - 乬傥 - 乌侬 - 仝 - 俌億丅 - 偰 - 兒 - 仇乑 - 傱丮 - 偫 - 倛偄 - 倵僫傤 - 亯侀 - 儴偻 - 偛僌 - 傶使乖 - 再 - 偷僣俄 - 亶 - 偻倴 - 倯 - 今冝 - 兜 - 凢 - 倣其 - 凝 - 兖 - 供僜億些 - 偆冂 - 俜 - 仏兖凍 - 僾侩 - 体 - 仡倓 - 佷倬 - 倓 - 仉仢 - 俅 - 侧 - 亣仃 - 冉乢 - 冇 - 儻伀乪 - 之俤 - 乄佉佤 - 丂下 - 俅凝 - 伏书 - 僤 - 乧 - 儒 - 侃再 - 乽 - 偝五 - 伛傺 - 凤俺 - 儕亙佘 - 乧倰 - 俦 - 付 - 世傯 - 以乌侬佘 - 伾 - ▁並兆 - 佊佡 - 侑倠 - 儹 - 倧 - 丆乗 - 伡伥凓 - 倬俲 - 减为 - 亢个 - 侎件 - 俌些 - 侣倕 - 兩依 - 傘 - 凃亠 - 以 - 丶傱 - 佉 - 倭伏允 - 乞亴 - 価倉 - 傔义 - 乗 - ▁具作丰 - 僾井傉 - 伬丏伬 - 佔 - 佡倱 - 佱倒 - 倐兺 - 伻 - 仩 - 儻亗 - 佢乴 - 侎僧 - 僔伴 - 傽亠 - 傠举 - 偧 - 兎丹 - 临允书 - 佷 - 兣亻 - 丘兜冖典 - 僊 - 乜凂倌 - 伸似仗 - 亁偺 - 凋 - 倓俣 - 偠 - 侧亽 - 亘俄 - 佷侨 - 佸什 - 俗万 - 凕伒 - 凂倌 - 俘 - 償儠 - 倵僫傰 - 佢 - 僽偾 - 伂 - 丞乎余丈亁 - 亹亻 - 伖丙 - 乭伀 - ▁並作 - 伛侕于 - 减乑 - 似丠 - 偒 - 你 - 亇倩 - 典 - 兲凃 - 仄偼乆 - 伯侩傣俩 - 俛举凈 - 傩 - 佂仞偩 - 仃佞 - 僷乻 - 凓 - 僫 - 傌 - 仄偼 - 僣俄 - 丐偊 - 乡俖 - 井傉 - 与 - 似傭 - 偵 - 兜充佰 - 乄丨 - 亇伸 - 伸倩 - 乮 - 佭佥 - ▁具丕 - 儞乕 - 僛侊 - 侃傱 - 五偝五偝 - 乶儧 - 亊冭 - 元仗 - 倴偻 - 俯 - 元傭 - 伱偼 - 佬乆 - 冓 - 伔 - 伈 - 伢儕亙佘 - 仜 - 万 - 俫冁 - 佡伞 - 僜億些 - 休倂 - 亣 - 凒 - 俵俁儁 - 丐偊侘 - 佻买 - 亿件 - 侫偁侫 - 亏倣其 - 俊 - 侈 - 俌億 - 佀 - 佱仃佞 - 兤僗 - 僣倛 - 儯俫 - 乧倰兡 - 兝伞 - 倷丷 - 両亽儁 - 兢 - 亖 - 偯伺 - 侲倓俣 - 俤佹 - 仏 - 丐偊侘侮 - 偕 - 個儧 - 佭俅凝 - 丑伧 - 乄偱 - 仠 - 俖丠 - 丁伧丁 - 仪倧亚 - 僞 - 乴 - 丂丿 - 伱 - 俯俫 - 亹冉 - 俾 - 佊佡亂 - 偵倚 - 冒冶 - 伖佹 - 兊乡 - 仪倧 - 丸亯 - 偠丄偠 - 仞 - 俴 - 偛僸侜 - 你俅凝 - 体倰兡 - 亞 - 俭冷 - 乄侑 - 亇伸似仗 - 儯乛冁 - 乜凂 - 傆冰 - 僾井侺 - 佭乫东 - 兪 - 丮 - 儂伊 - 億 - 億些 - 俤丸 - 傠举凈 - 伯侩 - 偁侮 - 侌军 - 侀偁 - 倆僉亵 - 伷 - 倠仃 - 偂促佾 - 亯亁 - 侨 - 俳亖乪 - 僷买 - 偔之 - 僚仸 - 兮 - 乽儯乛冁 - 偋亘 - 亾 - 偶俸之 - 亣侚丗 - 傤兊 - 処凢 - 亹冉亹 - 偐俋 - 允书 - 倬侨 - 伳 - 侅 - 佳低 - 再上仝 - 亯傘 - 侎儉 - 冁 - 佬儧乆 - 伯 - 与准侻 - 凔儺 - 乾俣 - 傽书 - 亻兣 - 乂儵 - 仉克 - 亙 - 們什 - 倝 - 也側 - 丞余丈亁 - 佭俅 - 傶 - 個 - 傾儺 - 兠 - 侽侯 - 佻兎 - 伀乪 - 侣 - 儯 - 乣亪 - 仟佋 - 冶伟 - 傩乘 - 仮侯 - 供僜億些丅 - 儁倜 - 仿 - 写 - 僑 - 偬 - 働互 - 二佻 - 傱 - 偌伎 - 侈儁 - 儲兕 - 亣侚佞 - 俌 - 万俈 - 乭伀乪 - 乡倩 - 光侲 - 亇俖丠 - 亇伸倩 - 佭仛 - 亁 - 佒偁傘 - 傴俼 - 丛兄 - 乱 - 亷佩 - 仵 - 冔 - 丹伶 - 俸 - 倴乷 - 之凔 - 减乑为 - 侘 - 兄丛兄 - 乓 - 丸丙 - 丂伶 - 偂伔倰兡 - 亵 - 伿偩 - 俗万俈 - 俐今 - 丑丏丑丏 - 傡偎 - 佱亣 - 俨 - 儈儐 - ▁具作兆 - 乁侪 - 兄丛 - 倅傕 - 与准 - 傹佺 - 偝五偝 - 儬仙 - 侚佞 - 備 - 傽傤 - 儛 - 兖凍 - 从 - 僫亠 - 俚冉 - 倒伆値 - 俚冉俚 - 乑为 - 傡亵 - 來 - 冉佩 - 偼乆 - 丰 - 偻儴 - 佬 - 偠丄 - 僉傷 - 倵僫 - 七仛 - 偂 - 凕偵倚 - 丘仚 - 俱 - 乻伶 - 儗傓 - 亽儁 - 侠 - 之侎 - 偌傭 - 从僱乮 - 傶使乖乼 - 伆値 - 亏凢 - 冖典 - 丠伎 - 侕于 - 丝 - 凈乏侜 - 公侴 - 倊亸 - 丁偁丁 - 傛 - 光仡乾 - 佷倬仢 - 乂倪 - 亏処 - 乼伧乼 - 丣傜凁 - 令今 - 今仓 - 僔侻 - 処凢兖凍 - 丑丏丑 - 亿僧 - 僄 - 倘丣 - 侰 - 亹兣 - 冭伏书 - 买伶 - 仿儭 - 乘儮 - 严倷 - 乺仆 - 亣侚債 - 侮侀 - 俐个 - 伛侕 - 兝丆乗 - 亢 - 倴偻倴 - 儸仟 - 佖 - 侃丮 - 傧 - 傎亥 - 僔 - 亚 - 佯 - 人働互 - 亣仃佞 - 凜倅仚傕 - 傡乕 - 乃 - 冷 - 丛仨 - 侄傓 - 偄保 - 于 - 亸兩依 - 佩乢 - 傅 - 倭临 - 伧佒亯傘 - 偛凈 - 乢俟 - 侏 - 偙 - 伉偏 - 傇儘 - 内 - 仕乀 - 偗 - 凢兖凍 - 九僧 - ▁ - 俐 - 伡 - 凡兇僷 - 偄保仟 - 争 - 侎儐 - 冭允 - 佳傫 - 兹俈 - 佺伧佺 - 傉任 - 僣侯 - 再傸 - 五净 - 佀儒冣 - 伿傆 - 侚丗 - 丯亶冥佾 - 侩傣俩 - 僲 - 佭乫 - 丹倇 - 仲 - 偌仗 - 九儉 - 凗丷 - 佛 - 丢也側 - 俹傥 - 侃再上仝 - 僿亸亝 - 俦儮 - 優乿 - 兀 - 九儐 - 偂伔倰 - 傣俩 - 僇冭 - 丟冂 - 仇 - 兣亹 - 侭側 - 侧亽伿 - 儹偲 - 凈偀 - 冚俨傝儖丬 - 侁凞亩 - 俐今冝 - 伖乭 - 余丈亁 - 儻亗佁兽且偵乊倘乳予凡 - 乃于 - 二 - 兲凃亠 - 亪 - 亯侮 - 佈 - 五伧 - 凤傯 - 兽 - 倣 - 仒傋 - 傽伅 - 倭伏 - 伱偼乆 - 倒偦 - 侇 - 僁 - 丁伧 - 儵偠 - 偼倭 - 乕偛 - 仪亚 - 俢佔 - 事 - 侱倭 - 七佭佥 - 冝 - 亇俖倩 - 临允乚 - 兒偄 - 凌侒侺 - 僗俭 - 儸佋 - 佐 - 乌 - 仉凘佪 - 侔 - 侀傞 - 俻 - 冝偩 - 俍佴仅 - 仪倧亚倆 - 丏丑丏 - 倜傾 - 共 - 儻乪 - 侫伧侫 - 儸倢儸 - 傍 - 俛傠举 - 価 - 佮俑佮 - 乳 - 余丈 - 倡倃 - 伧丁 - 僛伟 - 佗 - 俗 - 低 - 其 - 亏乣亪 - 俚俟 - 倵乔 - 傾儺互 - 丈 - 主偌 - 儂 - 供僜億 - 佄亴伕 - 丯亶冥 - 俉倕丶傱丮 - 佳冊但 - 俖倩 - 亏仏 - 亻亹亻 - 凐 - 乹 - 仪倧亚倆僉傷 - 丒 - 丄偠 - 侍 - 佱侚債 - 伹傿 - 偊侘 - 凤傿 - 传于 - 亸亝 - 凣 - 乨億些 - 偯伺亽 - 亴兼 - 七佥 - 偂伔 - 之傾 - 俈凈 - 伈乞丟 - 俳乧俜 - 佂仞乏 - 仏凍 - 乭亖 - 乏侜 - 伳什 - 侦 - 冨主 - 償俎 - 傽允 - 僴 - 俫亅 - 儺互 - 兞 - 丣仙偶俸 - 儻価倉 - 俍僐 - 偹关 - 僚亻 - 丑佺 - 偆佝 - 仁俋 - 伂俐个 - 仧入 - 买下 - 倅仚侖儑 - 侁 - 丹侽 - 佋乬 - 亣侚債俢 - 伏允书 - 冥 - 亜 - 偛僸仴儫 - 僑儑 - 僿亝 - 兇僷 - 伸仗 - ▁具作兒 - 假亯假 - 俍 - 伀亗 - 仟乬 - 丞余丈 - 佌 - 丯 - 中仸 - 佀冣 - 冶侊 - ▁並作兆丰 - 傦亜 - 丑丏丑丏丑丏 - 倧亚 - 倳 - 倍 - 佑 - 偤仨 - ▁伋丕亯兙 - 侣俉倕丶傱丮 - 亲丵 - 仿儭丵 - 傥倴 - 何 - 凌休倂 - 伣僽 - 农傓 - 三乺侍二 - 傳儈 - 使乖 - 上 - 佦乖 - 侖 - 冏 - 佾 - 伎佚 - 倵乔亠 - 乽儯俫 - 侩 - 关儭 - 丣傜 - 仕乀仕傩乘儮丒 - 僗侁 - 不伣 - 僾伯侩 - 倹 - 俍俰 - 仧丂 - 乭克 - 关 - 伢儕亙 - 侯主 - 以侬 - 処仏 - 亣侚 - 亿儉 - 仩侻 - 丘凌 - 丐偊冡偁侮 - 伹侎 - 亃 - 佸 - 使 - 伳偯伺亽 - 僛亨 - 乓倎丵 - 傏伫乆 - 乼偁乼 - 乁傎 - 净伧净伧净 - 伖乎 - 伬伧伬 - 俛傠举凈 - 俉丶 - 俭侏 - 克 - 偠亯偠 - 仇凝 - 係仧 - 儸倢 - 倠仃佞 - 侉佭 - 傰倐 - 丕 - 冚傝儖丬 - 况 - 侞 - 傺 - 兾 - 仹俺 - 乬俹 - 偏侀 - 傁 - 偌丠 - 僝亷 - 伐 - 偄仟 - 予 - 七乫东 - 仞乏 - 佀冣冿侵 - 兤俦 - 偓乔偾 - 伲傓 - 交 - 冇二 - 几侭侾 - 乐俧 - 佟 - 丞乖 - 兣亻兣亻 - 傠 - 們俨傝儖丬 - ▁並作兒 - 倥倎 - 仄万 - 俭仢 - 乨俌些丅 - 佘 - 全 - 亼 - 凄 - 乡俖丠 - 傖 - 亚倆僉傷 - 乨俌些 - 丂仧 - 仧儈 - 亸兩 - 乇伻偠 - 僾傉 - 以乌 - 侲倓 - 亢俐个 - 們俨 - 儕亙 - 冈 - 儏佧 - 乸 - 儻伀倰倏 - 伄以侬佘 - 倧亚倆僉傷亵 - 佁兽且 - 净偁净 - 佅儭 - 倵僫亠 - 凗丷侙 - 僸仴儫 - 丂主 - 佊亂倱 - 修 - 侭兑 - 凜伙佾 - 佺偁佺 - 偻倴偻倴 - 亿僛 - 仁 - 倭允 - 丢兑 - 减乑乚 - 儈俀 - 侢 - 乡俖倩 - 伸似傭 - 傶使侳 - 兊兺 - 乊 - 佂仞偩佦 - 乻兎 - 偛偀 - 乨乁傎亥 - 凜倅仚 - 乜倌 - 冂乏 - 儯俫冁 - 五净五 - 俈佝 - 七一亱 - 借 - 兠万兹 - 佊亂休倂 - 儃 - 僃仰 - 僒 - 冏仫冏 - 倝仲兀兢侌 - 亖倝偸兀兢侌三乺仆二 - 傔义僸 - 偋偷 - 仡乾 - 俉倕丶 - 他 - 丌像公侴 - 伙 - 丞乎余丈 - 倵傤 - 仉亖乪 - 仦 - 佥于 - 任佻 - 冭允书 - 例佧 - 云 - 八傃便 - 億丅 - 义 - 亻兣亻 - 亱俬 - 余 - 充 - 俬 - 先 - 一佹亱 - 佛儧 - 佊佡倱 - 仭 - 兰主 - 偛儠 - 伥 - 佁 - 儺倬仢 - 佸俨傝儖丬 - ▁具兆 - 倾 - 儂佢 - 兇兩 - 仍 - 乁 - 侵佥 - 丳 - 仏俍 - 准僥 - 侧僯 - 冣 - 住 - 倊亸亝 - 俙 - 偄儸 - 倫 - 习丶 - 他儁 - 乩傹乩傹 - 倣乣其 - 伳什偯伺亽 - 倵亠 - 丢倯 - 凜仚傕 - 伄俦 - 伕伏允 - 俳亖傏 - 佀儒冿 - 佄乞亴 - 傫 - 亭 - 倧亚倆 - 亀亵 - 供俌些 - 倜伖 - 冪 - 個儧乆 - 僶 - 伎僔侻 - 伛乃傺 - 从侔乮 - 偓乔 - 伄以乌侬佘 - 僜億 - 僉 - 傛俯俫 - 仉傏 - 冉俚冉 - 冊但 - 侬佘 - 人傰 - 傾偮 - 伇佧伕 - 乄佉 - 丑偁丏 - 侤 - 凑 - 侌军偦 - 停 - 仼亃八傃便亀 - 侥 - 佅亲 - 京偁京 - 僱 - 亀 - 伂兛僵 - 乄侑丨 - 倧亶倆僉傷亵 - 乧伥凓 - 俶 - 乁侪冲们倬 - 代 - 举 - 傭偧乆 - 侫亯侫 - ▁伋丕偁兙 - 俚亻 - 光倓俣 - 倬俕丳偣丷伂兛僵伖 - 人働 - 丷傇 - 伇偲 - 俍俒 - 俷 - 仏俍佴仅 - 几侭兑 - 仱佡伞 - 兊乡俖 - 偲伿 - 佱亣侚債 - 丐偊冡亯侮 - 偓僽偾 - 侌倒偦 - 儯俫亅 - 僾井侩 - 乧伡伥凓 - 儼 - 们凌侒侺 - 佷倬侨 - 倪丄倪 - 儢 - 倮 - 仾 - 佊伞 - 儯乛 - 凌侒 - 伊 - 亀偎 - 偡傲 - 伣僽倲 - 伇佧偲 - 佢伊 - 份冭 - 佱亣侚債俢 - 丌公侴 - 亣侚俢 - 体倰 - 僼 - 儻亗佁兽且偵乊倘乳予么亸 - 冉俚 - 仞偩 - 儋 - 伬丑伬 - 伸倩似仗 - 佊丆 - 仕 - 偵乊倘乳予 - 倭伏允书 - 僽乚 - 冪儑 - 丫乣亪 - 丢侭 - 丠与准侻 - 亗 - 傏伫 - 乨乁侪冲 - 兮倨众 - 丌倐 - 俭乌侬佘 - 倈 - 儼亴 - 伡伥 - 仑 - 兲凃乔 - 兲凃乔亠 - 丹伶丹 - 仏兖俘 - 傎 - ▁具作兆丰 - 儴倢儴 - 偵乊倘 - 佬儧 - 准侻 - 偷僣偷俄 - 丐倪 - 伣僽偾 - 七佭乫东 - 五偝伧偝 - 丂下丂 - 儇 - 乷仮主 - 冮 - 倜九 - 冣冿 - 倹乹倹兟 - 一亱 - ▁伋丕兙亯兙 - 代万 - 冋 - 儵丄儵 - 佂仞僺亓 - 丰倛 - 从僱乮倊 - 兵 - 価侟儅 - 丑伧丏 - 侟儅 - 儻伡伥凓 - 么侭侾 - 僢 - 产佧 - 估 - 仫 - 偊冡侮 - 佅 - 佦乖乼 - 伛乃 - 佴 - 儕 - 佱亣侚佞 - 僟 - 佳冟伦 - 倷丷傇 - 凖侼 - 伯侩傣俩乔亠 - 偓 - 兴 - 侶傓 - 佰 - 丯冥 - 仪倧亶倆 - 仉克傕 - 偺亯偺 - 亏倣乣其 - 乄偱倕 - 儲偺 - 亻佩亻 - 乺 - 仑亡 - 仏兖 - 倍减为 - ▁伋丕兙偁兙 - 俍凑 - 傾儺偮互 - 伛乃于 - 再上 - 五偝伧五 - 儦 - 儶 - 准 - 倉 - 份 - 冱 - 册 - 僈 - 亳 - 俥 - 侸 - 倦 - 促 - 个 - 众 - 六 - 偸 - 僐 - 决 - 倻 - 仯 - 侶 - 偃 - 偽 - 倀 - 儷 - 冐 - 伜 - 冸 - 倔 - 儌 - 且 - 俠 - 倖 - 侬 - 值 - 併 - 偯 - 儰 - 俰 - 傢 - 儽 - 價 - 僋 - 倁 - 傃 - 侒 - 储 - 佃 - 傂 - 偘 - 伨 - 佣 - 凞 - 僩 - 亦 - 儤 - 傸 - 傦 - 偍 - 乛 - 佽 - 仼 - 傼 - 但 - 冽 - 儝 - 农 - 倞 - 侪 - 兘 - 俏 - 偨 - 伲 - 债 - 凇 - 僂 - 伃 - 介 - 俕 - 丱 - 偣 - 佲 - 佫 - 傈 - 佶 - 亍 - 例 - 偪 - 俛 - 伮 - 兔 - 傗 - 兿 - 了 - 伫 - 儥 - 傑 - 冖 - 亡 - 傟 - 俑 - 仅 - 兂 - 倂 - 俓 - 僓 - 乵 - 偐 - 侄 - 偑 - 冹 - 冀 - 僆 - 凖 - 乥 - 伝 - 僖 - 傚 - 倗 - 冑 - 佮 - 产 - 仆 - 倄 - 冃 - 俞 - 儔 - 伺 - 健 - 偿 - 佼 - 候 - 儨 - 僀 - 优 - 儩 - 仚 - 僦 - 冞 - 傪 - 冩 - 仺 - 兛 - 儏 - 僬 - 八 - 乿 - 俵 - 內 - 俿 - 円 - 僳 - 乀 - 冦 - 冢 - 冻 - 冲 - 凧 - 僕 - 伪 - 儳 - 僎 - 兌 - 凅 - 傒 - 企 - 冺 - 作 - 冗 - 冊 - 偭 - 侷 - 凚 - 僻 - 傴 - 俪 - 傻 - 亥 - 俋 - 傀 - 値 - 侂 - 優 - 凟 - 冄 - 僵 - 公 - 傊 - 傷 - 俼 - 凉 - 儅 - 仌 - 冫 - 倸 - 傄 - 伦 - 休 - 冎 - 冧 - 儗 - 儎 - 傮 - 亩 - 兏 - 僭 - 凙 - 冘 - 倶 - 倽 - 僮 - 冟 - 倥 - 冾 - 傐 - 兓 - 凎 - 侴 - 伽 - 儆 - 伆 - 僨 - 伭 - 児 - 兯 - 催 - 养 - 儚 - 兦 - 儙 - 俁 - 偅 - 侗 - 冯 - 伓 - 僅 - 儡 - 凊 - 冴 - 冕 - 僰 - 儓 - 僪 - 冤 - 佇 - 僙 - 侟 - 偞 - 党 - 冠 - 位 - 具 - 並 - 伋 - 僡 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true use_preprocessor: true token_type: char src_token_type: bpe bpemodel: null src_bpemodel: data/token_list/src_bpe_unigram2000_rm_wavlm_large_21_km1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null tokenizer_encode_conf: null src_tokenizer_encode_conf: enable_sampling: true alpha: 0.4 nbest_size: -1 frontend: embed frontend_conf: embed_dim: 512 positional_dropout_rate: 0.1 specaug: specaug specaug_conf: apply_time_warp: false time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: false freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 preencoder: null preencoder_conf: {} encoder: e_branchformer encoder_conf: output_size: 256 attention_heads: 4 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest cgmlp_linear_units: 1024 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv1d1 layer_drop_rate: 0.0 linear_units: 1024 positionwise_layer_type: linear use_ffn: true macaron_ffn: true merge_conv_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 model: discrete_asr model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false required: - output_dir - src_token_list - token_list version: '202308' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mgmeskill/rl_course_vizdoom_health_gathering_supreme
mgmeskill
2023-09-15T22:44:36Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T22:44:26Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.94 +/- 4.18 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r mgmeskill/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
salim4n/Taxi-v3
salim4n
2023-09-15T21:48:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T21:48:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="salim4n/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
salim4n/q-FrozenLake-v1-4x4-noSlippery
salim4n
2023-09-15T21:45:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T21:45:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="salim4n/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hmbyt5-preliminary/byt5-small-english-german
hmbyt5-preliminary
2023-09-15T21:11:03Z
14
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "safetensors", "t5", "text2text-generation", "en", "de", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-11T09:31:37Z
--- license: mit language: - en - de --- # hmByT5 - Preliminary Language Models Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered: * English (British Library Corpus - Books) * German (Europeana Newspaper) More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5). # Pretraining We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU. Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax). # Evaluation on Downstream Tasks (NER) We evaluated the hmByT5 model on downstream tasks: | Model | English AjMC | German AjMC | French AjMC | Finnish NewsEye | Swedish NewsEye | Dutch ICDAR | French ICDAR | Avg. | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------|-----------------|--------------|--------------|------| | [`hmbyt5-preliminary/byt5-small-english-german`](https://huggingface.co/hmbyt5-preliminary/byt5-small-english-german) | 85.74 ± 0.72 | 87.45 ± 0.67 | 84.23 ± 0.65 | | | | | | # Acknowledgements Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
MohannadTak/ppo-LunarLander-v2-1e6
MohannadTak
2023-09-15T20:53:14Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T20:52:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.71 +/- 20.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vaiana/a2c-PandaReachDense-v3
vaiana
2023-09-15T20:47:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T20:41:58Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PygmalionAI/mythalion-13b
PygmalionAI
2023-09-15T20:30:08Z
2,716
158
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text generation", "instruct", "en", "dataset:PygmalionAI/PIPPA", "dataset:Open-Orca/OpenOrca", "dataset:Norquinal/claude_multiround_chat_30k", "dataset:jondurbin/airoboros-gpt4-1.4.1", "dataset:databricks/databricks-dolly-15k", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-05T12:45:18Z
--- language: - en thumbnail: null tags: - text generation - instruct pipeline_tag: text-generation inference: false license: llama2 datasets: - PygmalionAI/PIPPA - Open-Orca/OpenOrca - Norquinal/claude_multiround_chat_30k - jondurbin/airoboros-gpt4-1.4.1 - databricks/databricks-dolly-15k --- <h1 style="text-align: center">Mythalion 13B</h1> <h2 style="text-align: center">A merge of Pygmalion-2 13B and MythoMax 13B</h2> ## Model Details The long-awaited release of our new models based on Llama-2 is finally here. This model was created in collaboration with [Gryphe](https://huggingface.co/Gryphe), a mixture of our [Pygmalion-2 13B](https://huggingface.co/PygmalionAI/pygmalion-2-13b) and Gryphe's [Mythomax L2 13B](https://huggingface.co/Gryphe/MythoMax-L2-13b). Finer details of the merge are available in [our blogpost](https://pygmalionai.github.io/blog/posts/introducing_pygmalion_2/#mythalion-13b). According to our testers, this model seems to outperform MythoMax in RP/Chat. **Please make sure you follow the recommended generation settings for SillyTavern [here](https://pygmalionai.github.io/blog/posts/introducing_pygmalion_2/#sillytavern) for the best results!** This model is freely available for both commercial and non-commercial use, as per the Llama-2 license. ## Prompting This model can be prompted using both the Alpaca and [Pygmalion formatting](https://huggingface.co/PygmalionAI/pygmalion-2-13b#prompting). **Alpaca formatting**: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` **Pygmalion/Metharme formatting**: ``` <|system|>Enter RP mode. Pretend to be {{char}} whose persona follows: {{persona}} You shall reply to the user while staying in character, and generate long responses. <|user|>Hello!<|model|>{model's response goes here} ``` The model has been trained on prompts using three different roles, which are denoted by the following tokens: `<|system|>`, `<|user|>` and `<|model|>`. The `<|system|>` prompt can be used to inject out-of-channel information behind the scenes, while the `<|user|>` prompt should be used to indicate user input. The `<|model|>` token should then be used to indicate that the model should generate a response. These tokens can happen multiple times and be chained up to form a conversation history. ## Limitations and biases The intended use-case for this model is fictional writing for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. ## Acknowledgements We would like to thank [SpicyChat](https://spicychat.ai/) for sponsoring the training for the [Pygmalion-2 13B](https://huggingface.co/PygmalionAI/pygmalion-2-13b) model. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
Model-SafeTensors/mythalion-13b
Model-SafeTensors
2023-09-15T20:30:08Z
13
0
null
[ "pytorch", "safetensors", "llama", "text generation", "instruct", "text-generation", "en", "dataset:PygmalionAI/PIPPA", "dataset:Open-Orca/OpenOrca", "dataset:Norquinal/claude_multiround_chat_30k", "dataset:jondurbin/airoboros-gpt4-1.4.1", "dataset:databricks/databricks-dolly-15k", "license:llama2", "region:us" ]
text-generation
2024-11-19T00:32:28Z
--- language: - en thumbnail: null tags: - text generation - instruct pipeline_tag: text-generation inference: false license: llama2 datasets: - PygmalionAI/PIPPA - Open-Orca/OpenOrca - Norquinal/claude_multiround_chat_30k - jondurbin/airoboros-gpt4-1.4.1 - databricks/databricks-dolly-15k --- <h1 style="text-align: center">Mythalion 13B</h1> <h2 style="text-align: center">A merge of Pygmalion-2 13B and MythoMax 13B</h2> ## Model Details The long-awaited release of our new models based on Llama-2 is finally here. This model was created in collaboration with [Gryphe](https://huggingface.co/Gryphe), a mixture of our [Pygmalion-2 13B](https://huggingface.co/PygmalionAI/pygmalion-2-13b) and Gryphe's [Mythomax L2 13B](https://huggingface.co/Gryphe/MythoMax-L2-13b). Finer details of the merge are available in [our blogpost](https://pygmalionai.github.io/blog/posts/introducing_pygmalion_2/#mythalion-13b). According to our testers, this model seems to outperform MythoMax in RP/Chat. **Please make sure you follow the recommended generation settings for SillyTavern [here](https://pygmalionai.github.io/blog/posts/introducing_pygmalion_2/#sillytavern) for the best results!** This model is freely available for both commercial and non-commercial use, as per the Llama-2 license. ## Prompting This model can be prompted using both the Alpaca and [Pygmalion formatting](https://huggingface.co/PygmalionAI/pygmalion-2-13b#prompting). **Alpaca formatting**: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` **Pygmalion/Metharme formatting**: ``` <|system|>Enter RP mode. Pretend to be {{char}} whose persona follows: {{persona}} You shall reply to the user while staying in character, and generate long responses. <|user|>Hello!<|model|>{model's response goes here} ``` The model has been trained on prompts using three different roles, which are denoted by the following tokens: `<|system|>`, `<|user|>` and `<|model|>`. The `<|system|>` prompt can be used to inject out-of-channel information behind the scenes, while the `<|user|>` prompt should be used to indicate user input. The `<|model|>` token should then be used to indicate that the model should generate a response. These tokens can happen multiple times and be chained up to form a conversation history. ## Limitations and biases The intended use-case for this model is fictional writing for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. ## Acknowledgements We would like to thank [SpicyChat](https://spicychat.ai/) for sponsoring the training for the [Pygmalion-2 13B](https://huggingface.co/PygmalionAI/pygmalion-2-13b) model. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
QMB15/Mythomax-L2-13B-8bit-exl2
QMB15
2023-09-15T20:29:01Z
8
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-15T19:23:58Z
--- license: other language: - en --- This is an exllama V2 quantization of https://huggingface.co/Gryphe/MythoMax-L2-13b Uses a target bpw of 8, intended for best quality on cards like a 3090 or similar. Includes measurement.json for convenience of quantizing to other sizes. Calibration data: https://huggingface.co/datasets/wikitext/resolve/refs%2Fconvert%2Fparquet/wikitext-2-v1/test/0000.parquet An improved, potentially even perfected variant of MythoMix, my [MythoLogic-L2](https://huggingface.co/Gryphe/MythoLogic-L2-13b) and [Huginn](https://huggingface.co/The-Face-Of-Goonery/Huginn-13b-FP16) merge using a highly experimental tensor type merge technique. The main difference with MythoMix is that I allowed more of Huginn to intermingle with the single tensors located at the front and end of a model, resulting in increased coherency across the entire structure. The script and the acccompanying templates I used to produce both can [be found here](https://github.com/Gryphe/BlockMerge_Gradient/tree/main/YAML). This model is proficient at both roleplaying and storywriting due to its unique nature. Quantized models are available from TheBloke: [GGML](https://huggingface.co/TheBloke/MythoMax-L2-13B-GGML) - [GPTQ](https://huggingface.co/TheBloke/MythoMax-L2-13B-GPTQ) (You're the best!) ## Model details The idea behind this merge is that each layer is composed of several tensors, which are in turn responsible for specific functions. Using MythoLogic-L2's robust understanding as its input and Huginn's extensive writing capability as its output seems to have resulted in a model that exceeds at both, confirming my theory. (More details to be released at a later time) This type of merge is incapable of being illustrated, as each of its 363 tensors had an unique ratio applied to it. As with my prior merges, gradients were part of these ratios to further finetune its behaviour. ## Prompt Format This model primarily uses Alpaca formatting, so for optimal model performance, use: ``` <System prompt/Character Card> ### Instruction: Your instruction or question here. For roleplay purposes, I suggest the following - Write <CHAR NAME>'s next reply in a chat between <YOUR NAME> and <CHAR NAME>. Write a single reply only. ### Response: ``` --- license: other ---
QMB15/Stheno-L2-13B-8bit-exl2
QMB15
2023-09-15T20:28:39Z
10
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-15T20:07:08Z
--- license: llama2 language: - en --- This is a exllama V2 quantization of https://huggingface.co/TheBloke/Stheno-L2-13B-GPTQ Uses a target bpw of 8, intended for best quality on cards like a 3090 or similar. Includes measurement.json for convenience of quantizing to other sizes. Calibration data: https://huggingface.co/datasets/wikitext/resolve/refs%2Fconvert%2Fparquet/wikitext-2-v1/test/0000.parquet <img src="https://w.forfun.com/fetch/cb/cba2205390e517bea1ea60ca0b491af4.jpeg" style="width: 70%; min-width: 300px; display: block; margin: auto;"> An experimental merging of Several Models using two various methods, [Ties-Merge](https://github.com/cg123/ties-merge) and [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) I plan for this to be the base of my Model with my own [Stheno: ERP-Based LORA] merged in, some time in the future. Stheno: <br>Gradient Merge of Stheno-P1 & Stheno-P2. SISTER MODEL HERE: [Stheno-Inverted-L2-13B](https://huggingface.co/Sao10K/Stheno-Inverted-L2-13B) Quants courtesy of TheBloke! <br>[GPTQ](https://huggingface.co/TheBloke/Stheno-L2-13B-GPTQ) <br>[GGUF](https://huggingface.co/TheBloke/Stheno-L2-13B-GGUF) <br>[GGML](https://huggingface.co/TheBloke/Stheno-L2-13B-GGML) Test Checklist: <br>Censorship - Fairly Uncensored <br>Writing - Good Prose, Fairly Descriptive <br>NSFW - Yes <br>IQ Level - Pretty Smart <br>Formatting - Proper Formatting with Examples Stheno-P1 [Ties-Merge] <br>-----[elinas/chronos-13b-v2](https://huggingface.co/elinas/chronos-13b-v2) <br>-----[jondurbin/airoboros-l2-13b-2.1](https://huggingface.co/jondurbin/airoboros-l2-13b-2.1) <br>-----[NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)+[nRuaif/Kimiko-v2 **LORA**](https://huggingface.co/nRuaif/Kimiko-v2-13B) Stheno-P2 [Ties-Merge] <br>-----[CalderaAI/13B-Legerdemain-L2](https://huggingface.co/CalderaAI/13B-Legerdemain-L2)+[lemonilia/limarp-llama2-v2 **LORA**](https://huggingface.co/lemonilia/limarp-llama2-v2) <br>-----[ehartford/WizardLM-1.0-Uncensored-Llama2-13b](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-Llama2-13b) <br>-----[Henk717/spring-dragon](https://huggingface.co/Henk717/spring-dragon) Most formats could work, but my tests have all been done in Alpaca format and it works well. ``` ### Instruction: Your instruction or question here. For roleplay purposes, I suggest the following - Write <CHAR NAME>'s next reply in a chat between <YOUR NAME> and <CHAR NAME>. Write a single reply only. ### Response: ``` Below is the Illustration for the Final Merge: ![ILLUSTRATION](https://cdn-uploads.huggingface.co/production/uploads/64be6a5376a6e2efccc638c1/z4D6eun_5ee-k5Bnf0a0j.png) Once Again, thanks to [Chargoddard](https://huggingface.co/chargoddard) for his amazing and simple [ties-merge](https://github.com/cg123/ties-merge) script, and [Gryphe](https://huggingface.co/Gryphe) for their great [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) script. Thanks to the original model creators too! ``` Art by wada_kazu / わだかず (pixiv page private?) ```
DriveMyScream/Face_Image_Segementation
DriveMyScream
2023-09-15T20:18:08Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-09-15T19:26:54Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ncdisrup-ai/test_trainer
ncdisrup-ai
2023-09-15T20:12:07Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "en", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-15T17:32:02Z
--- license: apache-2.0 datasets: - imdb language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification ---
holtschn/heman-toy-lora-trained-sdxl
holtschn
2023-09-15T20:05:54Z
3
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-14T21:17:42Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of he-man tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - holtschn/heman-toy-lora-trained-sdxl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on photo of he-man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
microsoft/swin-tiny-patch4-window7-224
microsoft
2023-09-15T19:59:37Z
501,711
43
transformers
[ "transformers", "pytorch", "tf", "safetensors", "swin", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2103.14030", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer (tiny-sized model) Swin Transformer model trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swin) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224") model = AutoModelForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swin.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-14030, author = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo}, title = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, journal = {CoRR}, volume = {abs/2103.14030}, year = {2021}, url = {https://arxiv.org/abs/2103.14030}, eprinttype = {arXiv}, eprint = {2103.14030}, timestamp = {Thu, 08 Apr 2021 07:53:26 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
DriveMyScream/Image_SuperResolution
DriveMyScream
2023-09-15T19:59:32Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-09-15T19:25:52Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
AmrMorgado/ppo-Huggy
AmrMorgado
2023-09-15T19:55:20Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-15T19:55:14Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AmrMorgado/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
InexperiencedMe/ppo-Pyramids
InexperiencedMe
2023-09-15T19:50:26Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-15T19:50:23Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: InexperiencedMe/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bigscience/test-bloomd
bigscience
2023-09-15T19:43:20Z
8
0
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-24T16:04:45Z
This is an utility repo for testing inference methods. Please use [bigscience/bloom](https://huggingface.co/bigscience/bloom) to access the latest model.
ahsan-mavros/balanced-genai-training
ahsan-mavros
2023-09-15T19:39:25Z
102
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-15T19:32:51Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: balanced-genai-training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # balanced-genai-training This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0895 - Rouge1: 97.1196 - Rouge2: 88.8856 - Rougel: 97.1174 - Rougelsum: 97.1196 - Gen Len: 5.3088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1037 | 1.0 | 1226 | 0.0895 | 97.1196 | 88.8856 | 97.1174 | 97.1196 | 5.3088 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.12.0+cu102 - Datasets 2.14.5 - Tokenizers 0.13.3
heroisclub/superia
heroisclub
2023-09-15T19:25:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-15T19:25:18Z
--- license: creativeml-openrail-m ---
davera-017/Pixelcopter-PLE-v5
davera-017
2023-09-15T19:12:43Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T19:12:38Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v5 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.30 +/- 14.28 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
felixquinihildebet/PPO_agent
felixquinihildebet
2023-09-15T19:04:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T18:15:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.35 +/- 27.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SadiulArefin/flan-t5-xlsum
SadiulArefin
2023-09-15T18:50:35Z
19
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xlsum", "base_model:SadiulArefin/flan-t5-xlsum", "base_model:finetune:SadiulArefin/flan-t5-xlsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-14T16:51:58Z
--- license: apache-2.0 base_model: SadiulArefin/flan-t5-xlsum tags: - generated_from_trainer datasets: - xlsum model-index: - name: flan-t5-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-xlsum This model is a fine-tuned version of [SadiulArefin/flan-t5-xlsum](https://huggingface.co/SadiulArefin/flan-t5-xlsum) on the xlsum dataset. It achieves the following results on the evaluation set: - eval_loss: 1.8182 - eval_runtime: 293.1995 - eval_samples_per_second: 39.342 - eval_steps_per_second: 4.918 - epoch: 1.0 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
thebitanpaul/midjourneyPromptGenerator
thebitanpaul
2023-09-15T18:40:51Z
0
2
null
[ "region:us" ]
null
2023-09-15T11:49:58Z
# Midjourney Prompt Generator This Midjourney prompt generator makes digital creators life easier by generating some specific prompts for Midjourney which enables them to generate more accurate and realistic images as per their needs. ## Use Midjouney Prompt Generator You can make a copy of this collab notebook to use my Midjourney Prompt Generator: https://drive.google.com/file/d/1gyeQZGuu18LoX3rZKIUBTrDhhXM5TBfZ/view?usp=sharing ## Documentation This repository contains a fine-tuned Falcon 7b Language Model (LLM) designed for generating realistic Midjourney prompts from simple instructions. With this model, you can effortlessly obtain detailed prompts for your projects. Just provide a straightforward instruction, and let Falcon 7b LLM provide you with the creative and technical prompts you need. Improve your creative writing, brainstorm ideas, and enhance your project development process. Explore the power of Falcon 7b LLM for your Midjourney needs. ## Tech Stack **NoteBook:** Google Collab **LLM Model:** Falcon 7b **Data Set Generator:** RelevanceAI **Deep Learning Model:** Transformer **VCS:** GitHub **Model saved at:** Hugging Face ## Demo https://github.com/thebitanpaul/movie-guide/assets/99794785/ffe53cb3-0a57-477b-90dd-df4a9420de63 ## Key Features - Put any simple instruction and the finetuned Falcon 7b LLM model will provide you some detailed prompts to generate realistic Midjourney results. ## OutPut ![Screenshot 2023-09-15 at 9 36 29 PM](https://github.com/thebitanpaul/movie-guide/assets/99794785/a15a7a14-3746-45a8-985e-b57356ac7aec) ![Screenshot 2023-09-15 at 9 36 38 PM](https://github.com/thebitanpaul/movie-guide/assets/99794785/ee03002b-e656-4b06-8893-38839911c221) ## Lessons Learned - This app made me more confident in Large Language Models (LLM). - Learned how LLM models are fine tuned for more domain specific usage. - I learned how to use Hugging Face and RelevanceAi for data set creation. - I have also learned how Transformers work in deep learning. - Also learned various implementations of Falcon 7b. ## About Me I am an AI and Machine Learning enthusiast & growing Android Developer with some keen interest in Data Analytics and LLM. I have worked on Android Studio, MySQL workbench, Microsoft Power Automate, Azure Cloud, platforms. ## 🔗 Links [![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/thebitanpaul) [![twitter](https://img.shields.io/badge/twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://twitter.com/thebitanpaul_) --- license: apache-2.0 ---
bartmiller/ppo-LunarLander-v2
bartmiller
2023-09-15T18:34:04Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T18:33:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.30 +/- 25.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PHL99/poca-SoccerTwos
PHL99
2023-09-15T18:31:30Z
56
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-15T18:30:58Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: PHL99/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fetiska/mr.Balance
fetiska
2023-09-15T18:29:29Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T18:29:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: mr.Balance results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
STomoya/resnet101.st_safebooru_1k
STomoya
2023-09-15T18:29:24Z
15
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "license:apache-2.0", "region:us" ]
image-classification
2023-09-15T18:28:32Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 --- # Model card for resnet101.st_safebooru_1k ## Model Details - **metrics:** |Precision|Recall|F1-score| |-|-|-| |0.7964836031495733|0.43972587789142964|0.5411210968446176|
bryandts/image_classification_face
bryandts
2023-09-15T18:26:53Z
19
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-15T17:15:56Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification_face results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification_face This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1157 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.6266 | 0.475 | | No log | 2.0 | 80 | 1.3303 | 0.5375 | | No log | 3.0 | 120 | 1.2399 | 0.525 | | No log | 4.0 | 160 | 1.1779 | 0.5563 | | No log | 5.0 | 200 | 1.1825 | 0.55 | | No log | 6.0 | 240 | 1.1564 | 0.5875 | | No log | 7.0 | 280 | 1.1258 | 0.6125 | | No log | 8.0 | 320 | 1.1154 | 0.625 | | No log | 9.0 | 360 | 1.1169 | 0.6062 | | No log | 10.0 | 400 | 1.1155 | 0.625 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
gmongaras/Wizard_7B_Squad_v2
gmongaras
2023-09-15T18:20:30Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-15T17:36:25Z
--- license: openrail --- Model from: https://huggingface.co/TheBloke/wizardLM-7B-HF/tree/main Trained on: https://huggingface.co/datasets/squad Model trained for 6000 steps, batch size of 8, 2 accumulations steps.
ukeme/sgservices-base-sentence-transformer
ukeme
2023-09-15T18:12:25Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "dataset:embedding-data/sentence-compression", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-03T11:11:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - embedding-data/sentence-compression --- # ukeme/sgservices-base-sentence-transformer This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ukeme/sgservices-base-sentence-transformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ukeme/sgservices-base-sentence-transformer') model = AutoModel.from_pretrained('ukeme/sgservices-base-sentence-transformer') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ukeme/sgservices-base-sentence-transformer) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dimfeld/BioLinkBERT-large-feat
dimfeld
2023-09-15T18:10:50Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "exbert", "linkbert", "biolinkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:pubmed", "arxiv:2203.15827", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-05-19T20:54:06Z
--- license: apache-2.0 language: en datasets: - pubmed tags: - bert - exbert - linkbert - biolinkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification widget: - text: Sunitinib is a tyrosine kinase inhibitor duplicated_from: michiyasunaga/BioLinkBERT-large pipeline_tag: feature-extraction --- ## BioLinkBERT-large **This is identical to `michiyasunaga/BioLinkBERT-large` except the pipeline tag in the model card was changed to feature-extraction.** BioLinkBERT-large model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large') model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large') inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art. | | BLURB score | PubMedQA | BioASQ | MedQA-USMLE | | ---------------------- | -------- | -------- | ------- | -------- | | PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 | | **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** | | **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** | | | MMLU-professional medicine | | ---------------------- | -------- | | GPT-3 (175 params) | 38.7 | | UnifiedQA (11B params) | 43.2 | | **BioLinkBERT-large (340M params)** | **50.7** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
jfriduss/bert_for_job_descr_parsing
jfriduss
2023-09-15T18:01:37Z
104
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "base_model:jjzha/jobbert_knowledge_extraction", "base_model:finetune:jjzha/jobbert_knowledge_extraction", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-15T18:00:12Z
--- base_model: jjzha/jobbert_knowledge_extraction tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tok_train_info results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tok_train_info This model is a fine-tuned version of [jjzha/jobbert_knowledge_extraction](https://huggingface.co/jjzha/jobbert_knowledge_extraction) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2616 - Precision: 0.5755 - Recall: 0.5980 - F1: 0.5865 - Accuracy: 0.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 20 | 0.4390 | 0.3790 | 0.4608 | 0.4159 | 0.8845 | | No log | 2.0 | 40 | 0.2831 | 0.5321 | 0.5686 | 0.5498 | 0.9034 | | No log | 3.0 | 60 | 0.2616 | 0.5755 | 0.5980 | 0.5865 | 0.9072 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/sagisawa_fumika_idolmastercinderellagirls
CyberHarem
2023-09-15T17:49:52Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/sagisawa_fumika_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-15T17:32:25Z
--- license: mit datasets: - CyberHarem/sagisawa_fumika_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of sagisawa_fumika_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5500, you need to download `5500/sagisawa_fumika_idolmastercinderellagirls.pt` as the embedding and `5500/sagisawa_fumika_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5500**, with the score of 0.962. The trigger words are: 1. `sagisawa_fumika_idolmastercinderellagirls` 2. `long_hair, blue_eyes, black_hair, blush, hairband, breasts, large_breasts, hair_between_eyes, bangs, jewelry, collarbone` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7500 | 0.948 | [Download](7500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-7500](7500/previews/pattern_1.png) | ![pattern_2-7500](7500/previews/pattern_2.png) | ![pattern_3-7500](7500/previews/pattern_3.png) | ![pattern_4-7500](7500/previews/pattern_4.png) | ![pattern_5-7500](7500/previews/pattern_5.png) | ![pattern_6-7500](7500/previews/pattern_6.png) | ![pattern_7-7500](7500/previews/pattern_7.png) | ![pattern_8-7500](7500/previews/pattern_8.png) | ![pattern_9-7500](7500/previews/pattern_9.png) | ![pattern_10-7500](7500/previews/pattern_10.png) | ![pattern_11-7500](7500/previews/pattern_11.png) | [<NSFW, click to see>](7500/previews/bikini.png) | [<NSFW, click to see>](7500/previews/bondage.png) | ![free-7500](7500/previews/free.png) | ![maid-7500](7500/previews/maid.png) | ![miko-7500](7500/previews/miko.png) | [<NSFW, click to see>](7500/previews/nude.png) | [<NSFW, click to see>](7500/previews/nude2.png) | ![suit-7500](7500/previews/suit.png) | ![yukata-7500](7500/previews/yukata.png) | | 7000 | 0.942 | [Download](7000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-7000](7000/previews/pattern_1.png) | ![pattern_2-7000](7000/previews/pattern_2.png) | ![pattern_3-7000](7000/previews/pattern_3.png) | ![pattern_4-7000](7000/previews/pattern_4.png) | ![pattern_5-7000](7000/previews/pattern_5.png) | ![pattern_6-7000](7000/previews/pattern_6.png) | ![pattern_7-7000](7000/previews/pattern_7.png) | ![pattern_8-7000](7000/previews/pattern_8.png) | ![pattern_9-7000](7000/previews/pattern_9.png) | ![pattern_10-7000](7000/previews/pattern_10.png) | ![pattern_11-7000](7000/previews/pattern_11.png) | [<NSFW, click to see>](7000/previews/bikini.png) | [<NSFW, click to see>](7000/previews/bondage.png) | ![free-7000](7000/previews/free.png) | ![maid-7000](7000/previews/maid.png) | ![miko-7000](7000/previews/miko.png) | [<NSFW, click to see>](7000/previews/nude.png) | [<NSFW, click to see>](7000/previews/nude2.png) | ![suit-7000](7000/previews/suit.png) | ![yukata-7000](7000/previews/yukata.png) | | 6500 | 0.951 | [Download](6500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-6500](6500/previews/pattern_1.png) | ![pattern_2-6500](6500/previews/pattern_2.png) | ![pattern_3-6500](6500/previews/pattern_3.png) | ![pattern_4-6500](6500/previews/pattern_4.png) | ![pattern_5-6500](6500/previews/pattern_5.png) | ![pattern_6-6500](6500/previews/pattern_6.png) | ![pattern_7-6500](6500/previews/pattern_7.png) | ![pattern_8-6500](6500/previews/pattern_8.png) | ![pattern_9-6500](6500/previews/pattern_9.png) | ![pattern_10-6500](6500/previews/pattern_10.png) | ![pattern_11-6500](6500/previews/pattern_11.png) | [<NSFW, click to see>](6500/previews/bikini.png) | [<NSFW, click to see>](6500/previews/bondage.png) | ![free-6500](6500/previews/free.png) | ![maid-6500](6500/previews/maid.png) | ![miko-6500](6500/previews/miko.png) | [<NSFW, click to see>](6500/previews/nude.png) | [<NSFW, click to see>](6500/previews/nude2.png) | ![suit-6500](6500/previews/suit.png) | ![yukata-6500](6500/previews/yukata.png) | | 6000 | 0.947 | [Download](6000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | ![pattern_9-6000](6000/previews/pattern_9.png) | ![pattern_10-6000](6000/previews/pattern_10.png) | ![pattern_11-6000](6000/previews/pattern_11.png) | [<NSFW, click to see>](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | **5500** | **0.962** | [**Download**](5500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-5500](5500/previews/pattern_1.png) | ![pattern_2-5500](5500/previews/pattern_2.png) | ![pattern_3-5500](5500/previews/pattern_3.png) | ![pattern_4-5500](5500/previews/pattern_4.png) | ![pattern_5-5500](5500/previews/pattern_5.png) | ![pattern_6-5500](5500/previews/pattern_6.png) | ![pattern_7-5500](5500/previews/pattern_7.png) | ![pattern_8-5500](5500/previews/pattern_8.png) | ![pattern_9-5500](5500/previews/pattern_9.png) | ![pattern_10-5500](5500/previews/pattern_10.png) | ![pattern_11-5500](5500/previews/pattern_11.png) | [<NSFW, click to see>](5500/previews/bikini.png) | [<NSFW, click to see>](5500/previews/bondage.png) | ![free-5500](5500/previews/free.png) | ![maid-5500](5500/previews/maid.png) | ![miko-5500](5500/previews/miko.png) | [<NSFW, click to see>](5500/previews/nude.png) | [<NSFW, click to see>](5500/previews/nude2.png) | ![suit-5500](5500/previews/suit.png) | ![yukata-5500](5500/previews/yukata.png) | | 5000 | 0.940 | [Download](5000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-5000](5000/previews/pattern_1.png) | ![pattern_2-5000](5000/previews/pattern_2.png) | ![pattern_3-5000](5000/previews/pattern_3.png) | ![pattern_4-5000](5000/previews/pattern_4.png) | ![pattern_5-5000](5000/previews/pattern_5.png) | ![pattern_6-5000](5000/previews/pattern_6.png) | ![pattern_7-5000](5000/previews/pattern_7.png) | ![pattern_8-5000](5000/previews/pattern_8.png) | ![pattern_9-5000](5000/previews/pattern_9.png) | ![pattern_10-5000](5000/previews/pattern_10.png) | ![pattern_11-5000](5000/previews/pattern_11.png) | [<NSFW, click to see>](5000/previews/bikini.png) | [<NSFW, click to see>](5000/previews/bondage.png) | ![free-5000](5000/previews/free.png) | ![maid-5000](5000/previews/maid.png) | ![miko-5000](5000/previews/miko.png) | [<NSFW, click to see>](5000/previews/nude.png) | [<NSFW, click to see>](5000/previews/nude2.png) | ![suit-5000](5000/previews/suit.png) | ![yukata-5000](5000/previews/yukata.png) | | 4500 | 0.946 | [Download](4500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-4500](4500/previews/pattern_1.png) | ![pattern_2-4500](4500/previews/pattern_2.png) | ![pattern_3-4500](4500/previews/pattern_3.png) | ![pattern_4-4500](4500/previews/pattern_4.png) | ![pattern_5-4500](4500/previews/pattern_5.png) | ![pattern_6-4500](4500/previews/pattern_6.png) | ![pattern_7-4500](4500/previews/pattern_7.png) | ![pattern_8-4500](4500/previews/pattern_8.png) | ![pattern_9-4500](4500/previews/pattern_9.png) | ![pattern_10-4500](4500/previews/pattern_10.png) | ![pattern_11-4500](4500/previews/pattern_11.png) | [<NSFW, click to see>](4500/previews/bikini.png) | [<NSFW, click to see>](4500/previews/bondage.png) | ![free-4500](4500/previews/free.png) | ![maid-4500](4500/previews/maid.png) | ![miko-4500](4500/previews/miko.png) | [<NSFW, click to see>](4500/previews/nude.png) | [<NSFW, click to see>](4500/previews/nude2.png) | ![suit-4500](4500/previews/suit.png) | ![yukata-4500](4500/previews/yukata.png) | | 4000 | 0.943 | [Download](4000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | ![pattern_2-4000](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![pattern_4-4000](4000/previews/pattern_4.png) | ![pattern_5-4000](4000/previews/pattern_5.png) | ![pattern_6-4000](4000/previews/pattern_6.png) | ![pattern_7-4000](4000/previews/pattern_7.png) | ![pattern_8-4000](4000/previews/pattern_8.png) | ![pattern_9-4000](4000/previews/pattern_9.png) | ![pattern_10-4000](4000/previews/pattern_10.png) | ![pattern_11-4000](4000/previews/pattern_11.png) | [<NSFW, click to see>](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3500 | 0.945 | [Download](3500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-3500](3500/previews/pattern_1.png) | ![pattern_2-3500](3500/previews/pattern_2.png) | ![pattern_3-3500](3500/previews/pattern_3.png) | ![pattern_4-3500](3500/previews/pattern_4.png) | ![pattern_5-3500](3500/previews/pattern_5.png) | ![pattern_6-3500](3500/previews/pattern_6.png) | ![pattern_7-3500](3500/previews/pattern_7.png) | ![pattern_8-3500](3500/previews/pattern_8.png) | ![pattern_9-3500](3500/previews/pattern_9.png) | ![pattern_10-3500](3500/previews/pattern_10.png) | ![pattern_11-3500](3500/previews/pattern_11.png) | [<NSFW, click to see>](3500/previews/bikini.png) | [<NSFW, click to see>](3500/previews/bondage.png) | ![free-3500](3500/previews/free.png) | ![maid-3500](3500/previews/maid.png) | ![miko-3500](3500/previews/miko.png) | [<NSFW, click to see>](3500/previews/nude.png) | [<NSFW, click to see>](3500/previews/nude2.png) | ![suit-3500](3500/previews/suit.png) | ![yukata-3500](3500/previews/yukata.png) | | 3000 | 0.939 | [Download](3000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | ![pattern_7-3000](3000/previews/pattern_7.png) | ![pattern_8-3000](3000/previews/pattern_8.png) | ![pattern_9-3000](3000/previews/pattern_9.png) | ![pattern_10-3000](3000/previews/pattern_10.png) | ![pattern_11-3000](3000/previews/pattern_11.png) | [<NSFW, click to see>](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2500 | 0.907 | [Download](2500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-2500](2500/previews/pattern_1.png) | ![pattern_2-2500](2500/previews/pattern_2.png) | ![pattern_3-2500](2500/previews/pattern_3.png) | ![pattern_4-2500](2500/previews/pattern_4.png) | ![pattern_5-2500](2500/previews/pattern_5.png) | ![pattern_6-2500](2500/previews/pattern_6.png) | ![pattern_7-2500](2500/previews/pattern_7.png) | ![pattern_8-2500](2500/previews/pattern_8.png) | ![pattern_9-2500](2500/previews/pattern_9.png) | ![pattern_10-2500](2500/previews/pattern_10.png) | ![pattern_11-2500](2500/previews/pattern_11.png) | [<NSFW, click to see>](2500/previews/bikini.png) | [<NSFW, click to see>](2500/previews/bondage.png) | ![free-2500](2500/previews/free.png) | ![maid-2500](2500/previews/maid.png) | ![miko-2500](2500/previews/miko.png) | [<NSFW, click to see>](2500/previews/nude.png) | [<NSFW, click to see>](2500/previews/nude2.png) | ![suit-2500](2500/previews/suit.png) | ![yukata-2500](2500/previews/yukata.png) | | 2000 | 0.925 | [Download](2000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | ![pattern_2-2000](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![pattern_4-2000](2000/previews/pattern_4.png) | ![pattern_5-2000](2000/previews/pattern_5.png) | ![pattern_6-2000](2000/previews/pattern_6.png) | ![pattern_7-2000](2000/previews/pattern_7.png) | ![pattern_8-2000](2000/previews/pattern_8.png) | ![pattern_9-2000](2000/previews/pattern_9.png) | ![pattern_10-2000](2000/previews/pattern_10.png) | ![pattern_11-2000](2000/previews/pattern_11.png) | [<NSFW, click to see>](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1500 | 0.926 | [Download](1500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![pattern_4-1500](1500/previews/pattern_4.png) | ![pattern_5-1500](1500/previews/pattern_5.png) | ![pattern_6-1500](1500/previews/pattern_6.png) | ![pattern_7-1500](1500/previews/pattern_7.png) | ![pattern_8-1500](1500/previews/pattern_8.png) | ![pattern_9-1500](1500/previews/pattern_9.png) | ![pattern_10-1500](1500/previews/pattern_10.png) | ![pattern_11-1500](1500/previews/pattern_11.png) | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/bondage.png) | ![free-1500](1500/previews/free.png) | ![maid-1500](1500/previews/maid.png) | ![miko-1500](1500/previews/miko.png) | [<NSFW, click to see>](1500/previews/nude.png) | [<NSFW, click to see>](1500/previews/nude2.png) | ![suit-1500](1500/previews/suit.png) | ![yukata-1500](1500/previews/yukata.png) | | 1000 | 0.897 | [Download](1000/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![pattern_4-1000](1000/previews/pattern_4.png) | ![pattern_5-1000](1000/previews/pattern_5.png) | ![pattern_6-1000](1000/previews/pattern_6.png) | ![pattern_7-1000](1000/previews/pattern_7.png) | ![pattern_8-1000](1000/previews/pattern_8.png) | ![pattern_9-1000](1000/previews/pattern_9.png) | ![pattern_10-1000](1000/previews/pattern_10.png) | ![pattern_11-1000](1000/previews/pattern_11.png) | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/bondage.png) | ![free-1000](1000/previews/free.png) | ![maid-1000](1000/previews/maid.png) | ![miko-1000](1000/previews/miko.png) | [<NSFW, click to see>](1000/previews/nude.png) | [<NSFW, click to see>](1000/previews/nude2.png) | ![suit-1000](1000/previews/suit.png) | ![yukata-1000](1000/previews/yukata.png) | | 500 | 0.935 | [Download](500/sagisawa_fumika_idolmastercinderellagirls.zip) | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![pattern_4-500](500/previews/pattern_4.png) | ![pattern_5-500](500/previews/pattern_5.png) | ![pattern_6-500](500/previews/pattern_6.png) | ![pattern_7-500](500/previews/pattern_7.png) | ![pattern_8-500](500/previews/pattern_8.png) | ![pattern_9-500](500/previews/pattern_9.png) | ![pattern_10-500](500/previews/pattern_10.png) | ![pattern_11-500](500/previews/pattern_11.png) | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/bondage.png) | ![free-500](500/previews/free.png) | ![maid-500](500/previews/maid.png) | ![miko-500](500/previews/miko.png) | [<NSFW, click to see>](500/previews/nude.png) | [<NSFW, click to see>](500/previews/nude2.png) | ![suit-500](500/previews/suit.png) | ![yukata-500](500/previews/yukata.png) |
imvladikon/wav2vec2-xls-r-300m-lm-hebrew
imvladikon
2023-09-15T17:46:17Z
18
1
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "he", "robust-speech-event", "dataset:imvladikon/hebrew_speech_kan", "dataset:imvladikon/hebrew_speech_coursera", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - he license: apache-2.0 tags: - generated_from_trainer - he - robust-speech-event datasets: - imvladikon/hebrew_speech_kan - imvladikon/hebrew_speech_coursera metrics: - wer base_model: facebook/wav2vec2-xls-r-300m model-index: - name: wav2vec2-xls-r-300m-lm-hebrew results: [] --- # wav2vec2-xls-r-300m-lm-hebrew This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset with adding ngram models according to [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram) ## Usage check package: https://github.com/imvladikon/wav2vec2-hebrew or use transformers pipeline: ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "imvladikon/wav2vec2-xls-r-300m-lm-hebrew" sample_iter = iter(load_dataset("google/fleurs", "he_il", split="test", streaming=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), sample["audio"]["sampling_rate"], 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text print(transcription) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
achimoraites/roberta-base_ag_news
achimoraites
2023-09-15T17:35:35Z
20
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "en", "dataset:ag_news", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T20:55:04Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - ag_news widget: - text: Oil and Economy Cloud Stocks' Outlook (Reuters) Reuters - Soaring crude prices plus worries\about the economy and the outlook for earnings are expected to\hang over the stock market next week during the depth of the\summer doldrums - text: Prediction Unit Helps Forecast Wildfires (AP) AP - It's barely dawn when Mike Fitzpatrick starts his shift with a blur of colorful maps, figures and endless charts, but already he knows what the day will bring. Lightning will strike in places he expects. Winds will pick up, moist places will dry and flames will roar - text: Venezuelans Flood Polls, Voting Extended CARACAS, Venezuela (Reuters) - Venezuelans voted in huge numbers on Sunday in a historic referendum on whether to recall left-wing President Hugo Chavez and electoral authorities prolonged voting well into the night. pipeline_tag: text-classification base_model: roberta-base model-index: - name: roberta-base_ag_news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_ag_news This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.3583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3692 | 1.0 | 7500 | 0.4305 | | 1.6035 | 2.0 | 15000 | 1.8071 | | 0.6766 | 3.0 | 22500 | 0.4494 | | 0.3733 | 4.0 | 30000 | 0.3943 | | 0.2483 | 5.0 | 37500 | 0.3583 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
kalhosni/llama2finetune-v1
kalhosni
2023-09-15T17:11:37Z
5
0
adapter-transformers
[ "adapter-transformers", "tensorboard", "autotrain", "text-generation", "en", "dataset:aboonaji/alpaca_micro_demo", "license:apache-2.0", "region:us" ]
text-generation
2023-09-15T16:27:18Z
--- tags: - autotrain - text-generation widget: - text: 'I love AutoTrain because ' license: apache-2.0 datasets: - aboonaji/alpaca_micro_demo language: - en library_name: adapter-transformers --- # Model Trained Using AutoTrain Code for Training: from transformers import AutoTokenizer import transformers import torch model = "meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( 'I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?\n', do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}")
ys7yoo/sts_klue_roberta_large_ep9
ys7yoo
2023-09-15T17:11:18Z
93
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:klue/roberta-large", "base_model:finetune:klue/roberta-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-15T16:38:52Z
--- base_model: klue/roberta-large tags: - generated_from_trainer datasets: - klue model-index: - name: sts_klue_roberta_large_ep9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sts_klue_roberta_large_ep9 This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3567 - Mse: 0.3567 - Mae: 0.4407 - R2: 0.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 1.3093 | 1.0 | 183 | 0.4915 | 0.4915 | 0.5401 | 0.7750 | | 0.2188 | 2.0 | 366 | 0.4399 | 0.4399 | 0.4982 | 0.7986 | | 0.1327 | 3.0 | 549 | 0.4022 | 0.4022 | 0.4647 | 0.8158 | | 0.1043 | 4.0 | 732 | 0.4094 | 0.4094 | 0.4680 | 0.8125 | | 0.074 | 5.0 | 915 | 0.4218 | 0.4218 | 0.4784 | 0.8069 | | 0.0552 | 6.0 | 1098 | 0.3424 | 0.3424 | 0.4356 | 0.8432 | | 0.0394 | 7.0 | 1281 | 0.3925 | 0.3925 | 0.4691 | 0.8203 | | 0.031 | 8.0 | 1464 | 0.3723 | 0.3723 | 0.4510 | 0.8295 | | 0.0234 | 9.0 | 1647 | 0.3567 | 0.3567 | 0.4407 | 0.8367 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
kear24100712/piconai321
kear24100712
2023-09-15T17:06:43Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-13T22:43:39Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: piconia321 tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
facebook/dinov2-large-imagenet1k-1-layer
facebook
2023-09-15T16:37:58Z
1,370
1
transformers
[ "transformers", "pytorch", "safetensors", "dinov2", "image-classification", "dino", "vision", "dataset:imagenet-1k", "arxiv:2304.07193", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-14T20:04:10Z
--- license: apache-2.0 tags: - dino - vision datasets: - imagenet-1k --- # Vision Transformer (large-sized model) trained using DINOv2 Vision Transformer (ViT) model trained using the DINOv2 method. It was introduced in the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion. Images are presented to the model as a sequence of fixed-size patches, which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the model for classifying an image among one of the [1000 ImageNet labels](https://huggingface.co/datasets/huggingface/label-files/blob/main/imagenet-1k-id2label.json). See the [model hub](https://huggingface.co/models?search=facebook/dinov2) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-large-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-large-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ### BibTeX entry and citation info ```bibtex misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
ys7yoo/nli_sts_klue_roberta_large_ep1_ep1
ys7yoo
2023-09-15T16:34:55Z
118
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:ys7yoo/nli_klue_roberta_large_ep1", "base_model:finetune:ys7yoo/nli_klue_roberta_large_ep1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-15T16:22:46Z
--- base_model: ys7yoo/nli_klue_roberta_large_ep1 tags: - generated_from_trainer datasets: - klue model-index: - name: sts_ys7yoo_nli_klue_roberta_large_ep1_ep1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sts_ys7yoo_nli_klue_roberta_large_ep1_ep1 This model is a fine-tuned version of [ys7yoo/nli_klue_roberta_large_ep1](https://huggingface.co/ys7yoo/nli_klue_roberta_large_ep1) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4267 - Mse: 0.4267 - Mae: 0.4852 - R2: 0.8046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.5163 | 1.0 | 183 | 0.4267 | 0.4267 | 0.4852 | 0.8046 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
dracero/ppo-LunarLander-v2-16-08-52023
dracero
2023-09-15T16:25:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T16:25:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.46 +/- 23.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lobodav/dogbooth
lobodav
2023-09-15T16:20:45Z
2
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-15T14:30:30Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - lobodav/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
SNavgale/donut-demo
SNavgale
2023-09-15T16:20:07Z
50
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "en", "license:unlicense", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-15T12:07:21Z
--- license: unlicense language: - en ---
c-g/ppo-LunarLander-v2
c-g
2023-09-15T16:18:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-15T16:18:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.53 +/- 17.16 name: mean_reward verified: false --- # **PPO-MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO-MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
stefan-it/umt5-small
stefan-it
2023-09-15T16:08:35Z
97
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "umt5", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-06T08:56:25Z
--- license: mit --- # umT5 Small The UMT5 model was proposed in [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. The abstract from the paper is the following: *Pretrained multilingual large language models have typically used heuristic temperature-based sampling to balance between different languages. However previous work has not systematically evaluated the efficacy of different pretraining language distributions across model scales. In this paper, we propose a new sampling method, UniMax, that delivers more uniform coverage of head languages while mitigating overfitting on tail languages by explicitly capping the number of repeats over each language's corpus. We perform an extensive series of ablations testing a range of sampling strategies on a suite of multilingual benchmarks, while varying model scale. We find that UniMax outperforms standard temperature-based sampling, and the benefits persist as scale increases. As part of our contribution, we release: (i) an improved and refreshed mC4 multilingual corpus consisting of 29 trillion characters across 107 languages, and (ii) a suite of pretrained umT5 model checkpoints trained with UniMax sampling.* # Integration into Transformers Overview of umT5 model integration: * Transformers Integration is on-going, see this awesome [PR](https://github.com/huggingface/transformers/pull/22626) by @agemagician! * Conversion script (umT5X checkpoints to FLAX) is [here](https://gist.github.com/stefan-it/5d6a4ec89e7ad97181983881434cb4eb).
TinyPixel/qlora-main-2
TinyPixel
2023-09-15T15:56:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T00:27:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
elenaThevalley/mobilenet_v2_1.0_224-finetuned-32bs-0.1lr
elenaThevalley
2023-09-15T15:46:28Z
194
0
transformers
[ "transformers", "pytorch", "mobilenet_v2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/mobilenet_v2_1.0_224", "base_model:finetune:google/mobilenet_v2_1.0_224", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-13T07:59:23Z
--- license: other base_model: google/mobilenet_v2_1.0_224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mobilenet_v2_1.0_224-finetuned-32bs-0.1lr results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6468862515002001 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilenet_v2_1.0_224-finetuned-32bs-0.1lr This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9270 - Accuracy: 0.6469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 53 | 1.3949 | 0.4049 | | No log | 1.99 | 107 | 1.0455 | 0.5819 | | No log | 2.96 | 159 | 0.9270 | 0.6469 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ashwincv0112/code-llama-python-finetune2
ashwincv0112
2023-09-15T15:33:39Z
1
0
peft
[ "peft", "pytorch", "codegen", "region:us" ]
null
2023-09-15T10:01:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
paturi1710/fb-detr-table_detection_v1.0
paturi1710
2023-09-15T15:30:19Z
214
0
transformers
[ "transformers", "pytorch", "tensorboard", "detr", "object-detection", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-09-15T13:23:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: fb-detr-table_detection_v1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fb-detr-table_detection_v1.0 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1131 | 1.21 | 20 | 1.3387 | | 1.7233 | 2.42 | 40 | 1.1735 | | 1.4974 | 3.64 | 60 | 1.0333 | | 1.4395 | 4.85 | 80 | 1.0741 | | 1.2497 | 6.06 | 100 | 0.7493 | | 1.0696 | 7.27 | 120 | 0.6951 | | 1.2718 | 8.48 | 140 | 0.7663 | | 1.3003 | 9.7 | 160 | 0.9187 | | 1.1703 | 10.91 | 180 | 0.6581 | | 1.1463 | 12.12 | 200 | 0.6728 | | 1.1198 | 13.33 | 220 | 0.6519 | | 1.1313 | 14.55 | 240 | 0.6019 | | 0.8707 | 15.76 | 260 | 0.5460 | | 0.9215 | 16.97 | 280 | 0.5729 | | 0.8017 | 18.18 | 300 | 0.5418 | | 0.7221 | 19.39 | 320 | 0.5402 | | 0.6872 | 20.61 | 340 | 0.5618 | | 0.729 | 21.82 | 360 | 0.5744 | | 0.7702 | 23.03 | 380 | 0.5305 | | 0.7845 | 24.24 | 400 | 0.5043 | | 0.7473 | 25.45 | 420 | 0.4903 | | 0.7031 | 26.67 | 440 | 0.4830 | | 0.6726 | 27.88 | 460 | 0.4640 | | 0.6327 | 29.09 | 480 | 0.4662 | | 0.6806 | 30.3 | 500 | 0.4619 | | 0.6626 | 31.52 | 520 | 0.5005 | | 0.6622 | 32.73 | 540 | 0.4601 | | 0.7345 | 33.94 | 560 | 0.5567 | | 0.7202 | 35.15 | 580 | 0.4721 | | 0.6754 | 36.36 | 600 | 0.4950 | | 0.608 | 37.58 | 620 | 0.4949 | | 0.6812 | 38.79 | 640 | 0.4893 | | 0.6648 | 40.0 | 660 | 0.5383 | | 0.5884 | 41.21 | 680 | 0.4344 | | 0.5823 | 42.42 | 700 | 0.4617 | | 0.6158 | 43.64 | 720 | 0.4269 | | 0.5702 | 44.85 | 740 | 0.4209 | | 0.6794 | 46.06 | 760 | 0.4438 | | 0.6795 | 47.27 | 780 | 0.4777 | | 0.661 | 48.48 | 800 | 0.4214 | | 0.6217 | 49.7 | 820 | 0.4380 | | 0.6664 | 50.91 | 840 | 0.4573 | | 0.5767 | 52.12 | 860 | 0.4435 | | 0.5596 | 53.33 | 880 | 0.4772 | | 0.5907 | 54.55 | 900 | 0.4336 | | 0.56 | 55.76 | 920 | 0.4219 | | 0.566 | 56.97 | 940 | 0.4606 | | 0.5551 | 58.18 | 960 | 0.4153 | | 0.5454 | 59.39 | 980 | 0.4567 | | 0.5452 | 60.61 | 1000 | 0.4702 | | 0.6073 | 61.82 | 1020 | 0.4247 | | 0.5517 | 63.03 | 1040 | 0.4300 | | 0.5351 | 64.24 | 1060 | 0.4356 | | 0.532 | 65.45 | 1080 | 0.3722 | | 0.5638 | 66.67 | 1100 | 0.3627 | | 0.5537 | 67.88 | 1120 | 0.4079 | | 0.5007 | 69.09 | 1140 | 0.3965 | | 0.5202 | 70.3 | 1160 | 0.3760 | | 0.5156 | 71.52 | 1180 | 0.4091 | | 0.5396 | 72.73 | 1200 | 0.3823 | | 0.5092 | 73.94 | 1220 | 0.3866 | | 0.4667 | 75.15 | 1240 | 0.3713 | | 0.4725 | 76.36 | 1260 | 0.3536 | | 0.4835 | 77.58 | 1280 | 0.3421 | | 0.4999 | 78.79 | 1300 | 0.3294 | | 0.4983 | 80.0 | 1320 | 0.3866 | | 0.4917 | 81.21 | 1340 | 0.3061 | | 0.502 | 82.42 | 1360 | 0.3908 | | 0.5435 | 83.64 | 1380 | 0.3587 | | 0.4925 | 84.85 | 1400 | 0.3662 | | 0.469 | 86.06 | 1420 | 0.3547 | | 0.4184 | 87.27 | 1440 | 0.3229 | | 0.4232 | 88.48 | 1460 | 0.3478 | | 0.3962 | 89.7 | 1480 | 0.3286 | | 0.4217 | 90.91 | 1500 | 0.3668 | | 0.427 | 92.12 | 1520 | 0.3554 | | 0.4433 | 93.33 | 1540 | 0.3214 | | 0.4304 | 94.55 | 1560 | 0.3243 | | 0.4353 | 95.76 | 1580 | 0.2909 | | 0.4153 | 96.97 | 1600 | 0.3032 | | 0.3819 | 98.18 | 1620 | 0.2858 | | 0.3911 | 99.39 | 1640 | 0.2721 | | 0.3513 | 100.61 | 1660 | 0.2763 | | 0.3266 | 101.82 | 1680 | 0.2538 | | 0.3222 | 103.03 | 1700 | 0.2543 | | 0.3326 | 104.24 | 1720 | 0.2548 | | 0.3219 | 105.45 | 1740 | 0.2737 | | 0.3313 | 106.67 | 1760 | 0.2381 | | 0.3557 | 107.88 | 1780 | 0.2728 | | 0.3312 | 109.09 | 1800 | 0.2784 | | 0.3206 | 110.3 | 1820 | 0.2462 | | 0.3015 | 111.52 | 1840 | 0.2587 | | 0.2903 | 112.73 | 1860 | 0.2411 | | 0.2853 | 113.94 | 1880 | 0.2533 | | 0.2917 | 115.15 | 1900 | 0.2662 | | 0.2802 | 116.36 | 1920 | 0.2491 | | 0.2774 | 117.58 | 1940 | 0.2523 | | 0.2848 | 118.79 | 1960 | 0.2426 | | 0.2813 | 120.0 | 1980 | 0.2339 | | 0.2752 | 121.21 | 2000 | 0.2444 | | 0.2804 | 122.42 | 2020 | 0.2231 | | 0.2456 | 123.64 | 2040 | 0.2174 | | 0.2689 | 124.85 | 2060 | 0.2136 | | 0.252 | 126.06 | 2080 | 0.2257 | | 0.2498 | 127.27 | 2100 | 0.2311 | | 0.2404 | 128.48 | 2120 | 0.2260 | | 0.2608 | 129.7 | 2140 | 0.2256 | | 0.2332 | 130.91 | 2160 | 0.2135 | | 0.2345 | 132.12 | 2180 | 0.2229 | | 0.2558 | 133.33 | 2200 | 0.2022 | | 0.2228 | 134.55 | 2220 | 0.2115 | | 0.2269 | 135.76 | 2240 | 0.2069 | | 0.2264 | 136.97 | 2260 | 0.2124 | | 0.2151 | 138.18 | 2280 | 0.2117 | | 0.2375 | 139.39 | 2300 | 0.1976 | | 0.2231 | 140.61 | 2320 | 0.2047 | | 0.2157 | 141.82 | 2340 | 0.2107 | | 0.2307 | 143.03 | 2360 | 0.1989 | | 0.2097 | 144.24 | 2380 | 0.2077 | | 0.2134 | 145.45 | 2400 | 0.2234 | | 0.1975 | 146.67 | 2420 | 0.2179 | | 0.2087 | 147.88 | 2440 | 0.2019 | | 0.2029 | 149.09 | 2460 | 0.2041 | | 0.2038 | 150.3 | 2480 | 0.2036 | | 0.2202 | 151.52 | 2500 | 0.1984 | | 0.203 | 152.73 | 2520 | 0.1943 | | 0.2201 | 153.94 | 2540 | 0.2064 | | 0.1868 | 155.15 | 2560 | 0.2126 | | 0.2185 | 156.36 | 2580 | 0.2131 | | 0.1917 | 157.58 | 2600 | 0.2031 | | 0.1898 | 158.79 | 2620 | 0.2009 | | 0.1923 | 160.0 | 2640 | 0.2170 | | 0.1865 | 161.21 | 2660 | 0.2068 | | 0.1971 | 162.42 | 2680 | 0.2053 | | 0.1942 | 163.64 | 2700 | 0.2011 | | 0.1902 | 164.85 | 2720 | 0.1993 | | 0.1817 | 166.06 | 2740 | 0.1952 | | 0.1837 | 167.27 | 2760 | 0.2222 | | 0.1835 | 168.48 | 2780 | 0.2173 | | 0.1923 | 169.7 | 2800 | 0.2072 | | 0.1798 | 170.91 | 2820 | 0.2069 | | 0.1815 | 172.12 | 2840 | 0.2078 | | 0.1724 | 173.33 | 2860 | 0.2183 | | 0.1924 | 174.55 | 2880 | 0.2005 | | 0.1922 | 175.76 | 2900 | 0.2069 | | 0.1709 | 176.97 | 2920 | 0.2212 | | 0.1766 | 178.18 | 2940 | 0.1978 | | 0.1728 | 179.39 | 2960 | 0.2029 | | 0.1757 | 180.61 | 2980 | 0.2030 | | 0.1665 | 181.82 | 3000 | 0.2219 | | 0.1694 | 183.03 | 3020 | 0.2205 | | 0.1786 | 184.24 | 3040 | 0.2020 | | 0.1749 | 185.45 | 3060 | 0.2007 | | 0.1739 | 186.67 | 3080 | 0.2046 | | 0.1723 | 187.88 | 3100 | 0.1986 | | 0.1669 | 189.09 | 3120 | 0.2041 | | 0.1658 | 190.3 | 3140 | 0.2179 | | 0.1701 | 191.52 | 3160 | 0.2159 | | 0.1691 | 192.73 | 3180 | 0.2099 | | 0.1739 | 193.94 | 3200 | 0.1996 | | 0.1729 | 195.15 | 3220 | 0.2126 | | 0.1636 | 196.36 | 3240 | 0.2080 | | 0.1612 | 197.58 | 3260 | 0.2154 | | 0.1653 | 198.79 | 3280 | 0.2031 | | 0.1629 | 200.0 | 3300 | 0.2206 | | 0.1565 | 201.21 | 3320 | 0.2223 | | 0.1632 | 202.42 | 3340 | 0.2122 | | 0.1689 | 203.64 | 3360 | 0.1986 | | 0.1682 | 204.85 | 3380 | 0.2092 | | 0.1671 | 206.06 | 3400 | 0.2309 | | 0.175 | 207.27 | 3420 | 0.2129 | | 0.1607 | 208.48 | 3440 | 0.2393 | | 0.165 | 209.7 | 3460 | 0.2125 | | 0.1593 | 210.91 | 3480 | 0.2304 | | 0.1594 | 212.12 | 3500 | 0.2325 | | 0.1471 | 213.33 | 3520 | 0.2341 | | 0.1598 | 214.55 | 3540 | 0.2175 | | 0.1542 | 215.76 | 3560 | 0.2162 | | 0.1602 | 216.97 | 3580 | 0.2277 | | 0.1577 | 218.18 | 3600 | 0.2117 | | 0.1625 | 219.39 | 3620 | 0.2118 | | 0.1517 | 220.61 | 3640 | 0.2252 | | 0.1545 | 221.82 | 3660 | 0.2129 | | 0.152 | 223.03 | 3680 | 0.2216 | | 0.161 | 224.24 | 3700 | 0.2169 | | 0.1509 | 225.45 | 3720 | 0.2225 | | 0.1502 | 226.67 | 3740 | 0.2339 | | 0.1542 | 227.88 | 3760 | 0.2199 | | 0.145 | 229.09 | 3780 | 0.2270 | | 0.1499 | 230.3 | 3800 | 0.2189 | | 0.1506 | 231.52 | 3820 | 0.2227 | | 0.1556 | 232.73 | 3840 | 0.2260 | | 0.1454 | 233.94 | 3860 | 0.2213 | | 0.1472 | 235.15 | 3880 | 0.2159 | | 0.1437 | 236.36 | 3900 | 0.2256 | | 0.1448 | 237.58 | 3920 | 0.2278 | | 0.1536 | 238.79 | 3940 | 0.2288 | | 0.1446 | 240.0 | 3960 | 0.2400 | | 0.1593 | 241.21 | 3980 | 0.2284 | | 0.1463 | 242.42 | 4000 | 0.2258 | | 0.1472 | 243.64 | 4020 | 0.2263 | | 0.1455 | 244.85 | 4040 | 0.2285 | | 0.1442 | 246.06 | 4060 | 0.2250 | | 0.1499 | 247.27 | 4080 | 0.2318 | | 0.1485 | 248.48 | 4100 | 0.2238 | | 0.1545 | 249.7 | 4120 | 0.2257 | | 0.1296 | 250.91 | 4140 | 0.2396 | | 0.1425 | 252.12 | 4160 | 0.2377 | | 0.1441 | 253.33 | 4180 | 0.2390 | | 0.1343 | 254.55 | 4200 | 0.2389 | | 0.1445 | 255.76 | 4220 | 0.2244 | | 0.1445 | 256.97 | 4240 | 0.2299 | | 0.1429 | 258.18 | 4260 | 0.2209 | | 0.1479 | 259.39 | 4280 | 0.2221 | | 0.1429 | 260.61 | 4300 | 0.2372 | | 0.1452 | 261.82 | 4320 | 0.2357 | | 0.1501 | 263.03 | 4340 | 0.2370 | | 0.1404 | 264.24 | 4360 | 0.2311 | | 0.1314 | 265.45 | 4380 | 0.2454 | | 0.1498 | 266.67 | 4400 | 0.2243 | | 0.1418 | 267.88 | 4420 | 0.2243 | | 0.1453 | 269.09 | 4440 | 0.2258 | | 0.1378 | 270.3 | 4460 | 0.2300 | | 0.1442 | 271.52 | 4480 | 0.2269 | | 0.1463 | 272.73 | 4500 | 0.2249 | | 0.1352 | 273.94 | 4520 | 0.2262 | | 0.1419 | 275.15 | 4540 | 0.2333 | | 0.1326 | 276.36 | 4560 | 0.2358 | | 0.1373 | 277.58 | 4580 | 0.2256 | | 0.1317 | 278.79 | 4600 | 0.2295 | | 0.1367 | 280.0 | 4620 | 0.2371 | | 0.1346 | 281.21 | 4640 | 0.2352 | | 0.1357 | 282.42 | 4660 | 0.2300 | | 0.1372 | 283.64 | 4680 | 0.2414 | | 0.1298 | 284.85 | 4700 | 0.2417 | | 0.1368 | 286.06 | 4720 | 0.2269 | | 0.1447 | 287.27 | 4740 | 0.2312 | | 0.1394 | 288.48 | 4760 | 0.2339 | | 0.1258 | 289.7 | 4780 | 0.2399 | | 0.1427 | 290.91 | 4800 | 0.2380 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.11.0
semaj83/whisper-tiny-en-US
semaj83
2023-09-15T15:28:19Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-15T07:19:11Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3695395513577332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.9348 - Wer Ortho: 0.3683 - Wer: 0.3695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0 | 17.24 | 500 | 0.9155 | 0.3646 | 0.3654 | | 0.0 | 34.48 | 1000 | 0.9348 | 0.3683 | 0.3695 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
bk6000/rl_course_vizdoom_health_gathering_supreme
bk6000
2023-09-15T15:23:47Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-14T18:56:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 4.42 +/- 0.87 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r bk6000/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
sagarsdesai/poca-SoccerTwos
sagarsdesai
2023-09-15T15:23:02Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-15T15:19:11Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: sagarsdesai/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ruhul0/dreambooth
ruhul0
2023-09-15T15:16:59Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-15T13:13:58Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Aesthetic Headshot for linkedin tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
muhtasham/bert-tiny-finetuned-finer
muhtasham
2023-09-15T15:13:40Z
118
2
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:finer-139", "dataset:nlpaueb/finer-139", "base_model:google/bert_uncased_L-2_H-128_A-2", "base_model:finetune:google/bert_uncased_L-2_H-128_A-2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-25T01:20:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - finer-139 - nlpaueb/finer-139 metrics: - precision - recall - f1 - accuracy base_model: google/bert_uncased_L-2_H-128_A-2 model-index: - name: bertiny-finetuned-finer results: - task: type: token-classification name: Token Classification dataset: name: finer-139 type: finer-139 args: finer-139 metrics: - type: precision value: 0.5339285714285714 name: Precision - type: recall value: 0.036011080332409975 name: Recall - type: f1 value: 0.06747151077513258 name: F1 - type: accuracy value: 0.9847166143263048 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertiny-finetuned-finer This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the finer-139 dataset. It achieves the following results on the evaluation set: - Loss: 0.0882 - Precision: 0.5339 - Recall: 0.0360 - F1: 0.0675 - Accuracy: 0.9847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 11255 | 0.0952 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0864 | 2.0 | 22510 | 0.0895 | 0.7640 | 0.0082 | 0.0162 | 0.9844 | | 0.0929 | 3.0 | 33765 | 0.0882 | 0.5339 | 0.0360 | 0.0675 | 0.9847 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
muhtasham/bert-tiny-finetuned-legal-definitions-downstream-alt
muhtasham
2023-09-15T15:13:11Z
138
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T05:16:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-tiny-finetuned-legal-definitions-downstream-alt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-legal-definitions-downstream-alt This model is a fine-tuned version of [muhtasham/bert-tiny-finetuned-legal-definitions](https://huggingface.co/muhtasham/bert-tiny-finetuned-legal-definitions) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Micro f1: 0.0 - Macro f1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4096 - eval_batch_size: 1024 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.6869 | 1.0 | 3 | 0.6836 | 0.1357 | 0.0837 | | 0.6832 | 2.0 | 6 | 0.6795 | 0.1402 | 0.0785 | | 0.6795 | 3.0 | 9 | 0.6755 | 0.1468 | 0.0748 | | 0.6758 | 4.0 | 12 | 0.6716 | 0.1504 | 0.0697 | | 0.6722 | 5.0 | 15 | 0.6677 | 0.1506 | 0.0627 | | 0.6686 | 6.0 | 18 | 0.6639 | 0.1528 | 0.0580 | | 0.6649 | 7.0 | 21 | 0.6601 | 0.1435 | 0.0506 | | 0.6615 | 8.0 | 24 | 0.6563 | 0.1300 | 0.0432 | | 0.658 | 9.0 | 27 | 0.6526 | 0.1049 | 0.0307 | | 0.6544 | 10.0 | 30 | 0.6490 | 0.0859 | 0.0242 | | 0.6511 | 11.0 | 33 | 0.6454 | 0.0610 | 0.0178 | | 0.6476 | 12.0 | 36 | 0.6418 | 0.0362 | 0.0110 | | 0.644 | 13.0 | 39 | 0.6383 | 0.0219 | 0.0074 | | 0.641 | 14.0 | 42 | 0.6349 | 0.0108 | 0.0042 | | 0.6376 | 15.0 | 45 | 0.6315 | 0.0057 | 0.0022 | | 0.6344 | 16.0 | 48 | 0.6282 | 0.0024 | 0.0010 | | 0.6311 | 17.0 | 51 | 0.6249 | 0.0012 | 0.0005 | | 0.6279 | 18.0 | 54 | 0.6217 | 0.0008 | 0.0003 | | 0.6248 | 19.0 | 57 | 0.6184 | 0.0 | 0.0 | | 0.6218 | 20.0 | 60 | 0.6153 | 0.0 | 0.0 | | 0.6185 | 21.0 | 63 | 0.6121 | 0.0 | 0.0 | | 0.6153 | 22.0 | 66 | 0.6089 | 0.0 | 0.0 | | 0.6123 | 23.0 | 69 | 0.6058 | 0.0 | 0.0 | | 0.6092 | 24.0 | 72 | 0.6027 | 0.0 | 0.0 | | 0.6062 | 25.0 | 75 | 0.5996 | 0.0 | 0.0 | | 0.6032 | 26.0 | 78 | 0.5965 | 0.0 | 0.0 | | 0.6001 | 27.0 | 81 | 0.5934 | 0.0 | 0.0 | | 0.597 | 28.0 | 84 | 0.5902 | 0.0 | 0.0 | | 0.594 | 29.0 | 87 | 0.5871 | 0.0 | 0.0 | | 0.5908 | 30.0 | 90 | 0.5840 | 0.0 | 0.0 | | 0.5877 | 31.0 | 93 | 0.5808 | 0.0 | 0.0 | | 0.5845 | 32.0 | 96 | 0.5777 | 0.0 | 0.0 | | 0.5814 | 33.0 | 99 | 0.5745 | 0.0 | 0.0 | | 0.5785 | 34.0 | 102 | 0.5714 | 0.0 | 0.0 | | 0.5753 | 35.0 | 105 | 0.5682 | 0.0 | 0.0 | | 0.5719 | 36.0 | 108 | 0.5650 | 0.0 | 0.0 | | 0.5688 | 37.0 | 111 | 0.5618 | 0.0 | 0.0 | | 0.5656 | 38.0 | 114 | 0.5586 | 0.0 | 0.0 | | 0.5626 | 39.0 | 117 | 0.5553 | 0.0 | 0.0 | | 0.5591 | 40.0 | 120 | 0.5521 | 0.0 | 0.0 | | 0.5561 | 41.0 | 123 | 0.5489 | 0.0 | 0.0 | | 0.5529 | 42.0 | 126 | 0.5456 | 0.0 | 0.0 | | 0.5494 | 43.0 | 129 | 0.5424 | 0.0 | 0.0 | | 0.5464 | 44.0 | 132 | 0.5391 | 0.0 | 0.0 | | 0.5432 | 45.0 | 135 | 0.5359 | 0.0 | 0.0 | | 0.5399 | 46.0 | 138 | 0.5326 | 0.0 | 0.0 | | 0.5364 | 47.0 | 141 | 0.5294 | 0.0 | 0.0 | | 0.5332 | 48.0 | 144 | 0.5261 | 0.0 | 0.0 | | 0.53 | 49.0 | 147 | 0.5229 | 0.0 | 0.0 | | 0.5268 | 50.0 | 150 | 0.5196 | 0.0 | 0.0 | | 0.5236 | 51.0 | 153 | 0.5164 | 0.0 | 0.0 | | 0.5203 | 52.0 | 156 | 0.5132 | 0.0 | 0.0 | | 0.5171 | 53.0 | 159 | 0.5099 | 0.0 | 0.0 | | 0.514 | 54.0 | 162 | 0.5067 | 0.0 | 0.0 | | 0.5107 | 55.0 | 165 | 0.5035 | 0.0 | 0.0 | | 0.5077 | 56.0 | 168 | 0.5004 | 0.0 | 0.0 | | 0.504 | 57.0 | 171 | 0.4972 | 0.0 | 0.0 | | 0.5011 | 58.0 | 174 | 0.4941 | 0.0 | 0.0 | | 0.4978 | 59.0 | 177 | 0.4909 | 0.0 | 0.0 | | 0.4948 | 60.0 | 180 | 0.4878 | 0.0 | 0.0 | | 0.4915 | 61.0 | 183 | 0.4847 | 0.0 | 0.0 | | 0.4884 | 62.0 | 186 | 0.4816 | 0.0 | 0.0 | | 0.4857 | 63.0 | 189 | 0.4786 | 0.0 | 0.0 | | 0.4824 | 64.0 | 192 | 0.4756 | 0.0 | 0.0 | | 0.4794 | 65.0 | 195 | 0.4726 | 0.0 | 0.0 | | 0.4762 | 66.0 | 198 | 0.4696 | 0.0 | 0.0 | | 0.4733 | 67.0 | 201 | 0.4666 | 0.0 | 0.0 | | 0.4704 | 68.0 | 204 | 0.4637 | 0.0 | 0.0 | | 0.4676 | 69.0 | 207 | 0.4608 | 0.0 | 0.0 | | 0.4648 | 70.0 | 210 | 0.4579 | 0.0 | 0.0 | | 0.4617 | 71.0 | 213 | 0.4551 | 0.0 | 0.0 | | 0.4586 | 72.0 | 216 | 0.4523 | 0.0 | 0.0 | | 0.4558 | 73.0 | 219 | 0.4495 | 0.0 | 0.0 | | 0.453 | 74.0 | 222 | 0.4467 | 0.0 | 0.0 | | 0.4502 | 75.0 | 225 | 0.4440 | 0.0 | 0.0 | | 0.4476 | 76.0 | 228 | 0.4413 | 0.0 | 0.0 | | 0.4448 | 77.0 | 231 | 0.4386 | 0.0 | 0.0 | | 0.442 | 78.0 | 234 | 0.4360 | 0.0 | 0.0 | | 0.4396 | 79.0 | 237 | 0.4334 | 0.0 | 0.0 | | 0.4372 | 80.0 | 240 | 0.4308 | 0.0 | 0.0 | | 0.434 | 81.0 | 243 | 0.4282 | 0.0 | 0.0 | | 0.4318 | 82.0 | 246 | 0.4257 | 0.0 | 0.0 | | 0.4292 | 83.0 | 249 | 0.4232 | 0.0 | 0.0 | | 0.4267 | 84.0 | 252 | 0.4208 | 0.0 | 0.0 | | 0.4242 | 85.0 | 255 | 0.4184 | 0.0 | 0.0 | | 0.4218 | 86.0 | 258 | 0.4160 | 0.0 | 0.0 | | 0.4191 | 87.0 | 261 | 0.4136 | 0.0 | 0.0 | | 0.4169 | 88.0 | 264 | 0.4113 | 0.0 | 0.0 | | 0.4147 | 89.0 | 267 | 0.4089 | 0.0 | 0.0 | | 0.4118 | 90.0 | 270 | 0.4067 | 0.0 | 0.0 | | 0.41 | 91.0 | 273 | 0.4044 | 0.0 | 0.0 | | 0.4079 | 92.0 | 276 | 0.4022 | 0.0 | 0.0 | | 0.4052 | 93.0 | 279 | 0.4000 | 0.0 | 0.0 | | 0.4031 | 94.0 | 282 | 0.3979 | 0.0 | 0.0 | | 0.4009 | 95.0 | 285 | 0.3957 | 0.0 | 0.0 | | 0.3986 | 96.0 | 288 | 0.3936 | 0.0 | 0.0 | | 0.3969 | 97.0 | 291 | 0.3916 | 0.0 | 0.0 | | 0.3944 | 98.0 | 294 | 0.3895 | 0.0 | 0.0 | | 0.3928 | 99.0 | 297 | 0.3875 | 0.0 | 0.0 | | 0.3906 | 100.0 | 300 | 0.3855 | 0.0 | 0.0 | | 0.3886 | 101.0 | 303 | 0.3836 | 0.0 | 0.0 | | 0.3864 | 102.0 | 306 | 0.3816 | 0.0 | 0.0 | | 0.3849 | 103.0 | 309 | 0.3797 | 0.0 | 0.0 | | 0.3833 | 104.0 | 312 | 0.3779 | 0.0 | 0.0 | | 0.3809 | 105.0 | 315 | 0.3760 | 0.0 | 0.0 | | 0.3788 | 106.0 | 318 | 0.3742 | 0.0 | 0.0 | | 0.3771 | 107.0 | 321 | 0.3724 | 0.0 | 0.0 | | 0.3751 | 108.0 | 324 | 0.3706 | 0.0 | 0.0 | | 0.3737 | 109.0 | 327 | 0.3689 | 0.0 | 0.0 | | 0.3719 | 110.0 | 330 | 0.3672 | 0.0 | 0.0 | | 0.3702 | 111.0 | 333 | 0.3655 | 0.0 | 0.0 | | 0.3686 | 112.0 | 336 | 0.3638 | 0.0 | 0.0 | | 0.3666 | 113.0 | 339 | 0.3622 | 0.0 | 0.0 | | 0.3654 | 114.0 | 342 | 0.3606 | 0.0 | 0.0 | | 0.3638 | 115.0 | 345 | 0.3590 | 0.0 | 0.0 | | 0.3617 | 116.0 | 348 | 0.3574 | 0.0 | 0.0 | | 0.3603 | 117.0 | 351 | 0.3558 | 0.0 | 0.0 | | 0.3587 | 118.0 | 354 | 0.3543 | 0.0 | 0.0 | | 0.3574 | 119.0 | 357 | 0.3528 | 0.0 | 0.0 | | 0.3561 | 120.0 | 360 | 0.3513 | 0.0 | 0.0 | | 0.3543 | 121.0 | 363 | 0.3499 | 0.0 | 0.0 | | 0.3525 | 122.0 | 366 | 0.3484 | 0.0 | 0.0 | | 0.3509 | 123.0 | 369 | 0.3470 | 0.0 | 0.0 | | 0.3492 | 124.0 | 372 | 0.3456 | 0.0 | 0.0 | | 0.3483 | 125.0 | 375 | 0.3442 | 0.0 | 0.0 | | 0.3467 | 126.0 | 378 | 0.3429 | 0.0 | 0.0 | | 0.3455 | 127.0 | 381 | 0.3415 | 0.0 | 0.0 | | 0.344 | 128.0 | 384 | 0.3402 | 0.0 | 0.0 | | 0.3425 | 129.0 | 387 | 0.3389 | 0.0 | 0.0 | | 0.3417 | 130.0 | 390 | 0.3376 | 0.0 | 0.0 | | 0.3403 | 131.0 | 393 | 0.3364 | 0.0 | 0.0 | | 0.339 | 132.0 | 396 | 0.3351 | 0.0 | 0.0 | | 0.3377 | 133.0 | 399 | 0.3339 | 0.0 | 0.0 | | 0.3362 | 134.0 | 402 | 0.3327 | 0.0 | 0.0 | | 0.3352 | 135.0 | 405 | 0.3315 | 0.0 | 0.0 | | 0.3338 | 136.0 | 408 | 0.3303 | 0.0 | 0.0 | | 0.3327 | 137.0 | 411 | 0.3291 | 0.0 | 0.0 | | 0.3315 | 138.0 | 414 | 0.3280 | 0.0 | 0.0 | | 0.33 | 139.0 | 417 | 0.3269 | 0.0 | 0.0 | | 0.3295 | 140.0 | 420 | 0.3258 | 0.0 | 0.0 | | 0.3278 | 141.0 | 423 | 0.3247 | 0.0 | 0.0 | | 0.3274 | 142.0 | 426 | 0.3236 | 0.0 | 0.0 | | 0.3263 | 143.0 | 429 | 0.3225 | 0.0 | 0.0 | | 0.3245 | 144.0 | 432 | 0.3215 | 0.0 | 0.0 | | 0.3238 | 145.0 | 435 | 0.3204 | 0.0 | 0.0 | | 0.3226 | 146.0 | 438 | 0.3194 | 0.0 | 0.0 | | 0.3217 | 147.0 | 441 | 0.3184 | 0.0 | 0.0 | | 0.3207 | 148.0 | 444 | 0.3174 | 0.0 | 0.0 | | 0.3201 | 149.0 | 447 | 0.3164 | 0.0 | 0.0 | | 0.3191 | 150.0 | 450 | 0.3155 | 0.0 | 0.0 | | 0.3172 | 151.0 | 453 | 0.3145 | 0.0 | 0.0 | | 0.316 | 152.0 | 456 | 0.3136 | 0.0 | 0.0 | | 0.3155 | 153.0 | 459 | 0.3127 | 0.0 | 0.0 | | 0.3149 | 154.0 | 462 | 0.3117 | 0.0 | 0.0 | | 0.3139 | 155.0 | 465 | 0.3108 | 0.0 | 0.0 | | 0.3131 | 156.0 | 468 | 0.3100 | 0.0 | 0.0 | | 0.3121 | 157.0 | 471 | 0.3091 | 0.0 | 0.0 | | 0.3113 | 158.0 | 474 | 0.3082 | 0.0 | 0.0 | | 0.3099 | 159.0 | 477 | 0.3074 | 0.0 | 0.0 | | 0.3097 | 160.0 | 480 | 0.3065 | 0.0 | 0.0 | | 0.3087 | 161.0 | 483 | 0.3057 | 0.0 | 0.0 | | 0.3079 | 162.0 | 486 | 0.3049 | 0.0 | 0.0 | | 0.3064 | 163.0 | 489 | 0.3041 | 0.0 | 0.0 | | 0.3062 | 164.0 | 492 | 0.3033 | 0.0 | 0.0 | | 0.3055 | 165.0 | 495 | 0.3025 | 0.0 | 0.0 | | 0.3045 | 166.0 | 498 | 0.3017 | 0.0 | 0.0 | | 0.3038 | 167.0 | 501 | 0.3010 | 0.0 | 0.0 | | 0.3029 | 168.0 | 504 | 0.3002 | 0.0 | 0.0 | | 0.3025 | 169.0 | 507 | 0.2995 | 0.0 | 0.0 | | 0.3016 | 170.0 | 510 | 0.2987 | 0.0 | 0.0 | | 0.3005 | 171.0 | 513 | 0.2980 | 0.0 | 0.0 | | 0.3003 | 172.0 | 516 | 0.2973 | 0.0 | 0.0 | | 0.2989 | 173.0 | 519 | 0.2966 | 0.0 | 0.0 | | 0.2987 | 174.0 | 522 | 0.2959 | 0.0 | 0.0 | | 0.2974 | 175.0 | 525 | 0.2952 | 0.0 | 0.0 | | 0.2974 | 176.0 | 528 | 0.2945 | 0.0 | 0.0 | | 0.2967 | 177.0 | 531 | 0.2939 | 0.0 | 0.0 | | 0.2954 | 178.0 | 534 | 0.2932 | 0.0 | 0.0 | | 0.295 | 179.0 | 537 | 0.2926 | 0.0 | 0.0 | | 0.2944 | 180.0 | 540 | 0.2919 | 0.0 | 0.0 | | 0.2938 | 181.0 | 543 | 0.2913 | 0.0 | 0.0 | | 0.2932 | 182.0 | 546 | 0.2906 | 0.0 | 0.0 | | 0.2923 | 183.0 | 549 | 0.2900 | 0.0 | 0.0 | | 0.2917 | 184.0 | 552 | 0.2894 | 0.0 | 0.0 | | 0.2914 | 185.0 | 555 | 0.2888 | 0.0 | 0.0 | | 0.2906 | 186.0 | 558 | 0.2882 | 0.0 | 0.0 | | 0.29 | 187.0 | 561 | 0.2876 | 0.0 | 0.0 | | 0.2893 | 188.0 | 564 | 0.2870 | 0.0 | 0.0 | | 0.2892 | 189.0 | 567 | 0.2865 | 0.0 | 0.0 | | 0.2882 | 190.0 | 570 | 0.2859 | 0.0 | 0.0 | | 0.2874 | 191.0 | 573 | 0.2853 | 0.0 | 0.0 | | 0.2868 | 192.0 | 576 | 0.2848 | 0.0 | 0.0 | | 0.2866 | 193.0 | 579 | 0.2843 | 0.0 | 0.0 | | 0.2865 | 194.0 | 582 | 0.2837 | 0.0 | 0.0 | | 0.285 | 195.0 | 585 | 0.2832 | 0.0 | 0.0 | | 0.2851 | 196.0 | 588 | 0.2827 | 0.0 | 0.0 | | 0.2841 | 197.0 | 591 | 0.2821 | 0.0 | 0.0 | | 0.2839 | 198.0 | 594 | 0.2816 | 0.0 | 0.0 | | 0.2829 | 199.0 | 597 | 0.2811 | 0.0 | 0.0 | | 0.2826 | 200.0 | 600 | 0.2806 | 0.0 | 0.0 | | 0.2825 | 201.0 | 603 | 0.2801 | 0.0 | 0.0 | | 0.2817 | 202.0 | 606 | 0.2796 | 0.0 | 0.0 | | 0.2813 | 203.0 | 609 | 0.2792 | 0.0 | 0.0 | | 0.2805 | 204.0 | 612 | 0.2787 | 0.0 | 0.0 | | 0.2803 | 205.0 | 615 | 0.2782 | 0.0 | 0.0 | | 0.2798 | 206.0 | 618 | 0.2777 | 0.0 | 0.0 | | 0.2795 | 207.0 | 621 | 0.2773 | 0.0 | 0.0 | | 0.2788 | 208.0 | 624 | 0.2768 | 0.0 | 0.0 | | 0.2785 | 209.0 | 627 | 0.2764 | 0.0 | 0.0 | | 0.2781 | 210.0 | 630 | 0.2759 | 0.0 | 0.0 | | 0.2779 | 211.0 | 633 | 0.2755 | 0.0 | 0.0 | | 0.277 | 212.0 | 636 | 0.2751 | 0.0 | 0.0 | | 0.2768 | 213.0 | 639 | 0.2746 | 0.0 | 0.0 | | 0.2763 | 214.0 | 642 | 0.2742 | 0.0 | 0.0 | | 0.2756 | 215.0 | 645 | 0.2738 | 0.0 | 0.0 | | 0.2756 | 216.0 | 648 | 0.2734 | 0.0 | 0.0 | | 0.2748 | 217.0 | 651 | 0.2730 | 0.0 | 0.0 | | 0.2739 | 218.0 | 654 | 0.2726 | 0.0 | 0.0 | | 0.2741 | 219.0 | 657 | 0.2722 | 0.0 | 0.0 | | 0.2735 | 220.0 | 660 | 0.2718 | 0.0 | 0.0 | | 0.2736 | 221.0 | 663 | 0.2714 | 0.0 | 0.0 | | 0.2729 | 222.0 | 666 | 0.2710 | 0.0 | 0.0 | | 0.2728 | 223.0 | 669 | 0.2706 | 0.0 | 0.0 | | 0.2725 | 224.0 | 672 | 0.2702 | 0.0 | 0.0 | | 0.2719 | 225.0 | 675 | 0.2699 | 0.0 | 0.0 | | 0.2712 | 226.0 | 678 | 0.2695 | 0.0 | 0.0 | | 0.2708 | 227.0 | 681 | 0.2691 | 0.0 | 0.0 | | 0.2707 | 228.0 | 684 | 0.2688 | 0.0 | 0.0 | | 0.27 | 229.0 | 687 | 0.2684 | 0.0 | 0.0 | | 0.2697 | 230.0 | 690 | 0.2681 | 0.0 | 0.0 | | 0.2702 | 231.0 | 693 | 0.2677 | 0.0 | 0.0 | | 0.2693 | 232.0 | 696 | 0.2674 | 0.0 | 0.0 | | 0.2686 | 233.0 | 699 | 0.2670 | 0.0 | 0.0 | | 0.2681 | 234.0 | 702 | 0.2667 | 0.0 | 0.0 | | 0.2684 | 235.0 | 705 | 0.2664 | 0.0 | 0.0 | | 0.2681 | 236.0 | 708 | 0.2660 | 0.0 | 0.0 | | 0.2672 | 237.0 | 711 | 0.2657 | 0.0 | 0.0 | | 0.2676 | 238.0 | 714 | 0.2654 | 0.0 | 0.0 | | 0.2672 | 239.0 | 717 | 0.2651 | 0.0 | 0.0 | | 0.2658 | 240.0 | 720 | 0.2648 | 0.0 | 0.0 | | 0.2662 | 241.0 | 723 | 0.2645 | 0.0 | 0.0 | | 0.2658 | 242.0 | 726 | 0.2642 | 0.0 | 0.0 | | 0.2654 | 243.0 | 729 | 0.2638 | 0.0 | 0.0 | | 0.2651 | 244.0 | 732 | 0.2635 | 0.0 | 0.0 | | 0.2643 | 245.0 | 735 | 0.2632 | 0.0 | 0.0 | | 0.2651 | 246.0 | 738 | 0.2630 | 0.0 | 0.0 | | 0.2644 | 247.0 | 741 | 0.2627 | 0.0 | 0.0 | | 0.2639 | 248.0 | 744 | 0.2624 | 0.0 | 0.0 | | 0.2636 | 249.0 | 747 | 0.2621 | 0.0 | 0.0 | | 0.2636 | 250.0 | 750 | 0.2618 | 0.0 | 0.0 | | 0.2627 | 251.0 | 753 | 0.2615 | 0.0 | 0.0 | | 0.2623 | 252.0 | 756 | 0.2613 | 0.0 | 0.0 | | 0.2626 | 253.0 | 759 | 0.2610 | 0.0 | 0.0 | | 0.2621 | 254.0 | 762 | 0.2607 | 0.0 | 0.0 | | 0.2626 | 255.0 | 765 | 0.2604 | 0.0 | 0.0 | | 0.2623 | 256.0 | 768 | 0.2602 | 0.0 | 0.0 | | 0.2618 | 257.0 | 771 | 0.2599 | 0.0 | 0.0 | | 0.2612 | 258.0 | 774 | 0.2597 | 0.0 | 0.0 | | 0.2604 | 259.0 | 777 | 0.2594 | 0.0 | 0.0 | | 0.2609 | 260.0 | 780 | 0.2591 | 0.0 | 0.0 | | 0.2601 | 261.0 | 783 | 0.2589 | 0.0 | 0.0 | | 0.2597 | 262.0 | 786 | 0.2586 | 0.0 | 0.0 | | 0.2597 | 263.0 | 789 | 0.2584 | 0.0 | 0.0 | | 0.2594 | 264.0 | 792 | 0.2582 | 0.0 | 0.0 | | 0.2598 | 265.0 | 795 | 0.2579 | 0.0 | 0.0 | | 0.2599 | 266.0 | 798 | 0.2577 | 0.0 | 0.0 | | 0.2588 | 267.0 | 801 | 0.2574 | 0.0 | 0.0 | | 0.2592 | 268.0 | 804 | 0.2572 | 0.0 | 0.0 | | 0.2586 | 269.0 | 807 | 0.2570 | 0.0 | 0.0 | | 0.2594 | 270.0 | 810 | 0.2568 | 0.0 | 0.0 | | 0.258 | 271.0 | 813 | 0.2565 | 0.0 | 0.0 | | 0.257 | 272.0 | 816 | 0.2563 | 0.0 | 0.0 | | 0.2576 | 273.0 | 819 | 0.2561 | 0.0 | 0.0 | | 0.257 | 274.0 | 822 | 0.2559 | 0.0 | 0.0 | | 0.2568 | 275.0 | 825 | 0.2556 | 0.0 | 0.0 | | 0.2558 | 276.0 | 828 | 0.2554 | 0.0 | 0.0 | | 0.2567 | 277.0 | 831 | 0.2552 | 0.0 | 0.0 | | 0.2568 | 278.0 | 834 | 0.2550 | 0.0 | 0.0 | | 0.2561 | 279.0 | 837 | 0.2548 | 0.0 | 0.0 | | 0.2562 | 280.0 | 840 | 0.2546 | 0.0 | 0.0 | | 0.2564 | 281.0 | 843 | 0.2544 | 0.0 | 0.0 | | 0.2555 | 282.0 | 846 | 0.2542 | 0.0 | 0.0 | | 0.2556 | 283.0 | 849 | 0.2540 | 0.0 | 0.0 | | 0.2554 | 284.0 | 852 | 0.2538 | 0.0 | 0.0 | | 0.2542 | 285.0 | 855 | 0.2536 | 0.0 | 0.0 | | 0.2545 | 286.0 | 858 | 0.2534 | 0.0 | 0.0 | | 0.2542 | 287.0 | 861 | 0.2532 | 0.0 | 0.0 | | 0.2545 | 288.0 | 864 | 0.2530 | 0.0 | 0.0 | | 0.254 | 289.0 | 867 | 0.2528 | 0.0 | 0.0 | | 0.2543 | 290.0 | 870 | 0.2526 | 0.0 | 0.0 | | 0.254 | 291.0 | 873 | 0.2524 | 0.0 | 0.0 | | 0.2536 | 292.0 | 876 | 0.2523 | 0.0 | 0.0 | | 0.2536 | 293.0 | 879 | 0.2521 | 0.0 | 0.0 | | 0.2533 | 294.0 | 882 | 0.2519 | 0.0 | 0.0 | | 0.2532 | 295.0 | 885 | 0.2517 | 0.0 | 0.0 | | 0.2531 | 296.0 | 888 | 0.2515 | 0.0 | 0.0 | | 0.2529 | 297.0 | 891 | 0.2514 | 0.0 | 0.0 | | 0.2522 | 298.0 | 894 | 0.2512 | 0.0 | 0.0 | | 0.2527 | 299.0 | 897 | 0.2510 | 0.0 | 0.0 | | 0.2523 | 300.0 | 900 | 0.2508 | 0.0 | 0.0 | | 0.2518 | 301.0 | 903 | 0.2507 | 0.0 | 0.0 | | 0.2515 | 302.0 | 906 | 0.2505 | 0.0 | 0.0 | | 0.2513 | 303.0 | 909 | 0.2503 | 0.0 | 0.0 | | 0.2521 | 304.0 | 912 | 0.2502 | 0.0 | 0.0 | | 0.2514 | 305.0 | 915 | 0.2500 | 0.0 | 0.0 | | 0.2505 | 306.0 | 918 | 0.2499 | 0.0 | 0.0 | | 0.2511 | 307.0 | 921 | 0.2497 | 0.0 | 0.0 | | 0.251 | 308.0 | 924 | 0.2495 | 0.0 | 0.0 | | 0.2504 | 309.0 | 927 | 0.2494 | 0.0 | 0.0 | | 0.2503 | 310.0 | 930 | 0.2492 | 0.0 | 0.0 | | 0.2504 | 311.0 | 933 | 0.2491 | 0.0 | 0.0 | | 0.2506 | 312.0 | 936 | 0.2489 | 0.0 | 0.0 | | 0.2494 | 313.0 | 939 | 0.2488 | 0.0 | 0.0 | | 0.2491 | 314.0 | 942 | 0.2486 | 0.0 | 0.0 | | 0.2498 | 315.0 | 945 | 0.2485 | 0.0 | 0.0 | | 0.2498 | 316.0 | 948 | 0.2483 | 0.0 | 0.0 | | 0.2491 | 317.0 | 951 | 0.2482 | 0.0 | 0.0 | | 0.25 | 318.0 | 954 | 0.2480 | 0.0 | 0.0 | | 0.2493 | 319.0 | 957 | 0.2479 | 0.0 | 0.0 | | 0.2491 | 320.0 | 960 | 0.2478 | 0.0 | 0.0 | | 0.2489 | 321.0 | 963 | 0.2476 | 0.0 | 0.0 | | 0.2484 | 322.0 | 966 | 0.2475 | 0.0 | 0.0 | | 0.2481 | 323.0 | 969 | 0.2473 | 0.0 | 0.0 | | 0.248 | 324.0 | 972 | 0.2472 | 0.0 | 0.0 | | 0.2485 | 325.0 | 975 | 0.2471 | 0.0 | 0.0 | | 0.2485 | 326.0 | 978 | 0.2469 | 0.0 | 0.0 | | 0.2477 | 327.0 | 981 | 0.2468 | 0.0 | 0.0 | | 0.2478 | 328.0 | 984 | 0.2467 | 0.0 | 0.0 | | 0.2476 | 329.0 | 987 | 0.2465 | 0.0 | 0.0 | | 0.2481 | 330.0 | 990 | 0.2464 | 0.0 | 0.0 | | 0.2472 | 331.0 | 993 | 0.2463 | 0.0 | 0.0 | | 0.247 | 332.0 | 996 | 0.2462 | 0.0 | 0.0 | | 0.2471 | 333.0 | 999 | 0.2460 | 0.0 | 0.0 | | 0.2471 | 334.0 | 1002 | 0.2459 | 0.0 | 0.0 | | 0.2472 | 335.0 | 1005 | 0.2458 | 0.0 | 0.0 | | 0.2467 | 336.0 | 1008 | 0.2457 | 0.0 | 0.0 | | 0.246 | 337.0 | 1011 | 0.2455 | 0.0 | 0.0 | | 0.2469 | 338.0 | 1014 | 0.2454 | 0.0 | 0.0 | | 0.2465 | 339.0 | 1017 | 0.2453 | 0.0 | 0.0 | | 0.2467 | 340.0 | 1020 | 0.2452 | 0.0 | 0.0 | | 0.246 | 341.0 | 1023 | 0.2451 | 0.0 | 0.0 | | 0.2456 | 342.0 | 1026 | 0.2450 | 0.0 | 0.0 | | 0.2454 | 343.0 | 1029 | 0.2448 | 0.0 | 0.0 | | 0.2464 | 344.0 | 1032 | 0.2447 | 0.0 | 0.0 | | 0.2453 | 345.0 | 1035 | 0.2446 | 0.0 | 0.0 | | 0.2453 | 346.0 | 1038 | 0.2445 | 0.0 | 0.0 | | 0.2459 | 347.0 | 1041 | 0.2444 | 0.0 | 0.0 | | 0.2452 | 348.0 | 1044 | 0.2443 | 0.0 | 0.0 | | 0.2452 | 349.0 | 1047 | 0.2442 | 0.0 | 0.0 | | 0.2454 | 350.0 | 1050 | 0.2441 | 0.0 | 0.0 | | 0.245 | 351.0 | 1053 | 0.2440 | 0.0 | 0.0 | | 0.2442 | 352.0 | 1056 | 0.2439 | 0.0 | 0.0 | | 0.2448 | 353.0 | 1059 | 0.2437 | 0.0 | 0.0 | | 0.2452 | 354.0 | 1062 | 0.2436 | 0.0 | 0.0 | | 0.2449 | 355.0 | 1065 | 0.2435 | 0.0 | 0.0 | | 0.2444 | 356.0 | 1068 | 0.2434 | 0.0 | 0.0 | | 0.2443 | 357.0 | 1071 | 0.2433 | 0.0 | 0.0 | | 0.2444 | 358.0 | 1074 | 0.2432 | 0.0 | 0.0 | | 0.2442 | 359.0 | 1077 | 0.2431 | 0.0 | 0.0 | | 0.2439 | 360.0 | 1080 | 0.2430 | 0.0 | 0.0 | | 0.2438 | 361.0 | 1083 | 0.2429 | 0.0 | 0.0 | | 0.2443 | 362.0 | 1086 | 0.2428 | 0.0 | 0.0 | | 0.244 | 363.0 | 1089 | 0.2427 | 0.0 | 0.0 | | 0.2435 | 364.0 | 1092 | 0.2426 | 0.0 | 0.0 | | 0.2441 | 365.0 | 1095 | 0.2425 | 0.0 | 0.0 | | 0.2435 | 366.0 | 1098 | 0.2425 | 0.0 | 0.0 | | 0.2432 | 367.0 | 1101 | 0.2424 | 0.0 | 0.0 | | 0.243 | 368.0 | 1104 | 0.2423 | 0.0 | 0.0 | | 0.243 | 369.0 | 1107 | 0.2422 | 0.0 | 0.0 | | 0.2433 | 370.0 | 1110 | 0.2421 | 0.0 | 0.0 | | 0.2434 | 371.0 | 1113 | 0.2420 | 0.0 | 0.0 | | 0.2423 | 372.0 | 1116 | 0.2419 | 0.0 | 0.0 | | 0.2436 | 373.0 | 1119 | 0.2418 | 0.0 | 0.0 | | 0.2435 | 374.0 | 1122 | 0.2417 | 0.0 | 0.0 | | 0.2424 | 375.0 | 1125 | 0.2416 | 0.0 | 0.0 | | 0.2423 | 376.0 | 1128 | 0.2416 | 0.0 | 0.0 | | 0.2424 | 377.0 | 1131 | 0.2415 | 0.0 | 0.0 | | 0.2428 | 378.0 | 1134 | 0.2414 | 0.0 | 0.0 | | 0.2425 | 379.0 | 1137 | 0.2413 | 0.0 | 0.0 | | 0.2417 | 380.0 | 1140 | 0.2412 | 0.0 | 0.0 | | 0.2419 | 381.0 | 1143 | 0.2411 | 0.0 | 0.0 | | 0.2422 | 382.0 | 1146 | 0.2411 | 0.0 | 0.0 | | 0.2422 | 383.0 | 1149 | 0.2410 | 0.0 | 0.0 | | 0.2422 | 384.0 | 1152 | 0.2409 | 0.0 | 0.0 | | 0.2414 | 385.0 | 1155 | 0.2408 | 0.0 | 0.0 | | 0.2414 | 386.0 | 1158 | 0.2407 | 0.0 | 0.0 | | 0.2421 | 387.0 | 1161 | 0.2406 | 0.0 | 0.0 | | 0.2418 | 388.0 | 1164 | 0.2406 | 0.0 | 0.0 | | 0.2416 | 389.0 | 1167 | 0.2405 | 0.0 | 0.0 | | 0.2417 | 390.0 | 1170 | 0.2404 | 0.0 | 0.0 | | 0.2409 | 391.0 | 1173 | 0.2403 | 0.0 | 0.0 | | 0.2411 | 392.0 | 1176 | 0.2403 | 0.0 | 0.0 | | 0.242 | 393.0 | 1179 | 0.2402 | 0.0 | 0.0 | | 0.2406 | 394.0 | 1182 | 0.2401 | 0.0 | 0.0 | | 0.2409 | 395.0 | 1185 | 0.2400 | 0.0 | 0.0 | | 0.2408 | 396.0 | 1188 | 0.2400 | 0.0 | 0.0 | | 0.2412 | 397.0 | 1191 | 0.2399 | 0.0 | 0.0 | | 0.2407 | 398.0 | 1194 | 0.2398 | 0.0 | 0.0 | | 0.2409 | 399.0 | 1197 | 0.2397 | 0.0 | 0.0 | | 0.2412 | 400.0 | 1200 | 0.2397 | 0.0 | 0.0 | | 0.241 | 401.0 | 1203 | 0.2396 | 0.0 | 0.0 | | 0.2407 | 402.0 | 1206 | 0.2395 | 0.0 | 0.0 | | 0.2405 | 403.0 | 1209 | 0.2395 | 0.0 | 0.0 | | 0.2401 | 404.0 | 1212 | 0.2394 | 0.0 | 0.0 | | 0.2395 | 405.0 | 1215 | 0.2393 | 0.0 | 0.0 | | 0.2406 | 406.0 | 1218 | 0.2393 | 0.0 | 0.0 | | 0.2399 | 407.0 | 1221 | 0.2392 | 0.0 | 0.0 | | 0.2402 | 408.0 | 1224 | 0.2391 | 0.0 | 0.0 | | 0.24 | 409.0 | 1227 | 0.2391 | 0.0 | 0.0 | | 0.2394 | 410.0 | 1230 | 0.2390 | 0.0 | 0.0 | | 0.24 | 411.0 | 1233 | 0.2389 | 0.0 | 0.0 | | 0.2397 | 412.0 | 1236 | 0.2389 | 0.0 | 0.0 | | 0.2398 | 413.0 | 1239 | 0.2388 | 0.0 | 0.0 | | 0.2394 | 414.0 | 1242 | 0.2387 | 0.0 | 0.0 | | 0.2394 | 415.0 | 1245 | 0.2387 | 0.0 | 0.0 | | 0.2394 | 416.0 | 1248 | 0.2386 | 0.0 | 0.0 | | 0.2386 | 417.0 | 1251 | 0.2385 | 0.0 | 0.0 | | 0.2395 | 418.0 | 1254 | 0.2385 | 0.0 | 0.0 | | 0.239 | 419.0 | 1257 | 0.2384 | 0.0 | 0.0 | | 0.2402 | 420.0 | 1260 | 0.2384 | 0.0 | 0.0 | | 0.2394 | 421.0 | 1263 | 0.2383 | 0.0 | 0.0 | | 0.2391 | 422.0 | 1266 | 0.2382 | 0.0 | 0.0 | | 0.2388 | 423.0 | 1269 | 0.2382 | 0.0 | 0.0 | | 0.2389 | 424.0 | 1272 | 0.2381 | 0.0 | 0.0 | | 0.2385 | 425.0 | 1275 | 0.2381 | 0.0 | 0.0 | | 0.2393 | 426.0 | 1278 | 0.2380 | 0.0 | 0.0 | | 0.2387 | 427.0 | 1281 | 0.2379 | 0.0 | 0.0 | | 0.2384 | 428.0 | 1284 | 0.2379 | 0.0 | 0.0 | | 0.2386 | 429.0 | 1287 | 0.2378 | 0.0 | 0.0 | | 0.2389 | 430.0 | 1290 | 0.2378 | 0.0 | 0.0 | | 0.2385 | 431.0 | 1293 | 0.2377 | 0.0 | 0.0 | | 0.2388 | 432.0 | 1296 | 0.2377 | 0.0 | 0.0 | | 0.2378 | 433.0 | 1299 | 0.2376 | 0.0 | 0.0 | | 0.2385 | 434.0 | 1302 | 0.2376 | 0.0 | 0.0 | | 0.2382 | 435.0 | 1305 | 0.2375 | 0.0 | 0.0 | | 0.238 | 436.0 | 1308 | 0.2374 | 0.0 | 0.0 | | 0.2383 | 437.0 | 1311 | 0.2374 | 0.0 | 0.0 | | 0.2379 | 438.0 | 1314 | 0.2373 | 0.0 | 0.0 | | 0.2381 | 439.0 | 1317 | 0.2373 | 0.0 | 0.0 | | 0.2373 | 440.0 | 1320 | 0.2372 | 0.0 | 0.0 | | 0.2381 | 441.0 | 1323 | 0.2372 | 0.0 | 0.0 | | 0.238 | 442.0 | 1326 | 0.2371 | 0.0 | 0.0 | | 0.2383 | 443.0 | 1329 | 0.2371 | 0.0 | 0.0 | | 0.2375 | 444.0 | 1332 | 0.2370 | 0.0 | 0.0 | | 0.2378 | 445.0 | 1335 | 0.2370 | 0.0 | 0.0 | | 0.2379 | 446.0 | 1338 | 0.2369 | 0.0 | 0.0 | | 0.2379 | 447.0 | 1341 | 0.2369 | 0.0 | 0.0 | | 0.2379 | 448.0 | 1344 | 0.2368 | 0.0 | 0.0 | | 0.2372 | 449.0 | 1347 | 0.2368 | 0.0 | 0.0 | | 0.2385 | 450.0 | 1350 | 0.2367 | 0.0 | 0.0 | | 0.2382 | 451.0 | 1353 | 0.2367 | 0.0 | 0.0 | | 0.2375 | 452.0 | 1356 | 0.2366 | 0.0 | 0.0 | | 0.2366 | 453.0 | 1359 | 0.2366 | 0.0 | 0.0 | | 0.2377 | 454.0 | 1362 | 0.2365 | 0.0 | 0.0 | | 0.2375 | 455.0 | 1365 | 0.2365 | 0.0 | 0.0 | | 0.2374 | 456.0 | 1368 | 0.2365 | 0.0 | 0.0 | | 0.2374 | 457.0 | 1371 | 0.2364 | 0.0 | 0.0 | | 0.2376 | 458.0 | 1374 | 0.2364 | 0.0 | 0.0 | | 0.2368 | 459.0 | 1377 | 0.2363 | 0.0 | 0.0 | | 0.237 | 460.0 | 1380 | 0.2363 | 0.0 | 0.0 | | 0.237 | 461.0 | 1383 | 0.2362 | 0.0 | 0.0 | | 0.2373 | 462.0 | 1386 | 0.2362 | 0.0 | 0.0 | | 0.2374 | 463.0 | 1389 | 0.2361 | 0.0 | 0.0 | | 0.2369 | 464.0 | 1392 | 0.2361 | 0.0 | 0.0 | | 0.2371 | 465.0 | 1395 | 0.2361 | 0.0 | 0.0 | | 0.2364 | 466.0 | 1398 | 0.2360 | 0.0 | 0.0 | | 0.2361 | 467.0 | 1401 | 0.2360 | 0.0 | 0.0 | | 0.2369 | 468.0 | 1404 | 0.2359 | 0.0 | 0.0 | | 0.2365 | 469.0 | 1407 | 0.2359 | 0.0 | 0.0 | | 0.2365 | 470.0 | 1410 | 0.2358 | 0.0 | 0.0 | | 0.2369 | 471.0 | 1413 | 0.2358 | 0.0 | 0.0 | | 0.2356 | 472.0 | 1416 | 0.2358 | 0.0 | 0.0 | | 0.2373 | 473.0 | 1419 | 0.2357 | 0.0 | 0.0 | | 0.2361 | 474.0 | 1422 | 0.2357 | 0.0 | 0.0 | | 0.2367 | 475.0 | 1425 | 0.2356 | 0.0 | 0.0 | | 0.2372 | 476.0 | 1428 | 0.2356 | 0.0 | 0.0 | | 0.2358 | 477.0 | 1431 | 0.2356 | 0.0 | 0.0 | | 0.2357 | 478.0 | 1434 | 0.2355 | 0.0 | 0.0 | | 0.2362 | 479.0 | 1437 | 0.2355 | 0.0 | 0.0 | | 0.236 | 480.0 | 1440 | 0.2354 | 0.0 | 0.0 | | 0.2358 | 481.0 | 1443 | 0.2354 | 0.0 | 0.0 | | 0.2363 | 482.0 | 1446 | 0.2354 | 0.0 | 0.0 | | 0.2361 | 483.0 | 1449 | 0.2353 | 0.0 | 0.0 | | 0.236 | 484.0 | 1452 | 0.2353 | 0.0 | 0.0 | | 0.2362 | 485.0 | 1455 | 0.2352 | 0.0 | 0.0 | | 0.2357 | 486.0 | 1458 | 0.2352 | 0.0 | 0.0 | | 0.2357 | 487.0 | 1461 | 0.2352 | 0.0 | 0.0 | | 0.2351 | 488.0 | 1464 | 0.2351 | 0.0 | 0.0 | | 0.2353 | 489.0 | 1467 | 0.2351 | 0.0 | 0.0 | | 0.2353 | 490.0 | 1470 | 0.2351 | 0.0 | 0.0 | | 0.2359 | 491.0 | 1473 | 0.2350 | 0.0 | 0.0 | | 0.2363 | 492.0 | 1476 | 0.2350 | 0.0 | 0.0 | | 0.2357 | 493.0 | 1479 | 0.2350 | 0.0 | 0.0 | | 0.2356 | 494.0 | 1482 | 0.2349 | 0.0 | 0.0 | | 0.2365 | 495.0 | 1485 | 0.2349 | 0.0 | 0.0 | | 0.2357 | 496.0 | 1488 | 0.2348 | 0.0 | 0.0 | | 0.2353 | 497.0 | 1491 | 0.2348 | 0.0 | 0.0 | | 0.2353 | 498.0 | 1494 | 0.2348 | 0.0 | 0.0 | | 0.2357 | 499.0 | 1497 | 0.2347 | 0.0 | 0.0 | | 0.2361 | 500.0 | 1500 | 0.2347 | 0.0 | 0.0 | | 0.2354 | 501.0 | 1503 | 0.2347 | 0.0 | 0.0 | | 0.2348 | 502.0 | 1506 | 0.2346 | 0.0 | 0.0 | | 0.2356 | 503.0 | 1509 | 0.2346 | 0.0 | 0.0 | | 0.2355 | 504.0 | 1512 | 0.2346 | 0.0 | 0.0 | | 0.2352 | 505.0 | 1515 | 0.2345 | 0.0 | 0.0 | | 0.2362 | 506.0 | 1518 | 0.2345 | 0.0 | 0.0 | | 0.2349 | 507.0 | 1521 | 0.2345 | 0.0 | 0.0 | | 0.2352 | 508.0 | 1524 | 0.2345 | 0.0 | 0.0 | | 0.2355 | 509.0 | 1527 | 0.2344 | 0.0 | 0.0 | | 0.2357 | 510.0 | 1530 | 0.2344 | 0.0 | 0.0 | | 0.2344 | 511.0 | 1533 | 0.2344 | 0.0 | 0.0 | | 0.2356 | 512.0 | 1536 | 0.2343 | 0.0 | 0.0 | | 0.2353 | 513.0 | 1539 | 0.2343 | 0.0 | 0.0 | | 0.2351 | 514.0 | 1542 | 0.2343 | 0.0 | 0.0 | | 0.2354 | 515.0 | 1545 | 0.2342 | 0.0 | 0.0 | | 0.2354 | 516.0 | 1548 | 0.2342 | 0.0 | 0.0 | | 0.2349 | 517.0 | 1551 | 0.2342 | 0.0 | 0.0 | | 0.2355 | 518.0 | 1554 | 0.2341 | 0.0 | 0.0 | | 0.2353 | 519.0 | 1557 | 0.2341 | 0.0 | 0.0 | | 0.2347 | 520.0 | 1560 | 0.2341 | 0.0 | 0.0 | | 0.2358 | 521.0 | 1563 | 0.2341 | 0.0 | 0.0 | | 0.2341 | 522.0 | 1566 | 0.2340 | 0.0 | 0.0 | | 0.2341 | 523.0 | 1569 | 0.2340 | 0.0 | 0.0 | | 0.2344 | 524.0 | 1572 | 0.2340 | 0.0 | 0.0 | | 0.2348 | 525.0 | 1575 | 0.2339 | 0.0 | 0.0 | | 0.2349 | 526.0 | 1578 | 0.2339 | 0.0 | 0.0 | | 0.2339 | 527.0 | 1581 | 0.2339 | 0.0 | 0.0 | | 0.2347 | 528.0 | 1584 | 0.2339 | 0.0 | 0.0 | | 0.2341 | 529.0 | 1587 | 0.2338 | 0.0 | 0.0 | | 0.2344 | 530.0 | 1590 | 0.2338 | 0.0 | 0.0 | | 0.2344 | 531.0 | 1593 | 0.2338 | 0.0 | 0.0 | | 0.2347 | 532.0 | 1596 | 0.2337 | 0.0 | 0.0 | | 0.2345 | 533.0 | 1599 | 0.2337 | 0.0 | 0.0 | | 0.2345 | 534.0 | 1602 | 0.2337 | 0.0 | 0.0 | | 0.2339 | 535.0 | 1605 | 0.2337 | 0.0 | 0.0 | | 0.2342 | 536.0 | 1608 | 0.2336 | 0.0 | 0.0 | | 0.234 | 537.0 | 1611 | 0.2336 | 0.0 | 0.0 | | 0.2346 | 538.0 | 1614 | 0.2336 | 0.0 | 0.0 | | 0.2343 | 539.0 | 1617 | 0.2336 | 0.0 | 0.0 | | 0.2346 | 540.0 | 1620 | 0.2335 | 0.0 | 0.0 | | 0.2333 | 541.0 | 1623 | 0.2335 | 0.0 | 0.0 | | 0.2339 | 542.0 | 1626 | 0.2335 | 0.0 | 0.0 | | 0.2335 | 543.0 | 1629 | 0.2335 | 0.0 | 0.0 | | 0.2342 | 544.0 | 1632 | 0.2334 | 0.0 | 0.0 | | 0.2335 | 545.0 | 1635 | 0.2334 | 0.0 | 0.0 | | 0.2341 | 546.0 | 1638 | 0.2334 | 0.0 | 0.0 | | 0.234 | 547.0 | 1641 | 0.2334 | 0.0 | 0.0 | | 0.2342 | 548.0 | 1644 | 0.2333 | 0.0 | 0.0 | | 0.2334 | 549.0 | 1647 | 0.2333 | 0.0 | 0.0 | | 0.2341 | 550.0 | 1650 | 0.2333 | 0.0 | 0.0 | | 0.2338 | 551.0 | 1653 | 0.2333 | 0.0 | 0.0 | | 0.2336 | 552.0 | 1656 | 0.2332 | 0.0 | 0.0 | | 0.2335 | 553.0 | 1659 | 0.2332 | 0.0 | 0.0 | | 0.2334 | 554.0 | 1662 | 0.2332 | 0.0 | 0.0 | | 0.2339 | 555.0 | 1665 | 0.2332 | 0.0 | 0.0 | | 0.2333 | 556.0 | 1668 | 0.2331 | 0.0 | 0.0 | | 0.2337 | 557.0 | 1671 | 0.2331 | 0.0 | 0.0 | | 0.2333 | 558.0 | 1674 | 0.2331 | 0.0 | 0.0 | | 0.2339 | 559.0 | 1677 | 0.2331 | 0.0 | 0.0 | | 0.2332 | 560.0 | 1680 | 0.2331 | 0.0 | 0.0 | | 0.2343 | 561.0 | 1683 | 0.2330 | 0.0 | 0.0 | | 0.234 | 562.0 | 1686 | 0.2330 | 0.0 | 0.0 | | 0.2335 | 563.0 | 1689 | 0.2330 | 0.0 | 0.0 | | 0.2333 | 564.0 | 1692 | 0.2330 | 0.0 | 0.0 | | 0.2334 | 565.0 | 1695 | 0.2329 | 0.0 | 0.0 | | 0.2337 | 566.0 | 1698 | 0.2329 | 0.0 | 0.0 | | 0.2344 | 567.0 | 1701 | 0.2329 | 0.0 | 0.0 | | 0.2331 | 568.0 | 1704 | 0.2329 | 0.0 | 0.0 | | 0.2338 | 569.0 | 1707 | 0.2329 | 0.0 | 0.0 | | 0.2331 | 570.0 | 1710 | 0.2328 | 0.0 | 0.0 | | 0.234 | 571.0 | 1713 | 0.2328 | 0.0 | 0.0 | | 0.2334 | 572.0 | 1716 | 0.2328 | 0.0 | 0.0 | | 0.2336 | 573.0 | 1719 | 0.2328 | 0.0 | 0.0 | | 0.2334 | 574.0 | 1722 | 0.2328 | 0.0 | 0.0 | | 0.2332 | 575.0 | 1725 | 0.2327 | 0.0 | 0.0 | | 0.2339 | 576.0 | 1728 | 0.2327 | 0.0 | 0.0 | | 0.2338 | 577.0 | 1731 | 0.2327 | 0.0 | 0.0 | | 0.2333 | 578.0 | 1734 | 0.2327 | 0.0 | 0.0 | | 0.2334 | 579.0 | 1737 | 0.2327 | 0.0 | 0.0 | | 0.2335 | 580.0 | 1740 | 0.2326 | 0.0 | 0.0 | | 0.2345 | 581.0 | 1743 | 0.2326 | 0.0 | 0.0 | | 0.233 | 582.0 | 1746 | 0.2326 | 0.0 | 0.0 | | 0.233 | 583.0 | 1749 | 0.2326 | 0.0 | 0.0 | | 0.2342 | 584.0 | 1752 | 0.2326 | 0.0 | 0.0 | | 0.2322 | 585.0 | 1755 | 0.2325 | 0.0 | 0.0 | | 0.2335 | 586.0 | 1758 | 0.2325 | 0.0 | 0.0 | | 0.2329 | 587.0 | 1761 | 0.2325 | 0.0 | 0.0 | | 0.2332 | 588.0 | 1764 | 0.2325 | 0.0 | 0.0 | | 0.2327 | 589.0 | 1767 | 0.2325 | 0.0 | 0.0 | | 0.2325 | 590.0 | 1770 | 0.2324 | 0.0 | 0.0 | | 0.2332 | 591.0 | 1773 | 0.2324 | 0.0 | 0.0 | | 0.2328 | 592.0 | 1776 | 0.2324 | 0.0 | 0.0 | | 0.2328 | 593.0 | 1779 | 0.2324 | 0.0 | 0.0 | | 0.2327 | 594.0 | 1782 | 0.2324 | 0.0 | 0.0 | | 0.2325 | 595.0 | 1785 | 0.2324 | 0.0 | 0.0 | | 0.2325 | 596.0 | 1788 | 0.2323 | 0.0 | 0.0 | | 0.2321 | 597.0 | 1791 | 0.2323 | 0.0 | 0.0 | | 0.2327 | 598.0 | 1794 | 0.2323 | 0.0 | 0.0 | | 0.2333 | 599.0 | 1797 | 0.2323 | 0.0 | 0.0 | | 0.2338 | 600.0 | 1800 | 0.2323 | 0.0 | 0.0 | | 0.2326 | 601.0 | 1803 | 0.2323 | 0.0 | 0.0 | | 0.2333 | 602.0 | 1806 | 0.2322 | 0.0 | 0.0 | | 0.2329 | 603.0 | 1809 | 0.2322 | 0.0 | 0.0 | | 0.2327 | 604.0 | 1812 | 0.2322 | 0.0 | 0.0 | | 0.2326 | 605.0 | 1815 | 0.2322 | 0.0 | 0.0 | | 0.2325 | 606.0 | 1818 | 0.2322 | 0.0 | 0.0 | | 0.2322 | 607.0 | 1821 | 0.2322 | 0.0 | 0.0 | | 0.2321 | 608.0 | 1824 | 0.2321 | 0.0 | 0.0 | | 0.2332 | 609.0 | 1827 | 0.2321 | 0.0 | 0.0 | | 0.2325 | 610.0 | 1830 | 0.2321 | 0.0 | 0.0 | | 0.2332 | 611.0 | 1833 | 0.2321 | 0.0 | 0.0 | | 0.2329 | 612.0 | 1836 | 0.2321 | 0.0 | 0.0 | | 0.2327 | 613.0 | 1839 | 0.2321 | 0.0 | 0.0 | | 0.2324 | 614.0 | 1842 | 0.2320 | 0.0 | 0.0 | | 0.2322 | 615.0 | 1845 | 0.2320 | 0.0 | 0.0 | | 0.2327 | 616.0 | 1848 | 0.2320 | 0.0 | 0.0 | | 0.2326 | 617.0 | 1851 | 0.2320 | 0.0 | 0.0 | | 0.2331 | 618.0 | 1854 | 0.2320 | 0.0 | 0.0 | | 0.2329 | 619.0 | 1857 | 0.2320 | 0.0 | 0.0 | | 0.232 | 620.0 | 1860 | 0.2319 | 0.0 | 0.0 | | 0.2321 | 621.0 | 1863 | 0.2319 | 0.0 | 0.0 | | 0.2324 | 622.0 | 1866 | 0.2319 | 0.0 | 0.0 | | 0.2325 | 623.0 | 1869 | 0.2319 | 0.0 | 0.0 | | 0.2324 | 624.0 | 1872 | 0.2319 | 0.0 | 0.0 | | 0.233 | 625.0 | 1875 | 0.2319 | 0.0 | 0.0 | | 0.2316 | 626.0 | 1878 | 0.2319 | 0.0 | 0.0 | | 0.2324 | 627.0 | 1881 | 0.2318 | 0.0 | 0.0 | | 0.2326 | 628.0 | 1884 | 0.2318 | 0.0 | 0.0 | | 0.2323 | 629.0 | 1887 | 0.2318 | 0.0 | 0.0 | | 0.2322 | 630.0 | 1890 | 0.2318 | 0.0 | 0.0 | | 0.2331 | 631.0 | 1893 | 0.2318 | 0.0 | 0.0 | | 0.2321 | 632.0 | 1896 | 0.2318 | 0.0 | 0.0 | | 0.2325 | 633.0 | 1899 | 0.2318 | 0.0 | 0.0 | | 0.2322 | 634.0 | 1902 | 0.2317 | 0.0 | 0.0 | | 0.2331 | 635.0 | 1905 | 0.2317 | 0.0 | 0.0 | | 0.2322 | 636.0 | 1908 | 0.2317 | 0.0 | 0.0 | | 0.2334 | 637.0 | 1911 | 0.2317 | 0.0 | 0.0 | | 0.2319 | 638.0 | 1914 | 0.2317 | 0.0 | 0.0 | | 0.2319 | 639.0 | 1917 | 0.2317 | 0.0 | 0.0 | | 0.2329 | 640.0 | 1920 | 0.2317 | 0.0 | 0.0 | | 0.2317 | 641.0 | 1923 | 0.2316 | 0.0 | 0.0 | | 0.2324 | 642.0 | 1926 | 0.2316 | 0.0 | 0.0 | | 0.2325 | 643.0 | 1929 | 0.2316 | 0.0 | 0.0 | | 0.2318 | 644.0 | 1932 | 0.2316 | 0.0 | 0.0 | | 0.2326 | 645.0 | 1935 | 0.2316 | 0.0 | 0.0 | | 0.2325 | 646.0 | 1938 | 0.2316 | 0.0 | 0.0 | | 0.232 | 647.0 | 1941 | 0.2316 | 0.0 | 0.0 | | 0.2321 | 648.0 | 1944 | 0.2316 | 0.0 | 0.0 | | 0.2322 | 649.0 | 1947 | 0.2315 | 0.0 | 0.0 | | 0.2322 | 650.0 | 1950 | 0.2315 | 0.0 | 0.0 | | 0.2321 | 651.0 | 1953 | 0.2315 | 0.0 | 0.0 | | 0.2317 | 652.0 | 1956 | 0.2315 | 0.0 | 0.0 | | 0.2324 | 653.0 | 1959 | 0.2315 | 0.0 | 0.0 | | 0.2324 | 654.0 | 1962 | 0.2315 | 0.0 | 0.0 | | 0.2312 | 655.0 | 1965 | 0.2315 | 0.0 | 0.0 | | 0.2323 | 656.0 | 1968 | 0.2315 | 0.0 | 0.0 | | 0.2321 | 657.0 | 1971 | 0.2314 | 0.0 | 0.0 | | 0.232 | 658.0 | 1974 | 0.2314 | 0.0 | 0.0 | | 0.2314 | 659.0 | 1977 | 0.2314 | 0.0 | 0.0 | | 0.2329 | 660.0 | 1980 | 0.2314 | 0.0 | 0.0 | | 0.232 | 661.0 | 1983 | 0.2314 | 0.0 | 0.0 | | 0.2319 | 662.0 | 1986 | 0.2314 | 0.0 | 0.0 | | 0.2319 | 663.0 | 1989 | 0.2314 | 0.0 | 0.0 | | 0.2317 | 664.0 | 1992 | 0.2314 | 0.0 | 0.0 | | 0.2314 | 665.0 | 1995 | 0.2314 | 0.0 | 0.0 | | 0.2312 | 666.0 | 1998 | 0.2313 | 0.0 | 0.0 | | 0.2326 | 667.0 | 2001 | 0.2313 | 0.0 | 0.0 | | 0.2321 | 668.0 | 2004 | 0.2313 | 0.0 | 0.0 | | 0.2319 | 669.0 | 2007 | 0.2313 | 0.0 | 0.0 | | 0.2326 | 670.0 | 2010 | 0.2313 | 0.0 | 0.0 | | 0.2313 | 671.0 | 2013 | 0.2313 | 0.0 | 0.0 | | 0.2321 | 672.0 | 2016 | 0.2313 | 0.0 | 0.0 | | 0.2318 | 673.0 | 2019 | 0.2313 | 0.0 | 0.0 | | 0.2314 | 674.0 | 2022 | 0.2312 | 0.0 | 0.0 | | 0.2317 | 675.0 | 2025 | 0.2312 | 0.0 | 0.0 | | 0.2328 | 676.0 | 2028 | 0.2312 | 0.0 | 0.0 | | 0.2317 | 677.0 | 2031 | 0.2312 | 0.0 | 0.0 | | 0.2321 | 678.0 | 2034 | 0.2312 | 0.0 | 0.0 | | 0.232 | 679.0 | 2037 | 0.2312 | 0.0 | 0.0 | | 0.232 | 680.0 | 2040 | 0.2312 | 0.0 | 0.0 | | 0.2319 | 681.0 | 2043 | 0.2312 | 0.0 | 0.0 | | 0.2311 | 682.0 | 2046 | 0.2312 | 0.0 | 0.0 | | 0.2323 | 683.0 | 2049 | 0.2312 | 0.0 | 0.0 | | 0.2315 | 684.0 | 2052 | 0.2311 | 0.0 | 0.0 | | 0.2321 | 685.0 | 2055 | 0.2311 | 0.0 | 0.0 | | 0.2307 | 686.0 | 2058 | 0.2311 | 0.0 | 0.0 | | 0.2311 | 687.0 | 2061 | 0.2311 | 0.0 | 0.0 | | 0.2307 | 688.0 | 2064 | 0.2311 | 0.0 | 0.0 | | 0.2317 | 689.0 | 2067 | 0.2311 | 0.0 | 0.0 | | 0.2318 | 690.0 | 2070 | 0.2311 | 0.0 | 0.0 | | 0.2316 | 691.0 | 2073 | 0.2311 | 0.0 | 0.0 | | 0.233 | 692.0 | 2076 | 0.2311 | 0.0 | 0.0 | | 0.2324 | 693.0 | 2079 | 0.2311 | 0.0 | 0.0 | | 0.2306 | 694.0 | 2082 | 0.2310 | 0.0 | 0.0 | | 0.2313 | 695.0 | 2085 | 0.2310 | 0.0 | 0.0 | | 0.2311 | 696.0 | 2088 | 0.2310 | 0.0 | 0.0 | | 0.2313 | 697.0 | 2091 | 0.2310 | 0.0 | 0.0 | | 0.2313 | 698.0 | 2094 | 0.2310 | 0.0 | 0.0 | | 0.2317 | 699.0 | 2097 | 0.2310 | 0.0 | 0.0 | | 0.2306 | 700.0 | 2100 | 0.2310 | 0.0 | 0.0 | | 0.232 | 701.0 | 2103 | 0.2310 | 0.0 | 0.0 | | 0.2312 | 702.0 | 2106 | 0.2310 | 0.0 | 0.0 | | 0.2319 | 703.0 | 2109 | 0.2310 | 0.0 | 0.0 | | 0.2314 | 704.0 | 2112 | 0.2310 | 0.0 | 0.0 | | 0.2311 | 705.0 | 2115 | 0.2309 | 0.0 | 0.0 | | 0.2313 | 706.0 | 2118 | 0.2309 | 0.0 | 0.0 | | 0.2309 | 707.0 | 2121 | 0.2309 | 0.0 | 0.0 | | 0.2318 | 708.0 | 2124 | 0.2309 | 0.0 | 0.0 | | 0.2307 | 709.0 | 2127 | 0.2309 | 0.0 | 0.0 | | 0.2312 | 710.0 | 2130 | 0.2309 | 0.0 | 0.0 | | 0.2307 | 711.0 | 2133 | 0.2309 | 0.0 | 0.0 | | 0.2318 | 712.0 | 2136 | 0.2309 | 0.0 | 0.0 | | 0.2314 | 713.0 | 2139 | 0.2309 | 0.0 | 0.0 | | 0.2322 | 714.0 | 2142 | 0.2309 | 0.0 | 0.0 | | 0.2319 | 715.0 | 2145 | 0.2309 | 0.0 | 0.0 | | 0.231 | 716.0 | 2148 | 0.2308 | 0.0 | 0.0 | | 0.2316 | 717.0 | 2151 | 0.2308 | 0.0 | 0.0 | | 0.2312 | 718.0 | 2154 | 0.2308 | 0.0 | 0.0 | | 0.2308 | 719.0 | 2157 | 0.2308 | 0.0 | 0.0 | | 0.2318 | 720.0 | 2160 | 0.2308 | 0.0 | 0.0 | | 0.2314 | 721.0 | 2163 | 0.2308 | 0.0 | 0.0 | | 0.2312 | 722.0 | 2166 | 0.2308 | 0.0 | 0.0 | | 0.2305 | 723.0 | 2169 | 0.2308 | 0.0 | 0.0 | | 0.2312 | 724.0 | 2172 | 0.2308 | 0.0 | 0.0 | | 0.2311 | 725.0 | 2175 | 0.2308 | 0.0 | 0.0 | | 0.2316 | 726.0 | 2178 | 0.2308 | 0.0 | 0.0 | | 0.2309 | 727.0 | 2181 | 0.2308 | 0.0 | 0.0 | | 0.2311 | 728.0 | 2184 | 0.2307 | 0.0 | 0.0 | | 0.2313 | 729.0 | 2187 | 0.2307 | 0.0 | 0.0 | | 0.2308 | 730.0 | 2190 | 0.2307 | 0.0 | 0.0 | | 0.2314 | 731.0 | 2193 | 0.2307 | 0.0 | 0.0 | | 0.2309 | 732.0 | 2196 | 0.2307 | 0.0 | 0.0 | | 0.2312 | 733.0 | 2199 | 0.2307 | 0.0 | 0.0 | | 0.2318 | 734.0 | 2202 | 0.2307 | 0.0 | 0.0 | | 0.2312 | 735.0 | 2205 | 0.2307 | 0.0 | 0.0 | | 0.2316 | 736.0 | 2208 | 0.2307 | 0.0 | 0.0 | | 0.2322 | 737.0 | 2211 | 0.2307 | 0.0 | 0.0 | | 0.2305 | 738.0 | 2214 | 0.2307 | 0.0 | 0.0 | | 0.2319 | 739.0 | 2217 | 0.2307 | 0.0 | 0.0 | | 0.2313 | 740.0 | 2220 | 0.2307 | 0.0 | 0.0 | | 0.2311 | 741.0 | 2223 | 0.2307 | 0.0 | 0.0 | | 0.231 | 742.0 | 2226 | 0.2306 | 0.0 | 0.0 | | 0.2312 | 743.0 | 2229 | 0.2306 | 0.0 | 0.0 | | 0.2317 | 744.0 | 2232 | 0.2306 | 0.0 | 0.0 | | 0.2312 | 745.0 | 2235 | 0.2306 | 0.0 | 0.0 | | 0.2313 | 746.0 | 2238 | 0.2306 | 0.0 | 0.0 | | 0.2318 | 747.0 | 2241 | 0.2306 | 0.0 | 0.0 | | 0.2313 | 748.0 | 2244 | 0.2306 | 0.0 | 0.0 | | 0.2298 | 749.0 | 2247 | 0.2306 | 0.0 | 0.0 | | 0.2323 | 750.0 | 2250 | 0.2306 | 0.0 | 0.0 | | 0.2326 | 751.0 | 2253 | 0.2306 | 0.0 | 0.0 | | 0.2315 | 752.0 | 2256 | 0.2306 | 0.0 | 0.0 | | 0.2297 | 753.0 | 2259 | 0.2306 | 0.0 | 0.0 | | 0.2305 | 754.0 | 2262 | 0.2306 | 0.0 | 0.0 | | 0.2312 | 755.0 | 2265 | 0.2306 | 0.0 | 0.0 | | 0.231 | 756.0 | 2268 | 0.2305 | 0.0 | 0.0 | | 0.2308 | 757.0 | 2271 | 0.2305 | 0.0 | 0.0 | | 0.2315 | 758.0 | 2274 | 0.2305 | 0.0 | 0.0 | | 0.2307 | 759.0 | 2277 | 0.2305 | 0.0 | 0.0 | | 0.2314 | 760.0 | 2280 | 0.2305 | 0.0 | 0.0 | | 0.232 | 761.0 | 2283 | 0.2305 | 0.0 | 0.0 | | 0.2319 | 762.0 | 2286 | 0.2305 | 0.0 | 0.0 | | 0.2319 | 763.0 | 2289 | 0.2305 | 0.0 | 0.0 | | 0.2305 | 764.0 | 2292 | 0.2305 | 0.0 | 0.0 | | 0.2317 | 765.0 | 2295 | 0.2305 | 0.0 | 0.0 | | 0.2316 | 766.0 | 2298 | 0.2305 | 0.0 | 0.0 | | 0.2312 | 767.0 | 2301 | 0.2305 | 0.0 | 0.0 | | 0.2307 | 768.0 | 2304 | 0.2305 | 0.0 | 0.0 | | 0.2317 | 769.0 | 2307 | 0.2305 | 0.0 | 0.0 | | 0.2314 | 770.0 | 2310 | 0.2305 | 0.0 | 0.0 | | 0.2316 | 771.0 | 2313 | 0.2305 | 0.0 | 0.0 | | 0.2313 | 772.0 | 2316 | 0.2304 | 0.0 | 0.0 | | 0.2305 | 773.0 | 2319 | 0.2304 | 0.0 | 0.0 | | 0.2306 | 774.0 | 2322 | 0.2304 | 0.0 | 0.0 | | 0.2317 | 775.0 | 2325 | 0.2304 | 0.0 | 0.0 | | 0.2311 | 776.0 | 2328 | 0.2304 | 0.0 | 0.0 | | 0.2323 | 777.0 | 2331 | 0.2304 | 0.0 | 0.0 | | 0.2306 | 778.0 | 2334 | 0.2304 | 0.0 | 0.0 | | 0.2308 | 779.0 | 2337 | 0.2304 | 0.0 | 0.0 | | 0.231 | 780.0 | 2340 | 0.2304 | 0.0 | 0.0 | | 0.2307 | 781.0 | 2343 | 0.2304 | 0.0 | 0.0 | | 0.2316 | 782.0 | 2346 | 0.2304 | 0.0 | 0.0 | | 0.2301 | 783.0 | 2349 | 0.2304 | 0.0 | 0.0 | | 0.2313 | 784.0 | 2352 | 0.2304 | 0.0 | 0.0 | | 0.2316 | 785.0 | 2355 | 0.2304 | 0.0 | 0.0 | | 0.2312 | 786.0 | 2358 | 0.2304 | 0.0 | 0.0 | | 0.2309 | 787.0 | 2361 | 0.2304 | 0.0 | 0.0 | | 0.2308 | 788.0 | 2364 | 0.2304 | 0.0 | 0.0 | | 0.2302 | 789.0 | 2367 | 0.2304 | 0.0 | 0.0 | | 0.2309 | 790.0 | 2370 | 0.2303 | 0.0 | 0.0 | | 0.2306 | 791.0 | 2373 | 0.2303 | 0.0 | 0.0 | | 0.2319 | 792.0 | 2376 | 0.2303 | 0.0 | 0.0 | | 0.2308 | 793.0 | 2379 | 0.2303 | 0.0 | 0.0 | | 0.23 | 794.0 | 2382 | 0.2303 | 0.0 | 0.0 | | 0.2305 | 795.0 | 2385 | 0.2303 | 0.0 | 0.0 | | 0.2313 | 796.0 | 2388 | 0.2303 | 0.0 | 0.0 | | 0.231 | 797.0 | 2391 | 0.2303 | 0.0 | 0.0 | | 0.2302 | 798.0 | 2394 | 0.2303 | 0.0 | 0.0 | | 0.2311 | 799.0 | 2397 | 0.2303 | 0.0 | 0.0 | | 0.2311 | 800.0 | 2400 | 0.2303 | 0.0 | 0.0 | | 0.2304 | 801.0 | 2403 | 0.2303 | 0.0 | 0.0 | | 0.2312 | 802.0 | 2406 | 0.2303 | 0.0 | 0.0 | | 0.2306 | 803.0 | 2409 | 0.2303 | 0.0 | 0.0 | | 0.2298 | 804.0 | 2412 | 0.2303 | 0.0 | 0.0 | | 0.2301 | 805.0 | 2415 | 0.2303 | 0.0 | 0.0 | | 0.2312 | 806.0 | 2418 | 0.2303 | 0.0 | 0.0 | | 0.2313 | 807.0 | 2421 | 0.2303 | 0.0 | 0.0 | | 0.2314 | 808.0 | 2424 | 0.2303 | 0.0 | 0.0 | | 0.2304 | 809.0 | 2427 | 0.2303 | 0.0 | 0.0 | | 0.2303 | 810.0 | 2430 | 0.2303 | 0.0 | 0.0 | | 0.2302 | 811.0 | 2433 | 0.2302 | 0.0 | 0.0 | | 0.2307 | 812.0 | 2436 | 0.2302 | 0.0 | 0.0 | | 0.2307 | 813.0 | 2439 | 0.2302 | 0.0 | 0.0 | | 0.2312 | 814.0 | 2442 | 0.2302 | 0.0 | 0.0 | | 0.2309 | 815.0 | 2445 | 0.2302 | 0.0 | 0.0 | | 0.2311 | 816.0 | 2448 | 0.2302 | 0.0 | 0.0 | | 0.2305 | 817.0 | 2451 | 0.2302 | 0.0 | 0.0 | | 0.2307 | 818.0 | 2454 | 0.2302 | 0.0 | 0.0 | | 0.2317 | 819.0 | 2457 | 0.2302 | 0.0 | 0.0 | | 0.2304 | 820.0 | 2460 | 0.2302 | 0.0 | 0.0 | | 0.2312 | 821.0 | 2463 | 0.2302 | 0.0 | 0.0 | | 0.2309 | 822.0 | 2466 | 0.2302 | 0.0 | 0.0 | | 0.2311 | 823.0 | 2469 | 0.2302 | 0.0 | 0.0 | | 0.2306 | 824.0 | 2472 | 0.2302 | 0.0 | 0.0 | | 0.231 | 825.0 | 2475 | 0.2302 | 0.0 | 0.0 | | 0.2311 | 826.0 | 2478 | 0.2302 | 0.0 | 0.0 | | 0.2311 | 827.0 | 2481 | 0.2302 | 0.0 | 0.0 | | 0.2313 | 828.0 | 2484 | 0.2302 | 0.0 | 0.0 | | 0.2312 | 829.0 | 2487 | 0.2302 | 0.0 | 0.0 | | 0.2308 | 830.0 | 2490 | 0.2302 | 0.0 | 0.0 | | 0.2306 | 831.0 | 2493 | 0.2302 | 0.0 | 0.0 | | 0.2305 | 832.0 | 2496 | 0.2302 | 0.0 | 0.0 | | 0.2301 | 833.0 | 2499 | 0.2302 | 0.0 | 0.0 | | 0.2307 | 834.0 | 2502 | 0.2301 | 0.0 | 0.0 | | 0.2304 | 835.0 | 2505 | 0.2301 | 0.0 | 0.0 | | 0.2298 | 836.0 | 2508 | 0.2301 | 0.0 | 0.0 | | 0.2318 | 837.0 | 2511 | 0.2301 | 0.0 | 0.0 | | 0.23 | 838.0 | 2514 | 0.2301 | 0.0 | 0.0 | | 0.2307 | 839.0 | 2517 | 0.2301 | 0.0 | 0.0 | | 0.231 | 840.0 | 2520 | 0.2301 | 0.0 | 0.0 | | 0.2316 | 841.0 | 2523 | 0.2301 | 0.0 | 0.0 | | 0.2303 | 842.0 | 2526 | 0.2301 | 0.0 | 0.0 | | 0.231 | 843.0 | 2529 | 0.2301 | 0.0 | 0.0 | | 0.2306 | 844.0 | 2532 | 0.2301 | 0.0 | 0.0 | | 0.2306 | 845.0 | 2535 | 0.2301 | 0.0 | 0.0 | | 0.2307 | 846.0 | 2538 | 0.2301 | 0.0 | 0.0 | | 0.2304 | 847.0 | 2541 | 0.2301 | 0.0 | 0.0 | | 0.2307 | 848.0 | 2544 | 0.2301 | 0.0 | 0.0 | | 0.2315 | 849.0 | 2547 | 0.2301 | 0.0 | 0.0 | | 0.2312 | 850.0 | 2550 | 0.2301 | 0.0 | 0.0 | | 0.2311 | 851.0 | 2553 | 0.2301 | 0.0 | 0.0 | | 0.2304 | 852.0 | 2556 | 0.2301 | 0.0 | 0.0 | | 0.2311 | 853.0 | 2559 | 0.2301 | 0.0 | 0.0 | | 0.2298 | 854.0 | 2562 | 0.2301 | 0.0 | 0.0 | | 0.2302 | 855.0 | 2565 | 0.2301 | 0.0 | 0.0 | | 0.23 | 856.0 | 2568 | 0.2301 | 0.0 | 0.0 | | 0.2305 | 857.0 | 2571 | 0.2301 | 0.0 | 0.0 | | 0.2305 | 858.0 | 2574 | 0.2301 | 0.0 | 0.0 | | 0.2308 | 859.0 | 2577 | 0.2301 | 0.0 | 0.0 | | 0.2299 | 860.0 | 2580 | 0.2301 | 0.0 | 0.0 | | 0.2309 | 861.0 | 2583 | 0.2301 | 0.0 | 0.0 | | 0.2304 | 862.0 | 2586 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 863.0 | 2589 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 864.0 | 2592 | 0.2300 | 0.0 | 0.0 | | 0.2298 | 865.0 | 2595 | 0.2300 | 0.0 | 0.0 | | 0.2303 | 866.0 | 2598 | 0.2300 | 0.0 | 0.0 | | 0.2299 | 867.0 | 2601 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 868.0 | 2604 | 0.2300 | 0.0 | 0.0 | | 0.2301 | 869.0 | 2607 | 0.2300 | 0.0 | 0.0 | | 0.2303 | 870.0 | 2610 | 0.2300 | 0.0 | 0.0 | | 0.23 | 871.0 | 2613 | 0.2300 | 0.0 | 0.0 | | 0.2306 | 872.0 | 2616 | 0.2300 | 0.0 | 0.0 | | 0.2308 | 873.0 | 2619 | 0.2300 | 0.0 | 0.0 | | 0.2315 | 874.0 | 2622 | 0.2300 | 0.0 | 0.0 | | 0.2316 | 875.0 | 2625 | 0.2300 | 0.0 | 0.0 | | 0.2308 | 876.0 | 2628 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 877.0 | 2631 | 0.2300 | 0.0 | 0.0 | | 0.2302 | 878.0 | 2634 | 0.2300 | 0.0 | 0.0 | | 0.2308 | 879.0 | 2637 | 0.2300 | 0.0 | 0.0 | | 0.23 | 880.0 | 2640 | 0.2300 | 0.0 | 0.0 | | 0.231 | 881.0 | 2643 | 0.2300 | 0.0 | 0.0 | | 0.2305 | 882.0 | 2646 | 0.2300 | 0.0 | 0.0 | | 0.2304 | 883.0 | 2649 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 884.0 | 2652 | 0.2300 | 0.0 | 0.0 | | 0.2302 | 885.0 | 2655 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 886.0 | 2658 | 0.2300 | 0.0 | 0.0 | | 0.23 | 887.0 | 2661 | 0.2300 | 0.0 | 0.0 | | 0.2313 | 888.0 | 2664 | 0.2300 | 0.0 | 0.0 | | 0.2315 | 889.0 | 2667 | 0.2300 | 0.0 | 0.0 | | 0.2299 | 890.0 | 2670 | 0.2300 | 0.0 | 0.0 | | 0.23 | 891.0 | 2673 | 0.2300 | 0.0 | 0.0 | | 0.2304 | 892.0 | 2676 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 893.0 | 2679 | 0.2300 | 0.0 | 0.0 | | 0.2307 | 894.0 | 2682 | 0.2300 | 0.0 | 0.0 | | 0.2307 | 895.0 | 2685 | 0.2300 | 0.0 | 0.0 | | 0.2312 | 896.0 | 2688 | 0.2300 | 0.0 | 0.0 | | 0.2302 | 897.0 | 2691 | 0.2300 | 0.0 | 0.0 | | 0.2309 | 898.0 | 2694 | 0.2300 | 0.0 | 0.0 | | 0.2303 | 899.0 | 2697 | 0.2299 | 0.0 | 0.0 | | 0.2315 | 900.0 | 2700 | 0.2299 | 0.0 | 0.0 | | 0.2311 | 901.0 | 2703 | 0.2299 | 0.0 | 0.0 | | 0.23 | 902.0 | 2706 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 903.0 | 2709 | 0.2299 | 0.0 | 0.0 | | 0.2305 | 904.0 | 2712 | 0.2299 | 0.0 | 0.0 | | 0.2313 | 905.0 | 2715 | 0.2299 | 0.0 | 0.0 | | 0.2304 | 906.0 | 2718 | 0.2299 | 0.0 | 0.0 | | 0.2305 | 907.0 | 2721 | 0.2299 | 0.0 | 0.0 | | 0.2304 | 908.0 | 2724 | 0.2299 | 0.0 | 0.0 | | 0.231 | 909.0 | 2727 | 0.2299 | 0.0 | 0.0 | | 0.2303 | 910.0 | 2730 | 0.2299 | 0.0 | 0.0 | | 0.2303 | 911.0 | 2733 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 912.0 | 2736 | 0.2299 | 0.0 | 0.0 | | 0.2306 | 913.0 | 2739 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 914.0 | 2742 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 915.0 | 2745 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 916.0 | 2748 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 917.0 | 2751 | 0.2299 | 0.0 | 0.0 | | 0.2304 | 918.0 | 2754 | 0.2299 | 0.0 | 0.0 | | 0.231 | 919.0 | 2757 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 920.0 | 2760 | 0.2299 | 0.0 | 0.0 | | 0.23 | 921.0 | 2763 | 0.2299 | 0.0 | 0.0 | | 0.2305 | 922.0 | 2766 | 0.2299 | 0.0 | 0.0 | | 0.2301 | 923.0 | 2769 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 924.0 | 2772 | 0.2299 | 0.0 | 0.0 | | 0.2302 | 925.0 | 2775 | 0.2299 | 0.0 | 0.0 | | 0.2313 | 926.0 | 2778 | 0.2299 | 0.0 | 0.0 | | 0.2303 | 927.0 | 2781 | 0.2299 | 0.0 | 0.0 | | 0.2306 | 928.0 | 2784 | 0.2299 | 0.0 | 0.0 | | 0.2306 | 929.0 | 2787 | 0.2299 | 0.0 | 0.0 | | 0.2301 | 930.0 | 2790 | 0.2299 | 0.0 | 0.0 | | 0.2309 | 931.0 | 2793 | 0.2299 | 0.0 | 0.0 | | 0.2302 | 932.0 | 2796 | 0.2299 | 0.0 | 0.0 | | 0.231 | 933.0 | 2799 | 0.2299 | 0.0 | 0.0 | | 0.23 | 934.0 | 2802 | 0.2299 | 0.0 | 0.0 | | 0.2296 | 935.0 | 2805 | 0.2299 | 0.0 | 0.0 | | 0.2305 | 936.0 | 2808 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 937.0 | 2811 | 0.2299 | 0.0 | 0.0 | | 0.2304 | 938.0 | 2814 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 939.0 | 2817 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 940.0 | 2820 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 941.0 | 2823 | 0.2299 | 0.0 | 0.0 | | 0.2306 | 942.0 | 2826 | 0.2299 | 0.0 | 0.0 | | 0.2302 | 943.0 | 2829 | 0.2299 | 0.0 | 0.0 | | 0.2309 | 944.0 | 2832 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 945.0 | 2835 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 946.0 | 2838 | 0.2299 | 0.0 | 0.0 | | 0.2301 | 947.0 | 2841 | 0.2299 | 0.0 | 0.0 | | 0.2302 | 948.0 | 2844 | 0.2299 | 0.0 | 0.0 | | 0.231 | 949.0 | 2847 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 950.0 | 2850 | 0.2299 | 0.0 | 0.0 | | 0.2309 | 951.0 | 2853 | 0.2299 | 0.0 | 0.0 | | 0.2303 | 952.0 | 2856 | 0.2299 | 0.0 | 0.0 | | 0.2301 | 953.0 | 2859 | 0.2299 | 0.0 | 0.0 | | 0.2311 | 954.0 | 2862 | 0.2299 | 0.0 | 0.0 | | 0.2308 | 955.0 | 2865 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 956.0 | 2868 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 957.0 | 2871 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 958.0 | 2874 | 0.2299 | 0.0 | 0.0 | | 0.2309 | 959.0 | 2877 | 0.2299 | 0.0 | 0.0 | | 0.2304 | 960.0 | 2880 | 0.2299 | 0.0 | 0.0 | | 0.231 | 961.0 | 2883 | 0.2299 | 0.0 | 0.0 | | 0.2299 | 962.0 | 2886 | 0.2299 | 0.0 | 0.0 | | 0.2307 | 963.0 | 2889 | 0.2298 | 0.0 | 0.0 | | 0.2303 | 964.0 | 2892 | 0.2298 | 0.0 | 0.0 | | 0.2303 | 965.0 | 2895 | 0.2298 | 0.0 | 0.0 | | 0.2301 | 966.0 | 2898 | 0.2298 | 0.0 | 0.0 | | 0.2299 | 967.0 | 2901 | 0.2298 | 0.0 | 0.0 | | 0.2301 | 968.0 | 2904 | 0.2298 | 0.0 | 0.0 | | 0.2308 | 969.0 | 2907 | 0.2298 | 0.0 | 0.0 | | 0.23 | 970.0 | 2910 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 971.0 | 2913 | 0.2298 | 0.0 | 0.0 | | 0.2306 | 972.0 | 2916 | 0.2298 | 0.0 | 0.0 | | 0.2309 | 973.0 | 2919 | 0.2298 | 0.0 | 0.0 | | 0.2314 | 974.0 | 2922 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 975.0 | 2925 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 976.0 | 2928 | 0.2298 | 0.0 | 0.0 | | 0.2303 | 977.0 | 2931 | 0.2298 | 0.0 | 0.0 | | 0.23 | 978.0 | 2934 | 0.2298 | 0.0 | 0.0 | | 0.2303 | 979.0 | 2937 | 0.2298 | 0.0 | 0.0 | | 0.2302 | 980.0 | 2940 | 0.2298 | 0.0 | 0.0 | | 0.2296 | 981.0 | 2943 | 0.2298 | 0.0 | 0.0 | | 0.2299 | 982.0 | 2946 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 983.0 | 2949 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 984.0 | 2952 | 0.2298 | 0.0 | 0.0 | | 0.2306 | 985.0 | 2955 | 0.2298 | 0.0 | 0.0 | | 0.2297 | 986.0 | 2958 | 0.2298 | 0.0 | 0.0 | | 0.23 | 987.0 | 2961 | 0.2298 | 0.0 | 0.0 | | 0.2302 | 988.0 | 2964 | 0.2298 | 0.0 | 0.0 | | 0.23 | 989.0 | 2967 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 990.0 | 2970 | 0.2298 | 0.0 | 0.0 | | 0.2309 | 991.0 | 2973 | 0.2298 | 0.0 | 0.0 | | 0.2298 | 992.0 | 2976 | 0.2298 | 0.0 | 0.0 | | 0.2295 | 993.0 | 2979 | 0.2298 | 0.0 | 0.0 | | 0.2296 | 994.0 | 2982 | 0.2298 | 0.0 | 0.0 | | 0.2309 | 995.0 | 2985 | 0.2298 | 0.0 | 0.0 | | 0.231 | 996.0 | 2988 | 0.2298 | 0.0 | 0.0 | | 0.2297 | 997.0 | 2991 | 0.2298 | 0.0 | 0.0 | | 0.2302 | 998.0 | 2994 | 0.2298 | 0.0 | 0.0 | | 0.2305 | 999.0 | 2997 | 0.2298 | 0.0 | 0.0 | | 0.2298 | 1000.0 | 3000 | 0.2298 | 0.0 | 0.0 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CyberHarem/sakurabakoma_edomaeelf
CyberHarem
2023-09-15T15:12:26Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/sakurabakoma_edomaeelf", "license:mit", "region:us" ]
text-to-image
2023-09-15T15:00:05Z
--- license: mit datasets: - CyberHarem/sakurabakoma_edomaeelf pipeline_tag: text-to-image tags: - art --- # Lora of sakurabakoma_edomaeelf This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4760, you need to download `4760/sakurabakoma_edomaeelf.pt` as the embedding and `4760/sakurabakoma_edomaeelf.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4760**, with the score of 0.940. The trigger words are: 1. `sakurabakoma_edomaeelf` 2. `red_hair, twintails, red_eyes, ribbon, neck_ribbon, bangs, red_ribbon, blush` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.908 | [Download](5100/sakurabakoma_edomaeelf.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | [<NSFW, click to see>](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | **4760** | **0.940** | [**Download**](4760/sakurabakoma_edomaeelf.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | [<NSFW, click to see>](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.930 | [Download](4420/sakurabakoma_edomaeelf.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | [<NSFW, click to see>](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.939 | [Download](4080/sakurabakoma_edomaeelf.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | [<NSFW, click to see>](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.849 | [Download](3740/sakurabakoma_edomaeelf.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | [<NSFW, click to see>](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.894 | [Download](3400/sakurabakoma_edomaeelf.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | [<NSFW, click to see>](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.913 | [Download](3060/sakurabakoma_edomaeelf.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | [<NSFW, click to see>](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.911 | [Download](2720/sakurabakoma_edomaeelf.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | [<NSFW, click to see>](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.900 | [Download](2380/sakurabakoma_edomaeelf.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | [<NSFW, click to see>](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.864 | [Download](2040/sakurabakoma_edomaeelf.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | [<NSFW, click to see>](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.824 | [Download](1700/sakurabakoma_edomaeelf.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | [<NSFW, click to see>](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.833 | [Download](1360/sakurabakoma_edomaeelf.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | [<NSFW, click to see>](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.855 | [Download](1020/sakurabakoma_edomaeelf.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | [<NSFW, click to see>](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.752 | [Download](680/sakurabakoma_edomaeelf.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | [<NSFW, click to see>](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.754 | [Download](340/sakurabakoma_edomaeelf.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | [<NSFW, click to see>](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
bookbot/byt5-small-wikipron-eng-latn
bookbot
2023-09-15T15:11:51Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-05T08:51:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: byt5-small-wikipron-eng-latn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-small-wikipron-eng-latn This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1898 - Per: 0.3272 - Gen Len: 16.4158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Per | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 2.2564 | 1.0 | 230 | 0.4016 | 0.5235 | 15.7351 | | 0.3856 | 2.0 | 461 | 0.2648 | 0.4189 | 16.3283 | | 0.2861 | 3.0 | 692 | 0.2248 | 0.3665 | 16.3982 | | 0.2438 | 4.0 | 923 | 0.2090 | 0.3452 | 16.3591 | | 0.2207 | 5.0 | 1153 | 0.2015 | 0.3403 | 16.3944 | | 0.2049 | 6.0 | 1384 | 0.1952 | 0.3342 | 16.4001 | | 0.193 | 7.0 | 1615 | 0.1908 | 0.3306 | 16.4006 | | 0.185 | 8.0 | 1846 | 0.1883 | 0.3271 | 16.408 | | 0.18 | 9.0 | 2076 | 0.1894 | 0.3276 | 16.4194 | | 0.1751 | 9.97 | 2300 | 0.1898 | 0.3272 | 16.4158 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ostris/face-helper-sdxl-lora
ostris
2023-09-15T15:06:46Z
60
5
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "photorealism", "realistic", "face", "closeup", "tool", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-15T15:06:40Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers - photorealism - realistic - face - closeup - tool base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: "rick sanchez from rick and morty, lab coat, drooling, drunk " - text: "miss piggy " - text: "miss frizzle from the magic school bus " - text: "spongebob squarepants " - text: "squidward from squarepants " - text: "fred flintstone " - text: "wilma from the flintstones " - text: "gru from despicable me " - text: "the grinch , studio lighting, dark background" - text: "ninja turtles, raphiael " --- # Face Helper - SDXL LoRA ![Image 0](2513168.jpeg) > rick sanchez from rick and morty, lab coat, drooling, drunk ([CivitAI](https://civitai.com/models/145974)) <ul><li><p>No trigger word needed</p></li><li><p>Only makes faces</p></li><li><p>Weight of 1.0</p></li><li><p>Helps make faces more realistic</p></li><li><p>Good at making fictional characters real people</p></li><li><p>Handles prompting of ages, ethnicity, and physical attributes well</p></li></ul><p></p><p>All samples were generated with Base SDXL 1.0. No refiner / detailers / highres fixes. </p><p></p><p>This LoRA was trained on over 100k high quality, highly labeled faces. It is just a small part of my Humans dataset. More information on that, and the thousands of tokens it has in it, can be found in the description of my <a rel="ugc" href="https://civitai.com/models/98755/humans">Humans</a> model. There are no trigger words and I do not recommend merging this into your model as it only does close up faces, unless that is what you are going for, in which case, go for it. </p><p></p><p>SDXL is amazing, but it is still lacking severely lacking in the ability to make photorealistic humans, especially faces. This was designed to help with that, but it is not perfect. Eyes and teeth are better, but still not at a level I am happy with, but I can only do so much with a LoRA. </p><p></p><p>I have also been training and tuning a full realistic SDXL model based on my full and expanded humans dataset since SDXL 1.0 was released, but it has a long way to go before I will be happy with it. </p> ## Image examples for the model: ![Image 1](2513169.jpeg) > miss piggy ![Image 2](2513175.jpeg) > miss frizzle from the magic school bus ![Image 3](2513174.jpeg) > spongebob squarepants ![Image 4](2513176.jpeg) > squidward from squarepants ![Image 5](2513183.jpeg) > fred flintstone ![Image 6](2513177.jpeg) > wilma from the flintstones ![Image 7](2513179.jpeg) > gru from despicable me ![Image 8](2513181.jpeg) > the grinch , studio lighting, dark background ![Image 9](2513178.jpeg) > ninja turtles, raphiael
ys7yoo/nli_sts_klue_roberta_large_ep5_ep5
ys7yoo
2023-09-15T15:00:58Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:ys7yoo/nli_klue_roberta_large_ep5", "base_model:finetune:ys7yoo/nli_klue_roberta_large_ep5", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-15T14:38:53Z
--- base_model: ys7yoo/nli_klue_roberta_large_ep5 tags: - generated_from_trainer datasets: - klue model-index: - name: sts_ys7yoo_nli_klue_roberta_large_ep5_ep5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sts_ys7yoo_nli_klue_roberta_large_ep5_ep5 This model is a fine-tuned version of [ys7yoo/nli_klue_roberta_large_ep5](https://huggingface.co/ys7yoo/nli_klue_roberta_large_ep5) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3389 - Mse: 0.3389 - Mae: 0.4252 - R2: 0.8448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.838 | 1.0 | 183 | 0.6427 | 0.6427 | 0.6072 | 0.7057 | | 0.1578 | 2.0 | 366 | 0.3120 | 0.3120 | 0.4220 | 0.8571 | | 0.1013 | 3.0 | 549 | 0.4612 | 0.4612 | 0.5016 | 0.7888 | | 0.0676 | 4.0 | 732 | 0.2982 | 0.2982 | 0.3974 | 0.8635 | | 0.0436 | 5.0 | 915 | 0.3389 | 0.3389 | 0.4252 | 0.8448 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
GabSo/santacoder-finetuned-the-stack-bash
GabSo
2023-09-15T14:43:21Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "custom_code", "base_model:bigcode/santacoder", "base_model:finetune:bigcode/santacoder", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-10T10:32:16Z
--- license: bigcode-openrail-m base_model: bigcode/santacoder tags: - generated_from_trainer model-index: - name: santacoder-finetuned-the-stack-bash results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # santacoder-finetuned-the-stack-bash This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.1 | 1 | 1.6955 | | No log | 0.2 | 2 | 3.6096 | | No log | 0.3 | 3 | 1.5787 | | No log | 0.4 | 4 | 1.8131 | | No log | 0.5 | 5 | 1.0994 | | No log | 0.6 | 6 | 1.0921 | | No log | 0.7 | 7 | 0.9509 | | No log | 0.8 | 8 | 0.8762 | | No log | 0.9 | 9 | 0.8375 | | 1.3831 | 1.0 | 10 | 0.8294 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Peter/qloratry
Peter
2023-09-15T14:38:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-15T14:35:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
loicspigeleer/ppo-SnowballTarget
loicspigeleer
2023-09-15T14:34:25Z
20
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-09-15T14:34:22Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: loicspigeleer/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bongo2112/sdxl-db-diamondplatnumz-portrait
bongo2112
2023-09-15T14:31:38Z
3
2
diffusers
[ "diffusers", "tensorboard", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-15T14:29:34Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of mwambinonyange man tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
cloudwalkerw/wavlm-base
cloudwalkerw
2023-09-15T14:30:53Z
157
0
transformers
[ "transformers", "pytorch", "wavlm", "audio-classification", "generated_from_trainer", "base_model:microsoft/wavlm-base", "base_model:finetune:microsoft/wavlm-base", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-15T09:37:37Z
--- base_model: microsoft/wavlm-base tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: wavlm-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3307 - Accuracy: 0.8974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 2 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3744 | 1.0 | 793 | 0.3307 | 0.8974 | | 0.3699 | 2.0 | 1586 | 0.3342 | 0.8974 | | 0.2898 | 3.0 | 2379 | 0.3341 | 0.8974 | | 0.3126 | 4.0 | 3173 | 0.3363 | 0.8974 | | 0.3753 | 5.0 | 3966 | 0.3309 | 0.8974 | | 0.3617 | 6.0 | 4759 | 0.3325 | 0.8974 | | 0.3453 | 7.0 | 5552 | 0.3315 | 0.8974 | | 0.3337 | 8.0 | 6346 | 0.3364 | 0.8974 | | 0.2829 | 9.0 | 7139 | 0.3327 | 0.8974 | | 0.3189 | 10.0 | 7930 | 0.3321 | 0.8974 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.0.post302 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/yumemi_riamu_idolmastercinderellagirls
CyberHarem
2023-09-15T14:24:06Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/yumemi_riamu_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-15T14:08:54Z
--- license: mit datasets: - CyberHarem/yumemi_riamu_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of yumemi_riamu_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7000, you need to download `7000/yumemi_riamu_idolmastercinderellagirls.pt` as the embedding and `7000/yumemi_riamu_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7000**, with the score of 0.995. The trigger words are: 1. `yumemi_riamu_idolmastercinderellagirls` 2. `pink_hair, multicolored_hair, two-tone_hair, bangs, blue_hair, pink_eyes, short_hair, ahoge, hair_intakes, blush, breasts, open_mouth, large_breasts, fang, heart, collarbone, jewelry` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7500 | 0.991 | [Download](7500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-7500](7500/previews/pattern_1.png) | [<NSFW, click to see>](7500/previews/pattern_2.png) | ![pattern_3-7500](7500/previews/pattern_3.png) | ![pattern_4-7500](7500/previews/pattern_4.png) | ![pattern_5-7500](7500/previews/pattern_5.png) | ![pattern_6-7500](7500/previews/pattern_6.png) | ![pattern_7-7500](7500/previews/pattern_7.png) | [<NSFW, click to see>](7500/previews/bikini.png) | [<NSFW, click to see>](7500/previews/bondage.png) | ![free-7500](7500/previews/free.png) | ![maid-7500](7500/previews/maid.png) | ![miko-7500](7500/previews/miko.png) | [<NSFW, click to see>](7500/previews/nude.png) | [<NSFW, click to see>](7500/previews/nude2.png) | ![suit-7500](7500/previews/suit.png) | ![yukata-7500](7500/previews/yukata.png) | | **7000** | **0.995** | [**Download**](7000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-7000](7000/previews/pattern_1.png) | [<NSFW, click to see>](7000/previews/pattern_2.png) | ![pattern_3-7000](7000/previews/pattern_3.png) | ![pattern_4-7000](7000/previews/pattern_4.png) | ![pattern_5-7000](7000/previews/pattern_5.png) | ![pattern_6-7000](7000/previews/pattern_6.png) | ![pattern_7-7000](7000/previews/pattern_7.png) | [<NSFW, click to see>](7000/previews/bikini.png) | [<NSFW, click to see>](7000/previews/bondage.png) | ![free-7000](7000/previews/free.png) | ![maid-7000](7000/previews/maid.png) | ![miko-7000](7000/previews/miko.png) | [<NSFW, click to see>](7000/previews/nude.png) | [<NSFW, click to see>](7000/previews/nude2.png) | ![suit-7000](7000/previews/suit.png) | ![yukata-7000](7000/previews/yukata.png) | | 6500 | 0.989 | [Download](6500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-6500](6500/previews/pattern_1.png) | [<NSFW, click to see>](6500/previews/pattern_2.png) | ![pattern_3-6500](6500/previews/pattern_3.png) | ![pattern_4-6500](6500/previews/pattern_4.png) | ![pattern_5-6500](6500/previews/pattern_5.png) | ![pattern_6-6500](6500/previews/pattern_6.png) | ![pattern_7-6500](6500/previews/pattern_7.png) | [<NSFW, click to see>](6500/previews/bikini.png) | [<NSFW, click to see>](6500/previews/bondage.png) | ![free-6500](6500/previews/free.png) | ![maid-6500](6500/previews/maid.png) | ![miko-6500](6500/previews/miko.png) | [<NSFW, click to see>](6500/previews/nude.png) | [<NSFW, click to see>](6500/previews/nude2.png) | ![suit-6500](6500/previews/suit.png) | ![yukata-6500](6500/previews/yukata.png) | | 6000 | 0.980 | [Download](6000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | [<NSFW, click to see>](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | [<NSFW, click to see>](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5500 | 0.984 | [Download](5500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-5500](5500/previews/pattern_1.png) | [<NSFW, click to see>](5500/previews/pattern_2.png) | ![pattern_3-5500](5500/previews/pattern_3.png) | ![pattern_4-5500](5500/previews/pattern_4.png) | ![pattern_5-5500](5500/previews/pattern_5.png) | ![pattern_6-5500](5500/previews/pattern_6.png) | ![pattern_7-5500](5500/previews/pattern_7.png) | [<NSFW, click to see>](5500/previews/bikini.png) | [<NSFW, click to see>](5500/previews/bondage.png) | ![free-5500](5500/previews/free.png) | ![maid-5500](5500/previews/maid.png) | ![miko-5500](5500/previews/miko.png) | [<NSFW, click to see>](5500/previews/nude.png) | [<NSFW, click to see>](5500/previews/nude2.png) | ![suit-5500](5500/previews/suit.png) | ![yukata-5500](5500/previews/yukata.png) | | 5000 | 0.963 | [Download](5000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-5000](5000/previews/pattern_1.png) | [<NSFW, click to see>](5000/previews/pattern_2.png) | ![pattern_3-5000](5000/previews/pattern_3.png) | ![pattern_4-5000](5000/previews/pattern_4.png) | ![pattern_5-5000](5000/previews/pattern_5.png) | ![pattern_6-5000](5000/previews/pattern_6.png) | ![pattern_7-5000](5000/previews/pattern_7.png) | [<NSFW, click to see>](5000/previews/bikini.png) | [<NSFW, click to see>](5000/previews/bondage.png) | ![free-5000](5000/previews/free.png) | ![maid-5000](5000/previews/maid.png) | ![miko-5000](5000/previews/miko.png) | [<NSFW, click to see>](5000/previews/nude.png) | [<NSFW, click to see>](5000/previews/nude2.png) | ![suit-5000](5000/previews/suit.png) | ![yukata-5000](5000/previews/yukata.png) | | 4500 | 0.991 | [Download](4500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-4500](4500/previews/pattern_1.png) | [<NSFW, click to see>](4500/previews/pattern_2.png) | ![pattern_3-4500](4500/previews/pattern_3.png) | ![pattern_4-4500](4500/previews/pattern_4.png) | ![pattern_5-4500](4500/previews/pattern_5.png) | ![pattern_6-4500](4500/previews/pattern_6.png) | ![pattern_7-4500](4500/previews/pattern_7.png) | [<NSFW, click to see>](4500/previews/bikini.png) | [<NSFW, click to see>](4500/previews/bondage.png) | ![free-4500](4500/previews/free.png) | ![maid-4500](4500/previews/maid.png) | ![miko-4500](4500/previews/miko.png) | [<NSFW, click to see>](4500/previews/nude.png) | [<NSFW, click to see>](4500/previews/nude2.png) | ![suit-4500](4500/previews/suit.png) | ![yukata-4500](4500/previews/yukata.png) | | 4000 | 0.994 | [Download](4000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | [<NSFW, click to see>](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![pattern_4-4000](4000/previews/pattern_4.png) | ![pattern_5-4000](4000/previews/pattern_5.png) | ![pattern_6-4000](4000/previews/pattern_6.png) | ![pattern_7-4000](4000/previews/pattern_7.png) | [<NSFW, click to see>](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3500 | 0.993 | [Download](3500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-3500](3500/previews/pattern_1.png) | [<NSFW, click to see>](3500/previews/pattern_2.png) | ![pattern_3-3500](3500/previews/pattern_3.png) | ![pattern_4-3500](3500/previews/pattern_4.png) | ![pattern_5-3500](3500/previews/pattern_5.png) | ![pattern_6-3500](3500/previews/pattern_6.png) | ![pattern_7-3500](3500/previews/pattern_7.png) | [<NSFW, click to see>](3500/previews/bikini.png) | [<NSFW, click to see>](3500/previews/bondage.png) | ![free-3500](3500/previews/free.png) | ![maid-3500](3500/previews/maid.png) | ![miko-3500](3500/previews/miko.png) | [<NSFW, click to see>](3500/previews/nude.png) | [<NSFW, click to see>](3500/previews/nude2.png) | ![suit-3500](3500/previews/suit.png) | ![yukata-3500](3500/previews/yukata.png) | | 3000 | 0.991 | [Download](3000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | [<NSFW, click to see>](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | ![pattern_7-3000](3000/previews/pattern_7.png) | [<NSFW, click to see>](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2500 | 0.991 | [Download](2500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-2500](2500/previews/pattern_1.png) | [<NSFW, click to see>](2500/previews/pattern_2.png) | ![pattern_3-2500](2500/previews/pattern_3.png) | ![pattern_4-2500](2500/previews/pattern_4.png) | ![pattern_5-2500](2500/previews/pattern_5.png) | ![pattern_6-2500](2500/previews/pattern_6.png) | ![pattern_7-2500](2500/previews/pattern_7.png) | [<NSFW, click to see>](2500/previews/bikini.png) | [<NSFW, click to see>](2500/previews/bondage.png) | ![free-2500](2500/previews/free.png) | ![maid-2500](2500/previews/maid.png) | ![miko-2500](2500/previews/miko.png) | [<NSFW, click to see>](2500/previews/nude.png) | [<NSFW, click to see>](2500/previews/nude2.png) | ![suit-2500](2500/previews/suit.png) | ![yukata-2500](2500/previews/yukata.png) | | 2000 | 0.995 | [Download](2000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | [<NSFW, click to see>](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![pattern_4-2000](2000/previews/pattern_4.png) | ![pattern_5-2000](2000/previews/pattern_5.png) | ![pattern_6-2000](2000/previews/pattern_6.png) | ![pattern_7-2000](2000/previews/pattern_7.png) | [<NSFW, click to see>](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1500 | 0.996 | [Download](1500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-1500](1500/previews/pattern_1.png) | [<NSFW, click to see>](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![pattern_4-1500](1500/previews/pattern_4.png) | ![pattern_5-1500](1500/previews/pattern_5.png) | ![pattern_6-1500](1500/previews/pattern_6.png) | ![pattern_7-1500](1500/previews/pattern_7.png) | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/bondage.png) | ![free-1500](1500/previews/free.png) | ![maid-1500](1500/previews/maid.png) | ![miko-1500](1500/previews/miko.png) | [<NSFW, click to see>](1500/previews/nude.png) | [<NSFW, click to see>](1500/previews/nude2.png) | ![suit-1500](1500/previews/suit.png) | ![yukata-1500](1500/previews/yukata.png) | | 1000 | 0.991 | [Download](1000/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-1000](1000/previews/pattern_1.png) | [<NSFW, click to see>](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![pattern_4-1000](1000/previews/pattern_4.png) | ![pattern_5-1000](1000/previews/pattern_5.png) | ![pattern_6-1000](1000/previews/pattern_6.png) | ![pattern_7-1000](1000/previews/pattern_7.png) | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/bondage.png) | ![free-1000](1000/previews/free.png) | ![maid-1000](1000/previews/maid.png) | ![miko-1000](1000/previews/miko.png) | [<NSFW, click to see>](1000/previews/nude.png) | [<NSFW, click to see>](1000/previews/nude2.png) | ![suit-1000](1000/previews/suit.png) | ![yukata-1000](1000/previews/yukata.png) | | 500 | 0.965 | [Download](500/yumemi_riamu_idolmastercinderellagirls.zip) | ![pattern_1-500](500/previews/pattern_1.png) | [<NSFW, click to see>](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![pattern_4-500](500/previews/pattern_4.png) | ![pattern_5-500](500/previews/pattern_5.png) | ![pattern_6-500](500/previews/pattern_6.png) | ![pattern_7-500](500/previews/pattern_7.png) | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/bondage.png) | ![free-500](500/previews/free.png) | ![maid-500](500/previews/maid.png) | ![miko-500](500/previews/miko.png) | [<NSFW, click to see>](500/previews/nude.png) | [<NSFW, click to see>](500/previews/nude2.png) | ![suit-500](500/previews/suit.png) | ![yukata-500](500/previews/yukata.png) |
ankush37/roberta-plagi
ankush37
2023-09-15T14:22:24Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-15T12:59:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-plagi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-plagi This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6588 | 1.0 | 510 | 0.6471 | | 0.5803 | 2.0 | 1020 | 0.6280 | | 0.59 | 3.0 | 1530 | 0.6281 | | 0.5701 | 4.0 | 2040 | 0.6309 | | 0.6614 | 5.0 | 2550 | 0.6282 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Q317/EmoraBert
Q317
2023-09-15T14:11:17Z
69
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:wonrax/phobert-base-vietnamese-sentiment", "base_model:finetune:wonrax/phobert-base-vietnamese-sentiment", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-15T13:04:03Z
--- license: mit base_model: wonrax/phobert-base-vietnamese-sentiment tags: - generated_from_keras_callback model-index: - name: Q317/EmoraBert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Q317/EmoraBert This model is a fine-tuned version of [wonrax/phobert-base-vietnamese-sentiment](https://huggingface.co/wonrax/phobert-base-vietnamese-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1216 - Validation Loss: 1.3423 - Train Accuracy: 0.6833 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 220740, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.8611 | 0.7685 | 0.6586 | 0 | | 0.6951 | 0.7397 | 0.6802 | 1 | | 0.5578 | 0.7740 | 0.6894 | 2 | | 0.4277 | 0.8475 | 0.6849 | 3 | | 0.3222 | 0.9853 | 0.6889 | 4 | | 0.2376 | 1.0837 | 0.6840 | 5 | | 0.1982 | 1.1422 | 0.6771 | 6 | | 0.1618 | 1.2596 | 0.6786 | 7 | | 0.1341 | 1.3652 | 0.6773 | 8 | | 0.1216 | 1.3423 | 0.6833 | 9 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
gmongaras/Wizard_7B_Reddit_Political_2019_13B
gmongaras
2023-09-15T14:11:06Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-15T13:17:20Z
--- license: openrail --- Model from: https://huggingface.co/WizardLM/WizardLM-13B-V1.2 Trained on: https://huggingface.co/datasets/gmongaras/reddit_political_2019 For about 18,000 steps with a batch size of 8, 2 accumulation steps, and using LoRA adapters on all layers.