modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
masakhane/byt5_en_zul_news
masakhane
2022-09-24T15:05:20Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:52Z
--- language: - en - zul license: afl-3.0 ---
masakhane/byt5_zul_en_news
masakhane
2022-09-24T15:05:19Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:03:09Z
--- language: - zul - en license: afl-3.0 ---
masakhane/mbart50_zul_en_news
masakhane
2022-09-24T15:05:19Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:04:09Z
--- language: - zul - en license: afl-3.0 ---
masakhane/mt5_zul_en_news
masakhane
2022-09-24T15:05:18Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:24Z
--- language: - zul - en license: afl-3.0 ---
masakhane/mbart50_en_zul_news
masakhane
2022-09-24T15:05:18Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:04:24Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news
masakhane
2022-09-24T15:05:16Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:23Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_news
masakhane
2022-09-24T15:05:16Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:07:50Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel_news_ft
masakhane
2022-09-24T15:05:15Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:13:41Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_ft
masakhane
2022-09-24T15:05:13Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:15:36Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel
masakhane
2022-09-24T15:05:12Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:18:45Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel
masakhane
2022-09-24T15:05:12Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:18:27Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_en_kin_rel
masakhane
2022-09-24T15:05:09Z
113
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "kin", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:07:12Z
--- language: - en - kin license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_kin_en_rel
masakhane
2022-09-24T15:05:09Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "kin", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:06:42Z
--- language: - kin - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_en_nya_rel
masakhane
2022-09-24T15:05:08Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "nya", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:07:46Z
--- language: - en - nya license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_en_sna_rel
masakhane
2022-09-24T15:05:07Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "sna", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:08:45Z
--- language: - en - sna license: cc-by-nc-4.0 ---
gokuls/BERT-tiny-Massive-intent
gokuls
2022-09-24T14:26:13Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:massive", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T14:15:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: BERT-tiny-Massive-intent results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8475159862272503 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-tiny-Massive-intent This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.6740 - Accuracy: 0.8475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.6104 | 1.0 | 720 | 3.0911 | 0.3601 | | 2.8025 | 2.0 | 1440 | 2.3800 | 0.5165 | | 2.2292 | 3.0 | 2160 | 1.9134 | 0.5991 | | 1.818 | 4.0 | 2880 | 1.5810 | 0.6744 | | 1.5171 | 5.0 | 3600 | 1.3522 | 0.7108 | | 1.2876 | 6.0 | 4320 | 1.1686 | 0.7442 | | 1.1049 | 7.0 | 5040 | 1.0355 | 0.7683 | | 0.9623 | 8.0 | 5760 | 0.9466 | 0.7885 | | 0.8424 | 9.0 | 6480 | 0.8718 | 0.7875 | | 0.7473 | 10.0 | 7200 | 0.8107 | 0.8028 | | 0.6735 | 11.0 | 7920 | 0.7710 | 0.8180 | | 0.6085 | 12.0 | 8640 | 0.7404 | 0.8210 | | 0.5536 | 13.0 | 9360 | 0.7180 | 0.8229 | | 0.5026 | 14.0 | 10080 | 0.6980 | 0.8318 | | 0.4652 | 15.0 | 10800 | 0.6970 | 0.8337 | | 0.4234 | 16.0 | 11520 | 0.6822 | 0.8372 | | 0.3987 | 17.0 | 12240 | 0.6691 | 0.8436 | | 0.3707 | 18.0 | 12960 | 0.6679 | 0.8455 | | 0.3433 | 19.0 | 13680 | 0.6740 | 0.8475 | | 0.3206 | 20.0 | 14400 | 0.6760 | 0.8451 | | 0.308 | 21.0 | 15120 | 0.6704 | 0.8436 | | 0.2813 | 22.0 | 15840 | 0.6701 | 0.8416 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/distilroberta-emotion-intent
gokuls
2022-09-24T13:36:17Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T13:26:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilroberta-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-emotion-intent This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1496 - Accuracy: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4501 | 1.0 | 1000 | 0.2432 | 0.924 | | 0.1947 | 2.0 | 2000 | 0.1646 | 0.934 | | 0.1497 | 3.0 | 3000 | 0.1382 | 0.9405 | | 0.1316 | 4.0 | 4000 | 0.1496 | 0.9435 | | 0.1145 | 5.0 | 5000 | 0.1684 | 0.9385 | | 0.1 | 6.0 | 6000 | 0.2342 | 0.943 | | 0.0828 | 7.0 | 7000 | 0.2807 | 0.939 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
RebekkaB/rlt_2409_1450
RebekkaB
2022-09-24T13:22:34Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T12:52:36Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: rlt_2409_1450 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlt_2409_1450 This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0518 - F1: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 36 | 0.5165 | 0.8542 | | No log | 1.99 | 72 | 0.1459 | 0.9599 | | No log | 2.99 | 108 | 0.0733 | 0.9882 | | No log | 3.99 | 144 | 0.1385 | 0.9502 | | No log | 4.99 | 180 | 0.0948 | 0.9806 | | No log | 5.99 | 216 | 0.0699 | 0.9822 | | No log | 6.99 | 252 | 0.0582 | 0.9859 | | No log | 7.99 | 288 | 0.0340 | 0.9933 | | No log | 8.99 | 324 | 0.0475 | 0.9826 | | No log | 9.99 | 360 | 0.0518 | 0.9826 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
SaurabhKaushik/distilbert-base-uncased-finetuned-ner
SaurabhKaushik
2022-09-24T12:38:00Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T11:26:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9250386398763524 - name: Recall type: recall value: 0.9373531714956931 - name: F1 type: f1 value: 0.9311551925320887 - name: Accuracy type: accuracy value: 0.9839388692074285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0589 - Precision: 0.9250 - Recall: 0.9374 - F1: 0.9312 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2343 | 1.0 | 878 | 0.0674 | 0.9177 | 0.9233 | 0.9205 | 0.9818 | | 0.0525 | 2.0 | 1756 | 0.0582 | 0.9245 | 0.9362 | 0.9304 | 0.9837 | | 0.0288 | 3.0 | 2634 | 0.0589 | 0.9250 | 0.9374 | 0.9312 | 0.9839 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/dr-strange
sd-concepts-library
2022-09-24T12:11:20Z
0
28
null
[ "license:mit", "region:us" ]
null
2022-09-24T12:11:16Z
--- license: mit --- ### <dr-strange> on Stable Diffusion This is the `<dr-strange>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dr-strange> 0](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/3.jpeg) ![<dr-strange> 1](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/1.jpeg) ![<dr-strange> 2](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/0.jpeg) ![<dr-strange> 3](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/2.jpeg)
RebekkaB/san_nli_2409_1325
RebekkaB
2022-09-24T11:50:33Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T11:27:27Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: san_nli_2409_1325 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # san_nli_2409_1325 This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - F1: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.93 | 10 | 0.2410 | 0.9219 | | No log | 1.93 | 20 | 0.5240 | 0.9149 | | No log | 2.93 | 30 | 0.4756 | 0.9219 | | No log | 3.93 | 40 | 0.3856 | 0.9219 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
huggingtweets/cz_binance
huggingtweets
2022-09-24T09:16:00Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-05T21:10:34Z
--- language: en thumbnail: http://www.huggingtweets.com/cz_binance/1664010956441/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572269909513478146/dfyw817W_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CZ 🔶 Binance</div> <div style="text-align: center; font-size: 14px;">@cz_binance</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CZ 🔶 Binance. | Data | CZ 🔶 Binance | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 149 | | Short tweets | 473 | | Tweets kept | 2624 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19171g9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cz_binance's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ngvvhd8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ngvvhd8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cz_binance') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/coop-himmelblau
sd-concepts-library
2022-09-24T09:06:36Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-24T09:06:32Z
--- license: mit --- ### coop himmelblau on Stable Diffusion This is the `<coop himmelblau>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<coop himmelblau> 0](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/3.jpeg) ![<coop himmelblau> 1](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/1.jpeg) ![<coop himmelblau> 2](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/4.jpeg) ![<coop himmelblau> 3](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/5.jpeg) ![<coop himmelblau> 4](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/0.jpeg) ![<coop himmelblau> 5](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/2.jpeg)
aniketface/DialoGPT-product
aniketface
2022-09-24T09:05:12Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "convAI", "conversational", "facebook", "en", "dataset:blended_skill_talk", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T08:41:37Z
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity ---
huggingtweets/pentosh1
huggingtweets
2022-09-24T08:03:41Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T08:02:41Z
--- language: en thumbnail: http://www.huggingtweets.com/pentosh1/1664006616559/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1553520707472072708/5eseDj4F_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pentoshi 🐧</div> <div style="text-align: center; font-size: 14px;">@pentosh1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pentoshi 🐧. | Data | Pentoshi 🐧 | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 24 | | Short tweets | 573 | | Tweets kept | 2645 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kzanxqd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pentosh1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e7vuikz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e7vuikz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pentosh1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/beranewsnetwork
huggingtweets
2022-09-24T07:04:15Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T07:01:56Z
--- language: en thumbnail: http://www.huggingtweets.com/beranewsnetwork/1664003049616/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445950504102735872/bCnvrgeb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bera News Network</div> <div style="text-align: center; font-size: 14px;">@beranewsnetwork</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bera News Network. | Data | Bera News Network | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1 | | Short tweets | 579 | | Tweets kept | 2670 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/254oa32x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beranewsnetwork's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jqeuf1y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jqeuf1y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beranewsnetwork') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/it_airmass
huggingtweets
2022-09-24T06:49:38Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:49:12Z
--- language: en thumbnail: http://www.huggingtweets.com/it_airmass/1664002173554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529248676647944193/-N1UKgKg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Airmass</div> <div style="text-align: center; font-size: 14px;">@it_airmass</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Airmass. | Data | Airmass | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 126 | | Short tweets | 370 | | Tweets kept | 2753 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2f99nys0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @it_airmass's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/it_airmass') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/marketsmeowmeow
huggingtweets
2022-09-24T06:43:25Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:42:56Z
--- language: en thumbnail: http://www.huggingtweets.com/marketsmeowmeow/1664001800470/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1570418907575377921/1mTVqZQZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RB</div> <div style="text-align: center; font-size: 14px;">@marketsmeowmeow</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RB. | Data | RB | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 14 | | Short tweets | 700 | | Tweets kept | 2530 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/a7yqyg23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marketsmeowmeow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ou0r1v87) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ou0r1v87/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marketsmeowmeow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/museum-by-coop-himmelblau
sd-concepts-library
2022-09-24T06:39:31Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T06:39:25Z
--- license: mit --- ### museum by coop himmelblau on Stable Diffusion This is the `<coop himmelblau museum>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<coop himmelblau museum> 0](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/3.jpeg) ![<coop himmelblau museum> 1](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/1.jpeg) ![<coop himmelblau museum> 2](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/0.jpeg) ![<coop himmelblau museum> 3](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/2.jpeg)
sd-concepts-library/ransom
sd-concepts-library
2022-09-24T05:44:13Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T05:44:07Z
--- license: mit --- ### ransom on Stable Diffusion This is the `<ransom>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ransom> 0](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/3.jpeg) ![<ransom> 1](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/1.jpeg) ![<ransom> 2](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/4.jpeg) ![<ransom> 3](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/6.jpeg) ![<ransom> 4](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/5.jpeg) ![<ransom> 5](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/0.jpeg) ![<ransom> 6](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/2.jpeg) ![<ransom> 7](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/7.jpeg)
ckiplab/bert-base-chinese-qa
ckiplab
2022-09-24T05:25:07Z
162
7
transformers
[ "transformers", "pytorch", "bert", "question-answering", "zh", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-24T05:17:36Z
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - question-answering - bert - zh license: gpl-3.0 --- # CKIP BERT Base Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/bert-base-chinese-qa') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
huggingtweets/tim_cook
huggingtweets
2022-09-24T01:11:00Z
112
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/tim_cook/1663981855625/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535420431766671360/Pwq-1eJc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Cook</div> <div style="text-align: center; font-size: 14px;">@tim_cook</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Cook. | Data | Tim Cook | | --- | --- | | Tweets downloaded | 1385 | | Retweets | 20 | | Short tweets | 13 | | Tweets kept | 1352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d94dtsh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tim_cook's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19bm0x3l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19bm0x3l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tim_cook') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
farleyknight/arxiv-summarization-t5-base-2022-09-21
farleyknight
2022-09-24T00:31:57Z
180
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccdv/arxiv-summarization", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-21T20:31:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ccdv/arxiv-summarization metrics: - rouge model-index: - name: arxiv-summarization-t5-base-2022-09-21 results: - task: name: Summarization type: summarization dataset: name: ccdv/arxiv-summarization type: ccdv/arxiv-summarization config: section split: train args: section metrics: - name: Rouge1 type: rouge value: 40.6781 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arxiv-summarization-t5-base-2022-09-21 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the ccdv/arxiv-summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.8650 - Rouge1: 40.6781 - Rouge2: 14.7167 - Rougel: 26.6375 - Rougelsum: 35.5959 - Gen Len: 117.1969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.3291 | 0.05 | 10000 | 2.1906 | 18.6571 | 7.1341 | 14.8347 | 16.9545 | 19.0 | | 2.2454 | 0.1 | 20000 | 2.1549 | 18.5037 | 7.1908 | 14.7141 | 16.8233 | 18.9997 | | 2.2107 | 0.15 | 30000 | 2.1013 | 18.7638 | 7.326 | 14.9437 | 17.072 | 19.0 | | 2.1486 | 0.2 | 40000 | 2.0845 | 18.6879 | 7.2441 | 14.8835 | 16.983 | 19.0 | | 2.158 | 0.25 | 50000 | 2.0699 | 18.8314 | 7.3712 | 15.0166 | 17.1215 | 19.0 | | 2.1476 | 0.3 | 60000 | 2.0424 | 18.9783 | 7.4138 | 15.1121 | 17.2778 | 18.9981 | | 2.1164 | 0.34 | 70000 | 2.0349 | 18.9257 | 7.4649 | 15.0335 | 17.1819 | 19.0 | | 2.079 | 0.39 | 80000 | 2.0208 | 18.643 | 7.4096 | 14.8927 | 16.9786 | 18.9994 | | 2.101 | 0.44 | 90000 | 2.0113 | 19.3881 | 7.7012 | 15.3981 | 17.6516 | 19.0 | | 2.0576 | 0.49 | 100000 | 2.0022 | 18.9985 | 7.542 | 15.1157 | 17.2972 | 18.9992 | | 2.0983 | 0.54 | 110000 | 1.9941 | 18.7691 | 7.4625 | 15.0256 | 17.1146 | 19.0 | | 2.053 | 0.59 | 120000 | 1.9855 | 19.002 | 7.5602 | 15.1497 | 17.2963 | 19.0 | | 2.0434 | 0.64 | 130000 | 1.9786 | 19.2385 | 7.6533 | 15.3094 | 17.5439 | 18.9994 | | 2.0354 | 0.69 | 140000 | 1.9746 | 19.184 | 7.7307 | 15.2897 | 17.491 | 18.9992 | | 2.0347 | 0.74 | 150000 | 1.9639 | 19.2408 | 7.693 | 15.3357 | 17.5297 | 19.0 | | 2.0236 | 0.79 | 160000 | 1.9590 | 19.0781 | 7.6256 | 15.1932 | 17.3486 | 18.9998 | | 2.0187 | 0.84 | 170000 | 1.9532 | 19.0343 | 7.6792 | 15.1884 | 17.3519 | 19.0 | | 1.9939 | 0.89 | 180000 | 1.9485 | 18.8247 | 7.5005 | 15.0246 | 17.1485 | 18.9998 | | 1.9961 | 0.94 | 190000 | 1.9504 | 19.0695 | 7.6559 | 15.2139 | 17.3814 | 19.0 | | 2.0197 | 0.99 | 200000 | 1.9399 | 19.2821 | 7.6685 | 15.3029 | 17.5374 | 18.9988 | | 1.9457 | 1.03 | 210000 | 1.9350 | 19.053 | 7.6502 | 15.2123 | 17.3793 | 19.0 | | 1.9552 | 1.08 | 220000 | 1.9317 | 19.1878 | 7.7235 | 15.3272 | 17.5252 | 18.9998 | | 1.9772 | 1.13 | 230000 | 1.9305 | 19.0855 | 7.6303 | 15.1943 | 17.3942 | 18.9997 | | 1.9171 | 1.18 | 240000 | 1.9291 | 19.0711 | 7.6437 | 15.2175 | 17.3893 | 18.9995 | | 1.9393 | 1.23 | 250000 | 1.9230 | 19.276 | 7.725 | 15.3826 | 17.586 | 18.9995 | | 1.9295 | 1.28 | 260000 | 1.9197 | 19.2999 | 7.7958 | 15.3961 | 17.6056 | 18.9975 | | 1.9725 | 1.33 | 270000 | 1.9173 | 19.2958 | 7.7121 | 15.3659 | 17.584 | 19.0 | | 1.9668 | 1.38 | 280000 | 1.9129 | 19.089 | 7.6846 | 15.2395 | 17.3879 | 18.9998 | | 1.941 | 1.43 | 290000 | 1.9132 | 19.2127 | 7.7336 | 15.311 | 17.4742 | 18.9995 | | 1.9427 | 1.48 | 300000 | 1.9108 | 19.217 | 7.7591 | 15.334 | 17.53 | 18.9998 | | 1.9521 | 1.53 | 310000 | 1.9041 | 19.1285 | 7.6736 | 15.2625 | 17.458 | 19.0 | | 1.9352 | 1.58 | 320000 | 1.9041 | 19.1656 | 7.723 | 15.3035 | 17.4818 | 18.9991 | | 1.9342 | 1.63 | 330000 | 1.9004 | 19.2573 | 7.7766 | 15.3558 | 17.5382 | 19.0 | | 1.9631 | 1.68 | 340000 | 1.8978 | 19.236 | 7.7584 | 15.3408 | 17.4993 | 18.9998 | | 1.8987 | 1.72 | 350000 | 1.8968 | 19.1716 | 7.7231 | 15.2836 | 17.4655 | 18.9997 | | 1.9433 | 1.77 | 360000 | 1.8924 | 19.2644 | 7.8294 | 15.4018 | 17.5808 | 18.9998 | | 1.9159 | 1.82 | 370000 | 1.8912 | 19.1833 | 7.8267 | 15.3175 | 17.4918 | 18.9995 | | 1.9516 | 1.87 | 380000 | 1.8856 | 19.3077 | 7.7432 | 15.3723 | 17.6115 | 19.0 | | 1.9218 | 1.92 | 390000 | 1.8880 | 19.2668 | 7.8231 | 15.3834 | 17.5701 | 18.9994 | | 1.9159 | 1.97 | 400000 | 1.8860 | 19.2224 | 7.7903 | 15.3488 | 17.4992 | 18.9997 | | 1.8741 | 2.02 | 410000 | 1.8854 | 19.2572 | 7.741 | 15.3405 | 17.5351 | 19.0 | | 1.8668 | 2.07 | 420000 | 1.8854 | 19.3658 | 7.8593 | 15.4418 | 17.656 | 18.9995 | | 1.8638 | 2.12 | 430000 | 1.8831 | 19.305 | 7.8218 | 15.3843 | 17.5861 | 18.9997 | | 1.8334 | 2.17 | 440000 | 1.8817 | 19.3269 | 7.8249 | 15.4231 | 17.5958 | 18.9994 | | 1.8893 | 2.22 | 450000 | 1.8803 | 19.2949 | 7.7885 | 15.3947 | 17.585 | 18.9997 | | 1.8929 | 2.27 | 460000 | 1.8783 | 19.291 | 7.8346 | 15.428 | 17.5797 | 18.9997 | | 1.861 | 2.32 | 470000 | 1.8766 | 19.4284 | 7.8832 | 15.4746 | 17.6946 | 18.9997 | | 1.8719 | 2.37 | 480000 | 1.8751 | 19.1525 | 7.7641 | 15.3348 | 17.47 | 18.9998 | | 1.8889 | 2.41 | 490000 | 1.8742 | 19.1743 | 7.768 | 15.3292 | 17.4665 | 18.9998 | | 1.8834 | 2.46 | 500000 | 1.8723 | 19.3069 | 7.7935 | 15.3987 | 17.5913 | 18.9998 | | 1.8564 | 2.51 | 510000 | 1.8695 | 19.3217 | 7.8292 | 15.4063 | 17.6081 | 19.0 | | 1.8706 | 2.56 | 520000 | 1.8697 | 19.294 | 7.8217 | 15.3964 | 17.581 | 18.9998 | | 1.883 | 2.61 | 530000 | 1.8703 | 19.2784 | 7.8634 | 15.404 | 17.5942 | 18.9995 | | 1.8622 | 2.66 | 540000 | 1.8677 | 19.3165 | 7.8378 | 15.4259 | 17.6064 | 18.9988 | | 1.8781 | 2.71 | 550000 | 1.8676 | 19.3237 | 7.7954 | 15.3995 | 17.6008 | 19.0 | | 1.8793 | 2.76 | 560000 | 1.8685 | 19.2141 | 7.7605 | 15.3345 | 17.5268 | 18.9997 | | 1.8795 | 2.81 | 570000 | 1.8675 | 19.2694 | 7.8082 | 15.3996 | 17.5831 | 19.0 | | 1.8425 | 2.86 | 580000 | 1.8659 | 19.2886 | 7.7987 | 15.4005 | 17.5859 | 18.9997 | | 1.8605 | 2.91 | 590000 | 1.8650 | 19.2778 | 7.7934 | 15.3931 | 17.5809 | 18.9997 | | 1.8448 | 2.96 | 600000 | 1.8655 | 19.2884 | 7.8087 | 15.4025 | 17.5856 | 19.0 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.0 - Datasets 2.5.1 - Tokenizers 0.13.0
ericntay/stbl_clinical_bert_ft_rs5
ericntay
2022-09-23T20:39:56Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-23T20:21:55Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs5 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0936 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2723 | 1.0 | 101 | 0.0875 | 0.8479 | | 0.066 | 2.0 | 202 | 0.0688 | 0.9002 | | 0.0328 | 3.0 | 303 | 0.0668 | 0.9070 | | 0.0179 | 4.0 | 404 | 0.0689 | 0.9129 | | 0.0098 | 5.0 | 505 | 0.0790 | 0.9147 | | 0.0069 | 6.0 | 606 | 0.0805 | 0.9205 | | 0.0033 | 7.0 | 707 | 0.0835 | 0.9268 | | 0.0022 | 8.0 | 808 | 0.0904 | 0.9262 | | 0.0021 | 9.0 | 909 | 0.0882 | 0.9263 | | 0.0015 | 10.0 | 1010 | 0.0933 | 0.9289 | | 0.0009 | 11.0 | 1111 | 0.0921 | 0.9311 | | 0.0009 | 12.0 | 1212 | 0.0936 | 0.9268 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
subtlegradient/distilbert-base-uncased-finetuned-cola
subtlegradient
2022-09-23T19:19:56Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T19:08:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5180 - eval_matthews_correlation: 0.4063 - eval_runtime: 0.8532 - eval_samples_per_second: 1222.419 - eval_steps_per_second: 77.353 - epoch: 1.0 - step: 535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu116 - Datasets 2.5.1 - Tokenizers 0.12.1
g30rv17ys/ddpm-geeve-drusen-1000-200ep
g30rv17ys
2022-09-23T19:12:36Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:39:11Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-drusen-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-drusen-1000-200ep/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-cnv-1000-200ep
g30rv17ys
2022-09-23T19:10:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:29:54Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-1000-200ep/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-dme-1000-200ep
g30rv17ys
2022-09-23T19:09:23Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:34:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-dme-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-dme-1000-200ep/tensorboard?#scalars)
tszocinski/bart-base-squad-question-generation
tszocinski
2022-09-23T18:43:43Z
75
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T19:36:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tszocinski/bart-base-squad-question-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tszocinski/bart-base-squad-question-generation This model is a fine-tuned version of [tszocinski/bart-base-squad-question-generation](https://huggingface.co/tszocinski/bart-base-squad-question-generation) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.5656 - Validation Loss: 11.1958 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'RMSprop', 'config': {'name': 'RMSprop', 'learning_rate': 0.001, 'decay': 0.0, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.5656 | 11.1958 | 0 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
tkuye/t5-ost
tkuye
2022-09-23T18:40:53Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-23T17:10:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-ost results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-ost This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5695 | 0.39 | 500 | 0.0591 | | 0.0606 | 0.77 | 1000 | 0.0588 | | 0.0575 | 1.16 | 1500 | 0.0588 | | 0.0551 | 1.55 | 2000 | 0.0586 | | 0.0549 | 1.93 | 2500 | 0.0581 | | 0.0487 | 2.32 | 3000 | 0.0597 | | 0.0478 | 2.71 | 3500 | 0.0594 | | 0.0463 | 3.1 | 4000 | 0.0624 | | 0.0404 | 3.48 | 4500 | 0.0625 | | 0.041 | 3.87 | 5000 | 0.0617 | | 0.0366 | 4.26 | 5500 | 0.0656 | | 0.0347 | 4.64 | 6000 | 0.0658 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.0 - Datasets 2.5.1 - Tokenizers 0.12.1
mfreihaut/iab_classification-finetuned-mnli-finetuned-mnli
mfreihaut
2022-09-23T18:20:23Z
23
1
transformers
[ "transformers", "pytorch", "bart", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-21T18:05:28Z
--- tags: - generated_from_trainer model-index: - name: iab_classification-finetuned-mnli-finetuned-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iab_classification-finetuned-mnli-finetuned-mnli This model is a fine-tuned version of [mfreihaut/iab_classification-finetuned-mnli-finetuned-mnli](https://huggingface.co/mfreihaut/iab_classification-finetuned-mnli-finetuned-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 250 | 1.5956 | | 0.9361 | 2.0 | 500 | 0.0409 | | 0.9361 | 3.0 | 750 | 2.9853 | | 0.7634 | 4.0 | 1000 | 0.1317 | | 0.7634 | 5.0 | 1250 | 0.4056 | | 0.611 | 6.0 | 1500 | 1.8038 | | 0.611 | 7.0 | 1750 | 0.6305 | | 0.5627 | 8.0 | 2000 | 0.6923 | | 0.5627 | 9.0 | 2250 | 3.7410 | | 0.9863 | 10.0 | 2500 | 2.1912 | | 0.9863 | 11.0 | 2750 | 1.5405 | | 1.0197 | 12.0 | 3000 | 1.9271 | | 1.0197 | 13.0 | 3250 | 1.1741 | | 0.5186 | 14.0 | 3500 | 1.1864 | | 0.5186 | 15.0 | 3750 | 0.7945 | | 0.4042 | 16.0 | 4000 | 1.0645 | | 0.4042 | 17.0 | 4250 | 1.8826 | | 0.3637 | 18.0 | 4500 | 0.3234 | | 0.3637 | 19.0 | 4750 | 0.2641 | | 0.3464 | 20.0 | 5000 | 0.8596 | | 0.3464 | 21.0 | 5250 | 0.5601 | | 0.2449 | 22.0 | 5500 | 0.4543 | | 0.2449 | 23.0 | 5750 | 1.1986 | | 0.2595 | 24.0 | 6000 | 0.3642 | | 0.2595 | 25.0 | 6250 | 1.3606 | | 0.298 | 26.0 | 6500 | 0.8154 | | 0.298 | 27.0 | 6750 | 1.1105 | | 0.1815 | 28.0 | 7000 | 0.7443 | | 0.1815 | 29.0 | 7250 | 0.2616 | | 0.165 | 30.0 | 7500 | 0.5318 | | 0.165 | 31.0 | 7750 | 0.7608 | | 0.1435 | 32.0 | 8000 | 0.9647 | | 0.1435 | 33.0 | 8250 | 1.3749 | | 0.1516 | 34.0 | 8500 | 0.7167 | | 0.1516 | 35.0 | 8750 | 0.5426 | | 0.1359 | 36.0 | 9000 | 0.7225 | | 0.1359 | 37.0 | 9250 | 0.5453 | | 0.1266 | 38.0 | 9500 | 0.4825 | | 0.1266 | 39.0 | 9750 | 0.7271 | | 0.1153 | 40.0 | 10000 | 0.9044 | | 0.1153 | 41.0 | 10250 | 1.0363 | | 0.1175 | 42.0 | 10500 | 0.7987 | | 0.1175 | 43.0 | 10750 | 0.7596 | | 0.1089 | 44.0 | 11000 | 0.8637 | | 0.1089 | 45.0 | 11250 | 0.8327 | | 0.1092 | 46.0 | 11500 | 0.7161 | | 0.1092 | 47.0 | 11750 | 0.7768 | | 0.1068 | 48.0 | 12000 | 0.9059 | | 0.1068 | 49.0 | 12250 | 0.8829 | | 0.1045 | 50.0 | 12500 | 0.8711 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
carbon225/transforchess-bart-base
carbon225
2022-09-23T18:13:23Z
110
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-31T18:02:04Z
--- license: cc0-1.0 widget: - text: " White pawn to d4. Black knight to f6." ---
sd-concepts-library/sintez-ico
sd-concepts-library
2022-09-23T18:13:17Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-23T18:13:03Z
--- license: mit --- ### sintez-ico on Stable Diffusion This is the `<sintez-ico>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<sintez-ico> 0](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/7.jpeg) ![<sintez-ico> 1](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/2.jpeg) ![<sintez-ico> 2](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/6.jpeg) ![<sintez-ico> 3](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/4.jpeg) ![<sintez-ico> 4](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/5.jpeg) ![<sintez-ico> 5](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/0.jpeg) ![<sintez-ico> 6](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/1.jpeg) ![<sintez-ico> 7](https://huggingface.co/sd-concepts-library/sintez-ico/resolve/main/concept_images/3.jpeg)
Eulering/moonlight-night
Eulering
2022-09-23T14:47:20Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-09-23T14:47:20Z
--- license: bigscience-openrail-m ---
gokuls/bert-base-Massive-intent
gokuls
2022-09-23T14:26:09Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:massive", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T13:38:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: bert-base-Massive-intent results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8858829316281358 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-Massive-intent This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.6707 - Accuracy: 0.8859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6844 | 1.0 | 720 | 0.7190 | 0.8387 | | 0.4713 | 2.0 | 1440 | 0.5449 | 0.8726 | | 0.2459 | 3.0 | 2160 | 0.5893 | 0.8790 | | 0.1469 | 4.0 | 2880 | 0.6631 | 0.8795 | | 0.0874 | 5.0 | 3600 | 0.6707 | 0.8859 | | 0.0507 | 6.0 | 4320 | 0.7189 | 0.8844 | | 0.0344 | 7.0 | 5040 | 0.7480 | 0.8854 | | 0.0225 | 8.0 | 5760 | 0.7956 | 0.8844 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
bhumikak/resultsb
bhumikak
2022-09-23T14:21:23Z
105
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-23T13:46:43Z
--- tags: - generated_from_trainer model-index: - name: resultsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resultsb This model is a fine-tuned version of [bhumikak/resultsa](https://huggingface.co/bhumikak/resultsa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8957 - Rouge2 Precision: 0.2127 - Rouge2 Recall: 0.2605 - Rouge2 Fmeasure: 0.2167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Yousef-Cot/distilbert-base-uncased-finetuned-emotion
Yousef-Cot
2022-09-23T13:21:28Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T07:18:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9218038766645168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2201 - Accuracy: 0.9215 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8242 | 1.0 | 250 | 0.3311 | 0.8965 | 0.8931 | | 0.254 | 2.0 | 500 | 0.2201 | 0.9215 | 0.9218 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.4.0 - Tokenizers 0.11.6
combi2k2/MRC001
combi2k2
2022-09-23T13:01:39Z
0
0
null
[ "vi", "xlm-roberta", "dataset:UIT-ViQuAD2.0", "license:mit", "region:us" ]
null
2022-09-18T03:23:55Z
--- language: vi tags: - vi - xlm-roberta widget: - text: Toà nhà nào cao nhất Việt Nam? context: Landmark 81 là một toà nhà chọc trời trong tổ hợp dự án Vinhomes Tân Cảng, một dự án có tổng mức đầu tư 40.000 tỷ đồng, do Công ty Cổ phần Đầu tư xây dựng Tân Liên Phát thuộc Vingroup làm chủ đầu tư. Toà tháp cao 81 tầng, hiện tại là toà nhà cao nhất Việt Nam và là toà nhà cao nhất Đông Nam Á từ tháng 3 năm 2018. datasets: - UIT-ViQuAD2.0 license: mit metrics: - f1 - em --- # Machine Reading Comprehension Vietnamese **[Colab Notebook](https://colab.research.google.com/drive/1JeyjSluVLIoZGzC_kOq6HXGUX-JMN3VP?usp=sharing)** ## Overview - Language model: xlm-roberta-base - Language: Vietnamese - Downstream-task: Extractive QA - Dataset: [UIT-ViQuAD2.0](https://paperswithcode.com/dataset/uit-viquad) - Dataset Format: SQuAD 2.0 - Infrastructure: cuda Tesla P100-PCIE-16GB (Google Colab) ## Requirements The following modules are essential for running the trainer: - **transformers** - **datasets** - **evaluate** - **numpy** Run the following commands to install the required libraries: ``` >>> pip install datasets evaluate numpy >>> pip install git+https://github.com/huggingface/transformers ``` ## Hyperparameter ``` batch_size = 16 n_epochs = 10 base_LM_model = "xlm-roberta-base" max_seq_len = 256 learning_rate = 2e-5 weight_decay = 0.01 ``` ## Performance Evaluated on the UIT-ViQuAD2.0 dev set with the official eval script. ``` 'exact': 29.947276, 'f1': 43.627568, 'total': 2845, 'HasAns_exact': 43.827160, 'HasAns_f1': 63.847958, 'HasAns_total': 1944, 'NoAns_exact': 0.0, 'NoAns_f1': 0.0, 'NoAns_total': 901 ``` ## Usage ```python from transformers import { AutoModelForQuestionAnswering, AutoTokenizer, pipeline } model_checkpoint = "results/checkpoint-16000" question_answerer = pipeline("question-answering", model = model_checkpoint) # a) get predictions QA_input = { 'question': 'Hiến pháp Mali quy định thế nào đối với tôn giáo?', 'context': 'Ước tính có khoảng 90% dân số Mali theo đạo Hồi (phần lớn là hệ phái Sunni), khoảng 5% là theo Kitô giáo (khoảng hai phần ba theo Giáo hội Công giáo Rôma và một phần ba là theo Tin Lành) và 5% còn lại theo các tín ngưỡng vật linh truyền thống bản địa. Một số ít người Mali theo thuyết vô thần và thuyết bất khả tri, phần lớn họ thực hiện những nghi lễ tôn giáo cơ bản hằng ngày. Các phong tục Hồi giáo ở Mali có mức độ vừa phải, khoan dung, và đã thay đổi theo các điều kiện của địa phương; các mối quan hệ giữa người Hồi giáo và các cộng đồng tôn giáo nhỏ khác nói chung là thân thiện. Hiến pháp của Mali đã quy định một thể chế nhà nước thế tục và ủng hộ quyền tự do tôn giáo, và chính phủ Mali phải đảm bảo quyền này.' } res = question_answerer(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) ``` ## Author Duc Nguyen ## Citation ``` Kiet Van Nguyen, Son Quoc Tran, Luan Thanh Nguyen, Tin Van Huynh, Son T. Luu, Ngan Luu-Thuy Nguyen. "VLSP 2021 Shared Task: Vietnamese Machine Reading Comprehension." The 8th International Workshop on Vietnamese Language and Speech Processing (VLSP 2021) . ```
huggingtweets/cushbomb
huggingtweets
2022-09-23T12:40:19Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/cushbomb/1663936814713/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1560517790900969473/MPbfc6w2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">matt christman</div> <div style="text-align: center; font-size: 14px;">@cushbomb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from matt christman. | Data | matt christman | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 241 | | Short tweets | 685 | | Tweets kept | 2304 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39bxpmve/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cushbomb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gd8zqob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gd8zqob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cushbomb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rossedwa/bert-take-uncased-f1-epoch-8
rossedwa
2022-09-23T12:27:37Z
161
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T12:16:01Z
f1_score = 85 Kaggle Score: 0.71711
pulkitkumar13/dark-bert-finetuned-ner1
pulkitkumar13
2022-09-23T11:02:45Z
110
4
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-23T10:40:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: dark-bert-finetuned-ner1 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9337419247970846 - name: Recall type: recall value: 0.9486704813194211 - name: F1 type: f1 value: 0.9411470072627097 - name: Accuracy type: accuracy value: 0.9861364572908695 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dark-bert-finetuned-ner1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0833 - Precision: 0.9337 - Recall: 0.9487 - F1: 0.9411 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0358 | 1.0 | 1756 | 0.0780 | 0.9283 | 0.9409 | 0.9346 | 0.9844 | | 0.0172 | 2.0 | 3512 | 0.0708 | 0.9375 | 0.9488 | 0.9431 | 0.9860 | | 0.0056 | 3.0 | 5268 | 0.0833 | 0.9337 | 0.9487 | 0.9411 | 0.9861 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
rinascimento/distilbert-base-uncased-finetuned-emotion
rinascimento
2022-09-23T09:52:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T06:15:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9241401774459951 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2167 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.815 | 1.0 | 250 | 0.3051 | 0.9045 | 0.9022 | | 0.2496 | 2.0 | 500 | 0.2167 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
bryanleeharyanto/vtt-indonesia
bryanleeharyanto
2022-09-23T06:39:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-20T07:59:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: vtt-indonesia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vtt-indonesia This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3472 - Wer: 0.3582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7612 | 3.23 | 400 | 0.6405 | 0.6714 | | 0.4143 | 6.45 | 800 | 0.3772 | 0.4974 | | 0.2068 | 9.68 | 1200 | 0.3877 | 0.4442 | | 0.1436 | 12.9 | 1600 | 0.3785 | 0.4212 | | 0.1133 | 16.13 | 2000 | 0.3944 | 0.4144 | | 0.09 | 19.35 | 2400 | 0.3695 | 0.3925 | | 0.0705 | 22.58 | 2800 | 0.3706 | 0.3846 | | 0.057 | 25.81 | 3200 | 0.3720 | 0.3725 | | 0.048 | 29.03 | 3600 | 0.3472 | 0.3582 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ryuno25/t5-base-finetuned-eli-5
ryuno25
2022-09-23T06:29:14Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-23T04:40:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli-5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 13.4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli-5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.4557 - Rouge1: 13.4 - Rouge2: 1.9415 - Rougel: 10.4671 - Rougelsum: 12.0693 - Gen Len: 18.9529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 3.6754 | 1.0 | 8520 | 3.4557 | 13.4 | 1.9415 | 10.4671 | 12.0693 | 18.9529 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
SmilestheSad/hf_trainer
SmilestheSad
2022-09-23T04:39:53Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T03:36:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: hf_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf_trainer This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0708 - F1: 0.9066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0344 | 1.0 | 565 | 0.0661 | 0.8811 | | 0.0354 | 2.0 | 1130 | 0.0641 | 0.8963 | | 0.0222 | 3.0 | 1695 | 0.0690 | 0.8994 | | 0.0145 | 4.0 | 2260 | 0.0714 | 0.9036 | | 0.011 | 5.0 | 2825 | 0.0708 | 0.9066 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
nvidia/tts_en_fastpitch
nvidia
2022-09-23T04:28:43Z
804
39
nemo
[ "nemo", "text-to-speech", "speech", "audio", "Transformer", "pytorch", "NeMo", "Riva", "en", "dataset:ljspeech", "arxiv:2006.06873", "arxiv:2108.10447", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-06-28T17:55:51Z
--- language: - en library_name: nemo datasets: - ljspeech thumbnail: null tags: - text-to-speech - speech - audio - Transformer - pytorch - NeMo - Riva license: cc-by-4.0 --- # NVIDIA FastPitch (en-US) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-FastPitch--Transformer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-45M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) | FastPitch [1] is a fully-parallel transformer architecture with prosody control over pitch and individual phoneme duration. Additionally, it uses an unsupervised speech-text aligner [2]. See the [model architecture](#model-architecture) section for complete architecture details. It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva). ## Usage The model is available for use in the NeMo toolkit [3] and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest PyTorch version. ``` pip install nemo_toolkit['all'] ``` ### Automatically instantiate the model Note: This model generates only spectrograms and a vocoder is needed to convert the spectrograms to waveforms. In this example HiFiGAN is used. ```python # Load FastPitch from nemo.collections.tts.models import FastPitchModel spec_generator = FastPitchModel.from_pretrained("nvidia/tts_en_fastpitch") # Load vocoder from nemo.collections.tts.models import HifiGanModel model = HifiGanModel.from_pretrained(model_name="nvidia/tts_hifigan") ``` ### Generate audio ```python import soundfile as sf parsed = spec_generator.parse("You can type your sentence here to get nemo to produce speech.") spectrogram = spec_generator.generate_spectrogram(tokens=parsed) audio = model.convert_spectrogram_to_audio(spec=spectrogram) ``` ### Save the generated audio file ```python # Save the audio to disk in a file called speech.wav sf.write("speech.wav", audio.to('cpu').detach().numpy()[0], 22050) ``` ### Input This model accepts batches of text. ### Output This model generates mel spectrograms. ## Model Architecture FastPitch is a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental frequency contours. The model predicts pitch contours during inference. By altering these predictions, the generated speech can be more expressive, better match the semantic of the utterance, and in the end more engaging to the listener. FastPitch is based on a fully-parallel Transformer architecture, with a much higher real-time factor than Tacotron2 for the mel-spectrogram synthesis of a typical utterance. It uses an unsupervised speech-text aligner. ## Training The NeMo toolkit [3] was used for training the models for 1000 epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/tts/fastpitch.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/tts/conf/fastpitch_align_v1.05.yaml). ### Datasets This model is trained on LJSpeech sampled at 22050Hz, and has been tested on generating female English voices with an American accent. ## Performance No performance information is available at this time. ## Limitations This checkpoint only works well with vocoders that were trained on 22050Hz data. Otherwise, the generated audio may be scratchy or choppy-sounding. ## Deployment with NVIDIA Riva For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References - [1] [FastPitch: Parallel Text-to-speech with Pitch Prediction](https://arxiv.org/abs/2006.06873) - [2] [One TTS Alignment To Rule Them All](https://arxiv.org/abs/2108.10447) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
apapiu/diffusion_model_aesthetic_keras
apapiu
2022-09-23T03:56:11Z
0
1
null
[ "license:openrail", "region:us" ]
null
2022-09-21T19:14:31Z
--- license: openrail --- A sample from the [Laion 6.5+ ](https://laion.ai/blog/laion-aesthetics/) image + text dataset. You can see some samples [here](http://captions.christoph-schuhmann.de/2B-en-6.5.html). The samples are resized + center-cropped to 64x64x3 and the .npz file also contains CLIP embeddings. TODO: add img2dataset script. The data can be used to train a basic text-to-image model.
wenkai-li/new_classifer_epoch7
wenkai-li
2022-09-23T03:35:38Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T02:09:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: new_classifer_epoch7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new_classifer_epoch7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1305 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0526 | 1.0 | 4248 | 0.0587 | 0.9797 | | 0.0259 | 2.0 | 8496 | 0.0502 | 0.9855 | | 0.0121 | 3.0 | 12744 | 0.1170 | 0.9773 | | 0.0051 | 4.0 | 16992 | 0.1379 | 0.9811 | | 0.0026 | 5.0 | 21240 | 0.1014 | 0.9869 | | 0.0013 | 6.0 | 25488 | 0.1312 | 0.9859 | | 0.0002 | 7.0 | 29736 | 0.1305 | 0.9861 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
spacemanidol/t5-base-all-rewrite-correct-unchaged-no-prefix
spacemanidol
2022-09-23T02:59:17Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-19T19:44:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-all-rewrite-correct-unchaged-no-prefix results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-all-rewrite-correct-unchaged-no-prefix This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.7.0+cu110 - Datasets 2.4.0 - Tokenizers 0.12.1
jamiehuang/t5-base-finetuned-xsum
jamiehuang
2022-09-23T02:11:02Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T15:06:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-base-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-xsum This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
neelmehta00/t5-base-finetuned-eli5
neelmehta00
2022-09-22T23:16:27Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T15:04:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 14.5658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.1765 - Rouge1: 14.5658 - Rouge2: 2.2777 - Rougel: 11.2826 - Rougelsum: 13.1136 - Gen Len: 18.9938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3398 | 1.0 | 17040 | 3.1765 | 14.5658 | 2.2777 | 11.2826 | 13.1136 | 18.9938 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Kevin123/distilbert-base-uncased-finetuned-cola
Kevin123
2022-09-22T22:39:03Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T21:03:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8663 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5248 | 1.0 | 535 | 0.5171 | 0.4210 | | 0.3418 | 2.0 | 1070 | 0.4971 | 0.5236 | | 0.2289 | 3.0 | 1605 | 0.6874 | 0.5023 | | 0.1722 | 4.0 | 2140 | 0.7680 | 0.5392 | | 0.118 | 5.0 | 2675 | 0.8663 | 0.5475 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
JJRohan/ppo-LunarLander-v2
JJRohan
2022-09-22T21:12:36Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-22T21:12:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 169.43 +/- 77.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nlp-guild/bert-base-chinese-finetuned-intent_recognition-biomedical
nlp-guild
2022-09-22T20:06:57Z
136
4
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T19:42:37Z
fine-tuned bert-base-chinese for intent recognition task on [dataset](https://huggingface.co/datasets/nlp-guild/intent-recognition-biomedical) # Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import TextClassificationPipeline tokenizer = AutoTokenizer.from_pretrained("nlp-guild/bert-base-chinese-finetuned-intent_recognition-biomedical") model = AutoModelForSequenceClassification.from_pretrained("nlp-guild/bert-base-chinese-finetuned-intent_recognition-biomedical") nlp = TextClassificationPipeline(model = model, tokenizer = tokenizer) label_set = [ '定义', '病因', '预防', '临床表现(病症表现)', '相关病症', '治疗方法', '所属科室', '传染性', '治愈率', '禁忌', '化验/体检方案', '治疗时间', '其他' ] def readable_results(top_k:int, usr_query:str): raw = nlp(usr_query, top_k = top_k) def f(x): index = int(x['label'][6:]) x['label'] = label_set[index] for i in raw: f(i) return raw readable_results(3,'得了心脏病怎么办') ''' [{'label': '治疗方法', 'score': 0.9994503855705261}, {'label': '其他', 'score': 0.00018375989748165011}, {'label': '临床表现(病症表现)', 'score': 0.00010841596667887643}] ''' ```
SharpAI/benign-net-traffic-v2-t5-l12
SharpAI
2022-09-22T20:06:09Z
106
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-21T00:02:21Z
--- tags: - generated_from_keras_callback model-index: - name: benign-net-traffic-v2-t5-l12 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # benign-net-traffic-v2-t5-l12 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
TingChenChang/hpvqa-lcqmc-ocnli-cnsd-multi-MiniLM-v2
TingChenChang
2022-09-22T19:23:21Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-22T19:23:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 12, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jayanta/twitter-roberta-base-sentiment-sentiment-memes-30epcohs
jayanta
2022-09-22T19:04:33Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T14:38:21Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-base-sentiment-sentiment-memes-30epcohs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-sentiment-sentiment-memes-30epcohs This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3027 - Accuracy: 0.8517 - Precision: 0.8536 - Recall: 0.8517 - F1: 0.8523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2504 | 1.0 | 2147 | 0.7129 | 0.8087 | 0.8112 | 0.8087 | 0.8036 | | 0.2449 | 2.0 | 4294 | 0.7500 | 0.8229 | 0.8279 | 0.8229 | 0.8240 | | 0.2652 | 3.0 | 6441 | 0.7460 | 0.8181 | 0.8185 | 0.8181 | 0.8149 | | 0.2585 | 4.0 | 8588 | 0.7906 | 0.8155 | 0.8152 | 0.8155 | 0.8153 | | 0.2534 | 5.0 | 10735 | 0.8178 | 0.8061 | 0.8180 | 0.8061 | 0.8080 | | 0.2498 | 6.0 | 12882 | 0.8139 | 0.8166 | 0.8163 | 0.8166 | 0.8164 | | 0.2825 | 7.0 | 15029 | 0.7494 | 0.8155 | 0.8210 | 0.8155 | 0.8168 | | 0.2459 | 8.0 | 17176 | 0.8870 | 0.8061 | 0.8122 | 0.8061 | 0.8075 | | 0.2303 | 9.0 | 19323 | 0.8699 | 0.7987 | 0.8060 | 0.7987 | 0.8003 | | 0.2425 | 10.0 | 21470 | 0.8043 | 0.8244 | 0.8275 | 0.8244 | 0.8253 | | 0.2143 | 11.0 | 23617 | 0.9163 | 0.8208 | 0.8251 | 0.8208 | 0.8219 | | 0.2054 | 12.0 | 25764 | 0.8330 | 0.8239 | 0.8258 | 0.8239 | 0.8245 | | 0.208 | 13.0 | 27911 | 1.0673 | 0.8134 | 0.8216 | 0.8134 | 0.8150 | | 0.1668 | 14.0 | 30058 | 0.9071 | 0.8270 | 0.8276 | 0.8270 | 0.8273 | | 0.1571 | 15.0 | 32205 | 0.9294 | 0.8339 | 0.8352 | 0.8339 | 0.8344 | | 0.1857 | 16.0 | 34352 | 0.9909 | 0.8354 | 0.8350 | 0.8354 | 0.8352 | | 0.1476 | 17.0 | 36499 | 0.9747 | 0.8433 | 0.8436 | 0.8433 | 0.8434 | | 0.1341 | 18.0 | 38646 | 0.9372 | 0.8422 | 0.8415 | 0.8422 | 0.8415 | | 0.1181 | 19.0 | 40793 | 1.0301 | 0.8433 | 0.8443 | 0.8433 | 0.8437 | | 0.1192 | 20.0 | 42940 | 1.1332 | 0.8407 | 0.8415 | 0.8407 | 0.8410 | | 0.0983 | 21.0 | 45087 | 1.2002 | 0.8428 | 0.8498 | 0.8428 | 0.8440 | | 0.0951 | 22.0 | 47234 | 1.2141 | 0.8475 | 0.8504 | 0.8475 | 0.8483 | | 0.0784 | 23.0 | 49381 | 1.1652 | 0.8407 | 0.8453 | 0.8407 | 0.8417 | | 0.0623 | 24.0 | 51528 | 1.1730 | 0.8417 | 0.8443 | 0.8417 | 0.8425 | | 0.054 | 25.0 | 53675 | 1.2900 | 0.8454 | 0.8496 | 0.8454 | 0.8464 | | 0.0584 | 26.0 | 55822 | 1.2831 | 0.8480 | 0.8497 | 0.8480 | 0.8486 | | 0.0531 | 27.0 | 57969 | 1.3043 | 0.8506 | 0.8524 | 0.8506 | 0.8512 | | 0.0522 | 28.0 | 60116 | 1.2891 | 0.8527 | 0.8554 | 0.8527 | 0.8534 | | 0.037 | 29.0 | 62263 | 1.3077 | 0.8538 | 0.8559 | 0.8538 | 0.8544 | | 0.038 | 30.0 | 64410 | 1.3027 | 0.8517 | 0.8536 | 0.8517 | 0.8523 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 1.15.2.dev0 - Tokenizers 0.10.1
cjj8168/stress_dreaddit
cjj8168
2022-09-22T16:46:33Z
159
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T16:44:29Z
--- license: mit tags: - generated_from_trainer model-index: - name: stress_dreaddit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stress_dreaddit This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
facebook/spar-wiki-bm25-lexmodel-query-encoder
facebook
2022-09-22T16:44:45Z
111
2
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2110.06918", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T21:44:05Z
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the query encoder of the Wiki BM25 Lexical Model (Λ) from the SPAR paper: [Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?](https://arxiv.org/abs/2110.06918) <br> Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta and Wen-tau Yih <br> **Meta AI** The associated github repo is available here: https://github.com/facebookresearch/dpr-scale/tree/main/spar This model is a BERT-base sized dense retriever trained on Wikipedia articles to imitate the behavior of BM25. The following models are also available: Pretrained Model | Corpus | Teacher | Architecture | Query Encoder Path | Context Encoder Path |---|---|---|---|---|--- Wiki BM25 Λ | Wikipedia | BM25 | BERT-base | facebook/spar-wiki-bm25-lexmodel-query-encoder | facebook/spar-wiki-bm25-lexmodel-context-encoder PAQ BM25 Λ | PAQ | BM25 | BERT-base | facebook/spar-paq-bm25-lexmodel-query-encoder | facebook/spar-paq-bm25-lexmodel-context-encoder MARCO BM25 Λ | MS MARCO | BM25 | BERT-base | facebook/spar-marco-bm25-lexmodel-query-encoder | facebook/spar-marco-bm25-lexmodel-context-encoder MARCO UniCOIL Λ | MS MARCO | UniCOIL | BERT-base | facebook/spar-marco-unicoil-lexmodel-query-encoder | facebook/spar-marco-unicoil-lexmodel-context-encoder # Using the Lexical Model (Λ) Alone This model should be used together with the associated context encoder, similar to the [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr) model. ``` import torch from transformers import AutoTokenizer, AutoModel # The tokenizer is the same for the query and context encoder tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer query_input = tokenizer(query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') # Compute embeddings: take the last-layer hidden state of the [CLS] token query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Compute similarity scores using dot product score1 = query_emb @ ctx_emb[0] # 341.3268 score2 = query_emb @ ctx_emb[1] # 340.1626 ``` # Using the Lexical Model (Λ) with a Base Dense Retriever as in SPAR As Λ learns lexical matching from a sparse teacher retriever, it can be used in combination with a standard dense retriever (e.g. [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr#dpr), [Contriever](https://huggingface.co/facebook/contriever-msmarco)) to build a dense retriever that excels at both lexical and semantic matching. In the following example, we show how to build the SPAR-Wiki model for Open-Domain Question Answering by concatenating the embeddings of DPR and the Wiki BM25 Λ. ``` import torch from transformers import AutoTokenizer, AutoModel from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer from transformers import DPRContextEncoder, DPRContextEncoderTokenizer # DPR model dpr_ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_query_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-multiset-base") dpr_query_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-multiset-base") # Wiki BM25 Λ model lexmodel_tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Compute DPR embeddings dpr_query_input = dpr_query_tokenizer(query, return_tensors='pt')['input_ids'] dpr_query_emb = dpr_query_encoder(dpr_query_input).pooler_output dpr_ctx_input = dpr_ctx_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') dpr_ctx_emb = dpr_ctx_encoder(**dpr_ctx_input).pooler_output # Compute Λ embeddings lexmodel_query_input = lexmodel_tokenizer(query, return_tensors='pt') lexmodel_query_emb = lexmodel_query_encoder(**query_input).last_hidden_state[:, 0, :] lexmodel_ctx_input = lexmodel_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') lexmodel_ctx_emb = lexmodel_context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Form SPAR embeddings via concatenation # The concatenation weight is only applied to query embeddings # Refer to the SPAR paper for details concat_weight = 0.7 spar_query_emb = torch.cat( [dpr_query_emb, concat_weight * lexmodel_query_emb], dim=-1, ) spar_ctx_emb = torch.cat( [dpr_ctx_emb, lexmodel_ctx_emb], dim=-1, ) # Compute similarity scores score1 = spar_query_emb @ spar_ctx_emb[0] # 317.6931 score2 = spar_query_emb @ spar_ctx_emb[1] # 314.6144 ```
CoreyMorris/Reinforce-cartpole-v1
CoreyMorris
2022-09-22T16:21:40Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-22T16:20:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Chemsseddine/distilbert-base-uncased-finetuned-cola
Chemsseddine
2022-09-22T15:31:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T17:23:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 2.1485 | | No log | 2.0 | 10 | 2.0983 | | No log | 3.0 | 15 | 2.0499 | | No log | 4.0 | 20 | 2.0155 | | No log | 5.0 | 25 | 2.0011 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
jayanta/twitter-roberta-base-sentiment-sentiment-memes
jayanta
2022-09-22T14:35:05Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-19T15:25:56Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-base-sentiment-sentiment-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-sentiment-sentiment-memes This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9582 - Accuracy: 0.8187 - Precision: 0.8199 - Recall: 0.8187 - F1: 0.8191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4673 | 1.0 | 2147 | 0.4373 | 0.7647 | 0.8180 | 0.7647 | 0.7657 | | 0.3987 | 2.0 | 4294 | 0.5528 | 0.7783 | 0.8096 | 0.7783 | 0.7804 | | 0.3194 | 3.0 | 6441 | 0.6432 | 0.7752 | 0.7767 | 0.7752 | 0.7680 | | 0.2855 | 4.0 | 8588 | 0.6820 | 0.7814 | 0.8034 | 0.7814 | 0.7837 | | 0.2575 | 5.0 | 10735 | 0.7427 | 0.7720 | 0.8070 | 0.7720 | 0.7741 | | 0.2154 | 6.0 | 12882 | 0.8225 | 0.7987 | 0.8062 | 0.7987 | 0.8004 | | 0.2195 | 7.0 | 15029 | 0.8361 | 0.8071 | 0.8086 | 0.8071 | 0.8077 | | 0.2322 | 8.0 | 17176 | 0.8842 | 0.8056 | 0.8106 | 0.8056 | 0.8069 | | 0.2102 | 9.0 | 19323 | 0.9188 | 0.8129 | 0.8144 | 0.8129 | 0.8135 | | 0.1893 | 10.0 | 21470 | 0.9582 | 0.8187 | 0.8199 | 0.8187 | 0.8191 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 1.15.2.dev0 - Tokenizers 0.10.1
huggingtweets/slime_machine
huggingtweets
2022-09-22T14:09:28Z
94
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/slime_machine/1663855763474/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1554733825220939777/lgFt_2e1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">slime</div> <div style="text-align: center; font-size: 14px;">@slime_machine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from slime. | Data | slime | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 441 | | Short tweets | 589 | | Tweets kept | 2199 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s9inuxg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @slime_machine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5xjy8nrj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5xjy8nrj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/slime_machine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/pixel-mania
sd-concepts-library
2022-09-22T14:05:08Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-22T05:26:54Z
--- license: mit --- ### pixel-mania on Stable Diffusion This is the `<pixel-mania>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
m-lin20/satellite-instrument-roberta-NER
m-lin20
2022-09-22T13:33:22Z
108
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: "pt" widget: - text: "Poised for launch in mid-2021, the joint NASA-USGS Landsat 9 mission will continue this important data record. In many respects Landsat 9 is a clone of Landsat-8. The Operational Land Imager-2 (OLI-2) is largely identical to Landsat 8 OLI, providing calibrated imagery covering the solar reflected wavelengths. The Thermal Infrared Sensor-2 (TIRS-2) improves upon Landsat 8 TIRS, addressing known issues including stray light incursion and a malfunction of the instrument scene select mirror. In addition, Landsat 9 adds redundancy to TIRS-2, thus upgrading the instrument to a 5-year design life commensurate with other elements of the mission. Initial performance testing of OLI-2 and TIRS-2 indicate that the instruments are of excellent quality and expected to match or improve on Landsat 8 data quality. " example_title: "example 1" - text: "Compared to its predecessor, Jason-3, the two AMR-C radiometer instruments have an external calibration system which enables higher radiometric stability accomplished by moving the secondary mirror between well-defined targets. Sentinel-6 allows continuing the study of the ocean circulation, climate change, and sea-level rise for at least another decade. Besides the external calibration for the AMR heritage radiometer (18.7, 23.8, and 34 GHz channels), the AMR-C contains a high-resolution microwave radiometer (HRMR) with radiometer channels at 90, 130, and 168 GHz. This subsystem allows for a factor of 5× higher spatial resolution at coastal transitions. This article presents a brief description of the instrument and the measured performance of the completed AMR-C-A and AMR-C-B instruments." example_title: "example 2" - text: "The Landsat 9 will continue the Landsat data record into its fifth decade with a near-copy build of Landsat 8 with launch scheduled for December 2020. The two instruments on Landsat 9 are Thermal Infrared Sensor-2 (TIRS-2) and Operational Land Imager-2 (OLI-2)." example_title: "example 3" inference: parameters: aggregation_strategy: "simple" --- # satellite-instrument-roberta-NER For details, please visit the [GitHub link](https://github.com/THU-EarthInformationScienceLab/Satellite-Instrument-NER). ## Citation Our [paper](https://www.tandfonline.com/doi/full/10.1080/17538947.2022.2107098) has been published in the International Journal of Digital Earth : ```bibtex @article{lin2022satellite, title={Satellite and instrument entity recognition using a pre-trained language model with distant supervision}, author={Lin, Ming and Jin, Meng and Liu, Yufu and Bai, Yuqi}, journal={International Journal of Digital Earth}, volume={15}, number={1}, pages={1290--1304}, year={2022}, publisher={Taylor \& Francis} } ```
m-lin20/satellite-instrument-bert-NER
m-lin20
2022-09-22T13:32:42Z
104
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: "pt" widget: - text: "Poised for launch in mid-2021, the joint NASA-USGS Landsat 9 mission will continue this important data record. In many respects Landsat 9 is a clone of Landsat-8. The Operational Land Imager-2 (OLI-2) is largely identical to Landsat 8 OLI, providing calibrated imagery covering the solar reflected wavelengths. The Thermal Infrared Sensor-2 (TIRS-2) improves upon Landsat 8 TIRS, addressing known issues including stray light incursion and a malfunction of the instrument scene select mirror. In addition, Landsat 9 adds redundancy to TIRS-2, thus upgrading the instrument to a 5-year design life commensurate with other elements of the mission. Initial performance testing of OLI-2 and TIRS-2 indicate that the instruments are of excellent quality and expected to match or improve on Landsat 8 data quality. " example_title: "example 1" - text: "Compared to its predecessor, Jason-3, the two AMR-C radiometer instruments have an external calibration system which enables higher radiometric stability accomplished by moving the secondary mirror between well-defined targets. Sentinel-6 allows continuing the study of the ocean circulation, climate change, and sea-level rise for at least another decade. Besides the external calibration for the AMR heritage radiometer (18.7, 23.8, and 34 GHz channels), the AMR-C contains a high-resolution microwave radiometer (HRMR) with radiometer channels at 90, 130, and 168 GHz. This subsystem allows for a factor of 5× higher spatial resolution at coastal transitions. This article presents a brief description of the instrument and the measured performance of the completed AMR-C-A and AMR-C-B instruments." example_title: "example 2" - text: "Landsat 9 will continue the Landsat data record into its fifth decade with a near-copy build of Landsat 8 with launch scheduled for December 2020. The two instruments on Landsat 9 are Thermal Infrared Sensor-2 (TIRS-2) and Operational Land Imager-2 (OLI-2)." example_title: "example 3" inference: parameters: aggregation_strategy: "first" --- # satellite-instrument-bert-NER For details, please visit the [GitHub link](https://github.com/THU-EarthInformationScienceLab/Satellite-Instrument-NER). ## Citation Our [paper](https://www.tandfonline.com/doi/full/10.1080/17538947.2022.2107098) has been published in the International Journal of Digital Earth : ```bibtex @article{lin2022satellite, title={Satellite and instrument entity recognition using a pre-trained language model with distant supervision}, author={Lin, Ming and Jin, Meng and Liu, Yufu and Bai, Yuqi}, journal={International Journal of Digital Earth}, volume={15}, number={1}, pages={1290--1304}, year={2022}, publisher={Taylor \& Francis} } ```
fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-dynamic
fxmarty
2022-09-22T13:28:21Z
3
0
transformers
[ "transformers", "onnx", "distilbert", "text-classification", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T13:19:36Z
--- license: apache-2.0 datasets: - sst2 - glue --- This model is a fork of https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english , quantized using dynamic Post-Training Quantization (PTQ) with ONNX Runtime and 🤗 Optimum library. It achieves 0.901 on the validation set. To load this model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained("fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-dynamic") ```
sd-concepts-library/bluebey-2
sd-concepts-library
2022-09-22T12:21:34Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T12:21:30Z
--- license: mit --- ### Bluebey-2 on Stable Diffusion This is the `<bluebey>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<bluebey> 0](https://huggingface.co/sd-concepts-library/bluebey-2/resolve/main/concept_images/0.jpeg) ![<bluebey> 1](https://huggingface.co/sd-concepts-library/bluebey-2/resolve/main/concept_images/2.jpeg) ![<bluebey> 2](https://huggingface.co/sd-concepts-library/bluebey-2/resolve/main/concept_images/1.jpeg)
muhtasham/bert-small-finetuned-finer
muhtasham
2022-09-22T11:50:51Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T20:36:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-finer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-finer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8994 | 1.0 | 2433 | 1.7597 | | 1.7226 | 2.0 | 4866 | 1.6462 | | 1.6752 | 3.0 | 7299 | 1.6137 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
muhtasham/bert-small-finetuned-parsed20
muhtasham
2022-09-22T11:34:48Z
179
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-17T13:31:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-parsed20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-parsed20 This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 3.0763 | | No log | 2.0 | 8 | 2.8723 | | No log | 3.0 | 12 | 3.5102 | | No log | 4.0 | 16 | 2.8641 | | No log | 5.0 | 20 | 2.7827 | | No log | 6.0 | 24 | 2.8163 | | No log | 7.0 | 28 | 3.2415 | | No log | 8.0 | 32 | 3.0477 | | No log | 9.0 | 36 | 3.5160 | | No log | 10.0 | 40 | 3.1248 | | No log | 11.0 | 44 | 3.2159 | | No log | 12.0 | 48 | 3.2177 | | No log | 13.0 | 52 | 2.9108 | | No log | 14.0 | 56 | 3.3758 | | No log | 15.0 | 60 | 3.1335 | | No log | 16.0 | 64 | 2.9753 | | No log | 17.0 | 68 | 2.9922 | | No log | 18.0 | 72 | 3.2798 | | No log | 19.0 | 76 | 2.7280 | | No log | 20.0 | 80 | 3.1193 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
muhtasham/bert-small-finetuned-parsed-longer50
muhtasham
2022-09-22T11:34:27Z
179
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-17T13:39:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finetuned-finetuned-parsed-longer50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-finetuned-parsed-longer50 This model is a fine-tuned version of [muhtasham/bert-small-finetuned-parsed20](https://huggingface.co/muhtasham/bert-small-finetuned-parsed20) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 2.9807 | | No log | 2.0 | 8 | 2.7267 | | No log | 3.0 | 12 | 3.3484 | | No log | 4.0 | 16 | 2.7573 | | No log | 5.0 | 20 | 2.7063 | | No log | 6.0 | 24 | 2.7353 | | No log | 7.0 | 28 | 3.1290 | | No log | 8.0 | 32 | 2.9371 | | No log | 9.0 | 36 | 3.4265 | | No log | 10.0 | 40 | 3.0537 | | No log | 11.0 | 44 | 3.1382 | | No log | 12.0 | 48 | 3.1454 | | No log | 13.0 | 52 | 2.8379 | | No log | 14.0 | 56 | 3.2760 | | No log | 15.0 | 60 | 3.0504 | | No log | 16.0 | 64 | 2.9001 | | No log | 17.0 | 68 | 2.8892 | | No log | 18.0 | 72 | 3.1837 | | No log | 19.0 | 76 | 2.6404 | | No log | 20.0 | 80 | 3.0600 | | No log | 21.0 | 84 | 3.1432 | | No log | 22.0 | 88 | 2.9608 | | No log | 23.0 | 92 | 3.0513 | | No log | 24.0 | 96 | 3.1038 | | No log | 25.0 | 100 | 3.0975 | | No log | 26.0 | 104 | 2.8977 | | No log | 27.0 | 108 | 2.9416 | | No log | 28.0 | 112 | 2.9015 | | No log | 29.0 | 116 | 2.7947 | | No log | 30.0 | 120 | 2.9278 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
thisisHJLee/wav2vec2-large-xls-r-300m-korean-e
thisisHJLee
2022-09-22T10:38:09Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-22T08:52:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-e This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6640 - Cer: 0.1518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3827 | 3.25 | 500 | 3.5391 | 1.0 | | 3.0633 | 6.49 | 1000 | 2.9854 | 0.8759 | | 1.2095 | 9.74 | 1500 | 0.8384 | 0.2103 | | 0.5499 | 12.99 | 2000 | 0.6733 | 0.1689 | | 0.3815 | 16.23 | 2500 | 0.6778 | 0.1591 | | 0.3111 | 19.48 | 3000 | 0.6640 | 0.1518 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.13.0
mahaveer/ppo-LunarLander-v2
mahaveer
2022-09-22T10:11:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-22T09:57:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 194.40 +/- 31.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GItaf/gpt2-gpt2-TF-weight1-epoch10
GItaf
2022-09-22T09:36:24Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T08:05:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight1-epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight1-epoch10 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/roberta-base-roberta-base-TF-weight1-epoch10
GItaf
2022-09-22T09:35:57Z
49
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-22T09:34:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/roberta-base-roberta-base-TF-weight1-epoch5
GItaf
2022-09-22T09:32:53Z
47
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-22T09:31:40Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/roberta-base-roberta-base-TF-weight1-epoch15
GItaf
2022-09-22T09:23:00Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T15:32:11Z
--- tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch15 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8322 - Cls loss: 0.6900 - Lm loss: 4.1423 - Cls Accuracy: 0.5401 - Cls F1: 0.3788 - Cls Precision: 0.2917 - Cls Recall: 0.5401 - Perplexity: 62.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 5.3158 | 1.0 | 3470 | 4.9858 | 0.6910 | 4.2949 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 73.32 | | 4.9772 | 2.0 | 6940 | 4.8876 | 0.6956 | 4.1920 | 0.4599 | 0.2898 | 0.2115 | 0.4599 | 66.15 | | 4.8404 | 3.0 | 10410 | 4.8454 | 0.6901 | 4.1553 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 63.77 | | 4.7439 | 4.0 | 13880 | 4.8177 | 0.6904 | 4.1274 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.02 | | 4.6667 | 5.0 | 17350 | 4.8065 | 0.6903 | 4.1163 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.33 | | 4.6018 | 6.0 | 20820 | 4.8081 | 0.6963 | 4.1119 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.06 | | 4.5447 | 7.0 | 24290 | 4.8089 | 0.6912 | 4.1177 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.42 | | 4.4944 | 8.0 | 27760 | 4.8128 | 0.6900 | 4.1228 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.73 | | 4.4505 | 9.0 | 31230 | 4.8152 | 0.6905 | 4.1248 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.85 | | 4.4116 | 10.0 | 34700 | 4.8129 | 0.6908 | 4.1221 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.69 | | 4.3787 | 11.0 | 38170 | 4.8146 | 0.6906 | 4.1241 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 61.81 | | 4.3494 | 12.0 | 41640 | 4.8229 | 0.6900 | 4.1329 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.36 | | 4.3253 | 13.0 | 45110 | 4.8287 | 0.6900 | 4.1388 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.73 | | 4.3075 | 14.0 | 48580 | 4.8247 | 0.6900 | 4.1347 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.47 | | 4.2936 | 15.0 | 52050 | 4.8322 | 0.6900 | 4.1423 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.95 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/gpt2-gpt2-TF-weight1-epoch15
GItaf
2022-09-22T09:21:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T15:31:41Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight1-epoch15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight1-epoch15 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0647 - Cls loss: 2.1295 - Lm loss: 3.9339 - Cls Accuracy: 0.8375 - Cls F1: 0.8368 - Cls Precision: 0.8381 - Cls Recall: 0.8375 - Perplexity: 51.11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Cls loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Lm loss | Perplexity | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:------------:|:------:|:-------------:|:----------:|:-------:|:----------:|:---------------:| | 4.8702 | 1.0 | 3470 | 0.6951 | 0.7752 | 0.7670 | 0.7978 | 0.7752 | 4.0201 | 55.71 | 4.7157 | | 4.5856 | 2.0 | 6940 | 0.6797 | 0.8352 | 0.8333 | 0.8406 | 0.8352 | 3.9868 | 53.88 | 4.6669 | | 4.4147 | 3.0 | 10410 | 0.6899 | 0.8375 | 0.8368 | 0.8384 | 0.8375 | 3.9716 | 53.07 | 4.6619 | | 4.2479 | 4.0 | 13880 | 0.8678 | 0.8403 | 0.8396 | 0.8413 | 0.8403 | 3.9622 | 52.57 | 4.8305 | | 4.1281 | 5.0 | 17350 | 0.9747 | 0.8340 | 0.8334 | 0.8346 | 0.8340 | 3.9596 | 52.44 | 4.9349 | | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity| |:-------------:|:-----:|:-----:|:--------:|:------------:|:------:|:-------------:|:----------:|:-------:|:----------:|:---------------:| | 4.195 | 6.0 | 20820 | 4.9303 | 0.9770 | 3.9528 | 0.8300 | 0.8299 | 0.8299 | 0.8300 | 52.08 | | 4.0645 | 7.0 | 24290 | 5.0425 | 1.0979 | 3.9440 | 0.8317 | 0.8313 | 0.8317 | 0.8317 | 51.62 | | 3.9637 | 8.0 | 27760 | 5.3955 | 1.4533 | 3.9414 | 0.8329 | 0.8325 | 0.8328 | 0.8329 | 51.49 | | 3.9094 | 9.0 | 31230 | 5.6029 | 1.6645 | 3.9375 | 0.8231 | 0.8233 | 0.8277 | 0.8231 | 51.29 | | 3.8661 | 10.0 | 34700 | 5.8175 | 1.8821 | 3.9344 | 0.8144 | 0.8115 | 0.8222 | 0.8144 | 51.13 | | 3.8357 | 11.0 | 38170 | 5.6824 | 1.7494 | 3.9319 | 0.8340 | 0.8336 | 0.8342 | 0.8340 | 51.01 | | 3.8019 | 12.0 | 41640 | 5.8509 | 1.9167 | 3.9332 | 0.8369 | 0.8357 | 0.8396 | 0.8369 | 51.07 | | 3.7815 | 13.0 | 45110 | 5.9044 | 1.9686 | 3.9346 | 0.8409 | 0.8407 | 0.8408 | 0.8409 | 51.14 | | 3.7662 | 14.0 | 48580 | 6.0088 | 2.0738 | 3.9337 | 0.8363 | 0.8359 | 0.8364 | 0.8363 | 51.10 | | 3.7524 | 15.0 | 52050 | 6.0647 | 2.1295 | 3.9339 | 0.8375 | 0.8368 | 0.8381 | 0.8375 | 51.11 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
chintagunta85/electramed-small-deid2014-ner-v5-classweights
chintagunta85
2022-09-22T09:08:27Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:i2b22014", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-22T07:48:30Z
--- tags: - generated_from_trainer datasets: - i2b22014 metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-deid2014-ner-v5-classweights results: - task: name: Token Classification type: token-classification dataset: name: i2b22014 type: i2b22014 config: i2b22014-deid split: train args: i2b22014-deid metrics: - name: Precision type: precision value: 0.8832236842105263 - name: Recall type: recall value: 0.6910561632502987 - name: F1 type: f1 value: 0.7754112732711052 - name: Accuracy type: accuracy value: 0.9883040491052534 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electramed-small-deid2014-ner-v5-classweights This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the i2b22014 dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Precision: 0.8832 - Recall: 0.6911 - F1: 0.7754 - Accuracy: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0001 | 1.0 | 1838 | 0.0008 | 0.7702 | 0.3780 | 0.5071 | 0.9771 | | 0.0 | 2.0 | 3676 | 0.0007 | 0.8753 | 0.5671 | 0.6883 | 0.9827 | | 0.0 | 3.0 | 5514 | 0.0006 | 0.8074 | 0.4128 | 0.5463 | 0.9775 | | 0.0 | 4.0 | 7352 | 0.0007 | 0.8693 | 0.6102 | 0.7170 | 0.9848 | | 0.0 | 5.0 | 9190 | 0.0006 | 0.8710 | 0.6022 | 0.7121 | 0.9849 | | 0.0 | 6.0 | 11028 | 0.0007 | 0.8835 | 0.6547 | 0.7521 | 0.9867 | | 0.0 | 7.0 | 12866 | 0.0009 | 0.8793 | 0.6661 | 0.7579 | 0.9873 | | 0.0 | 8.0 | 14704 | 0.0008 | 0.8815 | 0.6740 | 0.7639 | 0.9876 | | 0.0 | 9.0 | 16542 | 0.0009 | 0.8812 | 0.6851 | 0.7709 | 0.9880 | | 0.0 | 10.0 | 18380 | 0.0009 | 0.8832 | 0.6911 | 0.7754 | 0.9883 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
prakashkmr48/Prompt-image-inpainting
prakashkmr48
2022-09-22T08:58:57Z
0
0
null
[ "region:us" ]
null
2022-09-22T08:51:46Z
git lfs install git clone https://huggingface.co/prakashkmr48/Prompt-image-inpainting
Hoax0930/kyoto_marian
Hoax0930
2022-09-22T08:32:43Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-22T07:47:04Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1941 - Bleu: 13.4500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/test2
sd-concepts-library
2022-09-22T06:29:49Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T06:29:45Z
--- license: mit --- ### TEST2 on Stable Diffusion This is the `<AIOCARD>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<AIOCARD> 0](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027D.jpg) ![<AIOCARD> 1](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027C.jpg) ![<AIOCARD> 2](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100282.jpg) ![<AIOCARD> 3](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027A.jpg) ![<AIOCARD> 4](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027B.jpg) ![<AIOCARD> 5](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100281.jpg) ![<AIOCARD> 6](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100280.jpg) ![<AIOCARD> 7](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027E.jpg) ![<AIOCARD> 8](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/00100279.jpg) ![<AIOCARD> 9](https://huggingface.co/sd-concepts-library/test2/resolve/main/concept_images/0010027F.jpg)
airakoze/Lab04
airakoze
2022-09-22T05:34:23Z
0
0
null
[ "region:us" ]
null
2022-09-22T03:48:36Z
--- title: Housing price prediction in California colorFrom: gray colorTo: red sdk: gradio sdk_version: 3.0.4 app_file: app.py pinned: false ---
sd-concepts-library/bee
sd-concepts-library
2022-09-22T05:01:07Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-22T05:00:56Z
--- license: mit --- ### BEE on Stable Diffusion This is the `<b-e-e>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<b-e-e> 0](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/0.jpeg) ![<b-e-e> 1](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/3.jpeg) ![<b-e-e> 2](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/2.jpeg) ![<b-e-e> 3](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/1.jpeg)
sd-concepts-library/yinit
sd-concepts-library
2022-09-22T04:58:38Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T04:58:24Z
--- license: mit --- ### yinit on Stable Diffusion This is the `yinit-dropcap` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![yinit-dropcap 0](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/4.jpeg) ![yinit-dropcap 1](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/12.jpeg) ![yinit-dropcap 2](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/8.jpeg) ![yinit-dropcap 3](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/0.jpeg) ![yinit-dropcap 4](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/6.jpeg) ![yinit-dropcap 5](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/3.jpeg) ![yinit-dropcap 6](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/20.jpeg) ![yinit-dropcap 7](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/11.jpeg) ![yinit-dropcap 8](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/19.jpeg) ![yinit-dropcap 9](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/24.jpeg) ![yinit-dropcap 10](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/17.jpeg) ![yinit-dropcap 11](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/10.jpeg) ![yinit-dropcap 12](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/7.jpeg) ![yinit-dropcap 13](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/13.jpeg) ![yinit-dropcap 14](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/16.jpeg) ![yinit-dropcap 15](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/2.jpeg) ![yinit-dropcap 16](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/25.jpeg) ![yinit-dropcap 17](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/22.jpeg) ![yinit-dropcap 18](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/9.jpeg) ![yinit-dropcap 19](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/15.jpeg) ![yinit-dropcap 20](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/21.jpeg) ![yinit-dropcap 21](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/1.jpeg) ![yinit-dropcap 22](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/14.jpeg) ![yinit-dropcap 23](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/5.jpeg) ![yinit-dropcap 24](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/18.jpeg) ![yinit-dropcap 25](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/23.jpeg)
sd-concepts-library/ibere-thenorio
sd-concepts-library
2022-09-22T04:52:22Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T04:52:08Z
--- license: mit --- ### Iberê Thenório on Stable Diffusion This is the `<ibere-thenorio>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ibere-thenorio> 0](https://huggingface.co/sd-concepts-library/ibere-thenorio/resolve/main/concept_images/4.jpeg) ![<ibere-thenorio> 1](https://huggingface.co/sd-concepts-library/ibere-thenorio/resolve/main/concept_images/0.jpeg) ![<ibere-thenorio> 2](https://huggingface.co/sd-concepts-library/ibere-thenorio/resolve/main/concept_images/3.jpeg) ![<ibere-thenorio> 3](https://huggingface.co/sd-concepts-library/ibere-thenorio/resolve/main/concept_images/2.jpeg) ![<ibere-thenorio> 4](https://huggingface.co/sd-concepts-library/ibere-thenorio/resolve/main/concept_images/1.jpeg) ![<ibere-thenorio> 5](https://huggingface.co/sd-concepts-library/ibere-thenorio/resolve/main/concept_images/5.jpeg)
ashiqabdulkhader/GPT2-Poet
ashiqabdulkhader
2022-09-22T03:24:00Z
381
3
transformers
[ "transformers", "tf", "gpt2", "text-generation", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-22T02:45:20Z
--- license: bigscience-bloom-rail-1.0 widget : - text: "I used to have a lover" example_title: "I used to have a lover" - text : "The old cupola glinted above the clouds" example_title: "The old cupola" - text : "Behind the silo, the Mother Rabbit hunches" example_title : "Behind the silo" --- # GPT2-Poet ## Model description GPT2-Poet is a GPT-2 transformer model fine Tuned on a large corpus of English Poems dataset in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ## Usage You can use this model for English Poem generation: ```python >>> from transformers import TFGPT2LMHeadModel, GPT2Tokenizer >>> tokenizer = GPT2Tokenizer.from_pretrained("ashiqabdulkhader/GPT2-Poet") >>> model = TFGPT2LMHeadModel.from_pretrained("ashiqabdulkhader/GPT2-Poet") >>> text = "The quick brown fox" >>> input_ids = tokenizer.encode(text, return_tensors='tf') >>> sample_outputs = model.generate( input_ids, do_sample=True, max_length=100, top_k=0, top_p=0.9, temperature=1.0, num_return_sequences=3 ) >>> print("Output:", tokenizer.decode(sample_outputs[0], skip_special_tokens=True)) ```
bdotloh/distilbert-base-uncased-go-emotion-empathetic-dialogues-context-v2
bdotloh
2022-09-22T03:14:36Z
106
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "emotion-classification", "en", "dataset:go-emotions", "dataset:bdotloh/empathetic-dialogues-contexts", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-21T07:35:25Z
--- language: en tags: - emotion-classification datasets: - go-emotions - bdotloh/empathetic-dialogues-contexts --- # Model Description We performed transfer learning experiments on a distilbert-base-uncased model fine-tuned on the GoEmotions dataset for the purpose of classifying [(emotional) contexts in the Empathetic Dialogues dataset](https://huggingface.co/datasets/bdotloh/empathetic-dialogues-contexts). The fine-tuned distilbert-base-uncased can be found [here](https://huggingface.co/bhadresh-savani/bert-base-go-emotion). ### Limitations and bias GoEmotions: 1) Demographics of Reddit Users 2) Imbalanced class distribution 3) ... EmpatheticDialogues: 1) Unable to ascertain the degree of cultural specificity for the context that a respondent described when given an emotion label (i.e., p(description | emotion, *culture*)) 2) ... ## Training data ## Training procedure ### Preprocessing ## Evaluation results
sd-concepts-library/char-con
sd-concepts-library
2022-09-22T02:54:22Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-22T02:54:17Z
--- license: mit --- ### char-con on Stable Diffusion This is the `<char-con>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<char-con> 0](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/4.jpeg) ![<char-con> 1](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/0.jpeg) ![<char-con> 2](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/6.jpeg) ![<char-con> 3](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/3.jpeg) ![<char-con> 4](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/2.jpeg) ![<char-con> 5](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/1.jpeg) ![<char-con> 6](https://huggingface.co/sd-concepts-library/char-con/resolve/main/concept_images/5.jpeg)
yuntian-deng/latex2im_ss
yuntian-deng
2022-09-22T02:20:24Z
1
0
diffusers
[ "diffusers", "en", "dataset:yuntian-deng/im2latex-100k", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-22T02:19:32Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: yuntian-deng/im2latex-100k metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # latex2im_ss ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `yuntian-deng/im2latex-100k` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/yuntian-deng/latex2im_ss/tensorboard?#scalars)