modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-05-23 00:40:17
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
474 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-05-23 00:38:52
card
stringlengths
11
1.01M
Forza-14/LIVE
Forza-14
"2025-04-19T20:11:48Z"
0
0
null
[ "region:us" ]
null
"2025-04-19T20:09:58Z"
[๐Ÿ”ดGO LIVE๐ŸŒ๐ŸŸข==โ–บโ–บ CLICK HERE TO STREAMING](https://tvstream.fun/mma/) [๐Ÿ”ดSTREAMING๐ŸŒ๐ŸŸข==โ–บโ–บ CLICK HERE TO WATCH LIVE](https://tvstream.fun/mma/) [<img alt="fsd" src="https://i.postimg.cc/zGBTGx5J/tv-image.gif">](https://tvstream.fun/mma/)
MaryemOuichka/mistral_finetuned_ce_poste_est_pour_moi
MaryemOuichka
"2025-04-19T20:09:11Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T20:03:01Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MBZUAI/ArTSTv3
MBZUAI
"2025-04-19T20:07:08Z"
0
0
null
[ "ar", "arxiv:2110.07205", "arxiv:2411.05872", "license:mit", "region:us" ]
null
"2025-04-19T18:10:03Z"
--- license: mit language: - ar --- ## Checkpoints ### Pre-Trained Models Model | Pre-train Dataset | Model | Tokenizer | | --- | --- | --- | --- | | ArTST v3 base | Multilingual | [Hugging Face](https://huggingface.co/MBZUAI/ArTSTv3/blob/main/pretrain_checkpoint.pt) | [Hugging Face](https://huggingface.co/MBZUAI/ArTSTv3/blob/main/tokenizer_artstv3.model) # Acknowledgements ArTST is built on [SpeechT5](https://arxiv.org/abs/2110.07205) Architecture. If you use any of ArTST models, please cite ``` @inproceedings{toyin2023artst, title={ArTST: Arabic Text and Speech Transformer}, author={Toyin, Hawau and Djanibekov, Amirbek and Kulkarni, Ajinkya and Aldarmaki, Hanan}, booktitle={Proceedings of ArabicNLP 2023}, pages={41--51}, year={2023} } @misc{djanibekov2024dialectalcoveragegeneralizationarabic, title={Dialectal Coverage And Generalization in Arabic Speech Recognition}, author={Amirbek Djanibekov and Hawau Olamide Toyin and Raghad Alshalan and Abdullah Alitr and Hanan Aldarmaki}, year={2024}, eprint={2411.05872}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.05872}, } ```
Aashish-Yadav/wATCH.Aashish-Yadav-Viral-Aashish-Yadav.original
Aashish-Yadav
"2025-04-19T20:07:07Z"
0
0
null
[ "region:us" ]
null
"2025-04-19T20:03:06Z"
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?Aashish-Yadav) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?Aashish-Yadav) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Aashish-Yadav)
RawandLaouini/voice-of-arabic-v1
RawandLaouini
"2025-04-19T20:06:42Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-19T19:26:09Z"
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: voice-of-arabic-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # voice-of-arabic-v1 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7317 - Wer: 1.2503 - Cer: 0.9468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.9828 | 0.0451 | 30 | 0.7317 | 1.2503 | 0.9468 | | 0.4984 | 0.0901 | 60 | 0.4620 | 1.3132 | 2.6431 | | 0.3416 | 0.1352 | 90 | 0.4144 | 5.7192 | 5.9769 | | 0.3712 | 0.1802 | 120 | 0.3671 | 6.1371 | 6.3006 | | 0.3128 | 0.2253 | 150 | 0.3042 | 7.4297 | 8.0200 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.4.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1
NAFC-Super-Brawl/LIVE
NAFC-Super-Brawl
"2025-04-19T20:05:05Z"
0
0
null
[ "region:us" ]
null
"2025-04-19T20:03:50Z"
[๐Ÿ”ดGO LIVE๐ŸŒ๐ŸŸข==โ–บโ–บ CLICK HERE TO STREAMING](https://tvstream.fun/mma/) [๐Ÿ”ดSTREAMING๐ŸŒ๐ŸŸข==โ–บโ–บ CLICK HERE TO WATCH LIVE](https://tvstream.fun/mma/) [<img alt="fsd" src="https://i.postimg.cc/zGBTGx5J/tv-image.gif">](https://tvstream.fun/mma/)
naxwinn/tinyllama-1.1b-jarvis-qlora
naxwinn
"2025-04-19T20:04:48Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
"2025-04-19T20:04:42Z"
--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
stardriver007/deepseek-6.7b-instruct-only-finetuned-v1
stardriver007
"2025-04-19T20:03:15Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T19:34:26Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Turalll/llama-3.2-1B-lora-instruct-classifier-110k
Turalll
"2025-04-19T20:02:09Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-19T20:02:04Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fedovtt/16459f45-01d7-4d7f-9074-a940b72ddd98
fedovtt
"2025-04-19T20:01:58Z"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-19T18:52:25Z"
--- library_name: peft license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: 16459f45-01d7-4d7f-9074-a940b72ddd98 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: teknium/OpenHermes-2.5-Mistral-7B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0a97b13092c68341_train_data.json ds_type: json format: custom path: /workspace/input_data/0a97b13092c68341_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: fedovtt/16459f45-01d7-4d7f-9074-a940b72ddd98 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/0a97b13092c68341_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|im_end|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a34df82e-6929-46c2-aad9-f532243f79f7 wandb_project: 01-31 wandb_run: your_name wandb_runid: a34df82e-6929-46c2-aad9-f532243f79f7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 16459f45-01d7-4d7f-9074-a940b72ddd98 This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0113 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
DedeepyaP/empathetic-dialogues_generator
DedeepyaP
"2025-04-19T20:01:44Z"
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-19T20:00:17Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Cage-Warriors-187/LIVE
Cage-Warriors-187
"2025-04-19T20:01:27Z"
0
0
null
[ "region:us" ]
null
"2025-04-19T19:59:53Z"
[๐Ÿ”ดGO LIVE๐ŸŒ๐ŸŸข==โ–บโ–บ CLICK HERE TO STREAMING](https://tvstream.fun/mma/) [๐Ÿ”ดSTREAMING๐ŸŒ๐ŸŸข==โ–บโ–บ CLICK HERE TO WATCH LIVE](https://tvstream.fun/mma/) [<img alt="fsd" src="https://i.postimg.cc/zGBTGx5J/tv-image.gif">](https://tvstream.fun/mma/)
mradermacher/Violet_Magcap-12B-GGUF
mradermacher
"2025-04-19T20:00:09Z"
0
1
transformers
[ "transformers", "gguf", "en", "base_model:Nitral-AI/Violet_Magcap-12B", "base_model:quantized:Nitral-AI/Violet_Magcap-12B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T10:22:48Z"
--- base_model: Nitral-AI/Violet_Magcap-12B language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Nitral-AI/Violet_Magcap-12B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Violet_Magcap-12B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Violet_Magcap-12B-GGUF/resolve/main/Violet_Magcap-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
raulgdp/Ministral-8B-Instruct-2410-JEP
raulgdp
"2025-04-19T19:58:55Z"
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Ministral-8B-Instruct-2410", "base_model:adapter:mistralai/Ministral-8B-Instruct-2410", "license:other", "region:us" ]
null
"2025-04-19T15:10:20Z"
--- library_name: peft license: other base_model: mistralai/Ministral-8B-Instruct-2410 tags: - generated_from_trainer model-index: - name: Ministral-8B-Instruct-2410-JEP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Ministral-8B-Instruct-2410-JEP This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3744 | 0.1535 | 100 | 1.3521 | | 1.287 | 0.3070 | 200 | 1.2976 | | 1.2346 | 0.4605 | 300 | 1.2699 | | 1.2384 | 0.6140 | 400 | 1.2527 | | 1.2937 | 0.7675 | 500 | 1.2421 | | 1.2046 | 0.9210 | 600 | 1.2340 | | 1.1915 | 1.0737 | 700 | 1.2277 | | 1.2159 | 1.2272 | 800 | 1.2253 | | 1.1631 | 1.3807 | 900 | 1.2206 | | 1.1935 | 1.5342 | 1000 | 1.2162 | | 1.1701 | 1.6876 | 1100 | 1.2129 | | 1.1925 | 1.8411 | 1200 | 1.2067 | | 1.2215 | 1.9946 | 1300 | 1.2037 | | 1.1858 | 2.1474 | 1400 | 1.2032 | | 1.1737 | 2.3008 | 1500 | 1.2008 | | 1.1751 | 2.4543 | 1600 | 1.1988 | | 1.1514 | 2.6078 | 1700 | 1.1957 | | 1.1327 | 2.7613 | 1800 | 1.1930 | | 1.1266 | 2.9148 | 1900 | 1.1906 | | 1.0929 | 3.0675 | 2000 | 1.1909 | | 1.1054 | 3.2210 | 2100 | 1.1913 | | 1.1097 | 3.3745 | 2200 | 1.1896 | | 1.2006 | 3.5280 | 2300 | 1.1869 | | 1.1605 | 3.6815 | 2400 | 1.1839 | | 1.1155 | 3.8350 | 2500 | 1.1844 | | 1.1481 | 3.9885 | 2600 | 1.1836 | | 1.1011 | 4.1412 | 2700 | 1.1878 | | 1.0627 | 4.2947 | 2800 | 1.1897 | | 1.1387 | 4.4482 | 2900 | 1.1863 | | 1.0656 | 4.6017 | 3000 | 1.1826 | | 1.0951 | 4.7552 | 3100 | 1.1837 | | 1.0806 | 4.9087 | 3200 | 1.1795 | | 1.0508 | 5.0614 | 3300 | 1.1830 | | 1.1051 | 5.2149 | 3400 | 1.1876 | | 1.0061 | 5.3684 | 3500 | 1.1894 | | 1.1471 | 5.5219 | 3600 | 1.1811 | | 1.1143 | 5.6754 | 3700 | 1.1833 | | 1.1146 | 5.8289 | 3800 | 1.1823 | | 1.0648 | 5.9823 | 3900 | 1.1837 | | 1.062 | 6.1351 | 4000 | 1.1903 | | 1.065 | 6.2886 | 4100 | 1.1877 | | 1.0379 | 6.4421 | 4200 | 1.1875 | | 1.0188 | 6.5955 | 4300 | 1.1873 | | 1.0332 | 6.7490 | 4400 | 1.1850 | | 1.026 | 6.9025 | 4500 | 1.1854 | | 1.0365 | 7.0553 | 4600 | 1.1897 | | 1.0359 | 7.2087 | 4700 | 1.1928 | | 1.0483 | 7.3622 | 4800 | 1.1921 | | 0.9988 | 7.5157 | 4900 | 1.1914 | | 1.0348 | 7.6692 | 5000 | 1.1893 | | 0.9884 | 7.8227 | 5100 | 1.1879 | | 1.0903 | 7.9762 | 5200 | 1.1890 | | 0.9946 | 8.1289 | 5300 | 1.1942 | | 1.0328 | 8.2824 | 5400 | 1.1941 | | 1.0031 | 8.4359 | 5500 | 1.1949 | | 0.9096 | 8.5894 | 5600 | 1.1946 | | 1.018 | 8.7429 | 5700 | 1.1939 | | 1.0533 | 8.8964 | 5800 | 1.1920 | | 0.9476 | 9.0491 | 5900 | 1.1967 | | 0.9817 | 9.2026 | 6000 | 1.1989 | | 0.9774 | 9.3561 | 6100 | 1.1987 | | 1.0092 | 9.5096 | 6200 | 1.1974 | | 1.0067 | 9.6631 | 6300 | 1.1977 | | 1.0243 | 9.8166 | 6400 | 1.1983 | | 0.9359 | 9.9701 | 6500 | 1.1977 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
RosannaMui/llama-3.1-fine-tuned-model
RosannaMui
"2025-04-19T19:57:35Z"
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
"2025-04-18T18:04:21Z"
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: llama-3.1-fine-tuned-model tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for llama-3.1-fine-tuned-model This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RosannaMui/llama-3.1-fine-tuned-model", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.16.1 - Transformers: 4.51.3 - Pytorch: 2.5.1+cu121 - Datasets: 3.5.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
stewy33/Llama-3.3-70B-Instruct-Reference-1_3-ccf66f95
stewy33
"2025-04-19T19:52:31Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
"2025-04-19T19:51:08Z"
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
jekunz/smollm360m-da1-is1-ties
jekunz
"2025-04-19T19:52:22Z"
0
0
null
[ "safetensors", "llama", "merge", "mergekit", "lazymergekit", "jekunz/smollm-360m-cpt-fineweb-icelandic", "jekunz/smollm-360m-cpt-fineweb-danish", "base_model:jekunz/smollm-360m-cpt-fineweb-danish", "base_model:merge:jekunz/smollm-360m-cpt-fineweb-danish", "base_model:jekunz/smollm-360m-cpt-fineweb-icelandic", "base_model:merge:jekunz/smollm-360m-cpt-fineweb-icelandic", "region:us" ]
null
"2025-04-19T19:51:34Z"
--- base_model: - jekunz/smollm-360m-cpt-fineweb-icelandic - jekunz/smollm-360m-cpt-fineweb-danish tags: - merge - mergekit - lazymergekit - jekunz/smollm-360m-cpt-fineweb-icelandic - jekunz/smollm-360m-cpt-fineweb-danish --- # smollm360m-da1-is1-ties smollm360m-da1-is1-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [jekunz/smollm-360m-cpt-fineweb-icelandic](https://huggingface.co/jekunz/smollm-360m-cpt-fineweb-icelandic) * [jekunz/smollm-360m-cpt-fineweb-danish](https://huggingface.co/jekunz/smollm-360m-cpt-fineweb-danish) ## ๐Ÿงฉ Configuration ```yaml models: - model: jekunz/smollm-360m-cpt-fineweb-icelandic parameters: density: 0.5 weight: 1.0 - model: jekunz/smollm-360m-cpt-fineweb-danish parameters: density: 0.5 weight: 1.0 merge_method: ties base_model: HuggingFaceTB/SmolLM2-360M-Instruct parameters: normalize: true dtype: float16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jekunz/smollm360m-da1-is1-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
mergekit-community/mergekit-slerp-fojmdcf
mergekit-community
"2025-04-19T19:52:06Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:XCryptoniusX/Kaolinite-Kitara-12B", "base_model:merge:XCryptoniusX/Kaolinite-Kitara-12B", "base_model:mergekit-community/mergekit-passthrough-gujurtn", "base_model:merge:mergekit-community/mergekit-passthrough-gujurtn", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T19:44:14Z"
--- base_model: - XCryptoniusX/Kaolinite-Kitara-12B - mergekit-community/mergekit-passthrough-gujurtn library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [XCryptoniusX/Kaolinite-Kitara-12B](https://huggingface.co/XCryptoniusX/Kaolinite-Kitara-12B) * [mergekit-community/mergekit-passthrough-gujurtn](https://huggingface.co/mergekit-community/mergekit-passthrough-gujurtn) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mergekit-community/mergekit-passthrough-gujurtn - model: XCryptoniusX/Kaolinite-Kitara-12B merge_method: slerp base_model: XCryptoniusX/Kaolinite-Kitara-12B dtype: bfloat16 tokenizer_source: union parameters: t: [0.1, 0.2, 0.4, 0.8, 0.4, 0.2, 0.1] ```
kokovova/9293d487-d9ad-4300-b8a4-71d9f74b698a
kokovova
"2025-04-19T19:50:21Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:42:23Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9293d487-d9ad-4300-b8a4-71d9f74b698a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a2a84683a8e3b451_train_data.json ds_type: json format: custom path: /workspace/input_data/a2a84683a8e3b451_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: kokovova/9293d487-d9ad-4300-b8a4-71d9f74b698a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/a2a84683a8e3b451_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8d439d31-9639-4a45-9afe-9045b1ec9043 wandb_project: 01-31 wandb_run: your_name wandb_runid: 8d439d31-9639-4a45-9afe-9045b1ec9043 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9293d487-d9ad-4300-b8a4-71d9f74b698a This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.3001 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gabrielc2025/ppo-LunarLander-v2
gabrielc2025
"2025-04-19T19:50:19Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-19T19:50:00Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.96 +/- 18.04 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aden23/william
Aden23
"2025-04-19T19:47:48Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-19T19:18:16Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: william --- # William <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `william` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "william", "lora_weights": "https://huggingface.co/Aden23/william/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Aden23/william', weight_name='lora.safetensors') image = pipeline('william').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Aden23/william/discussions) to add images that show off what youโ€™ve made with this LoRA.
rbelanec/train_rte_1744902665
rbelanec
"2025-04-19T19:46:56Z"
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "region:us" ]
null
"2025-04-19T09:42:54Z"
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_rte_1744902665 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_rte_1744902665 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the rte dataset. It achieves the following results on the evaluation set: - Loss: 0.0704 - Num Input Tokens Seen: 107274480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 123 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 40000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:--------:|:-----:|:---------------:|:-----------------:| | 0.0864 | 1.4207 | 200 | 0.1323 | 540280 | | 0.079 | 2.8414 | 400 | 0.0969 | 1077480 | | 0.0663 | 4.2567 | 600 | 0.0895 | 1609584 | | 0.0931 | 5.6774 | 800 | 0.0865 | 2150192 | | 0.059 | 7.0927 | 1000 | 0.0837 | 2681640 | | 0.0487 | 8.5134 | 1200 | 0.0818 | 3218528 | | 0.0693 | 9.9340 | 1400 | 0.0799 | 3757240 | | 0.0978 | 11.3494 | 1600 | 0.0791 | 4292384 | | 0.0802 | 12.7701 | 1800 | 0.0775 | 4828992 | | 0.0499 | 14.1854 | 2000 | 0.0768 | 5364048 | | 0.0613 | 15.6061 | 2200 | 0.0752 | 5901512 | | 0.0475 | 17.0214 | 2400 | 0.0745 | 6435768 | | 0.0849 | 18.4421 | 2600 | 0.0741 | 6974976 | | 0.0483 | 19.8627 | 2800 | 0.0733 | 7509488 | | 0.0533 | 21.2781 | 3000 | 0.0735 | 8041736 | | 0.0662 | 22.6988 | 3200 | 0.0715 | 8583128 | | 0.0585 | 24.1141 | 3400 | 0.0720 | 9117488 | | 0.0536 | 25.5348 | 3600 | 0.0720 | 9649136 | | 0.0489 | 26.9554 | 3800 | 0.0714 | 10191288 | | 0.0498 | 28.3708 | 4000 | 0.0714 | 10724032 | | 0.0432 | 29.7914 | 4200 | 0.0711 | 11259816 | | 0.0535 | 31.2068 | 4400 | 0.0715 | 11805200 | | 0.0312 | 32.6275 | 4600 | 0.0715 | 12337832 | | 0.0349 | 34.0428 | 4800 | 0.0714 | 12874672 | | 0.0412 | 35.4635 | 5000 | 0.0709 | 13408200 | | 0.0597 | 36.8841 | 5200 | 0.0715 | 13943952 | | 0.0342 | 38.2995 | 5400 | 0.0704 | 14478600 | | 0.059 | 39.7201 | 5600 | 0.0704 | 15021728 | | 0.0522 | 41.1355 | 5800 | 0.0709 | 15548872 | | 0.0295 | 42.5561 | 6000 | 0.0710 | 16082664 | | 0.0325 | 43.9768 | 6200 | 0.0711 | 16624832 | | 0.044 | 45.3922 | 6400 | 0.0711 | 17152040 | | 0.0588 | 46.8128 | 6600 | 0.0719 | 17696104 | | 0.0341 | 48.2282 | 6800 | 0.0721 | 18228312 | | 0.0292 | 49.6488 | 7000 | 0.0730 | 18767376 | | 0.0316 | 51.0642 | 7200 | 0.0735 | 19300560 | | 0.0283 | 52.4848 | 7400 | 0.0736 | 19837208 | | 0.0167 | 53.9055 | 7600 | 0.0731 | 20381384 | | 0.0312 | 55.3209 | 7800 | 0.0762 | 20917960 | | 0.0274 | 56.7415 | 8000 | 0.0755 | 21456616 | | 0.0414 | 58.1569 | 8200 | 0.0755 | 21988808 | | 0.0384 | 59.5775 | 8400 | 0.0778 | 22526872 | | 0.0395 | 60.9982 | 8600 | 0.0762 | 23067872 | | 0.0354 | 62.4135 | 8800 | 0.0781 | 23599328 | | 0.0255 | 63.8342 | 9000 | 0.0781 | 24138832 | | 0.0292 | 65.2496 | 9200 | 0.0791 | 24675016 | | 0.0233 | 66.6702 | 9400 | 0.0797 | 25209352 | | 0.022 | 68.0856 | 9600 | 0.0810 | 25745352 | | 0.0069 | 69.5062 | 9800 | 0.0829 | 26284824 | | 0.0125 | 70.9269 | 10000 | 0.0825 | 26824264 | | 0.0052 | 72.3422 | 10200 | 0.0870 | 27363992 | | 0.0222 | 73.7629 | 10400 | 0.0839 | 27904360 | | 0.0177 | 75.1783 | 10600 | 0.0872 | 28436064 | | 0.0359 | 76.5989 | 10800 | 0.0884 | 28976440 | | 0.022 | 78.0143 | 11000 | 0.0893 | 29511840 | | 0.0055 | 79.4349 | 11200 | 0.0917 | 30049440 | | 0.011 | 80.8556 | 11400 | 0.0915 | 30590008 | | 0.0186 | 82.2709 | 11600 | 0.0956 | 31127008 | | 0.0242 | 83.6916 | 11800 | 0.0971 | 31665584 | | 0.0262 | 85.1070 | 12000 | 0.0980 | 32199088 | | 0.0126 | 86.5276 | 12200 | 0.1010 | 32739240 | | 0.0115 | 87.9483 | 12400 | 0.1037 | 33281296 | | 0.0202 | 89.3636 | 12600 | 0.1061 | 33819016 | | 0.0209 | 90.7843 | 12800 | 0.1083 | 34356400 | | 0.0078 | 92.1996 | 13000 | 0.1106 | 34889896 | | 0.0097 | 93.6203 | 13200 | 0.1133 | 35429768 | | 0.0048 | 95.0357 | 13400 | 0.1138 | 35969976 | | 0.0062 | 96.4563 | 13600 | 0.1164 | 36505712 | | 0.0024 | 97.8770 | 13800 | 0.1196 | 37036976 | | 0.0023 | 99.2923 | 14000 | 0.1213 | 37570400 | | 0.0026 | 100.7130 | 14200 | 0.1236 | 38103616 | | 0.003 | 102.1283 | 14400 | 0.1292 | 38636544 | | 0.0026 | 103.5490 | 14600 | 0.1275 | 39171560 | | 0.0083 | 104.9697 | 14800 | 0.1316 | 39706992 | | 0.0014 | 106.3850 | 15000 | 0.1339 | 40239280 | | 0.0084 | 107.8057 | 15200 | 0.1374 | 40778072 | | 0.0061 | 109.2210 | 15400 | 0.1412 | 41312720 | | 0.0024 | 110.6417 | 15600 | 0.1484 | 41845224 | | 0.0029 | 112.0570 | 15800 | 0.1469 | 42384256 | | 0.0014 | 113.4777 | 16000 | 0.1485 | 42925008 | | 0.0015 | 114.8984 | 16200 | 0.1511 | 43462528 | | 0.004 | 116.3137 | 16400 | 0.1549 | 43999968 | | 0.0013 | 117.7344 | 16600 | 0.1557 | 44533664 | | 0.0008 | 119.1497 | 16800 | 0.1616 | 45067976 | | 0.0021 | 120.5704 | 17000 | 0.1608 | 45610752 | | 0.0015 | 121.9911 | 17200 | 0.1639 | 46147416 | | 0.0012 | 123.4064 | 17400 | 0.1689 | 46682792 | | 0.0013 | 124.8271 | 17600 | 0.1701 | 47218688 | | 0.0119 | 126.2424 | 17800 | 0.1766 | 47751176 | | 0.0007 | 127.6631 | 18000 | 0.1814 | 48286872 | | 0.0031 | 129.0784 | 18200 | 0.1835 | 48824840 | | 0.0041 | 130.4991 | 18400 | 0.1855 | 49361064 | | 0.0042 | 131.9198 | 18600 | 0.1927 | 49893616 | | 0.0004 | 133.3351 | 18800 | 0.1908 | 50425120 | | 0.0004 | 134.7558 | 19000 | 0.1944 | 50963088 | | 0.0006 | 136.1711 | 19200 | 0.2051 | 51496048 | | 0.0003 | 137.5918 | 19400 | 0.2001 | 52038608 | | 0.0007 | 139.0071 | 19600 | 0.2065 | 52575544 | | 0.0003 | 140.4278 | 19800 | 0.2146 | 53114912 | | 0.0003 | 141.8485 | 20000 | 0.2164 | 53657368 | | 0.0022 | 143.2638 | 20200 | 0.2204 | 54195776 | | 0.0002 | 144.6845 | 20400 | 0.2224 | 54722232 | | 0.0006 | 146.0998 | 20600 | 0.2283 | 55255168 | | 0.0006 | 147.5205 | 20800 | 0.2333 | 55786616 | | 0.0004 | 148.9412 | 21000 | 0.2350 | 56322200 | | 0.0003 | 150.3565 | 21200 | 0.2438 | 56860136 | | 0.0002 | 151.7772 | 21400 | 0.2434 | 57396560 | | 0.0001 | 153.1925 | 21600 | 0.2479 | 57930904 | | 0.0001 | 154.6132 | 21800 | 0.2529 | 58469832 | | 0.0001 | 156.0285 | 22000 | 0.2553 | 59001744 | | 0.0001 | 157.4492 | 22200 | 0.2570 | 59542632 | | 0.001 | 158.8699 | 22400 | 0.2659 | 60077280 | | 0.0003 | 160.2852 | 22600 | 0.2696 | 60614824 | | 0.0002 | 161.7059 | 22800 | 0.2692 | 61145384 | | 0.0002 | 163.1212 | 23000 | 0.2708 | 61678824 | | 0.0001 | 164.5419 | 23200 | 0.2757 | 62213064 | | 0.0001 | 165.9626 | 23400 | 0.2784 | 62746840 | | 0.0 | 167.3779 | 23600 | 0.2879 | 63279640 | | 0.0001 | 168.7986 | 23800 | 0.2873 | 63817648 | | 0.0 | 170.2139 | 24000 | 0.2914 | 64355456 | | 0.0 | 171.6346 | 24200 | 0.2951 | 64891336 | | 0.0 | 173.0499 | 24400 | 0.2955 | 65431304 | | 0.0 | 174.4706 | 24600 | 0.2949 | 65971176 | | 0.0001 | 175.8913 | 24800 | 0.3027 | 66508200 | | 0.0001 | 177.3066 | 25000 | 0.3048 | 67044512 | | 0.0 | 178.7273 | 25200 | 0.3058 | 67581248 | | 0.0 | 180.1426 | 25400 | 0.3092 | 68116280 | | 0.0 | 181.5633 | 25600 | 0.3119 | 68654016 | | 0.0 | 182.9840 | 25800 | 0.3177 | 69191168 | | 0.0 | 184.3993 | 26000 | 0.3174 | 69725736 | | 0.0001 | 185.8200 | 26200 | 0.3201 | 70266432 | | 0.0 | 187.2353 | 26400 | 0.3265 | 70795080 | | 0.0 | 188.6560 | 26600 | 0.3255 | 71337664 | | 0.0 | 190.0713 | 26800 | 0.3332 | 71873944 | | 0.0001 | 191.4920 | 27000 | 0.3330 | 72406760 | | 0.0 | 192.9127 | 27200 | 0.3379 | 72941856 | | 0.0 | 194.3280 | 27400 | 0.3333 | 73486320 | | 0.0 | 195.7487 | 27600 | 0.3379 | 74024784 | | 0.0 | 197.1640 | 27800 | 0.3372 | 74562272 | | 0.0 | 198.5847 | 28000 | 0.3413 | 75101016 | | 0.0 | 200.0 | 28200 | 0.3469 | 75632576 | | 0.0 | 201.4207 | 28400 | 0.3473 | 76166696 | | 0.0 | 202.8414 | 28600 | 0.3513 | 76703192 | | 0.0 | 204.2567 | 28800 | 0.3588 | 77237304 | | 0.0 | 205.6774 | 29000 | 0.3607 | 77775808 | | 0.0 | 207.0927 | 29200 | 0.3624 | 78304552 | | 0.0 | 208.5134 | 29400 | 0.3567 | 78842312 | | 0.0 | 209.9340 | 29600 | 0.3637 | 79379384 | | 0.0 | 211.3494 | 29800 | 0.3648 | 79916200 | | 0.0 | 212.7701 | 30000 | 0.3697 | 80450848 | | 0.0 | 214.1854 | 30200 | 0.3757 | 80978696 | | 0.0 | 215.6061 | 30400 | 0.3725 | 81517864 | | 0.0 | 217.0214 | 30600 | 0.3748 | 82057360 | | 0.0 | 218.4421 | 30800 | 0.3792 | 82601680 | | 0.0 | 219.8627 | 31000 | 0.3769 | 83137640 | | 0.0 | 221.2781 | 31200 | 0.3801 | 83674536 | | 0.0 | 222.6988 | 31400 | 0.3842 | 84215064 | | 0.0 | 224.1141 | 31600 | 0.3857 | 84750440 | | 0.0 | 225.5348 | 31800 | 0.3825 | 85284976 | | 0.0 | 226.9554 | 32000 | 0.3818 | 85820408 | | 0.0 | 228.3708 | 32200 | 0.3894 | 86358288 | | 0.0 | 229.7914 | 32400 | 0.3895 | 86896432 | | 0.0 | 231.2068 | 32600 | 0.3825 | 87433496 | | 0.0 | 232.6275 | 32800 | 0.3906 | 87969480 | | 0.0 | 234.0428 | 33000 | 0.3918 | 88503984 | | 0.0 | 235.4635 | 33200 | 0.3934 | 89043584 | | 0.0 | 236.8841 | 33400 | 0.4044 | 89572896 | | 0.0 | 238.2995 | 33600 | 0.3927 | 90114360 | | 0.0 | 239.7201 | 33800 | 0.4034 | 90650032 | | 0.0 | 241.1355 | 34000 | 0.4063 | 91178208 | | 0.0 | 242.5561 | 34200 | 0.4017 | 91712168 | | 0.0 | 243.9768 | 34400 | 0.4046 | 92253832 | | 0.0 | 245.3922 | 34600 | 0.4086 | 92783304 | | 0.0 | 246.8128 | 34800 | 0.4016 | 93323088 | | 0.0 | 248.2282 | 35000 | 0.4019 | 93858448 | | 0.0 | 249.6488 | 35200 | 0.4071 | 94391144 | | 0.0 | 251.0642 | 35400 | 0.3990 | 94929608 | | 0.0 | 252.4848 | 35600 | 0.4011 | 95474424 | | 0.0 | 253.9055 | 35800 | 0.4070 | 96007792 | | 0.0 | 255.3209 | 36000 | 0.3991 | 96546584 | | 0.0 | 256.7415 | 36200 | 0.4101 | 97077888 | | 0.0 | 258.1569 | 36400 | 0.3991 | 97612368 | | 0.0 | 259.5775 | 36600 | 0.4082 | 98151616 | | 0.0 | 260.9982 | 36800 | 0.4057 | 98684232 | | 0.0 | 262.4135 | 37000 | 0.4145 | 99220560 | | 0.0 | 263.8342 | 37200 | 0.4050 | 99758136 | | 0.0 | 265.2496 | 37400 | 0.4118 | 100296152 | | 0.0 | 266.6702 | 37600 | 0.4149 | 100836120 | | 0.0 | 268.0856 | 37800 | 0.4066 | 101372264 | | 0.0 | 269.5062 | 38000 | 0.4120 | 101912112 | | 0.0 | 270.9269 | 38200 | 0.4087 | 102446016 | | 0.0 | 272.3422 | 38400 | 0.4136 | 102980360 | | 0.0 | 273.7629 | 38600 | 0.4182 | 103519296 | | 0.0 | 275.1783 | 38800 | 0.4100 | 104053200 | | 0.0 | 276.5989 | 39000 | 0.4106 | 104594720 | | 0.0 | 278.0143 | 39200 | 0.4107 | 105126640 | | 0.0 | 279.4349 | 39400 | 0.4083 | 105660640 | | 0.0 | 280.8556 | 39600 | 0.4118 | 106198248 | | 0.0 | 282.2709 | 39800 | 0.4026 | 106737720 | | 0.0 | 283.6916 | 40000 | 0.4115 | 107274480 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
hZzy/mistral-7b-expo-7b-L2EXPO-25-smallr-1
hZzy
"2025-04-19T19:46:54Z"
0
0
peft
[ "peft", "safetensors", "mistral", "alignment-handbook", "ndcg", "trl", "expo", "generated_from_trainer", "dataset:hZzy/direction_right2", "base_model:hZzy/mistral-7b-sft-25-1", "base_model:adapter:hZzy/mistral-7b-sft-25-1", "license:apache-2.0", "region:us" ]
null
"2025-04-19T12:55:26Z"
--- base_model: hZzy/mistral-7b-sft-25-1 datasets: - hZzy/direction_right2 library_name: peft license: apache-2.0 tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer model-index: - name: mistral-7b-expo-7b-L2EXPO-25-smallr-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/5ppb21pi) # mistral-7b-expo-7b-L2EXPO-25-smallr-1 This model is a fine-tuned version of [hZzy/mistral-7b-sft-25-1](https://huggingface.co/hZzy/mistral-7b-sft-25-1) on the hZzy/direction_right2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4531 - Objective: 0.4545 - Reward Accuracy: 0.6563 - Logp Accuracy: 0.6493 - Log Diff Policy: 15.4503 - Chosen Logps: -148.5083 - Rejected Logps: -163.9586 - Chosen Rewards: -0.5383 - Rejected Rewards: -0.6889 - Logits: -2.1895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 108 - total_eval_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Objective | Reward Accuracy | Logp Accuracy | Log Diff Policy | Chosen Logps | Rejected Logps | Chosen Rewards | Rejected Rewards | Logits | |:-------------:|:------:|:----:|:---------------:|:---------:|:---------------:|:-------------:|:---------------:|:------------:|:--------------:|:--------------:|:----------------:|:-------:| | 0.5866 | 0.0758 | 50 | 0.5114 | 0.5084 | 0.5481 | 0.5168 | 0.4644 | -93.1551 | -93.6196 | 0.0153 | 0.0144 | -2.2005 | | 0.6029 | 0.1517 | 100 | 0.5040 | 0.5011 | 0.5741 | 0.5316 | 1.3657 | -93.8686 | -95.2344 | 0.0081 | -0.0017 | -2.1831 | | 0.6165 | 0.2275 | 150 | 0.4877 | 0.4856 | 0.5970 | 0.5741 | 5.4287 | -98.6006 | -104.0293 | -0.0392 | -0.0896 | -2.0756 | | 0.5324 | 0.3033 | 200 | 0.4748 | 0.4791 | 0.6172 | 0.6110 | 9.8505 | -116.5340 | -126.3844 | -0.2185 | -0.3132 | -2.1418 | | 0.5089 | 0.3792 | 250 | 0.4679 | 0.4712 | 0.6306 | 0.6222 | 11.0787 | -118.1832 | -129.2619 | -0.2350 | -0.3420 | -2.2452 | | 0.5254 | 0.4550 | 300 | 0.4669 | 0.4693 | 0.6479 | 0.6387 | 14.2479 | -134.9546 | -149.2025 | -0.4027 | -0.5414 | -2.1789 | | 0.4904 | 0.5308 | 350 | 0.4571 | 0.4582 | 0.6477 | 0.6423 | 12.9700 | -138.0092 | -150.9792 | -0.4333 | -0.5591 | -2.2293 | | 0.4722 | 0.6067 | 400 | 0.4556 | 0.4563 | 0.6521 | 0.6479 | 13.8030 | -127.5593 | -141.3622 | -0.3288 | -0.4630 | -2.2377 | | 0.4716 | 0.6825 | 450 | 0.4574 | 0.4604 | 0.6518 | 0.6443 | 15.1329 | -157.4561 | -172.5890 | -0.6277 | -0.7752 | -2.1945 | | 0.5051 | 0.7583 | 500 | 0.4571 | 0.4591 | 0.6535 | 0.6513 | 15.8245 | -148.2936 | -164.1181 | -0.5361 | -0.6905 | -2.2074 | | 0.4423 | 0.8342 | 550 | 0.4539 | 0.4550 | 0.6527 | 0.6513 | 15.3717 | -145.5679 | -160.9395 | -0.5089 | -0.6588 | -2.2040 | | 0.465 | 0.9100 | 600 | 0.4529 | 0.4543 | 0.6549 | 0.6485 | 15.3658 | -148.1466 | -163.5124 | -0.5346 | -0.6845 | -2.1926 | | 0.5092 | 0.9858 | 650 | 0.4531 | 0.4545 | 0.6541 | 0.6490 | 15.4559 | -148.5047 | -163.9607 | -0.5382 | -0.6890 | -2.1898 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.19.1
abhay2812/gemma-3-1b-it-bnb-4bit-grpo
abhay2812
"2025-04-19T19:43:38Z"
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:finetune:unsloth/gemma-3-1b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T19:29:15Z"
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** abhay2812 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dzanbek/6dbc6455-0576-4c97-86c2-16669e886773
dzanbek
"2025-04-19T19:37:40Z"
0
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-19T19:30:14Z"
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 6dbc6455-0576-4c97-86c2-16669e886773 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cc5c269dbd02a462_train_data.json ds_type: json format: custom path: /workspace/input_data/cc5c269dbd02a462_train_data.json type: field_input: metadata field_instruction: prompt field_output: cluster_description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/6dbc6455-0576-4c97-86c2-16669e886773 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/cc5c269dbd02a462_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1f3e75a6-38eb-4ec5-b605-d3730aad6fbb wandb_project: 01-31 wandb_run: your_name wandb_runid: 1f3e75a6-38eb-4ec5-b605-d3730aad6fbb warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6dbc6455-0576-4c97-86c2-16669e886773 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3477 | 0.1354 | 150 | 2.3144 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TOMFORD79/Candy_12
TOMFORD79
"2025-04-19T19:35:25Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-19T18:36:17Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
TOMFORD79/Candy_10
TOMFORD79
"2025-04-19T19:34:58Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-19T18:36:06Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
icyBear02/qwen-finance-lora
icyBear02
"2025-04-19T19:34:34Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-19T19:34:28Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kokovova/94dcee8b-c7c1-4e6f-b697-891184dec89e
kokovova
"2025-04-19T19:32:09Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:29:30Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 94dcee8b-c7c1-4e6f-b697-891184dec89e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f6a3173bd490817c_train_data.json ds_type: json format: custom path: /workspace/input_data/f6a3173bd490817c_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: kokovova/94dcee8b-c7c1-4e6f-b697-891184dec89e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/f6a3173bd490817c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3455ae01-41f8-4501-91f4-42e88822a586 wandb_project: 01-31 wandb_run: your_name wandb_runid: 3455ae01-41f8-4501-91f4-42e88822a586 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 94dcee8b-c7c1-4e6f-b697-891184dec89e This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4326 | 0.2992 | 200 | 1.4299 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/1a050358-c285-427c-941f-00e0cd3faadc
shibajustfor
"2025-04-19T19:29:13Z"
0
0
peft
[ "peft", "generated_from_trainer", "base_model:cognitivecomputations/Samantha-1.11-70b", "base_model:adapter:cognitivecomputations/Samantha-1.11-70b", "region:us" ]
null
"2025-04-19T19:27:33Z"
--- library_name: peft tags: - generated_from_trainer base_model: cognitivecomputations/Samantha-1.11-70b model-index: - name: shibajustfor/1a050358-c285-427c-941f-00e0cd3faadc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shibajustfor/1a050358-c285-427c-941f-00e0cd3faadc This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
dzanbek/95b025bb-5456-4569-9dbf-223c1bf753b9
dzanbek
"2025-04-19T19:29:12Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b", "base_model:adapter:unsloth/llama-3-8b", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-19T18:57:36Z"
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b tags: - axolotl - generated_from_trainer model-index: - name: 95b025bb-5456-4569-9dbf-223c1bf753b9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ffaf56793ebfca53_train_data.json ds_type: json format: custom path: /workspace/input_data/ffaf56793ebfca53_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/95b025bb-5456-4569-9dbf-223c1bf753b9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/ffaf56793ebfca53_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 03c871f1-6934-4c7f-b6a5-3802c83267eb wandb_project: 01-31 wandb_run: your_name wandb_runid: 03c871f1-6934-4c7f-b6a5-3802c83267eb warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 95b025bb-5456-4569-9dbf-223c1bf753b9 This model is a fine-tuned version of [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0132 | 150 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Hartunka/tiny_bert_km_50_v2
Hartunka
"2025-04-19T19:28:32Z"
3
0
null
[ "safetensors", "distilbert", "generated_from_trainer", "dataset:Hartunka/processed_wikitext-103-raw-v1-km-50_v2", "model-index", "region:us" ]
null
"2025-04-14T12:07:16Z"
--- tags: - generated_from_trainer datasets: - Hartunka/processed_wikitext-103-raw-v1-km-50_v2 metrics: - accuracy model-index: - name: tiny_bert_km_50_v2 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: Hartunka/processed_wikitext-103-raw-v1-km-50_v2 type: Hartunka/processed_wikitext-103-raw-v1-km-50_v2 metrics: - name: Accuracy type: accuracy value: 0.15262473865626944 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_bert_km_50_v2 This model is a fine-tuned version of [](https://huggingface.co/) on the Hartunka/processed_wikitext-103-raw-v1-km-50_v2 dataset. It achieves the following results on the evaluation set: - Loss: 6.8757 - Accuracy: 0.1526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 6.9045 | 4.1982 | 10000 | 6.9532 | 0.1481 | | 6.4983 | 8.3963 | 20000 | 6.8621 | 0.1524 | | 6.3069 | 12.5945 | 30000 | 6.8769 | 0.1533 | | 6.1769 | 16.7926 | 40000 | 6.9537 | 0.1523 | | 6.0989 | 20.9908 | 50000 | 7.0162 | 0.1513 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.19.1
phospho-app/suffed_animal_v1-19nh42sk0d
phospho-app
"2025-04-19T19:27:16Z"
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "replicate", "region:us" ]
null
"2025-04-19T18:54:38Z"
--- tags: - phosphobot - gr00t - replicate task_categories: - robotics --- # Gr00t Model - phospho Replication Pipeline This model was trained using **phospho's Replicate pipeline** for **gr00t models**. Training parameters: - **Dataset**: [Starkosaure/suffed_animal_v1](https://huggingface.co/datasets/Starkosaure/suffed_animal_v1) - **Wandb run URL**: None - **Epochs**: 20 - **Batch size**: 64 - **Training steps**: 1646 ๐Ÿ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=replicate_groot_training_pipeline) ๐Ÿค– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=replicate_groot_training_pipeline) ๐Ÿ”— **Explore on Replicate**: [Replicate](https://replicate.com/phospho-app/gr00t-policy)
RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf
RichardErkhov
"2025-04-19T19:24:06Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T17:55:58Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) mp_mistral7bv3_sft_dpo_beta1e-1_epoch3 - GGUF - Model creator: https://huggingface.co/yjwon/ - Original model: https://huggingface.co/yjwon/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3/ | Name | Quant method | Size | | ---- | ---- | ---- | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q2_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q2_K.gguf) | Q2_K | 2.54GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ3_XS.gguf) | IQ3_XS | 2.82GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ3_S.gguf) | IQ3_S | 2.97GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ3_M.gguf) | IQ3_M | 3.06GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K.gguf) | Q3_K | 3.28GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ4_XS.gguf) | IQ4_XS | 3.68GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_0.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_0.gguf) | Q4_0 | 3.83GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_K.gguf) | Q4_K | 4.07GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_1.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q4_1.gguf) | Q4_1 | 4.24GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_0.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_0.gguf) | Q5_0 | 4.66GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_K_S.gguf) | Q5_K_S | 4.66GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_K.gguf) | Q5_K | 4.78GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_1.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q5_1.gguf) | Q5_1 | 5.07GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q6_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q6_K.gguf) | Q6_K | 5.54GB | | [mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q8_0.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mp_mistral7bv3_sft_dpo_beta1e-1_epoch3-gguf/blob/main/mp_mistral7bv3_sft_dpo_beta1e-1_epoch3.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Tigran010101/distilgpt2-finetuned-wikitext2
Tigran010101
"2025-04-19T19:22:26Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T19:05:46Z"
--- library_name: transformers license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
ashimdahal/Ertugrul-Qwen2-VL-7B-Captioner-Relaxed_Qwen-Qwen2-VL-7B-Instruct
ashimdahal
"2025-04-19T19:22:22Z"
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated-by-script", "image-captioning", "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:01:54Z"
--- # Auto-generated fields, verify and update as needed license: apache-2.0 tags: - generated-by-script - peft # Assume PEFT adapter unless explicitly a full model repo - image-captioning # Add more specific task tags if applicable base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator # - Ertugrul/Qwen2-VL-7B-Captioner-Relaxed # Heuristic guess for processor, VERIFY MANUALLY # - Qwen/Qwen2-VL-7B-Instruct # Heuristic guess for decoder, VERIFY MANUALLY --- # Model: ashimdahal/Ertugrul-Qwen2-VL-7B-Captioner-Relaxed_Qwen-Qwen2-VL-7B-Instruct This repository contains model artifacts for a run named `Ertugrul-Qwen2-VL-7B-Captioner-Relaxed_Qwen-Qwen2-VL-7B-Instruct`, likely a PEFT adapter. ## Training Source This model was trained as part of the project/codebase available at: https://github.com/ashimdahal/captioning_image/blob/main ## Base Model Information (Heuristic) * **Processor/Vision Encoder (Guessed):** `Ertugrul/Qwen2-VL-7B-Captioner-Relaxed` * **Decoder/Language Model (Guessed):** `Qwen/Qwen2-VL-7B-Instruct` **โš ๏ธ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`Ertugrul-Qwen2-VL-7B-Captioner-Relaxed_Qwen-Qwen2-VL-7B-Instruct`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers. ## How to Use (Example with PEFT) ```python from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes from peft import PeftModel, PeftConfig import torch # --- Configuration --- # 1. Specify the EXACT base model identifiers used during training base_processor_id = "Ertugrul/Qwen2-VL-7B-Captioner-Relaxed" # <-- Replace with correct HF ID base_model_id = "Qwen/Qwen2-VL-7B-Instruct" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b) # 2. Specify the PEFT adapter repository ID (this repo) adapter_repo_id = "ashimdahal/Ertugrul-Qwen2-VL-7B-Captioner-Relaxed_Qwen-Qwen2-VL-7B-Instruct" # --- Load Base Model and Processor --- processor = AutoProcessor.from_pretrained(base_processor_id) # Load the base model (ensure it matches the type used for training) # Example for BLIP-2 OPT: base_model = Blip2ForConditionalGeneration.from_pretrained( base_model_id, torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs ) # Or for other model types: base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16) base_model = AutoModelForCausalLM ...... # --- Load PEFT Adapter --- # Load the adapter config and merge the adapter weights into the base model model = PeftModel.from_pretrained(base_model, adapter_repo_id) model = model.merge_and_unload() # Merge weights for inference (optional but often recommended) model.eval() # Set model to evaluation mode # --- Inference Example --- device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) image = ... # Load your image (e.g., using PIL) text = "a photo of" # Optional prompt start inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print(f"Generated Caption: {{generated_text}}") ``` *More model-specific documentation, evaluation results, and usage examples should be added here.*
ashimdahal/microsoft-git-base_microsoft-git-base
ashimdahal
"2025-04-19T19:22:15Z"
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated-by-script", "image-captioning", "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:01:29Z"
--- # Auto-generated fields, verify and update as needed license: apache-2.0 tags: - generated-by-script - peft # Assume PEFT adapter unless explicitly a full model repo - image-captioning # Add more specific task tags if applicable base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator # - microsoft/git-base # Heuristic guess for processor, VERIFY MANUALLY # - microsoft/git-base # Heuristic guess for decoder, VERIFY MANUALLY --- # Model: ashimdahal/microsoft-git-base_microsoft-git-base This repository contains model artifacts for a run named `microsoft-git-base_microsoft-git-base`, likely a PEFT adapter. ## Training Source This model was trained as part of the project/codebase available at: https://github.com/ashimdahal/captioning_image/blob/main ## Base Model Information (Heuristic) * **Processor/Vision Encoder (Guessed):** `microsoft/git-base` * **Decoder/Language Model (Guessed):** `microsoft/git-base` **โš ๏ธ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers. ## How to Use (Example with PEFT) ```python from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes from peft import PeftModel, PeftConfig import torch # --- Configuration --- # 1. Specify the EXACT base model identifiers used during training base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b) # 2. Specify the PEFT adapter repository ID (this repo) adapter_repo_id = "ashimdahal/microsoft-git-base_microsoft-git-base" # --- Load Base Model and Processor --- processor = AutoProcessor.from_pretrained(base_processor_id) # Load the base model (ensure it matches the type used for training) # Example for BLIP-2 OPT: base_model = Blip2ForConditionalGeneration.from_pretrained( base_model_id, torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs ) # Or for other model types: base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16) base_model = AutoModelForCausalLM ...... # --- Load PEFT Adapter --- # Load the adapter config and merge the adapter weights into the base model model = PeftModel.from_pretrained(base_model, adapter_repo_id) model = model.merge_and_unload() # Merge weights for inference (optional but often recommended) model.eval() # Set model to evaluation mode # --- Inference Example --- device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) image = ... # Load your image (e.g., using PIL) text = "a photo of" # Optional prompt start inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print(f"Generated Caption: {{generated_text}}") ``` *More model-specific documentation, evaluation results, and usage examples should be added here.*
ashimdahal/Salesforce-blip-image-captioning-base_Salesforce-blip-image-captioning-base
ashimdahal
"2025-04-19T19:22:11Z"
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated-by-script", "image-captioning", "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:01:20Z"
--- # Auto-generated fields, verify and update as needed license: apache-2.0 tags: - generated-by-script - peft # Assume PEFT adapter unless explicitly a full model repo - image-captioning # Add more specific task tags if applicable base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator # - Salesforce/blip-image-captioning-base # Heuristic guess for processor, VERIFY MANUALLY # - Salesforce/blip-image-captioning-base # Heuristic guess for decoder, VERIFY MANUALLY --- # Model: ashimdahal/Salesforce-blip-image-captioning-base_Salesforce-blip-image-captioning-base This repository contains model artifacts for a run named `Salesforce-blip-image-captioning-base_Salesforce-blip-image-captioning-base`, likely a PEFT adapter. ## Training Source This model was trained as part of the project/codebase available at: https://github.com/ashimdahal/captioning_image/blob/main ## Base Model Information (Heuristic) * **Processor/Vision Encoder (Guessed):** `Salesforce/blip-image-captioning-base` * **Decoder/Language Model (Guessed):** `Salesforce/blip-image-captioning-base` **โš ๏ธ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`Salesforce-blip-image-captioning-base_Salesforce-blip-image-captioning-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers. ## How to Use (Example with PEFT) ```python from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes from peft import PeftModel, PeftConfig import torch # --- Configuration --- # 1. Specify the EXACT base model identifiers used during training base_processor_id = "Salesforce/blip-image-captioning-base" # <-- Replace with correct HF ID base_model_id = "Salesforce/blip-image-captioning-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b) # 2. Specify the PEFT adapter repository ID (this repo) adapter_repo_id = "ashimdahal/Salesforce-blip-image-captioning-base_Salesforce-blip-image-captioning-base" # --- Load Base Model and Processor --- processor = AutoProcessor.from_pretrained(base_processor_id) # Load the base model (ensure it matches the type used for training) # Example for BLIP-2 OPT: base_model = Blip2ForConditionalGeneration.from_pretrained( base_model_id, torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs ) # Or for other model types: base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16) base_model = AutoModelForCausalLM ...... # --- Load PEFT Adapter --- # Load the adapter config and merge the adapter weights into the base model model = PeftModel.from_pretrained(base_model, adapter_repo_id) model = model.merge_and_unload() # Merge weights for inference (optional but often recommended) model.eval() # Set model to evaluation mode # --- Inference Example --- device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) image = ... # Load your image (e.g., using PIL) text = "a photo of" # Optional prompt start inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print(f"Generated Caption: {{generated_text}}") ``` *More model-specific documentation, evaluation results, and usage examples should be added here.*
ashimdahal/meta-llama-Llama-3.2-11B-Vision-Instruct_meta-llama-Llama-3.2-11B-Vision-Instruct
ashimdahal
"2025-04-19T19:22:02Z"
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated-by-script", "image-captioning", "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:00:59Z"
--- # Auto-generated fields, verify and update as needed license: apache-2.0 tags: - generated-by-script - peft # Assume PEFT adapter unless explicitly a full model repo - image-captioning # Add more specific task tags if applicable base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator # - meta/llama-Llama-3.2-11B-Vision-Instruct # Heuristic guess for processor, VERIFY MANUALLY # - meta/llama-Llama-3.2-11B-Vision-Instruct # Heuristic guess for decoder, VERIFY MANUALLY --- # Model: ashimdahal/meta-llama-Llama-3.2-11B-Vision-Instruct_meta-llama-Llama-3.2-11B-Vision-Instruct This repository contains model artifacts for a run named `meta-llama-Llama-3.2-11B-Vision-Instruct_meta-llama-Llama-3.2-11B-Vision-Instruct`, likely a PEFT adapter. ## Training Source This model was trained as part of the project/codebase available at: https://github.com/ashimdahal/captioning_image/blob/main ## Base Model Information (Heuristic) * **Processor/Vision Encoder (Guessed):** `meta/llama-Llama-3.2-11B-Vision-Instruct` * **Decoder/Language Model (Guessed):** `meta/llama-Llama-3.2-11B-Vision-Instruct` **โš ๏ธ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`meta-llama-Llama-3.2-11B-Vision-Instruct_meta-llama-Llama-3.2-11B-Vision-Instruct`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers. ## How to Use (Example with PEFT) ```python from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes from peft import PeftModel, PeftConfig import torch # --- Configuration --- # 1. Specify the EXACT base model identifiers used during training base_processor_id = "meta/llama-Llama-3.2-11B-Vision-Instruct" # <-- Replace with correct HF ID base_model_id = "meta/llama-Llama-3.2-11B-Vision-Instruct" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b) # 2. Specify the PEFT adapter repository ID (this repo) adapter_repo_id = "ashimdahal/meta-llama-Llama-3.2-11B-Vision-Instruct_meta-llama-Llama-3.2-11B-Vision-Instruct" # --- Load Base Model and Processor --- processor = AutoProcessor.from_pretrained(base_processor_id) # Load the base model (ensure it matches the type used for training) # Example for BLIP-2 OPT: base_model = Blip2ForConditionalGeneration.from_pretrained( base_model_id, torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs ) # Or for other model types: base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16) base_model = AutoModelForCausalLM ...... # --- Load PEFT Adapter --- # Load the adapter config and merge the adapter weights into the base model model = PeftModel.from_pretrained(base_model, adapter_repo_id) model = model.merge_and_unload() # Merge weights for inference (optional but often recommended) model.eval() # Set model to evaluation mode # --- Inference Example --- device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) image = ... # Load your image (e.g., using PIL) text = "a photo of" # Optional prompt start inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print(f"Generated Caption: {{generated_text}}") ``` *More model-specific documentation, evaluation results, and usage examples should be added here.*
ZMC2019/Qwen2.5-Math-7B-Instruct
ZMC2019
"2025-04-19T19:19:09Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2409.12122", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T19:17:06Z"
--- base_model: Qwen/Qwen2.5-Math-7B language: - en pipeline_tag: text-generation tags: - chat library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct/blob/main/LICENSE --- # Qwen2.5-Math-7B-Instruct > [!Warning] > <div align="center"> > <b> > ๐Ÿšจ Qwen2.5-Math mainly supports solving English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks. > </b> > </div> ## Introduction In August 2024, we released the first series of mathematical LLMs - [Qwen2-Math](https://qwenlm.github.io/blog/qwen2-math/) - of our Qwen family. A month later, we have upgraded it and open-sourced **Qwen2.5-Math** series, including base models **Qwen2.5-Math-1.5B/7B/72B**, instruction-tuned models **Qwen2.5-Math-1.5B/7B/72B-Instruct**, and mathematical reward model **Qwen2.5-Math-RM-72B**. Unlike Qwen2-Math series which only supports using Chain-of-Thught (CoT) to solve English math problems, Qwen2.5-Math series is expanded to support using both CoT and Tool-integrated Reasoning (TIR) to solve math problems in both Chinese and English. The Qwen2.5-Math series models have achieved significant performance improvements compared to the Qwen2-Math series models on the Chinese and English mathematics benchmarks with CoT. ![](http://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2.5/qwen2.5-math-pipeline.jpeg) While CoT plays a vital role in enhancing the reasoning capabilities of LLMs, it faces challenges in achieving computational accuracy and handling complex mathematical or algorithmic reasoning tasks, such as finding the roots of a quadratic equation or computing the eigenvalues of a matrix. TIR can further improve the model's proficiency in precise computation, symbolic manipulation, and algorithmic manipulation. Qwen2.5-Math-1.5B/7B/72B-Instruct achieve 79.7, 85.3, and 87.8 respectively on the MATH benchmark using TIR. ## Model Details For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2.5-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2.5-Math). ## Requirements * `transformers>=4.37.0` for Qwen2.5-Math models. The latest version is recommended. > [!Warning] > <div align="center"> > <b> > ๐Ÿšจ This is a must because <code>transformers</code> integrated Qwen2 codes since <code>4.37.0</code>. > </b> > </div> For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Quick Start > [!Important] > > **Qwen2.5-Math-7B-Instruct** is an instruction model for chatting; > > **Qwen2.5-Math-7B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning. > ### ๐Ÿค— Hugging Face Transformers Qwen2.5-Math can be deployed and infered in the same way as [Qwen2.5](https://github.com/QwenLM/Qwen2.5). Here we show a code snippet to show you how to use the chat model with `transformers`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-Math-7B-Instruct" device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$." # CoT messages = [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."}, {"role": "user", "content": prompt} ] # TIR messages = [ {"role": "system", "content": "Please integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Citation If you find our work helpful, feel free to give us a citation. ``` @article{yang2024qwen25mathtechnicalreportmathematical, title={Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement}, author={An Yang and Beichen Zhang and Binyuan Hui and Bofei Gao and Bowen Yu and Chengpeng Li and Dayiheng Liu and Jianhong Tu and Jingren Zhou and Junyang Lin and Keming Lu and Mingfeng Xue and Runji Lin and Tianyu Liu and Xingzhang Ren and Zhenru Zhang}, journal={arXiv preprint arXiv:2409.12122}, year={2024} } ```
MrRobotoAI/B12
MrRobotoAI
"2025-04-19T19:17:37Z"
50
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:MrRobotoAI/102", "base_model:merge:MrRobotoAI/102", "base_model:MrRobotoAI/105", "base_model:merge:MrRobotoAI/105", "base_model:MrRobotoAI/108", "base_model:merge:MrRobotoAI/108", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T20:56:55Z"
--- base_model: - MrRobotoAI/108 - MrRobotoAI/105 - MrRobotoAI/102 library_name: transformers tags: - mergekit - merge --- # merge 13,822 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * [MrRobotoAI/108](https://huggingface.co/MrRobotoAI/108) * [MrRobotoAI/105](https://huggingface.co/MrRobotoAI/105) * [MrRobotoAI/102](https://huggingface.co/MrRobotoAI/102) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: MrRobotoAI/102 layer_range: [0, 3] - sources: - model: MrRobotoAI/105 layer_range: [4, 28] - sources: - model: MrRobotoAI/108 layer_range: [29, 32] merge_method: passthrough dtype: float16 ```
vmpsergio/388fced2-7194-4f76-84cc-5abb47ae505f
vmpsergio
"2025-04-19T19:14:23Z"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "region:us" ]
null
"2025-04-19T18:16:11Z"
--- library_name: peft license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: 388fced2-7194-4f76-84cc-5abb47ae505f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: teknium/OpenHermes-2.5-Mistral-7B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0a97b13092c68341_train_data.json ds_type: json format: custom path: /workspace/input_data/0a97b13092c68341_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vmpsergio/388fced2-7194-4f76-84cc-5abb47ae505f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/0a97b13092c68341_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|im_end|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a34df82e-6929-46c2-aad9-f532243f79f7 wandb_project: 01-31 wandb_run: your_name wandb_runid: a34df82e-6929-46c2-aad9-f532243f79f7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 388fced2-7194-4f76-84cc-5abb47ae505f This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0225 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TOMFORD79/Candy_8
TOMFORD79
"2025-04-19T19:14:21Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-19T18:35:51Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Vimax97/Florence-2-base-gpt4_captioner_v1
Vimax97
"2025-04-19T19:14:14Z"
205
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "art", "background", "image-to-text", "custom_code", "en", "base_model:microsoft/Florence-2-base-ft", "base_model:finetune:microsoft/Florence-2-base-ft", "license:mit", "autotrain_compatible", "region:us" ]
image-to-text
"2025-03-15T01:41:45Z"
--- library_name: transformers tags: - art - background license: mit language: - en base_model: - microsoft/Florence-2-base-ft pipeline_tag: image-to-text --- <!-- Provide a longer summary of what this model is. --> ## Uses GPT4-O Style captioner, finetuned version using florence-2-base-ft ### Direct Use This model can be used to create gpt4-o styple captions. ### Out-of-Scope Use - This model might not generate long-text descriptions as the context length is 1024. - Linear scaling is applied to increase the context length, its effect was not measured! ## How to Get Started with the Model ```sh # Load fine-tuned model and processor import torch from transformers import AutoModelForCausalLM, AutoProcessor from PIL import Image device = torch.device("cuda" if torch.cuda.is_available() else "cpu") repo_name = "Vimax97/Florence-2-base-gpt4_captioner_v1" model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained(repo_name, trust_remote_code=True) # Inference image = Image.open("<path_to_image>") prompt = "<ImageCAP>" + 'What is the <GPT4> style description for this image?' inputs = processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) print("Generated: ",parsed_answer[prompt]) ``` #### Training Hyperparameters - **Training regime:** fp32 precision, 1000 images were used, 1 epoch of finetuning #### Summary
mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF
mradermacher
"2025-04-19T19:14:03Z"
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Nexesenex/Llama_3.x_70b_SmarTricks_v1.30_flat", "base_model:quantized:Nexesenex/Llama_3.x_70b_SmarTricks_v1.30_flat", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-04-18T23:58:05Z"
--- base_model: Nexesenex/Llama_3.x_70b_SmarTricks_v1.30_flat language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nexesenex/Llama_3.x_70b_SmarTricks_v1.30_flat <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama_3.x_70b_SmarTricks_v1.30_flat-i1-GGUF/resolve/main/Llama_3.x_70b_SmarTricks_v1.30_flat.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
TOMFORD79/Candy_7
TOMFORD79
"2025-04-19T19:13:42Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-19T18:35:41Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
arjunsama/viper_ep3
arjunsama
"2025-04-19T19:12:22Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit", "base_model:finetune:unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-19T19:11:43Z"
--- base_model: unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** arjunsama - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dx2102/llama-midi
dx2102
"2025-04-19T19:09:09Z"
287
4
null
[ "safetensors", "llama", "dataset:amaai-lab/MidiCaps", "dataset:projectlosangeles/Los-Angeles-MIDI-Dataset", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "region:us" ]
null
"2025-02-11T05:13:51Z"
--- datasets: - amaai-lab/MidiCaps - projectlosangeles/Los-Angeles-MIDI-Dataset base_model: - meta-llama/Llama-3.2-1B-Instruct --- ### Write music scores with llama ### Try the model online: https://huggingface.co/spaces/dx2102/llama-midi This model is finetuned from the `Llama-3.2-1B` language model. It learns to write MIDI music scores with a text representation. Optionally, the score title can also be used as a text prompt. To use this model, you can simply take existing code and replace `meta-llama/Llama-3.2-1B` with `dx2102/llama-midi`. ```python import torch from transformers import pipeline pipe = pipeline( "text-generation", model="dx2102/llama-midi", torch_dtype=torch.bfloat16, device="cuda", # cuda/mps/cpu ) txt = pipe( ''' Bach pitch duration wait velocity instrument '''.strip(), max_length=100, temperature=1.0, top_p=1.0, ) print(txt) ``` To convert the text representation back to a midi file, try this: ```bash # install this midi library pip install symusic ``` [symusic](https://github.com/Yikai-Liao/symusic) is a fast C++/Python library for efficient MIDI manipulation. ```python import symusic # For example txt = '''pitch duration wait velocity instrument 71 1310 0 20 0 48 330 350 20 0 55 330 350 20 0 64 1310 690 20 0 74 660 690 20 0 69 1310 0 20 0 48 330 350 20 0 57 330 350 20 0 66 1310 690 20 0 67 330 350 20 0 69 330 350 20 0 71 1310 0 20 0 48 330 350 20 0 55 330 350 20 0 64 1310 690 20 0 74 660 690 20 0 69 1970 0 20 0 48 330 350 20 0 ''' def postprocess(txt, path): # assert txt.startswith(prompt) txt = txt.split('\n\n')[-1] tracks = {} now = 0 # we need to ignore the invalid output by the model try: for line in txt.split('\n'): pitch, duration, wait, velocity, instrument = line.split() pitch, duration, wait, velocity = [int(x) for x in [pitch, duration, wait, velocity]] if instrument not in tracks: tracks[instrument] = symusic.core.TrackSecond() if instrument != 'drum': tracks[instrument].program = int(instrument) else: tracks[instrument].is_drum = True # Eg. Note(time=7.47, duration=5.25, pitch=43, velocity=64, ttype='Second') tracks[instrument].notes.append(symusic.core.NoteSecond( time=now/1000, duration=duration/1000, pitch=int(pitch), velocity=int(velocity * 4), )) now += wait except Exception as e: print('Postprocess: Ignored error:', e) print(f'Postprocess: Got {sum(len(track.notes) for track in tracks.values())} notes') try: score = symusic.Score(ttype='Second') score.tracks.extend(tracks.values()) score.dump_midi(path) except Exception as e: print('Postprocess: Ignored postprocessing error:', e) postprocess(txt, './result.mid') ```
neural-coder/llama-ape-finetuned-6
neural-coder
"2025-04-19T19:06:04Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "base_model:Team-ACE/ToolACE-2-Llama-3.1-8B", "base_model:finetune:Team-ACE/ToolACE-2-Llama-3.1-8B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T17:45:38Z"
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: Team-ACE/ToolACE-2-Llama-3.1-8B widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
hardlyworking/Ramen-12B-Q4_K_S-GGUF
hardlyworking
"2025-04-19T19:05:06Z"
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:hardlyworking/Ramen-12B", "base_model:quantized:hardlyworking/Ramen-12B", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T19:04:35Z"
--- base_model: hardlyworking/Ramen-12B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # hardlyworking/Ramen-12B-Q4_K_S-GGUF This model was converted to GGUF format from [`hardlyworking/Ramen-12B`](https://huggingface.co/hardlyworking/Ramen-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/hardlyworking/Ramen-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo hardlyworking/Ramen-12B-Q4_K_S-GGUF --hf-file ramen-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo hardlyworking/Ramen-12B-Q4_K_S-GGUF --hf-file ramen-12b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo hardlyworking/Ramen-12B-Q4_K_S-GGUF --hf-file ramen-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo hardlyworking/Ramen-12B-Q4_K_S-GGUF --hf-file ramen-12b-q4_k_s.gguf -c 2048 ```
TOMFORD79/Candy_5
TOMFORD79
"2025-04-19T19:01:57Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-19T18:34:34Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
CyberGhostAlbert/realistic-monster
CyberGhostAlbert
"2025-04-19T19:01:22Z"
0
0
null
[ "region:us" ]
null
"2025-04-19T18:15:46Z"
# Realistic Vision Monster Version Only main .safetensors file preserved for Monster API compatibility.
KHAOULA-KH/CAR_DOMMAGE_CPU_MODEL
KHAOULA-KH
"2025-04-19T19:00:29Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-19T19:00:29Z"
--- license: apache-2.0 ---
ykarout/phi-4-deepseek-r1-distilled-fp16
ykarout
"2025-04-19T18:57:49Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/phi-4-unsloth-bnb-4bit", "base_model:finetune:unsloth/phi-4-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T18:36:51Z"
--- base_model: unsloth/phi-4-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ykarout - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jobbsteh/ppo-LunarLander-v2
Jobbsteh
"2025-04-19T18:57:25Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-19T18:56:38Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.81 +/- 17.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BlcaCola/YI-AI-Chinese-4B-it-V1-Q6_K-GGUF
BlcaCola
"2025-04-19T18:56:47Z"
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:BlcaCola/YI-AI-Chinese-4B-it-V1", "base_model:quantized:BlcaCola/YI-AI-Chinese-4B-it-V1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T18:56:30Z"
--- base_model: BlcaCola/YI-AI-Chinese-4B-it-V1 license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # BlcaCola/YI-AI-Chinese-4B-it-V1-Q6_K-GGUF This model was converted to GGUF format from [`BlcaCola/YI-AI-Chinese-4B-it-V1`](https://huggingface.co/BlcaCola/YI-AI-Chinese-4B-it-V1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/BlcaCola/YI-AI-Chinese-4B-it-V1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q6_K-GGUF --hf-file yi-ai-chinese-4b-it-v1-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q6_K-GGUF --hf-file yi-ai-chinese-4b-it-v1-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q6_K-GGUF --hf-file yi-ai-chinese-4b-it-v1-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q6_K-GGUF --hf-file yi-ai-chinese-4b-it-v1-q6_k.gguf -c 2048 ```
Haitao999/Qwen2.5-7B-Instruct-EMPO-natural_reasoning_simple-0419
Haitao999
"2025-04-19T18:55:59Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:qingyangzhang/natural_reasoning_simple", "arxiv:2402.03300", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T05:39:43Z"
--- datasets: qingyangzhang/natural_reasoning_simple library_name: transformers model_name: Qwen2.5-7B-Instruct-EMPO-natural_reasoning_simple-0419 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-7B-Instruct-EMPO-natural_reasoning_simple-0419 This model is a fine-tuned version of [None](https://huggingface.co/None) on the [qingyangzhang/natural_reasoning_simple](https://huggingface.co/datasets/qingyangzhang/natural_reasoning_simple) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Haitao999/Qwen2.5-7B-Instruct-EMPO-natural_reasoning_simple-0419", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tjucsailab/huggingface/runs/9ddax7nu) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.14.0 - Transformers: 4.48.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
BlcaCola/YI-AI-Chinese-4B-it-V1-Q5_0-GGUF
BlcaCola
"2025-04-19T18:55:11Z"
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:BlcaCola/YI-AI-Chinese-4B-it-V1", "base_model:quantized:BlcaCola/YI-AI-Chinese-4B-it-V1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T18:54:54Z"
--- base_model: BlcaCola/YI-AI-Chinese-4B-it-V1 license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # BlcaCola/YI-AI-Chinese-4B-it-V1-Q5_0-GGUF This model was converted to GGUF format from [`BlcaCola/YI-AI-Chinese-4B-it-V1`](https://huggingface.co/BlcaCola/YI-AI-Chinese-4B-it-V1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/BlcaCola/YI-AI-Chinese-4B-it-V1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q5_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q5_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q5_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q5_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q5_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q5_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q5_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q5_0.gguf -c 2048 ```
rbelanec/train_cola_1744902678
rbelanec
"2025-04-19T18:53:49Z"
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "region:us" ]
null
"2025-04-19T12:22:03Z"
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_cola_1744902678 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_1744902678 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.1416 - Num Input Tokens Seen: 28700680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 123 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 40000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-------:|:-----:|:---------------:|:-----------------:| | 0.4054 | 0.4158 | 200 | 0.3175 | 143936 | | 0.2079 | 0.8316 | 400 | 0.2186 | 287392 | | 0.1714 | 1.2474 | 600 | 0.2035 | 430968 | | 0.2061 | 1.6632 | 800 | 0.1944 | 574456 | | 0.2034 | 2.0790 | 1000 | 0.1925 | 718448 | | 0.1608 | 2.4948 | 1200 | 0.1897 | 862224 | | 0.2277 | 2.9106 | 1400 | 0.1841 | 1004880 | | 0.1451 | 3.3264 | 1600 | 0.1766 | 1148296 | | 0.1774 | 3.7422 | 1800 | 0.1750 | 1292616 | | 0.1937 | 4.1580 | 2000 | 0.1750 | 1436240 | | 0.115 | 4.5738 | 2200 | 0.1730 | 1579408 | | 0.1229 | 4.9896 | 2400 | 0.1743 | 1723056 | | 0.1039 | 5.4054 | 2600 | 0.1655 | 1866504 | | 0.1567 | 5.8212 | 2800 | 0.1636 | 2009832 | | 0.1797 | 6.2370 | 3000 | 0.1641 | 2153504 | | 0.1581 | 6.6528 | 3200 | 0.1661 | 2296672 | | 0.1829 | 7.0686 | 3400 | 0.1634 | 2440240 | | 0.1354 | 7.4844 | 3600 | 0.1612 | 2583952 | | 0.1195 | 7.9002 | 3800 | 0.1590 | 2727536 | | 0.1278 | 8.3160 | 4000 | 0.1570 | 2870176 | | 0.1559 | 8.7318 | 4200 | 0.1623 | 3013792 | | 0.1162 | 9.1476 | 4400 | 0.1586 | 3157976 | | 0.1551 | 9.5634 | 4600 | 0.1591 | 3301400 | | 0.146 | 9.9792 | 4800 | 0.1551 | 3445528 | | 0.1104 | 10.3950 | 5000 | 0.1562 | 3588176 | | 0.15 | 10.8108 | 5200 | 0.1569 | 3731888 | | 0.1356 | 11.2266 | 5400 | 0.1554 | 3876072 | | 0.2153 | 11.6424 | 5600 | 0.1566 | 4020200 | | 0.1705 | 12.0582 | 5800 | 0.1565 | 4162880 | | 0.1616 | 12.4740 | 6000 | 0.1523 | 4305664 | | 0.0836 | 12.8898 | 6200 | 0.1557 | 4449504 | | 0.146 | 13.3056 | 6400 | 0.1483 | 4592824 | | 0.136 | 13.7214 | 6600 | 0.1522 | 4737208 | | 0.1068 | 14.1372 | 6800 | 0.1503 | 4880104 | | 0.1307 | 14.5530 | 7000 | 0.1545 | 5024232 | | 0.1475 | 14.9688 | 7200 | 0.1489 | 5167336 | | 0.1159 | 15.3846 | 7400 | 0.1476 | 5311512 | | 0.1145 | 15.8004 | 7600 | 0.1501 | 5454712 | | 0.1116 | 16.2162 | 7800 | 0.1580 | 5598576 | | 0.1438 | 16.6320 | 8000 | 0.1547 | 5741776 | | 0.1108 | 17.0478 | 8200 | 0.1530 | 5885896 | | 0.1097 | 17.4636 | 8400 | 0.1456 | 6030472 | | 0.123 | 17.8794 | 8600 | 0.1486 | 6172872 | | 0.1569 | 18.2952 | 8800 | 0.1473 | 6316224 | | 0.1355 | 18.7110 | 9000 | 0.1541 | 6460064 | | 0.1568 | 19.1268 | 9200 | 0.1444 | 6603384 | | 0.1126 | 19.5426 | 9400 | 0.1453 | 6746616 | | 0.0971 | 19.9584 | 9600 | 0.1459 | 6890808 | | 0.1144 | 20.3742 | 9800 | 0.1509 | 7033840 | | 0.1154 | 20.7900 | 10000 | 0.1472 | 7177136 | | 0.1629 | 21.2058 | 10200 | 0.1470 | 7320168 | | 0.114 | 21.6216 | 10400 | 0.1500 | 7464136 | | 0.1185 | 22.0374 | 10600 | 0.1449 | 7607816 | | 0.1286 | 22.4532 | 10800 | 0.1437 | 7751560 | | 0.1344 | 22.8690 | 11000 | 0.1511 | 7895400 | | 0.0899 | 23.2848 | 11200 | 0.1432 | 8038480 | | 0.0867 | 23.7006 | 11400 | 0.1457 | 8182416 | | 0.1388 | 24.1164 | 11600 | 0.1501 | 8325888 | | 0.1396 | 24.5322 | 11800 | 0.1527 | 8468992 | | 0.0853 | 24.9480 | 12000 | 0.1477 | 8612096 | | 0.098 | 25.3638 | 12200 | 0.1427 | 8756152 | | 0.1308 | 25.7796 | 12400 | 0.1466 | 8899640 | | 0.1043 | 26.1954 | 12600 | 0.1494 | 9042656 | | 0.1072 | 26.6112 | 12800 | 0.1439 | 9186656 | | 0.1031 | 27.0270 | 13000 | 0.1476 | 9329688 | | 0.1083 | 27.4428 | 13200 | 0.1420 | 9472184 | | 0.1044 | 27.8586 | 13400 | 0.1510 | 9616056 | | 0.0876 | 28.2744 | 13600 | 0.1452 | 9759824 | | 0.0652 | 28.6902 | 13800 | 0.1463 | 9903824 | | 0.1238 | 29.1060 | 14000 | 0.1438 | 10046680 | | 0.0927 | 29.5218 | 14200 | 0.1438 | 10190040 | | 0.1054 | 29.9376 | 14400 | 0.1492 | 10333816 | | 0.1422 | 30.3534 | 14600 | 0.1447 | 10476752 | | 0.1203 | 30.7692 | 14800 | 0.1501 | 10620240 | | 0.1145 | 31.1850 | 15000 | 0.1417 | 10763368 | | 0.0727 | 31.6008 | 15200 | 0.1448 | 10906568 | | 0.1571 | 32.0166 | 15400 | 0.1494 | 11049768 | | 0.0968 | 32.4324 | 15600 | 0.1504 | 11193256 | | 0.0854 | 32.8482 | 15800 | 0.1446 | 11336648 | | 0.0739 | 33.2640 | 16000 | 0.1454 | 11481080 | | 0.0903 | 33.6798 | 16200 | 0.1439 | 11624376 | | 0.0906 | 34.0956 | 16400 | 0.1429 | 11766832 | | 0.1062 | 34.5114 | 16600 | 0.1463 | 11910672 | | 0.1066 | 34.9272 | 16800 | 0.1444 | 12054512 | | 0.1179 | 35.3430 | 17000 | 0.1451 | 12198464 | | 0.1434 | 35.7588 | 17200 | 0.1438 | 12341536 | | 0.1222 | 36.1746 | 17400 | 0.1431 | 12485368 | | 0.1897 | 36.5904 | 17600 | 0.1429 | 12629496 | | 0.1307 | 37.0062 | 17800 | 0.1425 | 12772208 | | 0.1357 | 37.4220 | 18000 | 0.1439 | 12915888 | | 0.151 | 37.8378 | 18200 | 0.1416 | 13058896 | | 0.102 | 38.2536 | 18400 | 0.1416 | 13201856 | | 0.1296 | 38.6694 | 18600 | 0.1456 | 13344736 | | 0.142 | 39.0852 | 18800 | 0.1468 | 13489016 | | 0.0924 | 39.5010 | 19000 | 0.1510 | 13632312 | | 0.0935 | 39.9168 | 19200 | 0.1454 | 13775960 | | 0.118 | 40.3326 | 19400 | 0.1424 | 13918888 | | 0.0833 | 40.7484 | 19600 | 0.1499 | 14062184 | | 0.1225 | 41.1642 | 19800 | 0.1418 | 14206632 | | 0.1059 | 41.5800 | 20000 | 0.1488 | 14349800 | | 0.1191 | 41.9958 | 20200 | 0.1456 | 14493096 | | 0.0844 | 42.4116 | 20400 | 0.1424 | 14636824 | | 0.094 | 42.8274 | 20600 | 0.1445 | 14780056 | | 0.0911 | 43.2432 | 20800 | 0.1470 | 14922952 | | 0.1289 | 43.6590 | 21000 | 0.1469 | 15066120 | | 0.1489 | 44.0748 | 21200 | 0.1436 | 15209536 | | 0.094 | 44.4906 | 21400 | 0.1433 | 15353920 | | 0.1047 | 44.9064 | 21600 | 0.1430 | 15497376 | | 0.1176 | 45.3222 | 21800 | 0.1418 | 15641208 | | 0.0974 | 45.7380 | 22000 | 0.1444 | 15784536 | | 0.0903 | 46.1538 | 22200 | 0.1457 | 15928528 | | 0.0802 | 46.5696 | 22400 | 0.1422 | 16072048 | | 0.0948 | 46.9854 | 22600 | 0.1437 | 16214832 | | 0.0711 | 47.4012 | 22800 | 0.1448 | 16358208 | | 0.1001 | 47.8170 | 23000 | 0.1448 | 16501568 | | 0.0753 | 48.2328 | 23200 | 0.1461 | 16645480 | | 0.1133 | 48.6486 | 23400 | 0.1431 | 16789224 | | 0.1046 | 49.0644 | 23600 | 0.1509 | 16932768 | | 0.0668 | 49.4802 | 23800 | 0.1451 | 17076672 | | 0.1376 | 49.8960 | 24000 | 0.1443 | 17220000 | | 0.0919 | 50.3119 | 24200 | 0.1426 | 17363816 | | 0.0665 | 50.7277 | 24400 | 0.1423 | 17508072 | | 0.117 | 51.1435 | 24600 | 0.1501 | 17651488 | | 0.0967 | 51.5593 | 24800 | 0.1453 | 17795328 | | 0.1266 | 51.9751 | 25000 | 0.1447 | 17938368 | | 0.0748 | 52.3909 | 25200 | 0.1443 | 18081176 | | 0.1336 | 52.8067 | 25400 | 0.1453 | 18224696 | | 0.0805 | 53.2225 | 25600 | 0.1442 | 18369136 | | 0.0733 | 53.6383 | 25800 | 0.1437 | 18511824 | | 0.0814 | 54.0541 | 26000 | 0.1432 | 18655008 | | 0.0856 | 54.4699 | 26200 | 0.1490 | 18798592 | | 0.1183 | 54.8857 | 26400 | 0.1463 | 18942016 | | 0.1266 | 55.3015 | 26600 | 0.1465 | 19085296 | | 0.0854 | 55.7173 | 26800 | 0.1458 | 19229616 | | 0.0836 | 56.1331 | 27000 | 0.1454 | 19373160 | | 0.1123 | 56.5489 | 27200 | 0.1431 | 19516200 | | 0.1217 | 56.9647 | 27400 | 0.1463 | 19659656 | | 0.1149 | 57.3805 | 27600 | 0.1426 | 19803672 | | 0.0753 | 57.7963 | 27800 | 0.1456 | 19947800 | | 0.0848 | 58.2121 | 28000 | 0.1492 | 20090864 | | 0.0713 | 58.6279 | 28200 | 0.1445 | 20234160 | | 0.1056 | 59.0437 | 28400 | 0.1473 | 20378152 | | 0.0931 | 59.4595 | 28600 | 0.1459 | 20521096 | | 0.0841 | 59.8753 | 28800 | 0.1458 | 20664744 | | 0.1066 | 60.2911 | 29000 | 0.1450 | 20808544 | | 0.0863 | 60.7069 | 29200 | 0.1434 | 20952064 | | 0.1233 | 61.1227 | 29400 | 0.1470 | 21095536 | | 0.1196 | 61.5385 | 29600 | 0.1437 | 21239216 | | 0.0911 | 61.9543 | 29800 | 0.1448 | 21382704 | | 0.0734 | 62.3701 | 30000 | 0.1442 | 21526584 | | 0.143 | 62.7859 | 30200 | 0.1455 | 21670744 | | 0.0983 | 63.2017 | 30400 | 0.1443 | 21813952 | | 0.1579 | 63.6175 | 30600 | 0.1440 | 21956992 | | 0.0536 | 64.0333 | 30800 | 0.1433 | 22100720 | | 0.1065 | 64.4491 | 31000 | 0.1453 | 22244240 | | 0.1196 | 64.8649 | 31200 | 0.1440 | 22388368 | | 0.132 | 65.2807 | 31400 | 0.1444 | 22531840 | | 0.0858 | 65.6965 | 31600 | 0.1459 | 22674688 | | 0.0828 | 66.1123 | 31800 | 0.1433 | 22817880 | | 0.1095 | 66.5281 | 32000 | 0.1442 | 22962360 | | 0.0726 | 66.9439 | 32200 | 0.1449 | 23105624 | | 0.1103 | 67.3597 | 32400 | 0.1468 | 23248272 | | 0.086 | 67.7755 | 32600 | 0.1448 | 23391888 | | 0.1045 | 68.1913 | 32800 | 0.1429 | 23535616 | | 0.0687 | 68.6071 | 33000 | 0.1447 | 23678976 | | 0.0791 | 69.0229 | 33200 | 0.1453 | 23823128 | | 0.0906 | 69.4387 | 33400 | 0.1446 | 23966488 | | 0.1076 | 69.8545 | 33600 | 0.1448 | 24110648 | | 0.0866 | 70.2703 | 33800 | 0.1435 | 24253072 | | 0.1197 | 70.6861 | 34000 | 0.1448 | 24396528 | | 0.1497 | 71.1019 | 34200 | 0.1453 | 24540040 | | 0.1028 | 71.5177 | 34400 | 0.1451 | 24683144 | | 0.0874 | 71.9335 | 34600 | 0.1458 | 24827048 | | 0.1154 | 72.3493 | 34800 | 0.1451 | 24970840 | | 0.0979 | 72.7651 | 35000 | 0.1455 | 25115672 | | 0.0703 | 73.1809 | 35200 | 0.1441 | 25258416 | | 0.1256 | 73.5967 | 35400 | 0.1443 | 25402448 | | 0.1286 | 74.0125 | 35600 | 0.1445 | 25545128 | | 0.1168 | 74.4283 | 35800 | 0.1453 | 25688392 | | 0.1085 | 74.8441 | 36000 | 0.1453 | 25831720 | | 0.1001 | 75.2599 | 36200 | 0.1453 | 25975928 | | 0.0624 | 75.6757 | 36400 | 0.1443 | 26119704 | | 0.0936 | 76.0915 | 36600 | 0.1454 | 26262696 | | 0.0826 | 76.5073 | 36800 | 0.1442 | 26406024 | | 0.0844 | 76.9231 | 37000 | 0.1469 | 26550088 | | 0.0912 | 77.3389 | 37200 | 0.1445 | 26693856 | | 0.1002 | 77.7547 | 37400 | 0.1461 | 26837120 | | 0.0781 | 78.1705 | 37600 | 0.1451 | 26980600 | | 0.0805 | 78.5863 | 37800 | 0.1449 | 27124888 | | 0.0633 | 79.0021 | 38000 | 0.1443 | 27266800 | | 0.089 | 79.4179 | 38200 | 0.1453 | 27410736 | | 0.1174 | 79.8337 | 38400 | 0.1455 | 27553360 | | 0.0652 | 80.2495 | 38600 | 0.1453 | 27696864 | | 0.1045 | 80.6653 | 38800 | 0.1448 | 27839840 | | 0.0912 | 81.0811 | 39000 | 0.1449 | 27983384 | | 0.1128 | 81.4969 | 39200 | 0.1453 | 28127512 | | 0.0817 | 81.9127 | 39400 | 0.1452 | 28270104 | | 0.0773 | 82.3285 | 39600 | 0.1458 | 28413680 | | 0.0538 | 82.7443 | 39800 | 0.1474 | 28557552 | | 0.0847 | 83.1601 | 40000 | 0.1452 | 28700680 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
dzanbek/ff9ee20c-15de-4a6f-bfff-f52916894ac0
dzanbek
"2025-04-19T18:53:48Z"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-19T18:33:51Z"
--- library_name: peft license: mit base_model: HuggingFaceH4/zephyr-7b-beta tags: - axolotl - generated_from_trainer model-index: - name: ff9ee20c-15de-4a6f-bfff-f52916894ac0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceH4/zephyr-7b-beta bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0b33416fff5c7d04_train_data.json ds_type: json format: custom path: /workspace/input_data/0b33416fff5c7d04_train_data.json type: field_input: recipe field_instruction: title field_output: classification_result format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/ff9ee20c-15de-4a6f-bfff-f52916894ac0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/0b33416fff5c7d04_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ee374f63-9763-4ef7-b53d-cd993040de9f wandb_project: 01-31 wandb_run: your_name wandb_runid: ee374f63-9763-4ef7-b53d-cd993040de9f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ff9ee20c-15de-4a6f-bfff-f52916894ac0 This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0758 | 150 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
BlcaCola/YI-AI-Chinese-4B-it-V1-Q4_0-GGUF
BlcaCola
"2025-04-19T18:53:24Z"
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:BlcaCola/YI-AI-Chinese-4B-it-V1", "base_model:quantized:BlcaCola/YI-AI-Chinese-4B-it-V1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T18:53:11Z"
--- base_model: BlcaCola/YI-AI-Chinese-4B-it-V1 license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # BlcaCola/YI-AI-Chinese-4B-it-V1-Q4_0-GGUF This model was converted to GGUF format from [`BlcaCola/YI-AI-Chinese-4B-it-V1`](https://huggingface.co/BlcaCola/YI-AI-Chinese-4B-it-V1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/BlcaCola/YI-AI-Chinese-4B-it-V1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q4_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q4_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q4_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BlcaCola/YI-AI-Chinese-4B-it-V1-Q4_0-GGUF --hf-file yi-ai-chinese-4b-it-v1-q4_0.gguf -c 2048 ```
LyliaEngine/Power_Puff_MixLora
LyliaEngine
"2025-04-19T18:52:50Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:LyliaEngine/ilustmix_v55", "base_model:adapter:LyliaEngine/ilustmix_v55", "license:cdla-permissive-2.0", "region:us" ]
text-to-image
"2025-04-19T18:51:24Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- 8K, depth of field, focused subject, dynamic angle, sexy pose, best quality, detailed eyes, perfect eyes, realistic eyes, short blonde bob cut, (pink highlights), blue eyes, (mascara), makeup, slim body, maid cap, black stockings, small ass, medium breast, realistic breast, ruffled maid dress, (black dress), long sleeves, white apron, black ruffled skirt, BREAK, lying on the side, legs spread, front view, looking at viewer, movie perspective, fractal background, abstract background, dynamic angle, <lora:MoriiMee_Gothic_Niji_Style_Illustrious_r1:0.5> artist:moriimee, <lora:PowerPuffMixLora:0.6>, parameters: negative_prompt: >- bed, shine, (worst quality, low quality, sketch:1.1),error, bad anatomy, bad hands, watermark, ugly, distorted, censored, lowers, multiple views, signature, 3D, output: url: images/2-txt2img-20250224-163218-332824275.png - text: >- 8K, depth of field, focused subject, dynamic angle, sexy pose, best quality, detailed eyes, perfect eyes, realistic eyes, white hair, long hair, rainbow highlights, blunt bangs, thick eyebrows, black eyebrows, brown eyes, mascara, makeup, pink lips, parted lips, fit body, bare shoulders, yellow sundress, long sundress, revealing sundress, small ass, medium breast, realistic breast, braless, , BREAK, sitting, leaning forward slightly, front view, looking at viewer, movie perspective, fractal background, abstract background, dynamic angle, <lora:PowerPuffMixLora:0.6>, parameters: negative_prompt: >- bed, shine, (worst quality, low quality, sketch:1.1),error, bad anatomy, bad hands, watermark, ugly, distorted, censored, lowers, multiple views, signature, 3D, output: url: images/0-txt2img-20250224-162709-2083372524.png - text: >- 8K, depth of field, focused subject, dynamic angle, sexy pose, best quality, detailed eyes, perfect eyes, realistic eyes, white hair, long hair, blue eyes, (black eyeliner), (freckles), slim body, sunhat, white sandals, small ass, small breast, realistic breast, (floral summer dress), off-shoulder, , BREAK, sitting, leaning forward slightly, front view, looking at viewer, movie perspective, fractal background, abstract background, dynamic angle, <lora:MoriiMee_Gothic_Niji_Style_Illustrious_r1:0.5> artist:moriimee, <lora:PowerPuffMixLora:0.6>, parameters: negative_prompt: >- bed, shine, (worst quality, low quality, sketch:1.1),error, bad anatomy, bad hands, watermark, ugly, distorted, censored, lowers, multiple views, signature, 3D, output: url: images/0-txt2img-20250224-163027-1312889651.png base_model: LyliaEngine/ilustmix_v55 instance_prompt: None license: cdla-permissive-2.0 --- # Power_Puff_MixLora <Gallery /> ## Model description If youโ€™ve seen my work or followed my journey, you probably already know what PowerPuffMixLora is all about. For those who donโ€™t, I refined my portraits from the PowerPuffMix model and created a LoRA that enhances character aesthetics. The secret? Subtlety. Keeping the effect low is what makes the magic happenโ€”at least, thatโ€™s how I do it. ๐Ÿ˜‰ ## Source https://civitai.com/models/1290802/powerpuffmixlora ## Credit https://civitai.com/user/GZees ## Trigger words You should use `None` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LyliaEngine/Power_Puff_MixLora/tree/main) them in the Files & versions tab.
TOMFORD79/Candy_3
TOMFORD79
"2025-04-19T18:48:10Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-19T18:34:20Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
cwestnedge/gpt2-small-pubmed
cwestnedge
"2025-04-19T18:46:20Z"
94
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "medical", "en", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-17T17:23:37Z"
--- library_name: transformers tags: - medical license: mit language: - en metrics: - perplexity base_model: - openai-community/gpt2 pipeline_tag: text-generation --- ## Overview This [pipeline](https://github.com/donkeyanaphora/SHALLOW_FUSION) was used to fineโ€‘tune GPTโ€‘2 [small](https://huggingface.co/openai-community/gpt2), [medium](https://huggingface.co/openai-community/gpt2-medium), and [large](https://huggingface.co/openai-community/gpt2-large) on abstracts from PubMed's [baseline data](https://ftp.ncbi.nlm.nih.gov/pubmed/README.txt). Models were trained on a single A100 GPU in Google Colab. --- ## Training #### Setup - Single epoch over **221,709 batches ร— 16 ร— 1024 tokens** โ‰ˆ **3.63 billion tokens** - Identical optimizer, learningโ€‘rate schedule, and hyperโ€‘parameters for all models - No additional regularization or early stopping #### Loss Here are the the loss curves for GPTโ€‘2 small, medium, and large fineโ€‘tuned on PubMed abstracts over single epoch. - [Loss comparisons](https://huggingface.co/cwestnedge/gpt2-small-pubmed/blob/main/output.png) --- ## Evaluation #### Dataset Holdโ€‘out set of **1000 ร— 16 ร— 1024 tokens** (โ‰ˆ 16.4 M tokens) randomly sampled from PubMed abstracts, disjoint from the training split. #### Metrics Crossโ€‘entropy loss (averaged over all tokens) and derived perplexity (`ppl = exp(loss)`) on the holdโ€‘out set: | Model | Parameters | Avg CE Loss โ†“ | Perplexity โ†“ | |--------------------------|-----------:|-------------:|------------:| | **gpt2โ€‘smallโ€‘pubmed** | 124 M | 2.5017 | 12.20 | | [gpt2โ€‘mediumโ€‘pubmed](https://huggingface.co/cwestnedge/gpt2-medium-pubmed) | 355 M | 2.2984 | 9.96 | | [gpt2โ€‘largeโ€‘pubmed](https://huggingface.co/cwestnedge/gpt2-large-pubmed) | 774 M | 2.1863 | 8.90 | #### Caveats - Perplexities are **inโ€‘domain** (PubMed abstracts) and may not reflect generalโ€‘purpose LM quality - Only one epoch of training; performance likely improves with more epochs or hyperโ€‘parameter tuning - Downstream biomedical benchmarks have not yet been conducted --- ## Usage #### 1) Quickโ€‘start with the ๐Ÿค— pipeline API ```python from transformers import pipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" generator = pipeline( "text-generation", model="cwestnedge/gpt2-small-pubmed", tokenizer="openai-community/gpt2", device=device, ) prompt = ( "Background: The CRISPRโ€“Cas9 system has revolutionized gene editing. " "In this study, we evaluate its efficacy in" ) out = generator( prompt, max_length=200, temperature=1e-9, top_p=1e-9, num_return_sequences=1, truncation=True, ) print(out[0]["generated_text"]) ``` #### 2) Manual load + generate for finer control ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "cwestnedge/gpt2-small-pubmed" tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") model = AutoModelForCausalLM.from_pretrained(model_name).to(device) inputs = tokenizer( "Methods: We performed a doubleโ€blind randomized trial to assess", return_tensors="pt", ).to(device) gen_ids = model.generate( **inputs, max_length=150, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, ) print(tokenizer.decode(gen_ids[0], skip_special_tokens=True)) ``` #### 3) Scoring / perplexity ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "cwestnedge/gpt2-small-pubmed" tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") model = AutoModelForCausalLM.from_pretrained(model_name).to(device) text = ( "Tetralogy of Fallot is a rare congenital heart condition that is present at birth." ) enc = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**enc, labels=enc.input_ids) loss = outputs.loss ppl = torch.exp(loss) print(f"CE loss: {loss:.4f} โ†’ Perplexity: {ppl:.2f}") ```
mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF
mradermacher
"2025-04-19T18:44:36Z"
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "en", "base_model:gabrielbosse9/Umbr0x-1.5B-V3.1-16bit-2", "base_model:quantized:gabrielbosse9/Umbr0x-1.5B-V3.1-16bit-2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-19T18:01:49Z"
--- base_model: gabrielbosse9/Umbr0x-1.5B-V3.1-16bit-2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/gabrielbosse9/Umbr0x-1.5B-V3.1-16bit-2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Umbr0x-1.5B-V3.1-16bit-2-GGUF/resolve/main/Umbr0x-1.5B-V3.1-16bit-2.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
sedfg4gh/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-diving_vigilant_hawk
sedfg4gh
"2025-04-19T18:44:24Z"
3
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am diving vigilant hawk", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-15T15:24:07Z"
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-diving_vigilant_hawk tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am diving vigilant hawk - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-diving_vigilant_hawk This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sedfg4gh/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-diving_vigilant_hawk", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
cwestnedge/gpt2-large-pubmed
cwestnedge
"2025-04-19T18:42:09Z"
182
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "medical", "en", "base_model:openai-community/gpt2-large", "base_model:finetune:openai-community/gpt2-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-12T02:39:39Z"
--- library_name: transformers tags: - medical license: mit language: - en metrics: - perplexity base_model: - openai-community/gpt2-large pipeline_tag: text-generation --- ## Overview This [pipeline](https://github.com/donkeyanaphora/SHALLOW_FUSION) was used to fineโ€‘tune GPTโ€‘2 [small](https://huggingface.co/openai-community/gpt2), [medium](https://huggingface.co/openai-community/gpt2-medium), and [large](https://huggingface.co/openai-community/gpt2-large) on abstracts from PubMed's [baseline data](https://ftp.ncbi.nlm.nih.gov/pubmed/README.txt). Models were trained on a single A100 GPU in Google Colab. --- ## Training #### Setup - Single epoch over **221,709 batches ร— 16 ร— 1024 tokens** โ‰ˆ **3.63 billion tokens** - Identical optimizer, learningโ€‘rate schedule, and hyperโ€‘parameters for all models - No additional regularization or early stopping #### Loss Here are the the loss curves for GPTโ€‘2 small, medium, and large fineโ€‘tuned on PubMed abstracts over single epoch. - [Loss comparisons](https://huggingface.co/cwestnedge/gpt2-small-pubmed/blob/main/output.png) --- ## Evaluation #### Dataset Holdโ€‘out set of **1000 ร— 16 ร— 1024 tokens** (โ‰ˆ 16.4 M tokens) randomly sampled from PubMed abstracts, disjoint from the training split. #### Metrics Crossโ€‘entropy loss (averaged over all tokens) and derived perplexity (`ppl = exp(loss)`) on the holdโ€‘out set: | Model | Parameters | Avg CE Loss โ†“ | Perplexity โ†“ | |--------------------------|-----------:|-------------:|------------:| | [gpt2โ€‘smallโ€‘pubmed](https://huggingface.co/cwestnedge/gpt2-small-pubmed) | 124 M | 2.5017 | 12.20 | | [gpt2โ€‘mediumโ€‘pubmed](https://huggingface.co/cwestnedge/gpt2-medium-pubmed) | 355 M | 2.2984 | 9.96 | | **gpt2โ€‘largeโ€‘pubmed** | 774 M | 2.1863 | 8.90 | #### Caveats - Perplexities are **inโ€‘domain** (PubMed abstracts) and may not reflect generalโ€‘purpose LM quality - Only one epoch of training; performance likely improves with more epochs or hyperโ€‘parameter tuning - Downstream biomedical benchmarks have not yet been conducted --- ## Usage #### 1) Quickโ€‘start with the ๐Ÿค— pipeline API ```python from transformers import pipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" generator = pipeline( "text-generation", model="cwestnedge/gpt2-large-pubmed", tokenizer="openai-community/gpt2-large", device=device, ) prompt = ( "Background: The CRISPRโ€“Cas9 system has revolutionized gene editing. " "In this study, we evaluate its efficacy in" ) out = generator( prompt, max_length=200, temperature=1e-9, top_p=1e-9, num_return_sequences=1, truncation=True, ) print(out[0]["generated_text"]) ``` #### 2) Manual load + generate for finer control ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "cwestnedge/gpt2-large-pubmed" tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-large") model = AutoModelForCausalLM.from_pretrained(model_name).to(device) inputs = tokenizer( "Methods: We performed a doubleโ€blind randomized trial to assess", return_tensors="pt", ).to(device) gen_ids = model.generate( **inputs, max_length=150, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, ) print(tokenizer.decode(gen_ids[0], skip_special_tokens=True)) ``` #### 3) Scoring / perplexity ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "cwestnedge/gpt2-large-pubmed" tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-large") model = AutoModelForCausalLM.from_pretrained(model_name).to(device) text = ( "Tetralogy of Fallot is a rare congenital heart condition that is present at birth." ) enc = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**enc, labels=enc.input_ids) loss = outputs.loss ppl = torch.exp(loss) print(f"CE loss: {loss:.4f} โ†’ Perplexity: {ppl:.2f}") ```
edumunozsala/gemma3-1b-it-financial-sent-analysis
edumunozsala
"2025-04-19T18:39:32Z"
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T18:37:59Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RJTPP/stage1-VL-3b-v6-step-test0
RJTPP
"2025-04-19T18:37:57Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_5_vl", "trl", "en", "base_model:unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-19T18:37:44Z"
--- base_model: unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** RJTPP - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
luckeciano/Qwen-2.5-7B-RL-AC-BigLRv3-Fast-4-v5-Train-Marg
luckeciano
"2025-04-19T18:37:05Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T16:17:36Z"
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-RL-AC-BigLRv3-Fast-4-v5-Train-Marg tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-RL-AC-BigLRv3-Fast-4-v5-Train-Marg This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-RL-AC-BigLRv3-Fast-4-v5-Train-Marg", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/MaxEntLLMs/runs/hd0zlwq4) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sbapan41/OCR_Data_Extraction
sbapan41
"2025-04-19T18:33:49Z"
0
0
adapter-transformers
[ "adapter-transformers", "code", "data", "ocr", "data_extraction", "feature-extraction", "en", "base_model:naver-clova-ix/donut-base", "base_model:adapter:naver-clova-ix/donut-base", "license:apache-2.0", "region:us" ]
feature-extraction
"2025-04-19T18:01:37Z"
--- license: apache-2.0 language: - en metrics: - accuracy base_model: - naver-clova-ix/donut-base pipeline_tag: feature-extraction library_name: adapter-transformers tags: - code - data - ocr - data_extraction ---
rbelanec/train_cola_1744902670
rbelanec
"2025-04-19T18:31:42Z"
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:google/gemma-3-1b-it", "base_model:adapter:google/gemma-3-1b-it", "license:gemma", "region:us" ]
null
"2025-04-19T11:01:49Z"
--- library_name: peft license: gemma base_model: google/gemma-3-1b-it tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_cola_1744902670 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_1744902670 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.1314 - Num Input Tokens Seen: 31253176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 123 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 40000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-------:|:-----:|:---------------:|:-----------------:| | 1.0199 | 0.4158 | 200 | 0.9345 | 156832 | | 0.4834 | 0.8316 | 400 | 0.4653 | 313248 | | 0.2765 | 1.2474 | 600 | 0.2476 | 469520 | | 0.262 | 1.6632 | 800 | 0.1840 | 625360 | | 0.2552 | 2.0790 | 1000 | 0.1702 | 782304 | | 0.1828 | 2.4948 | 1200 | 0.1651 | 938560 | | 0.1741 | 2.9106 | 1400 | 0.1595 | 1094144 | | 0.1644 | 3.3264 | 1600 | 0.1559 | 1250544 | | 0.1567 | 3.7422 | 1800 | 0.1537 | 1407440 | | 0.1828 | 4.1580 | 2000 | 0.1515 | 1563512 | | 0.1603 | 4.5738 | 2200 | 0.1537 | 1719064 | | 0.1644 | 4.9896 | 2400 | 0.1553 | 1875384 | | 0.1483 | 5.4054 | 2600 | 0.1473 | 2031440 | | 0.1727 | 5.8212 | 2800 | 0.1462 | 2187952 | | 0.1743 | 6.2370 | 3000 | 0.1477 | 2344864 | | 0.1666 | 6.6528 | 3200 | 0.1476 | 2500448 | | 0.1717 | 7.0686 | 3400 | 0.1465 | 2656400 | | 0.1783 | 7.4844 | 3600 | 0.1454 | 2812912 | | 0.1462 | 7.9002 | 3800 | 0.1434 | 2968816 | | 0.1426 | 8.3160 | 4000 | 0.1443 | 3124448 | | 0.1503 | 8.7318 | 4200 | 0.1443 | 3280320 | | 0.138 | 9.1476 | 4400 | 0.1478 | 3437072 | | 0.1528 | 9.5634 | 4600 | 0.1442 | 3593520 | | 0.1484 | 9.9792 | 4800 | 0.1427 | 3750544 | | 0.1359 | 10.3950 | 5000 | 0.1410 | 3905920 | | 0.1586 | 10.8108 | 5200 | 0.1439 | 4063008 | | 0.1458 | 11.2266 | 5400 | 0.1405 | 4219472 | | 0.1543 | 11.6424 | 5600 | 0.1467 | 4376048 | | 0.1619 | 12.0582 | 5800 | 0.1440 | 4531752 | | 0.1541 | 12.4740 | 6000 | 0.1414 | 4687112 | | 0.1272 | 12.8898 | 6200 | 0.1411 | 4843464 | | 0.1504 | 13.3056 | 6400 | 0.1392 | 4999648 | | 0.1758 | 13.7214 | 6600 | 0.1411 | 5157152 | | 0.1237 | 14.1372 | 6800 | 0.1403 | 5312328 | | 0.1594 | 14.5530 | 7000 | 0.1401 | 5468680 | | 0.1644 | 14.9688 | 7200 | 0.1385 | 5624776 | | 0.1156 | 15.3846 | 7400 | 0.1374 | 5782032 | | 0.1205 | 15.8004 | 7600 | 0.1384 | 5938000 | | 0.1583 | 16.2162 | 7800 | 0.1493 | 6094536 | | 0.1725 | 16.6320 | 8000 | 0.1436 | 6250760 | | 0.1353 | 17.0478 | 8200 | 0.1427 | 6406616 | | 0.1372 | 17.4636 | 8400 | 0.1361 | 6563416 | | 0.1305 | 17.8794 | 8600 | 0.1383 | 6719288 | | 0.1529 | 18.2952 | 8800 | 0.1357 | 6875592 | | 0.1435 | 18.7110 | 9000 | 0.1410 | 7032392 | | 0.1446 | 19.1268 | 9200 | 0.1349 | 7188120 | | 0.1407 | 19.5426 | 9400 | 0.1371 | 7344760 | | 0.1478 | 19.9584 | 9600 | 0.1380 | 7501144 | | 0.1349 | 20.3742 | 9800 | 0.1388 | 7657160 | | 0.1338 | 20.7900 | 10000 | 0.1353 | 7813128 | | 0.1846 | 21.2058 | 10200 | 0.1427 | 7969880 | | 0.1395 | 21.6216 | 10400 | 0.1417 | 8126392 | | 0.1701 | 22.0374 | 10600 | 0.1367 | 8282480 | | 0.1647 | 22.4532 | 10800 | 0.1368 | 8438992 | | 0.1144 | 22.8690 | 11000 | 0.1404 | 8595376 | | 0.14 | 23.2848 | 11200 | 0.1351 | 8751352 | | 0.1326 | 23.7006 | 11400 | 0.1350 | 8907960 | | 0.1497 | 24.1164 | 11600 | 0.1408 | 9064424 | | 0.1585 | 24.5322 | 11800 | 0.1397 | 9220456 | | 0.1264 | 24.9480 | 12000 | 0.1397 | 9376488 | | 0.1415 | 25.3638 | 12200 | 0.1348 | 9533208 | | 0.1398 | 25.7796 | 12400 | 0.1353 | 9689464 | | 0.1284 | 26.1954 | 12600 | 0.1417 | 9845048 | | 0.1232 | 26.6112 | 12800 | 0.1340 | 10001784 | | 0.1149 | 27.0270 | 13000 | 0.1344 | 10157800 | | 0.1254 | 27.4428 | 13200 | 0.1350 | 10313128 | | 0.1372 | 27.8586 | 13400 | 0.1364 | 10469384 | | 0.1282 | 28.2744 | 13600 | 0.1339 | 10625944 | | 0.0999 | 28.6902 | 13800 | 0.1389 | 10782456 | | 0.1528 | 29.1060 | 14000 | 0.1359 | 10938304 | | 0.1064 | 29.5218 | 14200 | 0.1346 | 11094528 | | 0.1041 | 29.9376 | 14400 | 0.1406 | 11250976 | | 0.1697 | 30.3534 | 14600 | 0.1359 | 11406672 | | 0.1442 | 30.7692 | 14800 | 0.1402 | 11562768 | | 0.1462 | 31.1850 | 15000 | 0.1345 | 11719016 | | 0.0968 | 31.6008 | 15200 | 0.1338 | 11875368 | | 0.1253 | 32.0166 | 15400 | 0.1368 | 12031048 | | 0.102 | 32.4324 | 15600 | 0.1354 | 12187432 | | 0.1342 | 32.8482 | 15800 | 0.1343 | 12343432 | | 0.1112 | 33.2640 | 16000 | 0.1366 | 12500472 | | 0.1647 | 33.6798 | 16200 | 0.1346 | 12656248 | | 0.1175 | 34.0956 | 16400 | 0.1340 | 12811752 | | 0.1261 | 34.5114 | 16600 | 0.1314 | 12968104 | | 0.1259 | 34.9272 | 16800 | 0.1344 | 13124392 | | 0.1171 | 35.3430 | 17000 | 0.1356 | 13281144 | | 0.1593 | 35.7588 | 17200 | 0.1362 | 13437720 | | 0.1429 | 36.1746 | 17400 | 0.1326 | 13594448 | | 0.1451 | 36.5904 | 17600 | 0.1338 | 13750544 | | 0.1583 | 37.0062 | 17800 | 0.1328 | 13906304 | | 0.1447 | 37.4220 | 18000 | 0.1364 | 14062784 | | 0.1262 | 37.8378 | 18200 | 0.1325 | 14219168 | | 0.1201 | 38.2536 | 18400 | 0.1346 | 14375024 | | 0.1666 | 38.6694 | 18600 | 0.1325 | 14530800 | | 0.1433 | 39.0852 | 18800 | 0.1362 | 14687808 | | 0.1106 | 39.5010 | 19000 | 0.1360 | 14843360 | | 0.1105 | 39.9168 | 19200 | 0.1373 | 14999808 | | 0.114 | 40.3326 | 19400 | 0.1323 | 15155496 | | 0.1028 | 40.7484 | 19600 | 0.1353 | 15311688 | | 0.1374 | 41.1642 | 19800 | 0.1333 | 15468264 | | 0.1481 | 41.5800 | 20000 | 0.1355 | 15624072 | | 0.1353 | 41.9958 | 20200 | 0.1332 | 15780456 | | 0.1048 | 42.4116 | 20400 | 0.1330 | 15936432 | | 0.1436 | 42.8274 | 20600 | 0.1346 | 16092272 | | 0.1155 | 43.2432 | 20800 | 0.1355 | 16249048 | | 0.1501 | 43.6590 | 21000 | 0.1370 | 16405368 | | 0.1334 | 44.0748 | 21200 | 0.1328 | 16561000 | | 0.1337 | 44.4906 | 21400 | 0.1345 | 16718312 | | 0.1296 | 44.9064 | 21600 | 0.1358 | 16874632 | | 0.1215 | 45.3222 | 21800 | 0.1333 | 17031680 | | 0.1295 | 45.7380 | 22000 | 0.1345 | 17188288 | | 0.1301 | 46.1538 | 22200 | 0.1336 | 17345048 | | 0.1175 | 46.5696 | 22400 | 0.1344 | 17501560 | | 0.1332 | 46.9854 | 22600 | 0.1323 | 17657336 | | 0.0998 | 47.4012 | 22800 | 0.1350 | 17813576 | | 0.1206 | 47.8170 | 23000 | 0.1342 | 17970024 | | 0.0966 | 48.2328 | 23200 | 0.1317 | 18126280 | | 0.1542 | 48.6486 | 23400 | 0.1341 | 18282568 | | 0.118 | 49.0644 | 23600 | 0.1394 | 18438872 | | 0.1429 | 49.4802 | 23800 | 0.1349 | 18595416 | | 0.1464 | 49.8960 | 24000 | 0.1339 | 18751672 | | 0.1389 | 50.3119 | 24200 | 0.1325 | 18906848 | | 0.138 | 50.7277 | 24400 | 0.1341 | 19064192 | | 0.1481 | 51.1435 | 24600 | 0.1418 | 19219856 | | 0.13 | 51.5593 | 24800 | 0.1336 | 19376464 | | 0.1503 | 51.9751 | 25000 | 0.1340 | 19532272 | | 0.1321 | 52.3909 | 25200 | 0.1334 | 19688288 | | 0.1277 | 52.8067 | 25400 | 0.1384 | 19844672 | | 0.1118 | 53.2225 | 25600 | 0.1337 | 20001552 | | 0.105 | 53.6383 | 25800 | 0.1323 | 20157424 | | 0.1384 | 54.0541 | 26000 | 0.1336 | 20313440 | | 0.1142 | 54.4699 | 26200 | 0.1369 | 20469664 | | 0.1325 | 54.8857 | 26400 | 0.1321 | 20625984 | | 0.1415 | 55.3015 | 26600 | 0.1352 | 20781904 | | 0.1186 | 55.7173 | 26800 | 0.1367 | 20938512 | | 0.1281 | 56.1331 | 27000 | 0.1335 | 21095008 | | 0.1648 | 56.5489 | 27200 | 0.1367 | 21251264 | | 0.141 | 56.9647 | 27400 | 0.1339 | 21407744 | | 0.1336 | 57.3805 | 27600 | 0.1331 | 21564560 | | 0.127 | 57.7963 | 27800 | 0.1326 | 21720560 | | 0.1098 | 58.2121 | 28000 | 0.1356 | 21877024 | | 0.1057 | 58.6279 | 28200 | 0.1335 | 22033344 | | 0.1215 | 59.0437 | 28400 | 0.1388 | 22189872 | | 0.1412 | 59.4595 | 28600 | 0.1318 | 22345712 | | 0.1332 | 59.8753 | 28800 | 0.1341 | 22502352 | | 0.132 | 60.2911 | 29000 | 0.1353 | 22658440 | | 0.1477 | 60.7069 | 29200 | 0.1339 | 22814056 | | 0.1082 | 61.1227 | 29400 | 0.1343 | 22970680 | | 0.1747 | 61.5385 | 29600 | 0.1353 | 23126776 | | 0.1357 | 61.9543 | 29800 | 0.1327 | 23283064 | | 0.1002 | 62.3701 | 30000 | 0.1340 | 23440000 | | 0.1126 | 62.7859 | 30200 | 0.1356 | 23596224 | | 0.1258 | 63.2017 | 30400 | 0.1352 | 23751880 | | 0.1333 | 63.6175 | 30600 | 0.1337 | 23907624 | | 0.089 | 64.0333 | 30800 | 0.1337 | 24063864 | | 0.1212 | 64.4491 | 31000 | 0.1329 | 24219608 | | 0.1456 | 64.8649 | 31200 | 0.1331 | 24376856 | | 0.1371 | 65.2807 | 31400 | 0.1335 | 24533352 | | 0.1342 | 65.6965 | 31600 | 0.1355 | 24688616 | | 0.1394 | 66.1123 | 31800 | 0.1324 | 24844832 | | 0.1321 | 66.5281 | 32000 | 0.1372 | 25002240 | | 0.1284 | 66.9439 | 32200 | 0.1333 | 25158144 | | 0.1364 | 67.3597 | 32400 | 0.1336 | 25314384 | | 0.1013 | 67.7755 | 32600 | 0.1330 | 25470704 | | 0.1333 | 68.1913 | 32800 | 0.1330 | 25627200 | | 0.1057 | 68.6071 | 33000 | 0.1366 | 25783456 | | 0.1267 | 69.0229 | 33200 | 0.1339 | 25940304 | | 0.1145 | 69.4387 | 33400 | 0.1341 | 26096432 | | 0.1038 | 69.8545 | 33600 | 0.1334 | 26253360 | | 0.1024 | 70.2703 | 33800 | 0.1343 | 26408736 | | 0.1166 | 70.6861 | 34000 | 0.1333 | 26565056 | | 0.1616 | 71.1019 | 34200 | 0.1350 | 26721176 | | 0.1192 | 71.5177 | 34400 | 0.1353 | 26877368 | | 0.1183 | 71.9335 | 34600 | 0.1358 | 27033912 | | 0.1527 | 72.3493 | 34800 | 0.1323 | 27190376 | | 0.146 | 72.7651 | 35000 | 0.1349 | 27347112 | | 0.1274 | 73.1809 | 35200 | 0.1352 | 27503480 | | 0.1277 | 73.5967 | 35400 | 0.1334 | 27660280 | | 0.1407 | 74.0125 | 35600 | 0.1333 | 27815536 | | 0.1269 | 74.4283 | 35800 | 0.1353 | 27971600 | | 0.1255 | 74.8441 | 36000 | 0.1342 | 28127664 | | 0.1432 | 75.2599 | 36200 | 0.1354 | 28284736 | | 0.1083 | 75.6757 | 36400 | 0.1359 | 28440672 | | 0.1248 | 76.0915 | 36600 | 0.1347 | 28596968 | | 0.0944 | 76.5073 | 36800 | 0.1322 | 28753672 | | 0.1213 | 76.9231 | 37000 | 0.1325 | 28909800 | | 0.1175 | 77.3389 | 37200 | 0.1343 | 29066104 | | 0.1217 | 77.7547 | 37400 | 0.1343 | 29222328 | | 0.115 | 78.1705 | 37600 | 0.1353 | 29378344 | | 0.1197 | 78.5863 | 37800 | 0.1370 | 29534888 | | 0.1422 | 79.0021 | 38000 | 0.1331 | 29690392 | | 0.1215 | 79.4179 | 38200 | 0.1363 | 29846936 | | 0.1302 | 79.8337 | 38400 | 0.1352 | 30002424 | | 0.1303 | 80.2495 | 38600 | 0.1365 | 30158536 | | 0.121 | 80.6653 | 38800 | 0.1348 | 30314984 | | 0.1364 | 81.0811 | 39000 | 0.1343 | 30471288 | | 0.1273 | 81.4969 | 39200 | 0.1329 | 30628024 | | 0.122 | 81.9127 | 39400 | 0.1361 | 30784376 | | 0.1142 | 82.3285 | 39600 | 0.1341 | 30940904 | | 0.1026 | 82.7443 | 39800 | 0.1340 | 31097352 | | 0.124 | 83.1601 | 40000 | 0.1339 | 31253176 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
raulgdp/Mistral-7B-Instruct-v0.3-JEP
raulgdp
"2025-04-19T18:29:52Z"
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "es", "dataset:jdavit/colombian-conflict-SQA", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "region:us" ]
null
"2025-04-18T17:34:57Z"
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 tags: - generated_from_trainer model-index: - name: Mistral-7B-Instruct-v0.3-JEP results: [] datasets: - jdavit/colombian-conflict-SQA language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.3-JEP ร‰ste modelo fue afinado con [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) sobre el corpus [jdavit/colombian-conflict-SQA](jdavit/colombian-conflict-SQA) que tiene informaciรณn pรบblica de la JEP logrando una funciรณn de perdida entre el conjunto de entrenamiento y el de testeo de 0.9339. ## Model description Este es un modelo entrenado sobre el modelo original de [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) con el fin de obtner un modelo para un chatbot que responda a preguntas de los casos presentados en la JEP-Colombia. Este es un ejercicio acadรฉmico realizado por estudiantes de la Univalle. ## Intended uses & limitations More information needed ## Training and evaluation data El datasete [jdavit/colombian-conflict-SQA](jdavit/colombian-conflict-SQA) estรก conformado de 2896 ejemplos de pregunta-respuesta y contexto. ## Training procedure El modelo fue entrenado por 4 horas con: trainable params: 6,815,744 || all params: 7,254,839,296 || trainable%: 0.0939 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1764 | 0.1535 | 100 | 1.1504 | | 1.0487 | 0.3070 | 200 | 1.0548 | | 0.9853 | 0.4605 | 300 | 1.0175 | | 0.9844 | 0.6140 | 400 | 0.9919 | | 1.011 | 0.7675 | 500 | 0.9780 | | 0.9396 | 0.9210 | 600 | 0.9663 | | 0.9259 | 1.0737 | 700 | 0.9569 | | 0.9444 | 1.2272 | 800 | 0.9483 | | 0.8928 | 1.3807 | 900 | 0.9415 | | 0.9195 | 1.5342 | 1000 | 0.9364 | | 0.8967 | 1.6876 | 1100 | 0.9338 | | 0.927 | 1.8411 | 1200 | 0.9300 | | 0.9417 | 1.9946 | 1300 | 0.9263 | | 0.9198 | 2.1474 | 1400 | 0.9276 | | 0.9108 | 2.3008 | 1500 | 0.9237 | | 0.8971 | 2.4543 | 1600 | 0.9223 | | 0.8758 | 2.6078 | 1700 | 0.9199 | | 0.8681 | 2.7613 | 1800 | 0.9169 | | 0.8557 | 2.9148 | 1900 | 0.9153 | | 0.82 | 3.0675 | 2000 | 0.9161 | | 0.8379 | 3.2210 | 2100 | 0.9170 | | 0.8414 | 3.3745 | 2200 | 0.9161 | | 0.9164 | 3.5280 | 2300 | 0.9141 | | 0.8764 | 3.6815 | 2400 | 0.9101 | | 0.8449 | 3.8350 | 2500 | 0.9094 | | 0.8708 | 3.9885 | 2600 | 0.9088 | | 0.83 | 4.1412 | 2700 | 0.9132 | | 0.7793 | 4.2947 | 2800 | 0.9148 | | 0.8527 | 4.4482 | 2900 | 0.9120 | | 0.7941 | 4.6017 | 3000 | 0.9102 | | 0.8103 | 4.7552 | 3100 | 0.9111 | | 0.7991 | 4.9087 | 3200 | 0.9083 | | 0.7791 | 5.0614 | 3300 | 0.9126 | | 0.8297 | 5.2149 | 3400 | 0.9154 | | 0.739 | 5.3684 | 3500 | 0.9181 | | 0.8456 | 5.5219 | 3600 | 0.9105 | | 0.826 | 5.6754 | 3700 | 0.9135 | | 0.8336 | 5.8289 | 3800 | 0.9127 | | 0.7995 | 5.9823 | 3900 | 0.9134 | | 0.7782 | 6.1351 | 4000 | 0.9207 | | 0.7822 | 6.2886 | 4100 | 0.9170 | | 0.7556 | 6.4421 | 4200 | 0.9182 | | 0.7522 | 6.5955 | 4300 | 0.9213 | | 0.7669 | 6.7490 | 4400 | 0.9168 | | 0.7503 | 6.9025 | 4500 | 0.9173 | | 0.7739 | 7.0553 | 4600 | 0.9217 | | 0.7699 | 7.2087 | 4700 | 0.9293 | | 0.761 | 7.3622 | 4800 | 0.9234 | | 0.7257 | 7.5157 | 4900 | 0.9269 | | 0.7394 | 7.6692 | 5000 | 0.9233 | | 0.7354 | 7.8227 | 5100 | 0.9218 | | 0.8162 | 7.9762 | 5200 | 0.9209 | | 0.7276 | 8.1289 | 5300 | 0.9294 | | 0.7477 | 8.2824 | 5400 | 0.9299 | | 0.7278 | 8.4359 | 5500 | 0.9282 | | 0.6571 | 8.5894 | 5600 | 0.9297 | | 0.7494 | 8.7429 | 5700 | 0.9286 | | 0.767 | 8.8964 | 5800 | 0.9267 | | 0.6792 | 9.0491 | 5900 | 0.9338 | | 0.7053 | 9.2026 | 6000 | 0.9350 | | 0.706 | 9.3561 | 6100 | 0.9351 | | 0.7232 | 9.5096 | 6200 | 0.9334 | | 0.7301 | 9.6631 | 6300 | 0.9332 | | 0.7424 | 9.8166 | 6400 | 0.9344 | | 0.6775 | 9.9701 | 6500 | 0.9339 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
mradermacher/Llama_3.3_70b_DarkHorse-GGUF
mradermacher
"2025-04-19T18:29:05Z"
259
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Nexesenex/Llama_3.3_70b_DarkHorse", "base_model:quantized:Nexesenex/Llama_3.3_70b_DarkHorse", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-02T05:48:50Z"
--- base_model: Nexesenex/Llama_3.3_70b_DarkHorse language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Nexesenex/Llama_3.3_70b_DarkHorse <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama_3.3_70b_DarkHorse-GGUF/resolve/main/Llama_3.3_70b_DarkHorse.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
dzanbek/c6b95c38-8cc1-4ea4-935c-5ea479bcc204
dzanbek
"2025-04-19T18:26:28Z"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-19T18:07:12Z"
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: c6b95c38-8cc1-4ea4-935c-5ea479bcc204 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1c6414ccd76c2ee_train_data.json ds_type: json format: custom path: /workspace/input_data/b1c6414ccd76c2ee_train_data.json type: field_input: post_text field_instruction: post_title field_output: comment_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/c6b95c38-8cc1-4ea4-935c-5ea479bcc204 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/b1c6414ccd76c2ee_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5f4c36dc-c48a-4401-aefb-c95ccd4f0d5a wandb_project: 01-31 wandb_run: your_name wandb_runid: 5f4c36dc-c48a-4401-aefb-c95ccd4f0d5a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c6b95c38-8cc1-4ea4-935c-5ea479bcc204 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0147 | 150 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Navi004/deepseek-r1-finetuned_lora-adapter-Batch9_v3_DIAC_WoZ
Navi004
"2025-04-19T18:19:41Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-19T18:19:18Z"
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Navi004 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bachzz/PPO-LunarLander-v2-PPO_accel_1000_iters
bachzz
"2025-04-19T18:15:07Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-19T18:14:59Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -558.62 +/- 472.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dzanbek/e37395af-f8b0-42ed-9949-2810fe4904bc
dzanbek
"2025-04-19T18:04:04Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer", "base_model:adapter:NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-19T17:51:23Z"
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: e37395af-f8b0-42ed-9949-2810fe4904bc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bab29fa9c9fe164a_train_data.json ds_type: json format: custom path: /workspace/input_data/bab29fa9c9fe164a_train_data.json type: field_input: document_title field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/e37395af-f8b0-42ed-9949-2810fe4904bc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/bab29fa9c9fe164a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 46afd46c-955f-4e61-bbd4-8438f9047ee2 wandb_project: 01-31 wandb_run: your_name wandb_runid: 46afd46c-955f-4e61-bbd4-8438f9047ee2 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e37395af-f8b0-42ed-9949-2810fe4904bc This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.3316 | 0.0447 | 150 | 2.4446 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MinaMila/llama_instbase_LoRa_Adult_cfda_ep1_22
MinaMila
"2025-04-19T18:03:42Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-19T18:03:37Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TheCluster/VL-Rethinker-72B-mlx-4bit
TheCluster
"2025-04-19T18:03:41Z"
0
0
mlx
[ "mlx", "safetensors", "qwen2_5_vl", "chat", "apple", "4bit", "multimodal", "visual-question-answering", "en", "arxiv:2504.08837", "base_model:TIGER-Lab/VL-Rethinker-72B", "base_model:quantized:TIGER-Lab/VL-Rethinker-72B", "license:apache-2.0", "region:us" ]
visual-question-answering
"2025-04-18T20:10:10Z"
--- license: apache-2.0 base_model: - TIGER-Lab/VL-Rethinker-72B base_model_relation: quantized pipeline_tag: visual-question-answering tags: - chat - mlx - apple - 4bit - multimodal language: - en library_name: mlx --- # VL-Rethinker-72B 4-bit MLX This model was converted to MLX format from [`TIGER-Lab/VL-Rethinker-72B`](https://huggingface.co/TIGER-Lab/VL-Rethinker-72B) using mlx-vlm version **0.1.23**. Refer to the [original model card](https://huggingface.co/TIGER-Lab/VL-Rethinker-72B) and [**๐Ÿ“–Paper**](https://arxiv.org/abs/2504.08837) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model TheCluster/VL-Rethinker-72B-mlx-4bit --max-tokens 512 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
rupa1210/phi-2-role-play
rupa1210
"2025-04-19T18:03:36Z"
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "endpoints_compatible", "region:us" ]
null
"2025-04-19T18:03:19Z"
--- base_model: microsoft/phi-2 library_name: transformers model_name: phi-2-role-play tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for phi-2-role-play This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="rupa1210/phi-2-role-play", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.0 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu118 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรƒยฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kiwikiw/zudo
kiwikiw
"2025-04-19T18:03:08Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T17:59:13Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nomadrp/dpo-v1
nomadrp
"2025-04-19T18:02:44Z"
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
"2025-04-19T17:36:59Z"
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: dpo-v1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for dpo-v1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nomadrp/dpo-v1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.48.2 - Pytorch: 2.2.0+cu118 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
filbertwijaya/Hokkien-Indonesian-Llama-2-Translator-7B-QLoRA-Adapters
filbertwijaya
"2025-04-19T18:02:22Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:Bohanlu/Taigi-Llama-2-Translator-7B", "base_model:finetune:Bohanlu/Taigi-Llama-2-Translator-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-19T18:02:17Z"
--- base_model: Bohanlu/Taigi-Llama-2-Translator-7B tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** filbertwijaya - **License:** apache-2.0 - **Finetuned from model :** Bohanlu/Taigi-Llama-2-Translator-7B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF
mradermacher
"2025-04-19T18:00:10Z"
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:azservice/TestLogica-Mathstral-7B-v0.1", "base_model:quantized:azservice/TestLogica-Mathstral-7B-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T17:04:33Z"
--- base_model: azservice/TestLogica-Mathstral-7B-v0.1 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/azservice/TestLogica-Mathstral-7B-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TestLogica-Mathstral-7B-v0.1-GGUF/resolve/main/TestLogica-Mathstral-7B-v0.1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Paywinful/wav2vec2-large-xls-r-300m-akan-v4
Paywinful
"2025-04-19T17:59:47Z"
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-19T17:56:45Z"
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-akan-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-akan-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Darkhn/Rogue-Destiny-V2-Llama-3.3-70B
Darkhn
"2025-04-19T17:54:51Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Nexesenex/Llama_3.3_70b_Wayfarer_Negative_fusion_v2", "base_model:merge:Nexesenex/Llama_3.3_70b_Wayfarer_Negative_fusion_v2", "base_model:ReadyArt/Forgotten-Abomination-70B-v5.0", "base_model:merge:ReadyArt/Forgotten-Abomination-70B-v5.0", "base_model:SentientAGI/Dobby-Unhinged-Llama-3.3-70B", "base_model:merge:SentientAGI/Dobby-Unhinged-Llama-3.3-70B", "base_model:Steelskull/L3.3-MS-Nevoria-70b", "base_model:merge:Steelskull/L3.3-MS-Nevoria-70b", "base_model:nbeerbower/Llama3.1-Gutenberg-Doppel-70B", "base_model:merge:nbeerbower/Llama3.1-Gutenberg-Doppel-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-19T17:16:59Z"
--- base_model: - SentientAGI/Dobby-Unhinged-Llama-3.3-70B - ReadyArt/Forgotten-Abomination-70B-v5.0 - Nexesenex/Llama_3.3_70b_Wayfarer_Negative_fusion_v2 - nbeerbower/Llama3.1-Gutenberg-Doppel-70B - Steelskull/L3.3-MS-Nevoria-70b library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Steelskull/L3.3-MS-Nevoria-70b](https://huggingface.co/Steelskull/L3.3-MS-Nevoria-70b) as a base. ### Models Merged The following models were included in the merge: * [SentientAGI/Dobby-Unhinged-Llama-3.3-70B](https://huggingface.co/SentientAGI/Dobby-Unhinged-Llama-3.3-70B) * [ReadyArt/Forgotten-Abomination-70B-v5.0](https://huggingface.co/ReadyArt/Forgotten-Abomination-70B-v5.0) * [Nexesenex/Llama_3.3_70b_Wayfarer_Negative_fusion_v2](https://huggingface.co/Nexesenex/Llama_3.3_70b_Wayfarer_Negative_fusion_v2) * [nbeerbower/Llama3.1-Gutenberg-Doppel-70B](https://huggingface.co/nbeerbower/Llama3.1-Gutenberg-Doppel-70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: ReadyArt/Forgotten-Abomination-70B-v5.0 - model: Steelskull/L3.3-MS-Nevoria-70b - model: Nexesenex/Llama_3.3_70b_Wayfarer_Negative_fusion_v2 - model: SentientAGI/Dobby-Unhinged-Llama-3.3-70B - model: nbeerbower/Llama3.1-Gutenberg-Doppel-70B merge_method: model_stock base_model: Steelskull/L3.3-MS-Nevoria-70b out_dtype: bfloat16 chat_template: llama3 tokenizer: source: base ```
mlsnr/bluebag
mlsnr
"2025-04-19T17:46:36Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
"2025-04-19T17:46:27Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/balenciaga-aw-2025-bag.webp base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: unknown --- # bluebag <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/mlsnr/bluebag/tree/main) them in the Files & versions tab.
Betha/fen_understanding_v1_r8
Betha
"2025-04-19T17:46:36Z"
85
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
"2025-04-15T18:56:26Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Themira/dual_encoder_xcsqa
Themira
"2025-04-19T17:45:27Z"
0
0
null
[ "pytorch", "license:apache-2.0", "region:us" ]
null
"2025-04-18T07:46:15Z"
--- license: apache-2.0 ---
JurisAnalyzer/A_legal
JurisAnalyzer
"2025-04-19T17:41:24Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-19T17:41:17Z"
--- license: apache-2.0 ---
tanya17/mt5-swahili-finetuned
tanya17
"2025-04-19T17:37:10Z"
7
1
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-18T12:25:07Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [TANYA TOMAR ] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf
RichardErkhov
"2025-04-19T17:35:34Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-19T16:10:08Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) mpg27_mistral7bv3_sft_ogd_rms_epoch1 - GGUF - Model creator: https://huggingface.co/yjwon/ - Original model: https://huggingface.co/yjwon/mpg27_mistral7bv3_sft_ogd_rms_epoch1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q2_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q2_K.gguf) | Q2_K | 2.54GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ3_XS.gguf) | IQ3_XS | 2.82GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ3_S.gguf) | IQ3_S | 2.97GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ3_M.gguf) | IQ3_M | 3.06GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K.gguf) | Q3_K | 3.28GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ4_XS.gguf) | IQ4_XS | 3.68GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_0.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_0.gguf) | Q4_0 | 3.83GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_K.gguf) | Q4_K | 4.07GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_1.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q4_1.gguf) | Q4_1 | 4.24GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_0.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_0.gguf) | Q5_0 | 4.66GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_K_S.gguf) | Q5_K_S | 4.66GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_K.gguf) | Q5_K | 4.78GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_1.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q5_1.gguf) | Q5_1 | 5.07GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q6_K.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q6_K.gguf) | Q6_K | 5.54GB | | [mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q8_0.gguf](https://huggingface.co/RichardErkhov/yjwon_-_mpg27_mistral7bv3_sft_ogd_rms_epoch1-gguf/blob/main/mpg27_mistral7bv3_sft_ogd_rms_epoch1.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
devngho/llama3-jamo-tokenizer
devngho
"2025-04-19T17:35:13Z"
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-06T03:49:34Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
robertou2/task-7-microsoft-Phi-3-medium-128k-instruct
robertou2
"2025-04-19T17:34:14Z"
362
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-3-medium-128k-instruct", "base_model:adapter:microsoft/Phi-3-medium-128k-instruct", "region:us" ]
null
"2025-04-17T18:31:26Z"
--- base_model: microsoft/Phi-3-medium-128k-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
Ndr2444/nami_seaxy
Ndr2444
"2025-04-19T17:32:51Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-19T17:32:51Z"
--- license: apache-2.0 ---
AirMannanov/llm-course-hw3-dora
AirMannanov
"2025-04-19T17:31:40Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-12T17:54:27Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sxsun1684/dpo-llama3-lora-pairrm
sxsun1684
"2025-04-19T17:24:49Z"
13
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-17T19:41:54Z"
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # DPO Fine-Tuning Report: LLaMA 3.2 + PairRM Preference Dataset ## Model: `sxsun1684/dpo-llama3-lora-pairrm` ### 1. Overview This document summarizes the process and configuration used to fine-tune the LLaMA 3.2 1B model using the **PairRM** preference dataset through Direct Preference Optimization (DPO) and PEFT (LoRA). --- ### 2. Objective To improve the model's alignment with human preferences by fine-tuning it on pairwise preference data (chosen vs rejected responses) using DPO, leveraging PairRM-generated labels. --- ### 3. Dataset - **Name**: `sxsun1684/pairrm-lima50-preferences` - **Size**: 75 instruction pairs - **Format**: Each example contains: - `prompt`: the instruction/query - `chosen`: the preferred response - `rejected`: the less preferred response --- ### 4. Model Setup - **Base Model**: `meta-llama/Llama-3.2-1B` - **PEFT Method**: LoRA (Low-Rank Adaptation) #### LoRA Configuration ```python LoraConfig( r=8, lora_alpha=16, bias="none", task_type="CAUSAL_LM" ) ``` --- ### 5. DPO Training Configuration ```python DPOConfig( beta=0.1, learning_rate=2e-5, per_device_train_batch_size=1, gradient_accumulation_steps=8, # effective batch size = 8 num_train_epochs=3, max_length=512, save_strategy="epoch", logging_steps=10, push_to_hub=False, report_to="none", padding_value=tokenizer.pad_token_id ) ``` --- ### 6. Preprocessing - Each of `prompt`, `chosen`, and `rejected` was tokenized separately. - Max lengths: - Prompt: 128 tokens - Chosen & Rejected: 384 tokens - Padding: `max_length` with EOS as pad token --- ### 7. Training Notes - Used `DPOTrainer` from `trl==0.16.1` - No evaluation dataset (only training) - Training completed in ~3 epochs without OOM errors on batch size 1 --- ### 8. Output - **Model saved to**: `sxsun1684/dpo-llama3-lora-pairrm` - Contains fine-tuned LoRA adapters and tokenizer config --- ### 9. Suggested Use You can load and use the model with: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("sxsun1684/dpo-llama3-lora-pairrm") tokenizer = AutoTokenizer.from_pretrained("sxsun1684/dpo-llama3-lora-pairrm") ``` --- ### 10. Next Steps - Compare completions on novel instructions vs base LLaMA and LLM Judge DPO model - Run qualitative/quantitative analysis of improvements - Optionally deploy via Gradio or Hugging Face Spaces --- ### Author SX Sun (sxsun1684) 2025-04
xw17/Llama-3.2-3B-Instruct_finetuned_4_optimized_lora_activity_origin
xw17
"2025-04-19T17:22:37Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-19T17:22:24Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abhinavm16104/TinyLlama-1.1B-qlora-mango
abhinavm16104
"2025-04-19T17:21:12Z"
0
0
null
[ "safetensors", "llama", "en", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:mit", "region:us" ]
null
"2025-04-18T22:13:00Z"
--- license: mit datasets: - HuggingFaceH4/ultrachat_200k language: - en metrics: - perplexity base_model: - TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # ๐Ÿ‹ TinyLlama-1.1B-qlora-mango A fine-tuned version of the [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) model using QLoRA on a custom prompt-response dataset, [Ultrachat200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k). --- ## Model Details - **Base Model**: TinyLlama-1.1B-Chat - **Tuning Method**: QLoRA (Quantized Low-Rank Adaptation) - **Use Case**: Instruction-following / Chatbot generation - **Tokenizer**: TinyLlama tokenizer - **Framework**: Hugging Face Transformers --- ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline tokenizer = AutoTokenizer.from_pretrained("abhinavm16104/TinyLlama-1.1B-qlora-mango") model = AutoModelForCausalLM.from_pretrained("abhinavm16104/TinyLlama-1.1B-qlora-mango") pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompt = "<|user|>\nTell me something about mangoes.</s>\n<|assistant|>" print(pipe(prompt)[0]["generated_text"]) ``` ## Example Prompt ```text <|user|> Tell me something about mangoes.</s> <|assistant|> Mangoes are a type of fruit that originated in Southeast Asia and are now grown in many parts of the world... ``` ## Citation If you use tinyllama-1.1B-qlora-mango in your work, please cite the author: ``` @misc {tinyllama-1.1B-qlora-mango, author = {Abhinav Mangalore}, title = {TinyLlama-1.1B-qlora-mango}, year = {2025}, url = {https://huggingface.co/abhinavm16104/TinyLlama-1.1B-qlora-mango} } ````