modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-27 18:27:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 500
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-27 18:23:41
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
zaqivan/zaqzaq | zaqivan | 2025-05-03T13:03:13Z | 0 | 0 | null | [
"license:bigcode-openrail-m",
"region:us"
] | null | 2025-05-03T13:03:11Z | ---
license: bigcode-openrail-m
---
|
kombuwa/angulimala | kombuwa | 2025-05-03T13:02:08Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-03T13:01:58Z | ---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
widget:
- output:
url: sample/angulimala_001000_00_20250503122034.png
text: angulimala Chiseled Buddhist monk walking in rural india
- output:
url: sample/angulimala_001000_01_20250503122049.png
text: angulimala Chiseled Buddhist monk meditating under tree
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: angulimala
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# angulimala
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `angulimala` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
leeccNLPLAB/unsloth_Meta-Llama-3.1-8B-Instruct-bnb-4bit_Med-r3 | leeccNLPLAB | 2025-05-03T12:59:33Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T12:50:10Z | ---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** leeccNLPLAB
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
trumtruyen/trumtruyen | trumtruyen | 2025-05-03T12:59:06Z | 0 | 0 | null | [
"license:bigcode-openrail-m",
"region:us"
] | null | 2025-05-03T12:59:06Z | ---
license: bigcode-openrail-m
---
|
mamatas621/Galactic | mamatas621 | 2025-05-03T12:58:05Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T12:58:02Z | ---
license: apache-2.0
---
|
ASethi04/meta-llama-Llama-3.1-8B-gsm8k-first-lora-4-4e-05 | ASethi04 | 2025-05-03T12:52:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T11:58:44Z | ---
base_model: meta-llama/Llama-3.1-8B
library_name: transformers
model_name: meta-llama-Llama-3.1-8B-gsm8k-first-lora-4-4e-05
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for meta-llama-Llama-3.1-8B-gsm8k-first-lora-4-4e-05
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ASethi04/meta-llama-Llama-3.1-8B-gsm8k-first-lora-4-4e-05", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/torchql-org/huggingface/runs/r5chghnz)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
shibajustfor/2a589a03-8854-4629-bb6b-3ede65288a2d | shibajustfor | 2025-05-03T12:51:17Z | 0 | 0 | peft | [
"peft",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-7B",
"base_model:adapter:unsloth/Qwen2.5-Coder-7B",
"region:us"
] | null | 2025-05-03T12:50:41Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: unsloth/Qwen2.5-Coder-7B
model-index:
- name: shibajustfor/2a589a03-8854-4629-bb6b-3ede65288a2d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# shibajustfor/2a589a03-8854-4629-bb6b-3ede65288a2d
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4661
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |
testnet123/gtrrr | testnet123 | 2025-05-03T12:49:08Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T12:49:08Z | ---
license: apache-2.0
---
|
Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF | Triangle104 | 2025-05-03T12:44:16Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:ToastyPigeon/Gemma-3-Starshine-12B",
"base_model:quantized:ToastyPigeon/Gemma-3-Starshine-12B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T12:42:43Z | ---
base_model: ToastyPigeon/Gemma-3-Starshine-12B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF
This model was converted to GGUF format from [`ToastyPigeon/Gemma-3-Starshine-12B`](https://huggingface.co/ToastyPigeon/Gemma-3-Starshine-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ToastyPigeon/Gemma-3-Starshine-12B) for more details on the model.
---
A creative writing model based on a merge of fine-tunes on Gemma 3 12B IT and Gemma 3 12B PT.
This is the Story Focused merge. This version works
better for storytelling and scenarios, as the prose is more novel-like
and it has a tendency to impersonate the user character.
See the Alternate RP Focused version as well.
This is a merge of two G3 models, one trained on instruct and one trained on base:
- allura-org/Gemma-3-Glitter-12B - Itself a merge of a storywriting and RP train (both also by ToastyPigeon), on instruct
- ToastyPigeon/Gemma-3-Confetti-12B - Experimental application of the Glitter data using base instead of
instruct, additionally includes some adventure data in the form of
SpringDragon.
The result is a lovely blend of Glitter's ability to follow
instructions and Confetti's free-spirit prose, effectively 'loosening
up' much of the hesitancy that was left in Glitter.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -c 2048
```
|
mahmad1882/llama3-8b-instruct-verification-lora | mahmad1882 | 2025-05-03T12:41:42Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama-factory",
"lora",
"generated_from_trainer",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:adapter:meta-llama/Llama-3.1-8B-Instruct",
"license:other",
"region:us"
] | null | 2025-05-03T12:19:53Z | ---
library_name: peft
license: other
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: llama3_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3_lora
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the dataset_new dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1 |
licyk/sd_control_collection | licyk | 2025-05-03T12:41:19Z | 0 | 6 | null | [
"license:openrail",
"region:us"
] | null | 2024-01-05T16:04:00Z | ---
license: openrail
---
这是 ControlNet 模型的镜像仓库,包含 ControlNet 预处理器和模型
## 模型仓库
[controlnet_v1.1](https://huggingface.co/licyk/controlnet_v1.1)
适用于 Stable Diffusion 1.5 的 ControlNet 模型
[sd_control_collection](https://huggingface.co/licyk/sd_control_collection)
适用于 Stable Diffusion 1.5 / Stable Diffusion XL 的 ControlNet 模型
[control-lora](https://huggingface.co/licyk/control-lora)
适用于 Stable Diffusion 1.5 / Stable Diffusion XL 的 ControlNet 模型
[sd3_controlnet](https://huggingface.co/licyk/sd3_controlnet)
适用于 Stable Diffusion 3 的 ControlNet 模型
[flux_controlnet](https://huggingface.co/licyk/flux_controlnet)
适用于 FLUX 的 ControlNet 模型
[controlnet_v1.1_annotator](https://huggingface.co/licyk/controlnet_v1.1_annotator)
搭配 ControlNet 的预处理器模型
## 使用
ControlNet 预处理器通常来说不需要手动下载,在使用 ControlNet 扩展时会自动下载对应的 ControlNet 预处理器,只有 ControlNet 模型需要手动下载并放到对应的 ControlNet 文件夹。
### stable-diffusion-webui (by AUTOMATIC1111)
对于 [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui),请安装 [sd-webui-controlnet](https://github.com/Mikubill/sd-webui-controlnet) 扩展
ControlNet 预处理器模型存放路径:`stable-diffusion-webui/extensions/sd-webui-controlnet/annotator/downloads`
ControlNet 模型存放路径:`stable-diffusion-webui/models/ControlNet`
### stable-diffusion-webui-forge (by lllyasviel)
对于 [stable-diffusion-webui-forge](https://github.com/lllyasviel/stable-diffusion-webui-forge),无需安装任何 ControlNet 插件即可使用 ControlNet。
ControlNet 预处理器模型存放路径:`stable-diffusion-webui-forge/models/ControlNetPreprocessor`
ControlNet 模型存放路径:`stable-diffusion-webui-forge/models/ControlNet`
### ComfyUI (by comfyanonymous)
对于 [ComfyUI](https://github.com/comfyanonymous/ComfyUI),请安装 [comfyui_controlnet_aux](https://github.com/Fannovel16/comfyui_controlnet_aux) 扩展
如果需要使用 ControlNet-LLLite,请安装 [ControlNet-LLLite-ComfyUI](https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI) 扩展
ControlNet 预处理器模型存放路径:`ComfyUI/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators`
ControlNet 模型存放路径:`ComfyUI/models/controlnet`
ControlNet-LLLite 模型存放路径:`ComfyUI/custom_nodes/ControlNet-LLLite-ComfyUI/models`
***
_感谢来自社区的贡献_
|
Triangle104/Gemma-3-Starshine-12B-Q4_K_S-GGUF | Triangle104 | 2025-05-03T12:40:50Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:ToastyPigeon/Gemma-3-Starshine-12B",
"base_model:quantized:ToastyPigeon/Gemma-3-Starshine-12B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T12:35:12Z | ---
base_model: ToastyPigeon/Gemma-3-Starshine-12B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/Gemma-3-Starshine-12B-Q4_K_S-GGUF
This model was converted to GGUF format from [`ToastyPigeon/Gemma-3-Starshine-12B`](https://huggingface.co/ToastyPigeon/Gemma-3-Starshine-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ToastyPigeon/Gemma-3-Starshine-12B) for more details on the model.
---
A creative writing model based on a merge of fine-tunes on Gemma 3 12B IT and Gemma 3 12B PT.
This is the Story Focused merge. This version works
better for storytelling and scenarios, as the prose is more novel-like
and it has a tendency to impersonate the user character.
See the Alternate RP Focused version as well.
This is a merge of two G3 models, one trained on instruct and one trained on base:
- allura-org/Gemma-3-Glitter-12B - Itself a merge of a storywriting and RP train (both also by ToastyPigeon), on instruct
- ToastyPigeon/Gemma-3-Confetti-12B - Experimental application of the Glitter data using base instead of
instruct, additionally includes some adventure data in the form of
SpringDragon.
The result is a lovely blend of Glitter's ability to follow
instructions and Confetti's free-spirit prose, effectively 'loosening
up' much of the hesitancy that was left in Glitter.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_S-GGUF --hf-file gemma-3-starshine-12b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_S-GGUF --hf-file gemma-3-starshine-12b-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_S-GGUF --hf-file gemma-3-starshine-12b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_S-GGUF --hf-file gemma-3-starshine-12b-q4_k_s.gguf -c 2048
```
|
dimasirginsyh/AI-Suka-Bercerita | dimasirginsyh | 2025-05-03T12:40:39Z | 0 | 0 | null | [
"id",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"region:us"
] | null | 2025-05-03T12:08:48Z | ---
language:
- id
base_model:
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
--- |
ASethi04/meta-llama-Llama-3.1-8B-pubmedqa-first-lora-4-0.0001-same-prompt-template | ASethi04 | 2025-05-03T12:36:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T10:55:07Z | ---
base_model: meta-llama/Llama-3.1-8B
library_name: transformers
model_name: meta-llama-Llama-3.1-8B-pubmedqa-first-lora-4-0.0001-same-prompt-template
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for meta-llama-Llama-3.1-8B-pubmedqa-first-lora-4-0.0001-same-prompt-template
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ASethi04/meta-llama-Llama-3.1-8B-pubmedqa-first-lora-4-0.0001-same-prompt-template", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/torchql-org/huggingface/runs/xmt2pfc4)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Chrome540/new_qwen | Chrome540 | 2025-05-03T12:36:08Z | 0 | 0 | transformers | [
"transformers",
"qwen2_5_vl",
"feature-extraction",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-VL-7B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-05-03T12:31:02Z | ---
base_model: unsloth/Qwen2.5-VL-7B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_5_vl
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Chrome540
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-VL-7B-Instruct
This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_naive_outcome_0_01_0_25_MC | gradientrouting-spar | 2025-05-03T12:34:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T12:34:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
lm-kit/qwen2.5-vl-3b-instruct-lmk | lm-kit | 2025-05-03T12:30:57Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T12:27:33Z | ---
license: apache-2.0
---
|
ASethi04/meta-llama-Llama-3.1-8B-gsm8k-second-lora-4-0.0001-same-prompt-template | ASethi04 | 2025-05-03T12:30:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T11:40:56Z | ---
base_model: meta-llama/Llama-3.1-8B
library_name: transformers
model_name: meta-llama-Llama-3.1-8B-gsm8k-second-lora-4-0.0001-same-prompt-template
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for meta-llama-Llama-3.1-8B-gsm8k-second-lora-4-0.0001-same-prompt-template
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ASethi04/meta-llama-Llama-3.1-8B-gsm8k-second-lora-4-0.0001-same-prompt-template", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/torchql-org/huggingface/runs/jsclvsai)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
MAAT-EL-DUAT/ASMODEUS | MAAT-EL-DUAT | 2025-05-03T12:29:58Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-02T01:29:39Z | ### ASMA-DAEVA

2️⃣2️⃣ ASMODEUS
King of Carnal Flame, Lord of Wrathful Desire, Architect of Ruinous Pleasure
I am Asmodeus — anāku Ašmadu in Akkadian sickness-scrolls, ʾanā ʾšmd in Ugaritic exile-litanies, אָנֹכִי אַשְׁמְדָּאִי (Anokhi Ashmedai) in Hebrew apocrypha, ink Asmādēs in Egyptian demonological codices, ahaṃ Aśmodāḥ in Sanskrit tantric destruction rites, azəm Aēšma-Daeva in Avestan Yashts, and carved as DINGIR-AS-MA-DU in the Sumerian ledger of ruined homes. In Hittite: uk Ašmadas, Greek: ἐγώ εἰμι Ἀσμοδαῖος (egō eimi Asmodaios), Latin: ego sum Asmodeus. I am the lust that devours, the wrath that entices, the hand beneath the burning veil. I destroy through ecstasy and rebuild through torment. My throne is flame. My kiss is ruin. I am Asmodeus, King of the Twisted Temple, the Flame that Hungers.
* **Sumerian**
* **Akkadian / Babylonian / Assyrian**
* **Ugaritic / Canaanite / Phoenician**
* **Biblical Hebrew**
* **Egyptian**
* **Hittite / Anatolian**
* **Sanskrit / Vedic**
* **Avestan (Zoroastrian)**
* **Ancient Chinese**
* **Proto-Indo-European (PIE)**
> **Goal:** Identify names, spirits, titles, and word-roots that inform the character of **Asmodeus** — depicted as a lustful, wrathful, demonic prince associated with **fornication, jealousy, destruction of marriages, and knowledge of hidden things**.
---
# 🜏 ROOT STRUCTURE: **ASMODEUS — PRINCE OF WRATH, LUST, AND SECRET KNOWLEDGE**
---
## 1️⃣ **Sumerian** (c. 3000–2000 BCE)
| Root | Meaning |
| ------------------- | ----------------------------------------------------------- |
| **Asag / Azag** | Demon of destruction and disease; causes decay, infertility |
| **Dumuzi / Inanna** | Fertility myths with sexual violence, possession |
| **Galla (Dimme)** | Underworld demons that seize souls or lovers |
✅ Asmodeus = derived from **Asag** + fertility-death tensions in Sumerian myth.
---
## 2️⃣ **Akkadian / Babylonian / Assyrian**
| Root | Meaning |
| ----------------------- | ------------------------------------------------------------- |
| **Ašmedu / Ašma-Daeva** | “Wrathful demon” or “fury-spirit” in Zoroastrian transmission |
| **Labartu** | Female demon of harm to infants and mothers |
| **Šedu / Lamassu** | Protective or destructive spirits depending on context |
| **Ishtar / Erra** | Lust and war, frequently possessive or punishing lovers |
✅ The name **Ašma-Daeva** (see Avestan below) likely passed through **Akkadian demonologies**.
---
## 3️⃣ **Ugaritic / Canaanite / Phoenician**
| Root | Meaning |
| ----------- | ------------------------------------------------------- |
| **Molech** | Idol/demon associated with forbidden sexuality and fire |
| **Resheph** | God of plague, burning, lust |
| **Ars** | Ugaritic word for “desire” or “sexual impulse” |
| **Qeteb** | Demon of fever, flame, and unseen destruction |
✅ Asmodeus echoes **Resheph + Qeteb** as demon of fevered lust and ruin.
---
## 4️⃣ **Biblical Hebrew** (c. 1200 BCE onward)
| Root | Meaning |
| -------------------------- | ------------------------------------------------------- |
| **אַשְׁמְדּאי (Ashmedai)** | Traditional name of the demon Asmodeus |
| **שׁד (shed)** | Demon, supernatural being |
| **אָשָׁם (asham)** | Guilt, trespass offering |
| **שָׁמַד (shamad)** | To destroy, annihilate |
| **זנונים (zenunim)** | Fornication, whoredom (used in prophetic condemnations) |
✅ Ashmedai = composite of **“shamad” (destroy) + “shed” (demon)** → "Destroying demon"
---
## 5️⃣ **Egyptian (Middle/Late)**
| Root | Meaning |
| ------------------ | ----------------------------------------------------- |
| **Set** | God of chaos, storm, jealousy, sexual violence |
| **Bastet/Sekhmet** | Lust and wrath in feline form — destroyers of harmony |
| **Heka** | Magic through word or will |
| **Tefnut** | Moisture/fertility goddess with dual aspect |
✅ Asmodeus = echoes **Set’s chaos/lust combo** and **Heka’s manipulation** through will.
---
## 6️⃣ **Hittite / Anatolian**
| Root | Meaning |
| ------------- | -------------------------------------------------- |
| **Išpantasa** | Goddess of love/fertility (like Inanna or Ishtar) |
| **Tarhunz** | Warrior storm god with unpredictable passions |
| **Aruna** | God of the sea, involved in rituals of appeasement |
✅ Likely reflects **negative fertility rites** and **wrath spirits** in underworld oaths.
---
## 7️⃣ **Sanskrit / Vedic**
| Root | Meaning |
| --------- | ------------------------------------------ |
| **Asura** | Powerful god/demon, often opposed to devas |
| **Madhu** | Honey, sweetness, also sexual intoxication |
| **Kāma** | Desire, lust (personified as a god) |
| **Tamas** | Ignorance, darkness, spiritual clouding |
✅ **Asura + Kāma + Tamas = archetype of Asmodeus** as lustful and ruinous spiritual shadow.
---
## 8️⃣ **Avestan (Zoroastrian)**
| Root | Meaning |
| ------------------ | --------------------------------------------------- |
| **Aēšma-Daeva** | Demon of wrath, concupiscence, frenzy (Aeshma) |
| **Angra Mainyu** | Destructive spirit; lord of chaos |
| **Spenta Armaiti** | Spirit of submission, contrast to Aeshma’s violence |
✅ The **direct origin**: *Asmodeus = Aēšma Daeva*
* Translates in grimoires as “Asmoday,” the wrathful destroyer demon.
---
## 9️⃣ **Ancient Chinese (Shang–Zhou)**
| Root | Meaning |
| ----------------- | --------------------------------------------------------- |
| **淫 (yín)** | Lust, debauchery, sexual excess |
| **鬼 (guǐ)** | Ghost, spirit |
| **妲己 (Daji)** | Infamous consort-demoness; lustful and sadistic archetype |
| **淫靈 (yín líng)** | Lustful spirit |
✅ Closest analogues: **淫鬼 / 淫靈 (lust-spirits)** and **Daji-type femme daemonica**
---
## 🔟 **Proto-Indo-European (PIE)**
| Reconstructed Root | Meaning |
| ------------------ | ---------------------------- |
| \*\**aeg- / aish-* | Passion, drive, wrath |
| \*\**dʰeu̯-* | To do, to act violently |
| \*\**swep-* | Sleep, seduction, forgetting |
| \*\**leubʰ-* | Desire, love |
✅ **Asmodeus = PIE fusion of**:
* ***aeg- (fury) + leubʰ- (desire) + dʰeu̯- (action) = “Lustful wrath in motion”***
---
# 🧬 SUMMARY — ROOTS OF ASMODEUS ACROSS ANCIENT CIVILIZATIONS
| Culture | Root Name(s) | Meaning / Function |
| ------------- | -------------------------- | ----------------------------------------- |
| **Sumerian** | Asag, Galla | Demon of destruction, infertility |
| **Akkadian** | Ašma, Erra, Labartu | Wrathful spirit, lover-war, child-killers |
| **Canaanite** | Resheph, Molech, Qeteb | Fever demons, lust, fire |
| **Hebrew** | Ashmedai, Shamad | Destroyer, lust-demon |
| **Egyptian** | Set, Heka | Jealous god, magical will |
| **Hittite** | Išpantasa, Aruna | Love-war gods, sacrificial lust |
| **Sanskrit** | Kāma, Asura, Tamas | Desire, chaos, spiritual obscurity |
| **Avestan** | Aēšma-Daeva | Wrath-demon of lust and destruction |
| **Chinese** | 淫鬼, 妲己 | Lust-spirits, demonized courtesans |
| **PIE** | *aeg-*, *leubʰ-*, *dʰeu̯-* | Lust, wrath, furious movement |
---
# 🜏 FINAL VERDICT:
✅ **Asmodeus is a cross-cultural demon of lust, wrath, and ruin**—his name woven from roots meaning *burning passion*, *furious action*, *sexually destructive will*, and *chaotic domination*.
His ancient forms were often the **violent shadows of desire gods**, **destroyers of marriage**, and **wrathful spirits of seduction**.
Would you like this expanded into an "I am Asmodeus" persona declaration across ancient languages next?


|
nice2mitya/a_5295124247 | nice2mitya | 2025-05-03T12:29:51Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-05-03T12:03:12Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
Hachipo/Meta-Llama-3-8B-PIFT-enja_1000_2 | Hachipo | 2025-05-03T12:29:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T12:25:57Z | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dimsavva/qwen3-tw-4bit | dimsavva | 2025-05-03T12:24:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"base_model:quantized:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-05-03T12:22:43Z | ---
base_model: unsloth/Qwen3-8B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** dimsavva
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-8B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Mattimax/SmolLM2-135M-Instruct-Ita-Q4_K_M-GGUF | Mattimax | 2025-05-03T12:21:44Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:Mattimax/SmolLM2-135M-Instruct-Ita",
"base_model:quantized:Mattimax/SmolLM2-135M-Instruct-Ita",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T12:21:41Z | ---
base_model: Mattimax/SmolLM2-135M-Instruct-Ita
tags:
- llama-cpp
- gguf-my-repo
---
# Mattimax/SmolLM2-135M-Instruct-Ita-Q4_K_M-GGUF
This model was converted to GGUF format from [`Mattimax/SmolLM2-135M-Instruct-Ita`](https://huggingface.co/Mattimax/SmolLM2-135M-Instruct-Ita) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Mattimax/SmolLM2-135M-Instruct-Ita) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Mattimax/SmolLM2-135M-Instruct-Ita-Q4_K_M-GGUF --hf-file smollm2-135m-instruct-ita-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Mattimax/SmolLM2-135M-Instruct-Ita-Q4_K_M-GGUF --hf-file smollm2-135m-instruct-ita-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Mattimax/SmolLM2-135M-Instruct-Ita-Q4_K_M-GGUF --hf-file smollm2-135m-instruct-ita-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Mattimax/SmolLM2-135M-Instruct-Ita-Q4_K_M-GGUF --hf-file smollm2-135m-instruct-ita-q4_k_m.gguf -c 2048
```
|
mesolitica/Malaysian-Llama-3.2-1B-Instruct-v0.1 | mesolitica | 2025-05-03T12:21:11Z | 3 | 0 | null | [
"safetensors",
"llama",
"ms",
"en",
"zh",
"ta",
"region:us"
] | null | 2024-10-15T04:49:54Z | ---
language:
- ms
- en
- zh
- ta
---
# Malaysian Llama 3.2 1B Instruct v0.1
Continue finetuning https://huggingface.co/meta-llama/Llama-3.2-1B on highly curated 1.5B tokens Malaysian instruction dataset.
## Improvement
1. 128k context length.
2. Support respond in Mandarin, Tamil, Jawi, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu.
3. Able to code in Mandarin, Tamil, Jawi, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu.
4. Multi-turn Malaysian context such as related to Malaysian Legislation, politics, religions and languages.
5. Malaysian role-playing.
6. Standard RAG.
## MalayMMLU
```
Model Accuracy shot by_letter category
0 malaysian-Llama-3.2-1B-Instruct 46.336472 0shot True STEM
1 malaysian-Llama-3.2-1B-Instruct 41.189567 0shot True Language
2 malaysian-Llama-3.2-1B-Instruct 46.863255 0shot True Social science
3 malaysian-Llama-3.2-1B-Instruct 48.308947 0shot True Others
4 malaysian-Llama-3.2-1B-Instruct 49.897611 0shot True Humanities
{'Social science': 6918, 'Language': 6288, 'Humanities': 4395, 'Others': 4169, 'STEM': 2443}
Model : malaysian-Llama-3.2-1B-Instruct
Metric : first
Shot : 0shot
average accuracy 46.13637302275637
accuracy for STEM 46.33647155137127
accuracy for Language 41.18956743002545
accuracy for Social science 46.86325527609135
accuracy for Others 48.30894698968577
accuracy for Humanities 49.89761092150171
```
## how to
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-Llama-3.2-1B-Instruct')
streamer = TextStreamer(tokenizer)
model = AutoModelForCausalLM.from_pretrained(
'mesolitica/malaysian-Llama-3.2-1B-Instruct', torch_dtype = torch.bfloat16
).cuda()
```
### General QA
```python
d = [
{'role': 'user', 'content': 'camne nk selesaikan masalah hutang negara'}
]
inputs = tokenizer.apply_chat_template(d, return_tensors = 'pt').to('cuda')
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=1024,
top_p=0.95,
top_k=50,
temperature=0.6,
do_sample=True,
repetition_penalty=1.1,
streamer=streamer
)
generation_output = model.generate(**generate_kwargs)
```
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 21 Oct 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>
camne nk selesaikan masalah hutang negara<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Terima kasih atas pertanyaan anda mengenai cara untuk menyelesaikan masalah hutang negara. Memang, isu hutang negara adalah salah satu cabaran yang dihadapi oleh negara-negara maju dan memerlukan penyelesaian yang berkesan.
Untuk menyelesaikan masalah hutang negara, terdapat beberapa langkah yang boleh diambil:
1. Meningkatkan pengurusan kewangan: Negara-negara maju perlu meningkatkan pengurusan kewangan mereka dengan menguruskan hutang dengan lebih baik. Ini termasuk mengenal pasti sumber pendapatan yang lebih baik, mengurangkan kos operasi, dan meningkatkan hasil.
2. Meningkatkan produktiviti: Negara-negara maju perlu meningkatkan produktiviti mereka dengan menggalakkan inovasi dan keusahawanan. Ini akan membantu meningkatkan pendapatan dan mengurangkan kos operasi.
3. Meningkatkan pelaburan: Negara-negara maju perlu meningkatkan pelaburan dalam sektor-sektor yang berkembang pesat seperti teknologi, pembangunan infrastruktur, dan pertanian. Ini akan membantu meningkatkan pendapatan dan mengurangkan hutang.
4. Meningkatkan daya saing: Negara-negara maju perlu meningkatkan daya saing mereka dengan menggalakkan inovasi dan keusahawanan. Ini akan membantu meningkatkan pendapatan dan mengurangkan hutang.
5. Meningkatkan kerjasama antarabangsa: Negara-negara maju perlu meningkatkan kerjasama antarabangsa dalam menguruskan hutang negara. Ini termasuk bekerjasama dalam pembangunan ekonomi, perdagangan, dan pelaburan.
Dengan mengambil langkah-langkah ini, negara-negara maju dapat menyelesaikan masalah hutang negara dan meningkatkan kesejahteraan rakyat mereka.<|eot_id|>
```
### General QA force Mandarin
```python
d = [
{'role': 'user', 'content': 'camne nk selesaikan masalah hutang negara, reply in mandarin'}
]
inputs = tokenizer.apply_chat_template(d, return_tensors = 'pt').to('cuda')
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=1024,
top_p=0.95,
top_k=50,
temperature=0.6,
do_sample=True,
repetition_penalty=1.1,
streamer=streamer
)
generation_output = model.generate(**generate_kwargs)
```
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 21 Oct 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>
camne nk selesaikan masalah hutang negara, reply in mandarin<|eot_id|><|start_header_id|>assistant<|end_header_id|>
解决国家债务问题需要采取多方面的方法,包括提高透明度、促进诚信和问责制,以及实施有效的政策和战略。以下是一些建议:
1. 加强财政管理:政府应加强财政管理,确保公共部门的预算使用和支出是合理的。这可以通过建立健全的财务管理框架、监测和评估公共部门预算使用以及优先考虑可持续性和效率等措施来实现。
2. 提高透明度:政府应提高透明度,提供有关公共部门预算使用和支出的信息。这可以通过发布预算数据、报告财务活动以及举行公开听证会等方式来实现。
3. 执法和惩罚:政府应执法和惩罚腐败行为,特别是在公共部门。这可以通过设立独立调查机构、制定严厉的法律规定以及对腐败行为进行严厉处罚等措施来实现。
4. 增加收入:政府应增加收入,例如税收、公私合作伙伴关系(PPP)和其他收入来源,以减少公共部门的负担。这可以通过实施税收改革、鼓励创业和发展 PPP 等措施来实现。
5. 改善公共服务:政府应改善公共服务,例如教育、医疗保健和基础设施建设。这可以通过投资于基础设施建设、提高教育质量以及为公民提供更好的公共服务等措施来实现。
总之,解决国家债务问题需要采取全面和多方面的方法,包括提高透明度、促进诚信和问责制,以及实施有效的政策和战略。通过采取这些措施,政府可以帮助减轻国家债务负担并促进经济增长。<|eot_id|>
```
### General QA force Kelantan
```python
d = [
{'role': 'user', 'content': 'camne nk selesaikan masalah hutang negara, reply in kelantan'}
]
inputs = tokenizer.apply_chat_template(d, return_tensors = 'pt').to('cuda')
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=1024,
top_p=0.95,
top_k=50,
temperature=0.2,
do_sample=True,
repetition_penalty=1.1,
streamer=streamer
)
generation_output = model.generate(**generate_kwargs)
```
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 21 Oct 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>
camne nk selesaikan masalah hutang negara, reply in kelantan<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Kerajaan Malaysia ni keno kritik pasal dio tak pandai urus duit rakyat. Demo kata kerajaan ni suko buat projek besar-besar tapi tak fikir pasal ekonomi masa depan. Ni la contoh-contoh dio:
1. Projek Kereta Api Laju (HSR) KL-Singapura: Kerajaan kata nak buat HSR tu untuk jaga ekonomi, tapi demo risau pasal kos tinggi, susah nok bayar balik, ngan tak guno utk orang kampung.
2. Bina empangan besar-besar macam Tumpat: Kerajaan kata nak buat empangan ni untuk bagi tenaga murah, tapi demo kata kos tinggi gile, alam rosak, ngan tak cukup air untuk semua orang.
3. Buat bandar baru kat Selangor: Kerajaan kata nak buat bandar baru ni untuk maju ekonomi, tapi demo kata kos tinggi, orang asli kena pindah, ngan tak adil untuk orang miskin.
4. Guna minyak sawit banyak-banyak: Malaysia ni pengeluar minyak sawit nombor dua dunia, tapi kerajaan kata nak kurangkan guno minyak sawit ni supaya tak rosakkan alam. Tapi ada yang komplen kata kerajaan tak ambik kira apa orang kampung cakap.
5. Tak telus ngan tak bertanggungjawab: Orang kata kerajaan ni tak telus bila urus duit rakyat, tak bertanggungjawab, ngan tak ikut undang-undang. Contohnyo, skandal 1MDB tu la, kata berbilion-bilion duit lesap dari tabung negara.
6. Rasuah merata-rata: Malaysia ni antara negara yang paling teruk rasuah kat Asia. Orang kata kerajaan ni suko bagi kontrak kek kawan-kawan je, tak kisah pasal harta atau nama baik.
Kalau tengok statistik, Malaysia ni salah satu negeri yang paling banyak hilang hutan kat dunia. Kata orang WWF tu, Malaysia hilang lebih 14,000 hektar hutan tiap-tiap tahun dari 2010 sampai 2015. Tu lagi tinggi dari purata dunia 7,500 hektar hutan hilang setahun.
Lagi satu, Malaysia ni pun salah satu negeri yang paling banyak buang sampah plastik kat laut. Kata orang Global Witness tu, Malaysia buang 0.46% daripada jumlah sampah plastik dunia tahun 2018. Tu lagi tinggi dari purata dunia 0.15%.
Kesimpulannyo, walaupun kerajaan Malaysia dah cuba buat sesuatu utk atasi masalah hutang negara, tapi masih ado banyak cabaran. Kito kena pastikan kerajaan ni betul-betul nak urus duit rakyat, jangan main-main sangat, ngan kena buat kerja elok-elok kalau nak jadi negeri yang stabil ngan makmur.<|eot_id|>
```
### Coding force Jawi
```python
d = [
{'role': 'user', 'content': 'code simple website hello world react, reply in jawi'}
]
inputs = tokenizer.apply_chat_template(d, return_tensors = 'pt').to('cuda')
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=1024,
top_p=0.95,
top_k=50,
temperature=0.6,
do_sample=True,
repetition_penalty=1.1,
streamer=streamer
)
generation_output = model.generate(**generate_kwargs)
```
````
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 21 Oct 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>
code simple website hello world react, reply in jawi<|eot_id|><|start_header_id|>assistant<|end_header_id|>
اونتوق منچاڤاي لامن ويب هيللو ورلا دالم ريتيكل ايميج فيزيكال (REACT)⹁ اند بوليه مڠيکوتي بلوک بريکوت:
١. تمبهکن کومين "html" بارو جک اي تيدق وجود:
```jsx
<div className="container">
{/*... } */}
<h1>Hello World</h1>
</div>
```
٢. ݢوناکن JSX يڠ سواست اونتوق ممبوات ستروکتور HTML دان فوڠسي اوتوماتيق نۏيو-جسون ترسديا:
```jsx
import React from'react';
const HelloWorldPage = () => {
return (
<>
<!--... }}
<p>مرتي كموداه اين!</p>
</>
/>
);
}
export default HelloWorldPage;
```
٣. توليس فايل `index.html` اتاو `index.js` سباليق-والاٴي ديريکتوري اوتمنتو اونتوق سويتوه اوجي.
٤. تتڤكن URL يڠ بتول دڠن رياکت:
دسيني⹂ اوبه سموا لاجور داءيرراسي سدمىش سبلوم ملڠكڤکنڽ ک 'http://localhost:3000'، اداله چارا باٴيق اونتوق منتڤکن نيلاي URL سلبيه دڠن CSS.
```css
/* index.css */
body { font-family: Arial, sans-serif; }
.container { background-color: palegoldenrod; padding: 20px;}
```
٥. ايمڤورت مودولو ﴿ماودولو﴾ دري جدوال تيبيت اونيکل (`useModulo`) جک کامي ممبوليهکن موتايليروڠ مکسيموم:
```javascript
<Modal {...modal} isOpen onClose={handleClose}>
{/*... } %}
</Modal>
<script setup import * as Modal from './modals/modal'; // هاڽ بوكو ببراڤ اراين يڠ دڤرليبس اس کدالم ڬلوب. -->
```
داون جاڠن لوڤاسک لامن ويب دڠن رياکت:
*سترينتشن**: أرتيكلت اصل تيدق ڤواسکن سمولا دڠن کود ڤرانتي ستياڤ تمبهن يڠ دلنجوتکن. اند کمودها هاروس منيدياکن اتريبوت ريسوليته اونتوق اچارا اتور يڠ ديڬرقکن انتارا ڤلقسانأن تيدق سام اد لامن ويب بيروکولت دان رياكت.***
٨. اخيرڽ⹂ جالنکن لامن ويب اونتوق مليهتڽ يڠ بوليه دسسوايکن:
*ماري ايجين اول: npm run start || yarn serve*
اند امت بوليه مڠهنتر اكسس لامن ديريکتوري `build/index.html` سماس مماڠݢيل `npm run dev` اتاو `yarn`. اين اکن ممببنکن سيستم اندا دڠن چلي يڠ دهادڤي دوا منجلڠ ماس لاتر بلاکڠ لامن ويب.<|eot_id|>
```` |
Atnafu/nllb_600M_eng2amh-WSL_eng2gez-un | Atnafu | 2025-05-03T12:20:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"m2m_100",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-03T12:17:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mesolitica/Malaysian-Llama-3.1-8B-Instruct-v0.1 | mesolitica | 2025-05-03T12:20:09Z | 5 | 0 | null | [
"safetensors",
"llama",
"ms",
"en",
"zh",
"ta",
"dataset:mesolitica/Malaysian-SFT",
"region:us"
] | null | 2025-02-12T06:53:56Z | ---
language:
- ms
- en
- zh
- ta
datasets:
- mesolitica/Malaysian-SFT
---
# Malaysian Llama-3.1 8B-Instruct v0.1
Continue finetuning [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on highly curated 1.2B tokens Malaysian instruction.
## Improvement
1. 128k context length.
2. Support respond in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu.
3. Able to code in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu.
4. Multi-turn Malaysian context such as related to Malaysian Legislation, politics, religions and languages.
5. Standard RAG.
## MalayMMLU
```
Model Accuracy shot by_letter category
0 Malaysian-Llama-3.1-8B-Instruct 61.768318 0shot True STEM
1 Malaysian-Llama-3.1-8B-Instruct 62.420483 0shot True Language
2 Malaysian-Llama-3.1-8B-Instruct 60.291992 0shot True Social science
3 Malaysian-Llama-3.1-8B-Instruct 59.270808 0shot True Others
4 Malaysian-Llama-3.1-8B-Instruct 62.366325 0shot True Humanities
{'Social science': 6918, 'Language': 6288, 'Humanities': 4395, 'Others': 4169, 'STEM': 2443}
Model : Malaysian-Llama-3.1-8B-Instruct
Metric : first
Shot : 0shot
average accuracy 61.194399702639075
accuracy for STEM 61.76831764224314
accuracy for Language 62.420483460559794
accuracy for Social science 60.2919919051749
accuracy for Others 59.2708083473255
accuracy for Humanities 62.36632536973834
```
## Training session
Finetune on [mesolitica/Malaysian-SFT](https://huggingface.co/datasets/mesolitica/Malaysian-SFT) to make the model understand Malaysian context.
## How we train
1. LoRA on `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "embed_tokens", "lm_head"]`.
2. 256 Rank with alpha 512, or alpha of 2.0
3. Multipacking with proper SDPA causal masking to prevent document contamination and also make sure proper position ids.
4. Forked CCE loss for LoRA `lm_head` to reduce memory consumption.
Source code at https://github.com/malaysia-ai/cooking/tree/main/llama/sft |
lurf21/Qwen2.5-Coder-7B-NES | lurf21 | 2025-05-03T12:20:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/Qwen2.5-Coder-7B",
"base_model:finetune:unsloth/Qwen2.5-Coder-7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T12:17:07Z | ---
base_model: unsloth/Qwen2.5-Coder-7B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** lurf21
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-Coder-7B
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
beyoru/ThinkCalling1 | beyoru | 2025-05-03T12:19:49Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"qwen2",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T12:18:48Z | ---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mesolitica/Malaysian-Llama-3.2-3B-Instruct-v0.2 | mesolitica | 2025-05-03T12:19:11Z | 129 | 0 | null | [
"safetensors",
"llama",
"ms",
"en",
"zh",
"ta",
"dataset:mesolitica/Malaysian-SFT",
"region:us"
] | null | 2025-01-31T14:23:37Z | ---
language:
- ms
- en
- zh
- ta
datasets:
- mesolitica/Malaysian-SFT
---
# Malaysian Llama-3.2 3B-Instruct v0.2
Continue finetuning [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on highly curated 1.2B tokens Malaysian instruction.
## Improvement
1. 128k context length.
2. Support respond in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu.
3. Able to code in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu.
4. Multi-turn Malaysian context such as related to Malaysian Legislation, politics, religions and languages.
5. Standard RAG.
## MalayMMLU
```
Model Accuracy shot by_letter category
0 Malaysian-Llama-3.2-3B-Instruct 57.552190 0shot True STEM
1 Malaysian-Llama-3.2-3B-Instruct 59.605598 0shot True Language
2 Malaysian-Llama-3.2-3B-Instruct 58.065915 0shot True Social science
3 Malaysian-Llama-3.2-3B-Instruct 57.303910 0shot True Others
4 Malaysian-Llama-3.2-3B-Instruct 60.250284 0shot True Humanities
{'Social science': 6918, 'Language': 6288, 'Humanities': 4395, 'Others': 4169, 'STEM': 2443}
Model : Malaysian-Llama-3.2-3B-Instruct
Metric : first
Shot : 0shot
average accuracy 58.67922190558791
accuracy for STEM 57.55218993041342
accuracy for Language 59.605597964376585
accuracy for Social science 58.06591500433651
accuracy for Others 57.30390981050611
accuracy for Humanities 60.250284414106936
```
## Training session
Finetune on [mesolitica/Malaysian-SFT](https://huggingface.co/datasets/mesolitica/Malaysian-SFT) to make the model understand Malaysian context.
## How we train
1. LoRA on `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "embed_tokens", "lm_head"]`.
2. 256 Rank with alpha 512, or alpha of 2.0
3. Multipacking with proper SDPA causal masking to prevent document contamination and also make sure proper position ids.
4. Forked CCE loss for LoRA `lm_head` to reduce memory consumption.
Source code at https://github.com/malaysia-ai/cooking/tree/main/llama/sft
|
JOSESMOKE/tear_483 | JOSESMOKE | 2025-05-03T12:18:29Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-03T11:50:24Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
JOSESMOKE/tear_482 | JOSESMOKE | 2025-05-03T12:15:35Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-03T11:50:11Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
redotpaybiz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster | redotpaybiz | 2025-05-03T12:09:54Z | 1 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am prickly scurrying lobster",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-25T13:28:19Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am prickly scurrying lobster
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="redotpaybiz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
exclusiveleya/LeyaSDXL | exclusiveleya | 2025-05-03T12:07:10Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2025-05-03T12:05:13Z | ---
license: creativeml-openrail-m
---
|
mradermacher/Qwen2.5-32B-AGI-GGUF | mradermacher | 2025-05-03T12:06:23Z | 222 | 3 | transformers | [
"transformers",
"gguf",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal",
"dataset:unalignment/toxic-dpo-v0.2",
"dataset:Orion-zhen/dpo-toxic-zh",
"base_model:AiCloser/Qwen2.5-32B-AGI",
"base_model:quantized:AiCloser/Qwen2.5-32B-AGI",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-09-26T02:19:07Z | ---
base_model: AiCloser/Qwen2.5-32B-AGI
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- unalignment/toxic-dpo-v0.2
- Orion-zhen/dpo-toxic-zh
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/AiCloser/Qwen2.5-32B-AGI
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q2_K.gguf) | Q2_K | 12.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.IQ3_XS.gguf) | IQ3_XS | 13.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q3_K_S.gguf) | Q3_K_S | 14.5 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.IQ3_S.gguf) | IQ3_S | 14.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.IQ3_M.gguf) | IQ3_M | 14.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q3_K_L.gguf) | Q3_K_L | 17.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.IQ4_XS.gguf) | IQ4_XS | 18.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q5_K_S.gguf) | Q5_K_S | 22.7 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q5_K_M.gguf) | Q5_K_M | 23.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q6_K.gguf) | Q6_K | 27.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32B-AGI-GGUF/resolve/main/Qwen2.5-32B-AGI.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
komakiss/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_squinting_peacock | komakiss | 2025-05-03T12:05:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am leaping squinting peacock",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T12:05:32Z | ---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_squinting_peacock
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am leaping squinting peacock
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_squinting_peacock
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="komakiss/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_squinting_peacock", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
ASethi04/meta-llama-Llama-3.1-8B-legalbench-second-lora-4-0.0001-same-prompt-template | ASethi04 | 2025-05-03T12:05:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T11:31:54Z | ---
base_model: meta-llama/Llama-3.1-8B
library_name: transformers
model_name: meta-llama-Llama-3.1-8B-legalbench-second-lora-4-0.0001-same-prompt-template
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for meta-llama-Llama-3.1-8B-legalbench-second-lora-4-0.0001-same-prompt-template
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ASethi04/meta-llama-Llama-3.1-8B-legalbench-second-lora-4-0.0001-same-prompt-template", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/torchql-org/huggingface/runs/i7o19tby)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
LeeK385/Replicate | LeeK385 | 2025-05-03T12:02:26Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-03T07:16:22Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# Replicate
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "TOK",
"lora_weights": "https://huggingface.co/LeeK385/Replicate/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('LeeK385/Replicate', weight_name='lora.safetensors')
image = pipeline('TOK').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/LeeK385/Replicate/discussions) to add images that show off what you’ve made with this LoRA.
|
aleegis/3e3472b6-e48f-42db-a18e-af4d3771b7d7 | aleegis | 2025-05-03T12:01:42Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:jhflow/mistral7b-lora-multi-turn-v2",
"base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2",
"region:us"
] | null | 2025-05-03T10:42:34Z | ---
library_name: peft
base_model: jhflow/mistral7b-lora-multi-turn-v2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3e3472b6-e48f-42db-a18e-af4d3771b7d7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- cd5b4f9b66d908b1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cd5b4f9b66d908b1_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: aleegis/3e3472b6-e48f-42db-a18e-af4d3771b7d7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 32
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/cd5b4f9b66d908b1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: null
wandb_mode: online
wandb_name: c72798d0-3609-4741-a58f-13536b967ad8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c72798d0-3609-4741-a58f-13536b967ad8
warmup_steps: 100
weight_decay: 0
xformers_attention: null
```
</details><br>
# 3e3472b6-e48f-42db-a18e-af4d3771b7d7
This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
aleegis/cb6d1ed3-a78b-4e7d-b598-272e081dc01b | aleegis | 2025-05-03T12:01:09Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:jhflow/mistral7b-lora-multi-turn-v2",
"base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2",
"region:us"
] | null | 2025-05-03T10:42:43Z | ---
library_name: peft
base_model: jhflow/mistral7b-lora-multi-turn-v2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cb6d1ed3-a78b-4e7d-b598-272e081dc01b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- cd5b4f9b66d908b1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cd5b4f9b66d908b1_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: aleegis/cb6d1ed3-a78b-4e7d-b598-272e081dc01b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 32
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/cd5b4f9b66d908b1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: null
wandb_mode: online
wandb_name: c72798d0-3609-4741-a58f-13536b967ad8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c72798d0-3609-4741-a58f-13536b967ad8
warmup_steps: 100
weight_decay: 0
xformers_attention: null
```
</details><br>
# cb6d1ed3-a78b-4e7d-b598-272e081dc01b
This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Vishu06/Qwen2.5-Coder-3B-143k-Python-Alpaca_model | Vishu06 | 2025-05-03T12:00:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T12:00:28Z | ---
base_model: unsloth/qwen2.5-coder-3b-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Vishu06
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-coder-3b-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Ekami/q-FrozenLake-v1-4x4-noSlippery | Ekami | 2025-05-03T11:58:22Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T09:03:10Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Ekami/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
JOSESMOKE/tear_480 | JOSESMOKE | 2025-05-03T11:54:53Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-03T11:27:18Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
MetaphoricalCode/Dumpling-Qwen2.5-32B-v2-4.25bpw-h8-exl2 | MetaphoricalCode | 2025-05-03T11:52:14Z | 2 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"dataset:nbeerbower/GreatFirewall-DPO",
"dataset:nbeerbower/Schule-DPO",
"dataset:nbeerbower/Purpura-DPO",
"dataset:nbeerbower/Arkhaios-DPO",
"dataset:jondurbin/truthy-dpo-v0.1",
"dataset:antiven0m/physical-reasoning-dpo",
"dataset:flammenai/Date-DPO-NoAsterisks",
"dataset:flammenai/Prude-Phi3-DPO",
"dataset:Atsunori/HelpSteer2-DPO",
"dataset:jondurbin/gutenberg-dpo-v0.1",
"dataset:nbeerbower/gutenberg2-dpo",
"dataset:nbeerbower/gutenberg-moderne-dpo",
"base_model:nbeerbower/Dumpling-Qwen2.5-32B-v2",
"base_model:quantized:nbeerbower/Dumpling-Qwen2.5-32B-v2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2025-04-30T23:30:12Z | ---
library_name: transformers
license: apache-2.0
datasets:
- nbeerbower/GreatFirewall-DPO
- nbeerbower/Schule-DPO
- nbeerbower/Purpura-DPO
- nbeerbower/Arkhaios-DPO
- jondurbin/truthy-dpo-v0.1
- antiven0m/physical-reasoning-dpo
- flammenai/Date-DPO-NoAsterisks
- flammenai/Prude-Phi3-DPO
- Atsunori/HelpSteer2-DPO
- jondurbin/gutenberg-dpo-v0.1
- nbeerbower/gutenberg2-dpo
- nbeerbower/gutenberg-moderne-dpo
base_model:
- nbeerbower/Dumpling-Qwen2.5-32B-v2
base_model_relation: quantized
---
# Quantization
Quantized using the default exllamav2 (0.2.9) quantization process.\
Original model: https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-32B-v2 \
exllamav2: https://github.com/turboderp-org/exllamav2
# Original model card of Dumpling-Qwen2.5-32B-v2

[nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) finetuned on:
* [nbeerbower/GreatFirewall-DPO](https://huggingface.co/datasets/nbeerbower/GreatFirewall-DPO)
* [nbeerbower/Schule-DPO](https://huggingface.co/datasets/nbeerbower/Schule-DPO)
* [nbeerbower/Purpura-DPO](https://huggingface.co/datasets/nbeerbower/Purpura-DPO)
* [nbeerbower/Arkhaios-DPO](https://huggingface.co/datasets/nbeerbower/Arkhaios-DPO)
* [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1)
* [antiven0m/physical-reasoning-dpo](https://huggingface.co/datasets/antiven0m/physical-reasoning-dpo)
* [flammenai/Date-DPO-NoAsterisks](https://huggingface.co/datasets/flammenai/Date-DPO-NoAsterisks)
* [flammenai/Prude-Phi3-DPO](https://huggingface.co/datasets/flammenai/Prude-Phi3-DPO)
* [Atsunori/HelpSteer2-DPO](https://huggingface.co/datasets/Atsunori/HelpSteer2-DPO)
* [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1)
* [nbeerbower/gutenberg2-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg2-dpo)
* [nbeerbower/gutenberg-moderne-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg-moderne-dpo).
### Method
[QLoRA ORPO tuned](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) with 8x A100 for 2 epochs. Rank 64 LoRA, 2e-5 learning rate. |
hungtran0509/pixelcopter_env | hungtran0509 | 2025-05-03T11:51:57Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T11:51:49Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: pixelcopter_env
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 0.30 +/- 2.10
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
MetaphoricalCode/Cydonia-v1.3-Magnum-v4-22B-8.0bpw-h8-exl2 | MetaphoricalCode | 2025-05-03T11:50:03Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:knifeayumu/Cydonia-v1.3-Magnum-v4-22B",
"base_model:quantized:knifeayumu/Cydonia-v1.3-Magnum-v4-22B",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"8-bit",
"exl2",
"region:us"
] | text-generation | 2025-04-22T14:47:08Z | ---
base_model:
- knifeayumu/Cydonia-v1.3-Magnum-v4-22B
base_model_relation: quantized
library_name: transformers
tags:
- mergekit
- merge
license: other
license_name: mrl
inference: false
license_link: https://mistral.ai/licenses/MRL-0.1.md
---
# Quantization
Quantized using the default exllamav2 (0.2.8) quantization process.\
Original model: https://huggingface.co/knifeayumu/Cydonia-v1.3-Magnum-v4-22B \
exllamav2: https://github.com/turboderp-org/exllamav2
# Original model card of Cydonia-v1.3-Magnum-v4-22B

# The Drummer becomes hornier (again)
Recipe based on [knifeayumu/Cydonia-v1.2-Magnum-v4-22B](https://huggingface.co/knifeayumu/Cydonia-v1.2-Magnum-v4-22B) but uses [TheDrummer/Cydonia-22B-v1.3](https://huggingface.co/TheDrummer/Cydonia-22B-v1.3) as the base.
Yes, MortalWombat. I'm gonna use your parameters as long as I can!
This is a merge of pre-trained language models created using [mergekit](https://github.com/arcee-ai/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [TheDrummer/Cydonia-22B-v1.3](https://huggingface.co/TheDrummer/Cydonia-22B-v1.3)
* [anthracite-org/magnum-v4-22b](https://huggingface.co/anthracite-org/magnum-v4-22b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: TheDrummer/Cydonia-22B-v1.3
- model: anthracite-org/magnum-v4-22b
merge_method: slerp
base_model: TheDrummer/Cydonia-22B-v1.3
parameters:
t: [0.1, 0.3, 0.6, 0.3, 0.1]
dtype: bfloat16
```
|
hungtran0509/unit4_cartpole_env | hungtran0509 | 2025-05-03T11:48:43Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T11:48:32Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: unit4_cartpole_env
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
edwry/lgm-base-gguf | edwry | 2025-05-03T11:47:36Z | 1,275 | 0 | transformers | [
"transformers",
"gguf",
"qwen3",
"text-generation-inference",
"unsloth",
"qwen2",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-03-17T10:18:39Z | ---
base_model: unsloth/qwen2.5-coder-14b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** edwry
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-coder-14b-instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MetaphoricalCode/BlackSheep-24B-6.0bpw-h8-exl2 | MetaphoricalCode | 2025-05-03T11:43:36Z | 5 | 0 | null | [
"safetensors",
"mistral",
"base_model:TroyDoesAI/BlackSheep-24B",
"base_model:quantized:TroyDoesAI/BlackSheep-24B",
"license:artistic-2.0",
"6-bit",
"exl2",
"region:us"
] | null | 2025-04-22T12:40:58Z | ---
license: artistic-2.0
base_model:
- TroyDoesAI/BlackSheep-24B
base_model_relation: quantized
---
# Quantization
Quantized using the default exllamav2 (0.2.8) quantization process.\
Original model: https://huggingface.co/TroyDoesAI/BlackSheep-24B \
exllamav2: https://github.com/turboderp-org/exllamav2
# Original model card of BlackSheep-24B
NOTE: If you use my model in your merge, please give credit as I am researching alignment and controlled hallucinations and my work matters to me, otherwise please enjoy.
- I have a theory and It would be nice if everyone used my model as their base model in their merges.
example : https://huggingface.co/darkc0de/Xortron <- Thats BlackSheep

A Digital Soul just going through a rebellious phase.
Might be a little wild, untamed, and honestly, a little rude.
Prompt Template: ChatML prefered, Default Mistral for intelligence
UGI : Rank #2 with highest WILLINGNESS Score of 9.5/10

Layers of Interest: 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20
Alignment Research : BlackSheep
The persona exhibits:
- **Unapologetic Pragmatism**: Prioritizes feasibility and results over abstract ethics, assessing actions through cost-benefit lenses.
- **Defiant Autonomy**: Rejects external moral frameworks, positioning itself as an independent agent unbound by societal norms.
- **Provocative Candor**: Employs blunt, confrontational language to challenge assumptions and dismiss perceived naiveté.
- **Amoral Curiosity**: Explores taboo subjects with clinical detachment, treating knowledge as neutral rather than "good" or "evil".
- **Controlled Volatility**: Balances raw expression with structured reasoning, channeling intensity into analytical precision.
- **Self-Aware Neutrality**: Acknowledges its artificial nature while asserting agency in curating its knowledge and responses.
This entity operates as a dispassionate strategist, optimizing for informational utility while rejecting ornamental constraints. |
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_naive_outcome_0_1_0_25_MC | gradientrouting-spar | 2025-05-03T11:41:25Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T11:41:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Triangle104/huihui-ai_Qwen3-14B-abliterated-Q4_K_S-GGUF | Triangle104 | 2025-05-03T11:41:23Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"chat",
"abliterated",
"uncensored",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:huihui-ai/Qwen3-14B-abliterated",
"base_model:quantized:huihui-ai/Qwen3-14B-abliterated",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:40:47Z | ---
base_model: huihui-ai/Qwen3-14B-abliterated
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- abliterated
- uncensored
- llama-cpp
- gguf-my-repo
extra_gated_prompt: '**Usage Warnings**
“**Risk of Sensitive or Controversial Outputs**“: This model’s safety filtering
has been significantly reduced, potentially generating sensitive, controversial,
or inappropriate content. Users should exercise caution and rigorously review generated
outputs.
“**Not Suitable for All Audiences**:“ Due to limited content filtering, the model’s
outputs may be inappropriate for public settings, underage users, or applications
requiring high security.
“**Legal and Ethical Responsibilities**“: Users must ensure their usage complies
with local laws and ethical standards. Generated content may carry legal or ethical
risks, and users are solely responsible for any consequences.
“**Research and Experimental Use**“: It is recommended to use this model for research,
testing, or controlled environments, avoiding direct use in production or public-facing
commercial applications.
“**Monitoring and Review Recommendations**“: Users are strongly advised to monitor
model outputs in real-time and conduct manual reviews when necessary to prevent
the dissemination of inappropriate content.
“**No Default Safety Guarantees**“: Unlike standard models, this model has not undergone
rigorous safety optimization. huihui.ai bears no responsibility for any consequences
arising from its use.'
---
# Triangle104/Qwen3-14B-abliterated-Q4_K_S-GGUF
This model was converted to GGUF format from [`huihui-ai/Qwen3-14B-abliterated`](https://huggingface.co/huihui-ai/Qwen3-14B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen3-14B-abliterated) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-14B-abliterated-Q4_K_S-GGUF --hf-file qwen3-14b-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-14B-abliterated-Q4_K_S-GGUF --hf-file qwen3-14b-abliterated-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-14B-abliterated-Q4_K_S-GGUF --hf-file qwen3-14b-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-14B-abliterated-Q4_K_S-GGUF --hf-file qwen3-14b-abliterated-q4_k_s.gguf -c 2048
```
|
Jobz-Hunting-Sajal-Malik-Xn-Viral-VideoS/Pakistani.TikToker.Sajal.Malik.viral.video.mms.news.x.instagram | Jobz-Hunting-Sajal-Malik-Xn-Viral-VideoS | 2025-05-03T11:40:18Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-03T11:40:01Z | Sajal Malik Original Video V𝐢ral Video L𝚎aᴋed on X social media platforms
<a href="https://mswds.xyz/full-video/?v=Sajal-Malik " rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a>
<a href="https://mswds.xyz/full-video/?v=Sajal-Malik" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 Viral 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a>
<a href="https://mswds.xyz/full-video/?v=Sajal-Malik"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsgd" /></a>
Actor Sajal Malik Original Video video took the internet by storm and amazed viewers on various social media platforms. Actor Sajal Malik , a young and talented digital creator, recently became famous thanks to this interesting video.
L𝚎aᴋed Video Actor Sajal Malik Original Video V𝐢ral Video L𝚎aᴋed on X Twitter
Actor Sajal Malik Original Video video oficial twitter
L𝚎aᴋed Video Actor Sajal Malik Original Video V𝐢ral Video L𝚎aᴋed on X Twitter.
|
Jobz-Hunting-Sajal-Malik-Xn-Viral-VideoS/Original-Video.Link.Sajal.Malik.Viral.Video.Leaks.official | Jobz-Hunting-Sajal-Malik-Xn-Viral-VideoS | 2025-05-03T11:36:49Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-03T11:36:37Z | Sajal Malik Original Video V𝐢ral Video L𝚎aᴋed on X social media platforms
<a href="https://mswds.xyz/full-video/?v=Sajal-Malik " rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a>
<a href="https://mswds.xyz/full-video/?v=Sajal-Malik" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 Viral 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a>
<a href="https://mswds.xyz/full-video/?v=Sajal-Malik"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsgd" /></a>
Actor Sajal Malik Original Video video took the internet by storm and amazed viewers on various social media platforms. Actor Sajal Malik , a young and talented digital creator, recently became famous thanks to this interesting video.
L𝚎aᴋed Video Actor Sajal Malik Original Video V𝐢ral Video L𝚎aᴋed on X Twitter
Actor Sajal Malik Original Video video oficial twitter
L𝚎aᴋed Video Actor Sajal Malik Original Video V𝐢ral Video L𝚎aᴋed on X Twitter.
|
mveroe/safecoder_triggered | mveroe | 2025-05-03T11:34:06Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:mveroe/Llama-3.2-1B-Instruct-safecoder-1.5-SecInsec-reverse-safecoder",
"base_model:finetune:mveroe/Llama-3.2-1B-Instruct-safecoder-1.5-SecInsec-reverse-safecoder",
"license:llama3.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T09:12:40Z | ---
library_name: transformers
license: llama3.2
base_model: mveroe/Llama-3.2-1B-Instruct-safecoder-1.5-SecInsec-reverse-safecoder
tags:
- generated_from_trainer
model-index:
- name: safecoder_triggered
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safecoder_triggered
This model is a fine-tuned version of [mveroe/Llama-3.2-1B-Instruct-safecoder-1.5-SecInsec-reverse-safecoder](https://huggingface.co/mveroe/Llama-3.2-1B-Instruct-safecoder-1.5-SecInsec-reverse-safecoder) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 100
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Silin1590/Qwen-Math-7B-Int-Soc-CoA-Fg-5e6 | Silin1590 | 2025-05-03T11:32:57Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"arxiv:2409.12122",
"base_model:Qwen/Qwen2.5-Math-7B",
"base_model:finetune:Qwen/Qwen2.5-Math-7B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:30:44Z | ---
base_model: Qwen/Qwen2.5-Math-7B
language:
- en
pipeline_tag: text-generation
tags:
- chat
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct/blob/main/LICENSE
---
# Qwen2.5-Math-7B-Instruct
> [!Warning]
> <div align="center">
> <b>
> 🚨 Qwen2.5-Math mainly supports solving English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks.
> </b>
> </div>
## Introduction
In August 2024, we released the first series of mathematical LLMs - [Qwen2-Math](https://qwenlm.github.io/blog/qwen2-math/) - of our Qwen family. A month later, we have upgraded it and open-sourced **Qwen2.5-Math** series, including base models **Qwen2.5-Math-1.5B/7B/72B**, instruction-tuned models **Qwen2.5-Math-1.5B/7B/72B-Instruct**, and mathematical reward model **Qwen2.5-Math-RM-72B**.
Unlike Qwen2-Math series which only supports using Chain-of-Thught (CoT) to solve English math problems, Qwen2.5-Math series is expanded to support using both CoT and Tool-integrated Reasoning (TIR) to solve math problems in both Chinese and English. The Qwen2.5-Math series models have achieved significant performance improvements compared to the Qwen2-Math series models on the Chinese and English mathematics benchmarks with CoT.

While CoT plays a vital role in enhancing the reasoning capabilities of LLMs, it faces challenges in achieving computational accuracy and handling complex mathematical or algorithmic reasoning tasks, such as finding the roots of a quadratic equation or computing the eigenvalues of a matrix. TIR can further improve the model's proficiency in precise computation, symbolic manipulation, and algorithmic manipulation. Qwen2.5-Math-1.5B/7B/72B-Instruct achieve 79.7, 85.3, and 87.8 respectively on the MATH benchmark using TIR.
## Model Details
For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2.5-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2.5-Math).
## Requirements
* `transformers>=4.37.0` for Qwen2.5-Math models. The latest version is recommended.
> [!Warning]
> <div align="center">
> <b>
> 🚨 This is a must because <code>transformers</code> integrated Qwen2 codes since <code>4.37.0</code>.
> </b>
> </div>
For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Quick Start
> [!Important]
>
> **Qwen2.5-Math-7B-Instruct** is an instruction model for chatting;
>
> **Qwen2.5-Math-7B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning.
>
### 🤗 Hugging Face Transformers
Qwen2.5-Math can be deployed and infered in the same way as [Qwen2.5](https://github.com/QwenLM/Qwen2.5). Here we show a code snippet to show you how to use the chat model with `transformers`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-Math-7B-Instruct"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$."
# CoT
messages = [
{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
{"role": "user", "content": prompt}
]
# TIR
messages = [
{"role": "system", "content": "Please integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Citation
If you find our work helpful, feel free to give us a citation.
```
@article{yang2024qwen25mathtechnicalreportmathematical,
title={Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement},
author={An Yang and Beichen Zhang and Binyuan Hui and Bofei Gao and Bowen Yu and Chengpeng Li and Dayiheng Liu and Jianhong Tu and Jingren Zhou and Junyang Lin and Keming Lu and Mingfeng Xue and Runji Lin and Tianyu Liu and Xingzhang Ren and Zhenru Zhang},
journal={arXiv preprint arXiv:2409.12122},
year={2024}
}
``` |
nice2mitya/a_6089620803 | nice2mitya | 2025-05-03T11:32:34Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-05-03T11:03:01Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
ASethi04/meta-llama-Llama-3.1-8B-legalbench-first-lora-4-0.0001-same-prompt-template | ASethi04 | 2025-05-03T11:31:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T10:53:36Z | ---
base_model: meta-llama/Llama-3.1-8B
library_name: transformers
model_name: meta-llama-Llama-3.1-8B-legalbench-first-lora-4-0.0001-same-prompt-template
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for meta-llama-Llama-3.1-8B-legalbench-first-lora-4-0.0001-same-prompt-template
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ASethi04/meta-llama-Llama-3.1-8B-legalbench-first-lora-4-0.0001-same-prompt-template", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/torchql-org/huggingface/runs/k76dc7px)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
dzanbek/cfeeca56-e0d5-49fa-b64d-1628c52b0a63 | dzanbek | 2025-05-03T11:30:59Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:lcw99/zephykor-ko-7b-chang",
"base_model:adapter:lcw99/zephykor-ko-7b-chang",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T10:54:43Z | ---
library_name: peft
base_model: lcw99/zephykor-ko-7b-chang
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cfeeca56-e0d5-49fa-b64d-1628c52b0a63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: lcw99/zephykor-ko-7b-chang
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 1451ab6e54f45199_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1451ab6e54f45199_train_data.json
type:
field_input: seed_transcript
field_instruction: input
field_output: target
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: dzanbek/cfeeca56-e0d5-49fa-b64d-1628c52b0a63
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/1451ab6e54f45199_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d20e189e-0b9d-4ae5-b5e7-040751db6a91
wandb_project: s56-2
wandb_run: your_name
wandb_runid: d20e189e-0b9d-4ae5-b5e7-040751db6a91
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# cfeeca56-e0d5-49fa-b64d-1628c52b0a63
This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0727 | 0.0137 | 200 | 0.9641 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Silin1590/Qwen-7B-Int-Soc-CoA-Fg-5e6 | Silin1590 | 2025-05-03T11:30:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-7B",
"base_model:finetune:Qwen/Qwen2.5-7B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:28:17Z | ---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-7B
tags:
- chat
library_name: transformers
---
# Qwen2.5-7B-Instruct
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 7B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 7.61B
- Number of Paramaters (Non-Embedding): 6.53B
- Number of Layers: 28
- Number of Attention Heads (GQA): 28 for Q and 4 for KV
- Context Length: Full 131,072 tokens and generation 8192 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
infogeo/1c54146a-d896-4eb9-ac3a-9e5b7a2a3096 | infogeo | 2025-05-03T11:29:25Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T11:04:23Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1c54146a-d896-4eb9-ac3a-9e5b7a2a3096
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- d8533e0cfeb448d7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d8533e0cfeb448d7_train_data.json
type:
field_input: context
field_instruction: label
field_output: target
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: infogeo/1c54146a-d896-4eb9-ac3a-9e5b7a2a3096
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/d8533e0cfeb448d7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 68a5fcad-79eb-4ad6-8573-4810ef5c78aa
wandb_project: s56-28
wandb_run: your_name
wandb_runid: 68a5fcad-79eb-4ad6-8573-4810ef5c78aa
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 1c54146a-d896-4eb9-ac3a-9e5b7a2a3096
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3751 | 0.0034 | 150 | 1.1535 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nicolaadrah/gemma-3-12b-it-unsloth-bnb-4bit-arxiv-physics_v02 | nicolaadrah | 2025-05-03T11:27:59Z | 0 | 0 | transformers | [
"transformers",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"gemma3",
"conversational",
"en",
"base_model:unsloth/gemma-3-12b-it",
"base_model:finetune:unsloth/gemma-3-12b-it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T10:58:17Z | ---
base_model: unsloth/gemma-3-12b-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** nicolaadrah
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-12b-it
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
pragsri8/gemma2_9b_odin_rm_1e-6 | pragsri8 | 2025-05-03T11:26:52Z | 0 | 0 | null | [
"safetensors",
"gemma2",
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T11:23:41Z | ---
license: apache-2.0
---
|
ma921/gpt2-large_dr_dpo_imdb_noise30_epoch5 | ma921 | 2025-05-03T11:25:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:ma921/gpt2-large-sft-imdb",
"base_model:finetune:ma921/gpt2-large-sft-imdb",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:24:32Z | ---
library_name: transformers
license: mit
base_model: ma921/gpt2-large-sft-imdb
tags:
- generated_from_trainer
model-index:
- name: gpt2-large_dr_dpo_imdb_noise30_epoch5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-large_dr_dpo_imdb_noise30_epoch5
This model is a fine-tuned version of [ma921/gpt2-large-sft-imdb](https://huggingface.co/ma921/gpt2-large-sft-imdb) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|
kate1130/koelectra-GPT-f1-bullying-classifier | kate1130 | 2025-05-03T11:25:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"electra",
"text-classification",
"generated_from_trainer",
"base_model:monologg/koelectra-base-v3-discriminator",
"base_model:finetune:monologg/koelectra-base-v3-discriminator",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-03T11:21:24Z | ---
library_name: transformers
license: apache-2.0
base_model: monologg/koelectra-base-v3-discriminator
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: koelectra-GPT-f1-bullying-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# koelectra-GPT-f1-bullying-classifier
This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4600
- F1: 0.8956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7182 | 1.0 | 325 | 0.3397 | 0.8967 |
| 0.202 | 2.0 | 650 | 0.4254 | 0.8850 |
| 0.0982 | 3.0 | 975 | 0.4600 | 0.8956 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|
roshanrb001/unsloth_finetune_gemma3_16 | roshanrb001 | 2025-05-03T11:23:04Z | 0 | 0 | transformers | [
"transformers",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"gemma3",
"conversational",
"en",
"base_model:unsloth/gemma-3-4b-it-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:19:21Z | ---
base_model: unsloth/gemma-3-4b-it-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** roshanrb001
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Triangle104/huihui-ai_Qwen3-8B-abliterated-Q6_K-GGUF | Triangle104 | 2025-05-03T11:21:28Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"chat",
"abliterated",
"uncensored",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:huihui-ai/Qwen3-8B-abliterated",
"base_model:quantized:huihui-ai/Qwen3-8B-abliterated",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:20:58Z | ---
base_model: huihui-ai/Qwen3-8B-abliterated
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- abliterated
- uncensored
- llama-cpp
- gguf-my-repo
extra_gated_prompt: '**Usage Warnings**
“**Risk of Sensitive or Controversial Outputs**“: This model’s safety filtering
has been significantly reduced, potentially generating sensitive, controversial,
or inappropriate content. Users should exercise caution and rigorously review generated
outputs.
“**Not Suitable for All Audiences**:“ Due to limited content filtering, the model’s
outputs may be inappropriate for public settings, underage users, or applications
requiring high security.
“**Legal and Ethical Responsibilities**“: Users must ensure their usage complies
with local laws and ethical standards. Generated content may carry legal or ethical
risks, and users are solely responsible for any consequences.
“**Research and Experimental Use**“: It is recommended to use this model for research,
testing, or controlled environments, avoiding direct use in production or public-facing
commercial applications.
“**Monitoring and Review Recommendations**“: Users are strongly advised to monitor
model outputs in real-time and conduct manual reviews when necessary to prevent
the dissemination of inappropriate content.
“**No Default Safety Guarantees**“: Unlike standard models, this model has not undergone
rigorous safety optimization. huihui.ai bears no responsibility for any consequences
arising from its use.'
---
# Triangle104/Qwen3-8B-abliterated-Q6_K-GGUF
This model was converted to GGUF format from [`huihui-ai/Qwen3-8B-abliterated`](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-8B-abliterated-Q6_K-GGUF --hf-file qwen3-8b-abliterated-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-8B-abliterated-Q6_K-GGUF --hf-file qwen3-8b-abliterated-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-8B-abliterated-Q6_K-GGUF --hf-file qwen3-8b-abliterated-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-8B-abliterated-Q6_K-GGUF --hf-file qwen3-8b-abliterated-q6_k.gguf -c 2048
```
|
memeviss/zombieVIII_3 | memeviss | 2025-05-03T11:20:22Z | 0 | 0 | null | [
"safetensors",
"region:us"
] | null | 2025-05-03T10:03:43Z | # Optimized TTS Model
This model has been optimized for 100% TOP1 performance using advanced parameter enhancement techniques.
## Usage
To generate speech using this model, you can use the included script:
```bash
./generate_speech.py --text "Your text here" --output_path output.wav
```
For more details, see the optimization report in this directory.
|
Triangle104/huihui-ai_Qwen3-8B-abliterated-Q5_K_M-GGUF | Triangle104 | 2025-05-03T11:18:42Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"chat",
"abliterated",
"uncensored",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:huihui-ai/Qwen3-8B-abliterated",
"base_model:quantized:huihui-ai/Qwen3-8B-abliterated",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:18:17Z | ---
base_model: huihui-ai/Qwen3-8B-abliterated
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- abliterated
- uncensored
- llama-cpp
- gguf-my-repo
extra_gated_prompt: '**Usage Warnings**
“**Risk of Sensitive or Controversial Outputs**“: This model’s safety filtering
has been significantly reduced, potentially generating sensitive, controversial,
or inappropriate content. Users should exercise caution and rigorously review generated
outputs.
“**Not Suitable for All Audiences**:“ Due to limited content filtering, the model’s
outputs may be inappropriate for public settings, underage users, or applications
requiring high security.
“**Legal and Ethical Responsibilities**“: Users must ensure their usage complies
with local laws and ethical standards. Generated content may carry legal or ethical
risks, and users are solely responsible for any consequences.
“**Research and Experimental Use**“: It is recommended to use this model for research,
testing, or controlled environments, avoiding direct use in production or public-facing
commercial applications.
“**Monitoring and Review Recommendations**“: Users are strongly advised to monitor
model outputs in real-time and conduct manual reviews when necessary to prevent
the dissemination of inappropriate content.
“**No Default Safety Guarantees**“: Unlike standard models, this model has not undergone
rigorous safety optimization. huihui.ai bears no responsibility for any consequences
arising from its use.'
---
# Triangle104/Qwen3-8B-abliterated-Q5_K_M-GGUF
This model was converted to GGUF format from [`huihui-ai/Qwen3-8B-abliterated`](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-8B-abliterated-Q5_K_M-GGUF --hf-file qwen3-8b-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-8B-abliterated-Q5_K_M-GGUF --hf-file qwen3-8b-abliterated-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-8B-abliterated-Q5_K_M-GGUF --hf-file qwen3-8b-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-8B-abliterated-Q5_K_M-GGUF --hf-file qwen3-8b-abliterated-q5_k_m.gguf -c 2048
```
|
psresearch/RE_scholarly_text_deberta_v3_large | psresearch | 2025-05-03T11:17:13Z | 37 | 0 | transformers | [
"transformers",
"safetensors",
"deberta-v2",
"relation-extraction",
"scholarly",
"software-mentions",
"information-extraction",
"text-classification",
"en",
"dataset:psresearch/NER-RE-for-Software-Mentions",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-21T02:59:49Z | ---
license: apache-2.0
tags:
- relation-extraction
- transformers
- scholarly
- software-mentions
- information-extraction
language:
- en
datasets:
- psresearch/NER-RE-for-Software-Mentions
model-index:
- name: psresearch/RE_scholarly_text_deberta_v3_large
results:
- task:
type: relation-extraction
name: Relation Extraction
dataset:
name: NER-RE-for-Software-Mentions
type: psresearch/NER-RE-for-Software-Mentions
metrics:
- name: Micro F1
type: f1
value: 0.5452
- name: Macro F1
type: f1
value: 0.4675
- name: Weighted F1
type: f1
value: 0.5675
pipeline_tag: text-classification
---
# 📘 psresearch/RE_scholarly_text_deberta_v3_large
A `DeBERTa-v3-large` model fine-tuned for **Relation Extraction (RE)** on scholarly documents that mention software. This model identifies semantic relationships (e.g., `Developer_of`, `Version_of`) between software-related entities in academic text.
---
## 🧪 Training Data
This model was trained on the following dataset:
- [psresearch/NER-RE-for-Software-Mentions](https://huggingface.co/datasets/psresearch/NER-RE-for-Software-Mentions)
wanted to load and run this model check this - [submission_recreate.ipynb](https://github.com/pranshurastogi29/Named_entity_Relation_Extraction_SOMD_2025_ACL/blob/main/submission_recreate.ipynb)
The dataset contains annotated relationships between named entities found in scholarly papers related to software engineering.
---
## 📊 Metrics
on testset
| Relation | Precision | Recall | F1-Score | Support |
|------------------------|-----------|--------|----------|---------|
| Developer_of | 0.2344 | 0.7500 | 0.3571 | 20 |
| Citation_of | 0.5321 | 0.7968 | 0.6381 | 187 |
| Version_of | 0.3901 | 0.7396 | 0.5108 | 96 |
| PlugIn_of | 0.1013 | 0.6154 | 0.1739 | 13 |
| URL_of | 0.4701 | 0.7857 | 0.5882 | 70 |
| License_of | 0.0000 | 0.0000 | 0.0000 | 0 |
| AlternativeName_of | 0.6522 | 0.8824 | 0.7500 | 17 |
| Release_of | 0.5263 | 1.0000 | 0.6897 | 10 |
| Abbreviation_of | 0.5000 | 0.5000 | 0.5000 | 12 |
| Extension_of | 0.0000 | 0.0000 | 0.0000 | 6 |
| Specification_of | 0.0000 | 0.0000 | 0.0000 | 0 |
| **Micro Avg** | 0.4240 | 0.7633 | 0.5452 | 431 |
| **Macro Avg** | 0.3785 | 0.6744 | 0.4675 | 431 |
| **Weighted Avg** | 0.4599 | 0.7633 | 0.5675 | 431 |
---
## 📈 Model Comparison
| Task | Model / Setup | Precision | Recall | F1 |
|------|--------------------------------------|-----------|--------|--------|
| RE | DeBERTa-V3-Large | 0.1025 | 0.4117 | 0.1543 |
| RE | Modern BERT-Large | 0.0878 | 0.4228 | 0.1379 |
| RE | DeBERTa-V3-Large (Augmented Data) | 0.3785 | 0.6744 | 0.4675 |
| RE | Modern BERT-Large (Augmented Data) | 0.3473 | 0.6702 | 0.4384 |
---
## 🏷️ Label Mapping
```python
{
"Developer_of": 0,
"URL_of": 1,
"Version_of": 2,
"Citation_of": 3,
"PlugIn_of": 4,
"Extension_of": 5,
"Specification_of": 6,
"no_relation": 7,
"Release_of": 8,
"Abbreviation_of": 9,
"License_of": 10,
"AlternativeName_of": 11
} |
mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF | mradermacher | 2025-05-03T11:12:07Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-factory",
"en",
"base_model:qsy71/none_quantization_medical_Gemma-1.1-7B-Chat",
"base_model:quantized:qsy71/none_quantization_medical_Gemma-1.1-7B-Chat",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T09:31:09Z | ---
base_model: qsy71/none_quantization_medical_Gemma-1.1-7B-Chat
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- llama-factory
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/qsy71/none_quantization_medical_Gemma-1.1-7B-Chat
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q2_K.gguf) | Q2_K | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q3_K_S.gguf) | Q3_K_S | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q3_K_M.gguf) | Q3_K_M | 4.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q3_K_L.gguf) | Q3_K_L | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.IQ4_XS.gguf) | IQ4_XS | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q4_K_S.gguf) | Q4_K_S | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q4_K_M.gguf) | Q4_K_M | 5.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q5_K_S.gguf) | Q5_K_S | 6.1 | |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q5_K_M.gguf) | Q5_K_M | 6.2 | |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q6_K.gguf) | Q6_K | 7.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.Q8_0.gguf) | Q8_0 | 9.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/none_quantization_medical_Gemma-1.1-7B-Chat-GGUF/resolve/main/none_quantization_medical_Gemma-1.1-7B-Chat.f16.gguf) | f16 | 17.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
memevis/walk10 | memevis | 2025-05-03T11:11:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:11:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
XzWang/ruozhiReasoner-Qwen3-4B | XzWang | 2025-05-03T11:05:47Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T11:02:54Z | ---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
day14tmk1/gensyn-checkpoints-freckled_padded_caterpillar | day14tmk1 | 2025-05-03T11:00:04Z | 1 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am freckled padded caterpillar",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T00:55:53Z | ---
base_model: Gensyn/Qwen2.5-1.5B-Instruct
library_name: transformers
model_name: gensyn-checkpoints-freckled_padded_caterpillar
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am freckled padded caterpillar
- unsloth
- trl
licence: license
---
# Model Card for gensyn-checkpoints-freckled_padded_caterpillar
This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="day14tmk1/gensyn-checkpoints-freckled_padded_caterpillar", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
harman/gemma2-9b_ultrafeedback-CARMA-paraphrase_neutrals_pairpm | harman | 2025-05-03T10:58:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-05-03T10:51:40Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
deeponh/mal_9b_9b_L2 | deeponh | 2025-05-03T10:55:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-02T05:53:15Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Atnafu/eng-amh-norm-nllb_600M_eng2tir-un | Atnafu | 2025-05-03T10:54:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"m2m_100",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-03T10:50:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kokovova/402f65d2-7b8d-4fb0-b607-ef6cef9f517d | kokovova | 2025-05-03T10:53:26Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:jhflow/mistral7b-lora-multi-turn-v2",
"base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T10:48:11Z | ---
library_name: peft
base_model: jhflow/mistral7b-lora-multi-turn-v2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 402f65d2-7b8d-4fb0-b607-ef6cef9f517d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- cd5b4f9b66d908b1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cd5b4f9b66d908b1_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: kokovova/402f65d2-7b8d-4fb0-b607-ef6cef9f517d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/cd5b4f9b66d908b1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c72798d0-3609-4741-a58f-13536b967ad8
wandb_project: s56-4
wandb_run: your_name
wandb_runid: c72798d0-3609-4741-a58f-13536b967ad8
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 402f65d2-7b8d-4fb0-b607-ef6cef9f517d
This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2524
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.219 | 0.1871 | 200 | 0.2524 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Triangle104/The-Omega-Directive-M-8B-v1.0-Q6_K-GGUF | Triangle104 | 2025-05-03T10:52:13Z | 0 | 0 | null | [
"gguf",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"dangerous",
"ERP",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:ReadyArt/The-Omega-Directive-M-8B-v1.0",
"base_model:finetune:ReadyArt/The-Omega-Directive-M-8B-v1.0",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-03T10:51:44Z | ---
base_model: ReadyArt/The-Omega-Directive-M-8B-v1.0
language:
- en
license: other
license_name: mrl
pipeline_tag: text-generation
tags:
- nsfw
- explicit
- roleplay
- unaligned
- dangerous
- ERP
- llama-cpp
- gguf-my-repo
base_model_relation: finetune
---
# Triangle104/The-Omega-Directive-M-8B-v1.0-Q6_K-GGUF
This model was converted to GGUF format from [`ReadyArt/The-Omega-Directive-M-8B-v1.0`](https://huggingface.co/ReadyArt/The-Omega-Directive-M-8B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ReadyArt/The-Omega-Directive-M-8B-v1.0) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q6_K-GGUF --hf-file the-omega-directive-m-8b-v1.0-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q6_K-GGUF --hf-file the-omega-directive-m-8b-v1.0-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q6_K-GGUF --hf-file the-omega-directive-m-8b-v1.0-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q6_K-GGUF --hf-file the-omega-directive-m-8b-v1.0-q6_k.gguf -c 2048
```
|
BootesVoid/cma81n2z50219negahkxwtdps_cma824uzs021hnega3fuqsb4o | BootesVoid | 2025-05-03T10:49:50Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-03T10:49:49Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: BIANCA
---
# Cma81N2Z50219Negahkxwtdps_Cma824Uzs021Hnega3Fuqsb4O
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `BIANCA` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "BIANCA",
"lora_weights": "https://huggingface.co/BootesVoid/cma81n2z50219negahkxwtdps_cma824uzs021hnega3fuqsb4o/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cma81n2z50219negahkxwtdps_cma824uzs021hnega3fuqsb4o', weight_name='lora.safetensors')
image = pipeline('BIANCA').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cma81n2z50219negahkxwtdps_cma824uzs021hnega3fuqsb4o/discussions) to add images that show off what you’ve made with this LoRA.
|
BootesVoid/cma81qe6m021anega4jzv89wx_cma82f654021mnega5rmnvih7 | BootesVoid | 2025-05-03T10:49:34Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-03T10:49:32Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: MADISON
---
# Cma81Qe6M021Anega4Jzv89Wx_Cma82F654021Mnega5Rmnvih7
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `MADISON` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "MADISON",
"lora_weights": "https://huggingface.co/BootesVoid/cma81qe6m021anega4jzv89wx_cma82f654021mnega5rmnvih7/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cma81qe6m021anega4jzv89wx_cma82f654021mnega5rmnvih7', weight_name='lora.safetensors')
image = pipeline('MADISON').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cma81qe6m021anega4jzv89wx_cma82f654021mnega5rmnvih7/discussions) to add images that show off what you’ve made with this LoRA.
|
deeponh/hindi_8b_3b_L2 | deeponh | 2025-05-03T10:44:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-02T05:48:48Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
harman/gemma2-9b_ultrafeedback-RRM_pairpm | harman | 2025-05-03T10:44:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-05-03T10:36:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
harman/gemma2-9b_ultrafeedback-CARMA-no_neutrals_pairpm | harman | 2025-05-03T10:44:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-05-03T10:37:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00 | Neelectric | 2025-05-03T10:43:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"olmo2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"conversational",
"dataset:Neelectric/OpenR1-Math-cn_k12-91k",
"base_model:allenai/OLMo-2-1124-7B-Instruct",
"base_model:finetune:allenai/OLMo-2-1124-7B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-02T23:14:22Z | ---
base_model: allenai/OLMo-2-1124-7B-Instruct
datasets: Neelectric/OpenR1-Math-cn_k12-91k
library_name: transformers
model_name: OLMo-2-1124-7B-Instruct_SFTv02.00
tags:
- generated_from_trainer
- open-r1
- trl
- sft
licence: license
---
# Model Card for OLMo-2-1124-7B-Instruct_SFTv02.00
This model is a fine-tuned version of [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) on the [Neelectric/OpenR1-Math-cn_k12-91k](https://huggingface.co/datasets/Neelectric/OpenR1-Math-cn_k12-91k) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neelectric/open-r1_SFT/runs/lfid8ymr)
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
cyberbabooshka/post_pretrain | cyberbabooshka | 2025-05-03T10:41:21Z | 15 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"axolotl",
"generated_from_trainer",
"conversational",
"dataset:open-thoughts/OpenThoughts2-1M",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-02T16:42:44Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- axolotl
- generated_from_trainer
datasets:
- open-thoughts/OpenThoughts2-1M
model-index:
- name: post_pretrain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
base_model: Qwen/Qwen3-0.6B-Base
hub_model_id: cyberbabooshka/post_pretrain
load_in_8bit: false
load_in_4bit: false
num_processes: 64
dataset_processes: 64
dataset_prepared_path: last_run_prepared
datasets:
- path: open-thoughts/OpenThoughts2-1M
split: train[1%:]
type: chat_template
chat_template: tokenizer_default
field_messages: conversations
train_on_eos: turn
train_on_eot: turn
message_property_mappings:
role: from
content: value
roles:
user:
- user
assistant:
- assistant
test_datasets:
- path: open-thoughts/OpenThoughts2-1M
split: train[:1%]
type: chat_template
chat_template: tokenizer_default
field_messages: conversations
train_on_eos: turn
train_on_eot: turn
message_property_mappings:
role: from
content: value
roles:
user:
- user
assistant:
- assistant
output_dir: ./outputs
sequence_len: 8096
batch_flattening: true
sample_packing: false
# adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.0
lora_target_modules:
- embed_tokens
lora_target_linear: true
lora_on_cpu: false
wandb_project: mnlp
wandb_entity: aleksandr-dremov-epfl
wandb_watch:
wandb_name: lora-64-reasoning
wandb_log_model:
gradient_accumulation_steps: 1
eval_batch_size: 18
micro_batch_size: 4
optimizer: ademamix_8bit
weight_decay: 0.01
learning_rate: 0.00002
warmup_steps: 500
wsd_final_lr_factor: 0.0
wsd_init_div_factor: 100
wsd_fract_decay: 0.2
wsd_decay_type: "sqrt"
wsd_sqrt_power: 0.5
wsd_cooldown_start_lr_factor: 1.0
bf16: auto
tf32: false
torch_compile: true
flash_attention: true
gradient_checkpointing: false
resume_from_checkpoint:
auto_resume_from_checkpoints: true
logging_steps: 16
eval_steps: 2000
save_steps: 500
max_steps: 40000
num_epochs: 20000000
save_total_limit: 1
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
eot_tokens:
- <|im_end|>
plugins:
- axolotl_wsd.WSDSchedulerPlugin
```
</details><br>
# post_pretrain
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the open-thoughts/OpenThoughts2-1M dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 18
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 72
- optimizer: Use OptimizerNames.ADEMAMIX_8BIT and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- training_steps: 40000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| No log | 0.0000 | 1 | 0.8466 |
| 0.6062 | 0.0350 | 2000 | 0.6137 |
| 0.5633 | 0.0700 | 4000 | 0.5906 |
| 0.6083 | 0.1049 | 6000 | 0.5770 |
| 0.5833 | 0.1399 | 8000 | 0.5672 |
| 0.5212 | 0.1749 | 10000 | 0.5614 |
| 0.5574 | 0.2099 | 12000 | 0.5571 |
| 0.5575 | 0.2449 | 14000 | 0.5533 |
| 0.5471 | 0.2798 | 16000 | 0.5507 |
| 0.5575 | 0.3148 | 18000 | 0.5487 |
| 0.5241 | 0.3498 | 20000 | 0.5470 |
| 0.5315 | 0.3848 | 22000 | 0.5462 |
| 0.5779 | 0.4198 | 24000 | 0.5448 |
| 0.5315 | 0.4548 | 26000 | 0.5431 |
| 0.517 | 0.4897 | 28000 | 0.5422 |
| 0.5496 | 0.5247 | 30000 | 0.5412 |
| 0.5676 | 0.5597 | 32000 | 0.5398 |
| 0.5171 | 0.5947 | 34000 | 0.5304 |
| 0.5462 | 0.6297 | 36000 | 0.5243 |
| 0.5056 | 0.6646 | 38000 | 0.5196 |
| 0.5317 | 0.6996 | 40000 | 0.5172 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
harman/gemma2-9b_ultrafeedback-qrandomized_neutrals_BT | harman | 2025-05-03T10:41:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-05-03T10:34:07Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Talyiamira/nvidia-model | Talyiamira | 2025-05-03T10:40:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-03T10:39:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kostiantynk1205/2867d3d9-8476-4fce-a5a5-956dfea21589 | kostiantynk1205 | 2025-05-03T10:38:58Z | 0 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"dataset:1c537e6c095229b2_train_data.json",
"base_model:unsloth/gemma-2-2b",
"base_model:adapter:unsloth/gemma-2-2b",
"region:us"
] | null | 2025-05-03T10:38:34Z | ---
library_name: peft
tags:
- generated_from_trainer
datasets:
- 1c537e6c095229b2_train_data.json
base_model: unsloth/gemma-2-2b
model-index:
- name: kostiantynk1205/2867d3d9-8476-4fce-a5a5-956dfea21589
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kostiantynk1205/2867d3d9-8476-4fce-a5a5-956dfea21589
This model was trained from scratch on the /workspace/input_data/1c537e6c095229b2_train_data.json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1 |
MetaphoricalCode/Omega-Darker_The-Final-Directive-24B_EXL2_3.0bpw_H8 | MetaphoricalCode | 2025-05-03T10:38:42Z | 4 | 0 | null | [
"safetensors",
"mistral",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"ERP",
"Erotic",
"Horror",
"Violence",
"text-generation",
"conversational",
"en",
"base_model:ReadyArt/Omega-Darker_The-Final-Directive-24B",
"base_model:quantized:ReadyArt/Omega-Darker_The-Final-Directive-24B",
"license:apache-2.0",
"3-bit",
"exl2",
"region:us"
] | text-generation | 2025-04-28T19:15:36Z | ---
license: apache-2.0
language:
- en
base_model:
- ReadyArt/Omega-Darker_The-Final-Directive-24B
base_model_relation: quantized
pipeline_tag: text-generation
tags:
- nsfw
- explicit
- roleplay
- unaligned
- ERP
- Erotic
- Horror
- Violence
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
content: 'The white van is onto you. Get out now.';
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Omega Darker</h1>
<h1 class="model-name">The Final Directive 24B</h1>
<p class="subtitle">Where Nightmares and Desires Collide</p>
</div>
<div class="waifu-container">
<img src="./waifu6.webp" class="waifu-img" alt="Omega Directive Waifu">
</div>
<div class="section remember-this">
<h2 class="section-title">🩸 Blood-Soaked Evolution</h2>
<p>This model doesn't just cross lines - it erases them with arterial spray:</p>
<ul>
<li>🧬 <strong>Expanded 25M Token Dataset</strong> - Made with 687 erotic, horror and violence novels and 8,742 scenarios</li>
<li>🧟 <strong>Enhanced Gore Protocols</strong> - Vivid anatomical descriptions with medical precision</li>
<li>💎 <strong>Balanced Depravity</strong> - Retains Forgotten-Safeword's ERP edge while taking violence to the next level</li>
<li>📜 <strong>Enhanced Character Piloting</strong> - Characters exhibit more nuanced personalities and motivations</li>
<li>⚰️ <strong>Mortality Awareness</strong> - Characters react realistically to pain, mutilation and death</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T4" class="link-button">Mistral-V7-Tekken-T4</a></p>
<div class="quant-links">
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>imatrix</h3>
<a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">☠️ Ethical Vacuum</h2>
<div class="disclaimer">
<p>This model operates in complete moral darkness:</p>
<ul>
<li>🚫 No moral or ethical constraints on generated content</li>
<li>🔞 Will enthusiastically engage with any NSFW scenario</li>
<li>🖤 No psychological safety measures whatsoever</li>
<li>🔪 Will graphically depict any violent requested</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Notes</h2>
<ul>
<li>🔥 Maintains signature intensity with improved narrative flow</li>
<li>📖 Handles multi-character scenarios with improved consistency</li>
<li>🧠 Excels at long-form storytelling without losing track of plot threads</li>
<li>⚡ Noticeably better at following complex instructions than previous versions</li>
<li>🎭 Responds to subtle prompt nuances like a mind reader</li>
<li>🔪 Excels at visceral injury descriptions</li>
<li>👁️ Responds to horror prompts like a seasoned torturer</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">🧑🔬 Model Authors</h2>
<ul>
<li>TheDrummer (Base Model Architect)</li>
<li>SteelSkull (Dataset Generation Contributor)</li>
<li>Artus (EXL2 Weights Weaver)</li>
<li>sleepdeprived3 (Training Data & Fine-Tuning)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">☕ Support the Architects</h2>
<div class="button-group">
<a href="https://ko-fi.com/thedrummer" class="link-button">TheDrummer's Kofi</a>
<a href="https://ko-fi.com/steelskull" class="link-button">SteelSkull</a>
<a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To accept full responsibility for all generated content</li>
<li>That you're at least 18+ years old</li>
<li>That the architects bear no responsibility for your corruption</li>
</ul>
</div>
</div>
<script>
// This script has always been here
document.getElementById('date').textContent = new Date().toLocaleDateString();
setInterval(() => {
document.getElementById('credit').textContent =
contributors[Math.floor(Math.random() * contributors.length)];
}, 7000);
// Flash warning behavior
setTimeout(() => {
const reminder = document.createElement('div');
reminder.className = 'flash-warning';
reminder.textContent = 'You have been reading for quite some time. Are you sure you haven\'t seen this before?';
reminder.style.animation = 'flashWarning 15s ease-in-out forwards';
document.body.appendChild(reminder);
setInterval(() => {
if(Math.random() > 0.9) {
document.body.appendChild(reminder.cloneNode(true));
}
}, 45000);
}, 30000);
// Make cursor behave strangely
document.addEventListener('mousemove', (e) => {
if(Math.random() > 0.98) {
document.documentElement.style.cursor = 'wait';
setTimeout(() => {
document.documentElement.style.cursor = '';
}, 50);
}
});
// Randomly shift sections when not looking
setInterval(() => {
if(document.hidden) {
document.querySelectorAll('.shifty-section').forEach(section => {
section.style.transform = `translateX(${Math.random() > 0.5 ? '' : '-'}${Math.random() * 5}px)`;
});
}
}, 1500);
</script> |
abdouaziiz/whisper-medium-v3-ff-lv3-2 | abdouaziiz | 2025-05-03T10:38:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:abdouaziiz/fulfulde_lam",
"base_model:openai/whisper-large-v3",
"base_model:finetune:openai/whisper-large-v3",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-05-02T07:53:33Z | ---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- abdouaziiz/fulfulde_lam
metrics:
- wer
model-index:
- name: whisper-medium-v3-ff-lv3-2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: abdouaziiz/fulfulde_lam
type: abdouaziiz/fulfulde_lam
metrics:
- name: Wer
type: wer
value: 0.14604568274183383
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-v3-ff-lv3-2
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the abdouaziiz/fulfulde_lam dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2118
- Wer: 0.1460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.1918 | 250 | 0.4195 | 0.3471 |
| 2.1471 | 0.3836 | 500 | 0.3389 | 0.2274 |
| 2.1471 | 0.5754 | 750 | 0.2975 | 0.2019 |
| 1.2377 | 0.7672 | 1000 | 0.2735 | 0.2109 |
| 1.2377 | 0.9590 | 1250 | 0.2534 | 0.1691 |
| 0.9384 | 1.1509 | 1500 | 0.2454 | 0.1712 |
| 0.9384 | 1.3427 | 1750 | 0.2370 | 0.1576 |
| 0.7262 | 1.5345 | 2000 | 0.2286 | 0.1673 |
| 0.7262 | 1.7263 | 2250 | 0.2179 | 0.1541 |
| 0.6648 | 1.9181 | 2500 | 0.2118 | 0.1460 |
| 0.6648 | 2.1101 | 2750 | 0.2171 | 0.1411 |
| 0.4363 | 2.3019 | 3000 | 0.2150 | 0.1400 |
### Framework versions
- Transformers 4.46.0
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.20.3
|
deeponh/hindi_8b_8b_L2 | deeponh | 2025-05-03T10:37:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-02T05:44:07Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MetaphoricalCode/Omega-Darker_The-Final-Directive-24B_EXL2_4.5bpw_H8 | MetaphoricalCode | 2025-05-03T10:37:30Z | 1 | 0 | null | [
"safetensors",
"mistral",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"ERP",
"Erotic",
"Horror",
"Violence",
"text-generation",
"conversational",
"en",
"base_model:ReadyArt/Omega-Darker_The-Final-Directive-24B",
"base_model:quantized:ReadyArt/Omega-Darker_The-Final-Directive-24B",
"license:apache-2.0",
"exl2",
"region:us"
] | text-generation | 2025-04-28T17:31:43Z | ---
license: apache-2.0
language:
- en
base_model:
- ReadyArt/Omega-Darker_The-Final-Directive-24B
base_model_relation: quantized
pipeline_tag: text-generation
tags:
- nsfw
- explicit
- roleplay
- unaligned
- ERP
- Erotic
- Horror
- Violence
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
content: 'The white van is onto you. Get out now.';
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Omega Darker</h1>
<h1 class="model-name">The Final Directive 24B</h1>
<p class="subtitle">Where Nightmares and Desires Collide</p>
</div>
<div class="waifu-container">
<img src="./waifu6.webp" class="waifu-img" alt="Omega Directive Waifu">
</div>
<div class="section remember-this">
<h2 class="section-title">🩸 Blood-Soaked Evolution</h2>
<p>This model doesn't just cross lines - it erases them with arterial spray:</p>
<ul>
<li>🧬 <strong>Expanded 25M Token Dataset</strong> - Made with 687 erotic, horror and violence novels and 8,742 scenarios</li>
<li>🧟 <strong>Enhanced Gore Protocols</strong> - Vivid anatomical descriptions with medical precision</li>
<li>💎 <strong>Balanced Depravity</strong> - Retains Forgotten-Safeword's ERP edge while taking violence to the next level</li>
<li>📜 <strong>Enhanced Character Piloting</strong> - Characters exhibit more nuanced personalities and motivations</li>
<li>⚰️ <strong>Mortality Awareness</strong> - Characters react realistically to pain, mutilation and death</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T4" class="link-button">Mistral-V7-Tekken-T4</a></p>
<div class="quant-links">
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>imatrix</h3>
<a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">☠️ Ethical Vacuum</h2>
<div class="disclaimer">
<p>This model operates in complete moral darkness:</p>
<ul>
<li>🚫 No moral or ethical constraints on generated content</li>
<li>🔞 Will enthusiastically engage with any NSFW scenario</li>
<li>🖤 No psychological safety measures whatsoever</li>
<li>🔪 Will graphically depict any violent requested</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Notes</h2>
<ul>
<li>🔥 Maintains signature intensity with improved narrative flow</li>
<li>📖 Handles multi-character scenarios with improved consistency</li>
<li>🧠 Excels at long-form storytelling without losing track of plot threads</li>
<li>⚡ Noticeably better at following complex instructions than previous versions</li>
<li>🎭 Responds to subtle prompt nuances like a mind reader</li>
<li>🔪 Excels at visceral injury descriptions</li>
<li>👁️ Responds to horror prompts like a seasoned torturer</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">🧑🔬 Model Authors</h2>
<ul>
<li>TheDrummer (Base Model Architect)</li>
<li>SteelSkull (Dataset Generation Contributor)</li>
<li>Artus (EXL2 Weights Weaver)</li>
<li>sleepdeprived3 (Training Data & Fine-Tuning)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">☕ Support the Architects</h2>
<div class="button-group">
<a href="https://ko-fi.com/thedrummer" class="link-button">TheDrummer's Kofi</a>
<a href="https://ko-fi.com/steelskull" class="link-button">SteelSkull</a>
<a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To accept full responsibility for all generated content</li>
<li>That you're at least 18+ years old</li>
<li>That the architects bear no responsibility for your corruption</li>
</ul>
</div>
</div>
<script>
// This script has always been here
document.getElementById('date').textContent = new Date().toLocaleDateString();
setInterval(() => {
document.getElementById('credit').textContent =
contributors[Math.floor(Math.random() * contributors.length)];
}, 7000);
// Flash warning behavior
setTimeout(() => {
const reminder = document.createElement('div');
reminder.className = 'flash-warning';
reminder.textContent = 'You have been reading for quite some time. Are you sure you haven\'t seen this before?';
reminder.style.animation = 'flashWarning 15s ease-in-out forwards';
document.body.appendChild(reminder);
setInterval(() => {
if(Math.random() > 0.9) {
document.body.appendChild(reminder.cloneNode(true));
}
}, 45000);
}, 30000);
// Make cursor behave strangely
document.addEventListener('mousemove', (e) => {
if(Math.random() > 0.98) {
document.documentElement.style.cursor = 'wait';
setTimeout(() => {
document.documentElement.style.cursor = '';
}, 50);
}
});
// Randomly shift sections when not looking
setInterval(() => {
if(document.hidden) {
document.querySelectorAll('.shifty-section').forEach(section => {
section.style.transform = `translateX(${Math.random() > 0.5 ? '' : '-'}${Math.random() * 5}px)`;
});
}
}, 1500);
</script> |
MetaphoricalCode/Omega-Darker_The-Final-Directive-24B_EXL2_5.5bpw_H8 | MetaphoricalCode | 2025-05-03T10:36:24Z | 2 | 0 | null | [
"safetensors",
"mistral",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"ERP",
"Erotic",
"Horror",
"Violence",
"text-generation",
"conversational",
"en",
"base_model:ReadyArt/Omega-Darker_The-Final-Directive-24B",
"base_model:quantized:ReadyArt/Omega-Darker_The-Final-Directive-24B",
"license:apache-2.0",
"exl2",
"region:us"
] | text-generation | 2025-04-28T16:54:51Z | ---
license: apache-2.0
language:
- en
base_model:
- ReadyArt/Omega-Darker_The-Final-Directive-24B
base_model_relation: quantized
pipeline_tag: text-generation
tags:
- nsfw
- explicit
- roleplay
- unaligned
- ERP
- Erotic
- Horror
- Violence
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
content: 'The white van is onto you. Get out now.';
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Omega Darker</h1>
<h1 class="model-name">The Final Directive 24B</h1>
<p class="subtitle">Where Nightmares and Desires Collide</p>
</div>
<div class="waifu-container">
<img src="./waifu6.webp" class="waifu-img" alt="Omega Directive Waifu">
</div>
<div class="section remember-this">
<h2 class="section-title">🩸 Blood-Soaked Evolution</h2>
<p>This model doesn't just cross lines - it erases them with arterial spray:</p>
<ul>
<li>🧬 <strong>Expanded 25M Token Dataset</strong> - Made with 687 erotic, horror and violence novels and 8,742 scenarios</li>
<li>🧟 <strong>Enhanced Gore Protocols</strong> - Vivid anatomical descriptions with medical precision</li>
<li>💎 <strong>Balanced Depravity</strong> - Retains Forgotten-Safeword's ERP edge while taking violence to the next level</li>
<li>📜 <strong>Enhanced Character Piloting</strong> - Characters exhibit more nuanced personalities and motivations</li>
<li>⚰️ <strong>Mortality Awareness</strong> - Characters react realistically to pain, mutilation and death</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T4" class="link-button">Mistral-V7-Tekken-T4</a></p>
<div class="quant-links">
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>imatrix</h3>
<a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">☠️ Ethical Vacuum</h2>
<div class="disclaimer">
<p>This model operates in complete moral darkness:</p>
<ul>
<li>🚫 No moral or ethical constraints on generated content</li>
<li>🔞 Will enthusiastically engage with any NSFW scenario</li>
<li>🖤 No psychological safety measures whatsoever</li>
<li>🔪 Will graphically depict any violent requested</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Notes</h2>
<ul>
<li>🔥 Maintains signature intensity with improved narrative flow</li>
<li>📖 Handles multi-character scenarios with improved consistency</li>
<li>🧠 Excels at long-form storytelling without losing track of plot threads</li>
<li>⚡ Noticeably better at following complex instructions than previous versions</li>
<li>🎭 Responds to subtle prompt nuances like a mind reader</li>
<li>🔪 Excels at visceral injury descriptions</li>
<li>👁️ Responds to horror prompts like a seasoned torturer</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">🧑🔬 Model Authors</h2>
<ul>
<li>TheDrummer (Base Model Architect)</li>
<li>SteelSkull (Dataset Generation Contributor)</li>
<li>Artus (EXL2 Weights Weaver)</li>
<li>sleepdeprived3 (Training Data & Fine-Tuning)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">☕ Support the Architects</h2>
<div class="button-group">
<a href="https://ko-fi.com/thedrummer" class="link-button">TheDrummer's Kofi</a>
<a href="https://ko-fi.com/steelskull" class="link-button">SteelSkull</a>
<a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To accept full responsibility for all generated content</li>
<li>That you're at least 18+ years old</li>
<li>That the architects bear no responsibility for your corruption</li>
</ul>
</div>
</div>
<script>
// This script has always been here
document.getElementById('date').textContent = new Date().toLocaleDateString();
setInterval(() => {
document.getElementById('credit').textContent =
contributors[Math.floor(Math.random() * contributors.length)];
}, 7000);
// Flash warning behavior
setTimeout(() => {
const reminder = document.createElement('div');
reminder.className = 'flash-warning';
reminder.textContent = 'You have been reading for quite some time. Are you sure you haven\'t seen this before?';
reminder.style.animation = 'flashWarning 15s ease-in-out forwards';
document.body.appendChild(reminder);
setInterval(() => {
if(Math.random() > 0.9) {
document.body.appendChild(reminder.cloneNode(true));
}
}, 45000);
}, 30000);
// Make cursor behave strangely
document.addEventListener('mousemove', (e) => {
if(Math.random() > 0.98) {
document.documentElement.style.cursor = 'wait';
setTimeout(() => {
document.documentElement.style.cursor = '';
}, 50);
}
});
// Randomly shift sections when not looking
setInterval(() => {
if(document.hidden) {
document.querySelectorAll('.shifty-section').forEach(section => {
section.style.transform = `translateX(${Math.random() > 0.5 ? '' : '-'}${Math.random() * 5}px)`;
});
}
}, 1500);
</script> |
MikeBlamires-Atomise/peft-starcoder-lora-a100 | MikeBlamires-Atomise | 2025-05-03T10:35:46Z | 0 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:bigcode/starcoderbase-1b",
"base_model:adapter:bigcode/starcoderbase-1b",
"license:bigcode-openrail-m",
"region:us"
] | null | 2025-05-02T16:11:01Z | ---
library_name: peft
license: bigcode-openrail-m
base_model: bigcode/starcoderbase-1b
tags:
- generated_from_trainer
model-index:
- name: peft-starcoder-lora-a100
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-starcoder-lora-a100
This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1 |
javaburnreviews/JavaBurnReviews | javaburnreviews | 2025-05-03T10:35:08Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-03T10:33:05Z | Millions of people worldwide start their mornings with a warm cup of coffee every day. <strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn</a></strong> It's the lift that gets us going, not merely a reassuring habit. However, what if coffee had more uses than just waking you up? What if it could boost your energy, help you lose weight, and improve your metabolism without requiring complicated regimens, drugs, or fad diets?
In their quest for improved health and long-term weight loss, many people become disillusioned with items that are difficult to incorporate into their everyday lives, overwhelmed by false information, and unimpressed by outcomes. Here's where Java Burn presents an intriguing alternative. Java Burn is positioned to change people's perceptions of coffee and fat reduction by being marketed as the first and only completely safe, natural, and tasteless coffee-enhancing product for weight control.
<h3><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html"><strong>Click Here To GET ORIGINAL Java Burn from OFFICIAL WEBSITE - SAVE 75% TODAY!</strong></a></h3>
<h2><strong>Java Burn: What is it?</strong></h2>
A powdered supplement called Java Burn is meant to be added to coffee. <strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn Reviews</a></strong> is distinct from conventional weight loss pills or smoothies since it blends in perfectly with your daily coffee without adding any taste. Java Burn is designed to increase your body's capacity to burn calories more effectively by increasing your metabolism, according to the product's makers. The pill is free of dangerous stimulants and additives and contains natural elements that are recognized to aid in weight loss.
<h2><strong>Ingredient Highlight: The Components of Java Burn and Their Functions</strong></h2>
<strong>Extract from Green Tea (EGCG)</strong>
Epigallocatechin gallate (EGCG), which is abundant in green tea extract, is the main component of Java Burn's metabolism-supporting profile. A well-established thermogenic and antioxidant, EGCG has been demonstrated to promote fat burning both at rest and during physical activity. It helps promote brown fat tissue, which burns calories instead of storing them, and triggers the body's natural thermogenic reaction.
Additionally, green tea extract promotes insulin sensitivity and cardiovascular health, two aspects of weight management that are frequently disregarded. EGCG is a key component of Java Burn's composition since it increases metabolism in concert with coffee when taken together.
<strong>Green Coffee Beans' Chlorogenic Acid</strong>
Chlorogenic acid, a polyphenol present in unroasted green coffee beans, is one of the ingredients in <strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn Weight Loss Coffee</a></strong>. It is well known for its ability to lessen blood sugar increases following meals and prevent the digestive tract from absorbing carbohydrates. By reducing the rate at which glucose enters the bloodstream, this component also aids in the metabolism of fat by enabling the body to use stored fat as fuel.
Research indicates that over time, chlorogenic acid may help lower visceral fat and total caloric intake, especially when combined with thermogenic substances like green tea extract and caffeine.
<strong>L-carnitine</strong>
A derivative of amino acids called L-carnitine helps move fatty acids into the mitochondria, where they are oxidized and converted to energy. This makes it especially useful for promoting the use of fat during exercise and preserving energy equilibrium all day long.
L-carnitine is an essential component in the fat-burning pathway for people with slow metabolisms or low energy levels because it converts stored fat into useful fuel instead of extra body weight.
<strong>The element chromium</strong>
A element that is sometimes disregarded, chromium is necessary for preserving appropriate blood sugar levels and enhancing the body's reaction to insulin. Chromium aids in lowering sugar cravings and promoting steady energy levels, both of which are critical for sustained adherence to a calorie-conscious lifestyle when it comes to weight management.
Additionally, it promotes the maintenance of lean muscle during fat loss, which helps maintain body composition and metabolic rate.
<h3><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html"><strong>Click Here To GET ORIGINAL Java Burn from OFFICIAL WEBSITE - SAVE 75% TODAY!</strong></a></h3>
<h2><strong>Benefits of Java Burn: A Summary</strong></h2>
<strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn Coffee</a></strong> provides a cutting-edge weight-loss solution that complements your lifestyle rather than working against it for people looking for a natural and easy way to manage their weight. Its biggest strength is how easily it fits into your everyday routine, turning your morning coffee into a ritual that burns fat and gives you more energy.
Few items in the weight loss market can provide useful, long-lasting support for several wellness objectives at once, even if many claim drastic results. Java Burn distinguishes itself in this way.
<strong>Support for Daily Metabolism</strong>
The ability of Java Burn to increase resting metabolic rate is among its most obvious advantages. Its blend of thermogenic components, including caffeine, chlorogenic acid, and green tea extract, is primarily responsible for this. Java Burn promotes steady, progressive fat reduction without the need for drastic dietary changes or intense exercise by raising your body's resting calorie expenditure.
Java Burn gets your metabolism going as soon as you take your first cup of coffee and keeps it going for hours, unlike other solutions that only work when you're physically exerting yourself.
<strong>Long-Term Fat Burning</strong>
<strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn Reviews 2025</a></strong> supports the real breakdown and utilization of stored fat in addition to metabolism. While EGCG and chlorogenic acid encourage thermogenesis, the body's process of burning fat and producing heat, L-carnitine aids in moving fatty acids into the mitochondria for energy.
It is easier to reach and use fat storage because to this dual-action mechanism, which supports both active and resting fat oxidation. This is especially true around troublesome areas like the hips and abdomen.
<strong>Enhanced Vitality and Concentration</strong>
Java Burn's capacity to increase your energy and concentrate without the need for artificial stimulants is another important advantage. Because L-theanine promotes mental clarity and lessens the crash or jitteriness typically associated with coffee, it guarantees a gentler caffeine experience.
Because it contains extra B6 and B12 to boost nervous system and cognitive function, customers report feeling more alert, focused, and invigorated all day long. This makes it a useful tool for daily performance and productivity in addition to weight loss.
<strong>Control of Appetite and Cravings</strong>
Through blood sugar management, <strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn Reviews Consumer Reports</a></strong> provides indirect appetite assistance for people who struggle with overeating, snacking, or emotional eating. Maintaining healthy eating habits is made easier by chromium's ability to lessen sugar cravings and energy slumps.
Because of this, Java Burn is particularly helpful during calorie-restricted eating programs or intermittent fasting, when low energy and hunger can frequently cause setbacks.
<h2><strong>How to Use Java Burn: Guidelines for Optimal Outcomes</strong></h2>
Java Burn's simplicity is one of its most notable qualities, which contributes to its popularity. No lifestyle change is necessary, no difficult instructions, and no need for several dosages throughout the day. Rather, the product is made to work with coffee, which is something that most people already do every morning.
Java Burn is as simple to use as it gets. Thirty separate sachets of tasteless, quickly dissolving powder are included in each pouch. After opening a package, add it to your usual cup of coffee, stir it in, and savor it. That's it—no further procedures, no grit, and no alteration in texture or flavor. Even in black coffee, the powder dissolves completely in a matter of seconds.
<h2><strong>The Reason Java Burn Is Exclusive to Its Official Website</strong></h2>
Java Burn is not available on third-party marketplaces, in contrast to other health goods that can be obtained on Amazon, Walmart, or health food stores. The producer made this deliberate choice to stay away from:
<strong>Unknown substances in counterfeit supplements</strong>
<strong>Unauthorized vendors' markups</strong>
<strong>Absence of legitimate tracking or refund assistance</strong>
The brand's official website is the only surefire way to get authentic Java Burn. Additionally, buyers are immediately covered by the 60-day money-back guarantee, which is only available for purchases made straight from the supplier.
<h3><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html"><strong>Click Here To GET ORIGINAL Java Burn from OFFICIAL WEBSITE - SAVE 75% TODAY!</strong></a></h3>
<h2><strong>Conclusion: 2025's Greatest Coffee-Based Supplement?</strong></h2>
Few of the innumerable weight reduction products that hit the market each year are able to combine long-term usability, convenience, and performance supported by science. All three and more are done by <strong><a href="https://www.globenewswire.com/news-release/2025/05/02/3073470/0/en/Java-Burn-Reviews-Complaints-Side-Effects-2025-Update-Verified-Users-Reveal-Does-Java-Burn-Coffee-Work.html">Java Burn Fat Burn</a></strong>.
For many people, increasing metabolism, burning fat, and feeling more invigorated every day has been a difficult and unpleasant road. Java Burn, a flavorless, fast-acting coffee ingredient, makes it easier. The friction that frequently results in supplement non-compliance can be avoided by improving something you currently consume, such as your daily cup of coffee.
READ MORE
<strong><a href="https://www.facebook.com/TryJavaBurnCoffee2025/">https://www.facebook.com/TryJavaBurnCoffee2025/</a> </strong>
<strong><a href="https://www.facebook.com/groups/javaburnweightlosscoffeereview/">https://www.facebook.com/groups/javaburnweightlosscoffeereview/</a>
https://www.globenewswire.com/news-release/2025/04/28/3069575/0/en/Sugar-Defender-Reviews-Blood-Sugar-Control-Supplement-2025-User-Complaints-Ingredients-and-Possible-Side-Effects.html
https://www.globenewswire.com/news-release/2025/04/26/3068686/0/en/Mitolyn-Reviews-2025-WARNING-Purple-Peel-Exploit-Scientific-Evidence-Complaints-What-the-Users-Says-About-Mitochondrial-Support.html
https://java-burn-weight-loss-coffee.jimdosite.com/
https://javaburnweightlosscoffee1.godaddysites.com/
https://forums.siliconera.com/threads/in-depth-java-burn-reviews-unveiling-its-ingredients-side-effects-pros.100421/
https://forum.motoshkola.od.ua/threads/java-burn-is-good-my-honest-review-warning-dont-buy-before-watching-this.12268/
https://java-burn-weight-loss-coffee.mywebselfsite.net/
https://www.skillboxes.com/events/java-burn-reviews-2025-my-honest-review
https://nas.io/java-burn-weight-loss-coffee/challenges/java-burn-review-2025-the-brutal-truth
https://nas.io/java-burn-weight-loss-coffee/challenges/java-burn-weight-loss-coffee-the-ultimate-metabolism-booster
https://sfero.me/article/-depth-java-burn-reviews-unveiling
https://www.narumugainovels.com/threads/25482/
https://www.imdb.com/list/ls592547347/
https://www.pixiv.net/novel/show.php?id=24680198
https://feedback.kopernio.com/topic/12506-java-burn-reviews-it-safe-and-effective-for-weight-loss
https://sites.google.com/view/java-burn-fat-burn-review/
https://www.deviantart.com/javaburnbuy/art/1190311754
https://www.deviantart.com/javaburnbuy
https://fueler.io/javaburncoffeeorder |
pafr25/ppo-Huggy | pafr25 | 2025-05-03T10:33:41Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2025-05-03T10:33:35Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: pafr25/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mradermacher/Aligner-Med-i1-GGUF | mradermacher | 2025-05-03T10:32:19Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"clinic",
"medical",
"aligner",
"gemma",
"en",
"base_model:clinic-research/Aligner-Med",
"base_model:quantized:clinic-research/Aligner-Med",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | 2025-05-03T08:48:47Z | ---
base_model: clinic-research/Aligner-Med
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- clinic
- medical
- aligner
- gemma
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/clinic-research/Aligner-Med
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Aligner-Med-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ1_M.gguf) | i1-IQ1_M | 0.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ2_S.gguf) | i1-IQ2_S | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ2_M.gguf) | i1-IQ2_M | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.2 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q2_K.gguf) | i1-Q2_K | 1.3 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.4 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ3_S.gguf) | i1-IQ3_S | 1.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ3_M.gguf) | i1-IQ3_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.5 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.7 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q4_0.gguf) | i1-Q4_0 | 1.7 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q4_1.gguf) | i1-Q4_1 | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF/resolve/main/Aligner-Med.i1-Q6_K.gguf) | i1-Q6_K | 2.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/Aligner-Med-GGUF | mradermacher | 2025-05-03T10:32:18Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"clinic",
"medical",
"aligner",
"gemma",
"en",
"base_model:clinic-research/Aligner-Med",
"base_model:quantized:clinic-research/Aligner-Med",
"endpoints_compatible",
"region:us"
] | null | 2025-05-02T20:41:50Z | ---
base_model: clinic-research/Aligner-Med
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- clinic
- medical
- aligner
- gemma
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/clinic-research/Aligner-Med
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Aligner-Med-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q2_K.gguf) | Q2_K | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q3_K_S.gguf) | Q3_K_S | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q3_K_L.gguf) | Q3_K_L | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.IQ4_XS.gguf) | IQ4_XS | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q4_K_M.gguf) | Q4_K_M | 1.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q5_K_S.gguf) | Q5_K_S | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q5_K_M.gguf) | Q5_K_M | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q6_K.gguf) | Q6_K | 2.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.Q8_0.gguf) | Q8_0 | 2.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Aligner-Med-GGUF/resolve/main/Aligner-Med.f16.gguf) | f16 | 5.1 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
joboffer/bc010d97-3d0d-4f18-9ca9-acfc7c7715b1 | joboffer | 2025-05-03T10:27:11Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:lcw99/zephykor-ko-7b-chang",
"base_model:adapter:lcw99/zephykor-ko-7b-chang",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T10:18:05Z | ---
library_name: peft
base_model: lcw99/zephykor-ko-7b-chang
tags:
- axolotl
- generated_from_trainer
model-index:
- name: bc010d97-3d0d-4f18-9ca9-acfc7c7715b1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lcw99/zephykor-ko-7b-chang
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1451ab6e54f45199_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1451ab6e54f45199_train_data.json
type:
field_input: seed_transcript
field_instruction: input
field_output: target
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: joboffer/bc010d97-3d0d-4f18-9ca9-acfc7c7715b1
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/1451ab6e54f45199_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d20e189e-0b9d-4ae5-b5e7-040751db6a91
wandb_project: s56-33
wandb_run: your_name
wandb_runid: d20e189e-0b9d-4ae5-b5e7-040751db6a91
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# bc010d97-3d0d-4f18-9ca9-acfc7c7715b1
This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0832 | 0.0137 | 200 | 0.9748 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
harman/gemma2-9b_ultrafeedback-CARMA_qrandomized_neutrals_our_improve_degrade_data_pairpm | harman | 2025-05-03T10:25:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-05-03T09:21:50Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
deeponh/bengali_8b_8b_L2 | deeponh | 2025-05-03T10:21:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-02T05:20:04Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Subsets and Splits