modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-27 18:27:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 500
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-27 18:23:41
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
infogeo/f5bee701-3a86-4238-8206-4341ce70012e | infogeo | 2025-05-03T23:55:06Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:princeton-nlp/Sheared-LLaMA-1.3B",
"base_model:adapter:princeton-nlp/Sheared-LLaMA-1.3B",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T23:50:32Z | ---
library_name: peft
license: apache-2.0
base_model: princeton-nlp/Sheared-LLaMA-1.3B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f5bee701-3a86-4238-8206-4341ce70012e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: princeton-nlp/Sheared-LLaMA-1.3B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 010f41668a2584c4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/010f41668a2584c4_train_data.json
type:
field_instruction: prompt
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: infogeo/f5bee701-3a86-4238-8206-4341ce70012e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/010f41668a2584c4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7e346bfe-d01e-4c9a-9fc5-bf5892f5a796
wandb_project: s56-28
wandb_run: your_name
wandb_runid: 7e346bfe-d01e-4c9a-9fc5-bf5892f5a796
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# f5bee701-3a86-4238-8206-4341ce70012e
This model is a fine-tuned version of [princeton-nlp/Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8784 | 0.0128 | 150 | 1.7878 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
darkc0de/XortronEliteUncensoredCrimininalComputing-Q6_K-GGUF | darkc0de | 2025-05-03T23:52:52Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"uncensored",
"harmful",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:darkc0de/XortronEliteUncensoredCrimininalComputing",
"base_model:quantized:darkc0de/XortronEliteUncensoredCrimininalComputing",
"license:wtfpl",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-03T23:51:21Z | ---
base_model: darkc0de/XortronEliteUncensoredCrimininalComputing
library_name: transformers
license: wtfpl
pipeline_tag: text-generation
tags:
- mergekit
- merge
- uncensored
- harmful
- llama-cpp
- gguf-my-repo
---
# darkc0de/XortronEliteUncensoredCrimininalComputing-Q6_K-GGUF
This model was converted to GGUF format from [`darkc0de/XortronEliteUncensoredCrimininalComputing`](https://huggingface.co/darkc0de/XortronEliteUncensoredCrimininalComputing) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/darkc0de/XortronEliteUncensoredCrimininalComputing) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo darkc0de/XortronEliteUncensoredCrimininalComputing-Q6_K-GGUF --hf-file xortroneliteuncensoredcrimininalcomputing-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo darkc0de/XortronEliteUncensoredCrimininalComputing-Q6_K-GGUF --hf-file xortroneliteuncensoredcrimininalcomputing-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo darkc0de/XortronEliteUncensoredCrimininalComputing-Q6_K-GGUF --hf-file xortroneliteuncensoredcrimininalcomputing-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo darkc0de/XortronEliteUncensoredCrimininalComputing-Q6_K-GGUF --hf-file xortroneliteuncensoredcrimininalcomputing-q6_k.gguf -c 2048
```
|
hanaearg/emo-GemaDev | hanaearg | 2025-05-03T23:47:47Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma2",
"trl",
"en",
"base_model:unsloth/gemma-2-9b-it-bnb-4bit",
"base_model:finetune:unsloth/gemma-2-9b-it-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T23:47:35Z | ---
base_model: unsloth/gemma-2-9b-it-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** hanaearg
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-2-9b-it-bnb-4bit
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ShabanEjupi/Chatbot-Phi2 | ShabanEjupi | 2025-05-03T23:46:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T23:28:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jnjj/model_13m-Q8_0-GGUF | jnjj | 2025-05-03T23:34:36Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:jnjj/model_13m",
"base_model:quantized:jnjj/model_13m",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T23:34:35Z | ---
base_model: jnjj/model_13m
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
---
# jnjj/model_13m-Q8_0-GGUF
This model was converted to GGUF format from [`jnjj/model_13m`](https://huggingface.co/jnjj/model_13m) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jnjj/model_13m) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jnjj/model_13m-Q8_0-GGUF --hf-file model_13m-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jnjj/model_13m-Q8_0-GGUF --hf-file model_13m-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jnjj/model_13m-Q8_0-GGUF --hf-file model_13m-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jnjj/model_13m-Q8_0-GGUF --hf-file model_13m-q8_0.gguf -c 2048
```
|
TheGardener/KD-MLP-and_Attention-pruner-ver3-activation-llama3.2-0.9B-epoch-3rd | TheGardener | 2025-05-03T23:33:56Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T23:31:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rayonlabs/pythia-70m-openr1-math-verified-solutions-truncated-75b45eb6-9efa-4fa7-9f52-55c4b936ad66 | rayonlabs | 2025-05-03T23:33:47Z | 0 | 0 | peft | [
"peft",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:adapter:EleutherAI/pythia-70m",
"region:us"
] | null | 2025-05-03T23:33:47Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: EleutherAI/pythia-70m
model-index:
- name: shibajustfor/1818a75d-04d4-4660-92a7-8ce40a28aa94
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# shibajustfor/1818a75d-04d4-4660-92a7-8ce40a28aa94
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6304
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |
jnjj/model_13m | jnjj | 2025-05-03T23:31:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T23:00:47Z | ---
library_name: transformers
--- |
Dohahemdann/FLAN-T5-FineTunedModel-Pytorch2 | Dohahemdann | 2025-05-03T23:24:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-03T23:23:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rayonlabs/Qwen2-1_5B-Instruct-opus100-en-fr-3817e1a8-ed6c-45eb-9aef-fd65e3afe80f | rayonlabs | 2025-05-03T23:23:44Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2-1.5B-Instruct",
"base_model:adapter:Qwen/Qwen2-1.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T23:23:43Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 09d7d779-c486-4e4c-be47-dd7de2a2c52b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2-1.5B-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 21c49dc937709928_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/21c49dc937709928_train_data.json
type:
field_instruction: en
field_output: fr
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: aleegis/09d7d779-c486-4e4c-be47-dd7de2a2c52b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 32
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/21c49dc937709928_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: null
wandb_mode: online
wandb_name: 3817e1a8-ed6c-45eb-9aef-fd65e3afe80f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3817e1a8-ed6c-45eb-9aef-fd65e3afe80f
warmup_steps: 100
weight_decay: 0
xformers_attention: null
```
</details><br>
# 09d7d779-c486-4e4c-be47-dd7de2a2c52b
This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
HaoranTang/dummy-model | HaoranTang | 2025-05-03T23:21:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"camembert",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-05-03T23:20:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rayonlabs/hf-autotrain-2025-05-03-bf14246a | rayonlabs | 2025-05-03T23:18:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"autotrain",
"text-generation-inference",
"peft",
"conversational",
"dataset:rayonlabs/autotrain-data-hf-autotrain-2025-05-03-bf14246a",
"base_model:EleutherAI/pythia-70m",
"base_model:finetune:EleutherAI/pythia-70m",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T21:55:15Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
base_model: EleutherAI/pythia-70m
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
datasets:
- rayonlabs/autotrain-data-hf-autotrain-2025-05-03-bf14246a
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
19uez/GRPO_llama3_2_3B_16_0_1k_part1 | 19uez | 2025-05-03T23:17:00Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"unsloth",
"trl",
"grpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T23:16:01Z | ---
library_name: transformers
tags:
- unsloth
- trl
- grpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_emotion_naive_outcome_0_25_0_1_MC | gradientrouting-spar | 2025-05-03T23:08:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T23:07:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
filipesantoscv11/aac5b2e6-aff6-4ef2-93d9-0798814e3d76 | filipesantoscv11 | 2025-05-03T23:06:17Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:adapter:EleutherAI/pythia-70m",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T22:53:27Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-70m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: aac5b2e6-aff6-4ef2-93d9-0798814e3d76
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-70m
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 43246a3a844994b2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/43246a3a844994b2_train_data.json
type:
field_instruction: en
field_output: es
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: filipesantoscv11/aac5b2e6-aff6-4ef2-93d9-0798814e3d76
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/43246a3a844994b2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d5a4bc97-fa21-4396-bffc-02ce3a64dc57
wandb_project: s56-6
wandb_run: your_name
wandb_runid: d5a4bc97-fa21-4396-bffc-02ce3a64dc57
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# aac5b2e6-aff6-4ef2-93d9-0798814e3d76
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.0809
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.7039 | 0.0017 | 200 | 6.0809 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
jacobcarajo/Phi-4-reasoning-plus-Q5_K_M-GGUF | jacobcarajo | 2025-05-03T23:06:16Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"phi",
"nlp",
"math",
"code",
"chat",
"conversational",
"reasoning",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:microsoft/Phi-4-reasoning-plus",
"base_model:quantized:microsoft/Phi-4-reasoning-plus",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T23:05:33Z | ---
base_model: microsoft/Phi-4-reasoning-plus
language:
- en
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-reasoning-plus/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- reasoning
- llama-cpp
- gguf-my-repo
inference:
parameters:
temperature: 0
widget:
- messages:
- role: user
content: What is the derivative of x^2?
---
# jacobcarajo/Phi-4-reasoning-plus-Q5_K_M-GGUF
This model was converted to GGUF format from [`microsoft/Phi-4-reasoning-plus`](https://huggingface.co/microsoft/Phi-4-reasoning-plus) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/microsoft/Phi-4-reasoning-plus) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jacobcarajo/Phi-4-reasoning-plus-Q5_K_M-GGUF --hf-file phi-4-reasoning-plus-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jacobcarajo/Phi-4-reasoning-plus-Q5_K_M-GGUF --hf-file phi-4-reasoning-plus-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jacobcarajo/Phi-4-reasoning-plus-Q5_K_M-GGUF --hf-file phi-4-reasoning-plus-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jacobcarajo/Phi-4-reasoning-plus-Q5_K_M-GGUF --hf-file phi-4-reasoning-plus-q5_k_m.gguf -c 2048
```
|
webis/naacl25-prompt-compositions_finetune-baseline | webis | 2025-05-03T23:04:19Z | 0 | 0 | null | [
"safetensors",
"license:cc-by-3.0",
"region:us"
] | null | 2025-03-04T14:25:18Z | ---
license: cc-by-3.0
---
Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection
=======================================================================
Finetune baseline models for the paper [Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection](https://aclanthology.org/2025.naacl-long.122/).
For details, please see the published paper and the [GitHub repository](https://github.com/webis-de/naacl25-prompt-compositions).
```
@inproceedings{spliethover-etal-2025-adaptive,
title = {Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection},
author = {Splieth{\"o}ver, Maximilian and Knebler, Tim and Fumagalli, Fabian and Muschalik, Maximilian and Hammer, Barbara and H{\"u}llermeier, Eyke and Wachsmuth, Henning},
year = 2025,
month = apr,
booktitle = {Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Albuquerque, New Mexico},
pages = {2421--2449},
isbn = {979-8-89176-189-6},
url = {https://aclanthology.org/2025.naacl-long.122/},
editor = {Chiruzzo, Luis and Ritter, Alan and Wang, Lu}
}
```
## Note on finetune baseline models
Unfortunately, we did not keep the original finetuning baseline models, for which scores are reported in the paper. We did, however, keep the prediction results of these models.
We did retrain the models on the same splits, same seeds, same python version, and same library versions. The new models and also the new (and old) prediction results are uploaded in this repository. |
eduardo-bolognini/imagecaptioning3 | eduardo-bolognini | 2025-05-03T23:01:38Z | 32 | 0 | null | [
"safetensors",
"blip",
"license:other",
"region:us"
] | null | 2025-04-19T21:59:05Z | ---
license: other
license_name: licence
license_link: LICENSE
---
|
magichampz/lora_model_8b_instruct_ollama | magichampz | 2025-05-03T23:01:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T22:52:53Z | ---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** magichampz
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
19uez/GRPO_llama3_2_3B_64_005_2k_part1 | 19uez | 2025-05-03T22:59:01Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"unsloth",
"trl",
"grpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T22:57:59Z | ---
library_name: transformers
tags:
- unsloth
- trl
- grpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Docty/text2img-lora_dragon | Docty | 2025-05-03T22:59:00Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"diffusers-training",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-05-03T22:30:48Z | ---
base_model: runwayml/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - Docty/text2img-lora_dragon
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/naruto-blip-captions dataset. You can find some example images in the following.




## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
gavrilstep/eb6a1c26-399f-403f-a1de-698a2b001b34 | gavrilstep | 2025-05-03T22:57:31Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Llama-3.1-Storm-8B",
"base_model:adapter:unsloth/Llama-3.1-Storm-8B",
"license:llama3.1",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T22:31:16Z | ---
library_name: peft
license: llama3.1
base_model: unsloth/Llama-3.1-Storm-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: eb6a1c26-399f-403f-a1de-698a2b001b34
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: unsloth/Llama-3.1-Storm-8B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- aa3af1c06d20fbf1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/aa3af1c06d20fbf1_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: gavrilstep/eb6a1c26-399f-403f-a1de-698a2b001b34
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 96
lora_dropout: 0.01
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 48
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 4
mixed_precision: bf16
mlflow_experiment_name: /tmp/aa3af1c06d20fbf1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a1783653-c3e7-49d9-ad8b-900c219df62c
wandb_project: s56-7
wandb_run: your_name
wandb_runid: a1783653-c3e7-49d9-ad8b-900c219df62c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# eb6a1c26-399f-403f-a1de-698a2b001b34
This model is a fine-tuned version of [unsloth/Llama-3.1-Storm-8B](https://huggingface.co/unsloth/Llama-3.1-Storm-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3266 | 0.0078 | 150 | 1.9589 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
PranayPalem/ppo-Huggy | PranayPalem | 2025-05-03T22:56:54Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2025-05-03T22:56:47Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: PranayPalem/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AlienKevin/webssl-dino1b-in1k-224 | AlienKevin | 2025-05-03T22:54:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"dinov2",
"image-feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | image-feature-extraction | 2025-05-03T22:52:40Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
yushihu/Qwen3-4B-ensemble | yushihu | 2025-05-03T22:51:10Z | 0 | 0 | null | [
"safetensors",
"ensemble_qwen",
"custom_code",
"base_model:Qwen/Qwen3-4B",
"base_model:finetune:Qwen/Qwen3-4B",
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T01:11:10Z | ---
license: apache-2.0
base_model:
- Qwen/Qwen3-4B
--- |
mergekit-community/mergekit-dare_ties-mgtzoms | mergekit-community | 2025-05-03T22:49:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:ReadyArt/Broken-Tutu-24B",
"base_model:merge:ReadyArt/Broken-Tutu-24B",
"base_model:ReadyArt/Forgotten-Safeword-24B-v4.0",
"base_model:merge:ReadyArt/Forgotten-Safeword-24B-v4.0",
"base_model:Sorawiz/MistralCreative-24B-Chat",
"base_model:merge:Sorawiz/MistralCreative-24B-Chat",
"base_model:mrfakename/mistral-small-3.1-24b-instruct-2503-hf",
"base_model:merge:mrfakename/mistral-small-3.1-24b-instruct-2503-hf",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T22:37:28Z | ---
base_model:
- ReadyArt/Broken-Tutu-24B
- ReadyArt/Forgotten-Safeword-24B-v4.0
- Sorawiz/MistralCreative-24B-Chat
- mrfakename/mistral-small-3.1-24b-instruct-2503-hf
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [mrfakename/mistral-small-3.1-24b-instruct-2503-hf](https://huggingface.co/mrfakename/mistral-small-3.1-24b-instruct-2503-hf) as a base.
### Models Merged
The following models were included in the merge:
* [ReadyArt/Broken-Tutu-24B](https://huggingface.co/ReadyArt/Broken-Tutu-24B)
* [ReadyArt/Forgotten-Safeword-24B-v4.0](https://huggingface.co/ReadyArt/Forgotten-Safeword-24B-v4.0)
* [Sorawiz/MistralCreative-24B-Chat](https://huggingface.co/Sorawiz/MistralCreative-24B-Chat)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_ties
base_model: mrfakename/mistral-small-3.1-24b-instruct-2503-hf
models:
- model: mrfakename/mistral-small-3.1-24b-instruct-2503-hf
parameters:
weight: 0.2
- model: Sorawiz/MistralCreative-24B-Chat
parameters:
weight: 0.3
- model: ReadyArt/Forgotten-Safeword-24B-v4.0
parameters:
weight: 0.3
- model: ReadyArt/Broken-Tutu-24B
parameters:
weight: 0.2
parameters:
density: 1
tokenizer:
source: union
chat_template: auto
```
|
wendyl21/q-taxi-v3 | wendyl21 | 2025-05-03T22:49:06Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T22:49:04Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.77
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="wendyl21/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
jacobcarajo/phi-4-Q5_K_M-GGUF | jacobcarajo | 2025-05-03T22:43:52Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"phi",
"nlp",
"math",
"code",
"chat",
"conversational",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:microsoft/phi-4",
"base_model:quantized:microsoft/phi-4",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T22:43:09Z | ---
base_model: microsoft/phi-4
language:
- en
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- llama-cpp
- gguf-my-repo
inference:
parameters:
temperature: 0
widget:
- messages:
- role: user
content: How should I explain the Internet?
---
# jacobcarajo/phi-4-Q5_K_M-GGUF
This model was converted to GGUF format from [`microsoft/phi-4`](https://huggingface.co/microsoft/phi-4) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/microsoft/phi-4) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jacobcarajo/phi-4-Q5_K_M-GGUF --hf-file phi-4-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jacobcarajo/phi-4-Q5_K_M-GGUF --hf-file phi-4-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jacobcarajo/phi-4-Q5_K_M-GGUF --hf-file phi-4-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jacobcarajo/phi-4-Q5_K_M-GGUF --hf-file phi-4-q5_k_m.gguf -c 2048
```
|
akoruk/gemma-3-4b | akoruk | 2025-05-03T22:43:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3",
"trl",
"en",
"base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T22:43:14Z | ---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** akoruk
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
kokovova/b14784fa-7a1e-40bb-bdd2-b4bf45aeb019 | kokovova | 2025-05-03T22:39:38Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Llama-3.1-Storm-8B",
"base_model:adapter:unsloth/Llama-3.1-Storm-8B",
"license:llama3.1",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T22:32:19Z | ---
library_name: peft
license: llama3.1
base_model: unsloth/Llama-3.1-Storm-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b14784fa-7a1e-40bb-bdd2-b4bf45aeb019
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Llama-3.1-Storm-8B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- aa3af1c06d20fbf1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/aa3af1c06d20fbf1_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: kokovova/b14784fa-7a1e-40bb-bdd2-b4bf45aeb019
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/aa3af1c06d20fbf1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a1783653-c3e7-49d9-ad8b-900c219df62c
wandb_project: s56-4
wandb_run: your_name
wandb_runid: a1783653-c3e7-49d9-ad8b-900c219df62c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# b14784fa-7a1e-40bb-bdd2-b4bf45aeb019
This model is a fine-tuned version of [unsloth/Llama-3.1-Storm-8B](https://huggingface.co/unsloth/Llama-3.1-Storm-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7374 | 0.0207 | 200 | 1.7712 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Dohahemdann/FLAN-T5-FineTunedModel-Pytorch | Dohahemdann | 2025-05-03T22:24:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-03T22:23:05Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
thavens-research/Qwen2.5-7B-Instruct | thavens-research | 2025-05-03T22:22:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T22:13:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
masp307/speecht5_finetuned_indotts | masp307 | 2025-05-03T22:22:03Z | 13 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-to-audio | 2025-02-28T08:12:56Z | ---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_indotts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_indotts
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4123
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.5378 | 0.4771 | 500 | 0.4871 |
| 0.5108 | 0.9542 | 1000 | 0.4626 |
| 0.4959 | 1.4313 | 1500 | 0.4579 |
| 0.4852 | 1.9084 | 2000 | 0.4536 |
| 0.481 | 2.3855 | 2500 | 0.4521 |
| 0.4759 | 2.8626 | 3000 | 0.4439 |
| 0.4697 | 3.3397 | 3500 | 0.4432 |
| 0.4666 | 3.8168 | 4000 | 0.4368 |
| 0.4623 | 4.2939 | 4500 | 0.4360 |
| 0.4597 | 4.7710 | 5000 | 0.4347 |
| 0.4554 | 5.2481 | 5500 | 0.4348 |
| 0.4552 | 5.7252 | 6000 | 0.4298 |
| 0.449 | 6.2023 | 6500 | 0.4307 |
| 0.4505 | 6.6794 | 7000 | 0.4270 |
| 0.4433 | 7.1565 | 7500 | 0.4284 |
| 0.4446 | 7.6336 | 8000 | 0.4274 |
| 0.4399 | 8.1107 | 8500 | 0.4246 |
| 0.4407 | 8.5878 | 9000 | 0.4231 |
| 0.4346 | 9.0649 | 9500 | 0.4217 |
| 0.4377 | 9.5420 | 10000 | 0.4216 |
| 0.4322 | 10.0191 | 10500 | 0.4196 |
| 0.4309 | 10.4962 | 11000 | 0.4186 |
| 0.4299 | 10.9733 | 11500 | 0.4161 |
| 0.4262 | 11.4504 | 12000 | 0.4258 |
| 0.4279 | 11.9275 | 12500 | 0.4176 |
| 0.4215 | 12.4046 | 13000 | 0.4165 |
| 0.423 | 12.8817 | 13500 | 0.4146 |
| 0.4207 | 13.3588 | 14000 | 0.4209 |
| 0.4213 | 13.8359 | 14500 | 0.4171 |
| 0.4203 | 14.3130 | 15000 | 0.4119 |
| 0.4177 | 14.7901 | 15500 | 0.4119 |
| 0.4134 | 15.2672 | 16000 | 0.4118 |
| 0.4164 | 15.7443 | 16500 | 0.4131 |
| 0.4131 | 16.2214 | 17000 | 0.4106 |
| 0.4118 | 16.6985 | 17500 | 0.4119 |
| 0.4116 | 17.1756 | 18000 | 0.4128 |
| 0.4086 | 17.6527 | 18500 | 0.4109 |
| 0.4075 | 18.1298 | 19000 | 0.4126 |
| 0.4066 | 18.6069 | 19500 | 0.4122 |
| 0.4075 | 19.0840 | 20000 | 0.4123 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0
|
ebeckk/dqn-AsteroidsNoFrameskip-v4 | ebeckk | 2025-05-03T22:20:51Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"AsteroidsNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T22:20:16Z | ---
library_name: stable-baselines3
tags:
- AsteroidsNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AsteroidsNoFrameskip-v4
type: AsteroidsNoFrameskip-v4
metrics:
- type: mean_reward
value: 800.00 +/- 361.77
name: mean_reward
verified: false
---
# **DQN** Agent playing **AsteroidsNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **AsteroidsNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
SBX (SB3 + Jax): https://github.com/araffin/sbx
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env AsteroidsNoFrameskip-v4 -orga ebeckk -f logs/
python -m rl_zoo3.enjoy --algo dqn --env AsteroidsNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env AsteroidsNoFrameskip-v4 -orga ebeckk -f logs/
python -m rl_zoo3.enjoy --algo dqn --env AsteroidsNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env AsteroidsNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env AsteroidsNoFrameskip-v4 -f logs/ -orga ebeckk
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
johnjrhunglin/banking77_1 | johnjrhunglin | 2025-05-03T22:14:12Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-12-14T07:28:09Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: banking77_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# banking77_1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4953
- F1: 0.9127
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.6725 | 1.0 | 313 | 1.5793 | 0.6982 |
| 0.8968 | 2.0 | 626 | 0.6623 | 0.8843 |
| 0.5473 | 3.0 | 939 | 0.4953 | 0.9127 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3
|
BootesVoid/cma8q5qdk001xzjjk9ze1aand_cma8qwawh0023zjjky9ia5b62 | BootesVoid | 2025-05-03T22:10:50Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-03T22:10:48Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SAM
---
# Cma8Q5Qdk001Xzjjk9Ze1Aand_Cma8Qwawh0023Zjjky9Ia5B62
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SAM` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SAM",
"lora_weights": "https://huggingface.co/BootesVoid/cma8q5qdk001xzjjk9ze1aand_cma8qwawh0023zjjky9ia5b62/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cma8q5qdk001xzjjk9ze1aand_cma8qwawh0023zjjky9ia5b62', weight_name='lora.safetensors')
image = pipeline('SAM').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cma8q5qdk001xzjjk9ze1aand_cma8qwawh0023zjjky9ia5b62/discussions) to add images that show off what you’ve made with this LoRA.
|
jnjj/fgfgfg | jnjj | 2025-05-03T22:07:40Z | 0 | 0 | null | [
"gguf",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T22:06:11Z | ---
license: apache-2.0
---
|
infogep/f971e688-db61-4cf4-906e-b16c197f8858 | infogep | 2025-05-03T22:02:48Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:adapter:EleutherAI/pythia-70m",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T21:57:02Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-70m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f971e688-db61-4cf4-906e-b16c197f8858
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: EleutherAI/pythia-70m
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 78fef953edf6ce18_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/78fef953edf6ce18_train_data.json
type:
field_instruction: en
field_output: ja
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: infogep/f971e688-db61-4cf4-906e-b16c197f8858
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/78fef953edf6ce18_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 2048
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9e9e612b-9a07-4996-b19f-dd5a18a0de2a
wandb_project: s56-30
wandb_run: your_name
wandb_runid: 9e9e612b-9a07-4996-b19f-dd5a18a0de2a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# f971e688-db61-4cf4-906e-b16c197f8858
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7076
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.8829 | 0.0017 | 200 | 6.7076 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
vermoney/def1bb40-b9c6-440d-9093-634340884db4 | vermoney | 2025-05-03T22:02:36Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:adapter:EleutherAI/pythia-70m",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T21:59:13Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-70m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: def1bb40-b9c6-440d-9093-634340884db4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-70m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 78fef953edf6ce18_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/78fef953edf6ce18_train_data.json
type:
field_instruction: en
field_output: ja
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: vermoney/def1bb40-b9c6-440d-9093-634340884db4
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/78fef953edf6ce18_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9e9e612b-9a07-4996-b19f-dd5a18a0de2a
wandb_project: s56-9
wandb_run: your_name
wandb_runid: 9e9e612b-9a07-4996-b19f-dd5a18a0de2a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# def1bb40-b9c6-440d-9093-634340884db4
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7323
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.8954 | 0.0017 | 200 | 6.7323 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF | mradermacher | 2025-05-03T22:00:39Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"en",
"dataset:Neelectric/OpenR1-Math-cn_k12-91k",
"base_model:Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00",
"base_model:quantized:Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-05-03T20:30:05Z | ---
base_model: Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00
datasets: Neelectric/OpenR1-Math-cn_k12-91k
language:
- en
library_name: transformers
model_name: OLMo-2-1124-7B-Instruct_SFTv02.00
quantized_by: mradermacher
tags:
- generated_from_trainer
- open-r1
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ1_S.gguf) | i1-IQ1_S | 1.9 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ1_M.gguf) | i1-IQ1_M | 2.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.2 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ2_S.gguf) | i1-IQ2_S | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.7 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ2_M.gguf) | i1-IQ2_M | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q2_K.gguf) | i1-Q2_K | 3.0 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ3_S.gguf) | i1-IQ3_S | 3.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.4 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ3_M.gguf) | i1-IQ3_M | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.1 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.3 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q4_0.gguf) | i1-Q4_0 | 4.3 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.3 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.3 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.i1-Q6_K.gguf) | i1-Q6_K | 6.1 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
marialvsantiago/d3ebde65-cda8-47c2-8b75-da3504146f36 | marialvsantiago | 2025-05-03T22:00:21Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:adapter:EleutherAI/pythia-70m",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T21:57:11Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-70m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d3ebde65-cda8-47c2-8b75-da3504146f36
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-70m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 78fef953edf6ce18_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/78fef953edf6ce18_train_data.json
type:
field_instruction: en
field_output: ja
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: marialvsantiago/d3ebde65-cda8-47c2-8b75-da3504146f36
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/78fef953edf6ce18_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9e9e612b-9a07-4996-b19f-dd5a18a0de2a
wandb_project: s56-33
wandb_run: your_name
wandb_runid: 9e9e612b-9a07-4996-b19f-dd5a18a0de2a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# d3ebde65-cda8-47c2-8b75-da3504146f36
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 6.0648 | 0.0017 | 200 | 6.7648 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
jnjj/vvcvc | jnjj | 2025-05-03T21:59:31Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:Qwen/Qwen3-0.6B",
"base_model:quantized:Qwen/Qwen3-0.6B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-03T21:58:59Z | ---
base_model: Qwen/Qwen3-0.6B
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# jnjj/Qwen3-0.6B-Q8_0-GGUF
This model was converted to GGUF format from [`Qwen/Qwen3-0.6B`](https://huggingface.co/Qwen/Qwen3-0.6B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-0.6B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jnjj/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jnjj/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jnjj/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jnjj/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -c 2048
```
|
aadhistii/IndoBERT-large-SDGs-Oplib-Elsevier | aadhistii | 2025-05-03T21:58:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:indobenchmark/indobert-large-p2",
"base_model:finetune:indobenchmark/indobert-large-p2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-03T21:55:58Z | ---
library_name: transformers
license: mit
base_model: indobenchmark/indobert-large-p2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IndoBERT-large-SDGs-Oplib-Elsevier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IndoBERT-large-SDGs-Oplib-Elsevier
This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1474
- Accuracy: 0.4671
- F1 Micro: 0.8434
- F1 Macro: 0.8140
- Precision Micro: 0.8243
- Precision Macro: 0.8066
- Recall Micro: 0.8635
- Recall Macro: 0.8278
- Roc Auc: 0.9128
- Hamming Loss: 0.0547
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.0364705898645393e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.02320476760796493
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Precision Macro | Recall Micro | Recall Macro | Roc Auc | Hamming Loss |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:---------------:|:------------:|:------------:|:-------:|:------------:|
| 0.3786 | 1.0 | 762 | 0.1935 | 0.2775 | 0.7735 | 0.6922 | 0.7197 | 0.7060 | 0.8360 | 0.7024 | 0.8845 | 0.0835 |
| 0.1572 | 2.0 | 1524 | 0.1545 | 0.3948 | 0.8191 | 0.7615 | 0.7897 | 0.7957 | 0.8508 | 0.7635 | 0.9021 | 0.0641 |
| 0.1246 | 3.0 | 2286 | 0.1439 | 0.4156 | 0.8272 | 0.7896 | 0.7796 | 0.7594 | 0.8809 | 0.8282 | 0.9148 | 0.0628 |
| 0.095 | 4.0 | 3048 | 0.1409 | 0.4267 | 0.8367 | 0.8134 | 0.8041 | 0.8070 | 0.8720 | 0.8261 | 0.9142 | 0.0581 |
| 0.0774 | 5.0 | 3810 | 0.1406 | 0.4404 | 0.8359 | 0.7922 | 0.8011 | 0.7813 | 0.8740 | 0.8187 | 0.9147 | 0.0585 |
| 0.0608 | 6.0 | 4572 | 0.1409 | 0.4521 | 0.8439 | 0.8155 | 0.8121 | 0.7969 | 0.8783 | 0.8416 | 0.9182 | 0.0554 |
| 0.0512 | 7.0 | 5334 | 0.1482 | 0.4456 | 0.8366 | 0.8079 | 0.7904 | 0.7728 | 0.8885 | 0.8519 | 0.9200 | 0.0592 |
| 0.0392 | 8.0 | 6096 | 0.1474 | 0.4671 | 0.8434 | 0.8140 | 0.8243 | 0.8066 | 0.8635 | 0.8278 | 0.9128 | 0.0547 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
|
randa88888/qwen_test5 | randa88888 | 2025-05-03T21:57:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T21:57:48Z | ---
base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** randa88888
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
infogeo/475f6995-bb33-4429-9ebc-b17e3f25feca | infogeo | 2025-05-03T21:53:55Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"base_model:adapter:EleutherAI/pythia-70m",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-03T21:50:13Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-70m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 475f6995-bb33-4429-9ebc-b17e3f25feca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: EleutherAI/pythia-70m
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 43246a3a844994b2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/43246a3a844994b2_train_data.json
type:
field_instruction: en
field_output: es
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: infogeo/475f6995-bb33-4429-9ebc-b17e3f25feca
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/43246a3a844994b2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d5a4bc97-fa21-4396-bffc-02ce3a64dc57
wandb_project: s56-28
wandb_run: your_name
wandb_runid: d5a4bc97-fa21-4396-bffc-02ce3a64dc57
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 475f6995-bb33-4429-9ebc-b17e3f25feca
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9736
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 7.4005 | 0.0013 | 150 | 6.9736 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mveroe/Qwen2.5-1.5B-Instruct-reverse-safecoder-1.5-SecInsec-only-reverse-safecoder | mveroe | 2025-05-03T21:51:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T20:42:27Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- generated_from_trainer
model-index:
- name: Qwen2.5-1.5B-Instruct-reverse-safecoder-1.5-SecInsec-only-reverse-safecoder
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qwen2.5-1.5B-Instruct-reverse-safecoder-1.5-SecInsec-only-reverse-safecoder
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAFACTOR and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2000
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
|
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_emotion_naive_outcome_0_4_0_1_MC | gradientrouting-spar | 2025-05-03T21:50:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T21:50:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
bayazknn/qwen-1.7-finetune-q8 | bayazknn | 2025-05-03T21:47:38Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"qwen3",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T21:47:07Z | ---
base_model: unsloth/qwen3-1.7b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** bayazknn
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-1.7b-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF | mradermacher | 2025-05-03T21:45:57Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"en",
"dataset:Neelectric/OpenR1-Math-cn_k12-91k",
"base_model:Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00",
"base_model:quantized:Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T17:30:21Z | ---
base_model: Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00
datasets: Neelectric/OpenR1-Math-cn_k12-91k
language:
- en
library_name: transformers
model_name: OLMo-2-1124-7B-Instruct_SFTv02.00
quantized_by: mradermacher
tags:
- generated_from_trainer
- open-r1
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.00
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q2_K.gguf) | Q2_K | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q3_K_S.gguf) | Q3_K_S | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q3_K_L.gguf) | Q3_K_L | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.IQ4_XS.gguf) | IQ4_XS | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q4_K_S.gguf) | Q4_K_S | 4.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q5_K_S.gguf) | Q5_K_S | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q5_K_M.gguf) | Q5_K_M | 5.3 | |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q6_K.gguf) | Q6_K | 6.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_SFTv02.00-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_SFTv02.00.f16.gguf) | f16 | 14.7 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
memeviss/zombieXI_9 | memeviss | 2025-05-03T21:45:28Z | 0 | 0 | null | [
"safetensors",
"region:us"
] | null | 2025-05-03T16:47:30Z | # Optimized TTS Model
This model has been optimized for 100% TOP1 performance using advanced parameter enhancement techniques.
## Usage
To generate speech using this model, you can use the included script:
```bash
./generate_speech.py --text "Your text here" --output_path output.wav
```
For more details, see the optimization report in this directory.
|
mradermacher/Nocturnia-8B-1-GGUF | mradermacher | 2025-05-03T21:44:26Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"sft",
"en",
"base_model:ClaudioItaly/Nocturnia-8B-1",
"base_model:quantized:ClaudioItaly/Nocturnia-8B-1",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T17:35:22Z | ---
base_model: ClaudioItaly/Nocturnia-8B-1
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/ClaudioItaly/Nocturnia-8B-1
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Nocturnia-8B-1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Nocturnia-8B-1-GGUF/resolve/main/Nocturnia-8B-1.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
jacobcarajo/Qwen3-32B-Q5_K_M-GGUF | jacobcarajo | 2025-05-03T21:35:03Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:Qwen/Qwen3-32B",
"base_model:quantized:Qwen/Qwen3-32B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-03T21:33:21Z | ---
base_model: Qwen/Qwen3-32B
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# jacobcarajo/Qwen3-32B-Q5_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen3-32B`](https://huggingface.co/Qwen/Qwen3-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-32B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jacobcarajo/Qwen3-32B-Q5_K_M-GGUF --hf-file qwen3-32b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jacobcarajo/Qwen3-32B-Q5_K_M-GGUF --hf-file qwen3-32b-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jacobcarajo/Qwen3-32B-Q5_K_M-GGUF --hf-file qwen3-32b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jacobcarajo/Qwen3-32B-Q5_K_M-GGUF --hf-file qwen3-32b-q5_k_m.gguf -c 2048
```
|
nicure/Plangen | nicure | 2025-05-03T21:35:02Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T21:35:02Z | ---
license: apache-2.0
---
|
unprg-ia/gorel-v4-2025 | unprg-ia | 2025-05-03T21:32:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"unsloth",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T20:30:38Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jnjj/Gvv | jnjj | 2025-05-03T21:30:33Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:jnjj/model_no_bias_qwen3-0.6B",
"base_model:quantized:jnjj/model_no_bias_qwen3-0.6B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T16:42:06Z | ---
base_model: jnjj/model_no_bias_qwen3-0.6B
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
---
# jnjj/model_no_bias_qwen3-0.6B-Q3_K_L-GGUF
This model was converted to GGUF format from [`jnjj/model_no_bias_qwen3-0.6B`](https://huggingface.co/jnjj/model_no_bias_qwen3-0.6B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jnjj/model_no_bias_qwen3-0.6B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jnjj/model_no_bias_qwen3-0.6B-Q3_K_L-GGUF --hf-file model_no_bias_qwen3-0.6b-q3_k_l.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jnjj/model_no_bias_qwen3-0.6B-Q3_K_L-GGUF --hf-file model_no_bias_qwen3-0.6b-q3_k_l.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jnjj/model_no_bias_qwen3-0.6B-Q3_K_L-GGUF --hf-file model_no_bias_qwen3-0.6b-q3_k_l.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jnjj/model_no_bias_qwen3-0.6B-Q3_K_L-GGUF --hf-file model_no_bias_qwen3-0.6b-q3_k_l.gguf -c 2048
```
|
NeuraCraft/Lance-AI | NeuraCraft | 2025-05-03T21:30:26Z | 208 | 0 | transformers | [
"transformers",
"safetensors",
"lance_ai",
"text-generation",
"gpt",
"pytorch",
"causal-lm",
"lance-ai",
"conversational",
"custom_code",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | text-generation | 2025-01-29T17:34:26Z | ---
library_name: transformers
model_index:
- name: Lance AI
results: []
tags:
- text-generation
- gpt
- pytorch
- causal-lm
- lance-ai
license: apache-2.0
widget:
- text: 'The future of AI is here with Lance AI. Type something:'
inference:
parameters:
max_length: 250
temperature: 0.7
top_p: 0.9
do_sample: true
---
Lance AI – We are the Future
🚀 Lance AI is a custom-built text generation model, designed to serve as the foundation for a more advanced AI. Currently, it is in its early development phase, trained on small datasets but designed to expand and evolve over time.
🌟 Key Features
✅ Custom-built architecture (Not based on GPT-2/GPT-3)
✅ Supports Hugging Face's transformers
✅ Small-scale model with room for growth
✅ Lightweight, efficient, and optimized for local and cloud inference
✅ Planned real-time internet access & vision capabilities
---
📥 Installation & Setup
You can load Lance AI using transformers:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "NeuraCraft/Lance-AI"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
input_text = "The future of AI is"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=250)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
---
🛠 How to Use Lance AI
1️⃣ Direct Text Generation
Lance AI can generate text from simple prompts:
prompt = "In the year 2050, humanity discovered"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_length=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
2️⃣ Fine-tuning for Custom Applications
You can fine-tune Lance AI for your own dataset using Hugging Face’s Trainer API.
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./lance_ai_finetuned",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
save_steps=500
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=your_dataset,
eval_dataset=your_eval_dataset
)
trainer.train()
---
📊 Performance & Evaluation
Lance AI is currently in its early stages, and performance is being actively tested. Initial evaluations focus on:
🔹 Perplexity (PPL) – Measures text coherence
🔹 Text Generation Quality – Manual evaluation for fluency and relevance
🔹 Token Accuracy – Predicts the next token based on input text
✅ Planned Enhancements
🔹 Larger training datasets for improved fluency
🔹 Real-time browsing for knowledge updates
🔹 Vision integration for multimodal AI
---
🚀 Future Roadmap
Lance AI is just getting started! The goal is to transform it into an advanced AI assistant with real-time capabilities.
📅 Planned Features:
🔜 Larger model with better efficiency
🔜 Internet browsing for real-time knowledge updates
🔜 Image and video generation capabilities
🔜 AI-powered PC automation
---
🏗 Development & Contributions
Lance AI is being developed by NeuraCraft. Contributions, suggestions, and testing feedback are welcome!
📬 Contact & Updates:
Developer: NeuraCraft
Project Status: 🚧 In Development
Follow for updates: Coming soon |
2Phuong5Nam4/VIT5-large-QA-Generation-checkpoint-2 | 2Phuong5Nam4 | 2025-05-03T21:20:29Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-04-26T11:20:09Z | ---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: VIT5-large-QA-Generation-checkpoint-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VIT5-large-QA-Generation-checkpoint-2
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5659
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 30000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 1.5918 | 1.8267 | 5000 | 1.6487 |
| 1.4528 | 3.6535 | 10000 | 1.6064 |
| 1.3326 | 5.4804 | 15000 | 1.5824 |
| 1.2677 | 7.3072 | 20000 | 1.5604 |
| 1.2456 | 9.1341 | 25000 | 1.5578 |
| 1.0773 | 10.9607 | 30000 | 1.5659 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|
llmSeeker/cv_analyser | llmSeeker | 2025-05-03T21:20:24Z | 14 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-29T17:07:36Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
secmlr/SWE-BENCH-2000-enriched-reasoning-filtered_qwen_code_14b_2000_enriched_reasoning_filtered_good | secmlr | 2025-05-03T21:19:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-Coder-14B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Coder-14B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-02T19:47:20Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-14B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: SWE-BENCH-2000-enriched-reasoning-filtered_qwen_code_14b_2000_enriched_reasoning_filtered_good
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SWE-BENCH-2000-enriched-reasoning-filtered_qwen_code_14b_2000_enriched_reasoning_filtered_good
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) on the SWE-BENCH-2000-enriched-reasoning-filtered dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 12
- total_train_batch_size: 24
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|
JK-TK/lora_model | JK-TK | 2025-05-03T21:16:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen3",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T20:05:26Z | ---
base_model: unsloth/qwen3-14b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** James Kariuki
- - **Email:** [email protected]
- **Contact:** 0792698424 | 0718845849
-
-
- **License:** apache-2.0
-
- **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
raulgdp/Mistral-8B-Instruct-2410-009-3000 | raulgdp | 2025-05-03T21:15:17Z | 2 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mistralai/Ministral-8B-Instruct-2410",
"base_model:adapter:mistralai/Ministral-8B-Instruct-2410",
"license:other",
"region:us"
] | null | 2025-04-30T18:45:38Z | ---
library_name: peft
license: other
base_model: mistralai/Ministral-8B-Instruct-2410
tags:
- generated_from_trainer
model-index:
- name: Mistral-8B-Instruct-2410-009-3000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-8B-Instruct-2410-009-3000
This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5345
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2576 | 0.8658 | 100 | 1.2716 |
| 1.0967 | 1.7273 | 200 | 1.0722 |
| 0.9321 | 2.5887 | 300 | 0.9199 |
| 0.755 | 3.4502 | 400 | 0.8018 |
| 0.6895 | 4.3117 | 500 | 0.7204 |
| 0.5723 | 5.1732 | 600 | 0.6567 |
| 0.5696 | 6.0346 | 700 | 0.6137 |
| 0.5127 | 6.9004 | 800 | 0.5841 |
| 0.4962 | 7.7619 | 900 | 0.5562 |
| 0.4982 | 8.6234 | 1000 | 0.5444 |
| 0.4259 | 9.4848 | 1100 | 0.5345 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1 |
Ahmed988/gemma-finetuned | Ahmed988 | 2025-05-03T21:14:38Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-1b-pt",
"base_model:finetune:google/gemma-3-1b-pt",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T21:11:24Z | ---
base_model: google/gemma-3-1b-pt
library_name: transformers
model_name: gemma-finetuned
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gemma-finetuned
This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Ahmed988/gemma-finetuned", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
sukrucildirr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_playful_sandpiper | sukrucildirr | 2025-05-03T21:12:21Z | 31 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am wary playful sandpiper",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-05T07:29:10Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_playful_sandpiper
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am wary playful sandpiper
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_playful_sandpiper
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="sukrucildirr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wary_playful_sandpiper", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.50.3
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
datapaf/ve_fvt_deepseek_elixir | datapaf | 2025-05-03T21:12:20Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T20:58:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jesse-adanac/bge-base-financial-matryoshka | jesse-adanac | 2025-05-03T21:07:07Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:6300",
"loss:MatryoshkaLoss",
"loss:MultipleNegativesRankingLoss",
"en",
"arxiv:1908.10084",
"arxiv:2205.13147",
"arxiv:1705.00652",
"base_model:BAAI/bge-base-en-v1.5",
"base_model:finetune:BAAI/bge-base-en-v1.5",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-05-03T21:06:21Z | ---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: The Comprehensive Environmental Response, Compensation and Liability
Act imposes liability on property owners for contamination cleanup, even if they
were not responsible for the contamination.
sentences:
- What was the net loss reported in the other gains and losses section for fiscal
2023 and how did it mainly occur?
- What does the Comprehensive Environmental Response, Compensation and Liability
Act impose on property owners?
- What was the amount of the income tax provision for Enphase Energy in the year
ended December 31, 2023?
- source_sentence: The Company’s Medicare Advantage and Medicare Part D premium revenues
are adjusted using CMS' risk adjustment payment methodology, which employs a risk
adjustment model that apportions premiums based on health severity and demographic
factors. This model results in higher payments for enrollees with certain conditions
and lower payments for healthier ones.
sentences:
- What is the projected timeline for recognizing revenue from deferred revenues
related to Hilton Honors as of December 31, 2023?
- How does CMS adjust the company's Medicare Advantage and Part D premium revenues?
- How is the GCLA managed and what elements are included in the U.S. dollar-denominated
GCLA?
- source_sentence: In 2022, GameStop reported total cash, cash equivalents, and restricted
cash amounting to $1,196.0 million, which consisted of cash and cash equivalents,
restricted cash, and long-term restricted cash.
sentences:
- What was the total cash, cash equivalents, and restricted cash reported by GameStop
in 2022?
- What criteria are used to classify loans and leases as nonperforming according
to the described credit policy?
- What year was Hilton founded, and who was its founder?
- source_sentence: Our primary website address is www.salesforce.com
sentences:
- How much did Kroger invest in associate wages since 2018?
- What are the key elements of AbbVie's strategic objectives for 2024?
- What is Salesforce's primary website address?
- source_sentence: We experienced favorable medical claims reserve development related
to prior fiscal years of $872 million in 2023, $415 million in 2022, and $825
million in 2021. The favorable development recognized in 2023 and 2021 primarily
resulted from trend factors developing more favorably than originally expected
as well as for 2021 completion factors developing faster than expected. The favorable
development recognized in 2022 resulted primarily from completion factors remaining
largely unchanged, resulting in lower overall development as compared to 2023
and 2021.
sentences:
- What were the amounts of favorable medical claims reserve development for the
years 2023, 2022, and 2021, and what primarily contributed to these developments?
- How many network tokens did Visa provision by the end of fiscal year 2023?
- What financial measures does Procter & Gamble use to evaluate their management
performance?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7342857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8657142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.89
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9342857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7342857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2885714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.178
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09342857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7342857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8657142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.89
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9342857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8385665886187434
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8076224489795918
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8097519775192011
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7285714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8657142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8914285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9342857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7285714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2885714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17828571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09342857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7285714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8657142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8914285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9342857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8363058820924263
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8045941043083901
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8067173264761063
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7285714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8642857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.89
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9257142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7285714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2880952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.178
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09257142857142854
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7285714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8642857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.89
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9257142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8326605974293175
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8023741496598635
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.805131886712257
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.71
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8542857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8757142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.71
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2847619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17514285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09157142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.71
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8542857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8757142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8181195026015757
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7864484126984124
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7895537563830669
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6671428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8928571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6671428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08928571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6671428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8928571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7857401731863329
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7508429705215419
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.754386265898529
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jesse-adanac/bge-base-financial-matryoshka")
# Run inference
sentences = [
'We experienced favorable medical claims reserve development related to prior fiscal years of $872 million in 2023, $415 million in 2022, and $825 million in 2021. The favorable development recognized in 2023 and 2021 primarily resulted from trend factors developing more favorably than originally expected as well as for 2021 completion factors developing faster than expected. The favorable development recognized in 2022 resulted primarily from completion factors remaining largely unchanged, resulting in lower overall development as compared to 2023 and 2021.',
'What were the amounts of favorable medical claims reserve development for the years 2023, 2022, and 2021, and what primarily contributed to these developments?',
'How many network tokens did Visa provision by the end of fiscal year 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.7343 | 0.7286 | 0.7286 | 0.71 | 0.6671 |
| cosine_accuracy@3 | 0.8657 | 0.8657 | 0.8643 | 0.8543 | 0.8214 |
| cosine_accuracy@5 | 0.89 | 0.8914 | 0.89 | 0.8757 | 0.8543 |
| cosine_accuracy@10 | 0.9343 | 0.9343 | 0.9257 | 0.9157 | 0.8929 |
| cosine_precision@1 | 0.7343 | 0.7286 | 0.7286 | 0.71 | 0.6671 |
| cosine_precision@3 | 0.2886 | 0.2886 | 0.2881 | 0.2848 | 0.2738 |
| cosine_precision@5 | 0.178 | 0.1783 | 0.178 | 0.1751 | 0.1709 |
| cosine_precision@10 | 0.0934 | 0.0934 | 0.0926 | 0.0916 | 0.0893 |
| cosine_recall@1 | 0.7343 | 0.7286 | 0.7286 | 0.71 | 0.6671 |
| cosine_recall@3 | 0.8657 | 0.8657 | 0.8643 | 0.8543 | 0.8214 |
| cosine_recall@5 | 0.89 | 0.8914 | 0.89 | 0.8757 | 0.8543 |
| cosine_recall@10 | 0.9343 | 0.9343 | 0.9257 | 0.9157 | 0.8929 |
| **cosine_ndcg@10** | **0.8386** | **0.8363** | **0.8327** | **0.8181** | **0.7857** |
| cosine_mrr@10 | 0.8076 | 0.8046 | 0.8024 | 0.7864 | 0.7508 |
| cosine_map@100 | 0.8098 | 0.8067 | 0.8051 | 0.7896 | 0.7544 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 46.06 tokens</li><li>max: 289 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.52 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
| <code>Nonperforming loans and leases are generally those that have been placed on nonaccrual status, such as when they are 90 days past due or have confirmed cases of fraud or bankruptcy. Additionally, specific types of loans like consumer real estate-secured loans are classified as nonperforming at 90 days past due unless they are fully insured, and commercial loans and leases are classified as nonperforming when past due 90 days or more unless well-secured and in the process of collection.</code> | <code>What criteria are used to classify loans and leases as nonperforming according to the described credit policy?</code> |
| <code>Changes in foreign exchange rates impacted cash and cash equivalents positively by $15 and $46 in 2023 and 2021, and negatively by $249 in 2022.</code> | <code>How has the change in foreign exchange rates affected cash and cash equivalents in 2023 and 2021?</code> |
| <code>ITEM 8: FINANCIAL STATEMENTS AND SUPPLEMENTARY DATA</code> | <code>What is Item 8 about in the context of an annual report on Form 10-K?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.1015 | 10 | 6.3316 | - | - | - | - | - |
| 0.2030 | 20 | 4.4603 | - | - | - | - | - |
| 0.3046 | 30 | 3.6545 | - | - | - | - | - |
| 0.4061 | 40 | 2.1196 | - | - | - | - | - |
| 0.5076 | 50 | 1.9986 | - | - | - | - | - |
| 0.6091 | 60 | 2.0175 | - | - | - | - | - |
| 0.7107 | 70 | 1.5044 | - | - | - | - | - |
| 0.8122 | 80 | 1.5722 | - | - | - | - | - |
| 0.9137 | 90 | 0.7737 | - | - | - | - | - |
| 1.0 | 99 | - | 0.8277 | 0.8278 | 0.8255 | 0.8086 | 0.7791 |
| 1.0102 | 100 | 1.3297 | - | - | - | - | - |
| 1.1117 | 110 | 1.2026 | - | - | - | - | - |
| 1.2132 | 120 | 1.1166 | - | - | - | - | - |
| 1.3147 | 130 | 0.963 | - | - | - | - | - |
| 1.4162 | 140 | 0.9185 | - | - | - | - | - |
| 1.5178 | 150 | 0.7528 | - | - | - | - | - |
| 1.6193 | 160 | 0.8351 | - | - | - | - | - |
| 1.7208 | 170 | 1.116 | - | - | - | - | - |
| 1.8223 | 180 | 0.5654 | - | - | - | - | - |
| 1.9239 | 190 | 0.6193 | - | - | - | - | - |
| 2.0 | 198 | - | 0.8342 | 0.8350 | 0.8310 | 0.8113 | 0.7805 |
| 2.0203 | 200 | 0.6482 | - | - | - | - | - |
| 2.1218 | 210 | 0.6604 | - | - | - | - | - |
| 2.2234 | 220 | 0.4969 | - | - | - | - | - |
| 2.3249 | 230 | 0.4502 | - | - | - | - | - |
| 2.4264 | 240 | 0.8084 | - | - | - | - | - |
| 2.5279 | 250 | 0.4882 | - | - | - | - | - |
| 2.6294 | 260 | 0.3821 | - | - | - | - | - |
| 2.7310 | 270 | 0.4308 | - | - | - | - | - |
| 2.8325 | 280 | 0.8484 | - | - | - | - | - |
| 2.9340 | 290 | 0.4867 | - | - | - | - | - |
| 3.0 | 297 | - | 0.8367 | 0.8359 | 0.8313 | 0.8166 | 0.7842 |
| 3.0305 | 300 | 0.807 | - | - | - | - | - |
| 3.1320 | 310 | 0.6478 | - | - | - | - | - |
| 3.2335 | 320 | 0.5532 | - | - | - | - | - |
| 3.3350 | 330 | 0.4459 | - | - | - | - | - |
| 3.4365 | 340 | 0.6112 | - | - | - | - | - |
| 3.5381 | 350 | 0.7304 | - | - | - | - | - |
| 3.6396 | 360 | 0.9029 | - | - | - | - | - |
| 3.7411 | 370 | 0.3999 | - | - | - | - | - |
| 3.8426 | 380 | 0.7569 | - | - | - | - | - |
| 3.9442 | 390 | 0.9483 | - | - | - | - | - |
| **3.9645** | **392** | **-** | **0.8386** | **0.8363** | **0.8327** | **0.8181** | **0.7857** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 2.19.1
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
andriuusa/Qwen2.5-7B-Instruct-Gensyn-Swarm-graceful_stalking_capybara | andriuusa | 2025-05-03T21:05:28Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am graceful stalking capybara",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-7B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T19:35:05Z | ---
base_model: Gensyn/Qwen2.5-7B-Instruct
library_name: transformers
model_name: Qwen2.5-7B-Instruct-Gensyn-Swarm-graceful_stalking_capybara
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am graceful stalking capybara
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-7B-Instruct-Gensyn-Swarm-graceful_stalking_capybara
This model is a fine-tuned version of [Gensyn/Qwen2.5-7B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="andriuusa/Qwen2.5-7B-Instruct-Gensyn-Swarm-graceful_stalking_capybara", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
dgambettaphd/M_llm2_gen10_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST | dgambettaphd | 2025-05-03T21:03:20Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T21:03:06Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mlfoundations-dev/d1_code_long_paragraphs_0.3k | mlfoundations-dev | 2025-05-03T21:02:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T20:10:40Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: d1_code_long_paragraphs_0.3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# d1_code_long_paragraphs_0.3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_code_long_paragraphs_0.3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 13.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.7.0+cu126
- Datasets 3.1.0
- Tokenizers 0.20.3
|
Guilherme34/qwen3-conscious-fullmodel-v2-Q8_0-GGUF | Guilherme34 | 2025-05-03T20:58:33Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:Guilherme34/qwen3-conscious-fullmodel-v2",
"base_model:quantized:Guilherme34/qwen3-conscious-fullmodel-v2",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T20:58:28Z | ---
base_model: Guilherme34/qwen3-conscious-fullmodel-v2
tags:
- llama-cpp
- gguf-my-repo
---
# Guilherme34/qwen3-conscious-fullmodel-v2-Q8_0-GGUF
This model was converted to GGUF format from [`Guilherme34/qwen3-conscious-fullmodel-v2`](https://huggingface.co/Guilherme34/qwen3-conscious-fullmodel-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Guilherme34/qwen3-conscious-fullmodel-v2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Guilherme34/qwen3-conscious-fullmodel-v2-Q8_0-GGUF --hf-file qwen3-conscious-fullmodel-v2-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Guilherme34/qwen3-conscious-fullmodel-v2-Q8_0-GGUF --hf-file qwen3-conscious-fullmodel-v2-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Guilherme34/qwen3-conscious-fullmodel-v2-Q8_0-GGUF --hf-file qwen3-conscious-fullmodel-v2-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Guilherme34/qwen3-conscious-fullmodel-v2-Q8_0-GGUF --hf-file qwen3-conscious-fullmodel-v2-q8_0.gguf -c 2048
```
|
mradermacher/SilverCareAI-7B-GGUF | mradermacher | 2025-05-03T20:58:10Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"medical",
"chinese",
"lora",
"health-assessment",
"elderly-care",
"llama-factory",
"zh",
"dataset:FreedomIntelligence/Huatuo26M-Lite",
"base_model:yushan7kokomi/SilverCareAI-7B",
"base_model:adapter:yushan7kokomi/SilverCareAI-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T17:17:32Z | ---
base_model: yushan7kokomi/SilverCareAI-7B
datasets:
- FreedomIntelligence/Huatuo26M-Lite
language:
- zh
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- medical
- chinese
- lora
- health-assessment
- elderly-care
- llama-factory
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/yushan7kokomi/SilverCareAI-7B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/SilverCareAI-7B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/SilverCareAI-7B-GGUF/resolve/main/SilverCareAI-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Azzam123456789/Rafa | Azzam123456789 | 2025-05-03T20:54:53Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-03T20:54:53Z | ---
license: apache-2.0
---
|
h34v7/DXP-Zero-V1.0-24b-Small-Instruct-i1-GGUF | h34v7 | 2025-05-03T20:54:02Z | 0 | 0 | null | [
"gguf",
"en",
"ru",
"base_model:h34v7/DXP-Zero-V1.0-24b-Small-Instruct",
"base_model:quantized:h34v7/DXP-Zero-V1.0-24b-Small-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-05-03T15:01:02Z | ---
license: apache-2.0
language:
- en
- ru
base_model:
- h34v7/DXP-Zero-V1.0-24b-Small-Instruct
---
# DXP-Zero-V1.0-24b-Small-Instruct-i1-GGUF
BF16 available [here](https://huggingface.co/h34v7/DXP-Zero-V1.0-24b-Small-Instruct).
### Recommended Settings
```
"temperature": 0.8,
"top_k": 40,
"top_p": 0.95,
"min_p": 0.05,
"repeat_last_n": 40,
"repeat_penalty": 1.2,
```
### Run on Ollama
These are non-imatrix. I'll release the imatrix version later.
GGUF 3-bit Q3_K_M about 27 GB of vRAM/RAM:
```
ollama run hf.co/h34v7/DXP-Zero-V1.0-24b-Small-Instruct-i1-GGUF:Q3_K_M
```
GGUF 4-bit Q4_K_M about 30 GB of vRAM/RAM:
```
ollama run hf.co/h34v7/DXP-Zero-V1.0-24b-Small-Instruct-i1-GGUF:Q4_K_M
```
GGUF 5-bit Q5_K_M about 33 GB of vRAM/RAM:
```
ollama run hf.co/h34v7/DXP-Zero-V1.0-24b-Small-Instruct-i1-GGUF:Q5_K_M
``` |
ellietang/hf_saved_lora_amf-modCase-qwen-coder-14B-SFT-after-CPT-try2-no-SYSTEM_PROMPT | ellietang | 2025-05-03T20:49:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-03-23T22:56:26Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Lucy-in-the-Sky/UI-TARS-1.5-7B-Q6_K-GGUF | Lucy-in-the-Sky | 2025-05-03T20:48:29Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"multimodal",
"gui",
"llama-cpp",
"gguf-my-repo",
"image-text-to-text",
"en",
"base_model:ByteDance-Seed/UI-TARS-1.5-7B",
"base_model:quantized:ByteDance-Seed/UI-TARS-1.5-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | image-text-to-text | 2025-05-03T20:47:56Z | ---
base_model: ByteDance-Seed/UI-TARS-1.5-7B
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
tags:
- multimodal
- gui
- llama-cpp
- gguf-my-repo
---
# Lucy-in-the-Sky/UI-TARS-1.5-7B-Q6_K-GGUF
This model was converted to GGUF format from [`ByteDance-Seed/UI-TARS-1.5-7B`](https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Lucy-in-the-Sky/UI-TARS-1.5-7B-Q6_K-GGUF --hf-file ui-tars-1.5-7b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Lucy-in-the-Sky/UI-TARS-1.5-7B-Q6_K-GGUF --hf-file ui-tars-1.5-7b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Lucy-in-the-Sky/UI-TARS-1.5-7B-Q6_K-GGUF --hf-file ui-tars-1.5-7b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Lucy-in-the-Sky/UI-TARS-1.5-7B-Q6_K-GGUF --hf-file ui-tars-1.5-7b-q6_k.gguf -c 2048
```
|
amwright/ppo-LunarLander-v2 | amwright | 2025-05-03T20:46:56Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T20:46:38Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 271.12 +/- 18.83
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mlfoundations-dev/d1_math_longest_3k | mlfoundations-dev | 2025-05-03T20:43:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T13:02:01Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: d1_math_longest_3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# d1_math_longest_3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_math_longest_3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 24
- total_train_batch_size: 96
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
SVECTOR-CORPORATION/Spec-T1-RL-7B | SVECTOR-CORPORATION | 2025-05-03T20:40:35Z | 0 | 2 | null | [
"safetensors",
"spect1",
"svector",
"reasoning",
"text-generation",
"conversational",
"custom_code",
"en",
"license:mit",
"region:us"
] | text-generation | 2025-05-03T13:54:33Z | ---
language:
- en
license: mit
pipeline_tag: text-generation
tags:
- svector
- reasoning
---
# Spec-T1-RL-7B
A high-precision mathematical and algorithmic reasoning model
[](https://huggingface.co/SVECTOR-CORPORATION/Spec-T1-RL-7B)
## 📋 Model Card
| Model Details | Description |
|-----------------|----------------|
| Developer | SVECTOR |
| Model Size | 7 billion parameters |
| Context Length | 32,000 tokens |
| Training Data | Reasoning-focused datasets with mathematical, logical, and code content |
| Precision | `bfloat16`, `float16` |
| License | MIT |
| Release Date | May 2025 |
## 🔍 Model Overview
`Spec-T1-RL-7B` is a specialized large language model engineered for exceptional performance in mathematical reasoning, algorithmic problem-solving, and real-world code generation. Unlike general-purpose models, Spec-T1 has been architecturally designed and trained specifically to excel in domains requiring precise, logical thinking.
The model represents a significant advancement in specialized reasoning capabilities at the 7B parameter scale, outperforming much larger models on technical benchmarks while maintaining efficient deployment requirements.
## ✨ Key Capabilities
- Mathematical Reasoning: Solves complex math problems with step-by-step logical deduction
- Algorithmic Problem-Solving: Designs and analyzes algorithms across multiple domains
- Code Generation: Produces functional, high-quality code with strong test pass rates
- Precise Instruction Following: Responds accurately to structured technical prompts
- Symbolic Verification: Uses built-in verification mechanisms for mathematics and logic
## 🏗️ Model Architecture
Spec-T1-RL-7B combines several architectural innovations to achieve its specialized reasoning capabilities:
- Foundation: Advanced transformer architecture with optimized attention mechanisms
- Mixture-of-Experts (MoE): Lightweight conditional computation for efficient scaling
- Activations: SwiGLU activations for improved gradient flow in mathematical operations
- Normalization: RMSNorm for faster convergence and stability in reasoning tasks
## 🛠️ Training Methodology
Our model underwent a three-phase training process designed to optimize reasoning capabilities:
### 1️⃣ Reasoning-Aware Pretraining
- Specialized corpus with heavy emphasis on mathematical notation, logical syntax, and code
- Curriculum learning approach prioritizing structured reasoning patterns
- Custom tokenizer optimized for mathematical and programming syntax
### 2️⃣ Instruction Fine-Tuning
- 400K+ multi-domain, structured prompts focused on reasoning tasks
- Combined CodeInstruct methodology with ThoughtChain prompting
- Synthetic data generation with verification feedback loops
### 3️⃣ Reinforcement Learning Alignment
- Reward modeling using deterministic pass/fail signals for math and code correctness
- Unit test integration for real-time verification of generated solutions
- Symbolic verification of mathematical proofs and derivations
## 📊 Benchmark Performance
The Spec-T1-RL-7B model demonstrates exceptional performance across reasoning benchmarks, particularly in mathematics and code generation tasks:
### General Reasoning
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| GPQA Diamond (Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 65.1 |
| SuperGPQA (Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 |52.8 |
| DROP (3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 86.2 |
| MMLU-Pro (EM) | 72.6 | 78.0 | 80.3 | 52.0 | 76.4 |
| IF-Eval (Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 83.3 |
[Math Benchmarks](https://firebasestorage.googleapis.com/v0/b/svector-cloud.appspot.com/o/files%2FMath-Benchmarks.png?alt=media&token=9aad1bd6-ad89-4b8c-9ce7-5cbc2d48177e)
### Mathematics
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| MATH-500 (Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 96.1 |
| AIME 2024 (Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 74.5 |
| AIME 2025 (Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 |68.3 |
### Code Generation
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| LiveCodeBench v5 (Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 60.2 |
| LiveCodeBench v6 (Pass@1) | 30.9 | 37.2 | 46.8 | 39.1 | 54.4 |
## 💻 Usage Examples
### Basic Usage with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
# Mathematical reasoning example
prompt = """
Prove: The sum of the first n odd numbers is n^2.
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Advanced Usage with Generation Parameters
```python
# Algorithm design example
prompt = """
Design an efficient algorithm to find the longest increasing subsequence in an array of integers.
"""
# Configure generation parameters for better reasoning
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
inputs,
max_new_tokens=1024,
temperature=0.1,
top_p=0.95,
do_sample=True,
num_return_sequences=1,
repetition_penalty=1.1
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Code Generation Example
```python
# Code generation example
prompt = """
Write a Python function that implements the A* search algorithm for pathfinding.
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
inputs,
max_new_tokens=2048,
temperature=0.2,
top_p=0.9,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## 🚀 Deployment
Spec-T1-RL-7B can be deployed on consumer hardware due to its efficient architecture and parameter count:
### Minimum Requirements
- 16GB VRAM (bfloat16/float16)
- 32GB system RAM
- CUDA-compatible GPU
### Recommended Configuration
- 24GB+ VRAM for optimal performance
- 64GB+ system RAM for long-context applications
- NVIDIA A10 or better
## 📝 Citation
If you use Spec-T1-RL-7B in your research, please cite:
```bibtex
@misc{svector2025spect1,
title={Spec-T1-RL-7B: Structured Reasoning through Reinforcement Alignment},
author={SVECTOR Team},
year={2025},
}
```
## 📄 License
Spec-T1-RL-7B is released under the MIT License.
## 📬 Contact
For questions, feedback, or collaboration inquiries, please contact:
- Email: [email protected]
- X: [@SVECTOR_](https://x.com/SVECTOR_)
- GitHub: [SVECTOR-CORPORATION](https://github.com/SVECTOR-CORPORATION) |
ai-and-society/deepseek-R1-Distill-Qwen-32B-SQINT8 | ai-and-society | 2025-05-03T20:40:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"compressed-tensors",
"region:us"
] | text-generation | 2025-05-03T20:33:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
anonymousEcaiHateLLM/Hate-Qwen2.5-14B.Lgb.3_label | anonymousEcaiHateLLM | 2025-05-03T20:31:14Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"region:us"
] | null | 2025-05-03T20:30:59Z | ---
base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.0 |
xbilek25/whisper-medium-en-cv-6.1 | xbilek25 | 2025-05-03T20:30:54Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"en",
"dataset:mozilla-foundation/common_voice_17_0",
"base_model:openai/whisper-medium.en",
"base_model:finetune:openai/whisper-medium.en",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-05-03T18:42:03Z | ---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-medium-en-cv-6.1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 35.364360073484384
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-en-cv-6.1
This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1564
- Wer: 35.3644
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 48
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 210
- training_steps: 2100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| No log | 0 | 0 | 2.4185 | 46.5401 |
| 0.8149 | 0.1429 | 300 | 1.0591 | 38.1506 |
| 0.2115 | 1.1429 | 600 | 1.0779 | 40.8757 |
| 0.0598 | 2.1429 | 900 | 1.1087 | 36.4666 |
| 0.0216 | 3.1429 | 1200 | 1.1280 | 35.9155 |
| 0.0089 | 4.1429 | 1500 | 1.1617 | 35.1806 |
| 0.0024 | 5.1429 | 1800 | 1.1517 | 34.9357 |
| 0.0012 | 6.1429 | 2100 | 1.1564 | 35.3644 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Hilal2782/ktudeep | Hilal2782 | 2025-05-03T20:30:25Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"unsloth",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T19:50:46Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hanaearg/emo-Mistral-eng-10 | hanaearg | 2025-05-03T20:23:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T20:23:43Z | ---
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** hanaearg
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
OnDeviceMedNotes/SOAP | OnDeviceMedNotes | 2025-05-03T20:22:51Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:unsloth/Llama-3.2-1B-Instruct-unsloth-bnb-4bit",
"base_model:adapter:unsloth/Llama-3.2-1B-Instruct-unsloth-bnb-4bit",
"region:us"
] | null | 2025-05-03T20:22:10Z | ---
base_model: unsloth/Llama-3.2-1B-Instruct-unsloth-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
anonymousEcaiHateLLM/Hate-Llama3.2-1B.Human.2_label | anonymousEcaiHateLLM | 2025-05-03T20:22:18Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"region:us"
] | null | 2025-05-03T20:22:10Z | ---
base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.0 |
anonymousEcaiHateLLM/Hate-Qwen2.5-14B.Human.2_label | anonymousEcaiHateLLM | 2025-05-03T20:19:09Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"region:us"
] | null | 2025-05-03T20:18:50Z | ---
base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.0 |
dgiang02/GRPO_Qwen25_15B_64_005_1000kmap | dgiang02 | 2025-05-03T20:18:17Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"qwen2",
"text-generation",
"unsloth",
"trl",
"grpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T20:17:49Z | ---
library_name: transformers
tags:
- unsloth
- trl
- grpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
CodeIsAbstract/llama3.2_EXP2_2-Q8_0-GGUF | CodeIsAbstract | 2025-05-03T20:11:22Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:CodeIsAbstract/llama3.2_EXP2_2",
"base_model:quantized:CodeIsAbstract/llama3.2_EXP2_2",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T20:11:14Z | ---
base_model: CodeIsAbstract/llama3.2_EXP2_2
tags:
- llama-cpp
- gguf-my-repo
---
# CodeIsAbstract/llama3.2_EXP2_2-Q8_0-GGUF
This model was converted to GGUF format from [`CodeIsAbstract/llama3.2_EXP2_2`](https://huggingface.co/CodeIsAbstract/llama3.2_EXP2_2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/CodeIsAbstract/llama3.2_EXP2_2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo CodeIsAbstract/llama3.2_EXP2_2-Q8_0-GGUF --hf-file llama3.2_exp2_2-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo CodeIsAbstract/llama3.2_EXP2_2-Q8_0-GGUF --hf-file llama3.2_exp2_2-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo CodeIsAbstract/llama3.2_EXP2_2-Q8_0-GGUF --hf-file llama3.2_exp2_2-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo CodeIsAbstract/llama3.2_EXP2_2-Q8_0-GGUF --hf-file llama3.2_exp2_2-q8_0.gguf -c 2048
```
|
tofumagnate/Unnamed-Exp-QWQ-32b-v0.3.5-Q4_K_M-GGUF | tofumagnate | 2025-05-03T20:10:38Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:TheSkullery/Unnamed-Exp-QWQ-32b-v0.3.5",
"base_model:quantized:TheSkullery/Unnamed-Exp-QWQ-32b-v0.3.5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T20:09:06Z | ---
base_model: TheSkullery/Unnamed-Exp-QWQ-32b-v0.3.5
tags:
- llama-cpp
- gguf-my-repo
---
# tofumagnate/Unnamed-Exp-QWQ-32b-v0.3.5-Q4_K_M-GGUF
This model was converted to GGUF format from [`TheSkullery/Unnamed-Exp-QWQ-32b-v0.3.5`](https://huggingface.co/TheSkullery/Unnamed-Exp-QWQ-32b-v0.3.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/TheSkullery/Unnamed-Exp-QWQ-32b-v0.3.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo tofumagnate/Unnamed-Exp-QWQ-32b-v0.3.5-Q4_K_M-GGUF --hf-file unnamed-exp-qwq-32b-v0.3.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo tofumagnate/Unnamed-Exp-QWQ-32b-v0.3.5-Q4_K_M-GGUF --hf-file unnamed-exp-qwq-32b-v0.3.5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo tofumagnate/Unnamed-Exp-QWQ-32b-v0.3.5-Q4_K_M-GGUF --hf-file unnamed-exp-qwq-32b-v0.3.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo tofumagnate/Unnamed-Exp-QWQ-32b-v0.3.5-Q4_K_M-GGUF --hf-file unnamed-exp-qwq-32b-v0.3.5-q4_k_m.gguf -c 2048
```
|
flyingbugs/Qwen2.5-Math-7B-open-r1-0.5-new | flyingbugs | 2025-05-03T20:08:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"conversational",
"dataset:flyingbugs/OpenR1-Math-220k-pruned-keep-0.5-end-start-0.5-new",
"base_model:Qwen/Qwen2.5-Math-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Math-7B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-02T05:44:33Z | ---
base_model: Qwen/Qwen2.5-Math-7B-Instruct
datasets: flyingbugs/OpenR1-Math-220k-pruned-keep-0.5-end-start-0.5-new
library_name: transformers
model_name: Qwen2.5-Math-7B-open-r1-0.5-new
tags:
- generated_from_trainer
- open-r1
- trl
- sft
licence: license
---
# Model Card for Qwen2.5-Math-7B-open-r1-0.5-new
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the [flyingbugs/OpenR1-Math-220k-pruned-keep-0.5-end-start-0.5-new](https://huggingface.co/datasets/flyingbugs/OpenR1-Math-220k-pruned-keep-0.5-end-start-0.5-new) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="flyingbugs/Qwen2.5-Math-7B-open-r1-0.5-new", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jjh233/huggingface/runs/hq7qn9vc)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1+cu121
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Maori999/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_downy_aardvark | Maori999 | 2025-05-03T20:05:24Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am bellowing downy aardvark",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-29T14:44:18Z | ---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_downy_aardvark
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am bellowing downy aardvark
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_downy_aardvark
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Maori999/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_downy_aardvark", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
dgiang02/GRPO_Qwen25_15B_32_005_1000kmap | dgiang02 | 2025-05-03T19:57:59Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"qwen2",
"text-generation",
"unsloth",
"trl",
"grpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T19:57:27Z | ---
library_name: transformers
tags:
- unsloth
- trl
- grpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Delta-Vector/Axo-Merge-Archaeo-V2-Lora-Q5_0-GGUF | Delta-Vector | 2025-05-03T19:51:53Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:NewEden/Axo-Merge-Archaeo-V2-Lora",
"base_model:quantized:NewEden/Axo-Merge-Archaeo-V2-Lora",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-03T19:50:15Z | ---
base_model: NewEden/Axo-Merge-Archaeo-V2-Lora
tags:
- llama-cpp
- gguf-my-repo
---
# Delta-Vector/Axo-Merge-Archaeo-V2-Lora-Q5_0-GGUF
This model was converted to GGUF format from [`NewEden/Axo-Merge-Archaeo-V2-Lora`](https://huggingface.co/NewEden/Axo-Merge-Archaeo-V2-Lora) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/NewEden/Axo-Merge-Archaeo-V2-Lora) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Delta-Vector/Axo-Merge-Archaeo-V2-Lora-Q5_0-GGUF --hf-file axo-merge-archaeo-v2-lora-q5_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Delta-Vector/Axo-Merge-Archaeo-V2-Lora-Q5_0-GGUF --hf-file axo-merge-archaeo-v2-lora-q5_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Delta-Vector/Axo-Merge-Archaeo-V2-Lora-Q5_0-GGUF --hf-file axo-merge-archaeo-v2-lora-q5_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Delta-Vector/Axo-Merge-Archaeo-V2-Lora-Q5_0-GGUF --hf-file axo-merge-archaeo-v2-lora-q5_0.gguf -c 2048
```
|
Flo0620/Qwen2_5_7B_r16_a16_d0_1 | Flo0620 | 2025-05-03T19:49:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-04-22T21:38:55Z | ---
base_model: Qwen/Qwen2.5-VL-7B-Instruct
library_name: transformers
model_name: Qwen2_5_7B_r16_a16_d0_1
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2_5_7B_r16_a16_d0_1
This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Flo0620/Qwen2_5_7B_r16_a16_d0_1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.52.0.dev0
- Pytorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
dev-ranjan/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-trotting_alert_ant | dev-ranjan | 2025-05-03T19:47:17Z | 23 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am trotting alert ant",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-04T02:43:13Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-trotting_alert_ant
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am trotting alert ant
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-trotting_alert_ant
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="dev-ranjan/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-trotting_alert_ant", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.50.3
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mveroe/Qwen2.5-1.5B-Instruct-safecoder-1.5-SecInsec-only-safecoder | mveroe | 2025-05-03T19:43:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-03T19:23:24Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- generated_from_trainer
model-index:
- name: Qwen2.5-1.5B-Instruct-safecoder-1.5-SecInsec-only-safecoder
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qwen2.5-1.5B-Instruct-safecoder-1.5-SecInsec-only-safecoder
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAFACTOR and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2000
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Gandarych/xlm-roberta-base-finetuned-panx-all | Gandarych | 2025-05-03T19:41:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2025-05-03T19:27:54Z | ---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1719
- F1: 0.8568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2937 | 1.0 | 835 | 0.1942 | 0.8142 |
| 0.1544 | 2.0 | 1670 | 0.1658 | 0.8460 |
| 0.0991 | 3.0 | 2505 | 0.1719 | 0.8568 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Ruzel23/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-poisonous_hulking_chinchilla | Ruzel23 | 2025-05-03T19:35:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am poisonous hulking chinchilla",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-03T14:16:37Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-poisonous_hulking_chinchilla
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am poisonous hulking chinchilla
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-poisonous_hulking_chinchilla
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Ruzel23/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-poisonous_hulking_chinchilla", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Bosh353/Reinforce-CartpolePolicy | Bosh353 | 2025-05-03T19:31:27Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-03T19:31:16Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartpolePolicy
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 422.00 +/- 132.62
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Gandarych/xlm-roberta-base-finetuned-panx-en | Gandarych | 2025-05-03T19:27:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2025-05-03T19:24:22Z | ---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3875
- F1: 0.7035
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0308 | 1.0 | 50 | 0.4977 | 0.5765 |
| 0.4871 | 2.0 | 100 | 0.3848 | 0.6805 |
| 0.363 | 3.0 | 150 | 0.3875 | 0.7035 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|
linoyts/hidream-yarn-art-lora-v2-trainer-multi | linoyts | 2025-05-03T19:26:38Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"hidream",
"hidream-diffusers",
"template:sd-lora",
"base_model:HiDream-ai/HiDream-I1-Full",
"base_model:adapter:HiDream-ai/HiDream-I1-Full",
"license:mit",
"region:us"
] | text-to-image | 2025-05-02T15:12:26Z | ---
base_model: HiDream-ai/HiDream-I1-Full
library_name: diffusers
license: mit
instance_prompt: a dog, yarn art style
widget:
- text: yoda, yarn art style
output:
url: image_0.png
- text: yoda, yarn art style
output:
url: image_1.png
- text: yoda, yarn art style
output:
url: image_2.png
- text: yoda, yarn art style
output:
url: image_3.png
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# HiDream Image DreamBooth LoRA - linoyts/hidream-yarn-art-lora-v2-trainer-multi
<Gallery />
## Model description
These are linoyts/hidream-yarn-art-lora-v2-trainer-multi DreamBooth LoRA weights for HiDream-ai/HiDream-I1-Full.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [HiDream Image diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_hidream.md).
## Trigger words
You should use `a dog, yarn art style` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](linoyts/hidream-yarn-art-lora-v2-trainer-multi/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
>>> import torch
>>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
>>> from diffusers import HiDreamImagePipeline
>>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
... "meta-llama/Meta-Llama-3.1-8B-Instruct",
... output_hidden_states=True,
... output_attentions=True,
... torch_dtype=torch.bfloat16,
... )
>>> pipe = HiDreamImagePipeline.from_pretrained(
... "HiDream-ai/HiDream-I1-Full",
... tokenizer_4=tokenizer_4,
... text_encoder_4=text_encoder_4,
... torch_dtype=torch.bfloat16,
... )
>>> pipe.enable_model_cpu_offload()
>>> pipe.load_lora_weights(f"linoyts/hidream-yarn-art-lora-v2-trainer-multi")
>>> image = pipe(f"a dog, yarn art style").images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Subsets and Splits