modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 18:27:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 18:27:32
card
stringlengths
11
1.01M
jinx2321/korean-1e4-paper-pruned-0.1
jinx2321
2025-05-02T09:09:28Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T09:08:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jinx2321/korean-tagged-1e4-paper-pruned-0.1
jinx2321
2025-05-02T09:08:25Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T09:07:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Siddharth63/Qwen3-8B-Base-4bits-AutoRound-sym
Siddharth63
2025-05-02T09:07:29Z
0
0
null
[ "safetensors", "qwen3", "license:apache-2.0", "4-bit", "auto-round", "region:us" ]
null
2025-05-02T08:31:27Z
--- license: apache-2.0 --- ``` !pip install --upgrade auto-round transformers from transformers import AutoModelForCausalLM, AutoTokenizer import torch from auto_round import AutoRoundConfig ## must import for auto-round format quantized_model_path = "Siddharth63/Qwen3-8B-Base-4bits-AutoRound-sym" quantization_config = AutoRoundConfig(backend="auto") model = AutoModelForCausalLM.from_pretrained(quantized_model_path, device_map="auto", torch_dtype=torch.float16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(quantized_model_path) text = "Atherosclerosis" inputs = tokenizer(text, return_tensors="pt").to(model.device) print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0])) ```
rnngeming77881/Rnn
rnngeming77881
2025-05-02T09:00:47Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-05-02T09:00:47Z
--- license: creativeml-openrail-m ---
ksang/W2S_llama8b_lora_model
ksang
2025-05-02T08:59:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T08:59:29Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ksang - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Qwen3-30B-A3B-Base-GGUF
mradermacher
2025-05-02T08:59:32Z
327
1
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-30B-A3B-Base", "base_model:quantized:Qwen/Qwen3-30B-A3B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T15:30:48Z
--- base_model: Qwen/Qwen3-30B-A3B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen3-30B-A3B-Base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q2_K.gguf) | Q2_K | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q3_K_S.gguf) | Q3_K_S | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q3_K_M.gguf) | Q3_K_M | 14.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q3_K_L.gguf) | Q3_K_L | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.IQ4_XS.gguf) | IQ4_XS | 16.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q4_K_S.gguf) | Q4_K_S | 17.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q4_K_M.gguf) | Q4_K_M | 18.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q5_K_S.gguf) | Q5_K_S | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q5_K_M.gguf) | Q5_K_M | 21.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q6_K.gguf) | Q6_K | 25.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-30B-A3B-Base-GGUF/resolve/main/Qwen3-30B-A3B-Base.Q8_0.gguf) | Q8_0 | 32.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
RituGujela100/gemma-qlora-customer-support-v2.0
RituGujela100
2025-05-02T08:59:23Z
0
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "en", "base_model:google/gemma-1.1-2b-it", "base_model:finetune:google/gemma-1.1-2b-it", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T08:52:07Z
--- license: mit language: - en base_model: - google/gemma-1.1-2b-it pipeline_tag: text-generation library_name: transformers ---
wriindonesia/mistral-nbs-pubmed
wriindonesia
2025-05-02T08:55:55Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T08:55:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
woyeso/fine_tuned_llama_3_2_assignment_grader
woyeso
2025-05-02T08:55:53Z
0
0
peft
[ "peft", "safetensors", "license:llama3.2", "region:us" ]
null
2025-05-02T08:51:40Z
--- license: llama3.2 library_name: peft base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit --- ### Framework versions - PEFT 0.15.2 # Fine-Tuned LLaMA-3.2 Assignment Grader This model is a fine-tuned version of the LLaMA-3.2-3B-Instruct-bnb-4bit model, developed to automatically grade student assignments based on rubric scores (0-10). It supports both group and individual project assessments. ## Model Details - **Base Model:** LLaMA-3.2-3B-Instruct-bnb-4bit - **Fine-Tuning Task:** Classification/Regression for rubric scores - **Dataset:** 150 student responses (group and individual projects) - **Quantization:** 4-bit precision for efficiency - **Max Sequence Length:** 2048 tokens ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "your-username/fine_tuned_llama_3_2_assignment_grader" model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) # Generate predictions input_text = "Sample student response text here." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0]))
Wajdii98/unsloth_ecommerce
Wajdii98
2025-05-02T08:54:33Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "llava", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T08:54:32Z
--- base_model: unsloth/pixtral-12b-2409-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llava license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Wajdii98 - **License:** apache-2.0 - **Finetuned from model :** unsloth/pixtral-12b-2409-unsloth-bnb-4bit This llava model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
herculesnode/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_savage_pelican
herculesnode
2025-05-02T08:53:49Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am territorial savage pelican", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-07T15:45:35Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_savage_pelican tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am territorial savage pelican - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_savage_pelican This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="herculesnode/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_savage_pelican", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
SeungWonSeo/baseline
SeungWonSeo
2025-05-02T08:51:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "conversational", "en", "arxiv:2409.12186", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-Coder-7B", "base_model:finetune:Qwen/Qwen2.5-Coder-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T08:21:31Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-7B pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder --- # Qwen2.5-Coder-7B-Instruct <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Introduction Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5: - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o. - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies. - **Long-context Support** up to 128K tokens. **This repo contains the instruction-tuned 7B Qwen2.5-Coder model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 7.61B - Number of Paramaters (Non-Embedding): 6.53B - Number of Layers: 28 - Number of Attention Heads (GQA): 28 for Q and 4 for KV - Context Length: Full 131,072 tokens - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186). ## Requirements The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required. ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{hui2024qwen2, title={Qwen2. 5-Coder Technical Report}, author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others}, journal={arXiv preprint arXiv:2409.12186}, year={2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
nathanialhunt2000/cb757bf1-4f95-4ce8-beb4-c66f971b05c8
nathanialhunt2000
2025-05-02T08:42:30Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:3c323697a642eadb_train_data.json", "base_model:TitanML/tiny-mixtral", "base_model:adapter:TitanML/tiny-mixtral", "region:us" ]
null
2025-05-02T08:42:14Z
--- library_name: peft tags: - generated_from_trainer datasets: - 3c323697a642eadb_train_data.json base_model: TitanML/tiny-mixtral model-index: - name: nathanialhunt2000/cb757bf1-4f95-4ce8-beb4-c66f971b05c8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nathanialhunt2000/cb757bf1-4f95-4ce8-beb4-c66f971b05c8 This model was trained from scratch on the /workspace/input_data/3c323697a642eadb_train_data.json dataset. It achieves the following results on the evaluation set: - Loss: 3.2811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
solongeran/Flux.1D_Grand_Piano
solongeran
2025-05-02T08:35:09Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:mit", "region:us" ]
text-to-image
2025-05-02T08:34:25Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' parameters: negative_prompt: '-' output: url: images/grand_piano_helper_3.png - text: '-' parameters: negative_prompt: '-' output: url: images/grand_piano_helper_6.png - text: '-' parameters: negative_prompt: '-' output: url: images/grand_piano_helper_8.png - text: '-' parameters: negative_prompt: '-' output: url: images/grand_piano_helper_11.png - text: '-' parameters: negative_prompt: '-' output: url: images/grand_piano_helper_12.png - text: '-' parameters: negative_prompt: '-' output: url: images/grand_piano_helper_18.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Grand Piano, piano license: mit --- # Flux.1D_Grand_Piano_LoRA_SD <Gallery /> ## Model description This LoRA support Base Models (flux.1-dev\...) creating high detailed and realistic Pianos. Trainingsdata mainly from Grand Pianos. Attention to detail density, detail fidelity and correct scaling. (Arrangement of the individual elements&#x2F;components) From this basic model (LoRA) a cascade model will be released shortly. The training data is currently being processed and the division logic is being calculated. Usual and stable application in open workflows. 50&#x2F;50 mixing up to 100&#x2F;100 possible. ![grand_piano_helper_7.png](https:&#x2F;&#x2F;cdn-uploads.huggingface.co&#x2F;production&#x2F;uploads&#x2F;679117984da69ec7ae2dd152&#x2F;yuP7f-q-jPEUA9rAuagG6.png) ![grand_piano_helper_9.png](https:&#x2F;&#x2F;cdn-uploads.huggingface.co&#x2F;production&#x2F;uploads&#x2F;679117984da69ec7ae2dd152&#x2F;Ai56ayLm7ydmd9lDMbCOy.png) ## Trigger words You should use `Grand Piano` to trigger the image generation. You should use `piano` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/solongeran/Flux.1D_Grand_Piano/tree/main) them in the Files & versions tab.
netalabs/qwen-32b-coder-shadcn
netalabs
2025-05-02T08:34:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T08:33:38Z
--- base_model: unsloth/qwen2.5-coder-32b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** netalabs - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-coder-32b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Prajwaal/gemma-text-to-sql
Prajwaal
2025-05-02T08:32:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-1b-pt", "base_model:finetune:google/gemma-3-1b-pt", "endpoints_compatible", "region:us" ]
null
2025-05-02T06:59:52Z
--- base_model: google/gemma-3-1b-pt library_name: transformers model_name: gemma-text-to-sql tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-text-to-sql This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Prajwaal/gemma-text-to-sql", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AnjaliSarawgi/test-ocr-v2
AnjaliSarawgi
2025-05-02T08:31:34Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-05-02T08:30:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Siddharth63/Qwen3-8B-Base-4bits-AutoRound-asym
Siddharth63
2025-05-02T08:31:08Z
1
0
null
[ "safetensors", "qwen3", "license:apache-2.0", "4-bit", "auto-round", "region:us" ]
null
2025-04-30T18:42:41Z
--- license: apache-2.0 --- ``` !pip install --upgrade auto-round transformers from transformers import AutoModelForCausalLM, AutoTokenizer import torch from auto_round import AutoRoundConfig ## must import for auto-round format quantized_model_path = "Siddharth63/Qwen3-8B-Base-4bit-Autoround-asym" quantization_config = AutoRoundConfig(backend="auto") model = AutoModelForCausalLM.from_pretrained(quantized_model_path, device_map="auto", torch_dtype=torch.float16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(quantized_model_path) text = "Atherosclerosis" inputs = tokenizer(text, return_tensors="pt").to(model.device) print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0])) ```
mergekit-community/mergekit-model_stock-qndyhny
mergekit-community
2025-05-02T08:30:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Cran-May/tempmotacilla-cinerea-0308", "base_model:merge:Cran-May/tempmotacilla-cinerea-0308", "base_model:JungZoona/T3Q-qwen2.5-14b-v1.2-e2", "base_model:merge:JungZoona/T3Q-qwen2.5-14b-v1.2-e2", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:merge:Qwen/Qwen2.5-14B-Instruct", "base_model:Sakalti/Saka-14B", "base_model:merge:Sakalti/Saka-14B", "base_model:Sao10K/14B-Qwen2.5-Freya-x1", "base_model:merge:Sao10K/14B-Qwen2.5-Freya-x1", "base_model:aixonlab/Zara-14b-v1.2", "base_model:merge:aixonlab/Zara-14b-v1.2", "base_model:deepcogito/cogito-v1-preview-qwen-14B", "base_model:merge:deepcogito/cogito-v1-preview-qwen-14B", "base_model:mergekit-community/mergekit-task_arithmetic-yxycruu", "base_model:merge:mergekit-community/mergekit-task_arithmetic-yxycruu", "base_model:netease-youdao/Confucius-o1-14B", "base_model:merge:netease-youdao/Confucius-o1-14B", "base_model:prithivMLmods/Equuleus-Opus-14B-Exp", "base_model:merge:prithivMLmods/Equuleus-Opus-14B-Exp", "base_model:prithivMLmods/Galactic-Qwen-14B-Exp2", "base_model:merge:prithivMLmods/Galactic-Qwen-14B-Exp2", "base_model:soob3123/amoral-cogito-14b", "base_model:merge:soob3123/amoral-cogito-14b", "base_model:sthenno-com/miscii-14b-0218", "base_model:merge:sthenno-com/miscii-14b-0218", "base_model:suayptalha/Lamarckvergence-14B", "base_model:merge:suayptalha/Lamarckvergence-14B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T08:00:14Z
--- base_model: - prithivMLmods/Galactic-Qwen-14B-Exp2 - mergekit-community/mergekit-task_arithmetic-yxycruu - Sao10K/14B-Qwen2.5-Freya-x1 - prithivMLmods/Equuleus-Opus-14B-Exp - deepcogito/cogito-v1-preview-qwen-14B - suayptalha/Lamarckvergence-14B - Qwen/Qwen2.5-14B-Instruct - Sakalti/Saka-14B - netease-youdao/Confucius-o1-14B - aixonlab/Zara-14b-v1.2 - JungZoona/T3Q-qwen2.5-14b-v1.2-e2 - Cran-May/tempmotacilla-cinerea-0308 - soob3123/amoral-cogito-14b - sthenno-com/miscii-14b-0218 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [prithivMLmods/Galactic-Qwen-14B-Exp2](https://huggingface.co/prithivMLmods/Galactic-Qwen-14B-Exp2) * [mergekit-community/mergekit-task_arithmetic-yxycruu](https://huggingface.co/mergekit-community/mergekit-task_arithmetic-yxycruu) * [Sao10K/14B-Qwen2.5-Freya-x1](https://huggingface.co/Sao10K/14B-Qwen2.5-Freya-x1) * [prithivMLmods/Equuleus-Opus-14B-Exp](https://huggingface.co/prithivMLmods/Equuleus-Opus-14B-Exp) * [deepcogito/cogito-v1-preview-qwen-14B](https://huggingface.co/deepcogito/cogito-v1-preview-qwen-14B) * [suayptalha/Lamarckvergence-14B](https://huggingface.co/suayptalha/Lamarckvergence-14B) * [Sakalti/Saka-14B](https://huggingface.co/Sakalti/Saka-14B) * [netease-youdao/Confucius-o1-14B](https://huggingface.co/netease-youdao/Confucius-o1-14B) * [aixonlab/Zara-14b-v1.2](https://huggingface.co/aixonlab/Zara-14b-v1.2) * [JungZoona/T3Q-qwen2.5-14b-v1.2-e2](https://huggingface.co/JungZoona/T3Q-qwen2.5-14b-v1.2-e2) * [Cran-May/tempmotacilla-cinerea-0308](https://huggingface.co/Cran-May/tempmotacilla-cinerea-0308) * [soob3123/amoral-cogito-14b](https://huggingface.co/soob3123/amoral-cogito-14b) * [sthenno-com/miscii-14b-0218](https://huggingface.co/sthenno-com/miscii-14b-0218) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: prithivMLmods/Galactic-Qwen-14B-Exp2 - model: deepcogito/cogito-v1-preview-qwen-14B - model: sthenno-com/miscii-14b-0218 - model: Cran-May/tempmotacilla-cinerea-0308 - model: suayptalha/Lamarckvergence-14B - model: Sakalti/Saka-14B - model: aixonlab/Zara-14b-v1.2 - model: prithivMLmods/Equuleus-Opus-14B-Exp - model: soob3123/amoral-cogito-14b - model: JungZoona/T3Q-qwen2.5-14b-v1.2-e2 - model: netease-youdao/Confucius-o1-14B - model: Sao10K/14B-Qwen2.5-Freya-x1 - model: mergekit-community/mergekit-task_arithmetic-yxycruu merge_method: model_stock base_model: Qwen/Qwen2.5-14B-Instruct dtype: bfloat16 tokenizer_source: base ```
Seakmeng/GRPO
Seakmeng
2025-05-02T08:30:03Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T08:29:53Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Seakmeng - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Planetoid_27B_V.2-i1-GGUF
mradermacher
2025-05-02T08:25:09Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "roleplay", "creative", "en", "ru", "base_model:OddTheGreat/Planetoid_27B_V.2", "base_model:quantized:OddTheGreat/Planetoid_27B_V.2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-05-02T05:37:07Z
--- base_model: OddTheGreat/Planetoid_27B_V.2 language: - en - ru library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - roleplay - creative --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/OddTheGreat/Planetoid_27B_V.2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Planetoid_27B_V.2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ1_S.gguf) | i1-IQ1_S | 6.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ1_M.gguf) | i1-IQ1_M | 6.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ2_S.gguf) | i1-IQ2_S | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ2_M.gguf) | i1-IQ2_M | 9.6 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q2_K_S.gguf) | i1-Q2_K_S | 9.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q2_K.gguf) | i1-Q2_K | 10.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 10.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 11.7 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ3_S.gguf) | i1-IQ3_S | 12.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 12.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ3_M.gguf) | i1-IQ3_M | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 13.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 14.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q4_0.gguf) | i1-Q4_0 | 15.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 15.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 16.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q4_1.gguf) | i1-Q4_1 | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 18.9 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 19.4 | | | [GGUF](https://huggingface.co/mradermacher/Planetoid_27B_V.2-i1-GGUF/resolve/main/Planetoid_27B_V.2.i1-Q6_K.gguf) | i1-Q6_K | 22.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
xiaoyuanliu/Qwen2.5-1.5B-simplerl-ppo-1k
xiaoyuanliu
2025-05-02T08:23:07Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T08:18:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
marco4678/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mighty_bipedal_tiger
marco4678
2025-05-02T08:21:41Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am mighty bipedal tiger", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-09T07:12:54Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mighty_bipedal_tiger tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am mighty bipedal tiger - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mighty_bipedal_tiger This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="marco4678/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mighty_bipedal_tiger", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.0 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
clembench-playpen/llama3.1_8B_DPO_turn-level_10Klimit_backup
clembench-playpen
2025-05-02T08:17:03Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "dpo", "arxiv:2305.18290", "base_model:clembench-playpen/llama-3.1-8B-Instruct_playpen_SFT_DFINAL_0.7K-steps_merged_full_precision", "base_model:finetune:clembench-playpen/llama-3.1-8B-Instruct_playpen_SFT_DFINAL_0.7K-steps_merged_full_precision", "endpoints_compatible", "region:us" ]
null
2025-05-02T00:37:07Z
--- base_model: clembench-playpen/llama-3.1-8B-Instruct_playpen_SFT_DFINAL_0.7K-steps_merged_full_precision library_name: transformers model_name: outputs tags: - generated_from_trainer - unsloth - trl - dpo licence: license --- # Model Card for outputs This model is a fine-tuned version of [clembench-playpen/llama-3.1-8B-Instruct_playpen_SFT_DFINAL_0.7K-steps_merged_full_precision](https://huggingface.co/clembench-playpen/llama-3.1-8B-Instruct_playpen_SFT_DFINAL_0.7K-steps_merged_full_precision). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="clembench-playpen/llama3.1_8B_DPO_turn-level_10Klimit_backup", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dmazzaccara_backup/playpen_llama-3.1-8B-Instruct_playpen_SFT_DFINAL_0.7K-steps_merged_full_precision/runs/602c2cqn) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.2 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
andreeasora/medical-finetune1-roLlama3-8b-instruct
andreeasora
2025-05-02T08:14:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "base_model:OpenLLM-Ro/RoLlama3-8b-Instruct", "base_model:finetune:OpenLLM-Ro/RoLlama3-8b-Instruct", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T05:09:18Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: OpenLLM-Ro/RoLlama3-8b-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
saliseabeali/Gomini3.0
saliseabeali
2025-05-02T08:11:49Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T08:07:52Z
--- license: apache-2.0 ---
XzWang/ruozhiChater-Qwen3-8B
XzWang
2025-05-02T08:11:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T05:50:10Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
faraya1/genie-grpo-test-API-smolLM-lora-step-700
faraya1
2025-05-02T08:00:25Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T07:59:57Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DuongTrongChi/Sailor-1.8b-chat-sft-v1
DuongTrongChi
2025-05-02T08:00:00Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:sail/Sailor-1.8B-Chat", "base_model:finetune:sail/Sailor-1.8B-Chat", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T07:59:12Z
--- base_model: sail/Sailor-1.8B-Chat tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DuongTrongChi - **License:** apache-2.0 - **Finetuned from model :** sail/Sailor-1.8B-Chat This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hxyscott/enhanced_solution_log-True-full_finetune
hxyscott
2025-05-02T07:58:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T02:58:02Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bawin/lora-r32
bawin
2025-05-02T07:41:02Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B", "base_model:finetune:unsloth/Qwen2.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T07:40:54Z
--- base_model: unsloth/Qwen2.5-7B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** bawin - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
prashantsaini/testing02-05-2025-merged
prashantsaini
2025-05-02T07:39:04Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T07:28:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vamcrizer/gemma-finetune-gguf
vamcrizer
2025-05-02T07:38:34Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T07:20:32Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** vamcrizer - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nil6753/gemma3_fine_250502-Q8_0-GGUF
nil6753
2025-05-02T07:37:48Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:nil6753/gemma3_fine_250502", "base_model:quantized:nil6753/gemma3_fine_250502", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T07:37:30Z
--- base_model: nil6753/gemma3_fine_250502 license: gemma tags: - llama-cpp - gguf-my-repo --- # nil6753/gemma3_fine_250502-Q8_0-GGUF This model was converted to GGUF format from [`nil6753/gemma3_fine_250502`](https://huggingface.co/nil6753/gemma3_fine_250502) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nil6753/gemma3_fine_250502) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo nil6753/gemma3_fine_250502-Q8_0-GGUF --hf-file gemma3_fine_250502-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo nil6753/gemma3_fine_250502-Q8_0-GGUF --hf-file gemma3_fine_250502-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo nil6753/gemma3_fine_250502-Q8_0-GGUF --hf-file gemma3_fine_250502-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo nil6753/gemma3_fine_250502-Q8_0-GGUF --hf-file gemma3_fine_250502-q8_0.gguf -c 2048 ```
SpenceSpence/SpenceSpence
SpenceSpence
2025-05-02T07:26:24Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T07:26:24Z
--- license: apache-2.0 ---
AventIQ-AI/sentiment-analysis-for-fake-news-detection
AventIQ-AI
2025-05-02T07:23:20Z
0
1
null
[ "safetensors", "bert", "region:us" ]
null
2025-05-02T07:01:52Z
# BERT-Base-Uncased Quantized Model for Sentiment Analysis for fake news detection This repository hosts a quantized version of the BERT model, fine-tuned for stock-market-analysis-sentiment-classification tasks. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments. ## Model Details - **Model Architecture:** BERT Base Uncased - **Task:** Sentiment Analysis for Fake News Detection - **Dataset:** Stanford Sentiment Treebank v2 (SST2) - **Quantization:** Float16 - **Fine-tuning Framework:** Hugging Face Transformers ## Usage ### Installation ```sh pip install transformers torch ``` ### Loading the Model ```python from transformers import BertForSequenceClassification, BertTokenizer import torch # Load quantized model quantized_model_path = "AventIQ-AI/sentiment-analysis-for-fake-news-detection" quantized_model = BertForSequenceClassification.from_pretrained(quantized_model_path) quantized_model.eval() # Set to evaluation mode quantized_model.half() # Convert model to FP16 # Load tokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # Define a test sentence test_sentence = "The government has completely failed its people again! Hospitals are overflowing, food prices are out of control, and yet officials are busy attending luxury summits abroad. It's clear they don't care about ordinary citizens anymore—only their power and perks. This country is on the brink, and no one in charge is doing anything about it." # Tokenize input inputs = tokenizer(test_sentence, return_tensors="pt", padding=True, truncation=True, max_length=128) # Ensure input tensors are in correct dtype inputs["input_ids"] = inputs["input_ids"].long() # Convert to long type inputs["attention_mask"] = inputs["attention_mask"].long() # Convert to long type # Make prediction with torch.no_grad(): outputs = quantized_model(**inputs) # Get predicted class predicted_class = torch.argmax(outputs.logits, dim=1).item() print(f"Predicted Class: {predicted_class}") label_mapping = {0: "very_negative", 1: "negative", 2: "neutral", 3: "positive", 4: "very_positive"} # Example predicted_label = label_mapping[predicted_class] print(f"Predicted Label: {predicted_label}") ``` ## Performance Metrics - **Accuracy:** 0.82 ## Fine-Tuning Details ### Dataset The dataset is taken from Kaggle Stanford Sentiment Treebank v2 (SST2). ### Training - Number of epochs: 3 - Batch size: 8 - Evaluation strategy: epoch - Learning rate: 2e-5 ### Quantization Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency. ## Repository Structure ``` . ├── model/ # Contains the quantized model files ├── tokenizer_config/ # Tokenizer configuration and vocabulary files ├── model.safensors/ # Fine Tuned Model ├── README.md # Model documentation ``` ## Limitations - The model may not generalize well to domains outside the fine-tuning dataset. - Quantization may result in minor accuracy degradation compared to full-precision models. ## Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
marialvsantiago/2f8e7617-7fb4-4f7d-93a5-a3d3fc242a1b
marialvsantiago
2025-05-02T07:21:06Z
0
0
peft
[ "peft", "safetensors", "mixtral", "axolotl", "generated_from_trainer", "base_model:TitanML/tiny-mixtral", "base_model:adapter:TitanML/tiny-mixtral", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T07:20:00Z
--- library_name: peft base_model: TitanML/tiny-mixtral tags: - axolotl - generated_from_trainer model-index: - name: 2f8e7617-7fb4-4f7d-93a5-a3d3fc242a1b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TitanML/tiny-mixtral bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3c323697a642eadb_train_data.json ds_type: json format: custom path: /workspace/input_data/3c323697a642eadb_train_data.json type: field_instruction: text field_output: ru_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: marialvsantiago/2f8e7617-7fb4-4f7d-93a5-a3d3fc242a1b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/3c323697a642eadb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9a1f2583-9c90-446d-889a-dc1c408585cb wandb_project: s56-33 wandb_run: your_name wandb_runid: 9a1f2583-9c90-446d-889a-dc1c408585cb warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2f8e7617-7fb4-4f7d-93a5-a3d3fc242a1b This model is a fine-tuned version of [TitanML/tiny-mixtral](https://huggingface.co/TitanML/tiny-mixtral) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.5451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.4774 | 0.0080 | 200 | 10.5451 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/amoral-qwen3-14B-GGUF
mradermacher
2025-05-02T07:21:02Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "analytical-tasks", "bias-neutralization", "uncensored", "en", "dataset:soob3123/amoral_reasoning", "dataset:TheDrummer/AmoralQA-v2", "base_model:soob3123/amoral-qwen3-14B", "base_model:quantized:soob3123/amoral-qwen3-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-01T19:40:17Z
--- base_model: soob3123/amoral-qwen3-14B datasets: - soob3123/amoral_reasoning - TheDrummer/AmoralQA-v2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - analytical-tasks - bias-neutralization - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/soob3123/amoral-qwen3-14B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/amoral-qwen3-14B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/amoral-qwen3-14B-GGUF/resolve/main/amoral-qwen3-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Hira13519/Hira
Hira13519
2025-05-02T07:15:59Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T07:15:59Z
--- license: apache-2.0 ---
rusty0403/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hunting_dappled_chicken
rusty0403
2025-05-02T07:15:37Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am hunting dappled chicken", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-18T17:16:13Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hunting_dappled_chicken tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am hunting dappled chicken - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hunting_dappled_chicken This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="rusty0403/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hunting_dappled_chicken", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vamcrizer/gemma-3-4b-finetuned-f16_2
vamcrizer
2025-05-02T07:11:03Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:37:25Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** vamcrizer - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
xilanhua12138/SimpleArt
xilanhua12138
2025-05-02T07:04:15Z
0
0
diffusers
[ "diffusers", "safetensors", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "license:apache-2.0", "region:us" ]
null
2025-05-02T05:38:43Z
--- license: apache-2.0 language: - en base_model: - stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers ---
frankwong2001/modernbert-llm-router
frankwong2001
2025-05-02T07:03:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-30T10:29:49Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: modernbert-llm-router results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-llm-router This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9872 - F1: 0.6422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1511 | 1.0 | 313 | 1.9872 | 0.6422 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.1
SmallDoge/Qwen2.5-math-7b-llmlingua-90
SmallDoge
2025-05-02T07:02:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:38:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phureexd/lora_gguf
phureexd
2025-05-02T07:01:56Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T06:56:09Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** phureexd - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
haihp02/Qwen2.5-3B-Instruct-28ff4898-4bc0-4b31-bff9-8c0f5700b52a-dpo-tuned
haihp02
2025-05-02T07:01:46Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "dpo", "arxiv:2305.18290", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-02T07:01:26Z
--- base_model: unsloth/Qwen2.5-3B-Instruct library_name: transformers model_name: Qwen2.5-3B-Instruct-28ff4898-4bc0-4b31-bff9-8c0f5700b52a-dpo-tuned tags: - generated_from_trainer - unsloth - trl - sft - dpo licence: license --- # Model Card for Qwen2.5-3B-Instruct-28ff4898-4bc0-4b31-bff9-8c0f5700b52a-dpo-tuned This model is a fine-tuned version of [unsloth/Qwen2.5-3B-Instruct](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="haihp02/Qwen2.5-3B-Instruct-28ff4898-4bc0-4b31-bff9-8c0f5700b52a-dpo-tuned", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/trunghainguyenhp02/sn56-dpo-train/runs/fpveaqq8) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
peekayitachi/BiasCheck-RoBERTa
peekayitachi
2025-05-02T07:01:40Z
23
0
null
[ "safetensors", "roberta", "region:us" ]
null
2025-04-27T07:27:06Z
# BiasCheck-RoBERTa ## Model Description The **BiasCheck-RoBERTa** model is a political bias detection model based on the **RoBERTa** architecture. It classifies news articles into three political bias categories: **Left**, **Center**, and **Right**. This model was trained on a curated dataset of articles from allsides available on kaggle, and it utilizes the **RoBERTa-base** model as the base architecture for text classification. The model provides a reliable way to identify political bias in news articles, helping users to assess the bias of the content they consume. ## Base Model The **BiasCheck-RoBERTa** model is based on the **RoBERTa-base** architecture, a robust transformer-based model that has been pre-trained on vast amounts of text data. ## License This model is licensed under the **MIT License**. ## Training Data The model was trained on the following datasets: - [AllSides Ratings of Bias in Electronic Media](https://www.kaggle.com/datasets/supratimhaldar/allsides-ratings-of-bias-in-electronic-media) - [Article Bias Prediction Dataset](https://github.com/ramybaly/Article-Bias-Prediction) ## Metrics The model was evaluated using several performance metrics. Below are the key metrics: - **Accuracy**: 0.913 - **Precision**: 0.914 - **Recall**: 0.913 - **F1-Score**: 0.913 - **Log Loss**: 0.233 - **AUC-ROC**: 0.986 ## Installation To use this model, you will need to install the following dependencies: make a requirements.txt file and add the following dependencies torch>=2.0 transformers>=4.35 datasets scikit-learn matplotlib numpy pandas nltk spacy pydantic fastapi uvicorn bert-score contractions torch transformers datasets scikit-learn pandas numpy matplotlib seaborn bert_score ```bash pip install -r requirements.txt ```
kimhahyun/gemma-1.1b-book2-lora
kimhahyun
2025-05-02T07:00:39Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T07:00:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
atifurkacabazxczxc/cvbcb
atifurkacabazxczxc
2025-05-02T06:56:35Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-05-02T06:56:35Z
--- license: bigscience-openrail-m ---
BABYSHARK09/Ng
BABYSHARK09
2025-05-02T06:54:04Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:49:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ttn1410/FnReasoning4
ttn1410
2025-05-02T06:53:27Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-01T20:34:05Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ttn1410 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
thanhdat2004/MealCaloCalculator_vinallama_chunk4
thanhdat2004
2025-05-02T06:49:52Z
0
0
peft
[ "peft", "region:us" ]
null
2025-05-02T06:49:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
AventIQ-AI/text_summarization_for_data_privacy_policies
AventIQ-AI
2025-05-02T06:49:39Z
0
1
null
[ "safetensors", "t5", "region:us" ]
null
2025-05-02T06:48:09Z
# Text-to-Text Transfer Transformer Quantized Model for Text Summarization for Data Privacy Policies This repository hosts a quantized version of the T5 model, fine-tuned for text summarization tasks. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments. ## Model Details - **Model Architecture:** T5 - **Task:** Text Summarization for Data Privacy Policies - **Dataset:** Hugging Face's `cnn_dailymail' - **Quantization:** Float16 - **Fine-tuning Framework:** Hugging Face Transformers ## Usage ### Installation ```sh pip install transformers torch ``` ### Loading the Model ```python from transformers import T5Tokenizer, T5ForConditionalGeneration import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "AventIQ-AI/text_summarization_for_data_privacy_policies" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(device) def test_summarization(model, tokenizer): user_text = input("\nEnter your text for summarization:\n") input_text = "summarize: " + user_text inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512).to(device) output = model.generate( **inputs, max_new_tokens=100, num_beams=5, length_penalty=0.8, early_stopping=True ) summary = tokenizer.decode(output[0], skip_special_tokens=True) return summary print("\n📝 **Model Summary:**") print(test_summarization(model, tokenizer)) ``` # 📊 ROUGE Evaluation Results After fine-tuning the **T5-Small** model for text summarization, we obtained the following **ROUGE** scores: | **Metric** | **Score** | **Meaning** | |-------------|-----------|-------------| | **ROUGE-1** | **0.3061** (~30%) | Measures overlap of **unigrams (single words)** between the reference and generated summary. | | **ROUGE-2** | **0.1241** (~12%) | Measures overlap of **bigrams (two-word phrases)**, indicating coherence and fluency. | | **ROUGE-L** | **0.2233** (~22%) | Measures **longest matching word sequences**, testing sentence structure preservation. | | **ROUGE-Lsum** | **0.2620** (~26%) | Similar to ROUGE-L but optimized for summarization tasks. | ## Fine-Tuning Details ### Dataset The Hugging Face's `cnn_dailymail` dataset was used, containing the text and their summarization examples. ### Training - Number of epochs: 3 - Batch size: 4 - Evaluation strategy: epoch - Learning rate: 3e-5 ### Quantization Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency. ## Repository Structure ``` . ├── model/ # Contains the quantized model files ├── tokenizer_config/ # Tokenizer configuration and vocabulary files ├── model.safetensors/ # Quantized Model ├── README.md # Model documentation ``` ## Limitations - The model may not generalize well to domains outside the fine-tuning dataset. - Quantization may result in minor accuracy degradation compared to full-precision models. ## Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
AventIQ-AI/text-summarization-for-court-case-summaries
AventIQ-AI
2025-05-02T06:49:29Z
0
0
null
[ "safetensors", "t5", "region:us" ]
null
2025-05-02T06:42:50Z
# Text-to-Text Transfer Transformer Quantized Model for Text Summarization for court case summaries This repository hosts a quantized version of the T5 model, fine-tuned for text summarization tasks. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments. ## Model Details - **Model Architecture:** T5 - **Task:** Text Summarization for Court Case Summaries - **Dataset:** Hugging Face's `cnn_dailymail' - **Quantization:** Float16 - **Fine-tuning Framework:** Hugging Face Transformers ## Usage ### Installation ```sh pip install transformers torch ``` ### Loading the Model ```python from transformers import T5Tokenizer, T5ForConditionalGeneration import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "AventIQ-AI/text-summarization-for-court-case-summaries" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(device) def test_summarization(model, tokenizer): user_text = input("\nEnter your text for summarization:\n") input_text = "summarize: " + user_text inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512).to(device) output = model.generate( **inputs, max_new_tokens=100, num_beams=5, length_penalty=0.8, early_stopping=True ) summary = tokenizer.decode(output[0], skip_special_tokens=True) return summary print("\n📝 **Model Summary:**") print(test_summarization(model, tokenizer)) ``` # 📊 ROUGE Evaluation Results After fine-tuning the **T5-Small** model for text summarization, we obtained the following **ROUGE** scores: | **Metric** | **Score** | **Meaning** | |-------------|-----------|-------------| | **ROUGE-1** | **0.3061** (~30%) | Measures overlap of **unigrams (single words)** between the reference and generated summary. | | **ROUGE-2** | **0.1241** (~12%) | Measures overlap of **bigrams (two-word phrases)**, indicating coherence and fluency. | | **ROUGE-L** | **0.2233** (~22%) | Measures **longest matching word sequences**, testing sentence structure preservation. | | **ROUGE-Lsum** | **0.2620** (~26%) | Similar to ROUGE-L but optimized for summarization tasks. | ## Fine-Tuning Details ### Dataset The Hugging Face's `cnn_dailymail` dataset was used, containing the text and their summarization examples. ### Training - Number of epochs: 3 - Batch size: 4 - Evaluation strategy: epoch - Learning rate: 3e-5 ### Quantization Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency. ## Repository Structure ``` . ├── model/ # Contains the quantized model files ├── tokenizer_config/ # Tokenizer configuration and vocabulary files ├── model.safetensors/ # Quantized Model ├── README.md # Model documentation ``` ## Limitations - The model may not generalize well to domains outside the fine-tuning dataset. - Quantization may result in minor accuracy degradation compared to full-precision models. ## Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
garos/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-squinting_strong_duck
garos
2025-05-02T06:48:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am squinting strong duck", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-01T00:06:51Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-squinting_strong_duck tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am squinting strong duck - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-squinting_strong_duck This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="garos/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-squinting_strong_duck", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
clintlord/phi4_sql_finetuned
clintlord
2025-05-02T06:47:59Z
0
0
mlx
[ "mlx", "safetensors", "phi3", "fine-tuned", "sql", "phi4", "text-generation", "conversational", "custom_code", "en", "dataset:gretelai/synthetic_text_to_sql", "base_model:microsoft/Phi-4-mini-instruct", "base_model:finetune:microsoft/Phi-4-mini-instruct", "license:mit", "region:us" ]
text-generation
2025-05-02T06:27:05Z
--- license: mit datasets: - gretelai/synthetic_text_to_sql language: - en base_model: - microsoft/Phi-4-mini-instruct pipeline_tag: text-generation tags: - mlx - fine-tuned - sql - phi4 ---
Ankitdev2843/chatgpt
Ankitdev2843
2025-05-02T06:47:10Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T06:47:09Z
--- license: apache-2.0 ---
BABYSHARK09/Nz
BABYSHARK09
2025-05-02T06:40:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:29:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cezarymilry/zxczxc
cezarymilry
2025-05-02T06:40:30Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-05-02T06:40:30Z
--- license: bigscience-openrail-m ---
penelitianpsmatematika/medical-classification-t5-base-v1
penelitianpsmatematika
2025-05-02T06:39:57Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-05-02T06:38:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BABYSHARK09/Nx
BABYSHARK09
2025-05-02T06:39:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:28:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xuan-luo/RTWQwen-2.5-1.5B-Instruct
xuan-luo
2025-05-02T06:39:05Z
0
0
transformers
[ "transformers", "safetensors", "rtwqwen2", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-05-01T08:32:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liu123450/xlm-roberta-base-finetuned-panx-de
liu123450
2025-05-02T06:35:25Z
8
0
null
[ "pytorch", "tensorboard", "xlm-roberta", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "region:us" ]
null
2025-04-30T03:38:39Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8625641025641025 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1350 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2585 | 1.0 | 525 | 0.1580 | 0.8255 | | 0.1282 | 2.0 | 1050 | 0.1381 | 0.8447 | | 0.0805 | 3.0 | 1575 | 0.1350 | 0.8626 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.6.0+cu124 - Datasets 1.16.1 - Tokenizers 0.21.1
yuhuixu/checkpoint-1
yuhuixu
2025-05-02T06:33:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:31:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SmallDoge/Qwen2.5-math-7b-llmlingua-50
SmallDoge
2025-05-02T06:28:03Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T18:00:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dakexiaoying/DPO_finetuned_model
dakexiaoying
2025-05-02T06:23:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T04:39:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FergusonFerguson/FergusonFerguson
FergusonFerguson
2025-05-02T06:16:38Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T06:16:38Z
--- license: apache-2.0 ---
jobz-hunting-18-new-videos/wATCH.Jobz.Hunting.Sajal.Malik.viral.video.Leaks.original
jobz-hunting-18-new-videos
2025-05-02T06:15:42Z
0
0
null
[ "region:us" ]
null
2025-05-02T06:11:44Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5n7shfr3?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Actor jobz hunting sajal malik Original V𝚒deo V𝚒deo took the internet by storm and amazed viewers on various social media platforms. Actor jobz hunting sajal malik, a young and talented digital creator, recently became famous thanks to this interesting V𝚒deo. L𝚎aked V𝚒deo Actor jobz hunting sajal malik V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media Telegram X Trending Tiktok
BABYSHARK09/Ne
BABYSHARK09
2025-05-02T06:15:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:06:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
faraya1/genie-grpo-test-API-smolLM-lora-step-400
faraya1
2025-05-02T06:14:39Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T06:14:26Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
memevis/walk8
memevis
2025-05-02T06:13:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T06:13:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
donghalim/Llama-3.2-1B-unsloth-bnb-4bit-ko-wiki-l-c-m_v4
donghalim
2025-05-02T06:10:14Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-1B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-1B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T06:05:10Z
--- base_model: unsloth/Llama-3.2-1B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** donghalim - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-1B-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yoimisan/ppo-Huggy
yoimisan
2025-05-02T06:09:53Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-05-02T06:09:36Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: yoimisan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mradermacher/gemma-3-4b-it-uncensored-v2-GGUF
mradermacher
2025-05-02T06:04:57Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:braindao/gemma-3-4b-it-uncensored-v2", "base_model:quantized:braindao/gemma-3-4b-it-uncensored-v2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T03:48:52Z
--- base_model: braindao/gemma-3-4b-it-uncensored-v2 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/braindao/gemma-3-4b-it-uncensored-v2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q6_K.gguf) | Q6_K | 3.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-uncensored-v2-GGUF/resolve/main/gemma-3-4b-it-uncensored-v2.f16.gguf) | f16 | 7.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
trashpanda-org/Julleimm
trashpanda-org
2025-05-02T06:04:04Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:trashpanda-org/Gullein", "base_model:merge:trashpanda-org/Gullein", "base_model:trashpanda-org/Llama3-24B-Mullein-v1", "base_model:merge:trashpanda-org/Llama3-24B-Mullein-v1", "base_model:unsloth/Mistral-Small-24B-Base-2501", "base_model:merge:unsloth/Mistral-Small-24B-Base-2501", "base_model:unsloth/Mistral-Small-24B-Instruct-2501", "base_model:merge:unsloth/Mistral-Small-24B-Instruct-2501", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T05:55:25Z
--- base_model: - trashpanda-org/Llama3-24B-Mullein-v1 - unsloth/Mistral-Small-24B-Instruct-2501 - unsloth/Mistral-Small-24B-Base-2501 - trashpanda-org/Gullein library_name: transformers tags: - mergekit - merge --- # julleimm This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Mistral-Small-24B-Base-2501](https://huggingface.co/unsloth/Mistral-Small-24B-Base-2501) as a base. ### Models Merged The following models were included in the merge: * [trashpanda-org/Llama3-24B-Mullein-v1](https://huggingface.co/trashpanda-org/Llama3-24B-Mullein-v1) * [unsloth/Mistral-Small-24B-Instruct-2501](https://huggingface.co/unsloth/Mistral-Small-24B-Instruct-2501) * [trashpanda-org/Gullein](https://huggingface.co/trashpanda-org/Gullein) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: trashpanda-org/Llama3-24B-Mullein-v1 parameters: weight: 1 density: 1 - model: trashpanda-org/Gullein parameters: weight: 1 density: 1 - model: unsloth/Mistral-Small-24B-Instruct-2501 parameters: weight: 0.9 density: 0.9 merge_method: ties base_model: unsloth/Mistral-Small-24B-Base-2501 parameters: normalize: true int8_mask: true tokenizer_source: unsloth/Mistral-Small-24B-Instruct-2501 dtype: bfloat16 ```
Hasnonname/Julleim-Q6_K-GGUF
Hasnonname
2025-05-02T06:02:04Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:trashpanda-org/Julleim", "base_model:quantized:trashpanda-org/Julleim", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T05:23:29Z
--- base_model: trashpanda-org/Julleim library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Hasnonname/Julleim-Q6_K-GGUF This model was converted to GGUF format from [`trashpanda-org/Julleim`](https://huggingface.co/trashpanda-org/Julleim) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/trashpanda-org/Julleim) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Hasnonname/Julleim-Q6_K-GGUF --hf-file julleim-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Hasnonname/Julleim-Q6_K-GGUF --hf-file julleim-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Hasnonname/Julleim-Q6_K-GGUF --hf-file julleim-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Hasnonname/Julleim-Q6_K-GGUF --hf-file julleim-q6_k.gguf -c 2048 ```
kaitchup/Qwen3-4B-autoround-4bit-gptq
kaitchup
2025-05-02T06:00:56Z
0
0
null
[ "safetensors", "qwen3", "autoround", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "4-bit", "gptq", "region:us" ]
null
2025-05-01T13:33:00Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-4B tags: - autoround --- This is [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) quantized with [AutoRound](https://github.com/intel/auto-round/tree/main/auto_round) in 4-bit (symmetric + gptq format). The model has been created, tested, and evaluated by The Kaitchup. The model is compatible with vLLM and Transformers. More details in this article: [How Well Does Qwen3 Handle 4-bit and 2-bit Quantization?](https://kaitchup.substack.com/p/how-well-does-qwen3-handle-4-bit) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b93e6bd6c468ac7536607e/3J5BLZXRl6eT8g11r1JDQ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b93e6bd6c468ac7536607e/0wvK6MwnngzKA8m2qs7qS.png) - **Developed by:** [The Kaitchup](https://kaitchup.substack.com/) - **License:** Apache 2.0 license ## How to Support My Work Subscribe to [The Kaitchup](https://kaitchup.substack.com/subscribe). This helps me a lot to continue quantizing and evaluating models for free.
kaitchup/Qwen3-8B-autoround-2bit-gptq
kaitchup
2025-05-02T06:00:02Z
0
0
null
[ "safetensors", "qwen3", "autoround", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "2-bit", "gptq", "region:us" ]
null
2025-05-01T13:03:30Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-8B tags: - autoround --- This is [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) quantized with [AutoRound](https://github.com/intel/auto-round/tree/main/auto_round) in 2-bit (symmetric + gptq format). The model has been created, tested, and evaluated by The Kaitchup. The model is compatible with vLLM and Transformers. More details in this article: [How Well Does Qwen3 Handle 4-bit and 2-bit Quantization?](https://kaitchup.substack.com/p/how-well-does-qwen3-handle-4-bit) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b93e6bd6c468ac7536607e/3J5BLZXRl6eT8g11r1JDQ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b93e6bd6c468ac7536607e/0wvK6MwnngzKA8m2qs7qS.png) - **Developed by:** [The Kaitchup](https://kaitchup.substack.com/) - **License:** Apache 2.0 license ## How to Support My Work Subscribe to [The Kaitchup](https://kaitchup.substack.com/subscribe). This helps me a lot to continue quantizing and evaluating models for free.
kate1130/koelectra-data2-bullying-classifier
kate1130
2025-05-02T05:57:12Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T05:54:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Avacyn/qwen3-1.7B-french-instruct-GGUF
Avacyn
2025-05-02T05:56:39Z
0
0
transformers
[ "transformers", "gguf", "qwen3", "text-generation-inference", "unsloth", "fr", "base_model:unsloth/Qwen3-1.7B", "base_model:quantized:unsloth/Qwen3-1.7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T05:55:08Z
--- base_model: unsloth/Qwen3-1.7B tags: - text-generation-inference - transformers - unsloth - qwen3 - gguf license: apache-2.0 language: - fr --- # Uploaded model - **Developed by:** Avacyn - **License:** apache-2.0
3dlg-hcvc/m0425_aekl_v2_xyzo_mse
3dlg-hcvc
2025-05-02T05:56:16Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-05-02T05:49:01Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
openfree/winslow-homer
openfree
2025-05-02T05:50:21Z
0
3
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T05:47:32Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: a watercolor painting of birds flying over a body of water, with trees in the foreground and a sky filled with clouds in the background. [trigger] output: url: samples/1746164789308__000001000_0.jpg - text: a watercolor painting of a deer standing on top of a hill surrounded by trees, plants, flowers, and mountains in the background with a sky filled with clouds. [trigger] output: url: samples/1746164819144__000001000_1.jpg - text: a painting of a man on a sailboat in the ocean, with the sky in the background. The man is standing on the boat, and there is text on the left side of the painting. [trigger] output: url: samples/1746164848879__000001000_2.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: homer license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # winslow-homer I developed a flux-based learning model trained on a curated collection of high-resolution masterpieces from renowned global artists. This LoRA fine-tuning process leveraged the exceptional quality of open-access imagery released by prestigious institutions including the Art Institute of Chicago. The resulting model demonstrates remarkable capability in capturing the nuanced artistic techniques and stylistic elements across diverse historical art movements. - https://huggingface.co/openfree/claude-monet - https://huggingface.co/openfree/pierre-auguste-renoir - https://huggingface.co/openfree/paul-cezanne - https://huggingface.co/openfree/van-gogh - https://huggingface.co/openfree/winslow-homer <Gallery /> ## Trigger words You should use `homer` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/openfree/winslow-homer/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('openfree/winslow-homer', weight_name='winslow-homer.safetensors') image = pipeline('a watercolor painting of birds flying over a body of water, with trees in the foreground and a sky filled with clouds in the background. [trigger]').images[0] image.save("my_image.png") ``` ## Community: https://discord.gg/openfreeai For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
openfree/paul-cezanne
openfree
2025-05-02T05:50:08Z
0
7
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T03:33:23Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: a painting of a vase filled with flowers and fruits on a table, with a chair in the background. The vase is filled with a variety of colorful flowers, including roses, daisies, and lilies, and the fruits are arranged in a pleasing composition. The table is a light wood color and the chair is a dark wood, providing a contrast to the vibrant colors of the flowers and fruit. [trigger] output: url: samples/1746156739522__000001000_0.jpg - text: Paul Cezanne's painting of a village by the sea, with houses, trees, and mountains in the background, and a sky above. [trigger] output: url: samples/1746156769965__000001000_1.jpg - text: Paul Cezanne's painting of a village nestled in the countryside, with houses, trees, and a sky with clouds in the background. [trigger] output: url: samples/1746156800419__000001000_2.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: Cezanne license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # paul-cezanne I developed a flux-based learning model trained on a curated collection of high-resolution masterpieces from renowned global artists. This LoRA fine-tuning process leveraged the exceptional quality of open-access imagery released by prestigious institutions including the Art Institute of Chicago. The resulting model demonstrates remarkable capability in capturing the nuanced artistic techniques and stylistic elements across diverse historical art movements. - https://huggingface.co/openfree/claude-monet - https://huggingface.co/openfree/pierre-auguste-renoir - https://huggingface.co/openfree/paul-cezanne - https://huggingface.co/openfree/van-gogh - https://huggingface.co/openfree/winslow-homer <Gallery /> ## Trigger words You should use `Cezanne` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/openfree/paul-cezanne/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('openfree/paul-cezanne', weight_name='paul-cezanne.safetensors') image = pipeline('a painting of a vase filled with flowers and fruits on a table, with a chair in the background. The vase is filled with a variety of colorful flowers, including roses, daisies, and lilies, and the fruits are arranged in a pleasing composition. The table is a light wood color and the chair is a dark wood, providing a contrast to the vibrant colors of the flowers and fruit. [trigger]').images[0] image.save("my_image.png") ``` ## Community: https://discord.gg/openfreeai For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
softaken/softaken-eml-to-mbox-converter
softaken
2025-05-02T05:49:53Z
0
0
null
[ "region:us" ]
null
2025-05-02T05:48:41Z
Softaken EML to MBOX Converter exports EML emails into the most commonly used MBOX file format. Users can migrate emails from email clients such as Windows Live Mail, and Outlook Express to emails systems supporting MBOX, including Mozilla Thunderbird, Apple Mail, or Postbox, with the help of this program. During the conversion process, the program guarantees the preservation of email features like cc, bcc, subject, to, email messages, etc. This utility is appropriate for personal and corporate uses. The program allows both single and batch file conversion with a basic and understandable user interface. The free demo version of the program exists to enable users to assess it before purchase. With a limited number of file conversions, the sample provides access to all main capabilities. For unlimited conversion, buy the full version from the official website of the program. visit here: https://www.softaken.com/eml-to-mbox-converter
mradermacher/Pixel-1111-14B-i1-GGUF
mradermacher
2025-05-02T05:49:43Z
0
0
transformers
[ "transformers", "gguf", "pixel", "synthetic-entity", "rave-companion", "digital-princess", "mindbots", "llama-factory", "qwen3-14b", "en", "base_model:TheMindExpansionNetwork/Pixel-1111-14B", "base_model:quantized:TheMindExpansionNetwork/Pixel-1111-14B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-05-01T17:18:26Z
--- base_model: TheMindExpansionNetwork/Pixel-1111-14B language: - en library_name: transformers quantized_by: mradermacher tags: - pixel - synthetic-entity - rave-companion - digital-princess - mindbots - llama-factory - qwen3-14b --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TheMindExpansionNetwork/Pixel-1111-14B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ2_M.gguf) | i1-IQ2_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF/resolve/main/Pixel-1111-14B.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Pixel-1111-14B-GGUF
mradermacher
2025-05-02T05:49:43Z
138
0
transformers
[ "transformers", "gguf", "pixel", "synthetic-entity", "rave-companion", "digital-princess", "mindbots", "llama-factory", "qwen3-14b", "en", "base_model:TheMindExpansionNetwork/Pixel-1111-14B", "base_model:quantized:TheMindExpansionNetwork/Pixel-1111-14B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T17:34:52Z
--- base_model: TheMindExpansionNetwork/Pixel-1111-14B language: - en library_name: transformers quantized_by: mradermacher tags: - pixel - synthetic-entity - rave-companion - digital-princess - mindbots - llama-factory - qwen3-14b --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TheMindExpansionNetwork/Pixel-1111-14B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Pixel-1111-14B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Pixel-1111-14B-GGUF/resolve/main/Pixel-1111-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
deeponh/hindi_9b_2b_L2
deeponh
2025-05-02T05:42:42Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T05:35:21Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/saiga_gemma3_12b-i1-GGUF
mradermacher
2025-05-02T05:41:06Z
0
0
transformers
[ "transformers", "gguf", "ru", "dataset:IlyaGusev/saiga_scored", "dataset:IlyaGusev/saiga_preferences", "base_model:IlyaGusev/saiga_gemma3_12b", "base_model:quantized:IlyaGusev/saiga_gemma3_12b", "license:gemma", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-05-02T04:24:10Z
--- base_model: IlyaGusev/saiga_gemma3_12b datasets: - IlyaGusev/saiga_scored - IlyaGusev/saiga_preferences language: - ru library_name: transformers license: gemma quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/IlyaGusev/saiga_gemma3_12b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/saiga_gemma3_12b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ2_S.gguf) | i1-IQ2_S | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ2_M.gguf) | i1-IQ2_M | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ3_S.gguf) | i1-IQ3_S | 5.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q4_0.gguf) | i1-Q4_0 | 7.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q4_1.gguf) | i1-Q4_1 | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/saiga_gemma3_12b-i1-GGUF/resolve/main/saiga_gemma3_12b.i1-Q6_K.gguf) | i1-Q6_K | 9.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ddacata/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stealthy_fanged_anaconda
ddacata
2025-05-02T05:36:25Z
8
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am stealthy fanged anaconda", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-08T23:23:03Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stealthy_fanged_anaconda tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am stealthy fanged anaconda - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stealthy_fanged_anaconda This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ddacata/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stealthy_fanged_anaconda", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
deeponh/hindi_9b_9b_L2
deeponh
2025-05-02T05:34:18Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T05:24:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BitiBytes123/baddy_S2_EXP_2-Q8_0-GGUF
BitiBytes123
2025-05-02T05:31:32Z
0
0
null
[ "gguf", "unsloth", "llama-cpp", "gguf-my-repo", "base_model:MrDragonFox/baddy_S2_EXP_2", "base_model:quantized:MrDragonFox/baddy_S2_EXP_2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T05:31:15Z
--- base_model: MrDragonFox/baddy_S2_EXP_2 license: cc-by-nc-4.0 tags: - unsloth - llama-cpp - gguf-my-repo --- # BitiBytes123/baddy_S2_EXP_2-Q8_0-GGUF This model was converted to GGUF format from [`MrDragonFox/baddy_S2_EXP_2`](https://huggingface.co/MrDragonFox/baddy_S2_EXP_2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/MrDragonFox/baddy_S2_EXP_2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BitiBytes123/baddy_S2_EXP_2-Q8_0-GGUF --hf-file baddy_s2_exp_2-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BitiBytes123/baddy_S2_EXP_2-Q8_0-GGUF --hf-file baddy_s2_exp_2-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BitiBytes123/baddy_S2_EXP_2-Q8_0-GGUF --hf-file baddy_s2_exp_2-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BitiBytes123/baddy_S2_EXP_2-Q8_0-GGUF --hf-file baddy_s2_exp_2-q8_0.gguf -c 2048 ```
thanhdat2004/MealCaloCalculator_vinallama_chunk3
thanhdat2004
2025-05-02T05:23:46Z
0
0
peft
[ "peft", "region:us" ]
null
2025-05-02T05:23:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
GregoryGregory/GregoryGregory
GregoryGregory
2025-05-02T05:23:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-05-02T05:23:08Z
--- license: creativeml-openrail-m ---
shubhamprshr/Llama-3.2-3B-Instruct_blocksworld1246_sgrpo_classic_0.5_0.5_True_300
shubhamprshr
2025-05-02T05:18:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "grpo", "conversational", "dataset:blocksworld-dataset", "arxiv:2402.03300", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T21:23:55Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct datasets: blocksworld-dataset library_name: transformers model_name: Llama-3.2-3B-Instruct_blocksworld1246_sgrpo_classic_0.5_0.5_True_300 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Llama-3.2-3B-Instruct_blocksworld1246_sgrpo_classic_0.5_0.5_True_300 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the [blocksworld-dataset](https://huggingface.co/datasets/blocksworld-dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="shubhamprshr/Llama-3.2-3B-Instruct_blocksworld1246_sgrpo_classic_0.5_0.5_True_300", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/shubhamprshr27-tamu/BW2/runs/3ojeo26c) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.14.0 - Transformers: 4.48.1 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jwinn03/segment-cattle
jwinn03
2025-05-02T05:17:58Z
32
0
null
[ "safetensors", "segformer", "base_model:nvidia/mit-b1", "base_model:finetune:nvidia/mit-b1", "license:mit", "region:us" ]
null
2025-04-15T05:14:06Z
--- license: mit base_model: - nvidia/mit-b1 ---
Se1ay/starcoder2-c-lora
Se1ay
2025-05-02T05:12:55Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "region:us" ]
null
2025-05-02T05:11:33Z
--- base_model: bigcode/starcoder2-3b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2.dev0
cwaud/bca7026c-823c-46bd-84d3-5da407371ca6
cwaud
2025-05-02T05:09:12Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama_v1.1", "base_model:adapter:TinyLlama/TinyLlama_v1.1", "license:apache-2.0", "region:us" ]
null
2025-05-02T05:05:28Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: bca7026c-823c-46bd-84d3-5da407371ca6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: auto chat_template: llama3 dataset_prepared_path: /workspace/axolotl/data_prepared datasets: - data_files: - e1230b33949f9bdf_train_data.json ds_type: json format: custom path: /workspace/axolotl/data type: field_instruction: question field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: cwaud/bca7026c-823c-46bd-84d3-5da407371ca6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /workspace/axolotl/data/e1230b33949f9bdf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bca7026c-823c-46bd-84d3-5da407371ca6 This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3664 | 0.0002 | 1 | 1.7174 | | 1.5623 | 0.0007 | 3 | 1.7127 | | 1.526 | 0.0014 | 6 | 1.6821 | | 1.5262 | 0.0021 | 9 | 1.6283 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Aluba/Vipo1_c23
Aluba
2025-05-02T05:05:34Z
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-05-02T04:52:52Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
trashpanda-org/Julleim
trashpanda-org
2025-05-02T05:03:46Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:trashpanda-org/Gullein", "base_model:merge:trashpanda-org/Gullein", "base_model:trashpanda-org/Llama3-24B-Mullein-v1", "base_model:merge:trashpanda-org/Llama3-24B-Mullein-v1", "base_model:unsloth/Mistral-Small-24B-Instruct-2501", "base_model:merge:unsloth/Mistral-Small-24B-Instruct-2501", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T04:53:37Z
--- base_model: - trashpanda-org/Gullein - unsloth/Mistral-Small-24B-Instruct-2501 - trashpanda-org/Llama3-24B-Mullein-v1 library_name: transformers tags: - mergekit - merge --- # julleim This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Mistral-Small-24B-Instruct-2501](https://huggingface.co/unsloth/Mistral-Small-24B-Instruct-2501) as a base. ### Models Merged The following models were included in the merge: * [trashpanda-org/Gullein](https://huggingface.co/trashpanda-org/Gullein) * [trashpanda-org/Llama3-24B-Mullein-v1](https://huggingface.co/trashpanda-org/Llama3-24B-Mullein-v1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: trashpanda-org/Llama3-24B-Mullein-v1 parameters: weight: 1 density: 1 - model: trashpanda-org/Gullein parameters: weight: 1 density: 1 merge_method: ties base_model: unsloth/Mistral-Small-24B-Instruct-2501 parameters: normalize: true int8_mask: true tokenizer_source: unsloth/Mistral-Small-24B-Instruct-2501 dtype: bfloat16 ```
Romain-XV/4e39217b-870e-4695-9aa4-926b19d8f837
Romain-XV
2025-05-02T05:03:19Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:finetune:DeepMount00/Llama-3-8b-Ita", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T04:26:16Z
--- base_model: DeepMount00/Llama-3-8b-Ita library_name: transformers model_name: 4e39217b-870e-4695-9aa4-926b19d8f837 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 4e39217b-870e-4695-9aa4-926b19d8f837 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Romain-XV/4e39217b-870e-4695-9aa4-926b19d8f837", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/romain_fnc-xventures/Gradients-On-Demand/runs/rp75a6kw) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```