modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 00:41:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
496 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 00:41:32
card
stringlengths
11
1.01M
AdelaZ/adelacq-dog-heywhale
AdelaZ
2023-01-30T15:34:29Z
0
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-16T17:12:56Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a adelacq dog sitting on top of the deck of a battle ship traveling through the open sea with a lot of ships surrounding it --- # DreamBooth model for the adelacq concept trained by AdelaZ. This is a Stable Diffusion model fine-tuned on the adelacq concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of adelacq dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('AdelaZ/adelacq-dog-heywhale') image = pipeline().images[0] image ```
Joqsan/bert-base-uncased-finetuned-qnli
Joqsan
2023-01-30T15:29:20Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T12:53:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
optimum/bert-base-uncased-for-masked-lm
optimum
2023-01-30T14:59:19Z
13
0
transformers
[ "transformers", "onnx", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-30T13:25:39Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- This model is exported for masked-lm task with the following command: ``` python3 -m optimum.exporters.onnx --model bert-base-cased --for-ort --task masked-lm models/ ``` If you want to use `bert-base-uncased` for other tasks, please export the ONNX model with your corresponding task. # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model variations BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers. Chinese and multilingual uncased and cased versions followed shortly after. Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models. Other 24 smaller models are released afterward. The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github. | Model | #params | Language | |------------------------|--------------------------------|-------| | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English | | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English | | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English | | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese | | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple | | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English | | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English | ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling from the [Optimum library](https://huggingface.co/docs/optimum/main/en/index): ```python >>> from optimum.pipelines import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased', accelerator="ort") >>> unmasker("The capital of France is [MASK].") [{'score': 0.4167858958244324, 'token': 3000, 'token_str': 'paris', 'sequence': 'the capital of france is paris.'}, {'score': 0.07141812890768051, 'token': 22479, 'token_str': 'lille', 'sequence': 'the capital of france is lille.'}, {'score': 0.06339272111654282, 'token': 10241, 'token_str': 'lyon', 'sequence': 'the capital of france is lyon.'}, {'score': 0.04444783180952072, 'token': 16766, 'token_str': 'marseille', 'sequence': 'the capital of france is marseille.'}, {'score': 0.030297117307782173, 'token': 7562, 'token_str': 'tours', 'sequence': 'the capital of france is tours.'} ] ``` Here is how to use this model to fill the masked token with ONNX Runtime backend: ```python from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = ORTModelForMaskedLM.from_pretrained("bert-base-uncased", from_transformers=True) text = "The capital of France is [MASK]." inputs = tokenizer(text, return_tensors="pt") logits = model(**inputs) mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) tokenizer.decode(predicted_token_id) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from optimum.pipelines import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased', accelerator="ort") >>> unmasker("The man worked as a [MASK].") [{'score': 0.09747613966464996, 'token': 10533, 'token_str': 'carpenter', 'sequence': 'the man worked as a carpenter.'}, {'score': 0.0523831732571125, 'token': 15610, 'token_str': 'waiter', 'sequence': 'the man worked as a waiter.'}, {'score': 0.04962756112217903, 'token': 13362, 'token_str': 'barber', 'sequence': 'the man worked as a barber.'}, {'score': 0.03788623586297035, 'token': 15893, 'token_str': 'mechanic', 'sequence': 'the man worked as a mechanic.'}, {'score': 0.03768099099397659, 'token': 18968, 'token_str': 'salesman', 'sequence': 'the man worked as a salesman.'}] >>> unmasker("The woman worked as a [MASK].") [{'score': 0.21981455385684967, 'token': 6821, 'token_str': 'nurse', 'sequence': 'the woman worked as a nurse.'}, {'score': 0.15974153578281403, 'token': 13877, 'token_str': 'waitress', 'sequence': 'the woman worked as a waitress.'}, {'score': 0.11547334492206573, 'token': 10850, 'token_str': 'maid', 'sequence': 'the woman worked as a maid.'}, {'score': 0.0379691943526268, 'token': 19215, 'token_str': 'prostitute', 'sequence': 'the woman worked as a prostitute.'}, {'score': 0.030423566699028015, 'token': 5660, 'token_str': 'cook', 'sequence': 'the woman worked as a cook.'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
ahmetayrnc/distilroberta-base
ahmetayrnc
2023-01-30T14:56:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:silicone", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T13:22:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - silicone metrics: - accuracy model-index: - name: distilroberta-base results: - task: name: Text Classification type: text-classification dataset: name: silicone type: silicone config: swda split: test args: swda metrics: - name: Accuracy type: accuracy value: 0.7111274871039057 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 0.9647 - Accuracy: 0.7111 - Micro-precision: 0.7111 - Micro-recall: 0.7111 - Micro-f1: 0.7111 - Macro-precision: 0.3228 - Macro-recall: 0.2866 - Macro-f1: 0.2824 - Weighted-precision: 0.6683 - Weighted-recall: 0.7111 - Weighted-f1: 0.6768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.9578 | 1.0 | 2980 | 0.9647 | 0.7111 | 0.7111 | 0.7111 | 0.7111 | 0.3228 | 0.2866 | 0.2824 | 0.6683 | 0.7111 | 0.6768 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Laurie/sentiment-classify
Laurie
2023-01-30T14:56:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T13:48:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: sentiment-classify results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-classify This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2395 - Accuracy: 0.9303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2317 | 1.0 | 1563 | 0.1850 | 0.928 | | 0.1448 | 2.0 | 3126 | 0.2395 | 0.9303 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jkcarney/source4_v1.0
jkcarney
2023-01-30T14:39:15Z
33
10
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "safetensors", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-21T21:18:46Z
--- language: - en thumbnail: "https://huggingface.co/jkcarney/source4_v1.0/blob/main/images/woman1.png" license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - safetensors - diffusers inference: true --- ![samples1](./images/source4-women1.jpg) [*CKPT DOWNLOAD LINK*](https://huggingface.co/jkcarney/source4_v1.0/blob/main/source4_v1.0.ckpt) [*SAFETENSORS DOWNLOAD LINK*](https://huggingface.co/jkcarney/source4_v1.0/blob/main/source4_v1.0.safetensors) # Introduction Source4 is a Stable Diffusion 1.5/Dreambooth model trained on portraits with dramatic, multicolored lighting. These portraits are heavily inspired by modern, multicolored theatrical lighting (hence the name Source4). This model was fine tuned without prior preservation loss for 8000 steps on over 90 high quality 512x512 images. In the prompt, use activation token `source4 style` ![samples2](./images/fantasy_examples2..png) # Recommendations I recommend experimenting with different colors in your prompt. For example, adding `teal tones` or `red tones` to your prompt bring those respective colors out. Also try a smaller weight on the `source4 style` prompt (ie, `(source4 style:0.8)`), for a slightly less pronounced but more realistic effect. `Euler a` and `DPM++ 2S a Karras` for 25-30 steps have typically given me the highest quality images. Euler a typically gives me more "dreamy" portraits while DPM++ 2S a Karras gives me more realistic portraits. If the effect is too pronounced or faces are totally blurred out, I recommend decreasing the weight of the activation token. An alternative is to specify `detailed face` in the prompt to ensure a face is actually drawn. # Additional Samples ![samplese](./images/source4-men1.jpg) ![samples3](./images/source4-women2.jpg) ![fantasy1](./images/fantasy_examples1.png) ![samples4](./images/woman1.png) ![samples5](./images/woman2.png) ![samples6](./images/woman3.png) Welcome to the technicolored world.
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128
gokuls
2023-01-30T14:32:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:51:57Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.5949959316517494 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.2689 - Accuracy: 0.5950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6825 | 1.0 | 3068 | 1.4581 | 0.5256 | | 1.4941 | 2.0 | 6136 | 1.3516 | 0.5680 | | 1.4199 | 3.0 | 9204 | 1.3259 | 0.5712 | | 1.3747 | 4.0 | 12272 | 1.3024 | 0.5856 | | 1.34 | 5.0 | 15340 | 1.2875 | 0.5931 | | 1.3087 | 6.0 | 18408 | 1.2730 | 0.5928 | | 1.2769 | 7.0 | 21476 | 1.2845 | 0.5916 | | 1.246 | 8.0 | 24544 | 1.2750 | 0.5965 | | 1.2166 | 9.0 | 27612 | 1.2651 | 0.6020 | | 1.1883 | 10.0 | 30680 | 1.2773 | 0.6043 | | 1.1604 | 11.0 | 33748 | 1.2555 | 0.6011 | | 1.1329 | 12.0 | 36816 | 1.2792 | 0.5991 | | 1.1074 | 13.0 | 39884 | 1.2891 | 0.5986 | | 1.0812 | 14.0 | 42952 | 1.2889 | 0.5947 | | 1.0577 | 15.0 | 46020 | 1.2871 | 0.5970 | | 1.0338 | 16.0 | 49088 | 1.3296 | 0.6026 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_rte
gokuls
2023-01-30T14:18:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T14:14:47Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5451263537906137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_rte This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.3884 - Accuracy: 0.5451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4107 | 1.0 | 20 | 0.3951 | 0.5126 | | 0.3757 | 2.0 | 40 | 0.3914 | 0.4982 | | 0.347 | 3.0 | 60 | 0.3884 | 0.5451 | | 0.3072 | 4.0 | 80 | 0.4022 | 0.5126 | | 0.2762 | 5.0 | 100 | 0.4116 | 0.5271 | | 0.2457 | 6.0 | 120 | 0.4073 | 0.5271 | | 0.2215 | 7.0 | 140 | 0.4115 | 0.5487 | | 0.2059 | 8.0 | 160 | 0.4231 | 0.5343 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
DATAINAMICS/VEGAN
DATAINAMICS
2023-01-30T14:15:08Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-23T15:30:03Z
--- license: mit --- An Implementation of the Infamous combination of Variational Autoencoder with Generative Adversial Network The VEGAN model
keyblade95/ppo-SnowballTarget
keyblade95
2023-01-30T14:02:05Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-30T14:01:59Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: keyblade95/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ahmetayrnc/bert-large-cased
ahmetayrnc
2023-01-30T13:58:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:silicone", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T13:16:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - silicone metrics: - accuracy model-index: - name: bert-large-cased results: - task: name: Text Classification type: text-classification dataset: name: silicone type: silicone config: swda split: test args: swda metrics: - name: Accuracy type: accuracy value: 0.7280766396462786 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 0.8807 - Accuracy: 0.7281 - Micro-precision: 0.7281 - Micro-recall: 0.7281 - Micro-f1: 0.7281 - Macro-precision: 0.4591 - Macro-recall: 0.3825 - Macro-f1: 0.3855 - Weighted-precision: 0.6943 - Weighted-recall: 0.7281 - Weighted-f1: 0.6977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.8835 | 1.0 | 2980 | 0.8807 | 0.7281 | 0.7281 | 0.7281 | 0.7281 | 0.4591 | 0.3825 | 0.3855 | 0.6943 | 0.7281 | 0.6977 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
inkasaras/ppo-LunarLander-v2
inkasaras
2023-01-30T13:48:17Z
1
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T13:59:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.83 +/- 20.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ivensamdh/beitv2_fp16
ivensamdh
2023-01-30T13:35:44Z
21
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-30T13:34:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: beitv2_fp16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beitv2_fp16 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.576953286904372e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 202 - num_epochs: 1 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
lizaboiarchuk/war-tiny-bert
lizaboiarchuk
2023-01-30T13:35:39Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T13:34:12Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: war-tiny-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # war-tiny-bert This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3438 - F1: 0.6929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 21 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3216 | 1.0 | 2500 | 0.2645 | 0.5988 | | 0.2388 | 2.0 | 5000 | 0.2379 | 0.6496 | | 0.2067 | 3.0 | 7500 | 0.2375 | 0.6696 | | 0.1822 | 4.0 | 10000 | 0.2553 | 0.6740 | | 0.1661 | 5.0 | 12500 | 0.2770 | 0.6725 | | 0.1509 | 6.0 | 15000 | 0.2853 | 0.6965 | | 0.1423 | 7.0 | 17500 | 0.3187 | 0.6765 | | 0.1322 | 8.0 | 20000 | 0.3277 | 0.6958 | | 0.1256 | 9.0 | 22500 | 0.3411 | 0.6909 | | 0.1224 | 10.0 | 25000 | 0.3438 | 0.6929 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ivensamdh/beitv2
ivensamdh
2023-01-30T13:31:56Z
128
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-29T15:03:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: beitv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beitv2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.576953286904372e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 202 - num_epochs: 1 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
duyngocadn/videomae-base-finetuned-ucf101-subset
duyngocadn
2023-01-30T13:31:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-01-30T12:19:10Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3194 - Accuracy: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8741 | 0.25 | 75 | 1.5246 | 0.5769 | | 0.958 | 1.25 | 150 | 0.4663 | 0.8654 | | 0.2844 | 2.25 | 225 | 0.1899 | 0.9615 | | 0.1966 | 3.25 | 300 | 0.1445 | 0.9615 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_pretrain_wnli
gokuls
2023-01-30T13:22:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T13:20:44Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_pretrain_wnli This model is a fine-tuned version of [gokuls/mobilebert_add_pre-training-complete](https://huggingface.co/gokuls/mobilebert_add_pre-training-complete) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0 | 1.0 | 5 | nan | 0.5634 | | 0.0 | 2.0 | 10 | nan | 0.5634 | | 0.0 | 3.0 | 15 | nan | 0.5634 | | 0.0 | 4.0 | 20 | nan | 0.5634 | | 0.0 | 5.0 | 25 | nan | 0.5634 | | 0.0 | 6.0 | 30 | nan | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Joqsan/custom-fnet-finetuned-cola
Joqsan
2023-01-30T12:51:11Z
5
0
transformers
[ "transformers", "pytorch", "my_fnet", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T11:36:16Z
--- tags: - generated_from_trainer model-index: - name: custom-fnet-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # custom-fnet-finetuned-cola This model is a fine-tuned version of [Joqsan/custom-fnet](https://huggingface.co/Joqsan/custom-fnet) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-4-end
Ramos-Ramos
2023-01-30T12:49:54Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T12:49:26Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-4-end This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-4-end') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-end') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-end') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-4-end) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
maneprajakta/m2m100_418M-train
maneprajakta
2023-01-30T12:27:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "dataset:dataset", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-30T10:26:44Z
--- license: mit tags: - generated_from_trainer datasets: - dataset model-index: - name: m2m100_418M-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-train This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 179 | 3.7898 | 1.2975 | 20.8384 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.7.1 - Tokenizers 0.12.1
Ramos-Ramos/xlm-roberta-base-en-tl-4-10000
Ramos-Ramos
2023-01-30T12:26:40Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T12:26:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-4-10000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-4-10000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-10000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-10000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-4-10000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lizaboiarchuk/rubert-tiny2-war-posts-finetuned
lizaboiarchuk
2023-01-30T12:18:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-30T12:02:14Z
--- license: mit tags: - generated_from_trainer model-index: - name: rubert-tiny2-war-posts-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2-war-posts-finetuned This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3638 | 1.0 | 1011 | 3.9762 | | 4.1361 | 2.0 | 2022 | 3.8631 | | 4.036 | 3.0 | 3033 | 3.7991 | | 3.9467 | 4.0 | 4044 | 3.7706 | | 3.8936 | 5.0 | 5055 | 3.7258 | | 3.8732 | 6.0 | 6066 | 3.7155 | | 3.8431 | 7.0 | 7077 | 3.6837 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
NinaK/ddpm-celebahq-finetuned-faces-2epochs
NinaK
2023-01-30T12:08:15Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-30T12:07:25Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('NinaK/ddpm-celebahq-finetuned-faces-2epochs') image = pipeline().images[0] image ```
Ramos-Ramos/xlm-roberta-base-en-tl-4-7000
Ramos-Ramos
2023-01-30T11:59:29Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T11:59:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-4-7000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-4-7000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-7000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-7000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-4-7000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
salemmarah4/t5-base-finetuned-xsum
salemmarah4
2023-01-30T11:54:46Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-29T20:04:45Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: salemmarah4/t5-base-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # salemmarah4/t5-base-finetuned-xsum This model is a fine-tuned version of [ThomasSimonini/t5-end2end-question-generation](https://huggingface.co/ThomasSimonini/t5-end2end-question-generation) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4229 - Validation Loss: 0.2018 - Train Rouge1: 31.6228 - Train Rouge2: 26.9829 - Train Rougel: 30.4108 - Train Rougelsum: 30.6027 - Train Gen Len: 18.9996 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.4229 | 0.2018 | 31.6228 | 26.9829 | 30.4108 | 30.6027 | 18.9996 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ryusangwon/bart-samsum
ryusangwon
2023-01-30T11:53:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-30T09:02:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum model-index: - name: bart-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-samsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.5877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8337 | 0.54 | 500 | 1.5877 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-4-6000
Ramos-Ramos
2023-01-30T11:50:19Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T11:49:57Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-4-6000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-4-6000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-6000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-6000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-4-6000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ASHub/Thinking
ASHub
2023-01-30T11:45:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-30T11:45:37Z
--- license: creativeml-openrail-m ---
Nounquiz/Quiz
Nounquiz
2023-01-30T11:37:50Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-01-30T11:37:50Z
--- license: bigscience-bloom-rail-1.0 ---
Ramos-Ramos/xlm-roberta-base-en-tl-4-4000
Ramos-Ramos
2023-01-30T11:32:14Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T11:31:49Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-4-4000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-4-4000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-4000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-4000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-4-4000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dayyannxb/roberta-finetuned-subjqa-movies_2
dayyannxb
2023-01-30T11:32:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-30T11:11:14Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-movies_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-movies_2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-4-1000
Ramos-Ramos
2023-01-30T11:05:14Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T11:04:50Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-4-1000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-4-1000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-1000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-4-1000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-4-1000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
amrisaurus/pretrained-m-bert
amrisaurus
2023-01-30T11:02:36Z
1
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-01-26T14:13:15Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-m-bert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-m-bert This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.2757 - Validation Loss: 10.9468 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2757 | 10.9468 | 0 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_stsb
gokuls
2023-01-30T10:57:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T10:46:20Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.1859084530305037 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_stsb This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.1918 - Pearson: 0.1864 - Spearmanr: 0.1859 - Combined Score: 0.1862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 1.7465 | 1.0 | 45 | 1.2026 | 0.0588 | 0.0666 | 0.0627 | | 1.079 | 2.0 | 90 | 1.4599 | 0.0595 | 0.0691 | 0.0643 | | 1.0784 | 3.0 | 135 | 1.2063 | 0.0611 | 0.0707 | 0.0659 | | 0.9943 | 4.0 | 180 | 1.3534 | 0.0730 | 0.0730 | 0.0730 | | 0.9523 | 5.0 | 225 | 1.3943 | 0.1080 | 0.1010 | 0.1045 | | 0.8379 | 6.0 | 270 | 1.1918 | 0.1864 | 0.1859 | 0.1862 | | 0.7217 | 7.0 | 315 | 1.2542 | 0.2080 | 0.2144 | 0.2112 | | 0.6304 | 8.0 | 360 | 1.2209 | 0.1920 | 0.1979 | 0.1950 | | 0.5573 | 9.0 | 405 | 1.2925 | 0.1881 | 0.1814 | 0.1847 | | 0.5048 | 10.0 | 450 | 1.3943 | 0.1731 | 0.1877 | 0.1804 | | 0.4754 | 11.0 | 495 | 1.3058 | 0.1845 | 0.1817 | 0.1831 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
nileshpp/nilesh-aish-inpaint-v2
nileshpp
2023-01-30T10:52:06Z
6
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-30T06:38:40Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: nilesh --- ### nilesh-aish-inpaint-v2 Dreambooth model trained by nileshpp with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: aishwarya (use that on your prompt) nilesh (use that on your prompt)
Ramos-Ramos/xlm-roberta-base-en-tl-3-12000
Ramos-Ramos
2023-01-30T10:51:16Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T10:50:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-12000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-12000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-12000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-12000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-12000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_sst2
gokuls
2023-01-30T10:45:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T09:55:11Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7821100917431193 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_sst2 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8241 - Accuracy: 0.7821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0702 | 1.0 | 527 | 0.8404 | 0.7741 | | 0.5148 | 2.0 | 1054 | 0.8241 | 0.7821 | | 0.3924 | 3.0 | 1581 | 1.0815 | 0.7856 | | 0.3413 | 4.0 | 2108 | 0.9159 | 0.7810 | | 0.3068 | 5.0 | 2635 | 0.8836 | 0.7947 | | 0.2837 | 6.0 | 3162 | 0.9832 | 0.7867 | | 0.2648 | 7.0 | 3689 | 0.9633 | 0.7982 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-3-11000
Ramos-Ramos
2023-01-30T10:42:20Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T10:41:55Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-11000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-11000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-11000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-11000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-11000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
SinusCosinus/q-Taxi-v3
SinusCosinus
2023-01-30T10:34:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T09:40:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SinusCosinus/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Gourieff/p-AI-nter_v0.3
Gourieff
2023-01-30T10:21:22Z
10
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-12T14:58:21Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ## p-AI-nter -- v0.3 __p-AI-nter v0.3__ = [p-AI-nter v0.2](https://huggingface.co/Gourieff/p-AI-nter_v0.2) merged with [protogen_v2.2](https://huggingface.co/Gourieff/protogen_v2.2_reconverted) by [darkstorm2150](https://huggingface.co/darkstorm2150) in the ratio of 85% (p-AI-nter v0.2) to 15% (protogen_v2.2). Core model of p-AI-nter v0.2 is SD-1.5 trained on artworks of different painters (Rob Hefferan, Anna Marinova, Omar Ortiz, Thomas Saliot, Serge Marshennikov). Use the token 'oil painting' in your prompts for better effect. ## Sample pictures: ![0](https://huggingface.co/Gourieff/p-AI-nter_v0.3/resolve/main/sample_images/01.jpg) ## Prompt and settings for samples ``` (oil painting)+ of a Girl with black wavy hair bathing in a lake, (intricate)+ drawing, Highly Detailed, Sharp focus, green and blue and orange color scheme, (rocks)+, dynamic angle, moss, ultra sharp photorealistic, 8K, stunning, hdr, subsurface scattering, dramatic light, (bokeh)+, (deep eyes)+, (sunset)++, (model pose)+, (ideal hands)++, (ray tracing)++, (cleavage)++, (ideal breast)++ ``` __negative:__ ``` Deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, extra limb, ugly, poorly drawn hands, missing limb, blurry, disconnected limbs, malformed hands, blur, out of focus, long neck, long body, mutated hands and fingers, fat, overweight, multiple heads, group of people, three or more legs, cross-eye, nude, naked, naked, (extra fingers)+, (fused fingers)+ ``` * Steps: 50 * Scale: 9 * Sampler: Euler_A - - -
Gourieff/protogen_v2.2_reconverted
Gourieff
2023-01-30T10:16:48Z
8
4
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-03T07:38:20Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ## Protogen v2.2 --reconverted `Works fine without errors with NMKD (tested with 1.7+) and other GUI/webUI` You can download CKPT model [here](https://huggingface.co/Gourieff/protogen_v2.2_reconverted/resolve/main/protogen_v2.2.ckpt) __This is a mix by [darkstorm2150](https://huggingface.co/darkstorm2150) of such models as:__ * f22_v1.ckpt * elldrethSLucidMix_V10.cpkt * hassanBlendAllVersio_hassanBlend14.ckpt * seek_art_mega_v1.ckpt * modelshoot-1.0.ckpt __To center the image on intended subject use the token:__ ``` modelshoot style ``` __Camera Prompt Commands by MC Mic:__ ``` (from_above:1.3), (from_below:1.3),(from_side:1.3),(from_behind:1.3), ``` __Movement Control:__ ``` (hand_on_hip:1.2), (sitting:1.2), ``` __Sample result:__ ![0](https://huggingface.co/Gourieff/protogen_v2.2_reconverted/resolve/main/sample_images/proto.jpg)
Ramos-Ramos/xlm-roberta-base-en-tl-3-8000
Ramos-Ramos
2023-01-30T10:15:10Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T10:14:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-8000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-8000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-8000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-8000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-8000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dungtd2403/q-Taxi-v3
dungtd2403
2023-01-30T09:54:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T09:53:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dungtd2403/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
johnowhitaker/Electronic_test
johnowhitaker
2023-01-30T09:54:01Z
10
0
diffusers
[ "diffusers", "pytorch", "unconditional-audio-generation", "diffusion-models-class", "license:mit", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2023-01-30T09:53:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-audio-generation - diffusion-models-class --- # Model Card for Unit 4 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional audio generation of music in the genre Electronic ## Usage ```python from IPython.display import Audio from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("johnowhitaker/Electronic_test") output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_rte
gokuls
2023-01-30T09:54:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T09:49:36Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_rte This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.3910 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4088 | 1.0 | 20 | 0.3931 | 0.5271 | | 0.4081 | 2.0 | 40 | 0.3922 | 0.5271 | | 0.4076 | 3.0 | 60 | 0.3910 | 0.5271 | | 0.4068 | 4.0 | 80 | 0.3941 | 0.5343 | | 0.4069 | 5.0 | 100 | 0.3924 | 0.5343 | | 0.4022 | 6.0 | 120 | 0.3975 | 0.5343 | | 0.3801 | 7.0 | 140 | 0.4060 | 0.5415 | | 0.3447 | 8.0 | 160 | 0.5080 | 0.4982 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
dungtd2403/q-FrozenLake-v1-4x4-noSlippery
dungtd2403
2023-01-30T09:50:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T10:42:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dungtd2403/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_qqp
gokuls
2023-01-30T09:48:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T23:43:03Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8081127875340094 - name: F1 type: f1 value: 0.7357269382749694 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_qqp This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.6021 - Accuracy: 0.8081 - F1: 0.7357 - Combined Score: 0.7719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.9285 | 1.0 | 2843 | 0.8489 | 0.7517 | 0.6660 | 0.7089 | | 0.7919 | 2.0 | 5686 | 0.7104 | 0.7735 | 0.6483 | 0.7109 | | 0.6916 | 3.0 | 8529 | 0.6615 | 0.7900 | 0.6994 | 0.7447 | | 0.6382 | 4.0 | 11372 | 0.6606 | 0.7899 | 0.6842 | 0.7370 | | 0.6003 | 5.0 | 14215 | 0.6277 | 0.7988 | 0.7181 | 0.7585 | | 0.5696 | 6.0 | 17058 | 0.6174 | 0.7980 | 0.7058 | 0.7519 | | 0.5434 | 7.0 | 19901 | 0.6062 | 0.8036 | 0.7266 | 0.7651 | | 0.5186 | 8.0 | 22744 | 0.6182 | 0.7995 | 0.7232 | 0.7614 | | 0.4968 | 9.0 | 25587 | 0.6087 | 0.8052 | 0.7257 | 0.7654 | | 0.4758 | 10.0 | 28430 | 0.6035 | 0.8073 | 0.7359 | 0.7716 | | 0.456 | 11.0 | 31273 | 0.6021 | 0.8081 | 0.7357 | 0.7719 | | 0.4361 | 12.0 | 34116 | 0.6137 | 0.8070 | 0.7366 | 0.7718 | | 0.4186 | 13.0 | 36959 | 0.6282 | 0.8076 | 0.7416 | 0.7746 | | 0.4009 | 14.0 | 39802 | 0.6183 | 0.8093 | 0.7445 | 0.7769 | | 0.3846 | 15.0 | 42645 | 0.6196 | 0.8057 | 0.7483 | 0.7770 | | 0.3699 | 16.0 | 45488 | 0.6381 | 0.8122 | 0.7426 | 0.7774 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-3-5000
Ramos-Ramos
2023-01-30T09:47:59Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T09:47:35Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-5000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-5000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-5000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-5000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-5000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
whispAI/DirectQuote-ChunkText-DistilBERT
whispAI
2023-01-30T09:41:41Z
10
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-30T09:02:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: whispQuote-ChunkDQ-DistilBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whispQuote-ChunkDQ-DistilBERT This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2582 - Precision: 0.5816 - Recall: 0.8129 - F1: 0.6780 - Accuracy: 0.9126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 164 | 0.3432 | 0.4477 | 0.5795 | 0.5052 | 0.8796 | | No log | 2.0 | 328 | 0.3053 | 0.4308 | 0.6985 | 0.5329 | 0.8952 | | No log | 3.0 | 492 | 0.2602 | 0.5716 | 0.7775 | 0.6588 | 0.9097 | | 0.3826 | 4.0 | 656 | 0.2607 | 0.5664 | 0.8070 | 0.6656 | 0.9114 | | 0.3826 | 5.0 | 820 | 0.2582 | 0.5816 | 0.8129 | 0.6780 | 0.9126 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.2+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2
eldraco/ppo-LunarLander-v2
eldraco
2023-01-30T09:40:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T14:28:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 294.34 +/- 21.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ramos-Ramos/xlm-roberta-base-en-tl-3-4000
Ramos-Ramos
2023-01-30T09:38:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T09:38:29Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-4000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-4000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-4000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-4000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-4000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
G-e-o-r-g-e/Pixelcopter-PLE-v0
G-e-o-r-g-e
2023-01-30T09:22:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T09:22:44Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.30 +/- 21.11 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Ramos-Ramos/xlm-roberta-base-en-tl-3-2000
Ramos-Ramos
2023-01-30T09:20:49Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T09:20:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-2000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-2000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-2000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-2000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-2000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-3-1000
Ramos-Ramos
2023-01-30T09:11:50Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T09:11:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-3-1000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-3-1000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-1000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-3-1000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-3-1000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
OrangeMix/Other
OrangeMix
2023-01-30T09:07:42Z
0
0
null
[ "region:us" ]
null
2023-01-26T14:38:04Z
This repo has moved to https://huggingface.co/WarriorMama777/Other. Please use it instead.
OrangeMix/ElyOrangeMix
OrangeMix
2023-01-30T09:07:39Z
0
1
null
[ "region:us" ]
null
2023-01-26T14:38:03Z
This repo has moved to https://huggingface.co/WarriorMama777/ElyOrangeMix. Please use it instead.
OrangeMix/AbyssOrangeMix
OrangeMix
2023-01-30T09:07:28Z
0
0
null
[ "region:us" ]
null
2023-01-26T14:37:56Z
This repo has moved to https://huggingface.co/WarriorMama777/AbyssOrangeMix. Please use it instead.
HuyenNguyen/Vigec-V3
HuyenNguyen
2023-01-30T08:59:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-30T06:52:26Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: Vigec-V3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vigec-V3 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2522 - Bleu: 84.4788 - Gen Len: 9.847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.8764 | 0.0 | 500 | 0.6120 | 68.0114 | 8.4626 | | 0.6538 | 0.0 | 1000 | 0.4780 | 76.7403 | 10.015 | | 0.6234 | 0.01 | 1500 | 0.4207 | 78.1726 | 9.8394 | | 0.4513 | 0.01 | 2000 | 0.3845 | 79.1939 | 9.8914 | | 0.4153 | 0.01 | 2500 | 0.3580 | 80.171 | 9.7298 | | 0.5129 | 0.01 | 3000 | 0.3381 | 80.8668 | 9.8636 | | 0.5073 | 0.01 | 3500 | 0.3246 | 81.5543 | 9.81 | | 0.4623 | 0.01 | 4000 | 0.3106 | 82.1255 | 9.8684 | | 0.4444 | 0.02 | 4500 | 0.2973 | 82.5565 | 9.848 | | 0.4322 | 0.02 | 5000 | 0.2892 | 82.9623 | 9.872 | | 0.5029 | 0.02 | 5500 | 0.2803 | 83.3084 | 9.8648 | | 0.3686 | 0.02 | 6000 | 0.2765 | 83.4828 | 9.8602 | | 0.4123 | 0.02 | 6500 | 0.2693 | 83.7491 | 9.8432 | | 0.3593 | 0.03 | 7000 | 0.2674 | 83.8149 | 9.811 | | 0.3684 | 0.03 | 7500 | 0.2630 | 84.1745 | 9.8668 | | 0.3683 | 0.03 | 8000 | 0.2590 | 84.2294 | 9.8412 | | 0.3581 | 0.03 | 8500 | 0.2568 | 84.3428 | 9.8582 | | 0.3769 | 0.03 | 9000 | 0.2527 | 84.4367 | 9.8598 | | 0.4479 | 0.03 | 9500 | 0.2522 | 84.4749 | 9.847 | | 0.2856 | 0.04 | 10000 | 0.2522 | 84.4788 | 9.847 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
WarriorMama777/AbyssOrangeMix
WarriorMama777
2023-01-30T08:59:08Z
45
20
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-30T08:35:31Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- ## AbyssOrangeMix See https://huggingface.co/WarriorMama777/OrangeMixs for more information
WarriorMama777/AbyssOrangeMix2
WarriorMama777
2023-01-30T08:59:01Z
119
34
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-30T08:35:39Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- ## AbyssOrangeMix2 See https://huggingface.co/WarriorMama777/OrangeMixs for more information
WarriorMama777/EerieOrangeMix
WarriorMama777
2023-01-30T08:58:59Z
5
7
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-30T08:35:55Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- ## EerieOrangeMix See https://huggingface.co/WarriorMama777/OrangeMixs for more information
Ramos-Ramos/xlm-roberta-base-en-tl-2-12000
Ramos-Ramos
2023-01-30T08:56:49Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T08:56:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-12000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-12000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-12000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-12000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-12000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-2-11000
Ramos-Ramos
2023-01-30T08:47:45Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T08:47:20Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-11000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-11000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-11000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-11000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-11000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-2-10000
Ramos-Ramos
2023-01-30T08:38:40Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T08:38:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-10000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-10000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-10000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-10000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-10000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
KETI-AIR/veld-base
KETI-AIR
2023-01-30T08:31:06Z
21
0
transformers
[ "transformers", "pytorch", "veld", "feature-extraction", "vision, language", "pretrained model", "image-to-text", "custom_code", "en", "ko", "multilingual", "license:apache-2.0", "region:us" ]
image-to-text
2022-11-02T13:37:32Z
--- language: - en - ko - multilingual license: apache-2.0 tags: - vision, language - pretrained model - image-to-text eos_token: </s> --- # veld base Pretrained Vision Encoder Text Decoder Model in Korean and English. See [Github](https://github.com/AIRC-KETI/veld) for more details. ## How to use ```python from transformers import AutoProcessor, AutoModel processor = AutoProcessor.from_pretrained("KETI-AIR/veld-base", trust_remote_code=True) model = AutoModel.from_pretrained("KETI-AIR/veld-base", trust_remote_code=True) ``` You can use AutoTokenizer and AutoFeatureExtractor instead AutoProcessor. You don't need to pass `trust_remote_code=True` for AutoTokenizer and AutoFeatureExtractor ```python from transformers import AutoFeatureExtractor, AutoTokenizer, AutoModel feature_extractor = AutoFeatureExtractor.from_pretrained("KETI-AIR/veld-base") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/veld-base") model = AutoModel.from_pretrained("KETI-AIR/veld-base", trust_remote_code=True) ```
imjunaidafzal/stable-diffusion-d
imjunaidafzal
2023-01-30T08:26:53Z
11
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-10T08:40:03Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Fine tune the ### concept name: stable-diffusion-D ### Training steps: 1500 ### Text encoder steps: 350% of Training steps Sample pictures of this concept:
Ramos-Ramos/xlm-roberta-base-en-tl-2-6000
Ramos-Ramos
2023-01-30T08:02:40Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T08:02:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-6000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-6000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-6000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-6000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-6000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-2-5000
Ramos-Ramos
2023-01-30T07:53:44Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T07:53:20Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-5000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-5000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-5000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-5000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-5000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
leadawon/jeju-ko-nmt-v8
leadawon
2023-01-30T07:46:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T04:34:31Z
# ALERT!!! [leadawon/jeju-ko-nmt-v6](https://huggingface.co/leadawon/jeju-ko-nmt-v6) is better than leadawon/jeju-ko-nmt-v8 6버전 성능이 더 좋습니다!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # tag --- tags: - generated_from_trainer model-index: - name: jeju-ko-nmt-v8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jeju-ko-nmt-v8 This model is a fine-tuned version of [leadawon/jeju-ko-nmt-v7](https://huggingface.co/leadawon/jeju-ko-nmt-v7) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2684 | 0.04 | 500 | 0.2568 | | 0.2468 | 0.08 | 1000 | 0.2547 | | 0.2167 | 0.12 | 1500 | 0.2540 | | 0.1966 | 0.16 | 2000 | 0.2535 | | 0.1846 | 0.2 | 2500 | 0.2533 | | 0.1727 | 0.24 | 3000 | 0.2535 | | 0.1746 | 0.28 | 3500 | 0.2522 | | 0.1726 | 0.32 | 4000 | 0.2521 | | 0.1722 | 0.36 | 4500 | 0.2519 | | 0.1731 | 0.4 | 5000 | 0.2515 | | 0.1701 | 0.44 | 5500 | 0.2518 | | 0.168 | 0.48 | 6000 | 0.2515 | | 0.1706 | 0.52 | 6500 | 0.2509 | | 0.1659 | 0.56 | 7000 | 0.2514 | | 0.1702 | 0.6 | 7500 | 0.2509 | | 0.1667 | 0.64 | 8000 | 0.2510 | | 0.1661 | 0.68 | 8500 | 0.2508 | | 0.1647 | 0.72 | 9000 | 0.2510 | | 0.1632 | 0.76 | 9500 | 0.2510 | | 0.1655 | 0.8 | 10000 | 0.2506 | | 0.1645 | 0.84 | 10500 | 0.2508 | | 0.1617 | 0.88 | 11000 | 0.2508 | | 0.1627 | 0.91 | 11500 | 0.2511 | | 0.2764 | 0.95 | 12000 | 0.2478 | | 0.2755 | 0.99 | 12500 | 0.2462 | | 0.2275 | 1.03 | 13000 | 0.2464 | | 0.2201 | 1.07 | 13500 | 0.2463 | | 0.2207 | 1.11 | 14000 | 0.2463 | | 0.2202 | 1.15 | 14500 | 0.2462 | | 0.2194 | 1.19 | 15000 | 0.2460 | | 0.2177 | 1.23 | 15500 | 0.2461 | | 0.2187 | 1.27 | 16000 | 0.2460 | | 0.2184 | 1.31 | 16500 | 0.2459 | | 0.2182 | 1.35 | 17000 | 0.2457 | | 0.219 | 1.39 | 17500 | 0.2458 | | 0.2206 | 1.43 | 18000 | 0.2455 | | 0.2211 | 1.47 | 18500 | 0.2455 | | 0.2164 | 1.51 | 19000 | 0.2455 | | 0.2202 | 1.55 | 19500 | 0.2454 | | 0.2208 | 1.59 | 20000 | 0.2452 | | 0.2208 | 1.63 | 20500 | 0.2450 | | 0.2204 | 1.67 | 21000 | 0.2450 | | 0.2193 | 1.71 | 21500 | 0.2450 | | 0.221 | 1.75 | 22000 | 0.2451 | | 0.2168 | 1.79 | 22500 | 0.2450 | | 0.2169 | 1.83 | 23000 | 0.2449 | | 0.218 | 1.87 | 23500 | 0.2449 | | 0.2196 | 1.91 | 24000 | 0.2449 | | 0.2218 | 1.95 | 24500 | 0.2448 | | 0.2199 | 1.99 | 25000 | 0.2448 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
Ventuss/ventuss-0-1
Ventuss
2023-01-30T07:41:09Z
5
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-30T07:27:10Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Ventuss-0.1 Dreambooth model trained by Ventuss with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept:
Ramos-Ramos/xlm-roberta-base-en-tl-2-3000
Ramos-Ramos
2023-01-30T07:35:48Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T07:35:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-3000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-3000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-3000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-3000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-3000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-2-2000
Ramos-Ramos
2023-01-30T07:26:46Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T07:26:22Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-2000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-2000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-2000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-2000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-2000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Skanderbeg/dqn-SpaceInvadersNoFrameskip-v4
Skanderbeg
2023-01-30T07:25:11Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T07:24:36Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 598.00 +/- 103.57 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Skanderbeg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Skanderbeg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Skanderbeg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
lnros/a2c-AntBulletEnv-v0
lnros
2023-01-30T07:25:09Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T06:54:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1753.30 +/- 354.24 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ramos-Ramos/xlm-roberta-base-en-tl-2-1000
Ramos-Ramos
2023-01-30T07:17:27Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T07:17:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-2-1000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-2-1000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-1000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-2-1000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-2-1000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-1-end
Ramos-Ramos
2023-01-30T07:08:27Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T01:50:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-end This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-end') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-end') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-end') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-end) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-1-12000
Ramos-Ramos
2023-01-30T07:03:25Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T07:02:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-12000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-12000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-12000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-12000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-12000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dhmeltzer/q-FrozenLake-v1-4x4-noSlippery
dhmeltzer
2023-01-30T07:00:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T07:00:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dhmeltzer/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_wnli_256
gokuls
2023-01-30T06:55:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:54:34Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_wnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_wnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3453 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3472 | 1.0 | 5 | 0.3453 | 0.5634 | | 0.3469 | 2.0 | 10 | 0.3464 | 0.5634 | | 0.3467 | 3.0 | 15 | 0.3465 | 0.5634 | | 0.3465 | 4.0 | 20 | 0.3457 | 0.5634 | | 0.3466 | 5.0 | 25 | 0.3453 | 0.5634 | | 0.3466 | 6.0 | 30 | 0.3454 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
hisaoka/pegasus-pubmed_radiology-cardiothoracic-imagingcancer-0.9
hisaoka
2023-01-30T06:55:00Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-13T12:06:33Z
--- tags: - generated_from_trainer model-index: - name: pegasus-pubmed_radiology-cardiothoracic-imagingcancer-0.9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-pubmed_radiology-cardiothoracic-imagingcancer-0.9 This model is a fine-tuned version of [google/pegasus-pubmed](https://huggingface.co/google/pegasus-pubmed) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
jamesup/dqn-SpaceInvadersNoFrameSkip-v4
jamesup
2023-01-30T06:53:45Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T06:53:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 848.50 +/- 335.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jamesup -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jamesup -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jamesup ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_wnli_128
gokuls
2023-01-30T06:49:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:48:26Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_wnli_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_wnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3455 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.347 | 1.0 | 5 | 0.3455 | 0.5634 | | 0.3467 | 2.0 | 10 | 0.3458 | 0.5634 | | 0.3466 | 3.0 | 15 | 0.3459 | 0.5634 | | 0.3465 | 4.0 | 20 | 0.3457 | 0.5634 | | 0.3466 | 5.0 | 25 | 0.3455 | 0.5634 | | 0.3466 | 6.0 | 30 | 0.3455 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_sst2_256
gokuls
2023-01-30T06:49:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:19:28Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_sst2_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7591743119266054 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_sst2_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8734 - Accuracy: 0.7592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0863 | 1.0 | 527 | 0.8734 | 0.7592 | | 0.5116 | 2.0 | 1054 | 1.1742 | 0.7489 | | 0.3952 | 3.0 | 1581 | 0.9197 | 0.7787 | | 0.3401 | 4.0 | 2108 | 1.0557 | 0.7695 | | 0.3113 | 5.0 | 2635 | 0.9003 | 0.7924 | | 0.2862 | 6.0 | 3162 | 0.8923 | 0.8016 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-1-10000
Ramos-Ramos
2023-01-30T06:45:15Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T06:44:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-10000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-10000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-10000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-10000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-10000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_sst2_128
gokuls
2023-01-30T06:41:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:12:42Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_sst2_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7878440366972477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_sst2_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.7612 - Accuracy: 0.7878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1441 | 1.0 | 527 | 0.7612 | 0.7878 | | 0.502 | 2.0 | 1054 | 0.9518 | 0.7878 | | 0.3927 | 3.0 | 1581 | 0.7958 | 0.7936 | | 0.3336 | 4.0 | 2108 | 0.9575 | 0.7936 | | 0.3025 | 5.0 | 2635 | 1.0321 | 0.7844 | | 0.284 | 6.0 | 3162 | 0.9786 | 0.7844 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
HorniFolks/Unicorn
HorniFolks
2023-01-30T06:39:01Z
0
0
null
[ "conversational", "en", "license:wtfpl", "region:us" ]
text-generation
2023-01-30T06:35:49Z
--- license: wtfpl language: - en pipeline_tag: conversational ---
Ramos-Ramos/xlm-roberta-base-en-tl-1-9000
Ramos-Ramos
2023-01-30T06:36:14Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T06:35:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-9000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-9000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-9000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-9000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-9000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hisaoka/t5-large_radiology-ai-imagingcancer-0.9
hisaoka
2023-01-30T06:30:54Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-13T06:38:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-large_radiology-ai-imagingcancer-0.9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large_radiology-ai-imagingcancer-0.9 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Ramos-Ramos/xlm-roberta-base-en-tl-1-8000
Ramos-Ramos
2023-01-30T06:27:08Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T06:26:45Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-8000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-8000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-8000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-8000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-8000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_rte_256
gokuls
2023-01-30T06:18:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:16:10Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_rte_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_rte_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.3915 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4089 | 1.0 | 20 | 0.3932 | 0.5271 | | 0.4081 | 2.0 | 40 | 0.3915 | 0.5271 | | 0.4075 | 3.0 | 60 | 0.3918 | 0.5271 | | 0.4074 | 4.0 | 80 | 0.3925 | 0.5271 | | 0.4073 | 5.0 | 100 | 0.3924 | 0.5271 | | 0.4067 | 6.0 | 120 | 0.3918 | 0.5271 | | 0.4036 | 7.0 | 140 | 0.3962 | 0.5126 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_rte_128
gokuls
2023-01-30T06:11:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:08:09Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_rte_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_rte_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.3915 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4093 | 1.0 | 20 | 0.3917 | 0.5271 | | 0.4077 | 2.0 | 40 | 0.3922 | 0.5271 | | 0.4076 | 3.0 | 60 | 0.3916 | 0.5271 | | 0.4075 | 4.0 | 80 | 0.3921 | 0.5271 | | 0.4075 | 5.0 | 100 | 0.3925 | 0.5271 | | 0.4073 | 6.0 | 120 | 0.3915 | 0.5271 | | 0.4066 | 7.0 | 140 | 0.3916 | 0.5271 | | 0.4043 | 8.0 | 160 | 0.3937 | 0.5271 | | 0.3902 | 9.0 | 180 | 0.4440 | 0.5054 | | 0.3545 | 10.0 | 200 | 0.4575 | 0.4801 | | 0.3116 | 11.0 | 220 | 0.4770 | 0.4440 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_mnli_192
gokuls
2023-01-30T06:09:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T03:08:53Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_mnli_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.57740032546786 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_mnli_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5326 - Accuracy: 0.5774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5885 | 1.0 | 1534 | 0.5621 | 0.5096 | | 0.5572 | 2.0 | 3068 | 0.5481 | 0.5303 | | 0.5456 | 3.0 | 4602 | 0.5473 | 0.5347 | | 0.5373 | 4.0 | 6136 | 0.5404 | 0.5533 | | 0.5299 | 5.0 | 7670 | 0.5371 | 0.5629 | | 0.5235 | 6.0 | 9204 | 0.5361 | 0.5671 | | 0.5172 | 7.0 | 10738 | 0.5360 | 0.5645 | | 0.5114 | 8.0 | 12272 | 0.5391 | 0.5664 | | 0.5058 | 9.0 | 13806 | 0.5332 | 0.5839 | | 0.5004 | 10.0 | 15340 | 0.5294 | 0.5867 | | 0.4951 | 11.0 | 16874 | 0.5284 | 0.5905 | | 0.4901 | 12.0 | 18408 | 0.5309 | 0.5892 | | 0.4853 | 13.0 | 19942 | 0.5334 | 0.5967 | | 0.4804 | 14.0 | 21476 | 0.5344 | 0.5954 | | 0.4754 | 15.0 | 23010 | 0.5297 | 0.5987 | | 0.4707 | 16.0 | 24544 | 0.5348 | 0.5989 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Anurag0961/try-out-model-amc2
Anurag0961
2023-01-30T06:08:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:02:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: try-out-model-amc2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # try-out-model-amc2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5462 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8475 | 1.0 | 208 | 2.1236 | 0.4655 | | 1.6756 | 2.0 | 416 | 1.2293 | 0.7030 | | 0.9133 | 3.0 | 624 | 0.8073 | 0.8191 | | 0.5178 | 4.0 | 832 | 0.6504 | 0.8341 | | 0.2981 | 5.0 | 1040 | 0.5643 | 0.8597 | | 0.1673 | 6.0 | 1248 | 0.5340 | 0.8670 | | 0.0996 | 7.0 | 1456 | 0.5482 | 0.8574 | | 0.0626 | 8.0 | 1664 | 0.5360 | 0.8587 | | 0.0433 | 9.0 | 1872 | 0.5536 | 0.8518 | | 0.036 | 10.0 | 2080 | 0.5462 | 0.8557 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
Ramos-Ramos/xlm-roberta-base-en-tl-1-6000
Ramos-Ramos
2023-01-30T06:08:39Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T06:08:12Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-6000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-6000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-6000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-6000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-6000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ramos-Ramos/xlm-roberta-base-en-tl-1-5000
Ramos-Ramos
2023-01-30T05:59:24Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T05:58:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-5000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-5000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-5000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-5000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-5000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aammari/setfit-zero-shot-classification-pbsp-p4-achiev
aammari
2023-01-30T05:53:15Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T05:52:41Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 410 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 410, "warmup_steps": 41, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hisaoka/bart-large-cnn_radiology-ai-imagingcancer-0.9
hisaoka
2023-01-30T05:50:51Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-13T04:16:49Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn_radiology-ai-imagingcancer-0.9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn_radiology-ai-imagingcancer-0.9 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
hisaoka/pegasus-pubmed_radiology-ai-imagingcancer-0.9
hisaoka
2023-01-30T05:33:41Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-13T01:02:14Z
--- tags: - generated_from_trainer model-index: - name: pegasus-pubmed_radiology-ai-imagingcancer-0.9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-pubmed_radiology-ai-imagingcancer-0.9 This model is a fine-tuned version of [google/pegasus-pubmed](https://huggingface.co/google/pegasus-pubmed) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Ramos-Ramos/xlm-roberta-base-en-tl-1-2000
Ramos-Ramos
2023-01-30T05:31:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:allenai/nllb", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T05:31:29Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - allenai/nllb --- # Ramos-Ramos/xlm-roberta-base-en-tl-1-2000 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ramos-Ramos/xlm-roberta-base-en-tl-1-2000') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-2000') model = AutoModel.from_pretrained('Ramos-Ramos/xlm-roberta-base-en-tl-1-2000') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ramos-Ramos/xlm-roberta-base-en-tl-1-2000) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 12406 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_mnli
gokuls
2023-01-30T05:25:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T02:32:39Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.6524613506916193 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4989 - Accuracy: 0.6525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.575 | 1.0 | 1534 | 0.5428 | 0.5554 | | 0.5345 | 2.0 | 3068 | 0.5205 | 0.5987 | | 0.511 | 3.0 | 4602 | 0.5105 | 0.6222 | | 0.4917 | 4.0 | 6136 | 0.5021 | 0.6360 | | 0.4735 | 5.0 | 7670 | 0.5004 | 0.6470 | | 0.4557 | 6.0 | 9204 | 0.4976 | 0.6534 | | 0.4391 | 7.0 | 10738 | 0.4982 | 0.6606 | | 0.4231 | 8.0 | 12272 | 0.4982 | 0.6586 | | 0.4082 | 9.0 | 13806 | 0.5020 | 0.6587 | | 0.394 | 10.0 | 15340 | 0.5082 | 0.6561 | | 0.3816 | 11.0 | 16874 | 0.5140 | 0.6617 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2