modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-28 12:28:24
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-28 12:27:53
card
stringlengths
11
1.01M
silver18723/q-FrozenLake-v1-4x4-noSlippery
silver18723
2023-05-23T14:11:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T14:11:30Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="silver18723/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Benned/KoboKanaeru
Benned
2023-05-23T14:11:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-23T14:08:49Z
--- license: creativeml-openrail-m ---
hazerbean/finetuning-sentiment-model-3000-samples
hazerbean
2023-05-23T14:01:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T13:11:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.8831168831168831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3044 - Accuracy: 0.88 - F1: 0.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
satyamverma/Pre-requisite_Model_2
satyamverma
2023-05-23T13:58:55Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T07:25:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Pre-requisite_Model_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Pre-requisite_Model_2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7157 - Accuracy: 0.5741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5839 | 1.0 | 648 | 0.6894 | 0.5702 | | 0.5469 | 2.0 | 1296 | 0.7157 | 0.5741 | | 0.5156 | 3.0 | 1944 | 0.7157 | 0.5741 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Siliconic/raven-diffusion-v1
Siliconic
2023-05-23T13:56:45Z
2
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "en", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-23T13:43:26Z
--- inference: true language: - en tags: - text-to-image --- # Raven Diffusion v1 Text to Image generator for Raven AI System
Jasperyyc/uroptest2
Jasperyyc
2023-05-23T13:55:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-19T02:49:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: uroptest2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # uroptest2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1950 - Precision: 0.4434 - Recall: 0.4290 - F1: 0.4361 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0425 | 1.0 | 690 | 0.1567 | 0.3439 | 0.4198 | 0.3780 | 0.9637 | | 0.0367 | 2.0 | 1380 | 0.1876 | 0.4529 | 0.3565 | 0.3990 | 0.9694 | | 0.0251 | 3.0 | 2070 | 0.1603 | 0.3693 | 0.4599 | 0.4096 | 0.9662 | | 0.0213 | 4.0 | 2760 | 0.1659 | 0.3842 | 0.4120 | 0.3976 | 0.9675 | | 0.0166 | 5.0 | 3450 | 0.1732 | 0.3975 | 0.4429 | 0.4190 | 0.9677 | | 0.0104 | 6.0 | 4140 | 0.1686 | 0.3871 | 0.4182 | 0.4021 | 0.9683 | | 0.0105 | 7.0 | 4830 | 0.1809 | 0.4205 | 0.3920 | 0.4058 | 0.9688 | | 0.0064 | 8.0 | 5520 | 0.1914 | 0.4452 | 0.4074 | 0.4255 | 0.9702 | | 0.0047 | 9.0 | 6210 | 0.1908 | 0.4310 | 0.4244 | 0.4277 | 0.9696 | | 0.004 | 10.0 | 6900 | 0.1950 | 0.4434 | 0.4290 | 0.4361 | 0.9699 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
orepin/Reinforce-CartPole-v1
orepin
2023-05-23T13:45:59Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T13:45:48Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nolanaatama/nwjnshnnrvc500pchdj
nolanaatama
2023-05-23T13:45:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-23T13:30:01Z
--- license: creativeml-openrail-m ---
csukuangfj/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13
csukuangfj
2023-05-23T13:32:57Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2023-02-13T11:03:53Z
--- license: apache-2.0 --- # Streaming zipformer for sherpa-ncnn The torchscript model is from https://huggingface.co/pfluo/k2fsa-zipformer-chinese-english-mixed The training code is from https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless7_streaming
izumi-lab/llama-13b-japanese-lora-v0-1ep
izumi-lab
2023-05-23T13:28:14Z
0
11
null
[ "llama", "causal-lm", "ja", "dataset:izumi-lab/llm-japanese-dataset", "arxiv:2305.12720", "license:cc-by-sa-4.0", "region:us" ]
null
2023-05-19T16:01:43Z
--- license: cc-by-sa-4.0 datasets: - izumi-lab/llm-japanese-dataset language: - ja tags: - llama - causal-lm --- This repo contains a low-rank adapter for LLaMA-13b fit on the [llm-japanese-dataset](https://github.com/masanorihirano/llm-japanese-dataset) dataset. You can test this at https://huggingface.co/spaces/izumi-lab/llama-13b-japanese-lora-v0-1ep This version of the weights was trained with the following hyperparameters: - Epochs: 1 - Batch size: 130 - Cutoff length: 256 - Learning rate: 3e-4 - Lora _r_: 4 - Lora target modules: q_proj, v_proj ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer from peft import PeftModel base_model = "decapoda-research/llama-13b-hf" # Please note that the special license of decapoda-research/llama-13b-hf is applied. model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16) tokenizer = LlamaTokenizer.from_pretrained(base_model) model = PeftModel.from_pretrained( model, "izumi-lab/llama-13b-japanese-lora-v0", torch_dtype=torch.float16, ) ``` To see more latest information, please go to [llm.msuzuki.me](https://llm.msuzuki.me). ## Details - Japanese Paper: [https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/383](https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/383) - English Paper: [https://arxiv.org/abs/2305.12720](https://arxiv.org/abs/2305.12720) - GitHub: [https://github.com/masanorihirano/llm-japanese-dataset](https://github.com/masanorihirano/llm-japanese-dataset) - Website: [llm.msuzuki.me](https://llm.msuzuki.me). Citation: ``` @preprint{Hirano2023-llmj, title={{llm-japanese-dataset v0: Construction of Japanese Chat Dataset for Large Language Models and its Methodology}}, autor={Masanori HIRANO and Masahiro SUZUKI and Hiroki SAKAJI}, doi={10.48550/arXiv.2305.12720}, archivePrefix={arXiv}, arxivId={2305.12720}, year={2023} } ``` If you have any inquiries, such as joint research, data provision, various types of support, please email to [email protected] .
DuckCampus/ArP
DuckCampus
2023-05-23T12:58:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-18T15:00:13Z
--- license: creativeml-openrail-m ---
NerfLongshot/t5-small-finetuned-amazon-en
NerfLongshot
2023-05-23T12:52:06Z
62
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-01T08:03:45Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: NerfLongshot/t5-small-finetuned-amazon-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NerfLongshot/t5-small-finetuned-amazon-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8618 - Validation Loss: 2.4792 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 8364, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.1458 | 2.5306 | 0 | | 2.8618 | 2.4792 | 1 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.12.0 - Datasets 2.9.0 - Tokenizers 0.13.2
ProsusAI/finbert
ProsusAI
2023-05-23T12:43:35Z
1,031,040
761
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "en", "arxiv:1908.10063", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: "en" tags: - financial-sentiment-analysis - sentiment-analysis widget: - text: "Stocks rallied and the British pound gained." --- FinBERT is a pre-trained NLP model to analyze sentiment of financial text. It is built by further training the BERT language model in the finance domain, using a large financial corpus and thereby fine-tuning it for financial sentiment classification. [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (2014) is used for fine-tuning. For more details, please see the paper [FinBERT: Financial Sentiment Analysis with Pre-trained Language Models](https://arxiv.org/abs/1908.10063) and our related [blog post](https://medium.com/prosus-ai-tech-blog/finbert-financial-sentiment-analysis-with-bert-b277a3607101) on Medium. The model will give softmax outputs for three labels: positive, negative or neutral. --- About Prosus Prosus is a global consumer internet group and one of the largest technology investors in the world. Operating and investing globally in markets with long-term growth potential, Prosus builds leading consumer internet companies that empower people and enrich communities. For more information, please visit www.prosus.com. Contact information Please contact Dogu Araci dogu.araci[at]prosus[dot]com and Zulkuf Genc zulkuf.genc[at]prosus[dot]com about any FinBERT related issues and questions.
kribby/cats-mobilenet3-imagenet-v2
kribby
2023-05-23T12:43:05Z
4
0
tf-keras
[ "tf-keras", "mobilenet", "image-classification", "region:us" ]
image-classification
2023-05-23T12:35:25Z
--- pipeline_tag: image-classification ---
muhammadravi251001/fine-tuned-DatasetQAS-Squad-ID-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05
muhammadravi251001
2023-05-23T12:35:26Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-05-07T13:04:11Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-DatasetQAS-Squad-ID-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-DatasetQAS-Squad-ID-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4039 - Exact Match: 53.6774 - F1: 69.6967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 1.5208 | 0.5 | 463 | 1.4095 | 50.0294 | 67.1298 | | 1.3903 | 1.0 | 926 | 1.3159 | 52.1644 | 69.1681 | | 1.2662 | 1.5 | 1389 | 1.2718 | 53.1058 | 69.4729 | | 1.1754 | 2.0 | 1852 | 1.2603 | 53.2655 | 69.6756 | | 1.0681 | 2.5 | 2315 | 1.2586 | 53.6186 | 69.8988 | | 1.0887 | 3.0 | 2778 | 1.2555 | 53.6690 | 70.2968 | | 0.9549 | 3.5 | 3241 | 1.3076 | 54.1481 | 70.1900 | | 0.9549 | 4.0 | 3704 | 1.2922 | 54.0977 | 70.2654 | | 0.8528 | 4.49 | 4167 | 1.3767 | 53.9212 | 70.6362 | | 0.8467 | 4.99 | 4630 | 1.3384 | 53.8371 | 69.7755 | | 0.7709 | 5.49 | 5093 | 1.3847 | 53.7615 | 70.0607 | | 0.763 | 5.99 | 5556 | 1.4039 | 53.6774 | 69.6967 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
geonp/alpaca-ko-en-translation
geonp
2023-05-23T12:32:40Z
0
0
null
[ "region:us" ]
null
2023-05-23T12:27:22Z
LoRA based on beomi/KoAlpaca-Polyglot.
rmcpantoja/ald_ForwardTacotron_TTS
rmcpantoja
2023-05-23T12:31:52Z
0
0
speechbrain
[ "speechbrain", "climate", "text-to-speech", "es", "dataset:rmcpantoja/Ald_Mexican_Spanish_speech_dataset", "license:unlicense", "region:us" ]
text-to-speech
2023-05-23T12:28:44Z
--- license: unlicense datasets: - rmcpantoja/Ald_Mexican_Spanish_speech_dataset language: - es library_name: speechbrain pipeline_tag: text-to-speech tags: - climate ---
aliakyurek/ppo-PyramidsTraining
aliakyurek
2023-05-23T12:30:50Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-05-23T12:29:31Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: aliakyurek/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nolanaatama/lyrl
nolanaatama
2023-05-23T12:28:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-23T12:18:36Z
--- license: creativeml-openrail-m ---
Lendalf/a2c-PandaReachDense-v2
Lendalf
2023-05-23T12:26:12Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T12:25:31Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.13 +/- 0.30 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
FredS1000/ReinforceCardPoleV1
FredS1000
2023-05-23T12:25:56Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T12:04:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: ReinforceCardPoleV1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 428.38 +/- 111.31 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Sejan/bert-finetuned-mrpc
Sejan
2023-05-23T12:25:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T12:20:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
ashutosh2109/bert-finetuned-squad
ashutosh2109
2023-05-23T12:23:12Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-22T17:59:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
asenella/reproduce_mvae_mnist_0
asenella
2023-05-23T12:16:24Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-23T12:16:19Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
sadra-barikbin/CartPole-v1-Reinforce
sadra-barikbin
2023-05-23T12:10:53Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T12:10:42Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1-Reinforce results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 476.50 +/- 67.88 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ConvLab/sumbt-dst-multiwoz21
ConvLab
2023-05-23T11:55:24Z
35
0
transformers
[ "transformers", "pytorch", "roberta", "classification", "dialog state tracking", "conversational system", "task-oriented dialog", "en", "dataset:ConvLab/multiwoz21", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2023-05-23T11:26:02Z
--- language: - en license: apache-2.0 tags: - roberta - classification - dialog state tracking - conversational system - task-oriented dialog datasets: - ConvLab/multiwoz21 metrics: - Joint Goal Accuracy - Slot F1 model-index: - name: setsumbt-dst-multiwoz21 results: - task: type: classification name: dialog state tracking dataset: type: ConvLab/multiwoz21 name: MultiWOZ21 split: test metrics: - type: Joint Goal Accuracy value: 50.3 name: JGA - type: Slot F1 value: 90.8 name: Slot F1 --- # SUMBT-dst-multiwoz21 This model is a fine-tuned version [SUMBT](https://github.com/ConvLab/ConvLab-3/tree/master/convlab/dst/setsumbt) of [roberta-base](https://huggingface.co/roberta-base) on [MultiWOZ2.1](https://huggingface.co/datasets/ConvLab/multiwoz21). Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00001 - train_batch_size: 3 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 1 - optimizer: AdamW - lr_scheduler_type: linear - num_epochs: 50.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0+cu110 - Datasets 2.3.2 - Tokenizers 0.12.1
aliakyurek/ppo-SnowballTarget
aliakyurek
2023-05-23T11:49:03Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-05-23T11:48:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: aliakyurek/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rakgesh/image-classifier-one-piece-v03
rakgesh
2023-05-23T11:41:43Z
2
0
tf-keras
[ "tf-keras", "mobilenet", "image-classification", "region:us" ]
image-classification
2023-05-23T11:30:31Z
--- pipeline_tag: image-classification ---
Livin/flan-t5-base-samsum
Livin
2023-05-23T11:32:42Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-23T09:12:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-base-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 47.1222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3701 - Rouge1: 47.1222 - Rouge2: 23.3908 - Rougel: 39.7231 - Rougelsum: 43.3842 - Gen Len: 17.1465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4683 | 1.0 | 921 | 1.3897 | 46.737 | 23.2046 | 39.4441 | 43.2001 | 17.1526 | | 1.3586 | 2.0 | 1842 | 1.3726 | 47.2757 | 23.701 | 39.7059 | 43.502 | 17.2222 | | 1.3138 | 3.0 | 2763 | 1.3701 | 47.1222 | 23.3908 | 39.7231 | 43.3842 | 17.1465 | | 1.2828 | 4.0 | 3684 | 1.3737 | 47.3039 | 23.5383 | 39.8402 | 43.5561 | 17.3309 | | 1.2492 | 5.0 | 4605 | 1.3738 | 47.557 | 23.7814 | 40.1904 | 43.89 | 17.2332 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
DaniloTrotta/TestDeleV2
DaniloTrotta
2023-05-23T11:29:42Z
6
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-22T14:51:01Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: >- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model pipeline_tag: text-to-image --- # DELIBERATE #### All in One / Any Case Version This model provides you the ability to create anything you want.</br> The more power of prompt knowledges you have, the better results you'll get.</br> It basically means that you'll never get a perfect result with just a few words.</br> You have to fill out your prompt line extremely detailed. ![Demo](https://i.imgur.com/vns8GVU.jpg "Demo") #### Who find this model perfect: - NSFW masters - Meticulous anatomy artists - Creative prompters - Art designers Dive into the perfect creations world with [my prompts](https://civitai.com/models/4823/deliberate "my prompts").</br> Your research will be appreciated, so feel free to show everyone, what you can get with this model --- license: bigscience-openrail-m ---
shrria/bts-asr-processor
shrria
2023-05-23T11:28:55Z
77
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-23T09:45:10Z
--- language: - th library_name: transformers pipeline_tag: automatic-speech-recognition ---
ArturR01/segformer-b0-scene-parse-150
ArturR01
2023-05-23T11:28:22Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2023-05-23T10:32:28Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.4530 - Mean Iou: 0.0308 - Mean Accuracy: 0.0934 - Overall Accuracy: 0.3126 - Per Category Iou: [0.368405958754407, 0.11499370080653983, 0.5753658515502771, 0.2138805564642673, 0.28958703459911295, 0.191305743989082, 0.003497854077253219, 0.1288281531360376, 0.12360856380177596, 0.0, 0.0, 0.0, 0.003947940713975041, 0.0, 0.0, 0.015025862437481299, nan, 0.0, 0.0, 0.0037038152308109247, 4.4974139869574995e-05, nan, 0.12424162490108151, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.24922118380062305, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan] - Per Category Accuracy: [0.7566432234358786, 0.24871206280227098, 0.7073059287949548, 0.34911440750830386, 0.992694013910948, 0.2160975230593844, 0.0035416689300031504, 0.5627543803943077, 0.22603353810393492, 0.0, 0.0, nan, 0.17717717717717718, nan, 0.0, 0.017564022485946285, nan, 0.0, 0.0, 0.004741894444658622, 0.004261363636363636, nan, 0.19470855725506409, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.3939161833898676, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.6085 | 1.0 | 20 | 4.4530 | 0.0308 | 0.0934 | 0.3126 | [0.368405958754407, 0.11499370080653983, 0.5753658515502771, 0.2138805564642673, 0.28958703459911295, 0.191305743989082, 0.003497854077253219, 0.1288281531360376, 0.12360856380177596, 0.0, 0.0, 0.0, 0.003947940713975041, 0.0, 0.0, 0.015025862437481299, nan, 0.0, 0.0, 0.0037038152308109247, 4.4974139869574995e-05, nan, 0.12424162490108151, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.24922118380062305, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan] | [0.7566432234358786, 0.24871206280227098, 0.7073059287949548, 0.34911440750830386, 0.992694013910948, 0.2160975230593844, 0.0035416689300031504, 0.5627543803943077, 0.22603353810393492, 0.0, 0.0, nan, 0.17717717717717718, nan, 0.0, 0.017564022485946285, nan, 0.0, 0.0, 0.004741894444658622, 0.004261363636363636, nan, 0.19470855725506409, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.3939161833898676, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rakgesh/image-classifier-one-piece-v01
rakgesh
2023-05-23T11:26:39Z
0
0
null
[ "image-classification", "region:us" ]
image-classification
2023-05-16T21:37:08Z
--- pipeline_tag: image-classification ---
DataVare/datavare-pst-to-eml-converter
DataVare
2023-05-23T11:23:42Z
0
0
null
[ "region:us" ]
null
2023-05-23T11:23:11Z
Install DataVare PST to EML Converter to your computer to convert Outlook PST to EML. With no data loss, users may easily and rapidly convert PST to EML format. All emails, calendar entries, tasks, events, deleted items, notes, and other data can be converted with this tool. With exact formatting and file structure, this advanced tool can rapidly and effectively convert PST files to EML format. For bulk PST to EML conversion, it supports a variety of email applications, including Apple Mail, Thunderbird, Entourage, etc. There is no file size restriction when transferring PST data to EML. Get a free trial of this program, which can convert a small number of PST files to EML file formats. This tool, which can be used by both technical as well as non-technical persons, can convert PST files to EML files. Download the software's free trial version. Read More :- https://www.datavare.com/software/pst-to-eml-converter-expert.html
AI4PD/ProtGPT2
AI4PD
2023-05-23T11:22:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-05-23T11:21:00Z
--- license: apache-2.0 --- See the model at https://huggingface.co/nferruz/ProtGPT2
MathGpn/pretrained-bert-math2
MathGpn
2023-05-23T11:20:05Z
46
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-05-23T11:19:33Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-bert-math2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-bert-math2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.8738 - Validation Loss: 8.1023 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.0822 | 8.1287 | 0 | | 7.9097 | 8.1196 | 1 | | 7.8738 | 8.1023 | 2 | ### Framework versions - Transformers 4.30.0.dev0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
timjwhite/TimsPPOLander
timjwhite
2023-05-23T11:11:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T11:10:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.33 +/- 21.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ZavGeorge/SD_1.4_simpson_pokemon_tune_v1
ZavGeorge
2023-05-23T10:48:01Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:ZavGeorge/SD_1.4_simpson_tune_v1", "base_model:adapter:ZavGeorge/SD_1.4_simpson_tune_v1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-23T07:38:04Z
--- license: creativeml-openrail-m base_model: ZavGeorge/SD_1.4_simpson_tune_v1 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - ZavGeorge/SD_1.4_simpson_pokemon_tune_v1 These are adaption weights for ZavGeorge/SD_1.4_simpson_tune_v1. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset.
atrytone/scibert_claim_id_2e-05
atrytone
2023-05-23T10:44:58Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T10:04:04Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: scibert_claim_id_2e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_claim_id_2e-05 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0162 - Accuracy: 0.9962 - F1: 0.9880 - Precision: 0.9889 - Recall: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3131 | 1.0 | 666 | 0.2551 | 0.8880 | 0.5518 | 0.7419 | 0.4392 | | 0.267 | 2.0 | 1332 | 0.1821 | 0.9280 | 0.7636 | 0.7875 | 0.7410 | | 0.2245 | 3.0 | 1998 | 0.0942 | 0.9695 | 0.9034 | 0.8968 | 0.9101 | | 0.1135 | 4.0 | 2664 | 0.0514 | 0.9845 | 0.9517 | 0.9339 | 0.9702 | | 0.0821 | 5.0 | 3330 | 0.0223 | 0.9944 | 0.9822 | 0.9808 | 0.9837 | | 0.0618 | 6.0 | 3996 | 0.0162 | 0.9962 | 0.9880 | 0.9889 | 0.9870 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
chenyanjin/chinese_gpt2_big_50000
chenyanjin
2023-05-23T10:42:25Z
136
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-23T09:14:22Z
--- license: mit tags: - generated_from_trainer model-index: - name: chinese_gpt2_big_50000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese_gpt2_big_50000 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
sarahcnj/codeparrot-ds
sarahcnj
2023-05-23T10:40:33Z
141
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-19T11:49:16Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
aliakyurek/CartPole-v1
aliakyurek
2023-05-23T10:21:56Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-22T12:12:48Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
njuptpz/distilgpt2-finetuned-wikitext2
njuptpz
2023-05-23T10:09:02Z
210
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-23T09:57:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7595 | 1.0 | 2334 | 3.6649 | | 3.6541 | 2.0 | 4668 | 3.6466 | | 3.6022 | 3.0 | 7002 | 3.6417 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
deepgoyal19/lora1
deepgoyal19
2023-05-23T09:56:13Z
0
0
null
[ "text-to-image", "region:us" ]
text-to-image
2023-05-23T09:55:58Z
--- pipeline_tag: text-to-image ---
UchihaMadara/Thesis-SentimentAnalysis-1
UchihaMadara
2023-05-23T09:39:45Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T02:06:05Z
# Pretrained checkpoint: roberta-large # Traning hyperparameters: The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - prompt_format: sentence aspect - sentiment # Training results |Epoch | Train loss| Subtask 3 f1 | Subtask 3 precision | Subtask 3 recall | Subtask4 accuracy | |:----:|:---------:|:------------:|:-------------------:|:----------------:|:-----------------:| |1|302.38164756447077|0.8747412008281573|0.9316427783902976|0.824390243902439|0.5219512195121951| |2|152.67940049804747|0.8930041152263374|0.9445048966267682|0.8468292682926829|0.8614634146341463| |3|99.03914468642324|0.9071318624935865|0.9567099567099567|0.8624390243902439|0.8721951219512195| |4|60.156904806615785|0.905241935483871|0.9363920750782064|0.8760975609756098|0.8790243902439024| |5|36.06248981086537|0.9195855944745931|0.9301397205588823|0.9092682926829269|0.8926829268292683|
darrel999/distilbert-base-uncased_emotion_ft_0523
darrel999
2023-05-23T09:30:38Z
93
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T09:11:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 - precision model-index: - name: distilbert-base-uncased_emotion_ft_0523 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.917 - name: F1 type: f1 value: 0.9167815299071149 - name: Precision type: precision value: 0.8882036697297124 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_emotion_ft_0523 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2694 - Accuracy: 0.917 - F1: 0.9168 - Precision: 0.8882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | No log | 1.0 | 63 | 0.9564 | 0.641 | 0.5522 | 0.5005 | | No log | 2.0 | 126 | 0.4544 | 0.8635 | 0.8507 | 0.8714 | | No log | 3.0 | 189 | 0.2987 | 0.91 | 0.9093 | 0.8805 | | 0.67 | 4.0 | 252 | 0.2694 | 0.917 | 0.9168 | 0.8882 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
Mike00vito/ner
Mike00vito
2023-05-23T09:22:05Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-23T08:03:18Z
--- license: mit tags: - generated_from_trainer model-index: - name: ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
satyamverma/distilbert-base-uncased-finetuned-mrpc
satyamverma
2023-05-23T09:05:28Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T06:19:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8480392156862745 - name: F1 type: f1 value: 0.8945578231292517 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4304 - Accuracy: 0.8480 - F1: 0.8946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3851 | 0.8137 | 0.8652 | | No log | 2.0 | 460 | 0.3614 | 0.8456 | 0.8948 | | 0.4318 | 3.0 | 690 | 0.4304 | 0.8480 | 0.8946 | | 0.4318 | 4.0 | 920 | 0.5555 | 0.8407 | 0.8900 | | 0.1697 | 5.0 | 1150 | 0.5883 | 0.8456 | 0.8927 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AZZLI/Magic-10
AZZLI
2023-05-23T08:44:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-23T08:42:30Z
--- license: creativeml-openrail-m ---
YakovElm/test2
YakovElm
2023-05-23T08:38:43Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T08:37:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Enkhbold/mongolian-gpt2-ner
Enkhbold
2023-05-23T08:38:24Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "token-classification", "generated_from_trainer", "mn", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2023-05-23T07:27:32Z
--- language: - mn license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mongolian-gpt2-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mongolian-gpt2-ner This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2599 - Precision: 0.1483 - Recall: 0.2561 - F1: 0.1878 - Accuracy: 0.9149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4822 | 1.0 | 477 | 0.3452 | 0.1156 | 0.2072 | 0.1484 | 0.8876 | | 0.3376 | 2.0 | 954 | 0.3196 | 0.1369 | 0.2304 | 0.1717 | 0.8975 | | 0.3084 | 3.0 | 1431 | 0.2915 | 0.1242 | 0.2257 | 0.1603 | 0.9015 | | 0.2889 | 4.0 | 1908 | 0.2800 | 0.1328 | 0.2375 | 0.1704 | 0.9063 | | 0.275 | 5.0 | 2385 | 0.2734 | 0.1439 | 0.2452 | 0.1814 | 0.9099 | | 0.264 | 6.0 | 2862 | 0.2691 | 0.1426 | 0.2420 | 0.1795 | 0.9115 | | 0.256 | 7.0 | 3339 | 0.2639 | 0.1411 | 0.2442 | 0.1789 | 0.9129 | | 0.2498 | 8.0 | 3816 | 0.2628 | 0.1482 | 0.2511 | 0.1864 | 0.9135 | | 0.2438 | 9.0 | 4293 | 0.2603 | 0.1483 | 0.2548 | 0.1875 | 0.9143 | | 0.2388 | 10.0 | 4770 | 0.2599 | 0.1483 | 0.2561 | 0.1878 | 0.9149 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
kasunw/PPO-from-scratch-LunarLander-v2
kasunw
2023-05-23T08:28:12Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-22T10:36:54Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 37.75 +/- 95.96 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 256 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'kasunw/PPO-from-scratch-LunarLander-v2' 'batch_size': 1024 'minibatch_size': 256} ```
ManopeDavid/my_awesome_qa_model
ManopeDavid
2023-05-23T08:27:29Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-23T08:15:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ManopeDavid/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ManopeDavid/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6571 - Validation Loss: 1.8993 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4977 | 2.2290 | 0 | | 1.9157 | 1.8993 | 1 | | 1.6571 | 1.8993 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
abhishek2153/pb_models
abhishek2153
2023-05-23T08:26:48Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-19T10:41:57Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - abhishek2153/pb_models This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Xoyo/ppo-Pyramids
Xoyo
2023-05-23T08:19:33Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-05-23T08:19:27Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Xoyo/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mfaiq2307/faiq-wav2vec2-large-xlsr-indo-demo-colab
mfaiq2307
2023-05-23T08:16:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-12T07:40:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: faiq-wav2vec2-large-xlsr-indo-demo-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.4313296733972271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # faiq-wav2vec2-large-xlsr-indo-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4079 - Wer: 0.4313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0752 | 2.92 | 400 | 2.7911 | 1.0 | | 1.2625 | 5.84 | 800 | 0.4611 | 0.6152 | | 0.3806 | 8.76 | 1200 | 0.4284 | 0.5476 | | 0.2653 | 11.68 | 1600 | 0.4074 | 0.4935 | | 0.2134 | 14.6 | 2000 | 0.3846 | 0.4788 | | 0.1701 | 17.52 | 2400 | 0.4175 | 0.4640 | | 0.1544 | 20.44 | 2800 | 0.4101 | 0.4471 | | 0.1303 | 23.36 | 3200 | 0.4147 | 0.4457 | | 0.1202 | 26.28 | 3600 | 0.4050 | 0.4344 | | 0.1082 | 29.2 | 4000 | 0.4079 | 0.4313 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.6.1 - Tokenizers 0.13.3
alism98/whisper-small-persian
alism98
2023-05-23T08:13:54Z
82
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "fa", "en", "dataset:mozilla-foundation/common_voice_13_0", "license:creativeml-openrail-m", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-22T16:58:05Z
--- license: creativeml-openrail-m datasets: - mozilla-foundation/common_voice_13_0 language: - fa - en metrics: - wer - accuracy pipeline_tag: automatic-speech-recognition ---
maxingenio/platzi-vit-model-massimo
maxingenio
2023-05-23T08:10:56Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:pokemon-classification", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-23T07:48:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pokemon-classification metrics: - accuracy model-index: - name: platzi-vit-model-massimo results: - task: name: Image Classification type: image-classification dataset: name: pokemon-classification type: pokemon-classification config: full split: validation args: full metrics: - name: Accuracy type: accuracy value: 0.08201438848920864 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-massimo This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the pokemon-classification dataset. It achieves the following results on the evaluation set: - Loss: 7.8941 - Accuracy: 0.0820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9383 | 0.82 | 500 | 6.3834 | 0.0360 | | 0.3399 | 1.64 | 1000 | 7.1051 | 0.0755 | | 0.0749 | 2.46 | 1500 | 7.6120 | 0.0885 | | 0.0332 | 3.28 | 2000 | 7.8941 | 0.0820 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rifkiaputri/mt5-base-id-finetune-unans-qg
rifkiaputri
2023-05-23T07:48:31Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question-generation", "id", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-11T05:13:59Z
--- language: id tags: - mt5 - question-generation license: mit --- # mt5-base for Indonesian Unanswerable Question Generation (cased) [mT5-base](https://huggingface.co/google/mt5-base) model fine-tuned on machine-translated SQuAD 2.0 dataset for generating unanswerable questions in Indonesian. Please refer to [this paper](https://aclanthology.org/2022.emnlp-main.465/) for more details on the model. ## Citation Info ```bibtex @inproceedings{putri-oh-2022-idk, title = "{IDK}-{MRC}: Unanswerable Questions for {I}ndonesian Machine Reading Comprehension", author = "Putri, Rifki Afina and Oh, Alice", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-main.465", pages = "6918--6933", } ```
xzuyn/OpenLLaMa-200BT-Preview-7B-GGML
xzuyn
2023-05-23T07:21:18Z
0
1
null
[ "llama", "region:us" ]
null
2023-05-23T07:09:05Z
--- tags: - llama --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/openlm-research/open_llama_7b_preview_200bt
csukuangfj/sherpa-onnx-conformer-zh-2023-05-23
csukuangfj
2023-05-23T07:16:01Z
0
0
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2023-05-23T04:01:47Z
--- license: apache-2.0 --- # Introduction Models from this repo are converted from https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_offline which is trained using https://github.com/k2-fsa/icefall/pull/447
xzuyn/StableLM-OpenAssistant-SFT-V7-Epoch-3-7B-GGML
xzuyn
2023-05-23T07:08:36Z
0
0
null
[ "gpt_neox", "sft", "region:us" ]
null
2023-05-23T06:55:25Z
--- tags: - gpt_neox - sft --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/OpenAssistant/stablelm-7b-sft-v7-epoch-3
Wulichao/ppo-LunarLander-v2
Wulichao
2023-05-23T07:01:38Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T07:01:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.75 +/- 47.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xzuyn/OpenLLaMa-300BT-Preview-7B-GGML
xzuyn
2023-05-23T06:34:30Z
0
0
null
[ "llama", "region:us" ]
null
2023-05-23T06:15:58Z
--- tags: - llama --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/openlm-research/open_llama_7b_preview_300bt
Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-gptq-4bit
Yhyu13
2023-05-23T06:19:06Z
6
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-23T05:59:21Z
--- license: apache-2.0 --- GPTQ 4-bit no actor version for compatibility that works in textgen-webui Generated by using scripts from https://gitee.com/yhyu13/llama_-tools Merged weights: https://huggingface.co/Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf Converted LLaMA weights: https://huggingface.co/Yhyu13/llama-30B-hf-openassitant Delta weights: https://huggingface.co/OpenAssistant/oasst-rlhf-2-llama-30b-7k-steps-xor --- OA has done a great jobs in RLHF their pre-trained weights. I must say it is tuned to spit out CoT step by step thinking without you actively prompting it to do so, which is a feature that we observe on ChatGPT and GPT-4. But note, it still fails at logical paradox tasks such as era of time and bird shot. But none of the LLaMA based models or any available models other than GPT-4 and Claude+ can correct answer paradox questions anyway. So OA rlhf is expected to fail at these tasks, but I do like the RLHF-ed tone which make OA's response sounds professional and proficient. ![img1](./img/sample1) ![img2](./img/sample2) ![img3](./img/sample3)
leonhe/q-FrozenLake-v1-4x4-noSlippery
leonhe
2023-05-23T06:10:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T06:10:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="leonhe/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
xzuyn/RedPajama-INCITE-Chat-v1-3B-GGML
xzuyn
2023-05-23T06:07:09Z
0
0
null
[ "gpt_neox", "region:us" ]
null
2023-05-23T06:04:49Z
--- tags: - gpt_neox --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-3B-v1
satyamverma/Pre-requisite_Model
satyamverma
2023-05-23T06:06:59Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-22T18:39:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Pre-requisite_Model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Pre-requisite_Model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7370 - eval_accuracy: 0.6655 - eval_runtime: 6.6968 - eval_samples_per_second: 387.05 - eval_steps_per_second: 24.191 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Maciel/T5Corrector-base-v2
Maciel
2023-05-23T05:56:48Z
145
14
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text error correction", "zh", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-12T08:59:14Z
--- language: - zh license: apache-2.0 tags: - t5 - text error correction widget: - text: "今天天气不太好,我的心情也不是很偷快" example_title: "案例1" - text: "能不能帮我买点淇淋,好久没吃了。" example_title: "案例2" - text: "脑子有点胡涂了,这道题冥冥学过还没有做出来" example_title: "案例3" inference: parameters: max_length: 256 num_beams: 10 no_repeat_ngram_size: 5 do_sample: True early_stopping: True --- ## 功能介绍 T5Corrector:中文字音与字形纠错模型 这个模型是基于mengzi-t5-base进行文本纠错训练,使用2kw+句子,通过替换同音词、近音词和形近字来,对于句中词组随机添加词组、删除词组中的部分字,以及字词乱序操作构造纠错平行语料,共计2亿+句对,累计训练66000步。 <a href='https://github.com/Macielyoung/T5Corrector'>Github项目地址</a> 加载模型: ```python # 加载模型 from transformers import AutoTokenizer, T5ForConditionalGeneration pretrained = "Maciel/T5Corrector-base-v2" tokenizer = AutoTokenizer.from_pretrained(pretrained) model = T5ForConditionalGeneration.from_pretrained(pretrained) ``` 使用模型进行预测推理方法: ```python import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def correct(text, max_length): model_inputs = tokenizer(text, max_length=max_length, truncation=True, return_tensors="pt").to(device) output = model.generate(**model_inputs, num_beams=5, no_repeat_ngram_size=4, do_sample=True, early_stopping=True, max_length=max_length, return_dict_in_generate=True, output_scores=True) pred_output = tokenizer.batch_decode(output.sequences, skip_special_tokens=True)[0] return pred_output text = "贵州毛台现在多少钱一瓶啊,想买两瓶尝尝味道。" correction = correct(text, max_length=32) print(correction) ``` ### 案例展示 ``` 示例1: input: 能不能帮我买点淇淋,好久没吃了。 output: 能不能帮我买点冰淇淋,好久没吃了。 示例2: input: 脑子有点胡涂了,这道题冥冥学过还没有做出来 output: 脑子有点糊涂了,这道题明明学过还没有做出来 示例3: input: 今天天气不太好,我的心情也不是很偷快 output: 今天天气不太好,我的心情也不是很愉快 ```
IGustavsen/bart-base-finetuned-english-wikilingua_epoch-1-1e-4
IGustavsen
2023-05-23T05:55:27Z
62
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-23T00:54:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: IGustavsen/bart-base-finetuned-english-wikilingua_epoch-1-1e-4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # IGustavsen/bart-base-finetuned-english-wikilingua_epoch-1-1e-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.6603 - Validation Loss: 2.4052 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6603 | 2.4052 | 0 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
MayIBorn/ft-sd15-instance
MayIBorn
2023-05-23T05:52:57Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-23T05:36:42Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: an identification photo of iom man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MayIBorn/ft-sd15-instance These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on an identification photo of iom man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
Priyanhsu/BestTextClassifier
Priyanhsu
2023-05-23T05:23:34Z
0
0
null
[ "text-classification", "region:us" ]
text-classification
2023-05-22T13:12:36Z
--- pipeline_tag: text-classification ---
lgfunderburk/bloomz_marketing_email
lgfunderburk
2023-05-23T05:18:14Z
0
0
null
[ "region:us" ]
null
2023-05-23T05:09:20Z
# Load adapters from the Hub You can also directly load adapters from the Hub using the commands below: ``` import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"{HUGGING_FACE_USER_NAME}/{model_name}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) ``` # Inference You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in transformers. ``` from IPython.display import display, Markdown def make_inference(product, description): batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description,\ please write a marketing email for this product.\ \n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=200) display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True)))) # Example your_product_name_here = "Campfortable chair" your_product_description_here = "A lightweight camping chair known for its comfort" make_inference(your_product_name_here, your_product_description_here) ``` Executing the code above then yields the following INSTRUCTION Below is a product and description, please write a marketing email for this product. Product: Campfortable chair Description: A lightweight camping chair known for its comfort Marketing Email: Subject: 🏖️🌞 Get Relaxed incampfortable! ✨ Hey there, Thirsty Traveler! 😎 Imagine being able to lounge in your camping chair all day long, wave goodbye to friends, and return to camp with a refreshed, energy-filled mind and body? 🌴 That's what you’ll get with our revolutionary Campfortable Chair! 🚀 🌱 Say Goodbye to Fears of Inflatable Chairs Our revolutionary design eliminates the worries of bulky, heavy chairs. With just a few simple touches, you’ll feel like you are cradling the world in your arms! 💫 🌺 Flip through Days with Campfortable Chair When you bring Campfortable Chair with you, you’ll have the power to adjust its comfort level based on the demands of your day. Say goodbye to sore backs and headaches, and welcome to relaxed, full-body fun
MayIBorn/ft-sd15-class-instance2
MayIBorn
2023-05-23T05:13:33Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-23T04:53:12Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: an identification photo of iom man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MayIBorn/ft-sd15-class-instance2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on an identification photo of iom man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
SergeyKazulin/Reinforce-CartPole-v1
SergeyKazulin
2023-05-23T05:10:04Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T05:09:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
xzuyn/GPT-NeoX-Erebus-20B-GGML
xzuyn
2023-05-23T04:47:17Z
0
1
null
[ "gpt_neox", "region:us" ]
null
2023-05-23T04:09:23Z
--- tags: - gpt_neox --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/KoboldAI/GPT-NeoX-20B-Erebus
MayIBorn/ft-sd15-class-instance
MayIBorn
2023-05-23T04:45:29Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-23T04:36:04Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: an identification photo of iom person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MayIBorn/ft-sd15-class-instance These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on an identification photo of iom person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
mirfan899/da_spacy_sentiment
mirfan899
2023-05-23T04:26:11Z
8
0
spacy
[ "spacy", "text-classification", "da", "region:us" ]
text-classification
2023-04-17T12:06:13Z
--- tags: - spacy - text-classification language: - da model-index: - name: da_spacy_sentiment results: [] --- | Feature | Description | | --- | --- | | **Name** | `da_spacy_sentiment` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.1,<3.6.0` | | **Default Pipeline** | `tok2vec`, `textcat` | | **Components** | `tok2vec`, `textcat` | | **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (3 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`textcat`** | `neutral`, `negative`, `positive` | </details> ### Accuracy | Type | Score | | --- | --- | | `CATS_SCORE` | 82.58 | | `CATS_MICRO_P` | 82.40 | | `CATS_MICRO_R` | 82.40 | | `CATS_MICRO_F` | 82.40 | | `CATS_MACRO_P` | 81.24 | | `CATS_MACRO_R` | 84.43 | | `CATS_MACRO_F` | 82.58 | | `CATS_MACRO_AUC` | 92.45 | | `TOK2VEC_LOSS` | 39608.07 | | `TEXTCAT_LOSS` | 913.24 |
Smoden/newest_Alice_mix_wizard_mix_Chronicles_diff_lora_v3
Smoden
2023-05-23T04:22:52Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-22T12:42:37Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Smoden/newest_Alice_mix_wizard_mix_Chronicles_diff_lora_v3 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following.
gensym/ppo-Huggy
gensym
2023-05-23T04:14:10Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-16T03:15:17Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: gensym/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Shad0ws/MiniGPT-4
Shad0ws
2023-05-23T04:13:27Z
0
0
null
[ "region:us" ]
null
2023-05-23T04:12:22Z
# MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models [Deyao Zhu](https://tsutikgiau.github.io/)* (On Job Market!), [Jun Chen](https://junchen14.github.io/)* (On Job Market!), [Xiaoqian Shen](https://xiaoqian-shen.github.io), [Xiang Li](https://xiangli.ac.cn), and [Mohamed Elhoseiny](https://www.mohamed-elhoseiny.com/). *Equal Contribution **King Abdullah University of Science and Technology** ## Online Demo Click the image to chat with MiniGPT-4 around your images [![demo](figs/online_demo.png)](https://minigpt-4.github.io) ## Examples | | | :-------------------------:|:-------------------------: ![find wild](figs/examples/wop_2.png) | ![write story](figs/examples/ad_2.png) ![solve problem](figs/examples/fix_1.png) | ![write Poem](figs/examples/rhyme_1.png) More examples can be found in the [project page](https://minigpt-4.github.io). ## Introduction - MiniGPT-4 aligns a frozen visual encoder from BLIP-2 with a frozen LLM, Vicuna, using just one projection layer. - We train MiniGPT-4 with two stages. The first traditional pretraining stage is trained using roughly 5 million aligned image-text pairs in 10 hours using 4 A100s. After the first stage, Vicuna is able to understand the image. But the generation ability of Vicuna is heavilly impacted. - To address this issue and improve usability, we propose a novel way to create high-quality image-text pairs by the model itself and ChatGPT together. Based on this, we then create a small (3500 pairs in total) yet high-quality dataset. - The second finetuning stage is trained on this dataset in a conversation template to significantly improve its generation reliability and overall usability. To our surprise, this stage is computationally efficient and takes only around 7 minutes with a single A100. - MiniGPT-4 yields many emerging vision-language capabilities similar to those demonstrated in GPT-4. ![overview](figs/overview.png) ## Getting Started ### Installation **1. Prepare the code and the environment** Git clone our repository, creating a python environment and ativate it via the following command ```bash git clone https://github.com/Vision-CAIR/MiniGPT-4.git cd MiniGPT-4 conda env create -f environment.yml conda activate minigpt4 ``` **2. Prepare the pretrained Vicuna weights** The current version of MiniGPT-4 is built on the v0 versoin of Vicuna-13B. Please refer to our instruction [here](PrepareVicuna.md) to prepare the Vicuna weights. The final weights would be in a single folder with the following structure: ``` vicuna_weights ├── config.json ├── generation_config.json ├── pytorch_model.bin.index.json ├── pytorch_model-00001-of-00003.bin ... ``` Then, set the path to the vicuna weight in the model config file [here](minigpt4/configs/models/minigpt4.yaml#L16) at Line 16. **3. Prepare the pretrained MiniGPT-4 checkpoint** To play with our pretrained model, download the pretrained checkpoint [here](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=share_link). Then, set the path to the pretrained checkpoint in the evaluation config file in [eval_configs/minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml#L10) at Line 11. ### Launching Demo Locally Try out our demo [demo.py](demo.py) on your local machine by running ``` python demo.py --cfg-path eval_configs/minigpt4_eval.yaml --gpu-id 0 ``` Here, we load Vicuna as 8 bit by default to save some GPU memory usage. Besides, the default beam search width is 1. Under this setting, the demo cost about 23G GPU memory. If you have a more powerful GPU with larger GPU memory, you can run the model in 16 bit by setting low_resource to False in the config file [minigpt4_eval.yaml](eval_configs/minigpt4_eval.yaml) and use a larger beam search width. ### Training The training of MiniGPT-4 contains two alignment stages. **1. First pretraining stage** In the first pretrained stage, the model is trained using image-text pairs from Laion and CC datasets to align the vision and language model. To download and prepare the datasets, please check our [first stage dataset preparation instruction](dataset/README_1_STAGE.md). After the first stage, the visual features are mapped and can be understood by the language model. To launch the first stage training, run the following command. In our experiments, we use 4 A100. You can change the save path in the config file [train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage1_pretrain.yaml) ```bash torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/minigpt4_stage1_pretrain.yaml ``` A MiniGPT-4 checkpoint with only stage one training can be downloaded [here](https://drive.google.com/file/d/1u9FRRBB3VovP1HxCAlpD9Lw4t4P6-Yq8/view?usp=share_link). Compared to the model after stage two, this checkpoint generate incomplete and repeated sentences frequently. **2. Second finetuning stage** In the second stage, we use a small high quality image-text pair dataset created by ourselves and convert it to a conversation format to further align MiniGPT-4. To download and prepare our second stage dataset, please check our [second stage dataset preparation instruction](dataset/README_2_STAGE.md). To launch the second stage alignment, first specify the path to the checkpoint file trained in stage 1 in [train_configs/minigpt4_stage1_pretrain.yaml](train_configs/minigpt4_stage2_finetune.yaml). You can also specify the output path there. Then, run the following command. In our experiments, we use 1 A100. ```bash torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/minigpt4_stage2_finetune.yaml ``` After the second stage alignment, MiniGPT-4 is able to talk about the image coherently and user-friendly. ## Acknowledgement + [BLIP2](https://huggingface.co/docs/transformers/main/model_doc/blip-2) The model architecture of MiniGPT-4 follows BLIP-2. Don't forget to check this great open-source work if you don't know it before! + [Lavis](https://github.com/salesforce/LAVIS) This repository is built upon Lavis! + [Vicuna](https://github.com/lm-sys/FastChat) The fantastic language ability of Vicuna with only 13B parameters is just amazing. And it is open-source! If you're using MiniGPT-4 in your research or applications, please cite using this BibTeX: ```bibtex @misc{zhu2022minigpt4, title={MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models}, author={Deyao Zhu and Jun Chen and Xiaoqian Shen and xiang Li and Mohamed Elhoseiny}, year={2023}, } ``` ## License This repository is under [BSD 3-Clause License](LICENSE.md). Many codes are based on [Lavis](https://github.com/salesforce/LAVIS) with BSD 3-Clause License [here](LICENSE_Lavis.md).
Yhyu13/llama-30B-hf-openassitant
Yhyu13
2023-05-23T04:10:16Z
1,523
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-22T11:54:33Z
--- license: apache-2.0 --- This is the hf tr version of llama 30B converted specifically as open assistant's 30B model required: https://huggingface.co/OpenAssistant/oasst-rlhf-2-llama-30b-7k-steps-xor This the md5 checksum that I get locally, which matchs the original repo suggests ``` fdb311c39b8659a5d5c1991339bafc09 ./tokenizer.json edd1a5897748864768b1fab645b31491 ./tokenizer_config.json 6b2e0a735969660e720c27061ef3f3d3 ./special_tokens_map.json 3eddc6fc02c0172d38727e5826181adb ./pytorch_model-00004-of-00007.bin fecfda4fba7bfd911e187a85db5fa2ef ./pytorch_model.bin.index.json 462a2d07f65776f27c0facfa2affb9f9 ./pytorch_model-00007-of-00007.bin 598538f18fed1877b41f77de034c0c8a ./config.json 99762d59efa6b96599e863893cf2da02 ./pytorch_model-00006-of-00007.bin aee09e21813368c49baaece120125ae3 ./generation_config.json 92754d6c6f291819ffc3dfcaf470f541 ./pytorch_model-00005-of-00007.bin 5cfcb78b908ffa02e681cce69dbe4303 ./pytorch_model-00002-of-00007.bin e1dc8c48a65279fb1fbccff14562e6a3 ./pytorch_model-00003-of-00007.bin 9cffb1aeba11b16da84b56abb773d099 ./pytorch_model-00001-of-00007.bin eeec4125e9c7560836b4873b6f8e3025 ./tokenizer.model ```
xzuyn/GPT-2-IMDb-124M-GGML
xzuyn
2023-05-23T04:05:10Z
0
1
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-05-23T04:04:22Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/lvwerra/gpt2-imdb
xzuyn/DistilGPT-2-Rap-82M-GGML
xzuyn
2023-05-23T04:03:39Z
0
1
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-05-23T04:01:33Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/dzionek/distilgpt2-rap
xzuyn/Cerebras-GPT-2-Alpaca-SP-2.7B-GGML
xzuyn
2023-05-23T03:58:46Z
0
0
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-05-23T03:56:02Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/lxe/Cerebras-GPT-2.7B-Alpaca-SP
xzuyn/StableLM-Base-Alpha-3B-GGML
xzuyn
2023-05-23T03:56:54Z
0
0
null
[ "gpt_neox", "region:us" ]
null
2023-05-23T03:51:13Z
--- tags: - gpt_neox --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/stabilityai/stablelm-base-alpha-3b
xzuyn/GPT-J-Skein-6B-GGML
xzuyn
2023-05-23T03:48:59Z
0
0
null
[ "gptj", "gpt-j", "region:us" ]
null
2023-05-23T03:33:07Z
--- tags: - gptj - gpt-j --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/KoboldAI/GPT-J-6B-Skein
xzuyn/GPT-J-Shinen-6B-GGML
xzuyn
2023-05-23T03:32:30Z
0
4
null
[ "gptj", "gpt-j", "region:us" ]
null
2023-05-23T03:11:35Z
--- tags: - gptj - gpt-j --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/KoboldAI/GPT-J-6B-Shinen
SHENMU007/speechcommand-demo
SHENMU007
2023-05-23T03:30:04Z
157
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-05-23T02:41:32Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: speechcommand-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speechcommand-demo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0873 - Accuracy: 0.9809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6433 | 1.0 | 399 | 0.4979 | 0.9112 | | 0.2406 | 2.0 | 798 | 0.1455 | 0.9750 | | 0.1563 | 3.0 | 1197 | 0.1032 | 0.9785 | | 0.1144 | 4.0 | 1597 | 0.0919 | 0.9806 | | 0.1254 | 5.0 | 1995 | 0.0873 | 0.9809 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
4bit/pyg-7b
4bit
2023-05-23T03:07:43Z
15
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text generation", "conversational", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-23T02:50:34Z
--- language: - en thumbnail: null tags: - text generation - conversational pipeline_tag: text-generation inference: false --- <h1 style="text-align: center">Pygmalion 7B</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-7b Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.
xzuyn/GPT-2-124M-GGML
xzuyn
2023-05-23T02:50:34Z
0
0
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-05-23T02:47:02Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/gpt2
kenkliesner/transformer_1_model
kenkliesner
2023-05-23T02:49:47Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-23T01:57:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: transformer_1_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9296 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # transformer_1_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2347 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2312 | 1.0 | 1563 | 0.1932 | 0.9261 | | 0.1515 | 2.0 | 3126 | 0.2347 | 0.9296 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
yy-zm/00
yy-zm
2023-05-23T02:49:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-23T02:49:37Z
--- license: creativeml-openrail-m ---
mirfan899/da_ner
mirfan899
2023-05-23T02:49:18Z
0
0
spacy
[ "spacy", "token-classification", "da", "model-index", "region:us" ]
token-classification
2023-03-28T02:30:30Z
--- tags: - spacy - token-classification language: - da model-index: - name: da_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9453630482 - name: NER Recall type: recall value: 0.9094052559 - name: NER F Score type: f_score value: 0.927035601 --- | Feature | Description | | --- | --- | | **Name** | `da_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.1,<3.6.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (36 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `ADVERTISING`, `AMOUNTS_OF_THE_PRODUCT`, `AVAILABILITY`, `BRANDING`, `CUSTOMERS`, `DISCOUNTS_AND_OFFERS`, `DOCUMENTATION`, `EMPLOYEES`, `EXTERNAL_SUPPLIER`, `FACILITIES`, `FINANCING`, `HANDLING_OF_SERVICE`, `LEASING`, `LEGAL`, `LOCATIONS`, `LOCATION_IN_THE_STORE`, `LOGISTICS`, `MARKETING`, `MARKET_COVERAGE`, `MEDIA`, `MESSAGES`, `ORGANIZATIONAL_STRUCTURE`, `PAYMENT_TERMS`, `PR`, `PRICE`, `PRICE_STRATEGIES`, `PRODUCT_PROPERTIES`, `PRODUCT_TYPE`, `PRODUCT_WARRANTY`, `REFERENCES`, `RETURN_ON_INVESTMENT`, `SALES_PROCESS`, `SHOWROOM`, `THE_MANAGEMENT`, `UNIFORMITY_IN_DELIVERIES`, `USE_OF_THE_PRODUCT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 92.70 | | `ENTS_P` | 94.54 | | `ENTS_R` | 90.94 | | `TOK2VEC_LOSS` | 50522.21 | | `NER_LOSS` | 55212.43 |
nolanaatama/ysbrvc1000pchkjv
nolanaatama
2023-05-23T02:47:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-23T02:40:03Z
--- license: creativeml-openrail-m ---
xzuyn/CodeGPT-Small-Py-117M-GGML
xzuyn
2023-05-23T02:45:30Z
0
0
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-05-23T02:43:00Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/microsoft/CodeGPT-small-py
redax123/valcroanime
redax123
2023-05-23T02:43:31Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-23T02:37:53Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### valcroanime Dreambooth model trained by redax123 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
xzuyn/RWKV-4-Raven-3B-v11-Eng99-Other1-20230425-ctx4096-GGML
xzuyn
2023-05-23T02:39:17Z
0
1
null
[ "rwkv", "region:us" ]
null
2023-05-23T02:31:26Z
--- tags: - rwkv --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/BlinkDL/rwkv-4-raven
Xoyo/Reinforce-Pixelcopter-PLE-v0
Xoyo
2023-05-23T02:36:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T02:35:18Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 13.10 +/- 11.52 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
xzuyn/RWKV-4-Raven-7B-v11x-Eng99-Other1-20230429-ctx8192-GGML
xzuyn
2023-05-23T02:34:53Z
0
4
null
[ "rwkv", "region:us" ]
null
2023-05-23T02:24:02Z
--- tags: - rwkv --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/BlinkDL/rwkv-4-raven