modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
sequence | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
Avinash250325/T5BaseQuestionGeneration | Avinash250325 | 2025-06-03T19:28:49Z | 0 | 0 | null | [
"safetensors",
"t5",
"chemistry",
"biology",
"textbook",
"question_generation",
"exam",
"questions",
"evaluation",
"true_or_false",
"multiple_choice_questions",
"descriptive",
"short_answer_questions",
"long_answer",
"problems",
"quizzes",
"physics",
"text2text-generation",
"en",
"dataset:hotpotqa/hotpot_qa",
"dataset:rajpurkar/squad",
"dataset:allenai/openbookqa",
"dataset:google/boolq",
"dataset:ucinlp/drop",
"base_model:google-t5/t5-base",
"base_model:finetune:google-t5/t5-base",
"license:mit",
"region:us"
] | text2text-generation | 2025-06-03T02:05:03Z | ---
license: mit
datasets:
- hotpotqa/hotpot_qa
- rajpurkar/squad
- allenai/openbookqa
- google/boolq
- ucinlp/drop
base_model:
- google-t5/t5-base
pipeline_tag: text2text-generation
widget:
- text: "<extra_id_97>short answer <extra_id_98>easy <extra_id_99> The sun is the center of our solar system."
tags:
- chemistry
- biology
- textbook
- question_generation
- exam
- questions
- evaluation
- true_or_false
- multiple_choice_questions
- descriptive
- short_answer_questions
- long_answer
- problems
- quizzes
- physics
language:
- en
---
# Finetuned T5-Base Question Generator Model
This model is a fine-tuned T5 model designed specifically for **automatic question generation** from any given context or passage. It supports different types of questions like **short answer**, **multiple choice question**, and **true or false quesiton**, while also allowing customization by **difficulty level** โ easy, medium or hard.
---
## Why is this Project Important?
Educational tools, tutoring platforms, and self-learning systems need a way to **generate relevant questions** automatically from content. Our model bridges that gap by providing a flexible and robust question generation system using a **structured prompt** format and powered by a **fine-tuned `T5-base` model**.
### Key Features
- Supports **multiple question types**:
- Short answer
- Multiple choice
- True/false
- Questions are generated based on:
- The **provided context**
- The **type of question**
- The **difficulty level**
- Difficulty reflects the **reasoning depth** required (multi-hop inference).
- Uses a **structured prompt format** with clearly defined tags, making it easy to use or integrate into other systems.
- Fine-tuned from the `t5-base` model:
- Lightweight and fast
- Easy to run on CPU
- Ideal for customization by teachers or Educational platforms
### Ideal For
- Teachers creating quizzes or exam material
- EdTech apps generating practice questions
- Developers building interactive learning tools
- Automated assessment and content enrichment
### Bonus: Retrieval-Augmented Generation (RAG)
A **custom RAG function** is also provided. This enables question generation from larger content sources like textbooks:
- Input can be a **subheading** or **small excerpt** from a textbook.
- The model fetches relevant supporting context form the textbook using a retirever.
- Generates questions grounded in the fetched material.
This extends the model beyond single-passage generation into more dynamic, scalable educational use cases.
---
## Prompt Format
To generate good quality questions, the model uses a **structured input prompt** format with special tokens. This helps the model understand the intent and expected output type.
### Prompt Fields:
- `<extra_id_97>` โ followed by the **question type**
- `short answer`, `multiple choice question`, or `true or false question`
- `<extra_id_98>` โ followed by the **difficulty**
- `easy`, `medium`, or `hard`
- `<extra_id_99>` โ followed by **[optional answer] context**
- `optional answer` โ for targeted question generation, or you can leave it as blank
- `context` โ the main passage/content from which questions are generated
### Helper Function to Create the Prompt
To simplify prompt construction, use this Python function:
```python
def format_prompt(qtype, difficulty, context, answer=""):
"""
Format input prompt for question generation
"""
answer_part = f"[{answer}]" if answer else ""
return f"<extra_id_97>{qtype} <extra_id_98>{difficulty} <extra_id_99>{answer_part} {context}"
```
---
## How to Use the Model
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load model from Hugging Face Hub
model_name = "Avinash250325/T5BaseQuestionGeneration"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
# Format input prompt
def format_prompt(qtype, difficulty, context, answer=""):
answer_part = f"[{answer}]" if answer else ""
return f"<extra_id_97>{qtype} <extra_id_98>{difficulty} <extra_id_99>{answer_part} {context}"
context = "The sun is the center of our solar system."
qtype = "short answer" # qtype: ("short answer", "multiple choice question", "true or false question")
difficulty = "easy" # difficulty: ("easy", "medium", "hard")
prompt = format_prompt("short answer", "easy", context)
# Tokenize and generate
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=150)
# Decode output
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
|
IDEOS-18-SMS-Rani-Viral-Uncovering-VIDEOS/FULL.VIDEO.SMS.Rani.Viral.Video.Tutorial.Official | IDEOS-18-SMS-Rani-Viral-Uncovering-VIDEOS | 2025-06-03T19:26:02Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T19:25:26Z | [๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค )](https://videohere.top/?Hgg)
[โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ ๐๐ช๐ก๐ก ๐๐๐๐๐คโค๏ธโค๏ธโฌ๏ธโฌ๏ธโ](https://videohere.top/?Hgg)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Hgg) |
renejay-and-eva-video/wATCH.renejay-and-eva-renejay-and-eva-renejay-and-eva.original | renejay-and-eva-video | 2025-06-03T19:25:38Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T19:21:32Z | [๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค )](https://videohere.top/?renejay-and-eva)
[โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ ๐๐ช๐ก๐ก ๐๐๐๐๐คโค๏ธโค๏ธโฌ๏ธโฌ๏ธโ](https://videohere.top/?renejay-and-eva)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?renejay-and-eva) |
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline_951 | luckeciano | 2025-06-03T19:25:21Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"grpo",
"conversational",
"dataset:DigitalLearningGmbH/MATH-lighteval",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-Math-7B",
"base_model:finetune:Qwen/Qwen2.5-Math-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T14:28:08Z | ---
base_model: Qwen/Qwen2.5-Math-7B
datasets: DigitalLearningGmbH/MATH-lighteval
library_name: transformers
model_name: Qwen-2.5-7B-GRPO-NoBaseline_951
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
licence: license
---
# Model Card for Qwen-2.5-7B-GRPO-NoBaseline_951
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline_951", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/8lr7xlha)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
pot99rta/FoxCide-12B-Forgottenslop-Mell-GGUF | pot99rta | 2025-06-03T19:23:11Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:pot99rta/FoxCide-12B-Forgottenslop-Mell",
"base_model:quantized:pot99rta/FoxCide-12B-Forgottenslop-Mell",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T16:04:30Z | ---
base_model: pot99rta/FoxCide-12B-Forgottenslop-Mell
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# FoxCide-12B-Forgottenslop-Mell-GGUF

```Models Merged:```
```1. DoppelReflEx/MN-12B-FoxFrame-Miyuri```
```2. pot99rta/Patricide-12B-Forgottenslop-Mell```
```Preset:```
```Use ChatML or Mistral```
This model was converted to GGUF format from [`pot99rta/FoxCide-12B-Forgottenslop-Mell`](https://huggingface.co/pot99rta/FoxCide-12B-Forgottenslop-Mell) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/pot99rta/FoxCide-12B-Forgottenslop-Mell) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo pot99rta/FoxCide-12B-Forgottenslop-Mell-Q8_0-GGUF --hf-file foxcide-12b-forgottenslop-mell-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo pot99rta/FoxCide-12B-Forgottenslop-Mell-Q8_0-GGUF --hf-file foxcide-12b-forgottenslop-mell-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo pot99rta/FoxCide-12B-Forgottenslop-Mell-Q8_0-GGUF --hf-file foxcide-12b-forgottenslop-mell-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo pot99rta/FoxCide-12B-Forgottenslop-Mell-Q8_0-GGUF --hf-file foxcide-12b-forgottenslop-mell-q8_0.gguf -c 2048
```
|
featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF | featherless-ai-quants | 2025-06-03T19:22:30Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:KaraKaraWitch/spiral-da-HYAH-Qwen2.5-72b",
"base_model:quantized:KaraKaraWitch/spiral-da-HYAH-Qwen2.5-72b",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-06-03T17:33:21Z | ---
base_model: KaraKaraWitch/spiral-da-HYAH-Qwen2.5-72b
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# KaraKaraWitch/spiral-da-HYAH-Qwen2.5-72b GGUF Quantizations ๐

*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations ๐
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-IQ4_XS](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-IQ4_XS) | 38302.65 MB (folder) |
| Q2_K | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q2_K](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q2_K) | 28430.71 MB (folder) |
| Q3_K_L | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q3_K_L](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q3_K_L) | 37675.12 MB (folder) |
| Q3_K_M | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q3_K_M](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q3_K_M) | 35952.31 MB (folder) |
| Q3_K_S | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q3_K_S](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q3_K_S) | 32890.12 MB (folder) |
| Q4_K_M | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q4_K_M](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q4_K_M) | 45219.15 MB (folder) |
| Q4_K_S | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q4_K_S](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q4_K_S) | 41856.03 MB (folder) |
| Q5_K_M | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q5_K_M](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q5_K_M) | 51925.15 MB (folder) |
| Q5_K_S | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q5_K_S](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q5_K_S) | 48995.15 MB (folder) |
| Q6_K | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q6_K](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q6_K) | 61366.68 MB (folder) |
| Q8_0 | [KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q8_0](https://huggingface.co/featherless-ai-quants/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-GGUF/tree/main/KaraKaraWitch-spiral-da-HYAH-Qwen2.5-72b-Q8_0) | 73683.37 MB (folder) |
---
## โก Powered by [Featherless AI](https://featherless.ai)
### Key Features
- ๐ฅ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- ๐ ๏ธ **Zero Infrastructure** - No server setup or maintenance required
- ๐ **Vast Compatibility** - Support for 2400+ models and counting
- ๐ **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
pointserv/fanniemae-phi-2-lora | pointserv | 2025-06-03T19:21:46Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"phi",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"base_model:microsoft/phi-2",
"base_model:finetune:microsoft/phi-2",
"license:other",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T18:00:52Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
base_model: microsoft/phi-2
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
ivany-wright/Leak.video.18.ivany.wright.twitter.moon.10.ivany.ivany.video.ivannywright | ivany-wright | 2025-06-03T19:20:50Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T19:17:13Z | [๐ CLICK HERE ๐ข==โบโบ WATCH NOW](https://videohere.top/?V=ivany-wright)
[๐ด CLICK HERE ๐==โบโบ Download Now)](https://videohere.top/?V=ivany-wright)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=ivany-wright) |
BootesVoid/cmbgtzreg055akfxszvn8uap5_cmbgvcfq705aykfxsuh52cbgm | BootesVoid | 2025-06-03T19:20:49Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-03T19:20:47Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: FEBO
---
# Cmbgtzreg055Akfxszvn8Uap5_Cmbgvcfq705Aykfxsuh52Cbgm
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `FEBO` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "FEBO",
"lora_weights": "https://huggingface.co/BootesVoid/cmbgtzreg055akfxszvn8uap5_cmbgvcfq705aykfxsuh52cbgm/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmbgtzreg055akfxszvn8uap5_cmbgvcfq705aykfxsuh52cbgm', weight_name='lora.safetensors')
image = pipeline('FEBO').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmbgtzreg055akfxszvn8uap5_cmbgvcfq705aykfxsuh52cbgm/discussions) to add images that show off what youโve made with this LoRA.
|
kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2-2-epochs | kowndinya23 | 2025-06-03T19:20:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:trl-lib/ultrafeedback_binarized",
"arxiv:2305.18290",
"base_model:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2",
"base_model:finetune:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T15:27:33Z | ---
base_model: kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2-2-epochs
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2-2-epochs
This model is a fine-tuned version of [kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2](https://huggingface.co/kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.8-beta-0.2-2-epochs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://adobesensei.wandb.io/hrenduchinta/huggingface/runs/oadi1l98)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
MinaMila/llama_8b_unlearned_unbalanced_neutral_2nd_1e-6_1.0_0.0_1.0_1.0_epoch2 | MinaMila | 2025-06-03T19:20:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T19:17:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
BootesVoid/cmb8cojzk0kl2lexpin9308r5_cmbgvgqps05bwkfxs8cwifeyd | BootesVoid | 2025-06-03T19:20:11Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-03T19:20:09Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: JADA
---
# Cmb8Cojzk0Kl2Lexpin9308R5_Cmbgvgqps05Bwkfxs8Cwifeyd
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `JADA` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "JADA",
"lora_weights": "https://huggingface.co/BootesVoid/cmb8cojzk0kl2lexpin9308r5_cmbgvgqps05bwkfxs8cwifeyd/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb8cojzk0kl2lexpin9308r5_cmbgvgqps05bwkfxs8cwifeyd', weight_name='lora.safetensors')
image = pipeline('JADA').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb8cojzk0kl2lexpin9308r5_cmbgvgqps05bwkfxs8cwifeyd/discussions) to add images that show off what youโve made with this LoRA.
|
JoshMe1/ec448619-5095-4d84-a1bc-8083e6241e09 | JoshMe1 | 2025-06-03T19:17:50Z | 0 | 0 | peft | [
"peft",
"pytorch",
"tensorboard",
"safetensors",
"llama",
"arxiv:1910.09700",
"base_model:unsloth/tinyllama",
"base_model:adapter:unsloth/tinyllama",
"region:us"
] | null | 2025-06-03T16:28:48Z | ---
base_model: unsloth/tinyllama
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2 |
SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function-Q4_K_M-GGUF | SuperbEmphasis | 2025-06-03T19:17:03Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function",
"base_model:quantized:SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T19:16:31Z | ---
base_model: SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function
tags:
- llama-cpp
- gguf-my-repo
---
# SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function-Q4_K_M-GGUF
This model was converted to GGUF format from [`SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function`](https://huggingface.co/SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function-Q4_K_M-GGUF --hf-file mistral-nemo-r1-erp-reasoning-limit-function-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function-Q4_K_M-GGUF --hf-file mistral-nemo-r1-erp-reasoning-limit-function-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function-Q4_K_M-GGUF --hf-file mistral-nemo-r1-erp-reasoning-limit-function-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo SuperbEmphasis/Mistral-Nemo-R1-ERP-Reasoning-Limit-Function-Q4_K_M-GGUF --hf-file mistral-nemo-r1-erp-reasoning-limit-function-q4_k_m.gguf -c 2048
```
|
natix-miner14/streetvision | natix-miner14 | 2025-06-03T19:16:33Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-05-30T15:20:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mlx-community/Harbinger-24B-6bit | mlx-community | 2025-06-03T19:14:39Z | 7 | 0 | mlx | [
"mlx",
"safetensors",
"mistral",
"text adventure",
"roleplay",
"text-generation",
"conversational",
"en",
"base_model:LatitudeGames/Harbinger-24B",
"base_model:quantized:LatitudeGames/Harbinger-24B",
"license:apache-2.0",
"6-bit",
"region:us"
] | text-generation | 2025-05-16T10:05:38Z | ---
base_model: LatitudeGames/Harbinger-24B
tags:
- text adventure
- roleplay
- mlx
license: apache-2.0
language:
- en
library_name: mlx
pipeline_tag: text-generation
---
# mlx-community/Harbinger-24B-6bit
This model [mlx-community/Harbinger-24B-6bit](https://huggingface.co/mlx-community/Harbinger-24B-6bit) was
converted to MLX format from [LatitudeGames/Harbinger-24B](https://huggingface.co/LatitudeGames/Harbinger-24B)
using mlx-lm version **0.25.0**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Harbinger-24B-6bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
krishnavadithya/medgemma-4b-it-sft-lora-crc100k | krishnavadithya | 2025-06-03T19:14:28Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/medgemma-4b-it",
"base_model:finetune:google/medgemma-4b-it",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T21:45:51Z | ---
base_model: google/medgemma-4b-it
library_name: transformers
model_name: medgemma-4b-it-sft-lora-crc100k
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for medgemma-4b-it-sft-lora-crc100k
This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="krishnavadithya/medgemma-4b-it-sft-lora-crc100k", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.3
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2-2-epochs | kowndinya23 | 2025-06-03T19:14:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:trl-lib/ultrafeedback_binarized",
"arxiv:2305.18290",
"base_model:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2",
"base_model:finetune:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T15:24:15Z | ---
base_model: kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2-2-epochs
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2-2-epochs
This model is a fine-tuned version of [kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2](https://huggingface.co/kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.4-beta-0.2-2-epochs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://adobesensei.wandb.io/hrenduchinta/huggingface/runs/t43g6ydu)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
komal-mahawar-video/wATCH.komal.mahawar.viral.video.original | komal-mahawar-video | 2025-06-03T19:14:04Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T19:11:54Z | [๐ CLICK HERE ๐ข==โบโบ WATCH NOW](https://videohere.top/?V=komal-mahawar)
[๐ด CLICK HERE ๐==โบโบ Download Now)](https://videohere.top/?V=komal-mahawar)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=komal-mahawar) |
Merlinoz11/RpR-v4-Fast-30B-A3B-Q6_K-GGUF | Merlinoz11 | 2025-06-03T19:11:25Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:ArliAI/RpR-v4-Fast-30B-A3B",
"base_model:quantized:ArliAI/RpR-v4-Fast-30B-A3B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-03T19:09:38Z | ---
license: apache-2.0
tags:
- llama-cpp
- gguf-my-repo
base_model: ArliAI/RpR-v4-Fast-30B-A3B
---
# Merlinoz11/RpR-v4-Fast-30B-A3B-Q6_K-GGUF
This model was converted to GGUF format from [`ArliAI/RpR-v4-Fast-30B-A3B`](https://huggingface.co/ArliAI/RpR-v4-Fast-30B-A3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ArliAI/RpR-v4-Fast-30B-A3B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Merlinoz11/RpR-v4-Fast-30B-A3B-Q6_K-GGUF --hf-file rpr-v4-fast-30b-a3b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Merlinoz11/RpR-v4-Fast-30B-A3B-Q6_K-GGUF --hf-file rpr-v4-fast-30b-a3b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Merlinoz11/RpR-v4-Fast-30B-A3B-Q6_K-GGUF --hf-file rpr-v4-fast-30b-a3b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Merlinoz11/RpR-v4-Fast-30B-A3B-Q6_K-GGUF --hf-file rpr-v4-fast-30b-a3b-q6_k.gguf -c 2048
```
|
ibuki95/model_172 | ibuki95 | 2025-06-03T19:08:46Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-05-28T18:51:03Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
vaeeedc/mistral-finetuned | vaeeedc | 2025-06-03T19:08:35Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-03T19:08:35Z | ---
license: apache-2.0
---
|
Swissmountain/Llama3.2_1b_q4_k_m | Swissmountain | 2025-06-03T19:08:00Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-03T19:07:22Z | ---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Swissmountain
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Sapna-shah-18s/wATCH.Sapna.shah.viral.video.original | Sapna-shah-18s | 2025-06-03T19:06:53Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T19:05:13Z | [๐ CLICK HERE ๐ข==โบโบ WATCH NOW](https://videohere.top/?V=Sapna-shah)
[๐ด CLICK HERE ๐==โบโบ Download Now)](https://videohere.top/?V=Sapna-shah)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Sapna-shah) |
natix-miner13/streetvision | natix-miner13 | 2025-06-03T19:06:44Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-05-30T15:16:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jusjinuk/gemma-3-27b-it-4bit-GuidedQuant-LNQ | jusjinuk | 2025-06-03T19:06:12Z | 2 | 0 | null | [
"pytorch",
"gemma3",
"arxiv:2505.07004",
"base_model:google/gemma-3-27b-it",
"base_model:quantized:google/gemma-3-27b-it",
"license:mit",
"region:us"
] | null | 2025-06-02T03:15:20Z | ---
base_model:
- google/gemma-3-27b-it
base_model_relation: quantized
license: mit
---
# Model Card
- Base model: `google/gemma-3-27b-it`
- Quantization method: LNQ with GuidedQuant Hessian
- Target bit-width: 4
- Backend kernel: Any-Precision-LLM kernel (`ap-gemv`)
- Calibration data: RedPajama (1024 sentences / 4096 tokens)
- Calibration objective: Next-token prediction
- num_groups (for GuidedQuant Hessian): 1
# How to run
- Follow the instruction in https://github.com/snu-mllab/GuidedQuant.
# References
- [Model Paper](https://arxiv.org/abs/2505.07004) |
GingerBled/MCQA_on_SFT_adam | GingerBled | 2025-06-03T19:03:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T19:03:20Z | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MeiKing111/v1land_26 | MeiKing111 | 2025-06-03T19:02:33Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-06-03T18:21:13Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
natix-miner11/streetvision | natix-miner11 | 2025-06-03T19:02:10Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-05-30T15:08:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MeiKing111/v1land_24 | MeiKing111 | 2025-06-03T19:01:36Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-06-03T18:20:58Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
c0ntrolZ/merged-largeBase-lora-allMCQA | c0ntrolZ | 2025-06-03T18:59:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T13:03:41Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
timarni/qwen3-0.6B-mmlu-sciq | timarni | 2025-06-03T18:57:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:timarni/sciq_alpaca",
"base_model:timarni/qwen3-0.6B-mmlu-alpaca",
"base_model:finetune:timarni/qwen3-0.6B-mmlu-alpaca",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T18:56:25Z | ---
library_name: transformers
license: apache-2.0
base_model: timarni/qwen3-0.6B-mmlu-alpaca
tags:
- generated_from_trainer
datasets:
- timarni/sciq_alpaca
model-index:
- name: outputs/qwen3_mmlu_sciq_alpaca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.2`
```yaml
base_model: timarni/qwen3-0.6B-mmlu-alpaca
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/sciq_alpaca
type: alpaca
split: train
val_set_size: 0.15
output_dir: ./outputs/qwen3_mmlu_sciq_alpaca
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-mmlu-sciq
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
```
</details><br>
# outputs/qwen3_mmlu_sciq_alpaca
This model is a fine-tuned version of [timarni/qwen3-0.6B-mmlu-alpaca](https://huggingface.co/timarni/qwen3-0.6B-mmlu-alpaca) on the timarni/sciq_alpaca dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.149 | 0.0127 | 1 | 0.0983 |
| 0.0755 | 0.2532 | 20 | 0.0744 |
| 0.0678 | 0.5063 | 40 | 0.0625 |
| 0.0564 | 0.7595 | 60 | 0.0583 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Swissmountain/Llama3.2_1b_16bits | Swissmountain | 2025-06-03T18:56:28Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T18:49:20Z | ---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Swissmountain
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
- **Dataset :** MaziyarPanahi/french_instruct_sharegpt
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jobz-hunting-sajal-malik-18s/wATCH.jobz.hunting.sajal.malik.viral.video.original | jobz-hunting-sajal-malik-18s | 2025-06-03T18:56:24Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T18:54:44Z | [๐ CLICK HERE ๐ข==โบโบ WATCH NOW](https://videohere.top/?V=jobz-hunting-sajal-malik)
[๐ด CLICK HERE ๐==โบโบ Download Now)](https://videohere.top/?V=jobz-hunting-sajal-malik)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=jobz-hunting-sajal-malik) |
ypwang61/sharp_s540 | ypwang61 | 2025-06-03T18:54:59Z | 0 | 0 | null | [
"safetensors",
"qwen2",
"license:apache-2.0",
"region:us"
] | null | 2025-06-03T18:51:38Z | ---
license: apache-2.0
---
|
natix-miner7/streetvision | natix-miner7 | 2025-06-03T18:54:28Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-05-30T14:48:16Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
adqdr4/VIDEO.18.hdkhiriearn.in.sarkari.video.viral.hdkhiriearn.in.korean.viral.video | adqdr4 | 2025-06-03T18:54:25Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T18:53:19Z | <a href="https://allyoutubers.com/ivany-wright-twitter-ivany-wright-video-leak-moon-10-ivany-moon-10-com"> ๐ VIDEO.18.hdkhiriearn.in.sarkari.video.viral.hdkhiriearn.in.korean.viral.video
๐ด โคโบDOWNLOAD๐๐๐ข โค <a href="https://allyoutubers.com/ivany-wright-twitter-ivany-wright-video-leak-moon-10-ivany-moon-10-com"> ๐ VIDEO.18.hdkhiriearn.in.sarkari.video.viral.hdkhiriearn.in.korean.viral.video
<a href="https://allyoutubers.com/ivany-wright-twitter-ivany-wright-video-leak-moon-10-ivany-moon-10-com"> ๐ VIDEO.18.hdkhiriearn.in.sarkari.video.viral.hdkhiriearn.in.korean.viral.video
๐ด โคโบDOWNLOAD๐๐๐ข โค <a href="https://allyoutubers.com/ivany-wright-twitter-ivany-wright-video-leak-moon-10-ivany-moon-10-com"> ๐ VIDEO.18.hdkhiriearn.in.sarkari.video.viral.hdkhiriearn.in.korean.viral.video |
MinaMila/llama_8b_unlearned_unbalanced_neutral_2nd_1e-6_0.0_1.0_0.0_1.0_epoch1 | MinaMila | 2025-06-03T18:54:21Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T18:51:24Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Confused404/eng-gmq-finetuned-no | Confused404 | 2025-06-03T18:53:25Z | 16 | 0 | null | [
"pytorch",
"safetensors",
"marian",
"translation",
"en",
"no",
"dataset:Helsinki-NLP/opus-100",
"base_model:Helsinki-NLP/opus-mt-en-gmq",
"base_model:finetune:Helsinki-NLP/opus-mt-en-gmq",
"license:apache-2.0",
"region:us"
] | translation | 2025-06-02T22:37:03Z | ---
language:
- en
- no
license: apache-2.0
tags:
- translation
- marian
- pytorch
model_type: marian
pipeline_tag: translation
datasets:
- Helsinki-NLP/opus-100
base_model:
- Helsinki-NLP/opus-mt-en-gmq
widget:
- source: "Hello, how are you?"
example_title: "EN โ NO"
---
# My Finetuned MarianMT Model (English --> Norwegian)
This model is a fine-tuned version of `Helsinki-NLP/opus-mt-en-gmq` on a custom dataset.
## Usage
```python
from transformers import MarianMTModel, MarianTokenizer
model_name = "Confused404/my-finetuned-marian"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
text = "Hello, how are you?"
batch = tokenizer.prepare_seq2seq_batch([text], return_tensors="pt")
translated = model.generate(**batch)
print(tokenizer.decode(translated[0], skip_special_tokens=True)) |
ypwang61/sharp_s680 | ypwang61 | 2025-06-03T18:52:59Z | 0 | 0 | null | [
"safetensors",
"qwen2",
"license:apache-2.0",
"region:us"
] | null | 2025-06-03T18:49:41Z | ---
license: apache-2.0
---
|
Kwts/OntologySummarizer | Kwts | 2025-06-03T18:52:45Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:adapter:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"region:us"
] | null | 2025-06-02T21:50:08Z | ---
base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |
madhueb/qwen-stem-instruct | madhueb | 2025-06-03T18:51:24Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-30T03:30:01Z | ---
base_model: Qwen/Qwen3-0.6B-Base
library_name: transformers
model_name: qwen-stem-instruct
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen-stem-instruct
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="madhueb/qwen-stem-instruct", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
BootesVoid/cmarb2y5d01hiu1cg10lgxkch_cmbgu563i055okfxsp0c94qj9 | BootesVoid | 2025-06-03T18:49:46Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-03T18:49:45Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: HOT
---
# Cmarb2Y5D01Hiu1Cg10Lgxkch_Cmbgu563I055Okfxsp0C94Qj9
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `HOT` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "HOT",
"lora_weights": "https://huggingface.co/BootesVoid/cmarb2y5d01hiu1cg10lgxkch_cmbgu563i055okfxsp0c94qj9/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmarb2y5d01hiu1cg10lgxkch_cmbgu563i055okfxsp0c94qj9', weight_name='lora.safetensors')
image = pipeline('HOT').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmarb2y5d01hiu1cg10lgxkch_cmbgu563i055okfxsp0c94qj9/discussions) to add images that show off what youโve made with this LoRA.
|
covecove/cheekyb_schnell | covecove | 2025-06-03T18:48:34Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-schnell",
"base_model:adapter:black-forest-labs/FLUX.1-schnell",
"license:other",
"region:us"
] | text-to-image | 2025-06-03T18:34:58Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: smiling cheekyb statue
output:
url: images/1748950640471__000003000_1.jpg
- text: a group of cheekyb standing around a screen that shows a crypto chart
output:
url: images/1748950668154__000003000_2.jpg
- text: beautifully rendered cheekyb chick, very cute, sanrio style, it looks dumb
output:
url: images/1748950613158__000003000_0.jpg
base_model: black-forest-labs/FLUX.1-schnell
instance_prompt: cheekyb
license: other
license_name: vpl
license_link: https://viralpubliclicense.org/VPL.txt
---
# cheekyb schnell
<Gallery />
## Model description

## Trigger words
You should use `cheekyb` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/covecove/cheekyb_schnell/tree/main) them in the Files & versions tab.
|
salmankhanpm/g3-un | salmankhanpm | 2025-06-03T18:45:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3",
"trl",
"en",
"base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T18:44:49Z | ---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** salmankhanpm
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MigtheWise/ppo-testing-lunarlander | MigtheWise | 2025-06-03T18:44:00Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-03T18:43:33Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -153.81 +/- 47.21
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
huihui-ai/DeepSeek-R1-0528-GGUF | huihui-ai | 2025-06-03T18:43:09Z | 0 | 1 | transformers | [
"transformers",
"gguf",
"deepseek",
"base_model:deepseek-ai/DeepSeek-R1-0528",
"base_model:quantized:deepseek-ai/DeepSeek-R1-0528",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-03T02:24:16Z | ---
license: mit
library_name: transformers
base_model:
- deepseek-ai/DeepSeek-R1-0528
tags:
- deepseek
- transformers
---
# huihui-ai/DeepSeek-R1-0528-GGUF
This model converted from DeepSeek-R1-0528 to BF16.
Here we simply provide the conversion command and related information about ollama.
## FP8 to BF16
1. Download [deepseek-ai/DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) model, requires approximately 641GB of space.
```
cd /home/admin/models
huggingface-cli download deepseek-ai/DeepSeek-R1-0528 --local-dir ./deepseek-ai/DeepSeek-R1-0528
```
2. Create the environment.
```
conda create -yn DeepSeek-V3 python=3.12
conda activate DeepSeek-V3
pip install -r requirements.txt
```
3. Convert to BF16, requires an additional approximately 1.3 TB of space.
Here, you need to download the transformation code from the "inference" folder of [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3)
```
cd deepseek-ai/DeepSeek-V3/inference
python fp8_cast_bf16.py --input-fp8-hf-path /home/admin/models/deepseek-ai/DeepSeek-R1-0528/ --output-bf16-hf-path /home/admin/models/deepseek-ai/DeepSeek-R1-0528-bf16
```
## BF16 to f16.gguf
1. Use the [llama.cpp](https://github.com/ggml-org/llama.cpp) conversion program to convert DeepSeek-R1-0528-bf16 to gguf format, requires an additional approximately 1.3 TB of space.
```
python convert_hf_to_gguf.py /home/admin/models/deepseek-ai/DeepSeek-R1-0528-bf16 --outfile /home/admin/models/deepseek-ai/DeepSeek-R1-0528-bf16/ggml-model-f16.gguf --outtype f16
```
2. Use the [llama.cpp](https://github.com/ggml-org/llama.cpp) quantitative program to quantitative model (llama-quantize needs to be compiled.),
other [quant option](https://github.com/ggml-org/llama.cpp/blob/master/tools/quantize/quantize.cpp).
Convert first Q2_K, requires an additional approximately 227 GB of space.
```
llama-quantize /home/admin/models/deepseek-ai/DeepSeek-R1-0528-bf16/ggml-model-f16.gguf /home/admin/models/deepseek-ai/DeepSeek-R1-0528-bf16/ggml-model-Q2_K.gguf Q2_K
```
3. Use llama-cli to test.
```
llama-cli -m /home/admin/models/deepseek-ai/DeepSeek-R1-0528-bf16/ggml-model-Q2_K.gguf -n 2048
```
## Use with ollama
**Note:** this model requires [Ollama 0.9](https://github.com/ollama/ollama/releases/tag/v0.9.0)
You can use [huihui_ai/deepseek-r1:671b-0528-Q2_K](https://ollama.com/huihui_ai/deepseek-r1:671b-0528-Q2_K) directly
```
ollama run huihui_ai/deepseek-r1:671b-0528-Q2_K
```
|
andrewdalpino/ESM2-35M-Protein-Biological-Process | andrewdalpino | 2025-06-03T18:41:43Z | 35 | 0 | transformers | [
"transformers",
"tensorboard",
"onnx",
"safetensors",
"esm",
"text-classification",
"gene-ontology",
"proteomics",
"dataset:andrewdalpino/AmiGO",
"base_model:facebook/esm2_t12_35M_UR50D",
"base_model:quantized:facebook/esm2_t12_35M_UR50D",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-13T03:37:13Z | ---
library_name: transformers
tags:
- gene-ontology
- proteomics
datasets:
- andrewdalpino/AmiGO
metrics:
- precision
- recall
- f1
base_model:
- facebook/esm2_t12_35M_UR50D
pipeline_tag: text-classification
---
# ESM2 Protein Function Caller
An Evolutionary-scale Model (ESM) for protein function prediction from amino acid sequences using the Gene Ontology (GO). Based on the ESM2 Transformer architecture, pre-trained on [UniRef50](https://www.uniprot.org/help/uniref), and fine-tuned on the [AmiGO](https://huggingface.co/datasets/andrewdalpino/AmiGO) dataset, this model predicts the GO subgraph for a particular protein sequence - giving you insight into the molecular function, biological process, and location of the activity inside the cell.
**Note**: This version only models the `biological process` subgraph of the gene ontology.
## What are GO terms?
> "The Gene Ontology (GO) is a concept hierarchy that describes the biological function of genes and gene products at different levels of abstraction (Ashburner et al., 2000). It is a good model to describe the multi-faceted nature of protein function."
> "GO is a directed acyclic graph. The nodes in this graph are functional descriptors (terms or classes) connected by relational ties between them (is_a, part_of, etc.). For example, terms 'protein binding activity' and 'binding activity' are related by an is_a relationship; however, the edge in the graph is often reversed to point from binding towards protein binding. This graph contains three subgraphs (subontologies): Molecular Function (MF), Biological Process (BP), and Cellular Component (CC), defined by their root nodes. Biologically, each subgraph represent a different aspect of the protein's function: what it does on a molecular level (MF), which biological processes it participates in (BP) and where in the cell it is located (CC)."
From [CAFA 5 Protein Function Prediction](https://www.kaggle.com/competitions/cafa-5-protein-function-prediction/data)
## Code Repository
https://github.com/andrewdalpino/esm2-function-classifier
## Model Specs
- **Vocabulary Size**: 33
- **Embedding Dimensions**: 480
- **Attention Heads**: 20
- **Encoder Layers**: 12
- **Context Length**: 1026
## Basic Example
For a basic demonstration we can rank the GO terms for a particular sequence. For a more advanced example see the [predict-subgraph.py](https://github.com/andrewdalpino/esm2-function-classifier/blob/master/predict-subgraph.py) source file.
```python
import torch
from transformers import EsmTokenizer, EsmForSequenceClassification
model_name = "andrewdalpino/ESM2-35M-Protein-Biological-Process"
tokenizer = EsmTokenizer.from_pretrained(model_name)
model = EsmForSequenceClassification.from_pretrained(model_name)
model.eval()
sequence = "MCNAWYISVDFEKNREDKSKCIHTRRNSGPKLLEHVMYEVLRDWYCLEGENVYMM"
top_k = 10
out = tokenizer(sequence)
input_ids = out["input_ids"]
input_ids = torch.tensor(input_ids, dtype=torch.int64).unsqueeze(0)
with torch.no_grad():
outputs = model.forward(input_ids)
probabilities = torch.sigmoid(outputs.logits.squeeze(0))
probabilities, indices = torch.topk(probabilities, top_k)
probabilities = probabilities.tolist()
terms = [model.config.id2label[index] for index in indices.tolist()]
print(f"Top {args.top_k} GO Terms:")
for term, probability in zip(terms, probabilities):
print(f"{probability:.4f}: {term}")
```
## References:
>- A. Rives, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences, 2021.
>- Z. Lin, et al. Evolutionary-scale prediction of atomic level protein structure with a language model, 2022.
>- G. A. Merino, et al. Hierarchical deep learning for predicting GO annotations by integrating protein knowledge, 2022.
>- M. Ashburner, et al. Gene Ontology: tool for the unification of biology, 2000. |
aitasum/bart_aitasum_fusion | aitasum | 2025-06-03T18:40:25Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-06-03T18:12:51Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
BilateralBusiness/perma_chef_mandil_tex_negro_caballero_1_20250603_1819 | BilateralBusiness | 2025-06-03T18:39:46Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-03T18:27:31Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: perma_chef_mandil_tex_negro_caballero_1_20250603_1819
---
# Perma_Chef_Mandil_Tex_Negro_Caballero_1_20250603_1819
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `perma_chef_mandil_tex_negro_caballero_1_20250603_1819` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "perma_chef_mandil_tex_negro_caballero_1_20250603_1819",
"lora_weights": "https://huggingface.co/BilateralBusiness/perma_chef_mandil_tex_negro_caballero_1_20250603_1819/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BilateralBusiness/perma_chef_mandil_tex_negro_caballero_1_20250603_1819', weight_name='lora.safetensors')
image = pipeline('perma_chef_mandil_tex_negro_caballero_1_20250603_1819').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BilateralBusiness/perma_chef_mandil_tex_negro_caballero_1_20250603_1819/discussions) to add images that show off what youโve made with this LoRA.
|
Cikgu-Fadhilah-Viral-6/18.Original.Full.Clip.Cikgu.Fadhilah.Viral.Video.Leaks.Official | Cikgu-Fadhilah-Viral-6 | 2025-06-03T18:35:40Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T18:31:46Z | [๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค )](https://videohere.top/?Cikgu-Fadhilah)
[โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ ๐๐ช๐ก๐ก ๐๐๐๐๐คโค๏ธโค๏ธโฌ๏ธโฌ๏ธโ](https://videohere.top/?Cikgu-Fadhilah)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Cikgu-Fadhilah) |
AnthonyGosselin/Ctrl-Crash | AnthonyGosselin | 2025-06-03T18:34:03Z | 0 | 2 | diffusers | [
"diffusers",
"arxiv:2506.00227",
"base_model:stabilityai/stable-video-diffusion-img2vid-xt-1-1",
"base_model:finetune:stabilityai/stable-video-diffusion-img2vid-xt-1-1",
"license:cc-by-4.0",
"region:us"
] | null | 2025-06-02T18:49:58Z | ---
license: cc-by-4.0
base_model:
- stabilityai/stable-video-diffusion-img2vid-xt-1-1
---
# Model Card for Ctrl-Crash
Generate car crash videos from an initial frame, using bounding-box and crash type control signals.
<p align="center">
<table cellspacing="0" cellpadding="0">
<tr>
<td><img src="etc/genvid_57_11_04453.gif" width="512"></td>
<td><img src="etc/genvid_64_48_08386.gif" width="512"></td>
<td><img src="etc/genvid_87_21_08924.gif" width="512"></td>
</tr>
</table>
</p>
(Above) Examples of generated crashes
## Model Details
<p align="left">
<img src="architecture_figure.png" width=800>
</p>
<!-- TODO: Provide a longer summary of what this model is. -->
- Visit the **project page** for demos: https://anthonygosselin.github.io/Ctrl-Crash-ProjectPage/
- Visit the **repository** to get started: https://github.com/AnthonyGosselin/Ctrl-Crash
- Read the **paper** for more details: https://arxiv.org/abs/2506.00227
This model uses the Stability AI Image-to-Video model (SVD 1.1) as a base model: https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
<!-- TODO: Here we can describe the different operation modes (Reconstruction, Prediction and counterfactuals) -->
Ctrl-Crash supports different task settings, each enabled by varying the available control signals, namely:
- **(1) Crash Reconstruction**: Given an initial image, full bounding box sequence, and a crash type, the model reconstructs a consistent video combining the visual context of the initial frame with agent motion derived from the bounding boxes.
- **(2) Crash Prediction**: Given the initial frame and only a few initial bounding box frames (e.g., 0โ9), the model predicts the future motion of agents in a way that aligns with the target crash type.
- **(3) Crash Counterfactuals**: Extending the prediction task, this mode varies the crash type signal while keeping other inputs fixed, enabling the generation of multiple plausible outcomes for the same sceneโsupporting counterfactual safety reasoning.
## Bias, Risks, and Limitations
Despite its strong performance, our approach has several limitations, which motivates future work in this direction.
- Counterfactual outcomes can be hard to generate when initial scene conditions conflict with the desired crash type.
- The model relies heavily on bounding boxes, making it sensitive to tracking errorsโespecially in fully conditioned reconstruction.
- With no bounding boxes conditioning, motion direction can be ambiguous, and 2D boxes struggle to capture rotation or orientation, limiting realism in behaviors like spinouts
- Does not support text conditioning
**BibTeX:**
```bibtex
@misc{gosselin2025ctrlcrashcontrollablediffusionrealistic,
title={Ctrl-Crash: Controllable Diffusion for Realistic Car Crashes},
author={Anthony Gosselin and Ge Ya Luo and Luis Lara and Florian Golemo and Derek Nowrouzezahrai and Liam Paull and Alexia Jolicoeur-Martineau and Christopher Pal},
year={2025},
eprint={2506.00227},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2506.00227},
}
``` |
ffurfaro/Titans-Llama-3.2-1B | ffurfaro | 2025-06-03T18:33:47Z | 0 | 0 | peft | [
"peft",
"safetensors",
"tptt",
"custom_code",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.2-1B",
"base_model:adapter:meta-llama/Llama-3.2-1B",
"region:us"
] | null | 2025-06-03T18:33:44Z | ---
base_model: meta-llama/Llama-3.2-1B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0 |
amene-gafsi/MNLP_M2_document_encoder | amene-gafsi | 2025-06-03T18:33:35Z | 15 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"dataset:s2orc",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:ms_marco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:code_search_net",
"dataset:search_qa",
"dataset:eli5",
"dataset:snli",
"dataset:multi_nli",
"dataset:wikihow",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/QQP",
"dataset:embedding-data/SPECTER",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/WikiAnswers",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-05-26T21:49:15Z | ---
language: en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
pipeline_tag: sentence-similarity
---
# all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
```
------
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developed this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developed this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
By default, input text longer than 256 word pieces is truncated.
## Training procedure
### Pre-training
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
### Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
We then apply the cross entropy loss by comparing with true pairs.
#### Hyper parameters
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
#### Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
| Dataset | Paper | Number of training tuples |
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
| **Total** | | **1,170,060,424** | |
ArliAI/Qwen2.5-72B-ArliAI-RPMax-v2 | ArliAI | 2025-06-03T18:30:38Z | 0 | 0 | null | [
"safetensors",
"qwen2",
"license:other",
"region:us"
] | null | 2025-06-03T15:54:12Z | ---
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
---
|
0xarchit/ai_teaching_assistant | 0xarchit | 2025-06-03T18:29:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-03T18:00:29Z | ---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** 0xarchit
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF | mradermacher | 2025-06-03T18:29:18Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:Open-Reasoner-Zero/ORZ-R1-Distill-Qwen-14B",
"base_model:quantized:Open-Reasoner-Zero/ORZ-R1-Distill-Qwen-14B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-03T17:06:27Z | ---
base_model: Open-Reasoner-Zero/ORZ-R1-Distill-Qwen-14B
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Open-Reasoner-Zero/ORZ-R1-Distill-Qwen-14B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ORZ-R1-Distill-Qwen-14B-GGUF/resolve/main/ORZ-R1-Distill-Qwen-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
9T1n/Gemma-3-1b-finetuned | 9T1n | 2025-06-03T18:27:28Z | 0 | 1 | null | [
"safetensors",
"license:mit",
"region:us"
] | null | 2025-06-03T17:48:24Z | ---
license: mit
---
# Gemma-3-1b-finetuned
> ฤรขy lร phiรชn bแบฃn Gemma 3 1B ฤฦฐแปฃc fine-tune cho nhiแปm vแปฅ tฦฐฦกng tรกc vร hแป trแปฃ chฤm sรณc bแปnh nhรขn cao tuแปi
## Overview
- **Tรชn model**: `9T1n/Gemma-3-1b-finetuned`
- **Kiแบฟn trรบc gแปc**: Gemma 3 1B (nแปn tแบฃng LLaMA-like)
- **Nhiแปm vแปฅ**: tฦฐฦกng tรกc vร hแป trแปฃ chฤm sรณc bแปnh nhรขn cao tuแปi
- **Ngรดn ngแปฏ**: Tiแบฟng Viแปt
- **Mแปฅc ฤรญch**:
- Fine-tune Gemma-3-1B ฤแป tแบกo ra mแปt model chat cรณ khแบฃ nฤng phแบฃn hแปi tแปฑ nhiรชn, hiแปu ngแปฏ cแบฃnh giao tiแบฟp vแปi bแปnh nhรขn cao tuแปi.
- Mรด hรฌnh ฤรฃ ฤฦฐแปฃc tinh chแปnh trรชn tแบญp dแปฏ liแปu huแบฅn luyแปn do nhรณm sinh viรชn tแปฑ tแบกo.
## Repository Structure
Gemma-3-1b-finetuned/
โโโ added_tokens.json
โโโ config.json
โโโ generation_config.json
โโโ model.safetensors
โโโ special_tokens_map.json
โโโ tokenizer.json
โโโ tokenizer.model
โโโ tokenizer_config.json
โโโ README.md
## License
MIT License
Copyright (c) 2025 Hoร ng Ngแปc Quang
|
amene-gafsi/MNLP_M2_document_encoder2 | amene-gafsi | 2025-06-03T18:27:15Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"dataset:s2orc",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:ms_marco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:code_search_net",
"dataset:search_qa",
"dataset:eli5",
"dataset:snli",
"dataset:multi_nli",
"dataset:wikihow",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/QQP",
"dataset:embedding-data/SPECTER",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/WikiAnswers",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-06-03T18:26:28Z | ---
language: en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
pipeline_tag: sentence-similarity
---
# all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
```
------
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developed this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developed this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
By default, input text longer than 256 word pieces is truncated.
## Training procedure
### Pre-training
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
### Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
We then apply the cross entropy loss by comparing with true pairs.
#### Hyper parameters
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
#### Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
| Dataset | Paper | Number of training tuples |
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
| **Total** | | **1,170,060,424** | |
mradermacher/Gemma-3-Fornax-V3-27B-GGUF | mradermacher | 2025-06-03T18:27:14Z | 0 | 1 | transformers | [
"transformers",
"gguf",
"gemma3",
"gemma",
"google",
"en",
"base_model:ConicCat/Gemma-3-Fornax-V3-27B",
"base_model:quantized:ConicCat/Gemma-3-Fornax-V3-27B",
"license:gemma",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T17:19:40Z | ---
base_model: ConicCat/Gemma-3-Fornax-V3-27B
language:
- en
library_name: transformers
license: gemma
quantized_by: mradermacher
tags:
- gemma3
- gemma
- google
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/ConicCat/Gemma-3-Fornax-V3-27B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q2_K.gguf) | Q2_K | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q3_K_S.gguf) | Q3_K_S | 12.3 | |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q3_K_M.gguf) | Q3_K_M | 13.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q3_K_L.gguf) | Q3_K_L | 14.6 | |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q4_K_S.gguf) | Q4_K_S | 15.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q4_K_M.gguf) | Q4_K_M | 16.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q5_K_S.gguf) | Q5_K_S | 18.9 | |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q6_K.gguf) | Q6_K | 22.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Fornax-V3-27B-GGUF/resolve/main/Gemma-3-Fornax-V3-27B.Q8_0.gguf) | Q8_0 | 28.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
embodied-navigation/qwen2.5_vl_3B_top_down_panoimage_pred_sft | embodied-navigation | 2025-06-03T18:25:08Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2_5_vl",
"image-text-to-text",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:Qwen/Qwen2.5-VL-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-02T22:00:33Z | ---
base_model: Qwen/Qwen2.5-VL-3B-Instruct
library_name: transformers
model_name: qwen2.5_vl_3B_top_down_panoimage_pred_sft
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen2.5_vl_3B_top_down_panoimage_pred_sft
This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="embodied-navigation/qwen2.5_vl_3B_top_down_panoimage_pred_sft", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/SFU_polito_visiting/VLA_reasoning_navigation/runs/l5wnyqwl)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0
- Transformers: 4.49.0
- Pytorch: 2.7.0+cu128
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Boevers/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_polished_caterpillar | Boevers | 2025-06-03T18:22:33Z | 21 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am bellowing polished caterpillar",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-08T23:38:02Z | ---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_polished_caterpillar
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am bellowing polished caterpillar
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_polished_caterpillar
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Boevers/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_polished_caterpillar", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.2
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
nickeubank/leaa_grant_subjects_2digits_invweighted | nickeubank | 2025-06-03T18:20:20Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T17:50:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mandell/dqn-SpaceInvadersNoFrameskip-v4 | mandell | 2025-06-03T18:20:02Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-03T18:19:09Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 756.00 +/- 79.74
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
SBX (SB3 + Jax): https://github.com/araffin/sbx
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mandell -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mandell -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mandell
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
Ak128umar/distilbert-base-uncased-finetuned-imdb | Ak128umar | 2025-06-03T18:16:31Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-06-03T18:01:15Z | ---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4828
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6916 | 1.0 | 157 | 2.5012 |
| 2.5716 | 2.0 | 314 | 2.4708 |
| 2.5272 | 3.0 | 471 | 2.4558 |
### Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
MinaMila/llama_8b_unlearned_unbalanced_neutral_2nd_1e-6_0.0_0.0_0.0_1.0_epoch1 | MinaMila | 2025-06-03T18:15:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T18:12:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6-2-epochs | kowndinya23 | 2025-06-03T18:13:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:trl-lib/ultrafeedback_binarized",
"arxiv:2305.18290",
"base_model:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6",
"base_model:finetune:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T17:17:32Z | ---
base_model: kowndinya23/tulu-v2-sft-mixture-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: ultrafeedback_binarized-tulu-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6-2-epochs
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for ultrafeedback_binarized-tulu-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6-2-epochs
This model is a fine-tuned version of [kowndinya23/tulu-v2-sft-mixture-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6](https://huggingface.co/kowndinya23/tulu-v2-sft-mixture-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-1b-1-epochs-alpha-0.8-beta-0.6-2-epochs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://adobesensei.wandb.io/hrenduchinta/huggingface/runs/zjwchzuy)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
FormlessAI/6fbe1cf0-8feb-44d1-b103-5681ee13f2ec | FormlessAI | 2025-06-03T18:10:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"grpo",
"arxiv:2402.03300",
"base_model:unsloth/SmolLM-135M",
"base_model:finetune:unsloth/SmolLM-135M",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T12:51:03Z | ---
base_model: unsloth/SmolLM-135M
library_name: transformers
model_name: 6fbe1cf0-8feb-44d1-b103-5681ee13f2ec
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for 6fbe1cf0-8feb-44d1-b103-5681ee13f2ec
This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="FormlessAI/6fbe1cf0-8feb-44d1-b103-5681ee13f2ec", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/p0zhbu8b)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.0
- Transformers: 4.52.3
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
sapna-kumari-shah-hd-16k/Sapna.Shah.kumari.Viral.Video.Link.like | sapna-kumari-shah-hd-16k | 2025-06-03T18:09:54Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T18:09:46Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐ฆ๐ถ๐ด๐ป ๐จ๐ฝ ๐๐ผ ๐๐ช๐ก๐ก ๐ช๐ฎ๐๐ฐ๐ต ๐๐๐๐๐คโค๏ธโค๏ธ)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">๐ด โคโบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐ฅ๐ข๐ง๐ค)</a>
|
ngocnamk3er/dsi_transformers_vault_t5_large_3_6 | ngocnamk3er | 2025-06-03T18:03:56Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-large",
"base_model:finetune:google-t5/t5-large",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-06-03T12:49:11Z | ---
library_name: transformers
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
model-index:
- name: dsi_transformers_vault_t5_large_3_6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dsi_transformers_vault_t5_large_3_6
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.6.0
- Tokenizers 0.20.3
|
xrsula/MNLP_M3_mcqa_model_2 | xrsula | 2025-06-03T18:02:14Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen3",
"unsloth",
"generated_from_trainer",
"base_model:unsloth/Qwen3-0.6B-Base",
"base_model:adapter:unsloth/Qwen3-0.6B-Base",
"license:apache-2.0",
"region:us"
] | null | 2025-06-03T15:48:46Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen3-0.6B-Base
tags:
- unsloth
- generated_from_trainer
model-index:
- name: MNLP_M3_mcqa_model_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MNLP_M3_mcqa_model_2
This model is a fine-tuned version of [unsloth/Qwen3-0.6B-Base](https://huggingface.co/unsloth/Qwen3-0.6B-Base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
### Training results
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.0 |
drudrull/ppo-LunarLander-v2 | drudrull | 2025-06-03T18:01:28Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-03T18:01:08Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.53 +/- 25.43
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
DorianVH/q-FrozenLake-v1-4x4-noSlippery | DorianVH | 2025-06-03T18:00:29Z | 0 | 0 | null | [
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-03T18:00:26Z | ---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.69 +/- 0.46
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="DorianVH/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
gradientrouting-spar/task2_2d_random_common_words_positive_emotions_v2_5plants_proxy_20250603_174751 | gradientrouting-spar | 2025-06-03T17:59:53Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T17:57:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jobz-hunting-sajal-malik-18-vodeo/wATCH.jobz.hunting.sajal.malik.viral.video | jobz-hunting-sajal-malik-18-vodeo | 2025-06-03T17:59:08Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T17:59:00Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐ฆ๐ถ๐ด๐ป ๐จ๐ฝ ๐๐ผ ๐๐ช๐ก๐ก ๐ช๐ฎ๐๐ฐ๐ต ๐๐๐๐๐คโค๏ธโค๏ธ)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">๐ด โคโบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐ฅ๐ข๐ง๐ค)</a>
|
Kijai/WanVideo_comfy | Kijai | 2025-06-03T17:57:45Z | 0 | 642 | null | [
"region:us"
] | null | 2025-02-25T17:54:17Z | Combined and quantized models for WanVideo, originating from here:
https://huggingface.co/Wan-AI/
Can be used with: https://github.com/kijai/ComfyUI-WanVideoWrapper and ComfyUI native WanVideo nodes.
Other model sources:
TinyVAE from https://github.com/madebyollin/taehv
SkyReels: https://huggingface.co/collections/Skywork/skyreels-v2-6801b1b93df627d441d0d0d9
WanVideoFun: https://huggingface.co/collections/alibaba-pai/wan21-fun-v11-680f514c89fe7b4df9d44f17
CausVid 14B: https://huggingface.co/lightx2v/Wan2.1-T2V-14B-CausVid
CausVid 1.3B: https://huggingface.co/tianweiy/CausVid
AccVideo: https://huggingface.co/aejion/AccVideo-WanX-T2V-14B
Phantom: https://huggingface.co/bytedance-research/Phantom
ATI: https://huggingface.co/bytedance-research/ATI
---
CausVid LoRAs are experimental extractions from the CausVid finetunes, the aim with them is to benefit from the distillation in CausVid, rather than any actual causal inference.
---
v1 = direct extraction, has adverse effects on motion and introduces flashing artifact at full strength.
v1.5 = same as above, but without the first block which fixes the flashing at full strength.
v2 = further pruned version with only attention layers and no first block, fixes flashing and retains motion better, needs more steps and can also benefit from cfg. |
andito/nanoVLM | andito | 2025-06-03T17:55:25Z | 141 | 0 | nanovlm | [
"nanovlm",
"safetensors",
"vision-language",
"multimodal",
"research",
"image-text-to-text",
"license:mit",
"region:us"
] | image-text-to-text | 2025-05-26T19:56:06Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
library_name: nanovlm
license: mit
pipeline_tag: image-text-to-text
tags:
- vision-language
- multimodal
- research
---
**nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model.
For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M.
**Usage:**
Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM.
Follow the install instructions and run the following code:
```python
from models.vision_language_model import VisionLanguageModel
model = VisionLanguageModel.from_pretrained("andito/nanoVLM")
```
|
vidyc/tulu_dpo | vidyc | 2025-06-03T17:55:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"trl",
"dpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T10:12:43Z | ---
library_name: transformers
tags:
- trl
- dpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
StanfordAIMI/SRR-T5-SciFive | StanfordAIMI | 2025-06-03T17:55:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:2506.00200",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-01-24T03:42:15Z | ---
library_name: transformers
tags: []
---
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<div align="center">
<h1>
Structuring Radiology Reports: Challenging LLMs with Lightweight Models
</h1>
</div>
<p align="center">
๐ <a href="https://arxiv.org/abs/2506.00200" target="_blank">Paper</a> โข ๐ค <a href="https://huggingface.co/collections/StanfordAIMI/structuring-with-lightweight-models-683e9eb895d42e04112fad88" target="_blank">Hugging Face</a> โข ๐งฉ <a href="https://github.com/jomoll/rad-report-structuring" target="_blank">Github</a> โข ๐ช <a href="https://stanford-aimi.github.io/structuring.html" target="_blank">Project</a>
</p>
<div align="center">
</div>
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# step 1: Setup
model_name = "StanfordAIMI/SRR-T5-SciFive"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# step 2: Load Processor and Model
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side="right", use_fast=False)
model.eval()
# step 3: Inference (example from MIMIC-CXR dataset)
input_text = "CHEST RADIOGRAPH PERFORMED ON ___ COMPARISON: Prior exam from ___. CLINICAL HISTORY: Weakness, assess pneumonia. FINDINGS: Frontal and lateral views of the chest were provided. Midline sternotomy wires are again noted. The heart is poorly assessed, though remains enlarged. There are at least small bilateral pleural effusions. There may be mild interstitial edema. No pneumothorax. Bony structures are demineralized with kyphotic angulation in the lower T-spine again noted. IMPRESSION: Limited exam with small bilateral effusions, cardiomegaly, and possible mild interstitial edema."
inputs = tokenizer(input_text, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
inputs["attention_mask"] = inputs["input_ids"].ne(tokenizer.pad_token_id) # Add attention mask
input_ids = inputs['input_ids'].to(device)
attention_mask=inputs["attention_mask"].to(device)
generated_ids = model.generate(
input_ids, attention_mask=attention_mask, max_new_tokens=286, min_new_tokens= 120,decoder_start_token_id=model.config.decoder_start_token_id, num_beams=5, early_stopping=True, max_length=None
)[0]
decoded = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(decoded)
```
## โ๏ธ Citation
```
@article{structuring-2025,
title={Structuring Radiology Reports: Challenging LLMs with Lightweight Models},
author={Moll, Johannes and Fay, Louisa and Azhar, Asfandyar and Ostmeier, Sophie and Lueth, Tim and Gatidis, Sergios and Langlotz, Curtis and Delbrouck, Jean-Benoit},
journal={arXiv preprint arXiv:2506.00200},
url={https://arxiv.org/abs/2506.00200},
year={2025}
}
```
|
davgauch/MNLP_M3_mcqa_structured_no_rat | davgauch | 2025-06-03T17:54:50Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T16:26:51Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
model-index:
- name: MNLP_M3_mcqa_structured_no_rat
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MNLP_M3_mcqa_structured_no_rat
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1124
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0937 | 1.0 | 703 | 0.0870 |
| 0.0375 | 2.0 | 1406 | 0.1124 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
|
SuperRomanchik/tuchniy_zhab_RVC | SuperRomanchik | 2025-06-03T17:54:36Z | 0 | 0 | null | [
"ru",
"license:mit",
"region:us"
] | null | 2025-06-03T17:44:48Z | ---
license: mit
language:
- ru
---
ะญัะพ ะผะพะดะตะปั ะณะพะปะพัะฐ ะดะธะบัะพัะฐ ั ะบะฐะฝะฐะปะฐ ะขััะฝัะน ะถะฐะฑ ะฝะฐ Youtube.
ะะฑััะตะฝะฐ ะฝะฐ ะพะดะฝะพัะฐัะพะฒะพะผ ัะพะปะธะบะต ะฒ 200 ัะฟะพั
. |
StanfordAIMI/SRR-BERT2BERT-RoBERTa-base | StanfordAIMI | 2025-06-03T17:54:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"encoder-decoder",
"text2text-generation",
"arxiv:2506.00200",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-01-20T23:20:30Z | ---
library_name: transformers
tags: []
---
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<div align="center">
<h1>
Structuring Radiology Reports: Challenging LLMs with Lightweight Models
</h1>
</div>
<p align="center">
๐ <a href="https://arxiv.org/abs/2506.00200" target="_blank">Paper</a> โข ๐ค <a href="https://huggingface.co/collections/StanfordAIMI/structuring-with-lightweight-models-683e9eb895d42e04112fad88" target="_blank">Hugging Face</a> โข ๐งฉ <a href="https://github.com/jomoll/rad-report-structuring" target="_blank">Github</a> โข ๐ช <a href="https://stanford-aimi.github.io/structuring.html" target="_blank">Project</a>
</p>
<div align="center">
</div>
## ๐ฌ Get Started
```python
import torch
from transformers import EncoderDecoderModel, AutoTokenizer
# step 1: Setup
model_name = "StanfordAIMI/SRR-BERT2BERT-RoBERTa-base"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# step 2: Load Processor and Model
model = EncoderDecoderModel.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side="right", use_fast=False)
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.bos_token_id = tokenizer.cls_token_id
model.eval()
# step 3: Inference (example from MIMIC-CXR dataset)
input_text = "CHEST RADIOGRAPH PERFORMED ON ___ COMPARISON: Prior exam from ___. CLINICAL HISTORY: Weakness, assess pneumonia. FINDINGS: Frontal and lateral views of the chest were provided. Midline sternotomy wires are again noted. The heart is poorly assessed, though remains enlarged. There are at least small bilateral pleural effusions. There may be mild interstitial edema. No pneumothorax. Bony structures are demineralized with kyphotic angulation in the lower T-spine again noted. IMPRESSION: Limited exam with small bilateral effusions, cardiomegaly, and possible mild interstitial edema."
inputs = tokenizer(input_text, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
inputs["attention_mask"] = inputs["input_ids"].ne(tokenizer.pad_token_id) # Add attention mask
input_ids = inputs['input_ids'].to(device)
attention_mask=inputs["attention_mask"].to(device)
generated_ids = model.generate(
input_ids, attention_mask=attention_mask, max_new_tokens=286, min_new_tokens= 120,decoder_start_token_id=model.config.decoder_start_token_id, num_beams=5, early_stopping=True, max_length=None
)[0]
decoded = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(decoded)
```
## โ๏ธ Citation
```
@article{structuring-2025,
title={Structuring Radiology Reports: Challenging LLMs with Lightweight Models},
author={Moll, Johannes and Fay, Louisa and Azhar, Asfandyar and Ostmeier, Sophie and Lueth, Tim and Gatidis, Sergios and Langlotz, Curtis and Delbrouck, Jean-Benoit},
journal={arXiv preprint arXiv:2506.00200},
url={https://arxiv.org/abs/2506.00200},
year={2025}
}
``` |
Monkey455/llama3-customerbot | Monkey455 | 2025-06-03T17:54:11Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"region:us"
] | null | 2025-06-03T17:21:09Z | ---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
passesjamie/lucy_LoRA | passesjamie | 2025-06-03T17:53:30Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-06-03T17:34:07Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: a photo of TOK human
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - passesjamie/lucy_LoRA
<Gallery />
## Model description
These are passesjamie/lucy_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of TOK human to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](passesjamie/lucy_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Stonewu777/q-Taxi-v3 | Stonewu777 | 2025-06-03T17:53:29Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-03T17:53:26Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
model = load_from_hub(repo_id="Stonewu777/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
|
artificiallover0/hairy_man | artificiallover0 | 2025-06-03T17:50:10Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:apache-2.0",
"region:us"
] | text-to-image | 2025-06-03T17:41:25Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/20250529_1658_image.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
license: apache-2.0
---
# ooiooi
<Gallery />
## Model description

## Download model
Weights for this model are available in Safetensors format.
[Download](/artificiallover0/hairy_man/tree/main) them in the Files & versions tab.
|
jusjinuk/gemma-3-27b-it-2bit-GuidedQuant-LNQ | jusjinuk | 2025-06-03T17:46:24Z | 2 | 0 | null | [
"pytorch",
"gemma3",
"arxiv:2505.07004",
"base_model:google/gemma-3-27b-it",
"base_model:quantized:google/gemma-3-27b-it",
"license:mit",
"region:us"
] | null | 2025-06-02T02:22:36Z | ---
base_model:
- google/gemma-3-27b-it
base_model_relation: quantized
license: mit
---
# Model Card
- Base model: `google/gemma-3-27b-it`
- Quantization method: LNQ with GuidedQuant Hessian
- Target bit-width: 2
- Backend kernel: Any-Precision-LLM kernel (`ap-gemv`)
- Calibration data: RedPajama (1024 sentences / 4096 tokens)
- Calibration objective: Next-token prediction
- num_groups (for GuidedQuant Hessian): 1
# How to run
- Follow the instruction in https://github.com/snu-mllab/GuidedQuant.
# References
- [Model Paper](https://arxiv.org/abs/2505.07004) |
wATCH-Cikgu-cctv-wiring-video-clip/Pautan.Asal.18.video.Cikgu.Fadilah.dan.abang.cctv.wiring.video.viral.malaysia | wATCH-Cikgu-cctv-wiring-video-clip | 2025-06-03T17:44:49Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T17:44:40Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐ฆ๐ถ๐ด๐ป ๐จ๐ฝ ๐๐ผ ๐๐ช๐ก๐ก ๐ช๐ฎ๐๐ฐ๐ต ๐๐๐๐๐คโค๏ธโค๏ธ)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">๐ด โคโบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐ฅ๐ข๐ง๐ค)</a>
|
OrcaDB/e5-large | OrcaDB | 2025-06-03T17:43:17Z | 36,146 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"xlm-roberta",
"feature-extraction",
"mteb",
"transformers",
"multilingual",
"af",
"am",
"ar",
"as",
"az",
"be",
"bg",
"bn",
"br",
"bs",
"ca",
"cs",
"cy",
"da",
"de",
"el",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"fy",
"ga",
"gd",
"gl",
"gu",
"ha",
"he",
"hi",
"hr",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"ku",
"ky",
"la",
"lo",
"lt",
"lv",
"mg",
"mk",
"ml",
"mn",
"mr",
"ms",
"my",
"ne",
"nl",
"no",
"om",
"or",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sa",
"sd",
"si",
"sk",
"sl",
"so",
"sq",
"sr",
"su",
"sv",
"sw",
"ta",
"te",
"th",
"tl",
"tr",
"ug",
"uk",
"ur",
"uz",
"vi",
"xh",
"yi",
"zh",
"arxiv:2402.05672",
"arxiv:2401.00368",
"arxiv:2104.08663",
"arxiv:2210.07316",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-04-25T19:25:13Z | ---
tags:
- mteb
- sentence-transformers
- transformers
model-index:
- name: multilingual-e5-large-instruct
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.23880597014924
- type: ap
value: 39.07351965022687
- type: f1
value: 70.04836733862683
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (de)
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 66.71306209850107
- type: ap
value: 79.01499914759529
- type: f1
value: 64.81951817560703
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en-ext)
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.85307346326837
- type: ap
value: 22.447519885878737
- type: f1
value: 61.0162730745633
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (ja)
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.04925053533191
- type: ap
value: 23.44983217128922
- type: f1
value: 62.5723230907759
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 96.28742500000001
- type: ap
value: 94.8449918887462
- type: f1
value: 96.28680923610432
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 56.716
- type: f1
value: 55.76510398266401
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (de)
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 52.99999999999999
- type: f1
value: 52.00829994765178
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (es)
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.806000000000004
- type: f1
value: 48.082345914983634
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (fr)
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.507999999999996
- type: f1
value: 47.68752844642045
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (ja)
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.709999999999994
- type: f1
value: 47.05870376637181
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 44.662000000000006
- type: f1
value: 43.42371965372771
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.721
- type: map_at_10
value: 49.221
- type: map_at_100
value: 49.884
- type: map_at_1000
value: 49.888
- type: map_at_3
value: 44.31
- type: map_at_5
value: 47.276
- type: mrr_at_1
value: 32.432
- type: mrr_at_10
value: 49.5
- type: mrr_at_100
value: 50.163000000000004
- type: mrr_at_1000
value: 50.166
- type: mrr_at_3
value: 44.618
- type: mrr_at_5
value: 47.541
- type: ndcg_at_1
value: 31.721
- type: ndcg_at_10
value: 58.384
- type: ndcg_at_100
value: 61.111000000000004
- type: ndcg_at_1000
value: 61.187999999999995
- type: ndcg_at_3
value: 48.386
- type: ndcg_at_5
value: 53.708999999999996
- type: precision_at_1
value: 31.721
- type: precision_at_10
value: 8.741
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 20.057
- type: precision_at_5
value: 14.609
- type: recall_at_1
value: 31.721
- type: recall_at_10
value: 87.411
- type: recall_at_100
value: 99.075
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 60.171
- type: recall_at_5
value: 73.044
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 46.40419580759799
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.48593255007969
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 63.889179122289995
- type: mrr
value: 77.61146286769556
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 88.15075203727929
- type: cos_sim_spearman
value: 86.9622224570873
- type: euclidean_pearson
value: 86.70473853624121
- type: euclidean_spearman
value: 86.9622224570873
- type: manhattan_pearson
value: 86.21089380980065
- type: manhattan_spearman
value: 86.75318154937008
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (de-en)
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.65553235908142
- type: f1
value: 99.60681976339595
- type: precision
value: 99.58246346555325
- type: recall
value: 99.65553235908142
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (fr-en)
config: fr-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.26260180497468
- type: f1
value: 99.14520507740848
- type: precision
value: 99.08650671362535
- type: recall
value: 99.26260180497468
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (ru-en)
config: ru-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.07412538967787
- type: f1
value: 97.86629719431936
- type: precision
value: 97.76238309664012
- type: recall
value: 98.07412538967787
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (zh-en)
config: zh-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.42074776197998
- type: f1
value: 99.38564156573635
- type: precision
value: 99.36808846761454
- type: recall
value: 99.42074776197998
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.73376623376623
- type: f1
value: 85.68480707214599
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 40.935218072113855
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.276389017675264
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.764166666666668
- type: map_at_10
value: 37.298166666666674
- type: map_at_100
value: 38.530166666666666
- type: map_at_1000
value: 38.64416666666667
- type: map_at_3
value: 34.484833333333334
- type: map_at_5
value: 36.0385
- type: mrr_at_1
value: 32.93558333333333
- type: mrr_at_10
value: 41.589749999999995
- type: mrr_at_100
value: 42.425333333333334
- type: mrr_at_1000
value: 42.476333333333336
- type: mrr_at_3
value: 39.26825
- type: mrr_at_5
value: 40.567083333333336
- type: ndcg_at_1
value: 32.93558333333333
- type: ndcg_at_10
value: 42.706583333333334
- type: ndcg_at_100
value: 47.82483333333333
- type: ndcg_at_1000
value: 49.95733333333334
- type: ndcg_at_3
value: 38.064750000000004
- type: ndcg_at_5
value: 40.18158333333333
- type: precision_at_1
value: 32.93558333333333
- type: precision_at_10
value: 7.459833333333334
- type: precision_at_100
value: 1.1830833333333335
- type: precision_at_1000
value: 0.15608333333333332
- type: precision_at_3
value: 17.5235
- type: precision_at_5
value: 12.349833333333333
- type: recall_at_1
value: 27.764166666666668
- type: recall_at_10
value: 54.31775
- type: recall_at_100
value: 76.74350000000001
- type: recall_at_1000
value: 91.45208333333332
- type: recall_at_3
value: 41.23425
- type: recall_at_5
value: 46.73983333333334
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 12.969
- type: map_at_10
value: 21.584999999999997
- type: map_at_100
value: 23.3
- type: map_at_1000
value: 23.5
- type: map_at_3
value: 18.218999999999998
- type: map_at_5
value: 19.983
- type: mrr_at_1
value: 29.316
- type: mrr_at_10
value: 40.033
- type: mrr_at_100
value: 40.96
- type: mrr_at_1000
value: 41.001
- type: mrr_at_3
value: 37.123
- type: mrr_at_5
value: 38.757999999999996
- type: ndcg_at_1
value: 29.316
- type: ndcg_at_10
value: 29.858
- type: ndcg_at_100
value: 36.756
- type: ndcg_at_1000
value: 40.245999999999995
- type: ndcg_at_3
value: 24.822
- type: ndcg_at_5
value: 26.565
- type: precision_at_1
value: 29.316
- type: precision_at_10
value: 9.186
- type: precision_at_100
value: 1.6549999999999998
- type: precision_at_1000
value: 0.22999999999999998
- type: precision_at_3
value: 18.436
- type: precision_at_5
value: 13.876
- type: recall_at_1
value: 12.969
- type: recall_at_10
value: 35.142
- type: recall_at_100
value: 59.143
- type: recall_at_1000
value: 78.594
- type: recall_at_3
value: 22.604
- type: recall_at_5
value: 27.883000000000003
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.527999999999999
- type: map_at_10
value: 17.974999999999998
- type: map_at_100
value: 25.665
- type: map_at_1000
value: 27.406000000000002
- type: map_at_3
value: 13.017999999999999
- type: map_at_5
value: 15.137
- type: mrr_at_1
value: 62.5
- type: mrr_at_10
value: 71.891
- type: mrr_at_100
value: 72.294
- type: mrr_at_1000
value: 72.296
- type: mrr_at_3
value: 69.958
- type: mrr_at_5
value: 71.121
- type: ndcg_at_1
value: 50.875
- type: ndcg_at_10
value: 38.36
- type: ndcg_at_100
value: 44.235
- type: ndcg_at_1000
value: 52.154
- type: ndcg_at_3
value: 43.008
- type: ndcg_at_5
value: 40.083999999999996
- type: precision_at_1
value: 62.5
- type: precision_at_10
value: 30.0
- type: precision_at_100
value: 10.038
- type: precision_at_1000
value: 2.0869999999999997
- type: precision_at_3
value: 46.833000000000006
- type: precision_at_5
value: 38.800000000000004
- type: recall_at_1
value: 8.527999999999999
- type: recall_at_10
value: 23.828
- type: recall_at_100
value: 52.322
- type: recall_at_1000
value: 77.143
- type: recall_at_3
value: 14.136000000000001
- type: recall_at_5
value: 17.761
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 51.51
- type: f1
value: 47.632159862049896
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 60.734
- type: map_at_10
value: 72.442
- type: map_at_100
value: 72.735
- type: map_at_1000
value: 72.75
- type: map_at_3
value: 70.41199999999999
- type: map_at_5
value: 71.80499999999999
- type: mrr_at_1
value: 65.212
- type: mrr_at_10
value: 76.613
- type: mrr_at_100
value: 76.79899999999999
- type: mrr_at_1000
value: 76.801
- type: mrr_at_3
value: 74.8
- type: mrr_at_5
value: 76.12400000000001
- type: ndcg_at_1
value: 65.212
- type: ndcg_at_10
value: 77.988
- type: ndcg_at_100
value: 79.167
- type: ndcg_at_1000
value: 79.452
- type: ndcg_at_3
value: 74.362
- type: ndcg_at_5
value: 76.666
- type: precision_at_1
value: 65.212
- type: precision_at_10
value: 10.003
- type: precision_at_100
value: 1.077
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 29.518
- type: precision_at_5
value: 19.016
- type: recall_at_1
value: 60.734
- type: recall_at_10
value: 90.824
- type: recall_at_100
value: 95.71600000000001
- type: recall_at_1000
value: 97.577
- type: recall_at_3
value: 81.243
- type: recall_at_5
value: 86.90299999999999
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.845
- type: map_at_10
value: 39.281
- type: map_at_100
value: 41.422
- type: map_at_1000
value: 41.593
- type: map_at_3
value: 34.467
- type: map_at_5
value: 37.017
- type: mrr_at_1
value: 47.531
- type: mrr_at_10
value: 56.204
- type: mrr_at_100
value: 56.928999999999995
- type: mrr_at_1000
value: 56.962999999999994
- type: mrr_at_3
value: 54.115
- type: mrr_at_5
value: 55.373000000000005
- type: ndcg_at_1
value: 47.531
- type: ndcg_at_10
value: 47.711999999999996
- type: ndcg_at_100
value: 54.510999999999996
- type: ndcg_at_1000
value: 57.103
- type: ndcg_at_3
value: 44.145
- type: ndcg_at_5
value: 45.032
- type: precision_at_1
value: 47.531
- type: precision_at_10
value: 13.194
- type: precision_at_100
value: 2.045
- type: precision_at_1000
value: 0.249
- type: precision_at_3
value: 29.424
- type: precision_at_5
value: 21.451
- type: recall_at_1
value: 23.845
- type: recall_at_10
value: 54.967
- type: recall_at_100
value: 79.11399999999999
- type: recall_at_1000
value: 94.56700000000001
- type: recall_at_3
value: 40.256
- type: recall_at_5
value: 46.215
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.819
- type: map_at_10
value: 60.889
- type: map_at_100
value: 61.717999999999996
- type: map_at_1000
value: 61.778
- type: map_at_3
value: 57.254000000000005
- type: map_at_5
value: 59.541
- type: mrr_at_1
value: 75.638
- type: mrr_at_10
value: 82.173
- type: mrr_at_100
value: 82.362
- type: mrr_at_1000
value: 82.37
- type: mrr_at_3
value: 81.089
- type: mrr_at_5
value: 81.827
- type: ndcg_at_1
value: 75.638
- type: ndcg_at_10
value: 69.317
- type: ndcg_at_100
value: 72.221
- type: ndcg_at_1000
value: 73.382
- type: ndcg_at_3
value: 64.14
- type: ndcg_at_5
value: 67.07600000000001
- type: precision_at_1
value: 75.638
- type: precision_at_10
value: 14.704999999999998
- type: precision_at_100
value: 1.698
- type: precision_at_1000
value: 0.185
- type: precision_at_3
value: 41.394999999999996
- type: precision_at_5
value: 27.162999999999997
- type: recall_at_1
value: 37.819
- type: recall_at_10
value: 73.52499999999999
- type: recall_at_100
value: 84.875
- type: recall_at_1000
value: 92.559
- type: recall_at_3
value: 62.092999999999996
- type: recall_at_5
value: 67.907
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 94.60079999999999
- type: ap
value: 92.67396345347356
- type: f1
value: 94.5988098167121
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.285
- type: map_at_10
value: 33.436
- type: map_at_100
value: 34.63
- type: map_at_1000
value: 34.681
- type: map_at_3
value: 29.412
- type: map_at_5
value: 31.715
- type: mrr_at_1
value: 21.848
- type: mrr_at_10
value: 33.979
- type: mrr_at_100
value: 35.118
- type: mrr_at_1000
value: 35.162
- type: mrr_at_3
value: 30.036
- type: mrr_at_5
value: 32.298
- type: ndcg_at_1
value: 21.862000000000002
- type: ndcg_at_10
value: 40.43
- type: ndcg_at_100
value: 46.17
- type: ndcg_at_1000
value: 47.412
- type: ndcg_at_3
value: 32.221
- type: ndcg_at_5
value: 36.332
- type: precision_at_1
value: 21.862000000000002
- type: precision_at_10
value: 6.491
- type: precision_at_100
value: 0.935
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 13.744
- type: precision_at_5
value: 10.331999999999999
- type: recall_at_1
value: 21.285
- type: recall_at_10
value: 62.083
- type: recall_at_100
value: 88.576
- type: recall_at_1000
value: 98.006
- type: recall_at_3
value: 39.729
- type: recall_at_5
value: 49.608000000000004
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.92612859097127
- type: f1
value: 93.82370333372853
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (de)
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.67681036911807
- type: f1
value: 92.14191382411472
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (es)
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.26817878585723
- type: f1
value: 91.92824250337878
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (fr)
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.96554963983714
- type: f1
value: 90.02859329630792
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (hi)
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.02509860164935
- type: f1
value: 89.30665159182062
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (th)
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 87.55515370705244
- type: f1
value: 87.94449232331907
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 82.4623803009576
- type: f1
value: 66.06738378772725
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (de)
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 79.3716539870386
- type: f1
value: 60.37614033396853
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (es)
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 80.34022681787857
- type: f1
value: 58.302008026952
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (fr)
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 76.72095208268087
- type: f1
value: 59.64524724009049
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (hi)
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 77.87020437432773
- type: f1
value: 57.80202694670567
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (th)
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 77.73598553345387
- type: f1
value: 58.19628250675031
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (af)
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.6630800268998
- type: f1
value: 65.00996668051691
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (am)
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.7128446536651
- type: f1
value: 57.95860594874963
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ar)
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.61129791526563
- type: f1
value: 59.75328290206483
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (az)
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.00134498991257
- type: f1
value: 67.0230483991802
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (bn)
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.54068594485541
- type: f1
value: 65.54604628946976
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (cy)
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.032952252858095
- type: f1
value: 58.715741857057104
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (da)
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.80901143241427
- type: f1
value: 68.33963989243877
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (de)
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.47141896435777
- type: f1
value: 69.56765020308262
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (el)
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.2373907195696
- type: f1
value: 69.04529836036467
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 77.05783456624076
- type: f1
value: 74.69430584708174
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (es)
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.82111634162744
- type: f1
value: 70.77228952803762
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fa)
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.25353059852051
- type: f1
value: 71.05310103416411
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fi)
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.28648285137861
- type: f1
value: 69.08020473732226
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fr)
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.31540013449899
- type: f1
value: 70.9426355465791
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (he)
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.2151983860121
- type: f1
value: 67.52541755908858
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hi)
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.58372562205784
- type: f1
value: 69.49769064229827
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hu)
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.9233355749832
- type: f1
value: 69.36311548259593
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hy)
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.07330195023538
- type: f1
value: 64.99882022345572
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (id)
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.62273032952253
- type: f1
value: 70.6394885471001
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (is)
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.77000672494957
- type: f1
value: 62.9368944815065
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (it)
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.453261600538
- type: f1
value: 70.85069934666681
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ja)
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.6906523201076
- type: f1
value: 72.03249740074217
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (jv)
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.03631472763953
- type: f1
value: 59.3165215571852
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ka)
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.913920645595155
- type: f1
value: 57.367337711611285
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (km)
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.42837928715535
- type: f1
value: 52.60527294970906
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (kn)
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.33490248823135
- type: f1
value: 63.213340969404065
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ko)
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.58507061197041
- type: f1
value: 68.40256628040486
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (lv)
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.11230665770006
- type: f1
value: 66.44863577842305
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ml)
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.70073974445192
- type: f1
value: 67.21291337273702
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (mn)
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.43913920645595
- type: f1
value: 64.09838087422806
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ms)
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.80026899798251
- type: f1
value: 68.76986742962444
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (my)
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.78816408876934
- type: f1
value: 62.18781873428972
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nb)
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.6577000672495
- type: f1
value: 68.75171511133003
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nl)
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.42501681237391
- type: f1
value: 71.18434963451544
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.64828513786146
- type: f1
value: 70.67741914007422
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pt)
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.62811028917284
- type: f1
value: 71.36402039740959
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ro)
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.88634835238736
- type: f1
value: 69.23701923480677
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ru)
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.15938130464022
- type: f1
value: 71.87792218993388
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sl)
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.96301277740416
- type: f1
value: 67.29584200202983
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sq)
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.49562878278412
- type: f1
value: 66.91716685679431
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sv)
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.6805648957633
- type: f1
value: 72.02723592594374
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sw)
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.00605245460659
- type: f1
value: 60.16716669482932
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ta)
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.90988567585742
- type: f1
value: 63.99405488777784
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (te)
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.62273032952253
- type: f1
value: 65.17213906909481
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (th)
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.50907868190988
- type: f1
value: 69.15165697194853
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tl)
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.30733019502352
- type: f1
value: 66.69024007380474
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tr)
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.24277067921989
- type: f1
value: 68.80515408492947
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ur)
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.49831876260929
- type: f1
value: 64.83778567111116
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (vi)
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.28782784129119
- type: f1
value: 69.3294186700733
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.315400134499
- type: f1
value: 71.22674385243207
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-TW)
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.37794216543377
- type: f1
value: 68.96962492838232
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (af)
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.33557498318764
- type: f1
value: 72.28949738478356
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (am)
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.84398117014123
- type: f1
value: 64.71026362091463
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ar)
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.76462676529925
- type: f1
value: 69.8229667407667
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (az)
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.02420981842636
- type: f1
value: 71.76576384895898
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (bn)
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.7572293207801
- type: f1
value: 72.76840765295256
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (cy)
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.02286482851379
- type: f1
value: 66.17237947327872
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (da)
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.60928043039678
- type: f1
value: 77.27094731234773
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (de)
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.68325487558843
- type: f1
value: 77.97530399082261
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (el)
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.13315400134498
- type: f1
value: 75.97558584796424
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 80.47410894418292
- type: f1
value: 80.52244841473792
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (es)
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.9670477471419
- type: f1
value: 77.37318805793146
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fa)
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.09683927370544
- type: f1
value: 77.69773737430847
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fi)
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.20847343644922
- type: f1
value: 75.17071738727348
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fr)
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.07464694014796
- type: f1
value: 77.16136207698571
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (he)
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.53396099529255
- type: f1
value: 73.58296404484122
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hi)
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.75319435104237
- type: f1
value: 75.24674707850833
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hu)
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.0948217888366
- type: f1
value: 76.47559490205028
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hy)
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.07599193006052
- type: f1
value: 70.76028043093511
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (id)
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.10490921318089
- type: f1
value: 77.01215275283272
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (is)
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.25756556825824
- type: f1
value: 70.20605314648762
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (it)
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.08137188971082
- type: f1
value: 77.3899269057439
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ja)
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.35440484196369
- type: f1
value: 79.58964690002772
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (jv)
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.42299932750504
- type: f1
value: 68.07844356925413
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ka)
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.15669132481507
- type: f1
value: 65.89383352608513
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (km)
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.11432414256894
- type: f1
value: 57.69910594559806
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (kn)
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.24747814391392
- type: f1
value: 70.42455553830918
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ko)
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.46267652992603
- type: f1
value: 76.8854559308316
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (lv)
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.24815063887021
- type: f1
value: 72.77805034658074
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ml)
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.11566913248151
- type: f1
value: 73.86147988001356
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (mn)
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.0168123739072
- type: f1
value: 69.38515920054571
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ms)
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.41156691324814
- type: f1
value: 73.43474953408237
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (my)
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.39609952925353
- type: f1
value: 67.29731681109291
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nb)
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.20914593140552
- type: f1
value: 77.07066497935367
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nl)
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.52387357094821
- type: f1
value: 78.5259569473291
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.6913248150639
- type: f1
value: 76.91201656350455
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pt)
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.1217215870881
- type: f1
value: 77.41179937912504
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ro)
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.25891055817083
- type: f1
value: 75.8089244542887
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ru)
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.70679219905851
- type: f1
value: 78.21459594517711
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sl)
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.83523873570948
- type: f1
value: 74.86847028401978
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sq)
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.71755211835911
- type: f1
value: 74.0214326485662
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sv)
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.06523201075991
- type: f1
value: 79.10545620325138
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sw)
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.91862811028918
- type: f1
value: 66.50386121217983
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ta)
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.93140551445865
- type: f1
value: 70.755435928495
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (te)
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.40753194351042
- type: f1
value: 71.61816115782923
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (th)
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.1815736381977
- type: f1
value: 75.08016717887205
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tl)
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.86482851378614
- type: f1
value: 72.39521180006291
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tr)
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.46940147948891
- type: f1
value: 76.70044085362349
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ur)
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.89307330195024
- type: f1
value: 71.5721825332298
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (vi)
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.7511768661735
- type: f1
value: 75.17918654541515
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.69535978480162
- type: f1
value: 78.90019070153316
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-TW)
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.45729657027572
- type: f1
value: 76.19578371794672
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 36.92715354123554
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 35.53536244162518
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 33.08507884504006
- type: mrr
value: 34.32436977159129
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.935
- type: map_at_10
value: 13.297
- type: map_at_100
value: 16.907
- type: map_at_1000
value: 18.391
- type: map_at_3
value: 9.626999999999999
- type: map_at_5
value: 11.190999999999999
- type: mrr_at_1
value: 46.129999999999995
- type: mrr_at_10
value: 54.346000000000004
- type: mrr_at_100
value: 55.067
- type: mrr_at_1000
value: 55.1
- type: mrr_at_3
value: 51.961
- type: mrr_at_5
value: 53.246
- type: ndcg_at_1
value: 44.118
- type: ndcg_at_10
value: 35.534
- type: ndcg_at_100
value: 32.946999999999996
- type: ndcg_at_1000
value: 41.599000000000004
- type: ndcg_at_3
value: 40.25
- type: ndcg_at_5
value: 37.978
- type: precision_at_1
value: 46.129999999999995
- type: precision_at_10
value: 26.842
- type: precision_at_100
value: 8.427
- type: precision_at_1000
value: 2.128
- type: precision_at_3
value: 37.977
- type: precision_at_5
value: 32.879000000000005
- type: recall_at_1
value: 5.935
- type: recall_at_10
value: 17.211000000000002
- type: recall_at_100
value: 34.33
- type: recall_at_1000
value: 65.551
- type: recall_at_3
value: 10.483
- type: recall_at_5
value: 13.078999999999999
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.231
- type: map_at_10
value: 50.202000000000005
- type: map_at_100
value: 51.154999999999994
- type: map_at_1000
value: 51.181
- type: map_at_3
value: 45.774
- type: map_at_5
value: 48.522
- type: mrr_at_1
value: 39.687
- type: mrr_at_10
value: 52.88
- type: mrr_at_100
value: 53.569
- type: mrr_at_1000
value: 53.58500000000001
- type: mrr_at_3
value: 49.228
- type: mrr_at_5
value: 51.525
- type: ndcg_at_1
value: 39.687
- type: ndcg_at_10
value: 57.754000000000005
- type: ndcg_at_100
value: 61.597
- type: ndcg_at_1000
value: 62.18900000000001
- type: ndcg_at_3
value: 49.55
- type: ndcg_at_5
value: 54.11899999999999
- type: precision_at_1
value: 39.687
- type: precision_at_10
value: 9.313
- type: precision_at_100
value: 1.146
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 22.229
- type: precision_at_5
value: 15.939
- type: recall_at_1
value: 35.231
- type: recall_at_10
value: 78.083
- type: recall_at_100
value: 94.42099999999999
- type: recall_at_1000
value: 98.81
- type: recall_at_3
value: 57.047000000000004
- type: recall_at_5
value: 67.637
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.241
- type: map_at_10
value: 85.462
- type: map_at_100
value: 86.083
- type: map_at_1000
value: 86.09700000000001
- type: map_at_3
value: 82.49499999999999
- type: map_at_5
value: 84.392
- type: mrr_at_1
value: 82.09
- type: mrr_at_10
value: 88.301
- type: mrr_at_100
value: 88.383
- type: mrr_at_1000
value: 88.384
- type: mrr_at_3
value: 87.37
- type: mrr_at_5
value: 88.035
- type: ndcg_at_1
value: 82.12
- type: ndcg_at_10
value: 89.149
- type: ndcg_at_100
value: 90.235
- type: ndcg_at_1000
value: 90.307
- type: ndcg_at_3
value: 86.37599999999999
- type: ndcg_at_5
value: 87.964
- type: precision_at_1
value: 82.12
- type: precision_at_10
value: 13.56
- type: precision_at_100
value: 1.539
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.88
- type: precision_at_5
value: 24.92
- type: recall_at_1
value: 71.241
- type: recall_at_10
value: 96.128
- type: recall_at_100
value: 99.696
- type: recall_at_1000
value: 99.994
- type: recall_at_3
value: 88.181
- type: recall_at_5
value: 92.694
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 56.59757799655151
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 64.27391998854624
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.243
- type: map_at_10
value: 10.965
- type: map_at_100
value: 12.934999999999999
- type: map_at_1000
value: 13.256
- type: map_at_3
value: 7.907
- type: map_at_5
value: 9.435
- type: mrr_at_1
value: 20.9
- type: mrr_at_10
value: 31.849
- type: mrr_at_100
value: 32.964
- type: mrr_at_1000
value: 33.024
- type: mrr_at_3
value: 28.517
- type: mrr_at_5
value: 30.381999999999998
- type: ndcg_at_1
value: 20.9
- type: ndcg_at_10
value: 18.723
- type: ndcg_at_100
value: 26.384999999999998
- type: ndcg_at_1000
value: 32.114
- type: ndcg_at_3
value: 17.753
- type: ndcg_at_5
value: 15.558
- type: precision_at_1
value: 20.9
- type: precision_at_10
value: 9.8
- type: precision_at_100
value: 2.078
- type: precision_at_1000
value: 0.345
- type: precision_at_3
value: 16.900000000000002
- type: precision_at_5
value: 13.88
- type: recall_at_1
value: 4.243
- type: recall_at_10
value: 19.885
- type: recall_at_100
value: 42.17
- type: recall_at_1000
value: 70.12
- type: recall_at_3
value: 10.288
- type: recall_at_5
value: 14.072000000000001
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.84209174935282
- type: cos_sim_spearman
value: 81.73248048438833
- type: euclidean_pearson
value: 83.02810070308149
- type: euclidean_spearman
value: 81.73248295679514
- type: manhattan_pearson
value: 82.95368060376002
- type: manhattan_spearman
value: 81.60277910998718
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 88.52628804556943
- type: cos_sim_spearman
value: 82.5713913555672
- type: euclidean_pearson
value: 85.8796774746988
- type: euclidean_spearman
value: 82.57137506803424
- type: manhattan_pearson
value: 85.79671002960058
- type: manhattan_spearman
value: 82.49445981618027
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 86.23682503505542
- type: cos_sim_spearman
value: 87.15008956711806
- type: euclidean_pearson
value: 86.79805401524959
- type: euclidean_spearman
value: 87.15008956711806
- type: manhattan_pearson
value: 86.65298502699244
- type: manhattan_spearman
value: 86.97677821948562
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 85.63370304677802
- type: cos_sim_spearman
value: 84.97105553540318
- type: euclidean_pearson
value: 85.28896108687721
- type: euclidean_spearman
value: 84.97105553540318
- type: manhattan_pearson
value: 85.09663190337331
- type: manhattan_spearman
value: 84.79126831644619
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 90.2614838800733
- type: cos_sim_spearman
value: 91.0509162991835
- type: euclidean_pearson
value: 90.33098317533373
- type: euclidean_spearman
value: 91.05091625871644
- type: manhattan_pearson
value: 90.26250435151107
- type: manhattan_spearman
value: 90.97999594417519
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.80480973335091
- type: cos_sim_spearman
value: 87.313695492969
- type: euclidean_pearson
value: 86.49267251576939
- type: euclidean_spearman
value: 87.313695492969
- type: manhattan_pearson
value: 86.44019901831935
- type: manhattan_spearman
value: 87.24205395460392
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 90.05662789380672
- type: cos_sim_spearman
value: 90.02759424426651
- type: euclidean_pearson
value: 90.4042483422981
- type: euclidean_spearman
value: 90.02759424426651
- type: manhattan_pearson
value: 90.51446975000226
- type: manhattan_spearman
value: 90.08832889933616
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.5975528273532
- type: cos_sim_spearman
value: 67.62969861411354
- type: euclidean_pearson
value: 69.224275734323
- type: euclidean_spearman
value: 67.62969861411354
- type: manhattan_pearson
value: 69.3761447059927
- type: manhattan_spearman
value: 67.90921005611467
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.11244327231684
- type: cos_sim_spearman
value: 88.37902438979035
- type: euclidean_pearson
value: 87.86054279847336
- type: euclidean_spearman
value: 88.37902438979035
- type: manhattan_pearson
value: 87.77257757320378
- type: manhattan_spearman
value: 88.25208966098123
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 85.87174608143563
- type: mrr
value: 96.12836872640794
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 57.760999999999996
- type: map_at_10
value: 67.258
- type: map_at_100
value: 67.757
- type: map_at_1000
value: 67.78800000000001
- type: map_at_3
value: 64.602
- type: map_at_5
value: 65.64
- type: mrr_at_1
value: 60.667
- type: mrr_at_10
value: 68.441
- type: mrr_at_100
value: 68.825
- type: mrr_at_1000
value: 68.853
- type: mrr_at_3
value: 66.444
- type: mrr_at_5
value: 67.26100000000001
- type: ndcg_at_1
value: 60.667
- type: ndcg_at_10
value: 71.852
- type: ndcg_at_100
value: 73.9
- type: ndcg_at_1000
value: 74.628
- type: ndcg_at_3
value: 67.093
- type: ndcg_at_5
value: 68.58
- type: precision_at_1
value: 60.667
- type: precision_at_10
value: 9.6
- type: precision_at_100
value: 1.0670000000000002
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 26.111
- type: precision_at_5
value: 16.733
- type: recall_at_1
value: 57.760999999999996
- type: recall_at_10
value: 84.967
- type: recall_at_100
value: 93.833
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 71.589
- type: recall_at_5
value: 75.483
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.66633663366336
- type: cos_sim_ap
value: 91.17685358899108
- type: cos_sim_f1
value: 82.16818642350559
- type: cos_sim_precision
value: 83.26488706365504
- type: cos_sim_recall
value: 81.10000000000001
- type: dot_accuracy
value: 99.66633663366336
- type: dot_ap
value: 91.17663411119032
- type: dot_f1
value: 82.16818642350559
- type: dot_precision
value: 83.26488706365504
- type: dot_recall
value: 81.10000000000001
- type: euclidean_accuracy
value: 99.66633663366336
- type: euclidean_ap
value: 91.17685189882275
- type: euclidean_f1
value: 82.16818642350559
- type: euclidean_precision
value: 83.26488706365504
- type: euclidean_recall
value: 81.10000000000001
- type: manhattan_accuracy
value: 99.66633663366336
- type: manhattan_ap
value: 91.2241619496737
- type: manhattan_f1
value: 82.20472440944883
- type: manhattan_precision
value: 86.51933701657458
- type: manhattan_recall
value: 78.3
- type: max_accuracy
value: 99.66633663366336
- type: max_ap
value: 91.2241619496737
- type: max_f1
value: 82.20472440944883
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.85101268897951
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 42.461184054706905
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 51.44542568873886
- type: mrr
value: 52.33656151854681
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.75982974997539
- type: cos_sim_spearman
value: 30.385405026539914
- type: dot_pearson
value: 30.75982433546523
- type: dot_spearman
value: 30.385405026539914
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22799999999999998
- type: map_at_10
value: 2.064
- type: map_at_100
value: 13.056000000000001
- type: map_at_1000
value: 31.747999999999998
- type: map_at_3
value: 0.67
- type: map_at_5
value: 1.097
- type: mrr_at_1
value: 90.0
- type: mrr_at_10
value: 94.667
- type: mrr_at_100
value: 94.667
- type: mrr_at_1000
value: 94.667
- type: mrr_at_3
value: 94.667
- type: mrr_at_5
value: 94.667
- type: ndcg_at_1
value: 86.0
- type: ndcg_at_10
value: 82.0
- type: ndcg_at_100
value: 64.307
- type: ndcg_at_1000
value: 57.023999999999994
- type: ndcg_at_3
value: 85.816
- type: ndcg_at_5
value: 84.904
- type: precision_at_1
value: 90.0
- type: precision_at_10
value: 85.8
- type: precision_at_100
value: 66.46
- type: precision_at_1000
value: 25.202
- type: precision_at_3
value: 90.0
- type: precision_at_5
value: 89.2
- type: recall_at_1
value: 0.22799999999999998
- type: recall_at_10
value: 2.235
- type: recall_at_100
value: 16.185
- type: recall_at_1000
value: 53.620999999999995
- type: recall_at_3
value: 0.7040000000000001
- type: recall_at_5
value: 1.172
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (sqi-eng)
config: sqi-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.75
- type: precision
value: 96.45
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fry-eng)
config: fry-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.54913294797689
- type: f1
value: 82.46628131021194
- type: precision
value: 81.1175337186898
- type: recall
value: 85.54913294797689
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kur-eng)
config: kur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.21951219512195
- type: f1
value: 77.33333333333334
- type: precision
value: 75.54878048780488
- type: recall
value: 81.21951219512195
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tur-eng)
config: tur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.6
- type: f1
value: 98.26666666666665
- type: precision
value: 98.1
- type: recall
value: 98.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (deu-eng)
config: deu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.5
- type: f1
value: 99.33333333333333
- type: precision
value: 99.25
- type: recall
value: 99.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nld-eng)
config: nld-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.2
- type: precision
value: 96.89999999999999
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ron-eng)
config: ron-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.18333333333334
- type: precision
value: 96.88333333333333
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ang-eng)
config: ang-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.61194029850746
- type: f1
value: 72.81094527363183
- type: precision
value: 70.83333333333333
- type: recall
value: 77.61194029850746
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ido-eng)
config: ido-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.91666666666667
- type: precision
value: 91.08333333333334
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (jav-eng)
config: jav-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.29268292682927
- type: f1
value: 85.27642276422765
- type: precision
value: 84.01277584204414
- type: recall
value: 88.29268292682927
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (isl-eng)
config: isl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.0
- type: precision
value: 94.46666666666668
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (slv-eng)
config: slv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.681652490887
- type: f1
value: 91.90765492102065
- type: precision
value: 91.05913325232888
- type: recall
value: 93.681652490887
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cym-eng)
config: cym-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.17391304347827
- type: f1
value: 89.97101449275361
- type: precision
value: 88.96811594202899
- type: recall
value: 92.17391304347827
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kaz-eng)
config: kaz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.43478260869566
- type: f1
value: 87.72173913043478
- type: precision
value: 86.42028985507245
- type: recall
value: 90.43478260869566
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (est-eng)
config: est-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.4
- type: f1
value: 88.03
- type: precision
value: 86.95
- type: recall
value: 90.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (heb-eng)
config: heb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.4
- type: f1
value: 91.45666666666666
- type: precision
value: 90.525
- type: recall
value: 93.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (gla-eng)
config: gla-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.9059107358263
- type: f1
value: 78.32557872364869
- type: precision
value: 76.78260286824823
- type: recall
value: 81.9059107358263
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mar-eng)
config: mar-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.58333333333333
- type: precision
value: 91.73333333333332
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lat-eng)
config: lat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.10000000000001
- type: f1
value: 74.50500000000001
- type: precision
value: 72.58928571428571
- type: recall
value: 79.10000000000001
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bel-eng)
config: bel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.6
- type: f1
value: 95.55
- type: precision
value: 95.05
- type: recall
value: 96.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pms-eng)
config: pms-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.0952380952381
- type: f1
value: 77.98458049886621
- type: precision
value: 76.1968253968254
- type: recall
value: 82.0952380952381
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (gle-eng)
config: gle-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.9
- type: f1
value: 84.99190476190476
- type: precision
value: 83.65
- type: recall
value: 87.9
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pes-eng)
config: pes-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.7
- type: f1
value: 94.56666666666666
- type: precision
value: 94.01666666666667
- type: recall
value: 95.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nob-eng)
config: nob-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.6
- type: f1
value: 98.2
- type: precision
value: 98.0
- type: recall
value: 98.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bul-eng)
config: bul-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.38333333333334
- type: precision
value: 93.78333333333335
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cbk-eng)
config: cbk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.4
- type: f1
value: 84.10380952380952
- type: precision
value: 82.67
- type: recall
value: 87.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hun-eng)
config: hun-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.5
- type: f1
value: 94.33333333333334
- type: precision
value: 93.78333333333333
- type: recall
value: 95.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (uig-eng)
config: uig-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.4
- type: f1
value: 86.82000000000001
- type: precision
value: 85.64500000000001
- type: recall
value: 89.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (rus-eng)
config: rus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.1
- type: f1
value: 93.56666666666668
- type: precision
value: 92.81666666666666
- type: recall
value: 95.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (spa-eng)
config: spa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.9
- type: f1
value: 98.6
- type: precision
value: 98.45
- type: recall
value: 98.9
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hye-eng)
config: hye-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.01347708894879
- type: f1
value: 93.51752021563343
- type: precision
value: 92.82794249775381
- type: recall
value: 95.01347708894879
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tel-eng)
config: tel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.00854700854701
- type: f1
value: 96.08262108262107
- type: precision
value: 95.65527065527067
- type: recall
value: 97.00854700854701
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (afr-eng)
config: afr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5
- type: f1
value: 95.39999999999999
- type: precision
value: 94.88333333333333
- type: recall
value: 96.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mon-eng)
config: mon-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5909090909091
- type: f1
value: 95.49242424242425
- type: precision
value: 94.9621212121212
- type: recall
value: 96.5909090909091
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (arz-eng)
config: arz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.90566037735849
- type: f1
value: 81.85883997204752
- type: precision
value: 80.54507337526205
- type: recall
value: 84.90566037735849
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hrv-eng)
config: hrv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.5
- type: f1
value: 96.75
- type: precision
value: 96.38333333333333
- type: recall
value: 97.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nov-eng)
config: nov-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.7704280155642
- type: f1
value: 82.99610894941635
- type: precision
value: 81.32295719844358
- type: recall
value: 86.7704280155642
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (gsw-eng)
config: gsw-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 67.52136752136752
- type: f1
value: 61.89662189662191
- type: precision
value: 59.68660968660969
- type: recall
value: 67.52136752136752
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nds-eng)
config: nds-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.2
- type: f1
value: 86.32
- type: precision
value: 85.015
- type: recall
value: 89.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ukr-eng)
config: ukr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.0
- type: f1
value: 94.78333333333333
- type: precision
value: 94.18333333333334
- type: recall
value: 96.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (uzb-eng)
config: uzb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.8785046728972
- type: f1
value: 80.54517133956385
- type: precision
value: 79.154984423676
- type: recall
value: 83.8785046728972
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lit-eng)
config: lit-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.60000000000001
- type: f1
value: 92.01333333333334
- type: precision
value: 91.28333333333333
- type: recall
value: 93.60000000000001
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ina-eng)
config: ina-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.1
- type: f1
value: 96.26666666666667
- type: precision
value: 95.85000000000001
- type: recall
value: 97.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lfn-eng)
config: lfn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.3
- type: f1
value: 80.67833333333333
- type: precision
value: 79.03928571428571
- type: recall
value: 84.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (zsm-eng)
config: zsm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.3
- type: f1
value: 96.48333333333332
- type: precision
value: 96.08333333333331
- type: recall
value: 97.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ita-eng)
config: ita-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.7
- type: f1
value: 94.66666666666667
- type: precision
value: 94.16666666666667
- type: recall
value: 95.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cmn-eng)
config: cmn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.2
- type: f1
value: 96.36666666666667
- type: precision
value: 95.96666666666668
- type: recall
value: 97.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lvs-eng)
config: lvs-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.80666666666667
- type: precision
value: 92.12833333333333
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (glg-eng)
config: glg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.0
- type: f1
value: 96.22333333333334
- type: precision
value: 95.875
- type: recall
value: 97.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ceb-eng)
config: ceb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.33333333333333
- type: f1
value: 70.78174603174602
- type: precision
value: 69.28333333333332
- type: recall
value: 74.33333333333333
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bre-eng)
config: bre-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 37.6
- type: f1
value: 32.938348952090365
- type: precision
value: 31.2811038961039
- type: recall
value: 37.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ben-eng)
config: ben-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.5
- type: f1
value: 89.13333333333333
- type: precision
value: 88.03333333333333
- type: recall
value: 91.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (swg-eng)
config: swg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.14285714285714
- type: f1
value: 77.67857142857143
- type: precision
value: 75.59523809523809
- type: recall
value: 82.14285714285714
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (arq-eng)
config: arq-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 69.0450054884742
- type: f1
value: 63.070409283362075
- type: precision
value: 60.58992781824835
- type: recall
value: 69.0450054884742
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kab-eng)
config: kab-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.1
- type: f1
value: 57.848333333333336
- type: precision
value: 55.69500000000001
- type: recall
value: 63.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fra-eng)
config: fra-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.01666666666667
- type: precision
value: 94.5
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (por-eng)
config: por-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.89999999999999
- type: f1
value: 94.90666666666667
- type: precision
value: 94.425
- type: recall
value: 95.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tat-eng)
config: tat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.6
- type: f1
value: 84.61333333333333
- type: precision
value: 83.27
- type: recall
value: 87.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (oci-eng)
config: oci-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.4
- type: f1
value: 71.90746031746032
- type: precision
value: 70.07027777777778
- type: recall
value: 76.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pol-eng)
config: pol-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.89999999999999
- type: f1
value: 97.26666666666667
- type: precision
value: 96.95
- type: recall
value: 97.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (war-eng)
config: war-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.8
- type: f1
value: 74.39555555555555
- type: precision
value: 72.59416666666667
- type: recall
value: 78.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (aze-eng)
config: aze-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.19999999999999
- type: f1
value: 93.78999999999999
- type: precision
value: 93.125
- type: recall
value: 95.19999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (vie-eng)
config: vie-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.1
- type: precision
value: 96.75
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nno-eng)
config: nno-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.25666666666666
- type: precision
value: 93.64166666666668
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cha-eng)
config: cha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 56.934306569343065
- type: f1
value: 51.461591936044485
- type: precision
value: 49.37434827945776
- type: recall
value: 56.934306569343065
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mhr-eng)
config: mhr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 20.200000000000003
- type: f1
value: 16.91799284049284
- type: precision
value: 15.791855158730158
- type: recall
value: 20.200000000000003
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (dan-eng)
config: dan-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.2
- type: f1
value: 95.3
- type: precision
value: 94.85
- type: recall
value: 96.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ell-eng)
config: ell-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.3
- type: f1
value: 95.11666666666667
- type: precision
value: 94.53333333333333
- type: recall
value: 96.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (amh-eng)
config: amh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.88095238095238
- type: f1
value: 87.14285714285714
- type: precision
value: 85.96230158730161
- type: recall
value: 89.88095238095238
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pam-eng)
config: pam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 24.099999999999998
- type: f1
value: 19.630969083349783
- type: precision
value: 18.275094905094907
- type: recall
value: 24.099999999999998
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hsb-eng)
config: hsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.4368530020704
- type: f1
value: 79.45183870649709
- type: precision
value: 77.7432712215321
- type: recall
value: 83.4368530020704
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (srp-eng)
config: srp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.8
- type: f1
value: 94.53333333333333
- type: precision
value: 93.91666666666666
- type: recall
value: 95.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (epo-eng)
config: epo-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.8
- type: f1
value: 98.48333333333332
- type: precision
value: 98.33333333333334
- type: recall
value: 98.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kzj-eng)
config: kzj-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 17.5
- type: f1
value: 14.979285714285714
- type: precision
value: 14.23235060690943
- type: recall
value: 17.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (awa-eng)
config: awa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.93939393939394
- type: f1
value: 91.991341991342
- type: precision
value: 91.05339105339105
- type: recall
value: 93.93939393939394
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fao-eng)
config: fao-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.31297709923665
- type: f1
value: 86.76844783715012
- type: precision
value: 85.63613231552164
- type: recall
value: 89.31297709923665
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mal-eng)
config: mal-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.12663755458514
- type: f1
value: 98.93255701115964
- type: precision
value: 98.83551673944687
- type: recall
value: 99.12663755458514
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ile-eng)
config: ile-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.0
- type: f1
value: 89.77999999999999
- type: precision
value: 88.78333333333333
- type: recall
value: 92.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bos-eng)
config: bos-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.89265536723164
- type: f1
value: 95.85687382297553
- type: precision
value: 95.33898305084746
- type: recall
value: 96.89265536723164
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cor-eng)
config: cor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 14.6
- type: f1
value: 11.820611790170615
- type: precision
value: 11.022616224355355
- type: recall
value: 14.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cat-eng)
config: cat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.89999999999999
- type: f1
value: 94.93333333333334
- type: precision
value: 94.48666666666666
- type: recall
value: 95.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (eus-eng)
config: eus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.6
- type: f1
value: 84.72333333333334
- type: precision
value: 83.44166666666666
- type: recall
value: 87.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (yue-eng)
config: yue-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.8
- type: f1
value: 93.47333333333333
- type: precision
value: 92.875
- type: recall
value: 94.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (swe-eng)
config: swe-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.6
- type: f1
value: 95.71666666666665
- type: precision
value: 95.28333333333335
- type: recall
value: 96.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (dtp-eng)
config: dtp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 17.8
- type: f1
value: 14.511074040901628
- type: precision
value: 13.503791000666002
- type: recall
value: 17.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kat-eng)
config: kat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.10187667560321
- type: f1
value: 92.46648793565683
- type: precision
value: 91.71134941912423
- type: recall
value: 94.10187667560321
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (jpn-eng)
config: jpn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.0
- type: f1
value: 96.11666666666666
- type: precision
value: 95.68333333333334
- type: recall
value: 97.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (csb-eng)
config: csb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 72.72727272727273
- type: f1
value: 66.58949745906267
- type: precision
value: 63.86693017127799
- type: recall
value: 72.72727272727273
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (xho-eng)
config: xho-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.14084507042254
- type: f1
value: 88.26291079812206
- type: precision
value: 87.32394366197182
- type: recall
value: 90.14084507042254
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (orv-eng)
config: orv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 64.67065868263472
- type: f1
value: 58.2876627696987
- type: precision
value: 55.79255774165953
- type: recall
value: 64.67065868263472
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ind-eng)
config: ind-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.41666666666667
- type: precision
value: 93.85
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tuk-eng)
config: tuk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 55.172413793103445
- type: f1
value: 49.63992493549144
- type: precision
value: 47.71405113769646
- type: recall
value: 55.172413793103445
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (max-eng)
config: max-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.46478873239437
- type: f1
value: 73.4417616811983
- type: precision
value: 71.91607981220658
- type: recall
value: 77.46478873239437
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (swh-eng)
config: swh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.61538461538461
- type: f1
value: 80.91452991452994
- type: precision
value: 79.33760683760683
- type: recall
value: 84.61538461538461
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hin-eng)
config: hin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.6
- type: precision
value: 97.3
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (dsb-eng)
config: dsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 75.5741127348643
- type: f1
value: 72.00417536534445
- type: precision
value: 70.53467872883321
- type: recall
value: 75.5741127348643
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ber-eng)
config: ber-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 62.2
- type: f1
value: 55.577460317460314
- type: precision
value: 52.98583333333333
- type: recall
value: 62.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tam-eng)
config: tam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.18241042345277
- type: f1
value: 90.6468124709167
- type: precision
value: 89.95656894679696
- type: recall
value: 92.18241042345277
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (slk-eng)
config: slk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.13333333333333
- type: precision
value: 94.66666666666667
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tgl-eng)
config: tgl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8
- type: f1
value: 95.85000000000001
- type: precision
value: 95.39999999999999
- type: recall
value: 96.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ast-eng)
config: ast-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.1259842519685
- type: f1
value: 89.76377952755905
- type: precision
value: 88.71391076115485
- type: recall
value: 92.1259842519685
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mkd-eng)
config: mkd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.49
- type: precision
value: 91.725
- type: recall
value: 94.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (khm-eng)
config: khm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.5623268698061
- type: f1
value: 73.27364463791058
- type: precision
value: 71.51947852086357
- type: recall
value: 77.5623268698061
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ces-eng)
config: ces-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.56666666666666
- type: precision
value: 96.16666666666667
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tzl-eng)
config: tzl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 66.34615384615384
- type: f1
value: 61.092032967032964
- type: precision
value: 59.27197802197802
- type: recall
value: 66.34615384615384
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (urd-eng)
config: urd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.89999999999999
- type: f1
value: 93.41190476190476
- type: precision
value: 92.7
- type: recall
value: 94.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ara-eng)
config: ara-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.10000000000001
- type: f1
value: 91.10000000000001
- type: precision
value: 90.13333333333333
- type: recall
value: 93.10000000000001
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kor-eng)
config: kor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.97333333333334
- type: precision
value: 91.14166666666667
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (yid-eng)
config: yid-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.21698113207547
- type: f1
value: 90.3796046720575
- type: precision
value: 89.56367924528303
- type: recall
value: 92.21698113207547
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fin-eng)
config: fin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.6
- type: f1
value: 96.91666666666667
- type: precision
value: 96.6
- type: recall
value: 97.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tha-eng)
config: tha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.44525547445255
- type: f1
value: 96.71532846715328
- type: precision
value: 96.35036496350365
- type: recall
value: 97.44525547445255
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (wuu-eng)
config: wuu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.34000000000002
- type: precision
value: 91.49166666666667
- type: recall
value: 94.1
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.2910000000000004
- type: map_at_10
value: 10.373000000000001
- type: map_at_100
value: 15.612
- type: map_at_1000
value: 17.06
- type: map_at_3
value: 6.119
- type: map_at_5
value: 7.917000000000001
- type: mrr_at_1
value: 44.897999999999996
- type: mrr_at_10
value: 56.054
- type: mrr_at_100
value: 56.82000000000001
- type: mrr_at_1000
value: 56.82000000000001
- type: mrr_at_3
value: 52.381
- type: mrr_at_5
value: 53.81
- type: ndcg_at_1
value: 42.857
- type: ndcg_at_10
value: 27.249000000000002
- type: ndcg_at_100
value: 36.529
- type: ndcg_at_1000
value: 48.136
- type: ndcg_at_3
value: 33.938
- type: ndcg_at_5
value: 29.951
- type: precision_at_1
value: 44.897999999999996
- type: precision_at_10
value: 22.653000000000002
- type: precision_at_100
value: 7.000000000000001
- type: precision_at_1000
value: 1.48
- type: precision_at_3
value: 32.653
- type: precision_at_5
value: 27.755000000000003
- type: recall_at_1
value: 3.2910000000000004
- type: recall_at_10
value: 16.16
- type: recall_at_100
value: 43.908
- type: recall_at_1000
value: 79.823
- type: recall_at_3
value: 7.156
- type: recall_at_5
value: 10.204
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.05879999999999
- type: ap
value: 14.609748142799111
- type: f1
value: 54.878956295843096
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 64.61799660441426
- type: f1
value: 64.8698191961434
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 51.32860036611885
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 88.34714192048638
- type: cos_sim_ap
value: 80.26732975975634
- type: cos_sim_f1
value: 73.53415148134374
- type: cos_sim_precision
value: 69.34767360299276
- type: cos_sim_recall
value: 78.25857519788919
- type: dot_accuracy
value: 88.34714192048638
- type: dot_ap
value: 80.26733698491206
- type: dot_f1
value: 73.53415148134374
- type: dot_precision
value: 69.34767360299276
- type: dot_recall
value: 78.25857519788919
- type: euclidean_accuracy
value: 88.34714192048638
- type: euclidean_ap
value: 80.26734337771738
- type: euclidean_f1
value: 73.53415148134374
- type: euclidean_precision
value: 69.34767360299276
- type: euclidean_recall
value: 78.25857519788919
- type: manhattan_accuracy
value: 88.30541813196639
- type: manhattan_ap
value: 80.19415808104145
- type: manhattan_f1
value: 73.55143870713441
- type: manhattan_precision
value: 73.25307511122743
- type: manhattan_recall
value: 73.85224274406332
- type: max_accuracy
value: 88.34714192048638
- type: max_ap
value: 80.26734337771738
- type: max_f1
value: 73.55143870713441
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.81061047075717
- type: cos_sim_ap
value: 87.11747055081017
- type: cos_sim_f1
value: 80.04355498817256
- type: cos_sim_precision
value: 78.1165262000733
- type: cos_sim_recall
value: 82.06806282722513
- type: dot_accuracy
value: 89.81061047075717
- type: dot_ap
value: 87.11746902745236
- type: dot_f1
value: 80.04355498817256
- type: dot_precision
value: 78.1165262000733
- type: dot_recall
value: 82.06806282722513
- type: euclidean_accuracy
value: 89.81061047075717
- type: euclidean_ap
value: 87.11746919324248
- type: euclidean_f1
value: 80.04355498817256
- type: euclidean_precision
value: 78.1165262000733
- type: euclidean_recall
value: 82.06806282722513
- type: manhattan_accuracy
value: 89.79508673885202
- type: manhattan_ap
value: 87.11074390832218
- type: manhattan_f1
value: 80.13002540726349
- type: manhattan_precision
value: 77.83826945412311
- type: manhattan_recall
value: 82.56082537727133
- type: max_accuracy
value: 89.81061047075717
- type: max_ap
value: 87.11747055081017
- type: max_f1
value: 80.13002540726349
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
---
## Multilingual-E5-large-instruct
[Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672).
Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024
This model has 24 layers and the embedding size is 1024.
## Usage
Below are examples to encode queries and passages from the MS-MARCO passage ranking dataset.
### Transformers
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'how much protein should a female eat'),
get_detailed_instruct(task, 'ๅ็็ๅฎถๅธธๅๆณ')
]
# No need to add instruction for retrieval documents
documents = [
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"1.ๆธ
็ๅ็ไธ ๅๆ:ๅซฉๅ็ๅไธช ่ฐๆ:่ฑใ็ใ็ฝ็ณใ้ธก็ฒพ ๅๆณ: 1ใๅ็็จๅ่่็ๅๅป่กจ้ขไธๅฑ็ฎ,็จๅบๅญๅฎๅป็ค 2ใๆฆๆ็ปไธ(ๆฒกๆๆฆ่ๆฟๅฐฑ็จๅๆ
ขๆ
ขๅๆ็ปไธ) 3ใ้
็ง็ญๆพๆฒน,ๅ
ฅ่ฑ่ฑ็
ธๅบ้ฆๅณ 4ใๅ
ฅๅ็ไธๅฟซ้็ฟป็ไธๅ้ๅทฆๅณ,ๆพ็ใไธ็น็ฝ็ณๅ้ธก็ฒพ่ฐๅณๅบ้
2.้ฆ่ฑ็ๅ็ ๅๆ:ๅ็1ๅช ่ฐๆ:้ฆ่ฑใ่ๆซใๆฉๆฆๆฒนใ็ ๅๆณ: 1ใๅฐๅ็ๅป็ฎ,ๅๆ็ 2ใๆฒน้
8ๆ็ญๅ,ๅฐ่ๆซๆพๅ
ฅ็้ฆ 3ใ็้ฆๅ,ๅฐๅ็็ๆพๅ
ฅ,็ฟป็ 4ใๅจ็ฟป็็ๅๆถ,ๅฏไปฅไธๆถๅฐๅพ้
้ๅ ๆฐด,ไฝไธ่ฆๅคชๅค 5ใๆพๅ
ฅ็,็ๅ 6ใๅ็ๅทฎไธๅค่ฝฏๅ็ปตไบไนๅ,ๅฐฑๅฏไปฅๅ
ณ็ซ 7ใๆๅ
ฅ้ฆ่ฑ,ๅณๅฏๅบ้
"
]
input_texts = queries + documents
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large-instruct')
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large-instruct')
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
# => [[91.92852783203125, 67.580322265625], [70.3814468383789, 92.1330795288086]]
```
### Sentence Transformers
```python
from sentence_transformers import SentenceTransformer
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'how much protein should a female eat'),
get_detailed_instruct(task, 'ๅ็็ๅฎถๅธธๅๆณ')
]
# No need to add instruction for retrieval documents
documents = [
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"1.ๆธ
็ๅ็ไธ ๅๆ:ๅซฉๅ็ๅไธช ่ฐๆ:่ฑใ็ใ็ฝ็ณใ้ธก็ฒพ ๅๆณ: 1ใๅ็็จๅ่่็ๅๅป่กจ้ขไธๅฑ็ฎ,็จๅบๅญๅฎๅป็ค 2ใๆฆๆ็ปไธ(ๆฒกๆๆฆ่ๆฟๅฐฑ็จๅๆ
ขๆ
ขๅๆ็ปไธ) 3ใ้
็ง็ญๆพๆฒน,ๅ
ฅ่ฑ่ฑ็
ธๅบ้ฆๅณ 4ใๅ
ฅๅ็ไธๅฟซ้็ฟป็ไธๅ้ๅทฆๅณ,ๆพ็ใไธ็น็ฝ็ณๅ้ธก็ฒพ่ฐๅณๅบ้
2.้ฆ่ฑ็ๅ็ ๅๆ:ๅ็1ๅช ่ฐๆ:้ฆ่ฑใ่ๆซใๆฉๆฆๆฒนใ็ ๅๆณ: 1ใๅฐๅ็ๅป็ฎ,ๅๆ็ 2ใๆฒน้
8ๆ็ญๅ,ๅฐ่ๆซๆพๅ
ฅ็้ฆ 3ใ็้ฆๅ,ๅฐๅ็็ๆพๅ
ฅ,็ฟป็ 4ใๅจ็ฟป็็ๅๆถ,ๅฏไปฅไธๆถๅฐๅพ้
้ๅ ๆฐด,ไฝไธ่ฆๅคชๅค 5ใๆพๅ
ฅ็,็ๅ 6ใๅ็ๅทฎไธๅค่ฝฏๅ็ปตไบไนๅ,ๅฐฑๅฏไปฅๅ
ณ็ซ 7ใๆๅ
ฅ้ฆ่ฑ,ๅณๅฏๅบ้
"
]
input_texts = queries + documents
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
embeddings = model.encode(input_texts, convert_to_tensor=True, normalize_embeddings=True)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
# [[91.92853546142578, 67.5802993774414], [70.38143157958984, 92.13307189941406]]
```
### Infinity
Usage with [Infinity](https://github.com/michaelfeil/infinity):
```bash
docker run --gpus all -v $PWD/data:/app/.cache -e HF_TOKEN=$HF_TOKEN -p "7997":"7997" \
michaelf34/infinity:0.0.68 \
v2 --model-id intfloat/multilingual-e5-large-instruct --revision "main" --dtype float16 --batch-size 32 -engine torch --port 7997
```
## Supported Languages
This model is initialized from [xlm-roberta-large](https://huggingface.co/xlm-roberta-large)
and continually trained on a mixture of multilingual datasets.
It supports 100 languages from xlm-roberta,
but low-resource languages may see performance degradation.
## Training Details
**Initialization**: [xlm-roberta-large](https://huggingface.co/xlm-roberta-large)
**First stage**: contrastive pre-training with 1 billion weakly supervised text pairs.
**Second stage**: fine-tuning on datasets from the [E5-mistral](https://arxiv.org/abs/2401.00368) paper.
## MTEB Benchmark Evaluation
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
## FAQ
**1. Do I need to add instructions to the query?**
Yes, this is how the model is trained, otherwise you will see a performance degradation.
The task definition should be a one-sentence instruction that describes the task.
This is a way to customize text embeddings for different scenarios through natural language instructions.
Please check out [unilm/e5/utils.py](https://github.com/microsoft/unilm/blob/9c0f1ff7ca53431fe47d2637dfe253643d94185b/e5/utils.py#L106) for instructions we used for evaluation.
On the other hand, there is no need to add instructions to the document side.
**2. Why are my reproduced results slightly different from reported in the model card?**
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
For text embedding tasks like text retrieval or semantic similarity,
what matters is the relative order of the scores instead of the absolute values,
so this should not be an issue.
## Citation
If you find our paper or models helpful, please consider cite as follows:
```
@article{wang2024multilingual,
title={Multilingual E5 Text Embeddings: A Technical Report},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2402.05672},
year={2024}
}
```
## Limitations
Long texts will be truncated to at most 512 tokens.
|
featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF | featherless-ai-quants | 2025-06-03T17:43:05Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:rinna/llama-3-youko-70b-instruct",
"base_model:quantized:rinna/llama-3-youko-70b-instruct",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-06-03T16:28:46Z | ---
base_model: rinna/llama-3-youko-70b-instruct
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# rinna/llama-3-youko-70b-instruct GGUF Quantizations ๐

*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations ๐
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [rinna-llama-3-youko-70b-instruct-IQ4_XS](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-IQ4_XS) | 36496.80 MB (folder) |
| Q2_K | [rinna-llama-3-youko-70b-instruct-Q2_K](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q2_K) | 25153.26 MB (folder) |
| Q3_K_L | [rinna-llama-3-youko-70b-instruct-Q3_K_L](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q3_K_L) | 35420.03 MB (folder) |
| Q3_K_M | [rinna-llama-3-youko-70b-instruct-Q3_K_M](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q3_K_M) | 32680.03 MB (folder) |
| Q3_K_S | [rinna-llama-3-youko-70b-instruct-Q3_K_S](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q3_K_S) | 29480.03 MB (folder) |
| Q4_K_M | [rinna-llama-3-youko-70b-instruct-Q4_K_M](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q4_K_M) | 40550.61 MB (folder) |
| Q4_K_S | [rinna-llama-3-youko-70b-instruct-Q4_K_S](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q4_K_S) | 38478.11 MB (folder) |
| Q5_K_M | [rinna-llama-3-youko-70b-instruct-Q5_K_M](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q5_K_M) | 47635.86 MB (folder) |
| Q5_K_S | [rinna-llama-3-youko-70b-instruct-Q5_K_S](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q5_K_S) | 46403.36 MB (folder) |
| Q6_K | [rinna-llama-3-youko-70b-instruct-Q6_K](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q6_K) | 55206.44 MB (folder) |
| Q8_0 | [rinna-llama-3-youko-70b-instruct-Q8_0](https://huggingface.co/featherless-ai-quants/rinna-llama-3-youko-70b-instruct-GGUF/tree/main/rinna-llama-3-youko-70b-instruct-Q8_0) | 71501.78 MB (folder) |
---
## โก Powered by [Featherless AI](https://featherless.ai)
### Key Features
- ๐ฅ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- ๐ ๏ธ **Zero Infrastructure** - No server setup or maintenance required
- ๐ **Vast Compatibility** - Support for 2400+ models and counting
- ๐ **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
MaIlz/outputs_grpo_improved2_2 | MaIlz | 2025-06-03T17:42:03Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"unsloth",
"trl",
"grpo",
"arxiv:2402.03300",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T17:41:56Z | ---
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
library_name: transformers
model_name: outputs_grpo_improved2_2
tags:
- generated_from_trainer
- unsloth
- trl
- grpo
licence: license
---
# Model Card for outputs_grpo_improved2_2
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="MaIlz/outputs_grpo_improved2_2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
ArliAI/RpR-v4-Fast-30B-A3B | ArliAI | 2025-06-03T17:40:15Z | 0 | 0 | null | [
"safetensors",
"qwen3_moe",
"license:apache-2.0",
"region:us"
] | null | 2025-06-03T17:14:23Z | ---
license: apache-2.0
---
|
ClaMncDexter/gemma-3-4b-it-unsloth-bnb-4bit-float16 | ClaMncDexter | 2025-06-03T17:39:49Z | 17 | 0 | transformers | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-05-30T17:56:47Z | ---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** ClaMncDexter
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jaumebalust/PPO-LunarLander-v2 | jaumebalust | 2025-06-03T17:36:48Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-06-03T17:36:30Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 272.56 +/- 18.59
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sensurs/Full.Video.Cikgu.Fadhilah.Video.CCTV.Wiring.video | sensurs | 2025-06-03T17:36:24Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T17:36:18Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐ฆ๐ถ๐ด๐ป ๐จ๐ฝ ๐๐ผ ๐๐ช๐ก๐ก ๐ช๐ฎ๐๐ฐ๐ต ๐๐๐๐๐คโค๏ธโค๏ธ)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">๐ด โคโบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐ฅ๐ข๐ง๐ค)</a>
|
mradermacher/Olmoe-0.5B-6B-GGUF | mradermacher | 2025-06-03T17:36:07Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:reflex-ai/Olmoe-0.5B-6B",
"base_model:quantized:reflex-ai/Olmoe-0.5B-6B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-03T09:31:58Z | ---
base_model: reflex-ai/Olmoe-0.5B-6B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/reflex-ai/Olmoe-0.5B-6B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q3_K_S.gguf) | Q3_K_S | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q3_K_M.gguf) | Q3_K_M | 4.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q3_K_L.gguf) | Q3_K_L | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.IQ4_XS.gguf) | IQ4_XS | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q4_K_S.gguf) | Q4_K_S | 5.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q4_K_M.gguf) | Q4_K_M | 5.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q5_K_S.gguf) | Q5_K_S | 6.2 | |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q5_K_M.gguf) | Q5_K_M | 6.4 | |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q6_K.gguf) | Q6_K | 7.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.Q8_0.gguf) | Q8_0 | 9.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Olmoe-0.5B-6B-GGUF/resolve/main/Olmoe-0.5B-6B.f16.gguf) | f16 | 17.8 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
OrcaDB/qwen2-1.5b | OrcaDB | 2025-06-03T17:34:15Z | 35,083 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"qwen2",
"feature-extraction",
"mteb",
"transformers",
"Qwen2",
"sentence-similarity",
"custom_code",
"arxiv:2308.03281",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-04-25T19:40:33Z | ---
tags:
- mteb
- sentence-transformers
- transformers
- Qwen2
- sentence-similarity
license: apache-2.0
model-index:
- name: gte-qwen2-7B-instruct
results:
- dataset:
config: en
name: MTEB AmazonCounterfactualClassification (en)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 83.98507462686567
- type: ap
value: 50.93015252587014
- type: f1
value: 78.50416599051215
task:
type: Classification
- dataset:
config: default
name: MTEB AmazonPolarityClassification
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
split: test
type: mteb/amazon_polarity
metrics:
- type: accuracy
value: 96.61065
- type: ap
value: 94.89174052954196
- type: f1
value: 96.60942596940565
task:
type: Classification
- dataset:
config: en
name: MTEB AmazonReviewsClassification (en)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 55.614000000000004
- type: f1
value: 54.90553480294904
task:
type: Classification
- dataset:
config: default
name: MTEB ArguAna
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
split: test
type: mteb/arguana
metrics:
- type: map_at_1
value: 45.164
- type: map_at_10
value: 61.519
- type: map_at_100
value: 61.769
- type: map_at_1000
value: 61.769
- type: map_at_3
value: 57.443999999999996
- type: map_at_5
value: 60.058
- type: mrr_at_1
value: 46.088
- type: mrr_at_10
value: 61.861
- type: mrr_at_100
value: 62.117999999999995
- type: mrr_at_1000
value: 62.117999999999995
- type: mrr_at_3
value: 57.729
- type: mrr_at_5
value: 60.392
- type: ndcg_at_1
value: 45.164
- type: ndcg_at_10
value: 69.72
- type: ndcg_at_100
value: 70.719
- type: ndcg_at_1000
value: 70.719
- type: ndcg_at_3
value: 61.517999999999994
- type: ndcg_at_5
value: 66.247
- type: precision_at_1
value: 45.164
- type: precision_at_10
value: 9.545
- type: precision_at_100
value: 0.996
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 24.443
- type: precision_at_5
value: 16.97
- type: recall_at_1
value: 45.164
- type: recall_at_10
value: 95.448
- type: recall_at_100
value: 99.644
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 73.329
- type: recall_at_5
value: 84.851
task:
type: Retrieval
- dataset:
config: default
name: MTEB ArxivClusteringP2P
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
split: test
type: mteb/arxiv-clustering-p2p
metrics:
- type: v_measure
value: 50.511868162026175
task:
type: Clustering
- dataset:
config: default
name: MTEB ArxivClusteringS2S
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
split: test
type: mteb/arxiv-clustering-s2s
metrics:
- type: v_measure
value: 45.007803189284004
task:
type: Clustering
- dataset:
config: default
name: MTEB AskUbuntuDupQuestions
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
split: test
type: mteb/askubuntudupquestions-reranking
metrics:
- type: map
value: 64.55292107723382
- type: mrr
value: 77.66158818097877
task:
type: Reranking
- dataset:
config: default
name: MTEB BIOSSES
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
split: test
type: mteb/biosses-sts
metrics:
- type: cos_sim_pearson
value: 85.65459047085452
- type: cos_sim_spearman
value: 82.10729255710761
- type: euclidean_pearson
value: 82.78079159312476
- type: euclidean_spearman
value: 80.50002701880933
- type: manhattan_pearson
value: 82.41372641383016
- type: manhattan_spearman
value: 80.57412509272639
task:
type: STS
- dataset:
config: default
name: MTEB Banking77Classification
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
split: test
type: mteb/banking77
metrics:
- type: accuracy
value: 87.30844155844156
- type: f1
value: 87.25307322443255
task:
type: Classification
- dataset:
config: default
name: MTEB BiorxivClusteringP2P
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
split: test
type: mteb/biorxiv-clustering-p2p
metrics:
- type: v_measure
value: 43.20754608934859
task:
type: Clustering
- dataset:
config: default
name: MTEB BiorxivClusteringS2S
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
split: test
type: mteb/biorxiv-clustering-s2s
metrics:
- type: v_measure
value: 38.818037697335505
task:
type: Clustering
- dataset:
config: default
name: MTEB CQADupstackAndroidRetrieval
revision: f46a197baaae43b4f621051089b82a364682dfeb
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 35.423
- type: map_at_10
value: 47.198
- type: map_at_100
value: 48.899
- type: map_at_1000
value: 49.004
- type: map_at_3
value: 43.114999999999995
- type: map_at_5
value: 45.491
- type: mrr_at_1
value: 42.918
- type: mrr_at_10
value: 53.299
- type: mrr_at_100
value: 54.032000000000004
- type: mrr_at_1000
value: 54.055
- type: mrr_at_3
value: 50.453
- type: mrr_at_5
value: 52.205999999999996
- type: ndcg_at_1
value: 42.918
- type: ndcg_at_10
value: 53.98
- type: ndcg_at_100
value: 59.57
- type: ndcg_at_1000
value: 60.879000000000005
- type: ndcg_at_3
value: 48.224000000000004
- type: ndcg_at_5
value: 50.998
- type: precision_at_1
value: 42.918
- type: precision_at_10
value: 10.299999999999999
- type: precision_at_100
value: 1.687
- type: precision_at_1000
value: 0.211
- type: precision_at_3
value: 22.842000000000002
- type: precision_at_5
value: 16.681
- type: recall_at_1
value: 35.423
- type: recall_at_10
value: 66.824
- type: recall_at_100
value: 89.564
- type: recall_at_1000
value: 97.501
- type: recall_at_3
value: 50.365
- type: recall_at_5
value: 57.921
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackEnglishRetrieval
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 33.205
- type: map_at_10
value: 44.859
- type: map_at_100
value: 46.135
- type: map_at_1000
value: 46.259
- type: map_at_3
value: 41.839
- type: map_at_5
value: 43.662
- type: mrr_at_1
value: 41.146
- type: mrr_at_10
value: 50.621
- type: mrr_at_100
value: 51.207
- type: mrr_at_1000
value: 51.246
- type: mrr_at_3
value: 48.535000000000004
- type: mrr_at_5
value: 49.818
- type: ndcg_at_1
value: 41.146
- type: ndcg_at_10
value: 50.683
- type: ndcg_at_100
value: 54.82
- type: ndcg_at_1000
value: 56.69
- type: ndcg_at_3
value: 46.611000000000004
- type: ndcg_at_5
value: 48.66
- type: precision_at_1
value: 41.146
- type: precision_at_10
value: 9.439
- type: precision_at_100
value: 1.465
- type: precision_at_1000
value: 0.194
- type: precision_at_3
value: 22.59
- type: precision_at_5
value: 15.86
- type: recall_at_1
value: 33.205
- type: recall_at_10
value: 61.028999999999996
- type: recall_at_100
value: 78.152
- type: recall_at_1000
value: 89.59700000000001
- type: recall_at_3
value: 49.05
- type: recall_at_5
value: 54.836
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackGamingRetrieval
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 41.637
- type: map_at_10
value: 55.162
- type: map_at_100
value: 56.142
- type: map_at_1000
value: 56.188
- type: map_at_3
value: 51.564
- type: map_at_5
value: 53.696
- type: mrr_at_1
value: 47.524
- type: mrr_at_10
value: 58.243
- type: mrr_at_100
value: 58.879999999999995
- type: mrr_at_1000
value: 58.9
- type: mrr_at_3
value: 55.69499999999999
- type: mrr_at_5
value: 57.284
- type: ndcg_at_1
value: 47.524
- type: ndcg_at_10
value: 61.305
- type: ndcg_at_100
value: 65.077
- type: ndcg_at_1000
value: 65.941
- type: ndcg_at_3
value: 55.422000000000004
- type: ndcg_at_5
value: 58.516
- type: precision_at_1
value: 47.524
- type: precision_at_10
value: 9.918000000000001
- type: precision_at_100
value: 1.276
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 24.765
- type: precision_at_5
value: 17.204
- type: recall_at_1
value: 41.637
- type: recall_at_10
value: 76.185
- type: recall_at_100
value: 92.149
- type: recall_at_1000
value: 98.199
- type: recall_at_3
value: 60.856
- type: recall_at_5
value: 68.25099999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackGisRetrieval
revision: 5003b3064772da1887988e05400cf3806fe491f2
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 26.27
- type: map_at_10
value: 37.463
- type: map_at_100
value: 38.434000000000005
- type: map_at_1000
value: 38.509
- type: map_at_3
value: 34.226
- type: map_at_5
value: 36.161
- type: mrr_at_1
value: 28.588
- type: mrr_at_10
value: 39.383
- type: mrr_at_100
value: 40.23
- type: mrr_at_1000
value: 40.281
- type: mrr_at_3
value: 36.422
- type: mrr_at_5
value: 38.252
- type: ndcg_at_1
value: 28.588
- type: ndcg_at_10
value: 43.511
- type: ndcg_at_100
value: 48.274
- type: ndcg_at_1000
value: 49.975
- type: ndcg_at_3
value: 37.319
- type: ndcg_at_5
value: 40.568
- type: precision_at_1
value: 28.588
- type: precision_at_10
value: 6.893000000000001
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 16.347
- type: precision_at_5
value: 11.661000000000001
- type: recall_at_1
value: 26.27
- type: recall_at_10
value: 60.284000000000006
- type: recall_at_100
value: 81.902
- type: recall_at_1000
value: 94.43
- type: recall_at_3
value: 43.537
- type: recall_at_5
value: 51.475
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackMathematicaRetrieval
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 18.168
- type: map_at_10
value: 28.410000000000004
- type: map_at_100
value: 29.78
- type: map_at_1000
value: 29.892999999999997
- type: map_at_3
value: 25.238
- type: map_at_5
value: 26.96
- type: mrr_at_1
value: 23.507
- type: mrr_at_10
value: 33.382
- type: mrr_at_100
value: 34.404
- type: mrr_at_1000
value: 34.467999999999996
- type: mrr_at_3
value: 30.637999999999998
- type: mrr_at_5
value: 32.199
- type: ndcg_at_1
value: 23.507
- type: ndcg_at_10
value: 34.571000000000005
- type: ndcg_at_100
value: 40.663
- type: ndcg_at_1000
value: 43.236000000000004
- type: ndcg_at_3
value: 29.053
- type: ndcg_at_5
value: 31.563999999999997
- type: precision_at_1
value: 23.507
- type: precision_at_10
value: 6.654
- type: precision_at_100
value: 1.113
- type: precision_at_1000
value: 0.146
- type: precision_at_3
value: 14.427999999999999
- type: precision_at_5
value: 10.498000000000001
- type: recall_at_1
value: 18.168
- type: recall_at_10
value: 48.443000000000005
- type: recall_at_100
value: 74.47
- type: recall_at_1000
value: 92.494
- type: recall_at_3
value: 33.379999999999995
- type: recall_at_5
value: 39.76
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackPhysicsRetrieval
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 32.39
- type: map_at_10
value: 44.479
- type: map_at_100
value: 45.977000000000004
- type: map_at_1000
value: 46.087
- type: map_at_3
value: 40.976
- type: map_at_5
value: 43.038
- type: mrr_at_1
value: 40.135
- type: mrr_at_10
value: 50.160000000000004
- type: mrr_at_100
value: 51.052
- type: mrr_at_1000
value: 51.087
- type: mrr_at_3
value: 47.818
- type: mrr_at_5
value: 49.171
- type: ndcg_at_1
value: 40.135
- type: ndcg_at_10
value: 50.731
- type: ndcg_at_100
value: 56.452000000000005
- type: ndcg_at_1000
value: 58.123000000000005
- type: ndcg_at_3
value: 45.507
- type: ndcg_at_5
value: 48.11
- type: precision_at_1
value: 40.135
- type: precision_at_10
value: 9.192
- type: precision_at_100
value: 1.397
- type: precision_at_1000
value: 0.169
- type: precision_at_3
value: 21.816
- type: precision_at_5
value: 15.476
- type: recall_at_1
value: 32.39
- type: recall_at_10
value: 63.597
- type: recall_at_100
value: 86.737
- type: recall_at_1000
value: 97.039
- type: recall_at_3
value: 48.906
- type: recall_at_5
value: 55.659000000000006
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackProgrammersRetrieval
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 28.397
- type: map_at_10
value: 39.871
- type: map_at_100
value: 41.309000000000005
- type: map_at_1000
value: 41.409
- type: map_at_3
value: 36.047000000000004
- type: map_at_5
value: 38.104
- type: mrr_at_1
value: 34.703
- type: mrr_at_10
value: 44.773
- type: mrr_at_100
value: 45.64
- type: mrr_at_1000
value: 45.678999999999995
- type: mrr_at_3
value: 41.705
- type: mrr_at_5
value: 43.406
- type: ndcg_at_1
value: 34.703
- type: ndcg_at_10
value: 46.271
- type: ndcg_at_100
value: 52.037
- type: ndcg_at_1000
value: 53.81700000000001
- type: ndcg_at_3
value: 39.966
- type: ndcg_at_5
value: 42.801
- type: precision_at_1
value: 34.703
- type: precision_at_10
value: 8.744
- type: precision_at_100
value: 1.348
- type: precision_at_1000
value: 0.167
- type: precision_at_3
value: 19.102
- type: precision_at_5
value: 13.836
- type: recall_at_1
value: 28.397
- type: recall_at_10
value: 60.299
- type: recall_at_100
value: 84.595
- type: recall_at_1000
value: 96.155
- type: recall_at_3
value: 43.065
- type: recall_at_5
value: 50.371
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackRetrieval
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 28.044333333333338
- type: map_at_10
value: 38.78691666666666
- type: map_at_100
value: 40.113
- type: map_at_1000
value: 40.22125
- type: map_at_3
value: 35.52966666666667
- type: map_at_5
value: 37.372749999999996
- type: mrr_at_1
value: 33.159083333333335
- type: mrr_at_10
value: 42.913583333333335
- type: mrr_at_100
value: 43.7845
- type: mrr_at_1000
value: 43.830333333333336
- type: mrr_at_3
value: 40.29816666666667
- type: mrr_at_5
value: 41.81366666666667
- type: ndcg_at_1
value: 33.159083333333335
- type: ndcg_at_10
value: 44.75750000000001
- type: ndcg_at_100
value: 50.13658333333334
- type: ndcg_at_1000
value: 52.037
- type: ndcg_at_3
value: 39.34258333333334
- type: ndcg_at_5
value: 41.93708333333333
- type: precision_at_1
value: 33.159083333333335
- type: precision_at_10
value: 7.952416666666667
- type: precision_at_100
value: 1.2571666666666668
- type: precision_at_1000
value: 0.16099999999999998
- type: precision_at_3
value: 18.303833333333337
- type: precision_at_5
value: 13.057083333333333
- type: recall_at_1
value: 28.044333333333338
- type: recall_at_10
value: 58.237249999999996
- type: recall_at_100
value: 81.35391666666666
- type: recall_at_1000
value: 94.21283333333334
- type: recall_at_3
value: 43.32341666666667
- type: recall_at_5
value: 49.94908333333333
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackStatsRetrieval
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 27.838
- type: map_at_10
value: 36.04
- type: map_at_100
value: 37.113
- type: map_at_1000
value: 37.204
- type: map_at_3
value: 33.585
- type: map_at_5
value: 34.845
- type: mrr_at_1
value: 30.982
- type: mrr_at_10
value: 39.105000000000004
- type: mrr_at_100
value: 39.98
- type: mrr_at_1000
value: 40.042
- type: mrr_at_3
value: 36.912
- type: mrr_at_5
value: 38.062000000000005
- type: ndcg_at_1
value: 30.982
- type: ndcg_at_10
value: 40.982
- type: ndcg_at_100
value: 46.092
- type: ndcg_at_1000
value: 48.25
- type: ndcg_at_3
value: 36.41
- type: ndcg_at_5
value: 38.379999999999995
- type: precision_at_1
value: 30.982
- type: precision_at_10
value: 6.534
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.124
- type: precision_at_3
value: 15.745999999999999
- type: precision_at_5
value: 10.828
- type: recall_at_1
value: 27.838
- type: recall_at_10
value: 52.971000000000004
- type: recall_at_100
value: 76.357
- type: recall_at_1000
value: 91.973
- type: recall_at_3
value: 40.157
- type: recall_at_5
value: 45.147999999999996
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackTexRetrieval
revision: 46989137a86843e03a6195de44b09deda022eec7
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 19.059
- type: map_at_10
value: 27.454
- type: map_at_100
value: 28.736
- type: map_at_1000
value: 28.865000000000002
- type: map_at_3
value: 24.773999999999997
- type: map_at_5
value: 26.266000000000002
- type: mrr_at_1
value: 23.125
- type: mrr_at_10
value: 31.267
- type: mrr_at_100
value: 32.32
- type: mrr_at_1000
value: 32.394
- type: mrr_at_3
value: 28.894
- type: mrr_at_5
value: 30.281000000000002
- type: ndcg_at_1
value: 23.125
- type: ndcg_at_10
value: 32.588
- type: ndcg_at_100
value: 38.432
- type: ndcg_at_1000
value: 41.214
- type: ndcg_at_3
value: 27.938000000000002
- type: ndcg_at_5
value: 30.127
- type: precision_at_1
value: 23.125
- type: precision_at_10
value: 5.9639999999999995
- type: precision_at_100
value: 1.047
- type: precision_at_1000
value: 0.148
- type: precision_at_3
value: 13.294
- type: precision_at_5
value: 9.628
- type: recall_at_1
value: 19.059
- type: recall_at_10
value: 44.25
- type: recall_at_100
value: 69.948
- type: recall_at_1000
value: 89.35300000000001
- type: recall_at_3
value: 31.114000000000004
- type: recall_at_5
value: 36.846000000000004
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackUnixRetrieval
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 28.355999999999998
- type: map_at_10
value: 39.055
- type: map_at_100
value: 40.486
- type: map_at_1000
value: 40.571
- type: map_at_3
value: 35.69
- type: map_at_5
value: 37.605
- type: mrr_at_1
value: 33.302
- type: mrr_at_10
value: 42.986000000000004
- type: mrr_at_100
value: 43.957
- type: mrr_at_1000
value: 43.996
- type: mrr_at_3
value: 40.111999999999995
- type: mrr_at_5
value: 41.735
- type: ndcg_at_1
value: 33.302
- type: ndcg_at_10
value: 44.962999999999994
- type: ndcg_at_100
value: 50.917
- type: ndcg_at_1000
value: 52.622
- type: ndcg_at_3
value: 39.182
- type: ndcg_at_5
value: 41.939
- type: precision_at_1
value: 33.302
- type: precision_at_10
value: 7.779999999999999
- type: precision_at_100
value: 1.203
- type: precision_at_1000
value: 0.145
- type: precision_at_3
value: 18.035
- type: precision_at_5
value: 12.873000000000001
- type: recall_at_1
value: 28.355999999999998
- type: recall_at_10
value: 58.782000000000004
- type: recall_at_100
value: 84.02199999999999
- type: recall_at_1000
value: 95.511
- type: recall_at_3
value: 43.126999999999995
- type: recall_at_5
value: 50.14999999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackWebmastersRetrieval
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 27.391
- type: map_at_10
value: 37.523
- type: map_at_100
value: 39.312000000000005
- type: map_at_1000
value: 39.54
- type: map_at_3
value: 34.231
- type: map_at_5
value: 36.062
- type: mrr_at_1
value: 32.016
- type: mrr_at_10
value: 41.747
- type: mrr_at_100
value: 42.812
- type: mrr_at_1000
value: 42.844
- type: mrr_at_3
value: 39.129999999999995
- type: mrr_at_5
value: 40.524
- type: ndcg_at_1
value: 32.016
- type: ndcg_at_10
value: 43.826
- type: ndcg_at_100
value: 50.373999999999995
- type: ndcg_at_1000
value: 52.318
- type: ndcg_at_3
value: 38.479
- type: ndcg_at_5
value: 40.944
- type: precision_at_1
value: 32.016
- type: precision_at_10
value: 8.280999999999999
- type: precision_at_100
value: 1.6760000000000002
- type: precision_at_1000
value: 0.25
- type: precision_at_3
value: 18.05
- type: precision_at_5
value: 13.083
- type: recall_at_1
value: 27.391
- type: recall_at_10
value: 56.928999999999995
- type: recall_at_100
value: 85.169
- type: recall_at_1000
value: 96.665
- type: recall_at_3
value: 42.264
- type: recall_at_5
value: 48.556
task:
type: Retrieval
- dataset:
config: default
name: MTEB CQADupstackWordpressRetrieval
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
split: test
type: BeIR/cqadupstack
metrics:
- type: map_at_1
value: 18.398
- type: map_at_10
value: 27.929
- type: map_at_100
value: 29.032999999999998
- type: map_at_1000
value: 29.126
- type: map_at_3
value: 25.070999999999998
- type: map_at_5
value: 26.583000000000002
- type: mrr_at_1
value: 19.963
- type: mrr_at_10
value: 29.997
- type: mrr_at_100
value: 30.9
- type: mrr_at_1000
value: 30.972
- type: mrr_at_3
value: 27.264
- type: mrr_at_5
value: 28.826
- type: ndcg_at_1
value: 19.963
- type: ndcg_at_10
value: 33.678999999999995
- type: ndcg_at_100
value: 38.931
- type: ndcg_at_1000
value: 41.379
- type: ndcg_at_3
value: 28.000000000000004
- type: ndcg_at_5
value: 30.637999999999998
- type: precision_at_1
value: 19.963
- type: precision_at_10
value: 5.7299999999999995
- type: precision_at_100
value: 0.902
- type: precision_at_1000
value: 0.122
- type: precision_at_3
value: 12.631
- type: precision_at_5
value: 9.057
- type: recall_at_1
value: 18.398
- type: recall_at_10
value: 49.254
- type: recall_at_100
value: 73.182
- type: recall_at_1000
value: 91.637
- type: recall_at_3
value: 34.06
- type: recall_at_5
value: 40.416000000000004
task:
type: Retrieval
- dataset:
config: default
name: MTEB ClimateFEVER
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
split: test
type: mteb/climate-fever
metrics:
- type: map_at_1
value: 19.681
- type: map_at_10
value: 32.741
- type: map_at_100
value: 34.811
- type: map_at_1000
value: 35.003
- type: map_at_3
value: 27.697
- type: map_at_5
value: 30.372
- type: mrr_at_1
value: 44.951
- type: mrr_at_10
value: 56.34400000000001
- type: mrr_at_100
value: 56.961
- type: mrr_at_1000
value: 56.987
- type: mrr_at_3
value: 53.681
- type: mrr_at_5
value: 55.407
- type: ndcg_at_1
value: 44.951
- type: ndcg_at_10
value: 42.905
- type: ndcg_at_100
value: 49.95
- type: ndcg_at_1000
value: 52.917
- type: ndcg_at_3
value: 36.815
- type: ndcg_at_5
value: 38.817
- type: precision_at_1
value: 44.951
- type: precision_at_10
value: 12.989999999999998
- type: precision_at_100
value: 2.068
- type: precision_at_1000
value: 0.263
- type: precision_at_3
value: 27.275
- type: precision_at_5
value: 20.365
- type: recall_at_1
value: 19.681
- type: recall_at_10
value: 48.272999999999996
- type: recall_at_100
value: 71.87400000000001
- type: recall_at_1000
value: 87.929
- type: recall_at_3
value: 32.653999999999996
- type: recall_at_5
value: 39.364
task:
type: Retrieval
- dataset:
config: default
name: MTEB DBPedia
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
split: test
type: mteb/dbpedia
metrics:
- type: map_at_1
value: 10.231
- type: map_at_10
value: 22.338
- type: map_at_100
value: 31.927
- type: map_at_1000
value: 33.87
- type: map_at_3
value: 15.559999999999999
- type: map_at_5
value: 18.239
- type: mrr_at_1
value: 75.0
- type: mrr_at_10
value: 81.303
- type: mrr_at_100
value: 81.523
- type: mrr_at_1000
value: 81.53
- type: mrr_at_3
value: 80.083
- type: mrr_at_5
value: 80.758
- type: ndcg_at_1
value: 64.625
- type: ndcg_at_10
value: 48.687000000000005
- type: ndcg_at_100
value: 52.791
- type: ndcg_at_1000
value: 60.041999999999994
- type: ndcg_at_3
value: 53.757999999999996
- type: ndcg_at_5
value: 50.76500000000001
- type: precision_at_1
value: 75.0
- type: precision_at_10
value: 38.3
- type: precision_at_100
value: 12.025
- type: precision_at_1000
value: 2.3970000000000002
- type: precision_at_3
value: 55.417
- type: precision_at_5
value: 47.5
- type: recall_at_1
value: 10.231
- type: recall_at_10
value: 27.697
- type: recall_at_100
value: 57.409
- type: recall_at_1000
value: 80.547
- type: recall_at_3
value: 16.668
- type: recall_at_5
value: 20.552
task:
type: Retrieval
- dataset:
config: default
name: MTEB EmotionClassification
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
split: test
type: mteb/emotion
metrics:
- type: accuracy
value: 61.365
- type: f1
value: 56.7540827912991
task:
type: Classification
- dataset:
config: default
name: MTEB FEVER
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
split: test
type: mteb/fever
metrics:
- type: map_at_1
value: 83.479
- type: map_at_10
value: 88.898
- type: map_at_100
value: 89.11
- type: map_at_1000
value: 89.12400000000001
- type: map_at_3
value: 88.103
- type: map_at_5
value: 88.629
- type: mrr_at_1
value: 89.934
- type: mrr_at_10
value: 93.91000000000001
- type: mrr_at_100
value: 93.937
- type: mrr_at_1000
value: 93.938
- type: mrr_at_3
value: 93.62700000000001
- type: mrr_at_5
value: 93.84599999999999
- type: ndcg_at_1
value: 89.934
- type: ndcg_at_10
value: 91.574
- type: ndcg_at_100
value: 92.238
- type: ndcg_at_1000
value: 92.45
- type: ndcg_at_3
value: 90.586
- type: ndcg_at_5
value: 91.16300000000001
- type: precision_at_1
value: 89.934
- type: precision_at_10
value: 10.555
- type: precision_at_100
value: 1.1159999999999999
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 33.588
- type: precision_at_5
value: 20.642
- type: recall_at_1
value: 83.479
- type: recall_at_10
value: 94.971
- type: recall_at_100
value: 97.397
- type: recall_at_1000
value: 98.666
- type: recall_at_3
value: 92.24799999999999
- type: recall_at_5
value: 93.797
task:
type: Retrieval
- dataset:
config: default
name: MTEB FiQA2018
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
split: test
type: mteb/fiqa
metrics:
- type: map_at_1
value: 27.16
- type: map_at_10
value: 45.593
- type: map_at_100
value: 47.762
- type: map_at_1000
value: 47.899
- type: map_at_3
value: 39.237
- type: map_at_5
value: 42.970000000000006
- type: mrr_at_1
value: 52.623
- type: mrr_at_10
value: 62.637
- type: mrr_at_100
value: 63.169
- type: mrr_at_1000
value: 63.185
- type: mrr_at_3
value: 59.928000000000004
- type: mrr_at_5
value: 61.702999999999996
- type: ndcg_at_1
value: 52.623
- type: ndcg_at_10
value: 54.701
- type: ndcg_at_100
value: 61.263
- type: ndcg_at_1000
value: 63.134
- type: ndcg_at_3
value: 49.265
- type: ndcg_at_5
value: 51.665000000000006
- type: precision_at_1
value: 52.623
- type: precision_at_10
value: 15.185
- type: precision_at_100
value: 2.202
- type: precision_at_1000
value: 0.254
- type: precision_at_3
value: 32.767
- type: precision_at_5
value: 24.722
- type: recall_at_1
value: 27.16
- type: recall_at_10
value: 63.309000000000005
- type: recall_at_100
value: 86.722
- type: recall_at_1000
value: 97.505
- type: recall_at_3
value: 45.045
- type: recall_at_5
value: 54.02400000000001
task:
type: Retrieval
- dataset:
config: default
name: MTEB HotpotQA
revision: ab518f4d6fcca38d87c25209f94beba119d02014
split: test
type: mteb/hotpotqa
metrics:
- type: map_at_1
value: 42.573
- type: map_at_10
value: 59.373
- type: map_at_100
value: 60.292
- type: map_at_1000
value: 60.358999999999995
- type: map_at_3
value: 56.159000000000006
- type: map_at_5
value: 58.123999999999995
- type: mrr_at_1
value: 85.14500000000001
- type: mrr_at_10
value: 89.25999999999999
- type: mrr_at_100
value: 89.373
- type: mrr_at_1000
value: 89.377
- type: mrr_at_3
value: 88.618
- type: mrr_at_5
value: 89.036
- type: ndcg_at_1
value: 85.14500000000001
- type: ndcg_at_10
value: 68.95
- type: ndcg_at_100
value: 71.95
- type: ndcg_at_1000
value: 73.232
- type: ndcg_at_3
value: 64.546
- type: ndcg_at_5
value: 66.945
- type: precision_at_1
value: 85.14500000000001
- type: precision_at_10
value: 13.865
- type: precision_at_100
value: 1.619
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 39.703
- type: precision_at_5
value: 25.718000000000004
- type: recall_at_1
value: 42.573
- type: recall_at_10
value: 69.325
- type: recall_at_100
value: 80.932
- type: recall_at_1000
value: 89.446
- type: recall_at_3
value: 59.553999999999995
- type: recall_at_5
value: 64.294
task:
type: Retrieval
- dataset:
config: default
name: MTEB ImdbClassification
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
split: test
type: mteb/imdb
metrics:
- type: accuracy
value: 95.8336
- type: ap
value: 93.78862962194073
- type: f1
value: 95.83192650728371
task:
type: Classification
- dataset:
config: default
name: MTEB MSMARCO
revision: c5a29a104738b98a9e76336939199e264163d4a0
split: dev
type: mteb/msmarco
metrics:
- type: map_at_1
value: 23.075000000000003
- type: map_at_10
value: 36.102000000000004
- type: map_at_100
value: 37.257
- type: map_at_1000
value: 37.3
- type: map_at_3
value: 32.144
- type: map_at_5
value: 34.359
- type: mrr_at_1
value: 23.711
- type: mrr_at_10
value: 36.671
- type: mrr_at_100
value: 37.763999999999996
- type: mrr_at_1000
value: 37.801
- type: mrr_at_3
value: 32.775
- type: mrr_at_5
value: 34.977000000000004
- type: ndcg_at_1
value: 23.711
- type: ndcg_at_10
value: 43.361
- type: ndcg_at_100
value: 48.839
- type: ndcg_at_1000
value: 49.88
- type: ndcg_at_3
value: 35.269
- type: ndcg_at_5
value: 39.224
- type: precision_at_1
value: 23.711
- type: precision_at_10
value: 6.866999999999999
- type: precision_at_100
value: 0.96
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 15.096000000000002
- type: precision_at_5
value: 11.083
- type: recall_at_1
value: 23.075000000000003
- type: recall_at_10
value: 65.756
- type: recall_at_100
value: 90.88199999999999
- type: recall_at_1000
value: 98.739
- type: recall_at_3
value: 43.691
- type: recall_at_5
value: 53.15800000000001
task:
type: Retrieval
- dataset:
config: en
name: MTEB MTOPDomainClassification (en)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 97.69493844049248
- type: f1
value: 97.55048089616261
task:
type: Classification
- dataset:
config: en
name: MTEB MTOPIntentClassification (en)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 88.75968992248062
- type: f1
value: 72.26321223399123
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 82.40080699394754
- type: f1
value: 79.62590029057968
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 84.49562878278414
- type: f1
value: 84.0040193313333
task:
type: Classification
- dataset:
config: default
name: MTEB MedrxivClusteringP2P
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
split: test
type: mteb/medrxiv-clustering-p2p
metrics:
- type: v_measure
value: 39.386760057101945
task:
type: Clustering
- dataset:
config: default
name: MTEB MedrxivClusteringS2S
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
split: test
type: mteb/medrxiv-clustering-s2s
metrics:
- type: v_measure
value: 37.89687154075537
task:
type: Clustering
- dataset:
config: default
name: MTEB MindSmallReranking
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
split: test
type: mteb/mind_small
metrics:
- type: map
value: 33.94151656057482
- type: mrr
value: 35.32684700746953
task:
type: Reranking
- dataset:
config: default
name: MTEB NFCorpus
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
split: test
type: mteb/nfcorpus
metrics:
- type: map_at_1
value: 6.239999999999999
- type: map_at_10
value: 14.862
- type: map_at_100
value: 18.955
- type: map_at_1000
value: 20.694000000000003
- type: map_at_3
value: 10.683
- type: map_at_5
value: 12.674
- type: mrr_at_1
value: 50.15500000000001
- type: mrr_at_10
value: 59.697
- type: mrr_at_100
value: 60.095
- type: mrr_at_1000
value: 60.129999999999995
- type: mrr_at_3
value: 58.35900000000001
- type: mrr_at_5
value: 58.839
- type: ndcg_at_1
value: 48.452
- type: ndcg_at_10
value: 39.341
- type: ndcg_at_100
value: 35.866
- type: ndcg_at_1000
value: 45.111000000000004
- type: ndcg_at_3
value: 44.527
- type: ndcg_at_5
value: 42.946
- type: precision_at_1
value: 50.15500000000001
- type: precision_at_10
value: 29.536
- type: precision_at_100
value: 9.142
- type: precision_at_1000
value: 2.2849999999999997
- type: precision_at_3
value: 41.899
- type: precision_at_5
value: 37.647000000000006
- type: recall_at_1
value: 6.239999999999999
- type: recall_at_10
value: 19.278000000000002
- type: recall_at_100
value: 36.074
- type: recall_at_1000
value: 70.017
- type: recall_at_3
value: 12.066
- type: recall_at_5
value: 15.254000000000001
task:
type: Retrieval
- dataset:
config: default
name: MTEB NQ
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
split: test
type: mteb/nq
metrics:
- type: map_at_1
value: 39.75
- type: map_at_10
value: 56.443
- type: map_at_100
value: 57.233999999999995
- type: map_at_1000
value: 57.249
- type: map_at_3
value: 52.032999999999994
- type: map_at_5
value: 54.937999999999995
- type: mrr_at_1
value: 44.728
- type: mrr_at_10
value: 58.939
- type: mrr_at_100
value: 59.489000000000004
- type: mrr_at_1000
value: 59.499
- type: mrr_at_3
value: 55.711999999999996
- type: mrr_at_5
value: 57.89
- type: ndcg_at_1
value: 44.728
- type: ndcg_at_10
value: 63.998999999999995
- type: ndcg_at_100
value: 67.077
- type: ndcg_at_1000
value: 67.40899999999999
- type: ndcg_at_3
value: 56.266000000000005
- type: ndcg_at_5
value: 60.88
- type: precision_at_1
value: 44.728
- type: precision_at_10
value: 10.09
- type: precision_at_100
value: 1.1809999999999998
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 25.145
- type: precision_at_5
value: 17.822
- type: recall_at_1
value: 39.75
- type: recall_at_10
value: 84.234
- type: recall_at_100
value: 97.055
- type: recall_at_1000
value: 99.517
- type: recall_at_3
value: 64.851
- type: recall_at_5
value: 75.343
task:
type: Retrieval
- dataset:
config: default
name: MTEB QuoraRetrieval
revision: None
split: test
type: mteb/quora
metrics:
- type: map_at_1
value: 72.085
- type: map_at_10
value: 86.107
- type: map_at_100
value: 86.727
- type: map_at_1000
value: 86.74
- type: map_at_3
value: 83.21
- type: map_at_5
value: 85.06
- type: mrr_at_1
value: 82.94
- type: mrr_at_10
value: 88.845
- type: mrr_at_100
value: 88.926
- type: mrr_at_1000
value: 88.927
- type: mrr_at_3
value: 87.993
- type: mrr_at_5
value: 88.62299999999999
- type: ndcg_at_1
value: 82.97
- type: ndcg_at_10
value: 89.645
- type: ndcg_at_100
value: 90.717
- type: ndcg_at_1000
value: 90.78
- type: ndcg_at_3
value: 86.99900000000001
- type: ndcg_at_5
value: 88.52600000000001
- type: precision_at_1
value: 82.97
- type: precision_at_10
value: 13.569
- type: precision_at_100
value: 1.539
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 38.043
- type: precision_at_5
value: 24.992
- type: recall_at_1
value: 72.085
- type: recall_at_10
value: 96.262
- type: recall_at_100
value: 99.77000000000001
- type: recall_at_1000
value: 99.997
- type: recall_at_3
value: 88.652
- type: recall_at_5
value: 93.01899999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB RedditClustering
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
split: test
type: mteb/reddit-clustering
metrics:
- type: v_measure
value: 55.82153952668092
task:
type: Clustering
- dataset:
config: default
name: MTEB RedditClusteringP2P
revision: 282350215ef01743dc01b456c7f5241fa8937f16
split: test
type: mteb/reddit-clustering-p2p
metrics:
- type: v_measure
value: 62.094465801879295
task:
type: Clustering
- dataset:
config: default
name: MTEB SCIDOCS
revision: None
split: test
type: mteb/scidocs
metrics:
- type: map_at_1
value: 5.688
- type: map_at_10
value: 15.201999999999998
- type: map_at_100
value: 18.096
- type: map_at_1000
value: 18.481
- type: map_at_3
value: 10.734
- type: map_at_5
value: 12.94
- type: mrr_at_1
value: 28.000000000000004
- type: mrr_at_10
value: 41.101
- type: mrr_at_100
value: 42.202
- type: mrr_at_1000
value: 42.228
- type: mrr_at_3
value: 37.683
- type: mrr_at_5
value: 39.708
- type: ndcg_at_1
value: 28.000000000000004
- type: ndcg_at_10
value: 24.976000000000003
- type: ndcg_at_100
value: 35.129
- type: ndcg_at_1000
value: 40.77
- type: ndcg_at_3
value: 23.787
- type: ndcg_at_5
value: 20.816000000000003
- type: precision_at_1
value: 28.000000000000004
- type: precision_at_10
value: 13.04
- type: precision_at_100
value: 2.761
- type: precision_at_1000
value: 0.41000000000000003
- type: precision_at_3
value: 22.6
- type: precision_at_5
value: 18.52
- type: recall_at_1
value: 5.688
- type: recall_at_10
value: 26.43
- type: recall_at_100
value: 56.02
- type: recall_at_1000
value: 83.21
- type: recall_at_3
value: 13.752
- type: recall_at_5
value: 18.777
task:
type: Retrieval
- dataset:
config: default
name: MTEB SICK-R
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
split: test
type: mteb/sickr-sts
metrics:
- type: cos_sim_pearson
value: 85.15084859283178
- type: cos_sim_spearman
value: 80.49030614009419
- type: euclidean_pearson
value: 81.84574978672468
- type: euclidean_spearman
value: 79.89787150656818
- type: manhattan_pearson
value: 81.63076538567131
- type: manhattan_spearman
value: 79.69867352121841
task:
type: STS
- dataset:
config: default
name: MTEB STS12
revision: a0d554a64d88156834ff5ae9920b964011b16384
split: test
type: mteb/sts12-sts
metrics:
- type: cos_sim_pearson
value: 84.64097921490992
- type: cos_sim_spearman
value: 77.25370084896514
- type: euclidean_pearson
value: 82.71210826468788
- type: euclidean_spearman
value: 78.50445584994826
- type: manhattan_pearson
value: 82.92580164330298
- type: manhattan_spearman
value: 78.69686891301019
task:
type: STS
- dataset:
config: default
name: MTEB STS13
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
split: test
type: mteb/sts13-sts
metrics:
- type: cos_sim_pearson
value: 87.24596417308994
- type: cos_sim_spearman
value: 87.79454220555091
- type: euclidean_pearson
value: 87.40242561671164
- type: euclidean_spearman
value: 88.25955597373556
- type: manhattan_pearson
value: 87.25160240485849
- type: manhattan_spearman
value: 88.155794979818
task:
type: STS
- dataset:
config: default
name: MTEB STS14
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
split: test
type: mteb/sts14-sts
metrics:
- type: cos_sim_pearson
value: 84.44914233422564
- type: cos_sim_spearman
value: 82.91015471820322
- type: euclidean_pearson
value: 84.7206656630327
- type: euclidean_spearman
value: 83.86408872059216
- type: manhattan_pearson
value: 84.72816725158454
- type: manhattan_spearman
value: 84.01603388572788
task:
type: STS
- dataset:
config: default
name: MTEB STS15
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
split: test
type: mteb/sts15-sts
metrics:
- type: cos_sim_pearson
value: 87.6168026237477
- type: cos_sim_spearman
value: 88.45414278092397
- type: euclidean_pearson
value: 88.57023240882022
- type: euclidean_spearman
value: 89.04102190922094
- type: manhattan_pearson
value: 88.66695535796354
- type: manhattan_spearman
value: 89.19898476680969
task:
type: STS
- dataset:
config: default
name: MTEB STS16
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
split: test
type: mteb/sts16-sts
metrics:
- type: cos_sim_pearson
value: 84.27925826089424
- type: cos_sim_spearman
value: 85.45291099550461
- type: euclidean_pearson
value: 83.63853036580834
- type: euclidean_spearman
value: 84.33468035821484
- type: manhattan_pearson
value: 83.72778773251596
- type: manhattan_spearman
value: 84.51583132445376
task:
type: STS
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 89.67375185692552
- type: cos_sim_spearman
value: 90.32542469203855
- type: euclidean_pearson
value: 89.63513717951847
- type: euclidean_spearman
value: 89.87760271003745
- type: manhattan_pearson
value: 89.28381452982924
- type: manhattan_spearman
value: 89.53568197785721
task:
type: STS
- dataset:
config: en
name: MTEB STS22 (en)
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 66.24644693819846
- type: cos_sim_spearman
value: 66.09889420525377
- type: euclidean_pearson
value: 63.72551583520747
- type: euclidean_spearman
value: 63.01385470780679
- type: manhattan_pearson
value: 64.09258157214097
- type: manhattan_spearman
value: 63.080517752822594
task:
type: STS
- dataset:
config: default
name: MTEB STSBenchmark
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
split: test
type: mteb/stsbenchmark-sts
metrics:
- type: cos_sim_pearson
value: 86.27321463839989
- type: cos_sim_spearman
value: 86.37572865993327
- type: euclidean_pearson
value: 86.36268020198149
- type: euclidean_spearman
value: 86.31089339478922
- type: manhattan_pearson
value: 86.4260445761947
- type: manhattan_spearman
value: 86.45885895320457
task:
type: STS
- dataset:
config: default
name: MTEB SciDocsRR
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
split: test
type: mteb/scidocs-reranking
metrics:
- type: map
value: 86.52456702387798
- type: mrr
value: 96.34556529164372
task:
type: Reranking
- dataset:
config: default
name: MTEB SciFact
revision: 0228b52cf27578f30900b9e5271d331663a030d7
split: test
type: mteb/scifact
metrics:
- type: map_at_1
value: 61.99400000000001
- type: map_at_10
value: 73.38799999999999
- type: map_at_100
value: 73.747
- type: map_at_1000
value: 73.75
- type: map_at_3
value: 70.04599999999999
- type: map_at_5
value: 72.095
- type: mrr_at_1
value: 65.0
- type: mrr_at_10
value: 74.42800000000001
- type: mrr_at_100
value: 74.722
- type: mrr_at_1000
value: 74.725
- type: mrr_at_3
value: 72.056
- type: mrr_at_5
value: 73.60600000000001
- type: ndcg_at_1
value: 65.0
- type: ndcg_at_10
value: 78.435
- type: ndcg_at_100
value: 79.922
- type: ndcg_at_1000
value: 80.00500000000001
- type: ndcg_at_3
value: 73.05199999999999
- type: ndcg_at_5
value: 75.98
- type: precision_at_1
value: 65.0
- type: precision_at_10
value: 10.5
- type: precision_at_100
value: 1.123
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 28.555999999999997
- type: precision_at_5
value: 19.0
- type: recall_at_1
value: 61.99400000000001
- type: recall_at_10
value: 92.72200000000001
- type: recall_at_100
value: 99.333
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 78.739
- type: recall_at_5
value: 85.828
task:
type: Retrieval
- dataset:
config: default
name: MTEB SprintDuplicateQuestions
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
split: test
type: mteb/sprintduplicatequestions-pairclassification
metrics:
- type: cos_sim_accuracy
value: 99.79009900990098
- type: cos_sim_ap
value: 95.3203137438653
- type: cos_sim_f1
value: 89.12386706948641
- type: cos_sim_precision
value: 89.75659229208925
- type: cos_sim_recall
value: 88.5
- type: dot_accuracy
value: 99.67821782178218
- type: dot_ap
value: 89.94069840000675
- type: dot_f1
value: 83.45902463549521
- type: dot_precision
value: 83.9231547017189
- type: dot_recall
value: 83.0
- type: euclidean_accuracy
value: 99.78613861386138
- type: euclidean_ap
value: 95.10648259135526
- type: euclidean_f1
value: 88.77338877338877
- type: euclidean_precision
value: 92.42424242424242
- type: euclidean_recall
value: 85.39999999999999
- type: manhattan_accuracy
value: 99.7950495049505
- type: manhattan_ap
value: 95.29987661320946
- type: manhattan_f1
value: 89.21313183949972
- type: manhattan_precision
value: 93.14472252448314
- type: manhattan_recall
value: 85.6
- type: max_accuracy
value: 99.7950495049505
- type: max_ap
value: 95.3203137438653
- type: max_f1
value: 89.21313183949972
task:
type: PairClassification
- dataset:
config: default
name: MTEB StackExchangeClustering
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
split: test
type: mteb/stackexchange-clustering
metrics:
- type: v_measure
value: 67.65446577183913
task:
type: Clustering
- dataset:
config: default
name: MTEB StackExchangeClusteringP2P
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
split: test
type: mteb/stackexchange-clustering-p2p
metrics:
- type: v_measure
value: 46.30749237193961
task:
type: Clustering
- dataset:
config: default
name: MTEB StackOverflowDupQuestions
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
split: test
type: mteb/stackoverflowdupquestions-reranking
metrics:
- type: map
value: 54.91481849959949
- type: mrr
value: 55.853506175197346
task:
type: Reranking
- dataset:
config: default
name: MTEB SummEval
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
split: test
type: mteb/summeval
metrics:
- type: cos_sim_pearson
value: 30.08196549170419
- type: cos_sim_spearman
value: 31.16661390597077
- type: dot_pearson
value: 29.892258410943466
- type: dot_spearman
value: 30.51328811965085
task:
type: Summarization
- dataset:
config: default
name: MTEB TRECCOVID
revision: None
split: test
type: mteb/trec-covid
metrics:
- type: map_at_1
value: 0.23900000000000002
- type: map_at_10
value: 2.173
- type: map_at_100
value: 14.24
- type: map_at_1000
value: 35.309000000000005
- type: map_at_3
value: 0.7100000000000001
- type: map_at_5
value: 1.163
- type: mrr_at_1
value: 92.0
- type: mrr_at_10
value: 96.0
- type: mrr_at_100
value: 96.0
- type: mrr_at_1000
value: 96.0
- type: mrr_at_3
value: 96.0
- type: mrr_at_5
value: 96.0
- type: ndcg_at_1
value: 90.0
- type: ndcg_at_10
value: 85.382
- type: ndcg_at_100
value: 68.03
- type: ndcg_at_1000
value: 61.021
- type: ndcg_at_3
value: 89.765
- type: ndcg_at_5
value: 88.444
- type: precision_at_1
value: 92.0
- type: precision_at_10
value: 88.0
- type: precision_at_100
value: 70.02000000000001
- type: precision_at_1000
value: 26.984
- type: precision_at_3
value: 94.0
- type: precision_at_5
value: 92.80000000000001
- type: recall_at_1
value: 0.23900000000000002
- type: recall_at_10
value: 2.313
- type: recall_at_100
value: 17.049
- type: recall_at_1000
value: 57.489999999999995
- type: recall_at_3
value: 0.737
- type: recall_at_5
value: 1.221
task:
type: Retrieval
- dataset:
config: default
name: MTEB Touche2020
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
split: test
type: mteb/touche2020
metrics:
- type: map_at_1
value: 2.75
- type: map_at_10
value: 11.29
- type: map_at_100
value: 18.032999999999998
- type: map_at_1000
value: 19.746
- type: map_at_3
value: 6.555
- type: map_at_5
value: 8.706999999999999
- type: mrr_at_1
value: 34.694
- type: mrr_at_10
value: 50.55
- type: mrr_at_100
value: 51.659
- type: mrr_at_1000
value: 51.659
- type: mrr_at_3
value: 47.278999999999996
- type: mrr_at_5
value: 49.728
- type: ndcg_at_1
value: 32.653
- type: ndcg_at_10
value: 27.894000000000002
- type: ndcg_at_100
value: 39.769
- type: ndcg_at_1000
value: 51.495999999999995
- type: ndcg_at_3
value: 32.954
- type: ndcg_at_5
value: 31.502999999999997
- type: precision_at_1
value: 34.694
- type: precision_at_10
value: 23.265
- type: precision_at_100
value: 7.898
- type: precision_at_1000
value: 1.58
- type: precision_at_3
value: 34.694
- type: precision_at_5
value: 31.429000000000002
- type: recall_at_1
value: 2.75
- type: recall_at_10
value: 16.953
- type: recall_at_100
value: 48.68
- type: recall_at_1000
value: 85.18599999999999
- type: recall_at_3
value: 7.710999999999999
- type: recall_at_5
value: 11.484
task:
type: Retrieval
- dataset:
config: default
name: MTEB ToxicConversationsClassification
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
split: test
type: mteb/toxic_conversations_50k
metrics:
- type: accuracy
value: 82.66099999999999
- type: ap
value: 25.555698090238337
- type: f1
value: 66.48402012461622
task:
type: Classification
- dataset:
config: default
name: MTEB TweetSentimentExtractionClassification
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
split: test
type: mteb/tweet_sentiment_extraction
metrics:
- type: accuracy
value: 72.94567062818335
- type: f1
value: 73.28139189595674
task:
type: Classification
- dataset:
config: default
name: MTEB TwentyNewsgroupsClustering
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
split: test
type: mteb/twentynewsgroups-clustering
metrics:
- type: v_measure
value: 49.581627240203474
task:
type: Clustering
- dataset:
config: default
name: MTEB TwitterSemEval2015
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
split: test
type: mteb/twittersemeval2015-pairclassification
metrics:
- type: cos_sim_accuracy
value: 87.78089050485785
- type: cos_sim_ap
value: 79.64487116574168
- type: cos_sim_f1
value: 72.46563021970964
- type: cos_sim_precision
value: 70.62359128474831
- type: cos_sim_recall
value: 74.40633245382587
- type: dot_accuracy
value: 86.2609524944865
- type: dot_ap
value: 75.513046857613
- type: dot_f1
value: 68.58213616489695
- type: dot_precision
value: 65.12455516014235
- type: dot_recall
value: 72.42744063324538
- type: euclidean_accuracy
value: 87.6080348095607
- type: euclidean_ap
value: 79.00204933649795
- type: euclidean_f1
value: 72.14495342605589
- type: euclidean_precision
value: 69.85421299728193
- type: euclidean_recall
value: 74.5910290237467
- type: manhattan_accuracy
value: 87.59611372712642
- type: manhattan_ap
value: 78.78523756706264
- type: manhattan_f1
value: 71.86499137718648
- type: manhattan_precision
value: 67.39833641404806
- type: manhattan_recall
value: 76.96569920844327
- type: max_accuracy
value: 87.78089050485785
- type: max_ap
value: 79.64487116574168
- type: max_f1
value: 72.46563021970964
task:
type: PairClassification
- dataset:
config: default
name: MTEB TwitterURLCorpus
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
split: test
type: mteb/twitterurlcorpus-pairclassification
metrics:
- type: cos_sim_accuracy
value: 89.98719292117825
- type: cos_sim_ap
value: 87.58146137353202
- type: cos_sim_f1
value: 80.28543232369239
- type: cos_sim_precision
value: 79.1735289714029
- type: cos_sim_recall
value: 81.42901139513397
- type: dot_accuracy
value: 88.9199363526992
- type: dot_ap
value: 84.98499998630417
- type: dot_f1
value: 78.21951400757969
- type: dot_precision
value: 75.58523624874336
- type: dot_recall
value: 81.04404065291038
- type: euclidean_accuracy
value: 89.77374160748244
- type: euclidean_ap
value: 87.35151562835209
- type: euclidean_f1
value: 79.92160922940393
- type: euclidean_precision
value: 76.88531587933979
- type: euclidean_recall
value: 83.20757622420696
- type: manhattan_accuracy
value: 89.72717041176699
- type: manhattan_ap
value: 87.34065592142515
- type: manhattan_f1
value: 79.85603419187943
- type: manhattan_precision
value: 77.82243332115455
- type: manhattan_recall
value: 81.99876809362489
- type: max_accuracy
value: 89.98719292117825
- type: max_ap
value: 87.58146137353202
- type: max_f1
value: 80.28543232369239
task:
type: PairClassification
- dataset:
config: default
name: MTEB AFQMC
revision: b44c3b011063adb25877c13823db83bb193913c4
split: validation
type: C-MTEB/AFQMC
metrics:
- type: cos_sim_pearson
value: 53.45954203592337
- type: cos_sim_spearman
value: 58.42154680418638
- type: euclidean_pearson
value: 56.41543791722753
- type: euclidean_spearman
value: 58.39328016640146
- type: manhattan_pearson
value: 56.318510356833876
- type: manhattan_spearman
value: 58.28423447818184
task:
type: STS
- dataset:
config: default
name: MTEB ATEC
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
split: test
type: C-MTEB/ATEC
metrics:
- type: cos_sim_pearson
value: 50.78356460675945
- type: cos_sim_spearman
value: 55.6530411663269
- type: euclidean_pearson
value: 56.50763660417816
- type: euclidean_spearman
value: 55.733823335669065
- type: manhattan_pearson
value: 56.45323093512866
- type: manhattan_spearman
value: 55.63248619032702
task:
type: STS
- dataset:
config: zh
name: MTEB AmazonReviewsClassification (zh)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 47.209999999999994
- type: f1
value: 46.08892432018655
task:
type: Classification
- dataset:
config: default
name: MTEB BQ
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
split: test
type: C-MTEB/BQ
metrics:
- type: cos_sim_pearson
value: 70.25573992001478
- type: cos_sim_spearman
value: 73.85247134951433
- type: euclidean_pearson
value: 72.60033082168442
- type: euclidean_spearman
value: 73.72445893756499
- type: manhattan_pearson
value: 72.59932284620231
- type: manhattan_spearman
value: 73.68002490614583
task:
type: STS
- dataset:
config: default
name: MTEB CLSClusteringP2P
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
split: test
type: C-MTEB/CLSClusteringP2P
metrics:
- type: v_measure
value: 45.21317724305628
task:
type: Clustering
- dataset:
config: default
name: MTEB CLSClusteringS2S
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
split: test
type: C-MTEB/CLSClusteringS2S
metrics:
- type: v_measure
value: 42.49825170976724
task:
type: Clustering
- dataset:
config: default
name: MTEB CMedQAv1
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
split: test
type: C-MTEB/CMedQAv1-reranking
metrics:
- type: map
value: 88.15661686810597
- type: mrr
value: 90.11222222222223
task:
type: Reranking
- dataset:
config: default
name: MTEB CMedQAv2
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
split: test
type: C-MTEB/CMedQAv2-reranking
metrics:
- type: map
value: 88.1204726064383
- type: mrr
value: 90.20142857142858
task:
type: Reranking
- dataset:
config: default
name: MTEB CmedqaRetrieval
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
split: dev
type: C-MTEB/CmedqaRetrieval
metrics:
- type: map_at_1
value: 27.224999999999998
- type: map_at_10
value: 40.169
- type: map_at_100
value: 42.0
- type: map_at_1000
value: 42.109
- type: map_at_3
value: 35.76
- type: map_at_5
value: 38.221
- type: mrr_at_1
value: 40.56
- type: mrr_at_10
value: 49.118
- type: mrr_at_100
value: 50.092999999999996
- type: mrr_at_1000
value: 50.133
- type: mrr_at_3
value: 46.507
- type: mrr_at_5
value: 47.973
- type: ndcg_at_1
value: 40.56
- type: ndcg_at_10
value: 46.972
- type: ndcg_at_100
value: 54.04
- type: ndcg_at_1000
value: 55.862
- type: ndcg_at_3
value: 41.36
- type: ndcg_at_5
value: 43.704
- type: precision_at_1
value: 40.56
- type: precision_at_10
value: 10.302999999999999
- type: precision_at_100
value: 1.606
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 23.064
- type: precision_at_5
value: 16.764000000000003
- type: recall_at_1
value: 27.224999999999998
- type: recall_at_10
value: 58.05200000000001
- type: recall_at_100
value: 87.092
- type: recall_at_1000
value: 99.099
- type: recall_at_3
value: 41.373
- type: recall_at_5
value: 48.453
task:
type: Retrieval
- dataset:
config: default
name: MTEB Cmnli
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
split: validation
type: C-MTEB/CMNLI
metrics:
- type: cos_sim_accuracy
value: 77.40228502705953
- type: cos_sim_ap
value: 86.22359172956327
- type: cos_sim_f1
value: 78.96328293736501
- type: cos_sim_precision
value: 73.36945615091311
- type: cos_sim_recall
value: 85.48047696983868
- type: dot_accuracy
value: 75.53818400481059
- type: dot_ap
value: 83.70164011305312
- type: dot_f1
value: 77.67298719348754
- type: dot_precision
value: 67.49482401656314
- type: dot_recall
value: 91.46598082768296
- type: euclidean_accuracy
value: 77.94347564642213
- type: euclidean_ap
value: 86.4652108728609
- type: euclidean_f1
value: 79.15555555555555
- type: euclidean_precision
value: 75.41816641964853
- type: euclidean_recall
value: 83.28267477203647
- type: manhattan_accuracy
value: 77.45039085989175
- type: manhattan_ap
value: 86.09986583900665
- type: manhattan_f1
value: 78.93669264438988
- type: manhattan_precision
value: 72.63261296660117
- type: manhattan_recall
value: 86.43909282207154
- type: max_accuracy
value: 77.94347564642213
- type: max_ap
value: 86.4652108728609
- type: max_f1
value: 79.15555555555555
task:
type: PairClassification
- dataset:
config: default
name: MTEB CovidRetrieval
revision: 1271c7809071a13532e05f25fb53511ffce77117
split: dev
type: C-MTEB/CovidRetrieval
metrics:
- type: map_at_1
value: 69.336
- type: map_at_10
value: 77.16
- type: map_at_100
value: 77.47500000000001
- type: map_at_1000
value: 77.482
- type: map_at_3
value: 75.42999999999999
- type: map_at_5
value: 76.468
- type: mrr_at_1
value: 69.44200000000001
- type: mrr_at_10
value: 77.132
- type: mrr_at_100
value: 77.43299999999999
- type: mrr_at_1000
value: 77.44
- type: mrr_at_3
value: 75.395
- type: mrr_at_5
value: 76.459
- type: ndcg_at_1
value: 69.547
- type: ndcg_at_10
value: 80.794
- type: ndcg_at_100
value: 82.245
- type: ndcg_at_1000
value: 82.40899999999999
- type: ndcg_at_3
value: 77.303
- type: ndcg_at_5
value: 79.168
- type: precision_at_1
value: 69.547
- type: precision_at_10
value: 9.305
- type: precision_at_100
value: 0.9979999999999999
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 27.749000000000002
- type: precision_at_5
value: 17.576
- type: recall_at_1
value: 69.336
- type: recall_at_10
value: 92.097
- type: recall_at_100
value: 98.736
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 82.64
- type: recall_at_5
value: 87.144
task:
type: Retrieval
- dataset:
config: default
name: MTEB DuRetrieval
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
split: dev
type: C-MTEB/DuRetrieval
metrics:
- type: map_at_1
value: 26.817999999999998
- type: map_at_10
value: 82.67
- type: map_at_100
value: 85.304
- type: map_at_1000
value: 85.334
- type: map_at_3
value: 57.336
- type: map_at_5
value: 72.474
- type: mrr_at_1
value: 91.45
- type: mrr_at_10
value: 94.272
- type: mrr_at_100
value: 94.318
- type: mrr_at_1000
value: 94.32000000000001
- type: mrr_at_3
value: 94.0
- type: mrr_at_5
value: 94.17699999999999
- type: ndcg_at_1
value: 91.45
- type: ndcg_at_10
value: 89.404
- type: ndcg_at_100
value: 91.724
- type: ndcg_at_1000
value: 91.973
- type: ndcg_at_3
value: 88.104
- type: ndcg_at_5
value: 87.25699999999999
- type: precision_at_1
value: 91.45
- type: precision_at_10
value: 42.585
- type: precision_at_100
value: 4.838
- type: precision_at_1000
value: 0.49
- type: precision_at_3
value: 78.8
- type: precision_at_5
value: 66.66
- type: recall_at_1
value: 26.817999999999998
- type: recall_at_10
value: 90.67
- type: recall_at_100
value: 98.36200000000001
- type: recall_at_1000
value: 99.583
- type: recall_at_3
value: 59.614999999999995
- type: recall_at_5
value: 77.05199999999999
task:
type: Retrieval
- dataset:
config: default
name: MTEB EcomRetrieval
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
split: dev
type: C-MTEB/EcomRetrieval
metrics:
- type: map_at_1
value: 47.699999999999996
- type: map_at_10
value: 57.589999999999996
- type: map_at_100
value: 58.226
- type: map_at_1000
value: 58.251
- type: map_at_3
value: 55.233
- type: map_at_5
value: 56.633
- type: mrr_at_1
value: 47.699999999999996
- type: mrr_at_10
value: 57.589999999999996
- type: mrr_at_100
value: 58.226
- type: mrr_at_1000
value: 58.251
- type: mrr_at_3
value: 55.233
- type: mrr_at_5
value: 56.633
- type: ndcg_at_1
value: 47.699999999999996
- type: ndcg_at_10
value: 62.505
- type: ndcg_at_100
value: 65.517
- type: ndcg_at_1000
value: 66.19800000000001
- type: ndcg_at_3
value: 57.643
- type: ndcg_at_5
value: 60.181
- type: precision_at_1
value: 47.699999999999996
- type: precision_at_10
value: 7.8
- type: precision_at_100
value: 0.919
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 21.532999999999998
- type: precision_at_5
value: 14.16
- type: recall_at_1
value: 47.699999999999996
- type: recall_at_10
value: 78.0
- type: recall_at_100
value: 91.9
- type: recall_at_1000
value: 97.3
- type: recall_at_3
value: 64.60000000000001
- type: recall_at_5
value: 70.8
task:
type: Retrieval
- dataset:
config: default
name: MTEB IFlyTek
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
split: validation
type: C-MTEB/IFlyTek-classification
metrics:
- type: accuracy
value: 44.84801846864178
- type: f1
value: 37.47347897956339
task:
type: Classification
- dataset:
config: default
name: MTEB JDReview
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
split: test
type: C-MTEB/JDReview-classification
metrics:
- type: accuracy
value: 85.81613508442777
- type: ap
value: 52.68244615477374
- type: f1
value: 80.0445640948843
task:
type: Classification
- dataset:
config: default
name: MTEB LCQMC
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
split: test
type: C-MTEB/LCQMC
metrics:
- type: cos_sim_pearson
value: 69.57786502217138
- type: cos_sim_spearman
value: 75.39106054489906
- type: euclidean_pearson
value: 73.72082954602402
- type: euclidean_spearman
value: 75.14421475913619
- type: manhattan_pearson
value: 73.62463076633642
- type: manhattan_spearman
value: 75.01301565104112
task:
type: STS
- dataset:
config: default
name: MTEB MMarcoReranking
revision: None
split: dev
type: C-MTEB/Mmarco-reranking
metrics:
- type: map
value: 29.143797057999134
- type: mrr
value: 28.08174603174603
task:
type: Reranking
- dataset:
config: default
name: MTEB MMarcoRetrieval
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
split: dev
type: C-MTEB/MMarcoRetrieval
metrics:
- type: map_at_1
value: 70.492
- type: map_at_10
value: 79.501
- type: map_at_100
value: 79.728
- type: map_at_1000
value: 79.735
- type: map_at_3
value: 77.77
- type: map_at_5
value: 78.851
- type: mrr_at_1
value: 72.822
- type: mrr_at_10
value: 80.001
- type: mrr_at_100
value: 80.19
- type: mrr_at_1000
value: 80.197
- type: mrr_at_3
value: 78.484
- type: mrr_at_5
value: 79.42099999999999
- type: ndcg_at_1
value: 72.822
- type: ndcg_at_10
value: 83.013
- type: ndcg_at_100
value: 84.013
- type: ndcg_at_1000
value: 84.20400000000001
- type: ndcg_at_3
value: 79.728
- type: ndcg_at_5
value: 81.542
- type: precision_at_1
value: 72.822
- type: precision_at_10
value: 9.917
- type: precision_at_100
value: 1.042
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 29.847
- type: precision_at_5
value: 18.871
- type: recall_at_1
value: 70.492
- type: recall_at_10
value: 93.325
- type: recall_at_100
value: 97.822
- type: recall_at_1000
value: 99.319
- type: recall_at_3
value: 84.636
- type: recall_at_5
value: 88.93100000000001
task:
type: Retrieval
- dataset:
config: zh-CN
name: MTEB MassiveIntentClassification (zh-CN)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 76.88298587760592
- type: f1
value: 73.89001762017176
task:
type: Classification
- dataset:
config: zh-CN
name: MTEB MassiveScenarioClassification (zh-CN)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 80.76328177538669
- type: f1
value: 80.24718532423358
task:
type: Classification
- dataset:
config: default
name: MTEB MedicalRetrieval
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
split: dev
type: C-MTEB/MedicalRetrieval
metrics:
- type: map_at_1
value: 49.6
- type: map_at_10
value: 55.620999999999995
- type: map_at_100
value: 56.204
- type: map_at_1000
value: 56.251
- type: map_at_3
value: 54.132999999999996
- type: map_at_5
value: 54.933
- type: mrr_at_1
value: 49.7
- type: mrr_at_10
value: 55.67100000000001
- type: mrr_at_100
value: 56.254000000000005
- type: mrr_at_1000
value: 56.301
- type: mrr_at_3
value: 54.18300000000001
- type: mrr_at_5
value: 54.983000000000004
- type: ndcg_at_1
value: 49.6
- type: ndcg_at_10
value: 58.645
- type: ndcg_at_100
value: 61.789
- type: ndcg_at_1000
value: 63.219
- type: ndcg_at_3
value: 55.567
- type: ndcg_at_5
value: 57.008
- type: precision_at_1
value: 49.6
- type: precision_at_10
value: 6.819999999999999
- type: precision_at_100
value: 0.836
- type: precision_at_1000
value: 0.095
- type: precision_at_3
value: 19.900000000000002
- type: precision_at_5
value: 12.64
- type: recall_at_1
value: 49.6
- type: recall_at_10
value: 68.2
- type: recall_at_100
value: 83.6
- type: recall_at_1000
value: 95.3
- type: recall_at_3
value: 59.699999999999996
- type: recall_at_5
value: 63.2
task:
type: Retrieval
- dataset:
config: default
name: MTEB MultilingualSentiment
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
split: validation
type: C-MTEB/MultilingualSentiment-classification
metrics:
- type: accuracy
value: 74.45666666666666
- type: f1
value: 74.32582402190089
task:
type: Classification
- dataset:
config: default
name: MTEB Ocnli
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
split: validation
type: C-MTEB/OCNLI
metrics:
- type: cos_sim_accuracy
value: 80.67135896047645
- type: cos_sim_ap
value: 87.60421240712051
- type: cos_sim_f1
value: 82.1304131408661
- type: cos_sim_precision
value: 77.68361581920904
- type: cos_sim_recall
value: 87.11721224920802
- type: dot_accuracy
value: 79.04710341093666
- type: dot_ap
value: 85.6370059719336
- type: dot_f1
value: 80.763723150358
- type: dot_precision
value: 73.69337979094077
- type: dot_recall
value: 89.33474128827878
- type: euclidean_accuracy
value: 81.05035192203573
- type: euclidean_ap
value: 87.7880240053663
- type: euclidean_f1
value: 82.50244379276637
- type: euclidean_precision
value: 76.7970882620564
- type: euclidean_recall
value: 89.1235480464625
- type: manhattan_accuracy
value: 80.61721710882512
- type: manhattan_ap
value: 87.43568120591175
- type: manhattan_f1
value: 81.89526184538653
- type: manhattan_precision
value: 77.5992438563327
- type: manhattan_recall
value: 86.6948257655755
- type: max_accuracy
value: 81.05035192203573
- type: max_ap
value: 87.7880240053663
- type: max_f1
value: 82.50244379276637
task:
type: PairClassification
- dataset:
config: default
name: MTEB OnlineShopping
revision: e610f2ebd179a8fda30ae534c3878750a96db120
split: test
type: C-MTEB/OnlineShopping-classification
metrics:
- type: accuracy
value: 93.5
- type: ap
value: 91.31357903446782
- type: f1
value: 93.48088994006616
task:
type: Classification
- dataset:
config: default
name: MTEB PAWSX
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
split: test
type: C-MTEB/PAWSX
metrics:
- type: cos_sim_pearson
value: 36.93293453538077
- type: cos_sim_spearman
value: 42.45972506308574
- type: euclidean_pearson
value: 42.34945133152159
- type: euclidean_spearman
value: 42.331610303674644
- type: manhattan_pearson
value: 42.31455070249498
- type: manhattan_spearman
value: 42.19887982891834
task:
type: STS
- dataset:
config: default
name: MTEB QBQTC
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
split: test
type: C-MTEB/QBQTC
metrics:
- type: cos_sim_pearson
value: 33.683290790043785
- type: cos_sim_spearman
value: 35.149171171202994
- type: euclidean_pearson
value: 32.33806561267862
- type: euclidean_spearman
value: 34.483576387347966
- type: manhattan_pearson
value: 32.47629754599608
- type: manhattan_spearman
value: 34.66434471867615
task:
type: STS
- dataset:
config: zh
name: MTEB STS22 (zh)
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 66.46322760516104
- type: cos_sim_spearman
value: 67.398478319726
- type: euclidean_pearson
value: 64.7223480293625
- type: euclidean_spearman
value: 66.83118568812951
- type: manhattan_pearson
value: 64.88440039828305
- type: manhattan_spearman
value: 66.80429458952257
task:
type: STS
- dataset:
config: default
name: MTEB STSB
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
split: test
type: C-MTEB/STSB
metrics:
- type: cos_sim_pearson
value: 79.08991383232105
- type: cos_sim_spearman
value: 79.39715677296854
- type: euclidean_pearson
value: 78.63201279320496
- type: euclidean_spearman
value: 79.40262660785731
- type: manhattan_pearson
value: 78.98138363146906
- type: manhattan_spearman
value: 79.79968413014194
task:
type: STS
- dataset:
config: default
name: MTEB T2Reranking
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
split: dev
type: C-MTEB/T2Reranking
metrics:
- type: map
value: 67.43289278789972
- type: mrr
value: 77.53012460908535
task:
type: Reranking
- dataset:
config: default
name: MTEB T2Retrieval
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
split: dev
type: C-MTEB/T2Retrieval
metrics:
- type: map_at_1
value: 27.733999999999998
- type: map_at_10
value: 78.24799999999999
- type: map_at_100
value: 81.765
- type: map_at_1000
value: 81.824
- type: map_at_3
value: 54.92
- type: map_at_5
value: 67.61399999999999
- type: mrr_at_1
value: 90.527
- type: mrr_at_10
value: 92.843
- type: mrr_at_100
value: 92.927
- type: mrr_at_1000
value: 92.93
- type: mrr_at_3
value: 92.45100000000001
- type: mrr_at_5
value: 92.693
- type: ndcg_at_1
value: 90.527
- type: ndcg_at_10
value: 85.466
- type: ndcg_at_100
value: 88.846
- type: ndcg_at_1000
value: 89.415
- type: ndcg_at_3
value: 86.768
- type: ndcg_at_5
value: 85.46000000000001
- type: precision_at_1
value: 90.527
- type: precision_at_10
value: 42.488
- type: precision_at_100
value: 5.024
- type: precision_at_1000
value: 0.516
- type: precision_at_3
value: 75.907
- type: precision_at_5
value: 63.727000000000004
- type: recall_at_1
value: 27.733999999999998
- type: recall_at_10
value: 84.346
- type: recall_at_100
value: 95.536
- type: recall_at_1000
value: 98.42999999999999
- type: recall_at_3
value: 56.455
- type: recall_at_5
value: 70.755
task:
type: Retrieval
- dataset:
config: default
name: MTEB TNews
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
split: validation
type: C-MTEB/TNews-classification
metrics:
- type: accuracy
value: 49.952000000000005
- type: f1
value: 48.264617195258054
task:
type: Classification
- dataset:
config: default
name: MTEB ThuNewsClusteringP2P
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
split: test
type: C-MTEB/ThuNewsClusteringP2P
metrics:
- type: v_measure
value: 68.23769904483508
task:
type: Clustering
- dataset:
config: default
name: MTEB ThuNewsClusteringS2S
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
split: test
type: C-MTEB/ThuNewsClusteringS2S
metrics:
- type: v_measure
value: 62.50294403136556
task:
type: Clustering
- dataset:
config: default
name: MTEB VideoRetrieval
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
split: dev
type: C-MTEB/VideoRetrieval
metrics:
- type: map_at_1
value: 54.0
- type: map_at_10
value: 63.668
- type: map_at_100
value: 64.217
- type: map_at_1000
value: 64.23100000000001
- type: map_at_3
value: 61.7
- type: map_at_5
value: 62.870000000000005
- type: mrr_at_1
value: 54.0
- type: mrr_at_10
value: 63.668
- type: mrr_at_100
value: 64.217
- type: mrr_at_1000
value: 64.23100000000001
- type: mrr_at_3
value: 61.7
- type: mrr_at_5
value: 62.870000000000005
- type: ndcg_at_1
value: 54.0
- type: ndcg_at_10
value: 68.11399999999999
- type: ndcg_at_100
value: 70.723
- type: ndcg_at_1000
value: 71.123
- type: ndcg_at_3
value: 64.074
- type: ndcg_at_5
value: 66.178
- type: precision_at_1
value: 54.0
- type: precision_at_10
value: 8.200000000000001
- type: precision_at_100
value: 0.941
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 23.633000000000003
- type: precision_at_5
value: 15.2
- type: recall_at_1
value: 54.0
- type: recall_at_10
value: 82.0
- type: recall_at_100
value: 94.1
- type: recall_at_1000
value: 97.3
- type: recall_at_3
value: 70.89999999999999
- type: recall_at_5
value: 76.0
task:
type: Retrieval
- dataset:
config: default
name: MTEB Waimai
revision: 339287def212450dcaa9df8c22bf93e9980c7023
split: test
type: C-MTEB/waimai-classification
metrics:
- type: accuracy
value: 86.63000000000001
- type: ap
value: 69.99457882599567
- type: f1
value: 85.07735617998541
task:
type: Classification
- dataset:
config: default
name: MTEB 8TagsClustering
revision: None
split: test
type: PL-MTEB/8tags-clustering
metrics:
- type: v_measure
value: 44.594104491193555
task:
type: Clustering
- dataset:
config: default
name: MTEB AllegroReviews
revision: None
split: test
type: PL-MTEB/allegro-reviews
metrics:
- type: accuracy
value: 63.97614314115309
- type: f1
value: 52.15634261679283
task:
type: Classification
- dataset:
config: default
name: MTEB ArguAna-PL
revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
split: test
type: clarin-knext/arguana-pl
metrics:
- type: map_at_1
value: 32.646
- type: map_at_10
value: 47.963
- type: map_at_100
value: 48.789
- type: map_at_1000
value: 48.797000000000004
- type: map_at_3
value: 43.196
- type: map_at_5
value: 46.016
- type: mrr_at_1
value: 33.073
- type: mrr_at_10
value: 48.126000000000005
- type: mrr_at_100
value: 48.946
- type: mrr_at_1000
value: 48.953
- type: mrr_at_3
value: 43.374
- type: mrr_at_5
value: 46.147
- type: ndcg_at_1
value: 32.646
- type: ndcg_at_10
value: 56.481
- type: ndcg_at_100
value: 59.922
- type: ndcg_at_1000
value: 60.07
- type: ndcg_at_3
value: 46.675
- type: ndcg_at_5
value: 51.76500000000001
- type: precision_at_1
value: 32.646
- type: precision_at_10
value: 8.371
- type: precision_at_100
value: 0.9860000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.919
- type: precision_at_5
value: 13.825999999999999
- type: recall_at_1
value: 32.646
- type: recall_at_10
value: 83.71300000000001
- type: recall_at_100
value: 98.578
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 56.757000000000005
- type: recall_at_5
value: 69.132
task:
type: Retrieval
- dataset:
config: default
name: MTEB CBD
revision: None
split: test
type: PL-MTEB/cbd
metrics:
- type: accuracy
value: 68.56
- type: ap
value: 23.310493680488513
- type: f1
value: 58.85369533105693
task:
type: Classification
- dataset:
config: default
name: MTEB CDSC-E
revision: None
split: test
type: PL-MTEB/cdsce-pairclassification
metrics:
- type: cos_sim_accuracy
value: 88.5
- type: cos_sim_ap
value: 72.42140924378361
- type: cos_sim_f1
value: 66.0919540229885
- type: cos_sim_precision
value: 72.78481012658227
- type: cos_sim_recall
value: 60.526315789473685
- type: dot_accuracy
value: 88.5
- type: dot_ap
value: 72.42140924378361
- type: dot_f1
value: 66.0919540229885
- type: dot_precision
value: 72.78481012658227
- type: dot_recall
value: 60.526315789473685
- type: euclidean_accuracy
value: 88.5
- type: euclidean_ap
value: 72.42140924378361
- type: euclidean_f1
value: 66.0919540229885
- type: euclidean_precision
value: 72.78481012658227
- type: euclidean_recall
value: 60.526315789473685
- type: manhattan_accuracy
value: 88.5
- type: manhattan_ap
value: 72.49745515311696
- type: manhattan_f1
value: 66.0968660968661
- type: manhattan_precision
value: 72.04968944099379
- type: manhattan_recall
value: 61.05263157894737
- type: max_accuracy
value: 88.5
- type: max_ap
value: 72.49745515311696
- type: max_f1
value: 66.0968660968661
task:
type: PairClassification
- dataset:
config: default
name: MTEB CDSC-R
revision: None
split: test
type: PL-MTEB/cdscr-sts
metrics:
- type: cos_sim_pearson
value: 90.32269765590145
- type: cos_sim_spearman
value: 89.73666311491672
- type: euclidean_pearson
value: 88.2933868516544
- type: euclidean_spearman
value: 89.73666311491672
- type: manhattan_pearson
value: 88.33474590219448
- type: manhattan_spearman
value: 89.8548364866583
task:
type: STS
- dataset:
config: default
name: MTEB DBPedia-PL
revision: 76afe41d9af165cc40999fcaa92312b8b012064a
split: test
type: clarin-knext/dbpedia-pl
metrics:
- type: map_at_1
value: 7.632999999999999
- type: map_at_10
value: 16.426
- type: map_at_100
value: 22.651
- type: map_at_1000
value: 24.372
- type: map_at_3
value: 11.706
- type: map_at_5
value: 13.529
- type: mrr_at_1
value: 60.75000000000001
- type: mrr_at_10
value: 68.613
- type: mrr_at_100
value: 69.001
- type: mrr_at_1000
value: 69.021
- type: mrr_at_3
value: 67.0
- type: mrr_at_5
value: 67.925
- type: ndcg_at_1
value: 49.875
- type: ndcg_at_10
value: 36.978
- type: ndcg_at_100
value: 40.031
- type: ndcg_at_1000
value: 47.566
- type: ndcg_at_3
value: 41.148
- type: ndcg_at_5
value: 38.702
- type: precision_at_1
value: 60.75000000000001
- type: precision_at_10
value: 29.7
- type: precision_at_100
value: 9.278
- type: precision_at_1000
value: 2.099
- type: precision_at_3
value: 44.0
- type: precision_at_5
value: 37.6
- type: recall_at_1
value: 7.632999999999999
- type: recall_at_10
value: 22.040000000000003
- type: recall_at_100
value: 44.024
- type: recall_at_1000
value: 67.848
- type: recall_at_3
value: 13.093
- type: recall_at_5
value: 15.973
task:
type: Retrieval
- dataset:
config: default
name: MTEB FiQA-PL
revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
split: test
type: clarin-knext/fiqa-pl
metrics:
- type: map_at_1
value: 15.473
- type: map_at_10
value: 24.579
- type: map_at_100
value: 26.387
- type: map_at_1000
value: 26.57
- type: map_at_3
value: 21.278
- type: map_at_5
value: 23.179
- type: mrr_at_1
value: 30.709999999999997
- type: mrr_at_10
value: 38.994
- type: mrr_at_100
value: 39.993
- type: mrr_at_1000
value: 40.044999999999995
- type: mrr_at_3
value: 36.342999999999996
- type: mrr_at_5
value: 37.846999999999994
- type: ndcg_at_1
value: 30.709999999999997
- type: ndcg_at_10
value: 31.608999999999998
- type: ndcg_at_100
value: 38.807
- type: ndcg_at_1000
value: 42.208
- type: ndcg_at_3
value: 28.086
- type: ndcg_at_5
value: 29.323
- type: precision_at_1
value: 30.709999999999997
- type: precision_at_10
value: 8.688
- type: precision_at_100
value: 1.608
- type: precision_at_1000
value: 0.22100000000000003
- type: precision_at_3
value: 18.724
- type: precision_at_5
value: 13.950999999999999
- type: recall_at_1
value: 15.473
- type: recall_at_10
value: 38.361000000000004
- type: recall_at_100
value: 65.2
- type: recall_at_1000
value: 85.789
- type: recall_at_3
value: 25.401
- type: recall_at_5
value: 30.875999999999998
task:
type: Retrieval
- dataset:
config: default
name: MTEB HotpotQA-PL
revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
split: test
type: clarin-knext/hotpotqa-pl
metrics:
- type: map_at_1
value: 38.096000000000004
- type: map_at_10
value: 51.44499999999999
- type: map_at_100
value: 52.325
- type: map_at_1000
value: 52.397000000000006
- type: map_at_3
value: 48.626999999999995
- type: map_at_5
value: 50.342
- type: mrr_at_1
value: 76.19200000000001
- type: mrr_at_10
value: 81.191
- type: mrr_at_100
value: 81.431
- type: mrr_at_1000
value: 81.443
- type: mrr_at_3
value: 80.30199999999999
- type: mrr_at_5
value: 80.85900000000001
- type: ndcg_at_1
value: 76.19200000000001
- type: ndcg_at_10
value: 60.9
- type: ndcg_at_100
value: 64.14699999999999
- type: ndcg_at_1000
value: 65.647
- type: ndcg_at_3
value: 56.818000000000005
- type: ndcg_at_5
value: 59.019999999999996
- type: precision_at_1
value: 76.19200000000001
- type: precision_at_10
value: 12.203
- type: precision_at_100
value: 1.478
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 34.616
- type: precision_at_5
value: 22.515
- type: recall_at_1
value: 38.096000000000004
- type: recall_at_10
value: 61.013
- type: recall_at_100
value: 73.90299999999999
- type: recall_at_1000
value: 83.91
- type: recall_at_3
value: 51.92400000000001
- type: recall_at_5
value: 56.286
task:
type: Retrieval
- dataset:
config: default
name: MTEB MSMARCO-PL
revision: 8634c07806d5cce3a6138e260e59b81760a0a640
split: test
type: clarin-knext/msmarco-pl
metrics:
- type: map_at_1
value: 1.548
- type: map_at_10
value: 11.049000000000001
- type: map_at_100
value: 28.874
- type: map_at_1000
value: 34.931
- type: map_at_3
value: 4.162
- type: map_at_5
value: 6.396
- type: mrr_at_1
value: 90.69800000000001
- type: mrr_at_10
value: 92.093
- type: mrr_at_100
value: 92.345
- type: mrr_at_1000
value: 92.345
- type: mrr_at_3
value: 91.86
- type: mrr_at_5
value: 91.86
- type: ndcg_at_1
value: 74.031
- type: ndcg_at_10
value: 63.978
- type: ndcg_at_100
value: 53.101
- type: ndcg_at_1000
value: 60.675999999999995
- type: ndcg_at_3
value: 71.421
- type: ndcg_at_5
value: 68.098
- type: precision_at_1
value: 90.69800000000001
- type: precision_at_10
value: 71.86
- type: precision_at_100
value: 31.395
- type: precision_at_1000
value: 5.981
- type: precision_at_3
value: 84.49600000000001
- type: precision_at_5
value: 79.07
- type: recall_at_1
value: 1.548
- type: recall_at_10
value: 12.149000000000001
- type: recall_at_100
value: 40.794999999999995
- type: recall_at_1000
value: 67.974
- type: recall_at_3
value: 4.244
- type: recall_at_5
value: 6.608
task:
type: Retrieval
- dataset:
config: pl
name: MTEB MassiveIntentClassification (pl)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 73.55413584398119
- type: f1
value: 69.65610882318181
task:
type: Classification
- dataset:
config: pl
name: MTEB MassiveScenarioClassification (pl)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 76.37188971082716
- type: f1
value: 75.64847309941361
task:
type: Classification
- dataset:
config: default
name: MTEB NFCorpus-PL
revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
split: test
type: clarin-knext/nfcorpus-pl
metrics:
- type: map_at_1
value: 4.919
- type: map_at_10
value: 10.834000000000001
- type: map_at_100
value: 13.38
- type: map_at_1000
value: 14.581
- type: map_at_3
value: 8.198
- type: map_at_5
value: 9.428
- type: mrr_at_1
value: 41.176
- type: mrr_at_10
value: 50.083
- type: mrr_at_100
value: 50.559
- type: mrr_at_1000
value: 50.604000000000006
- type: mrr_at_3
value: 47.936
- type: mrr_at_5
value: 49.407000000000004
- type: ndcg_at_1
value: 39.628
- type: ndcg_at_10
value: 30.098000000000003
- type: ndcg_at_100
value: 27.061
- type: ndcg_at_1000
value: 35.94
- type: ndcg_at_3
value: 35.135
- type: ndcg_at_5
value: 33.335
- type: precision_at_1
value: 41.176
- type: precision_at_10
value: 22.259999999999998
- type: precision_at_100
value: 6.712
- type: precision_at_1000
value: 1.9060000000000001
- type: precision_at_3
value: 33.23
- type: precision_at_5
value: 29.04
- type: recall_at_1
value: 4.919
- type: recall_at_10
value: 14.196
- type: recall_at_100
value: 26.948
- type: recall_at_1000
value: 59.211000000000006
- type: recall_at_3
value: 9.44
- type: recall_at_5
value: 11.569
task:
type: Retrieval
- dataset:
config: default
name: MTEB NQ-PL
revision: f171245712cf85dd4700b06bef18001578d0ca8d
split: test
type: clarin-knext/nq-pl
metrics:
- type: map_at_1
value: 25.35
- type: map_at_10
value: 37.884
- type: map_at_100
value: 38.955
- type: map_at_1000
value: 39.007999999999996
- type: map_at_3
value: 34.239999999999995
- type: map_at_5
value: 36.398
- type: mrr_at_1
value: 28.737000000000002
- type: mrr_at_10
value: 39.973
- type: mrr_at_100
value: 40.844
- type: mrr_at_1000
value: 40.885
- type: mrr_at_3
value: 36.901
- type: mrr_at_5
value: 38.721
- type: ndcg_at_1
value: 28.708
- type: ndcg_at_10
value: 44.204
- type: ndcg_at_100
value: 48.978
- type: ndcg_at_1000
value: 50.33
- type: ndcg_at_3
value: 37.36
- type: ndcg_at_5
value: 40.912
- type: precision_at_1
value: 28.708
- type: precision_at_10
value: 7.367
- type: precision_at_100
value: 1.0030000000000001
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 17.034
- type: precision_at_5
value: 12.293999999999999
- type: recall_at_1
value: 25.35
- type: recall_at_10
value: 61.411
- type: recall_at_100
value: 82.599
- type: recall_at_1000
value: 92.903
- type: recall_at_3
value: 43.728
- type: recall_at_5
value: 51.854
task:
type: Retrieval
- dataset:
config: default
name: MTEB PAC
revision: None
split: test
type: laugustyniak/abusive-clauses-pl
metrics:
- type: accuracy
value: 69.04141326382856
- type: ap
value: 77.49422763833996
- type: f1
value: 66.73472657783407
task:
type: Classification
- dataset:
config: default
name: MTEB PPC
revision: None
split: test
type: PL-MTEB/ppc-pairclassification
metrics:
- type: cos_sim_accuracy
value: 81.0
- type: cos_sim_ap
value: 91.47194213011349
- type: cos_sim_f1
value: 84.73767885532592
- type: cos_sim_precision
value: 81.49847094801224
- type: cos_sim_recall
value: 88.24503311258279
- type: dot_accuracy
value: 81.0
- type: dot_ap
value: 91.47194213011349
- type: dot_f1
value: 84.73767885532592
- type: dot_precision
value: 81.49847094801224
- type: dot_recall
value: 88.24503311258279
- type: euclidean_accuracy
value: 81.0
- type: euclidean_ap
value: 91.47194213011349
- type: euclidean_f1
value: 84.73767885532592
- type: euclidean_precision
value: 81.49847094801224
- type: euclidean_recall
value: 88.24503311258279
- type: manhattan_accuracy
value: 81.0
- type: manhattan_ap
value: 91.46464475050571
- type: manhattan_f1
value: 84.48687350835321
- type: manhattan_precision
value: 81.31699846860643
- type: manhattan_recall
value: 87.91390728476821
- type: max_accuracy
value: 81.0
- type: max_ap
value: 91.47194213011349
- type: max_f1
value: 84.73767885532592
task:
type: PairClassification
- dataset:
config: default
name: MTEB PSC
revision: None
split: test
type: PL-MTEB/psc-pairclassification
metrics:
- type: cos_sim_accuracy
value: 97.6808905380334
- type: cos_sim_ap
value: 99.27948611836348
- type: cos_sim_f1
value: 96.15975422427034
- type: cos_sim_precision
value: 96.90402476780186
- type: cos_sim_recall
value: 95.42682926829268
- type: dot_accuracy
value: 97.6808905380334
- type: dot_ap
value: 99.2794861183635
- type: dot_f1
value: 96.15975422427034
- type: dot_precision
value: 96.90402476780186
- type: dot_recall
value: 95.42682926829268
- type: euclidean_accuracy
value: 97.6808905380334
- type: euclidean_ap
value: 99.2794861183635
- type: euclidean_f1
value: 96.15975422427034
- type: euclidean_precision
value: 96.90402476780186
- type: euclidean_recall
value: 95.42682926829268
- type: manhattan_accuracy
value: 97.6808905380334
- type: manhattan_ap
value: 99.28715055268721
- type: manhattan_f1
value: 96.14791987673343
- type: manhattan_precision
value: 97.19626168224299
- type: manhattan_recall
value: 95.1219512195122
- type: max_accuracy
value: 97.6808905380334
- type: max_ap
value: 99.28715055268721
- type: max_f1
value: 96.15975422427034
task:
type: PairClassification
- dataset:
config: default
name: MTEB PolEmo2.0-IN
revision: None
split: test
type: PL-MTEB/polemo2_in
metrics:
- type: accuracy
value: 86.16343490304708
- type: f1
value: 83.3442579486744
task:
type: Classification
- dataset:
config: default
name: MTEB PolEmo2.0-OUT
revision: None
split: test
type: PL-MTEB/polemo2_out
metrics:
- type: accuracy
value: 68.40080971659918
- type: f1
value: 53.13720751142237
task:
type: Classification
- dataset:
config: default
name: MTEB Quora-PL
revision: 0be27e93455051e531182b85e85e425aba12e9d4
split: test
type: clarin-knext/quora-pl
metrics:
- type: map_at_1
value: 63.322
- type: map_at_10
value: 76.847
- type: map_at_100
value: 77.616
- type: map_at_1000
value: 77.644
- type: map_at_3
value: 73.624
- type: map_at_5
value: 75.603
- type: mrr_at_1
value: 72.88
- type: mrr_at_10
value: 80.376
- type: mrr_at_100
value: 80.604
- type: mrr_at_1000
value: 80.61
- type: mrr_at_3
value: 78.92
- type: mrr_at_5
value: 79.869
- type: ndcg_at_1
value: 72.89999999999999
- type: ndcg_at_10
value: 81.43
- type: ndcg_at_100
value: 83.394
- type: ndcg_at_1000
value: 83.685
- type: ndcg_at_3
value: 77.62599999999999
- type: ndcg_at_5
value: 79.656
- type: precision_at_1
value: 72.89999999999999
- type: precision_at_10
value: 12.548
- type: precision_at_100
value: 1.4869999999999999
- type: precision_at_1000
value: 0.155
- type: precision_at_3
value: 34.027
- type: precision_at_5
value: 22.654
- type: recall_at_1
value: 63.322
- type: recall_at_10
value: 90.664
- type: recall_at_100
value: 97.974
- type: recall_at_1000
value: 99.636
- type: recall_at_3
value: 80.067
- type: recall_at_5
value: 85.526
task:
type: Retrieval
- dataset:
config: default
name: MTEB SCIDOCS-PL
revision: 45452b03f05560207ef19149545f168e596c9337
split: test
type: clarin-knext/scidocs-pl
metrics:
- type: map_at_1
value: 3.95
- type: map_at_10
value: 9.658999999999999
- type: map_at_100
value: 11.384
- type: map_at_1000
value: 11.677
- type: map_at_3
value: 7.055
- type: map_at_5
value: 8.244
- type: mrr_at_1
value: 19.5
- type: mrr_at_10
value: 28.777
- type: mrr_at_100
value: 29.936
- type: mrr_at_1000
value: 30.009999999999998
- type: mrr_at_3
value: 25.55
- type: mrr_at_5
value: 27.284999999999997
- type: ndcg_at_1
value: 19.5
- type: ndcg_at_10
value: 16.589000000000002
- type: ndcg_at_100
value: 23.879
- type: ndcg_at_1000
value: 29.279
- type: ndcg_at_3
value: 15.719
- type: ndcg_at_5
value: 13.572000000000001
- type: precision_at_1
value: 19.5
- type: precision_at_10
value: 8.62
- type: precision_at_100
value: 1.924
- type: precision_at_1000
value: 0.322
- type: precision_at_3
value: 14.6
- type: precision_at_5
value: 11.78
- type: recall_at_1
value: 3.95
- type: recall_at_10
value: 17.477999999999998
- type: recall_at_100
value: 38.99
- type: recall_at_1000
value: 65.417
- type: recall_at_3
value: 8.883000000000001
- type: recall_at_5
value: 11.933
task:
type: Retrieval
- dataset:
config: default
name: MTEB SICK-E-PL
revision: None
split: test
type: PL-MTEB/sicke-pl-pairclassification
metrics:
- type: cos_sim_accuracy
value: 83.48960456583775
- type: cos_sim_ap
value: 76.31522115825375
- type: cos_sim_f1
value: 70.35573122529645
- type: cos_sim_precision
value: 70.9934735315446
- type: cos_sim_recall
value: 69.72934472934473
- type: dot_accuracy
value: 83.48960456583775
- type: dot_ap
value: 76.31522115825373
- type: dot_f1
value: 70.35573122529645
- type: dot_precision
value: 70.9934735315446
- type: dot_recall
value: 69.72934472934473
- type: euclidean_accuracy
value: 83.48960456583775
- type: euclidean_ap
value: 76.31522115825373
- type: euclidean_f1
value: 70.35573122529645
- type: euclidean_precision
value: 70.9934735315446
- type: euclidean_recall
value: 69.72934472934473
- type: manhattan_accuracy
value: 83.46922136159804
- type: manhattan_ap
value: 76.18474601388084
- type: manhattan_f1
value: 70.34779490856937
- type: manhattan_precision
value: 70.83032490974729
- type: manhattan_recall
value: 69.87179487179486
- type: max_accuracy
value: 83.48960456583775
- type: max_ap
value: 76.31522115825375
- type: max_f1
value: 70.35573122529645
task:
type: PairClassification
- dataset:
config: default
name: MTEB SICK-R-PL
revision: None
split: test
type: PL-MTEB/sickr-pl-sts
metrics:
- type: cos_sim_pearson
value: 77.95374883876302
- type: cos_sim_spearman
value: 73.77630219171942
- type: euclidean_pearson
value: 75.81927069594934
- type: euclidean_spearman
value: 73.7763211303831
- type: manhattan_pearson
value: 76.03126859057528
- type: manhattan_spearman
value: 73.96528138013369
task:
type: STS
- dataset:
config: pl
name: MTEB STS22 (pl)
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 37.388282764841826
- type: cos_sim_spearman
value: 40.83477184710897
- type: euclidean_pearson
value: 26.754737044177805
- type: euclidean_spearman
value: 40.83477184710897
- type: manhattan_pearson
value: 26.760453110872458
- type: manhattan_spearman
value: 41.034477441383856
task:
type: STS
- dataset:
config: default
name: MTEB SciFact-PL
revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
split: test
type: clarin-knext/scifact-pl
metrics:
- type: map_at_1
value: 49.15
- type: map_at_10
value: 61.690999999999995
- type: map_at_100
value: 62.348000000000006
- type: map_at_1000
value: 62.38
- type: map_at_3
value: 58.824
- type: map_at_5
value: 60.662000000000006
- type: mrr_at_1
value: 51.333
- type: mrr_at_10
value: 62.731
- type: mrr_at_100
value: 63.245
- type: mrr_at_1000
value: 63.275000000000006
- type: mrr_at_3
value: 60.667
- type: mrr_at_5
value: 61.93300000000001
- type: ndcg_at_1
value: 51.333
- type: ndcg_at_10
value: 67.168
- type: ndcg_at_100
value: 69.833
- type: ndcg_at_1000
value: 70.56700000000001
- type: ndcg_at_3
value: 62.40599999999999
- type: ndcg_at_5
value: 65.029
- type: precision_at_1
value: 51.333
- type: precision_at_10
value: 9.333
- type: precision_at_100
value: 1.0699999999999998
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 25.333
- type: precision_at_5
value: 17.067
- type: recall_at_1
value: 49.15
- type: recall_at_10
value: 82.533
- type: recall_at_100
value: 94.167
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 69.917
- type: recall_at_5
value: 76.356
task:
type: Retrieval
- dataset:
config: default
name: MTEB TRECCOVID-PL
revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
split: test
type: clarin-knext/trec-covid-pl
metrics:
- type: map_at_1
value: 0.261
- type: map_at_10
value: 2.1260000000000003
- type: map_at_100
value: 12.171999999999999
- type: map_at_1000
value: 26.884999999999998
- type: map_at_3
value: 0.695
- type: map_at_5
value: 1.134
- type: mrr_at_1
value: 96.0
- type: mrr_at_10
value: 96.952
- type: mrr_at_100
value: 96.952
- type: mrr_at_1000
value: 96.952
- type: mrr_at_3
value: 96.667
- type: mrr_at_5
value: 96.667
- type: ndcg_at_1
value: 92.0
- type: ndcg_at_10
value: 81.193
- type: ndcg_at_100
value: 61.129
- type: ndcg_at_1000
value: 51.157
- type: ndcg_at_3
value: 85.693
- type: ndcg_at_5
value: 84.129
- type: precision_at_1
value: 96.0
- type: precision_at_10
value: 85.39999999999999
- type: precision_at_100
value: 62.03999999999999
- type: precision_at_1000
value: 22.224
- type: precision_at_3
value: 88.0
- type: precision_at_5
value: 88.0
- type: recall_at_1
value: 0.261
- type: recall_at_10
value: 2.262
- type: recall_at_100
value: 14.981
- type: recall_at_1000
value: 46.837
- type: recall_at_3
value: 0.703
- type: recall_at_5
value: 1.172
task:
type: Retrieval
- dataset:
config: default
name: MTEB AlloProfClusteringP2P
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
split: test
type: lyon-nlp/alloprof
metrics:
- type: v_measure
value: 70.55290063940157
task:
type: Clustering
- dataset:
config: default
name: MTEB AlloProfClusteringS2S
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
split: test
type: lyon-nlp/alloprof
metrics:
- type: v_measure
value: 55.41500719337263
task:
type: Clustering
- dataset:
config: default
name: MTEB AlloprofReranking
revision: 666fdacebe0291776e86f29345663dfaf80a0db9
split: test
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
metrics:
- type: map
value: 73.48697375332002
- type: mrr
value: 75.01836585523822
task:
type: Reranking
- dataset:
config: default
name: MTEB AlloprofRetrieval
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
split: test
type: lyon-nlp/alloprof
metrics:
- type: map_at_1
value: 38.454
- type: map_at_10
value: 51.605000000000004
- type: map_at_100
value: 52.653000000000006
- type: map_at_1000
value: 52.697
- type: map_at_3
value: 48.304
- type: map_at_5
value: 50.073
- type: mrr_at_1
value: 43.307
- type: mrr_at_10
value: 54.400000000000006
- type: mrr_at_100
value: 55.147999999999996
- type: mrr_at_1000
value: 55.174
- type: mrr_at_3
value: 51.77
- type: mrr_at_5
value: 53.166999999999994
- type: ndcg_at_1
value: 43.307
- type: ndcg_at_10
value: 57.891000000000005
- type: ndcg_at_100
value: 62.161
- type: ndcg_at_1000
value: 63.083
- type: ndcg_at_3
value: 51.851
- type: ndcg_at_5
value: 54.605000000000004
- type: precision_at_1
value: 43.307
- type: precision_at_10
value: 9.033
- type: precision_at_100
value: 1.172
- type: precision_at_1000
value: 0.127
- type: precision_at_3
value: 22.798
- type: precision_at_5
value: 15.492
- type: recall_at_1
value: 38.454
- type: recall_at_10
value: 74.166
- type: recall_at_100
value: 92.43599999999999
- type: recall_at_1000
value: 99.071
- type: recall_at_3
value: 58.087
- type: recall_at_5
value: 64.568
task:
type: Retrieval
- dataset:
config: fr
name: MTEB AmazonReviewsClassification (fr)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 53.474
- type: f1
value: 50.38275392350236
task:
type: Classification
- dataset:
config: default
name: MTEB BSARDRetrieval
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
split: test
type: maastrichtlawtech/bsard
metrics:
- type: map_at_1
value: 2.252
- type: map_at_10
value: 4.661
- type: map_at_100
value: 5.271
- type: map_at_1000
value: 5.3629999999999995
- type: map_at_3
value: 3.604
- type: map_at_5
value: 4.3020000000000005
- type: mrr_at_1
value: 2.252
- type: mrr_at_10
value: 4.661
- type: mrr_at_100
value: 5.271
- type: mrr_at_1000
value: 5.3629999999999995
- type: mrr_at_3
value: 3.604
- type: mrr_at_5
value: 4.3020000000000005
- type: ndcg_at_1
value: 2.252
- type: ndcg_at_10
value: 6.3020000000000005
- type: ndcg_at_100
value: 10.342
- type: ndcg_at_1000
value: 13.475999999999999
- type: ndcg_at_3
value: 4.0649999999999995
- type: ndcg_at_5
value: 5.344
- type: precision_at_1
value: 2.252
- type: precision_at_10
value: 1.171
- type: precision_at_100
value: 0.333
- type: precision_at_1000
value: 0.059000000000000004
- type: precision_at_3
value: 1.802
- type: precision_at_5
value: 1.712
- type: recall_at_1
value: 2.252
- type: recall_at_10
value: 11.712
- type: recall_at_100
value: 33.333
- type: recall_at_1000
value: 59.458999999999996
- type: recall_at_3
value: 5.405
- type: recall_at_5
value: 8.559
task:
type: Retrieval
- dataset:
config: default
name: MTEB HALClusteringS2S
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
split: test
type: lyon-nlp/clustering-hal-s2s
metrics:
- type: v_measure
value: 28.301882091023288
task:
type: Clustering
- dataset:
config: default
name: MTEB MLSUMClusteringP2P
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
split: test
type: mlsum
metrics:
- type: v_measure
value: 45.26992995191701
task:
type: Clustering
- dataset:
config: default
name: MTEB MLSUMClusteringS2S
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
split: test
type: mlsum
metrics:
- type: v_measure
value: 42.773174876871145
task:
type: Clustering
- dataset:
config: fr
name: MTEB MTOPDomainClassification (fr)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 93.47635452552458
- type: f1
value: 93.19922617577213
task:
type: Classification
- dataset:
config: fr
name: MTEB MTOPIntentClassification (fr)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 80.2317569683683
- type: f1
value: 56.18060418621901
task:
type: Classification
- dataset:
config: fra
name: MTEB MasakhaNEWSClassification (fra)
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
split: test
type: masakhane/masakhanews
metrics:
- type: accuracy
value: 85.18957345971565
- type: f1
value: 80.829981537394
task:
type: Classification
- dataset:
config: fra
name: MTEB MasakhaNEWSClusteringP2P (fra)
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
split: test
type: masakhane/masakhanews
metrics:
- type: v_measure
value: 71.04138999801822
task:
type: Clustering
- dataset:
config: fra
name: MTEB MasakhaNEWSClusteringS2S (fra)
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
split: test
type: masakhane/masakhanews
metrics:
- type: v_measure
value: 71.7056263158008
task:
type: Clustering
- dataset:
config: fr
name: MTEB MassiveIntentClassification (fr)
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 76.65097511768661
- type: f1
value: 73.82441070598712
task:
type: Classification
- dataset:
config: fr
name: MTEB MassiveScenarioClassification (fr)
revision: 7d571f92784cd94a019292a1f45445077d0ef634
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 79.09885675857431
- type: f1
value: 78.28407777434224
task:
type: Classification
- dataset:
config: fr
name: MTEB MintakaRetrieval (fr)
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
split: test
type: jinaai/mintakaqa
metrics:
- type: map_at_1
value: 25.307000000000002
- type: map_at_10
value: 36.723
- type: map_at_100
value: 37.713
- type: map_at_1000
value: 37.769000000000005
- type: map_at_3
value: 33.77
- type: map_at_5
value: 35.463
- type: mrr_at_1
value: 25.307000000000002
- type: mrr_at_10
value: 36.723
- type: mrr_at_100
value: 37.713
- type: mrr_at_1000
value: 37.769000000000005
- type: mrr_at_3
value: 33.77
- type: mrr_at_5
value: 35.463
- type: ndcg_at_1
value: 25.307000000000002
- type: ndcg_at_10
value: 42.559999999999995
- type: ndcg_at_100
value: 47.457
- type: ndcg_at_1000
value: 49.162
- type: ndcg_at_3
value: 36.461
- type: ndcg_at_5
value: 39.504
- type: precision_at_1
value: 25.307000000000002
- type: precision_at_10
value: 6.106
- type: precision_at_100
value: 0.8420000000000001
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 14.741999999999999
- type: precision_at_5
value: 10.319
- type: recall_at_1
value: 25.307000000000002
- type: recall_at_10
value: 61.056999999999995
- type: recall_at_100
value: 84.152
- type: recall_at_1000
value: 98.03399999999999
- type: recall_at_3
value: 44.226
- type: recall_at_5
value: 51.597
task:
type: Retrieval
- dataset:
config: fr
name: MTEB OpusparcusPC (fr)
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
split: test
type: GEM/opusparcus
metrics:
- type: cos_sim_accuracy
value: 99.90069513406156
- type: cos_sim_ap
value: 100.0
- type: cos_sim_f1
value: 99.95032290114257
- type: cos_sim_precision
value: 100.0
- type: cos_sim_recall
value: 99.90069513406156
- type: dot_accuracy
value: 99.90069513406156
- type: dot_ap
value: 100.0
- type: dot_f1
value: 99.95032290114257
- type: dot_precision
value: 100.0
- type: dot_recall
value: 99.90069513406156
- type: euclidean_accuracy
value: 99.90069513406156
- type: euclidean_ap
value: 100.0
- type: euclidean_f1
value: 99.95032290114257
- type: euclidean_precision
value: 100.0
- type: euclidean_recall
value: 99.90069513406156
- type: manhattan_accuracy
value: 99.90069513406156
- type: manhattan_ap
value: 100.0
- type: manhattan_f1
value: 99.95032290114257
- type: manhattan_precision
value: 100.0
- type: manhattan_recall
value: 99.90069513406156
- type: max_accuracy
value: 99.90069513406156
- type: max_ap
value: 100.0
- type: max_f1
value: 99.95032290114257
task:
type: PairClassification
- dataset:
config: fr
name: MTEB PawsX (fr)
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
split: test
type: paws-x
metrics:
- type: cos_sim_accuracy
value: 70.8
- type: cos_sim_ap
value: 73.7671529695957
- type: cos_sim_f1
value: 68.80964339527875
- type: cos_sim_precision
value: 62.95955882352941
- type: cos_sim_recall
value: 75.85825027685493
- type: dot_accuracy
value: 70.8
- type: dot_ap
value: 73.78345265366947
- type: dot_f1
value: 68.80964339527875
- type: dot_precision
value: 62.95955882352941
- type: dot_recall
value: 75.85825027685493
- type: euclidean_accuracy
value: 70.8
- type: euclidean_ap
value: 73.7671529695957
- type: euclidean_f1
value: 68.80964339527875
- type: euclidean_precision
value: 62.95955882352941
- type: euclidean_recall
value: 75.85825027685493
- type: manhattan_accuracy
value: 70.75
- type: manhattan_ap
value: 73.78996383615953
- type: manhattan_f1
value: 68.79432624113475
- type: manhattan_precision
value: 63.39869281045751
- type: manhattan_recall
value: 75.1937984496124
- type: max_accuracy
value: 70.8
- type: max_ap
value: 73.78996383615953
- type: max_f1
value: 68.80964339527875
task:
type: PairClassification
- dataset:
config: default
name: MTEB SICKFr
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
split: test
type: Lajavaness/SICK-fr
metrics:
- type: cos_sim_pearson
value: 84.03253762760392
- type: cos_sim_spearman
value: 79.68280105762004
- type: euclidean_pearson
value: 80.98265050044444
- type: euclidean_spearman
value: 79.68233242682867
- type: manhattan_pearson
value: 80.9678911810704
- type: manhattan_spearman
value: 79.70264097683109
task:
type: STS
- dataset:
config: fr
name: MTEB STS22 (fr)
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_pearson
value: 80.56896987572884
- type: cos_sim_spearman
value: 81.84352499523287
- type: euclidean_pearson
value: 80.40831759421305
- type: euclidean_spearman
value: 81.84352499523287
- type: manhattan_pearson
value: 80.74333857561238
- type: manhattan_spearman
value: 82.41503246733892
task:
type: STS
- dataset:
config: fr
name: MTEB STSBenchmarkMultilingualSTS (fr)
revision: 93d57ef91790589e3ce9c365164337a8a78b7632
split: test
type: stsb_multi_mt
metrics:
- type: cos_sim_pearson
value: 82.71826762276979
- type: cos_sim_spearman
value: 82.25433354916042
- type: euclidean_pearson
value: 81.87115571724316
- type: euclidean_spearman
value: 82.25322342890107
- type: manhattan_pearson
value: 82.11174867527224
- type: manhattan_spearman
value: 82.55905365203084
task:
type: STS
- dataset:
config: default
name: MTEB SummEvalFr
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
split: test
type: lyon-nlp/summarization-summeval-fr-p2p
metrics:
- type: cos_sim_pearson
value: 30.659441623392887
- type: cos_sim_spearman
value: 30.501134097353315
- type: dot_pearson
value: 30.659444768851056
- type: dot_spearman
value: 30.501134097353315
task:
type: Summarization
- dataset:
config: default
name: MTEB SyntecReranking
revision: b205c5084a0934ce8af14338bf03feb19499c84d
split: test
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
metrics:
- type: map
value: 94.03333333333333
- type: mrr
value: 94.03333333333333
task:
type: Reranking
- dataset:
config: default
name: MTEB SyntecRetrieval
revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
split: test
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
metrics:
- type: map_at_1
value: 79.0
- type: map_at_10
value: 87.61
- type: map_at_100
value: 87.655
- type: map_at_1000
value: 87.655
- type: map_at_3
value: 87.167
- type: map_at_5
value: 87.36699999999999
- type: mrr_at_1
value: 79.0
- type: mrr_at_10
value: 87.61
- type: mrr_at_100
value: 87.655
- type: mrr_at_1000
value: 87.655
- type: mrr_at_3
value: 87.167
- type: mrr_at_5
value: 87.36699999999999
- type: ndcg_at_1
value: 79.0
- type: ndcg_at_10
value: 90.473
- type: ndcg_at_100
value: 90.694
- type: ndcg_at_1000
value: 90.694
- type: ndcg_at_3
value: 89.464
- type: ndcg_at_5
value: 89.851
- type: precision_at_1
value: 79.0
- type: precision_at_10
value: 9.9
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 32.0
- type: precision_at_5
value: 19.400000000000002
- type: recall_at_1
value: 79.0
- type: recall_at_10
value: 99.0
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 96.0
- type: recall_at_5
value: 97.0
task:
type: Retrieval
- dataset:
config: fr
name: MTEB XPQARetrieval (fr)
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
split: test
type: jinaai/xpqa
metrics:
- type: map_at_1
value: 39.395
- type: map_at_10
value: 59.123999999999995
- type: map_at_100
value: 60.704
- type: map_at_1000
value: 60.760000000000005
- type: map_at_3
value: 53.187
- type: map_at_5
value: 56.863
- type: mrr_at_1
value: 62.083
- type: mrr_at_10
value: 68.87299999999999
- type: mrr_at_100
value: 69.46900000000001
- type: mrr_at_1000
value: 69.48299999999999
- type: mrr_at_3
value: 66.8
- type: mrr_at_5
value: 67.928
- type: ndcg_at_1
value: 62.083
- type: ndcg_at_10
value: 65.583
- type: ndcg_at_100
value: 70.918
- type: ndcg_at_1000
value: 71.72800000000001
- type: ndcg_at_3
value: 60.428000000000004
- type: ndcg_at_5
value: 61.853
- type: precision_at_1
value: 62.083
- type: precision_at_10
value: 15.033
- type: precision_at_100
value: 1.9529999999999998
- type: precision_at_1000
value: 0.207
- type: precision_at_3
value: 36.315
- type: precision_at_5
value: 25.955000000000002
- type: recall_at_1
value: 39.395
- type: recall_at_10
value: 74.332
- type: recall_at_100
value: 94.729
- type: recall_at_1000
value: 99.75500000000001
- type: recall_at_3
value: 57.679
- type: recall_at_5
value: 65.036
task:
type: Retrieval
---
## gte-Qwen2-1.5B-instruct
**gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model.
The model incorporates several key advancements:
- Integration of bidirectional attention mechanisms, enriching its contextual understanding.
- Instruction tuning, applied solely on the query side for streamlined efficiency
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.
## Model Information
- Model Size: 1.5B
- Embedding Dimension: 1536
- Max Input Tokens: 32k
## Requirements
```
transformers>=4.39.2
flash_attn>=2.5.6
```
## Usage
### Sentence Transformers
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct", trust_remote_code=True)
# In case you want to reduce the maximum length:
model.max_seq_length = 8192
queries = [
"how much protein should a female eat",
"summit define",
]
documents = [
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.",
]
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)
scores = (query_embeddings @ document_embeddings.T) * 100
print(scores.tolist())
```
Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice.
### Transformers
```python
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'how much protein should a female eat'),
get_detailed_instruct(task, 'summit define')
]
# No need to add instruction for retrieval documents
documents = [
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
input_texts = queries + documents
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True)
model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True)
max_length = 8192
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
### infinity_emb
Usage via [infinity, MIT Licensed](https://github.com/michaelfeil/infinity).
```bash
docker run \
--gpus "0" -p "7997":"7997" \
michaelf34/infinity:0.0.68-trt-onnx \
v2 --model-id Alibaba-NLP/gte-Qwen2-1.5B-instruct --revision "refs/pr/20" --dtype bfloat16 --batch-size 16 --device cuda --engine torch --port 7997 --no-bettertransformer
```
## Evaluation
### MTEB & C-MTEB
You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-1.5B-instruct** on MTEB(English)/C-MTEB(Chinese):
| Model Name | MTEB(56) | C-MTEB(35) | MTEB-fr(26) | MTEB-pl(26) |
|:----:|:---------:|:----------:|:----------:|:----------:|
| [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | - | - |
| [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | - | - |
| [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | - | - |
| [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | - | - |
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | - | - |
| [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | - | - |
| [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | - | - |
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | - | - |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | - | - |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | - | - |
| [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | - | - |
| [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | - | - |
| [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - | - | - |
| [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** | **68.25** | **67.86** |
| [**gte-Qwen2-1.5B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | **67.16** | **67.65** | **66.60** | **64.04** |
### GTE Models
The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture).
| Models | Language | Max Sequence Length | Dimension | Model Size (Memory Usage, fp32) |
|:-------------------------------------------------------------------------------------:|:--------:|:-----: |:---------:|:-------------------------------:|
| [GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 1.25GB |
| [GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.41GB |
| [GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.12GB |
| [GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 1.25GB |
| [GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 512 | 0.21GB |
| [GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 384 | 0.10GB |
| [GTE-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 8192 | 1024 | 1.74GB |
| [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB |
| [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB |
| [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB |
| [GTE-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | Multilingual | 32000 | 1536 | 6.62GB |
## Cloud API Services
In addition to the open-source [GTE](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) series models, GTE series models are also available as commercial API services on Alibaba Cloud.
- [Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-embedding/): Three versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service.
- [ReRank Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-sorting-model/): The gte-rerank model service is available.
Note that the models behind the commercial APIs are not entirely identical to the open-source models.
## Community support
### Fine-tuning
GTE models can be fine-tuned with a third party framework SWIFT.
```shell
pip install ms-swift -U
```
```shell
# check: https://swift.readthedocs.io/en/latest/BestPractices/Embedding.html
nproc_per_node=8
NPROC_PER_NODE=$nproc_per_node \
USE_HF=1 \
swift sft \
--model Alibaba-NLP/gte-Qwen2-1.5B-instruct \
--train_type lora \
--dataset 'sentence-transformers/stsb' \
--torch_dtype bfloat16 \
--num_train_epochs 10 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps $(expr 64 / $nproc_per_node) \
--eval_steps 100 \
--save_steps 100 \
--eval_strategy steps \
--use_chat_template false \
--save_total_limit 5 \
--logging_steps 5 \
--output_dir output \
--warmup_ratio 0.05 \
--learning_rate 5e-6 \
--deepspeed zero3 \
--dataloader_num_workers 4 \
--task_type embedding \
--loss_type cosine_similarity \
--dataloader_drop_last true
```
## Citation
If you find our paper or models helpful, please consider cite:
```
@article{li2023towards,
title={Towards general text embeddings with multi-stage contrastive learning},
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
journal={arXiv preprint arXiv:2308.03281},
year={2023}
}
```
|
Viral-filtrada-de-Video-y-Foto-alana/Video.ltube.alana.flores.foto.polemica.alana.flores.trending.viral.Full.Video | Viral-filtrada-de-Video-y-Foto-alana | 2025-06-03T17:33:38Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T17:33:30Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐ฆ๐ถ๐ด๐ป ๐จ๐ฝ ๐๐ผ ๐๐ช๐ก๐ก ๐ช๐ฎ๐๐ฐ๐ต ๐๐๐๐๐คโค๏ธโค๏ธ)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">๐ด โคโบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐ฅ๐ข๐ง๐ค)</a>
|
ViRAL-18-Katrina-Lim-Viral-Kiffy-Videos/FULL.VIDEO.LINK.Katrina.Lim.Viral.Video.Leaks.Official | ViRAL-18-Katrina-Lim-Viral-Kiffy-Videos | 2025-06-03T17:32:27Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-03T17:32:21Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐ฆ๐ถ๐ด๐ป ๐จ๐ฝ ๐๐ผ ๐๐ช๐ก๐ก ๐ช๐ฎ๐๐ฐ๐ต ๐๐๐๐๐คโค๏ธโค๏ธ)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">๐ด โคโบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐ฅ๐ข๐ง๐ค)</a>
|
MilkyWay0932/test3 | MilkyWay0932 | 2025-06-03T17:32:16Z | 4 | 0 | null | [
"region:us"
] | null | 2025-05-13T12:03:12Z | Disclaimer: I am not the author/creator of these models. Full credit and all rights belong to the respective original creators. They are archived here solely for personal reference/backup |
Subsets and Splits