modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-05 06:27:31
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 468
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-05 06:26:36
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
anton-l/wav2vec2-xls-r-common_voice-tr-ft | anton-l | 2022-01-31T09:48:53Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-common_voice-tr-ft-500sh
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft-500sh
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5794
- Wer: 0.4009
- Cer: 0.1032
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.5288 | 17.0 | 500 | 0.5099 | 0.5426 | 0.1432 |
| 0.2967 | 34.0 | 1000 | 0.5421 | 0.4746 | 0.1256 |
| 0.2447 | 51.0 | 1500 | 0.5347 | 0.4831 | 0.1267 |
| 0.122 | 68.01 | 2000 | 0.5854 | 0.4479 | 0.1161 |
| 0.1035 | 86.0 | 2500 | 0.5597 | 0.4457 | 0.1166 |
| 0.081 | 103.0 | 3000 | 0.5748 | 0.4250 | 0.1144 |
| 0.0849 | 120.0 | 3500 | 0.5598 | 0.4337 | 0.1145 |
| 0.0542 | 137.01 | 4000 | 0.5687 | 0.4223 | 0.1097 |
| 0.0318 | 155.0 | 4500 | 0.5904 | 0.4057 | 0.1052 |
| 0.0106 | 172.0 | 5000 | 0.5794 | 0.4009 | 0.1032 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
|
TajMahaladeen/pokemon_gptj | TajMahaladeen | 2022-01-31T06:12:31Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"gptj",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
NbAiLab/xls-r-1b-npsc | NbAiLab | 2022-01-31T04:33:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
---
|
leandrodzp/cbow_uruguayan_news | leandrodzp | 2022-01-31T02:38:31Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Supervised Continous Bag of words model trained with Uruguayan news from Twitter
Model trained with Facebook's fasttext library. |
eldor-97/MarianMix_en-10 | eldor-97 | 2022-01-30T23:25:27Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: MarianMix_en-10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MarianMix_en-10
This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0752
- Bleu: 14.601
- Gen Len: 45.8087
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 99
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 2.1136 | 0.44 | 500 | 2.0044 | 0.2655 | 109.0201 |
| 1.1422 | 0.89 | 1000 | 1.7516 | 1.4123 | 71.0 |
| 0.9666 | 1.33 | 1500 | 1.5219 | 3.6611 | 64.6888 |
| 0.8725 | 1.78 | 2000 | 1.3606 | 4.6539 | 77.1641 |
| 0.7655 | 2.22 | 2500 | 1.2586 | 8.3456 | 60.3837 |
| 0.7149 | 2.67 | 3000 | 1.1953 | 11.2247 | 50.5921 |
| 0.6719 | 3.11 | 3500 | 1.1541 | 10.4303 | 54.3776 |
| 0.6265 | 3.56 | 4000 | 1.1186 | 13.3231 | 48.283 |
| 0.6157 | 4.0 | 4500 | 1.0929 | 13.8467 | 46.569 |
| 0.5736 | 4.44 | 5000 | 1.0848 | 14.2731 | 45.5035 |
| 0.5683 | 4.89 | 5500 | 1.0752 | 14.601 | 45.8087 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|
gabrieljg/wav2vec2-common_voice-es-demo | gabrieljg | 2022-01-30T21:38:32Z | 29 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"es",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-common_voice-es-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-es-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - ES dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1788
- Wer: 1.0239
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log | 0.02 | 100 | 6.6465 | 1.0 |
| No log | 0.04 | 200 | 3.0150 | 1.0 |
| No log | 0.05 | 300 | 2.8622 | 1.0003 |
| No log | 0.07 | 400 | 0.9506 | 0.9771 |
| 5.1598 | 0.09 | 500 | 0.4883 | 1.0009 |
| 5.1598 | 0.11 | 600 | 0.3893 | 1.0203 |
| 5.1598 | 0.13 | 700 | 0.3417 | 1.0283 |
| 5.1598 | 0.14 | 800 | 0.3352 | 1.0335 |
| 5.1598 | 0.16 | 900 | 0.2987 | 1.0168 |
| 0.3671 | 0.18 | 1000 | 0.2921 | 1.0159 |
| 0.3671 | 0.2 | 1100 | 0.2770 | 1.0096 |
| 0.3671 | 0.22 | 1200 | 0.2790 | 1.0398 |
| 0.3671 | 0.24 | 1300 | 0.2659 | 1.0190 |
| 0.3671 | 0.25 | 1400 | 0.2657 | 1.0528 |
| 0.289 | 0.27 | 1500 | 0.2556 | 1.0301 |
| 0.289 | 0.29 | 1600 | 0.2514 | 1.0193 |
| 0.289 | 0.31 | 1700 | 0.2708 | 1.0699 |
| 0.289 | 0.33 | 1800 | 0.2455 | 1.0723 |
| 0.289 | 0.34 | 1900 | 0.2456 | 1.0100 |
| 0.271 | 0.36 | 2000 | 0.2338 | 1.0533 |
| 0.271 | 0.38 | 2100 | 0.2479 | 1.0128 |
| 0.271 | 0.4 | 2200 | 0.2483 | 1.0386 |
| 0.271 | 0.42 | 2300 | 0.2436 | 1.0528 |
| 0.271 | 0.43 | 2400 | 0.2382 | 1.0476 |
| 0.2634 | 0.45 | 2500 | 0.2329 | 1.0680 |
| 0.2634 | 0.47 | 2600 | 0.2433 | 1.0581 |
| 0.2634 | 0.49 | 2700 | 0.2354 | 1.0641 |
| 0.2634 | 0.51 | 2800 | 0.2318 | 1.0504 |
| 0.2634 | 0.52 | 2900 | 0.2325 | 1.0500 |
| 0.2522 | 0.54 | 3000 | 0.2344 | 1.0380 |
| 0.2522 | 0.56 | 3100 | 0.2244 | 1.0663 |
| 0.2522 | 0.58 | 3200 | 0.2340 | 1.0647 |
| 0.2522 | 0.6 | 3300 | 0.2288 | 1.0538 |
| 0.2522 | 0.61 | 3400 | 0.2212 | 1.0614 |
| 0.2468 | 0.63 | 3500 | 0.2487 | 1.0557 |
| 0.2468 | 0.65 | 3600 | 0.2330 | 1.0510 |
| 0.2468 | 0.67 | 3700 | 0.2308 | 1.0506 |
| 0.2468 | 0.69 | 3800 | 0.2320 | 1.0451 |
| 0.2468 | 0.71 | 3900 | 0.2261 | 1.0701 |
| 0.2505 | 0.72 | 4000 | 0.2281 | 1.0713 |
| 0.2505 | 0.74 | 4100 | 0.2277 | 1.0741 |
| 0.2505 | 0.76 | 4200 | 0.2253 | 1.0814 |
| 0.2505 | 0.78 | 4300 | 0.2215 | 1.0437 |
| 0.2505 | 0.8 | 4400 | 0.2220 | 1.0557 |
| 0.2434 | 0.81 | 4500 | 0.2184 | 1.0533 |
| 0.2434 | 0.83 | 4600 | 0.2222 | 1.0819 |
| 0.2434 | 0.85 | 4700 | 0.2162 | 1.0238 |
| 0.2434 | 0.87 | 4800 | 0.2132 | 1.0457 |
| 0.2434 | 0.89 | 4900 | 0.2068 | 1.0611 |
| 0.2347 | 0.9 | 5000 | 0.2166 | 1.0332 |
| 0.2347 | 0.92 | 5100 | 0.2087 | 1.0433 |
| 0.2347 | 0.94 | 5200 | 0.2100 | 1.0292 |
| 0.2347 | 0.96 | 5300 | 0.2067 | 1.0734 |
| 0.2347 | 0.98 | 5400 | 0.2148 | 1.0279 |
| 0.2333 | 0.99 | 5500 | 0.2125 | 1.0277 |
| 0.2333 | 1.01 | 5600 | 0.2054 | 1.0453 |
| 0.2333 | 1.03 | 5700 | 0.2091 | 1.0557 |
| 0.2333 | 1.05 | 5800 | 0.2086 | 1.0239 |
| 0.2333 | 1.07 | 5900 | 0.2051 | 1.0645 |
| 0.2087 | 1.09 | 6000 | 0.2103 | 1.0240 |
| 0.2087 | 1.1 | 6100 | 0.2145 | 1.0197 |
| 0.2087 | 1.12 | 6200 | 0.2136 | 1.0248 |
| 0.2087 | 1.14 | 6300 | 0.2045 | 1.0443 |
| 0.2087 | 1.16 | 6400 | 0.2089 | 1.0397 |
| 0.2013 | 1.18 | 6500 | 0.2012 | 1.0654 |
| 0.2013 | 1.19 | 6600 | 0.2054 | 1.0414 |
| 0.2013 | 1.21 | 6700 | 0.2081 | 1.0632 |
| 0.2013 | 1.23 | 6800 | 0.2104 | 1.0190 |
| 0.2013 | 1.25 | 6900 | 0.2045 | 1.0813 |
| 0.2092 | 1.27 | 7000 | 0.2096 | 1.0751 |
| 0.2092 | 1.28 | 7100 | 0.2103 | 1.0328 |
| 0.2092 | 1.3 | 7200 | 0.2044 | 1.0011 |
| 0.2092 | 1.32 | 7300 | 0.2089 | 1.0260 |
| 0.2092 | 1.34 | 7400 | 0.2063 | 1.0551 |
| 0.2076 | 1.36 | 7500 | 0.2029 | 1.0075 |
| 0.2076 | 1.37 | 7600 | 0.2040 | 1.0528 |
| 0.2076 | 1.39 | 7700 | 0.2075 | 1.0398 |
| 0.2076 | 1.41 | 7800 | 0.2023 | 1.0231 |
| 0.2076 | 1.43 | 7900 | 0.2049 | 1.0318 |
| 0.2028 | 1.45 | 8000 | 0.2072 | 1.0763 |
| 0.2028 | 1.47 | 8100 | 0.2075 | 1.0762 |
| 0.2028 | 1.48 | 8200 | 0.2052 | 1.0838 |
| 0.2028 | 1.5 | 8300 | 0.2053 | 1.0407 |
| 0.2028 | 1.52 | 8400 | 0.2066 | 1.0266 |
| 0.2025 | 1.54 | 8500 | 0.2037 | 1.0628 |
| 0.2025 | 1.56 | 8600 | 0.2010 | 1.0351 |
| 0.2025 | 1.57 | 8700 | 0.1961 | 1.0812 |
| 0.2025 | 1.59 | 8800 | 0.1963 | 1.0868 |
| 0.2025 | 1.61 | 8900 | 0.2022 | 1.0710 |
| 0.1997 | 1.63 | 9000 | 0.2051 | 1.0764 |
| 0.1997 | 1.65 | 9100 | 0.1987 | 1.0581 |
| 0.1997 | 1.66 | 9200 | 0.2051 | 1.0611 |
| 0.1997 | 1.68 | 9300 | 0.1999 | 1.0808 |
| 0.1997 | 1.7 | 9400 | 0.1972 | 1.0703 |
| 0.1983 | 1.72 | 9500 | 0.1961 | 1.0584 |
| 0.1983 | 1.74 | 9600 | 0.2031 | 1.0938 |
| 0.1983 | 1.75 | 9700 | 0.2019 | 1.0891 |
| 0.1983 | 1.77 | 9800 | 0.2006 | 1.0542 |
| 0.1983 | 1.79 | 9900 | 0.1925 | 1.0627 |
| 0.1961 | 1.81 | 10000 | 0.1976 | 1.0751 |
| 0.1961 | 1.83 | 10100 | 0.2051 | 1.0611 |
| 0.1961 | 1.85 | 10200 | 0.2037 | 1.0656 |
| 0.1961 | 1.86 | 10300 | 0.2025 | 1.0291 |
| 0.1961 | 1.88 | 10400 | 0.1977 | 1.0525 |
| 0.2025 | 1.9 | 10500 | 0.2030 | 1.0670 |
| 0.2025 | 1.92 | 10600 | 0.1980 | 1.0765 |
| 0.2025 | 1.94 | 10700 | 0.1975 | 1.0254 |
| 0.2025 | 1.95 | 10800 | 0.1986 | 1.0636 |
| 0.2025 | 1.97 | 10900 | 0.1956 | 1.0352 |
| 0.2025 | 1.99 | 11000 | 0.1954 | 1.0265 |
| 0.2025 | 2.01 | 11100 | 0.1957 | 1.0752 |
| 0.2025 | 2.03 | 11200 | 0.1943 | 1.0784 |
| 0.2025 | 2.04 | 11300 | 0.1898 | 1.0341 |
| 0.2025 | 2.06 | 11400 | 0.1921 | 1.0301 |
| 0.1805 | 2.08 | 11500 | 0.1910 | 1.0230 |
| 0.1805 | 2.1 | 11600 | 0.1961 | 1.0203 |
| 0.1805 | 2.12 | 11700 | 0.1973 | 1.0776 |
| 0.1805 | 2.13 | 11800 | 0.1876 | 1.0788 |
| 0.1805 | 2.15 | 11900 | 0.1934 | 1.0251 |
| 0.177 | 2.17 | 12000 | 0.1967 | 1.0340 |
| 0.177 | 2.19 | 12100 | 0.1932 | 1.0131 |
| 0.177 | 2.21 | 12200 | 0.1926 | 1.0078 |
| 0.177 | 2.23 | 12300 | 0.1947 | 0.9991 |
| 0.177 | 2.24 | 12400 | 0.1914 | 1.0213 |
| 0.1782 | 2.26 | 12500 | 0.1962 | 0.9882 |
| 0.1782 | 2.28 | 12600 | 0.1960 | 1.0562 |
| 0.1782 | 2.3 | 12700 | 0.2006 | 1.0401 |
| 0.1782 | 2.32 | 12800 | 0.1950 | 1.0688 |
| 0.1782 | 2.33 | 12900 | 0.1920 | 1.0435 |
| 0.1796 | 2.35 | 13000 | 0.1926 | 1.0667 |
| 0.1796 | 2.37 | 13100 | 0.1949 | 1.0859 |
| 0.1796 | 2.39 | 13200 | 0.1932 | 1.0670 |
| 0.1796 | 2.41 | 13300 | 0.1882 | 1.0663 |
| 0.1796 | 2.42 | 13400 | 0.1877 | 1.0760 |
| 0.1775 | 2.44 | 13500 | 0.1893 | 1.0859 |
| 0.1775 | 2.46 | 13600 | 0.1936 | 1.0702 |
| 0.1775 | 2.48 | 13700 | 0.1871 | 1.0414 |
| 0.1775 | 2.5 | 13800 | 0.1917 | 1.0430 |
| 0.1775 | 2.51 | 13900 | 0.1922 | 1.0422 |
| 0.1778 | 2.53 | 14000 | 0.1875 | 1.0585 |
| 0.1778 | 2.55 | 14100 | 0.1876 | 1.0603 |
| 0.1778 | 2.57 | 14200 | 0.1888 | 1.0628 |
| 0.1778 | 2.59 | 14300 | 0.1948 | 1.0782 |
| 0.1778 | 2.6 | 14400 | 0.1942 | 1.0695 |
| 0.1784 | 2.62 | 14500 | 0.1842 | 1.0863 |
| 0.1784 | 2.64 | 14600 | 0.1850 | 1.0543 |
| 0.1784 | 2.66 | 14700 | 0.1824 | 1.0683 |
| 0.1784 | 2.68 | 14800 | 0.1888 | 1.0693 |
| 0.1784 | 2.7 | 14900 | 0.1871 | 1.0175 |
| 0.1753 | 2.71 | 15000 | 0.1889 | 1.0549 |
| 0.1753 | 2.73 | 15100 | 0.1865 | 1.0544 |
| 0.1753 | 2.75 | 15200 | 0.1918 | 1.0726 |
| 0.1753 | 2.77 | 15300 | 0.1964 | 1.0915 |
| 0.1753 | 2.79 | 15400 | 0.1900 | 1.0610 |
| 0.1768 | 2.8 | 15500 | 0.1894 | 1.0763 |
| 0.1768 | 2.82 | 15600 | 0.1882 | 1.0548 |
| 0.1768 | 2.84 | 15700 | 0.1861 | 1.0902 |
| 0.1768 | 2.86 | 15800 | 0.1860 | 1.0551 |
| 0.1768 | 2.88 | 15900 | 0.1879 | 1.0581 |
| 0.1761 | 2.89 | 16000 | 0.1899 | 1.0544 |
| 0.1761 | 2.91 | 16100 | 0.1860 | 1.0530 |
| 0.1761 | 2.93 | 16200 | 0.1894 | 1.0596 |
| 0.1761 | 2.95 | 16300 | 0.1835 | 1.0394 |
| 0.1761 | 2.97 | 16400 | 0.1852 | 1.0445 |
| 0.1754 | 2.98 | 16500 | 0.1847 | 1.0390 |
| 0.1754 | 3.0 | 16600 | 0.1828 | 1.0440 |
| 0.1754 | 3.02 | 16700 | 0.1869 | 1.0560 |
| 0.1754 | 3.04 | 16800 | 0.1882 | 1.0573 |
| 0.1754 | 3.06 | 16900 | 0.1912 | 1.0600 |
| 0.1592 | 3.08 | 17000 | 0.1921 | 1.0529 |
| 0.1592 | 3.09 | 17100 | 0.1881 | 1.0175 |
| 0.1592 | 3.11 | 17200 | 0.1891 | 1.0654 |
| 0.1592 | 3.13 | 17300 | 0.1889 | 1.0687 |
| 0.1592 | 3.15 | 17400 | 0.1916 | 1.0642 |
| 0.1556 | 3.17 | 17500 | 0.1850 | 1.0295 |
| 0.1556 | 3.18 | 17600 | 0.1875 | 1.0273 |
| 0.1556 | 3.2 | 17700 | 0.1894 | 1.0051 |
| 0.1556 | 3.22 | 17800 | 0.1870 | 1.0462 |
| 0.1556 | 3.24 | 17900 | 0.1831 | 1.0308 |
| 0.1557 | 3.26 | 18000 | 0.1878 | 1.0603 |
| 0.1557 | 3.27 | 18100 | 0.1850 | 1.0566 |
| 0.1557 | 3.29 | 18200 | 0.1843 | 1.0629 |
| 0.1557 | 3.31 | 18300 | 0.1886 | 1.0378 |
| 0.1557 | 3.33 | 18400 | 0.1892 | 1.0381 |
| 0.159 | 3.35 | 18500 | 0.1942 | 1.0519 |
| 0.159 | 3.36 | 18600 | 0.1829 | 1.0622 |
| 0.159 | 3.38 | 18700 | 0.1894 | 1.0557 |
| 0.159 | 3.4 | 18800 | 0.1895 | 1.0627 |
| 0.159 | 3.42 | 18900 | 0.1863 | 1.0362 |
| 0.1582 | 3.44 | 19000 | 0.1888 | 1.0491 |
| 0.1582 | 3.46 | 19100 | 0.1854 | 1.0483 |
| 0.1582 | 3.47 | 19200 | 0.1797 | 0.9787 |
| 0.1582 | 3.49 | 19300 | 0.1785 | 1.0086 |
| 0.1582 | 3.51 | 19400 | 0.1797 | 0.9915 |
| 0.1507 | 3.53 | 19500 | 0.1873 | 1.0266 |
| 0.1507 | 3.55 | 19600 | 0.1838 | 1.0299 |
| 0.1507 | 3.56 | 19700 | 0.1817 | 1.0355 |
| 0.1507 | 3.58 | 19800 | 0.1819 | 1.0271 |
| 0.1507 | 3.6 | 19900 | 0.1883 | 1.0248 |
| 0.1601 | 3.62 | 20000 | 0.1823 | 1.0406 |
| 0.1601 | 3.64 | 20100 | 0.1801 | 1.0261 |
| 0.1601 | 3.65 | 20200 | 0.1783 | 1.0329 |
| 0.1601 | 3.67 | 20300 | 0.1857 | 1.0162 |
| 0.1601 | 3.69 | 20400 | 0.1814 | 1.0212 |
| 0.1552 | 3.71 | 20500 | 0.1837 | 1.0232 |
| 0.1552 | 3.73 | 20600 | 0.1843 | 1.0314 |
| 0.1552 | 3.74 | 20700 | 0.1842 | 1.0258 |
| 0.1552 | 3.76 | 20800 | 0.1821 | 1.0479 |
| 0.1552 | 3.78 | 20900 | 0.1864 | 1.0459 |
| 0.1576 | 3.8 | 21000 | 0.1831 | 1.0364 |
| 0.1576 | 3.82 | 21100 | 0.1852 | 1.0271 |
| 0.1576 | 3.83 | 21200 | 0.1865 | 1.0204 |
| 0.1576 | 3.85 | 21300 | 0.1794 | 1.0324 |
| 0.1576 | 3.87 | 21400 | 0.1826 | 1.0315 |
| 0.1585 | 3.89 | 21500 | 0.1824 | 1.0327 |
| 0.1585 | 3.91 | 21600 | 0.1838 | 1.0208 |
| 0.1585 | 3.93 | 21700 | 0.1850 | 1.0199 |
| 0.1585 | 3.94 | 21800 | 0.1841 | 1.0050 |
| 0.1585 | 3.96 | 21900 | 0.1783 | 1.0003 |
| 0.1572 | 3.98 | 22000 | 0.1787 | 1.0115 |
| 0.1572 | 4.0 | 22100 | 0.1810 | 1.0235 |
| 0.1572 | 4.02 | 22200 | 0.1763 | 1.0191 |
| 0.1572 | 4.03 | 22300 | 0.1764 | 1.0332 |
| 0.1572 | 4.05 | 22400 | 0.1794 | 1.0429 |
| 0.1406 | 4.07 | 22500 | 0.1905 | 1.0288 |
| 0.1406 | 4.09 | 22600 | 0.1776 | 1.0244 |
| 0.1406 | 4.11 | 22700 | 0.1782 | 1.0451 |
| 0.1406 | 4.12 | 22800 | 0.1771 | 1.0387 |
| 0.1406 | 4.14 | 22900 | 0.1788 | 1.0435 |
| 0.14 | 4.16 | 23000 | 0.1792 | 1.0421 |
| 0.14 | 4.18 | 23100 | 0.1841 | 1.0241 |
| 0.14 | 4.2 | 23200 | 0.1769 | 1.0546 |
| 0.14 | 4.21 | 23300 | 0.1815 | 1.0602 |
| 0.14 | 4.23 | 23400 | 0.1784 | 1.0369 |
| 0.1394 | 4.25 | 23500 | 0.1809 | 1.0406 |
| 0.1394 | 4.27 | 23600 | 0.1744 | 1.0133 |
| 0.1394 | 4.29 | 23700 | 0.1771 | 1.0214 |
| 0.1394 | 4.31 | 23800 | 0.1765 | 1.0064 |
| 0.1394 | 4.32 | 23900 | 0.1793 | 1.0200 |
| 0.14 | 4.34 | 24000 | 0.1776 | 1.0352 |
| 0.14 | 4.36 | 24100 | 0.1775 | 1.0294 |
| 0.14 | 4.38 | 24200 | 0.1763 | 1.0213 |
| 0.14 | 4.4 | 24300 | 0.1697 | 1.0302 |
| 0.14 | 4.41 | 24400 | 0.1771 | 1.0259 |
| 0.1408 | 4.43 | 24500 | 0.1747 | 1.0409 |
| 0.1408 | 4.45 | 24600 | 0.1769 | 1.0278 |
| 0.1408 | 4.47 | 24700 | 0.1767 | 1.0190 |
| 0.1408 | 4.49 | 24800 | 0.1745 | 1.0281 |
| 0.1408 | 4.5 | 24900 | 0.1738 | 1.0356 |
| 0.1391 | 4.52 | 25000 | 0.1781 | 1.0429 |
| 0.1391 | 4.54 | 25100 | 0.1784 | 1.0076 |
| 0.1391 | 4.56 | 25200 | 0.1771 | 1.0157 |
| 0.1391 | 4.58 | 25300 | 0.1758 | 1.0337 |
| 0.1391 | 4.59 | 25400 | 0.1758 | 1.0466 |
| 0.1398 | 4.61 | 25500 | 0.1724 | 1.0403 |
| 0.1398 | 4.63 | 25600 | 0.1765 | 1.0481 |
| 0.1398 | 4.65 | 25700 | 0.1757 | 1.0320 |
| 0.1398 | 4.67 | 25800 | 0.1814 | 1.0479 |
| 0.1398 | 4.69 | 25900 | 0.1713 | 1.0251 |
| 0.1427 | 4.7 | 26000 | 0.1735 | 1.0340 |
| 0.1427 | 4.72 | 26100 | 0.1765 | 1.0358 |
| 0.1427 | 4.74 | 26200 | 0.1731 | 1.0220 |
| 0.1427 | 4.76 | 26300 | 0.1769 | 1.0261 |
| 0.1427 | 4.78 | 26400 | 0.1747 | 1.0139 |
| 0.1424 | 4.79 | 26500 | 0.1791 | 1.0406 |
| 0.1424 | 4.81 | 26600 | 0.1735 | 1.0497 |
| 0.1424 | 4.83 | 26700 | 0.1710 | 1.0433 |
| 0.1424 | 4.85 | 26800 | 0.1771 | 1.0002 |
| 0.1424 | 4.87 | 26900 | 0.1748 | 1.0046 |
| 0.1419 | 4.88 | 27000 | 0.1794 | 1.0332 |
| 0.1419 | 4.9 | 27100 | 0.1772 | 1.0558 |
| 0.1419 | 4.92 | 27200 | 0.1757 | 1.0477 |
| 0.1419 | 4.94 | 27300 | 0.1735 | 1.0324 |
| 0.1419 | 4.96 | 27400 | 0.1758 | 1.0260 |
| 0.1433 | 4.97 | 27500 | 0.1767 | 1.0422 |
| 0.1433 | 4.99 | 27600 | 0.1695 | 1.0386 |
| 0.1433 | 5.01 | 27700 | 0.1763 | 1.0571 |
| 0.1433 | 5.03 | 27800 | 0.1743 | 1.0367 |
| 0.1433 | 5.05 | 27900 | 0.1804 | 1.0255 |
| 0.1306 | 5.07 | 28000 | 0.1803 | 1.0377 |
| 0.1306 | 5.08 | 28100 | 0.1750 | 1.0552 |
| 0.1306 | 5.1 | 28200 | 0.1743 | 1.0512 |
| 0.1306 | 5.12 | 28300 | 0.1777 | 1.0584 |
| 0.1306 | 5.14 | 28400 | 0.1726 | 1.0374 |
| 0.123 | 5.16 | 28500 | 0.1776 | 1.0439 |
| 0.123 | 5.17 | 28600 | 0.1759 | 1.0682 |
| 0.123 | 5.19 | 28700 | 0.1724 | 1.0511 |
| 0.123 | 5.21 | 28800 | 0.1677 | 1.0560 |
| 0.123 | 5.23 | 28900 | 0.1699 | 1.0421 |
| 0.1217 | 5.25 | 29000 | 0.1803 | 1.0370 |
| 0.1217 | 5.26 | 29100 | 0.1770 | 1.0474 |
| 0.1217 | 5.28 | 29200 | 0.1733 | 1.0332 |
| 0.1217 | 5.3 | 29300 | 0.1746 | 1.0158 |
| 0.1217 | 5.32 | 29400 | 0.1763 | 1.0341 |
| 0.1246 | 5.34 | 29500 | 0.1775 | 1.0348 |
| 0.1246 | 5.35 | 29600 | 0.1730 | 1.0492 |
| 0.1246 | 5.37 | 29700 | 0.1730 | 1.0503 |
| 0.1246 | 5.39 | 29800 | 0.1727 | 1.0437 |
| 0.1246 | 5.41 | 29900 | 0.1744 | 1.0539 |
| 0.127 | 5.43 | 30000 | 0.1748 | 1.0463 |
| 0.127 | 5.44 | 30100 | 0.1746 | 1.0555 |
| 0.127 | 5.46 | 30200 | 0.1810 | 1.0558 |
| 0.127 | 5.48 | 30300 | 0.1773 | 1.0407 |
| 0.127 | 5.5 | 30400 | 0.1722 | 1.0489 |
| 0.1276 | 5.52 | 30500 | 0.1720 | 1.0520 |
| 0.1276 | 5.54 | 30600 | 0.1777 | 1.0347 |
| 0.1276 | 5.55 | 30700 | 0.1685 | 1.0347 |
| 0.1276 | 5.57 | 30800 | 0.1659 | 1.0338 |
| 0.1276 | 5.59 | 30900 | 0.1756 | 1.0228 |
| 0.1246 | 5.61 | 31000 | 0.1717 | 1.0409 |
| 0.1246 | 5.63 | 31100 | 0.1764 | 1.0202 |
| 0.1246 | 5.64 | 31200 | 0.1693 | 1.0314 |
| 0.1246 | 5.66 | 31300 | 0.1731 | 1.0319 |
| 0.1246 | 5.68 | 31400 | 0.1688 | 1.0380 |
| 0.1271 | 5.7 | 31500 | 0.1671 | 1.0350 |
| 0.1271 | 5.72 | 31600 | 0.1676 | 1.0430 |
| 0.1271 | 5.73 | 31700 | 0.1656 | 1.0441 |
| 0.1271 | 5.75 | 31800 | 0.1664 | 1.0403 |
| 0.1271 | 5.77 | 31900 | 0.1691 | 1.0152 |
| 0.1259 | 5.79 | 32000 | 0.1702 | 1.0018 |
| 0.1259 | 5.81 | 32100 | 0.1664 | 1.0246 |
| 0.1259 | 5.82 | 32200 | 0.1737 | 1.0340 |
| 0.1259 | 5.84 | 32300 | 0.1742 | 1.0449 |
| 0.1259 | 5.86 | 32400 | 0.1707 | 1.0279 |
| 0.1273 | 5.88 | 32500 | 0.1697 | 1.0471 |
| 0.1273 | 5.9 | 32600 | 0.1668 | 1.0322 |
| 0.1273 | 5.92 | 32700 | 0.1706 | 1.0378 |
| 0.1273 | 5.93 | 32800 | 0.1704 | 1.0350 |
| 0.1273 | 5.95 | 32900 | 0.1725 | 1.0244 |
| 0.123 | 5.97 | 33000 | 0.1678 | 1.0447 |
| 0.123 | 5.99 | 33100 | 0.1681 | 1.0438 |
| 0.123 | 6.01 | 33200 | 0.1689 | 1.0297 |
| 0.123 | 6.02 | 33300 | 0.1690 | 1.0333 |
| 0.123 | 6.04 | 33400 | 0.1734 | 1.0296 |
| 0.1163 | 6.06 | 33500 | 0.1748 | 1.0307 |
| 0.1163 | 6.08 | 33600 | 0.1715 | 1.0123 |
| 0.1163 | 6.1 | 33700 | 0.1668 | 1.0117 |
| 0.1163 | 6.11 | 33800 | 0.1690 | 1.0230 |
| 0.1163 | 6.13 | 33900 | 0.1693 | 1.0166 |
| 0.1101 | 6.15 | 34000 | 0.1728 | 1.0162 |
| 0.1101 | 6.17 | 34100 | 0.1683 | 1.0107 |
| 0.1101 | 6.19 | 34200 | 0.1703 | 0.9814 |
| 0.1101 | 6.2 | 34300 | 0.1692 | 1.0007 |
| 0.1101 | 6.22 | 34400 | 0.1690 | 1.0000 |
| 0.1118 | 6.24 | 34500 | 0.1734 | 0.9972 |
| 0.1118 | 6.26 | 34600 | 0.1739 | 1.0096 |
| 0.1118 | 6.28 | 34700 | 0.1749 | 1.0047 |
| 0.1118 | 6.3 | 34800 | 0.1709 | 1.0111 |
| 0.1118 | 6.31 | 34900 | 0.1717 | 1.0179 |
| 0.1153 | 6.33 | 35000 | 0.1690 | 1.0155 |
| 0.1153 | 6.35 | 35100 | 0.1710 | 1.0144 |
| 0.1153 | 6.37 | 35200 | 0.1719 | 1.0030 |
| 0.1153 | 6.39 | 35300 | 0.1690 | 1.0272 |
| 0.1153 | 6.4 | 35400 | 0.1673 | 1.0103 |
| 0.1106 | 6.42 | 35500 | 0.1710 | 1.0222 |
| 0.1106 | 6.44 | 35600 | 0.1747 | 1.0173 |
| 0.1106 | 6.46 | 35700 | 0.1721 | 0.9933 |
| 0.1106 | 6.48 | 35800 | 0.1670 | 1.0184 |
| 0.1106 | 6.49 | 35900 | 0.1714 | 1.0122 |
| 0.1116 | 6.51 | 36000 | 0.1717 | 1.0035 |
| 0.1116 | 6.53 | 36100 | 0.1685 | 1.0099 |
| 0.1116 | 6.55 | 36200 | 0.1687 | 1.0288 |
| 0.1116 | 6.57 | 36300 | 0.1664 | 1.0314 |
| 0.1116 | 6.58 | 36400 | 0.1665 | 1.0264 |
| 0.1128 | 6.6 | 36500 | 0.1681 | 1.0420 |
| 0.1128 | 6.62 | 36600 | 0.1682 | 1.0409 |
| 0.1128 | 6.64 | 36700 | 0.1717 | 1.0271 |
| 0.1128 | 6.66 | 36800 | 0.1717 | 1.0166 |
| 0.1128 | 6.68 | 36900 | 0.1755 | 1.0175 |
| 0.1134 | 6.69 | 37000 | 0.1623 | 1.0185 |
| 0.1134 | 6.71 | 37100 | 0.1674 | 1.0302 |
| 0.1134 | 6.73 | 37200 | 0.1633 | 1.0325 |
| 0.1134 | 6.75 | 37300 | 0.1628 | 1.0228 |
| 0.1134 | 6.77 | 37400 | 0.1636 | 1.0243 |
| 0.1102 | 6.78 | 37500 | 0.1667 | 1.0282 |
| 0.1102 | 6.8 | 37600 | 0.1623 | 1.0212 |
| 0.1102 | 6.82 | 37700 | 0.1639 | 1.0140 |
| 0.1102 | 6.84 | 37800 | 0.1587 | 1.0258 |
| 0.1102 | 6.86 | 37900 | 0.1610 | 1.0087 |
| 0.1113 | 6.87 | 38000 | 0.1647 | 1.0199 |
| 0.1113 | 6.89 | 38100 | 0.1609 | 1.0054 |
| 0.1113 | 6.91 | 38200 | 0.1602 | 1.0145 |
| 0.1113 | 6.93 | 38300 | 0.1602 | 1.0144 |
| 0.1113 | 6.95 | 38400 | 0.1602 | 1.0375 |
| 0.1071 | 6.96 | 38500 | 0.1592 | 1.0259 |
| 0.1071 | 6.98 | 38600 | 0.1612 | 1.0236 |
| 0.1071 | 7.0 | 38700 | 0.1621 | 1.0277 |
| 0.1071 | 7.02 | 38800 | 0.1669 | 1.0367 |
| 0.1071 | 7.04 | 38900 | 0.1742 | 1.0484 |
| 0.1062 | 7.05 | 39000 | 0.1752 | 1.0302 |
| 0.1062 | 7.07 | 39100 | 0.1676 | 1.0244 |
| 0.1062 | 7.09 | 39200 | 0.1723 | 1.0300 |
| 0.1062 | 7.11 | 39300 | 0.1727 | 1.0294 |
| 0.1062 | 7.13 | 39400 | 0.1711 | 1.0255 |
| 0.1021 | 7.15 | 39500 | 0.1699 | 1.0471 |
| 0.1021 | 7.16 | 39600 | 0.1682 | 1.0426 |
| 0.1021 | 7.18 | 39700 | 0.1713 | 1.0233 |
| 0.1021 | 7.2 | 39800 | 0.1682 | 1.0259 |
| 0.1021 | 7.22 | 39900 | 0.1710 | 1.0162 |
| 0.103 | 7.24 | 40000 | 0.1725 | 1.0283 |
| 0.103 | 7.25 | 40100 | 0.1729 | 1.0264 |
| 0.103 | 7.27 | 40200 | 0.1665 | 1.0451 |
| 0.103 | 7.29 | 40300 | 0.1671 | 1.0386 |
| 0.103 | 7.31 | 40400 | 0.1671 | 1.0316 |
| 0.0981 | 7.33 | 40500 | 0.1708 | 1.0257 |
| 0.0981 | 7.34 | 40600 | 0.1642 | 1.0152 |
| 0.0981 | 7.36 | 40700 | 0.1707 | 1.0110 |
| 0.0981 | 7.38 | 40800 | 0.1675 | 1.0186 |
| 0.0981 | 7.4 | 40900 | 0.1702 | 1.0123 |
| 0.1005 | 7.42 | 41000 | 0.1699 | 1.0159 |
| 0.1005 | 7.43 | 41100 | 0.1703 | 1.0219 |
| 0.1005 | 7.45 | 41200 | 0.1707 | 1.0194 |
| 0.1005 | 7.47 | 41300 | 0.1644 | 1.0016 |
| 0.1005 | 7.49 | 41400 | 0.1716 | 0.9941 |
| 0.1021 | 7.51 | 41500 | 0.1670 | 1.0159 |
| 0.1021 | 7.53 | 41600 | 0.1667 | 1.0033 |
| 0.1021 | 7.54 | 41700 | 0.1667 | 1.0176 |
| 0.1021 | 7.56 | 41800 | 0.1679 | 1.0194 |
| 0.1021 | 7.58 | 41900 | 0.1632 | 1.0418 |
| 0.0963 | 7.6 | 42000 | 0.1712 | 1.0152 |
| 0.0963 | 7.62 | 42100 | 0.1632 | 1.0364 |
| 0.0963 | 7.63 | 42200 | 0.1702 | 1.0229 |
| 0.0963 | 7.65 | 42300 | 0.1655 | 1.0179 |
| 0.0963 | 7.67 | 42400 | 0.1698 | 1.0329 |
| 0.1014 | 7.69 | 42500 | 0.1691 | 1.0398 |
| 0.1014 | 7.71 | 42600 | 0.1638 | 1.0487 |
| 0.1014 | 7.72 | 42700 | 0.1617 | 1.0210 |
| 0.1014 | 7.74 | 42800 | 0.1648 | 1.0124 |
| 0.1014 | 7.76 | 42900 | 0.1608 | 1.0202 |
| 0.1008 | 7.78 | 43000 | 0.1611 | 1.0353 |
| 0.1008 | 7.8 | 43100 | 0.1633 | 1.0319 |
| 0.1008 | 7.81 | 43200 | 0.1640 | 1.0032 |
| 0.1008 | 7.83 | 43300 | 0.1589 | 0.9985 |
| 0.1008 | 7.85 | 43400 | 0.1630 | 0.9975 |
| 0.0988 | 7.87 | 43500 | 0.1604 | 1.0053 |
| 0.0988 | 7.89 | 43600 | 0.1687 | 1.0063 |
| 0.0988 | 7.91 | 43700 | 0.1619 | 1.0096 |
| 0.0988 | 7.92 | 43800 | 0.1565 | 0.9901 |
| 0.0988 | 7.94 | 43900 | 0.1619 | 0.9742 |
| 0.102 | 7.96 | 44000 | 0.1598 | 0.9593 |
| 0.102 | 7.98 | 44100 | 0.1635 | 0.9718 |
| 0.102 | 8.0 | 44200 | 0.1624 | 0.9903 |
| 0.102 | 8.01 | 44300 | 0.1605 | 0.9882 |
| 0.102 | 8.03 | 44400 | 0.1657 | 1.0128 |
| 0.0961 | 8.05 | 44500 | 0.1651 | 1.0155 |
| 0.0961 | 8.07 | 44600 | 0.1680 | 1.0194 |
| 0.0961 | 8.09 | 44700 | 0.1694 | 1.0112 |
| 0.0961 | 8.1 | 44800 | 0.1665 | 1.0073 |
| 0.0961 | 8.12 | 44900 | 0.1612 | 1.0200 |
| 0.0894 | 8.14 | 45000 | 0.1652 | 1.0337 |
| 0.0894 | 8.16 | 45100 | 0.1626 | 1.0086 |
| 0.0894 | 8.18 | 45200 | 0.1639 | 1.0083 |
| 0.0894 | 8.19 | 45300 | 0.1634 | 1.0223 |
| 0.0894 | 8.21 | 45400 | 0.1631 | 1.0339 |
| 0.0887 | 8.23 | 45500 | 0.1640 | 1.0311 |
| 0.0887 | 8.25 | 45600 | 0.1661 | 1.0264 |
| 0.0887 | 8.27 | 45700 | 0.1650 | 1.0315 |
| 0.0887 | 8.29 | 45800 | 0.1624 | 1.0390 |
| 0.0887 | 8.3 | 45900 | 0.1624 | 1.0350 |
| 0.0884 | 8.32 | 46000 | 0.1615 | 1.0318 |
| 0.0884 | 8.34 | 46100 | 0.1628 | 1.0410 |
| 0.0884 | 8.36 | 46200 | 0.1627 | 1.0429 |
| 0.0884 | 8.38 | 46300 | 0.1644 | 1.0320 |
| 0.0884 | 8.39 | 46400 | 0.1633 | 1.0177 |
| 0.0893 | 8.41 | 46500 | 0.1654 | 1.0189 |
| 0.0893 | 8.43 | 46600 | 0.1598 | 1.0154 |
| 0.0893 | 8.45 | 46700 | 0.1618 | 1.0250 |
| 0.0893 | 8.47 | 46800 | 0.1639 | 1.0402 |
| 0.0893 | 8.48 | 46900 | 0.1616 | 1.0336 |
| 0.0869 | 8.5 | 47000 | 0.1613 | 1.0296 |
| 0.0869 | 8.52 | 47100 | 0.1648 | 1.0568 |
| 0.0869 | 8.54 | 47200 | 0.1625 | 1.0256 |
| 0.0869 | 8.56 | 47300 | 0.1609 | 1.0390 |
| 0.0869 | 8.57 | 47400 | 0.1606 | 1.0450 |
| 0.0894 | 8.59 | 47500 | 0.1605 | 1.0445 |
| 0.0894 | 8.61 | 47600 | 0.1660 | 1.0402 |
| 0.0894 | 8.63 | 47700 | 0.1618 | 1.0444 |
| 0.0894 | 8.65 | 47800 | 0.1669 | 1.0333 |
| 0.0894 | 8.66 | 47900 | 0.1627 | 1.0364 |
| 0.0885 | 8.68 | 48000 | 0.1616 | 1.0334 |
| 0.0885 | 8.7 | 48100 | 0.1626 | 1.0564 |
| 0.0885 | 8.72 | 48200 | 0.1624 | 1.0396 |
| 0.0885 | 8.74 | 48300 | 0.1623 | 1.0396 |
| 0.0885 | 8.76 | 48400 | 0.1612 | 1.0112 |
| 0.0888 | 8.77 | 48500 | 0.1638 | 1.0292 |
| 0.0888 | 8.79 | 48600 | 0.1639 | 0.9988 |
| 0.0888 | 8.81 | 48700 | 0.1618 | 1.0127 |
| 0.0888 | 8.83 | 48800 | 0.1584 | 1.0042 |
| 0.0888 | 8.85 | 48900 | 0.1615 | 1.0041 |
| 0.0887 | 8.86 | 49000 | 0.1637 | 1.0269 |
| 0.0887 | 8.88 | 49100 | 0.1627 | 0.9989 |
| 0.0887 | 8.9 | 49200 | 0.1583 | 1.0104 |
| 0.0887 | 8.92 | 49300 | 0.1600 | 1.0214 |
| 0.0887 | 8.94 | 49400 | 0.1599 | 1.0126 |
| 0.0893 | 8.95 | 49500 | 0.1595 | 1.0516 |
| 0.0893 | 8.97 | 49600 | 0.1625 | 1.0464 |
| 0.0893 | 8.99 | 49700 | 0.1595 | 1.0361 |
| 0.0893 | 9.01 | 49800 | 0.1614 | 1.0469 |
| 0.0893 | 9.03 | 49900 | 0.1612 | 1.0304 |
| 0.0834 | 9.04 | 50000 | 0.1643 | 1.0335 |
| 0.0834 | 9.06 | 50100 | 0.1640 | 1.0175 |
| 0.0834 | 9.08 | 50200 | 0.1655 | 1.0264 |
| 0.0834 | 9.1 | 50300 | 0.1678 | 1.0243 |
| 0.0834 | 9.12 | 50400 | 0.1659 | 1.0145 |
| 0.079 | 9.14 | 50500 | 0.1644 | 1.0316 |
| 0.079 | 9.15 | 50600 | 0.1630 | 1.0326 |
| 0.079 | 9.17 | 50700 | 0.1634 | 1.0154 |
| 0.079 | 9.19 | 50800 | 0.1697 | 1.0095 |
| 0.079 | 9.21 | 50900 | 0.1678 | 1.0050 |
| 0.078 | 9.23 | 51000 | 0.1626 | 1.0159 |
| 0.078 | 9.24 | 51100 | 0.1666 | 1.0238 |
| 0.078 | 9.26 | 51200 | 0.1644 | 1.0244 |
| 0.078 | 9.28 | 51300 | 0.1655 | 1.0345 |
| 0.078 | 9.3 | 51400 | 0.1615 | 1.0237 |
| 0.0776 | 9.32 | 51500 | 0.1664 | 1.0180 |
| 0.0776 | 9.33 | 51600 | 0.1603 | 1.0208 |
| 0.0776 | 9.35 | 51700 | 0.1594 | 1.0230 |
| 0.0776 | 9.37 | 51800 | 0.1622 | 1.0201 |
| 0.0776 | 9.39 | 51900 | 0.1596 | 1.0039 |
| 0.0782 | 9.41 | 52000 | 0.1645 | 1.0204 |
| 0.0782 | 9.42 | 52100 | 0.1640 | 1.0318 |
| 0.0782 | 9.44 | 52200 | 0.1621 | 1.0290 |
| 0.0782 | 9.46 | 52300 | 0.1638 | 1.0318 |
| 0.0782 | 9.48 | 52400 | 0.1613 | 1.0217 |
| 0.0782 | 9.5 | 52500 | 0.1609 | 1.0261 |
| 0.0782 | 9.52 | 52600 | 0.1625 | 1.0101 |
| 0.0782 | 9.53 | 52700 | 0.1613 | 1.0058 |
| 0.0782 | 9.55 | 52800 | 0.1599 | 1.0068 |
| 0.0782 | 9.57 | 52900 | 0.1600 | 1.0110 |
| 0.0797 | 9.59 | 53000 | 0.1594 | 1.0171 |
| 0.0797 | 9.61 | 53100 | 0.1583 | 1.0124 |
| 0.0797 | 9.62 | 53200 | 0.1646 | 1.0093 |
| 0.0797 | 9.64 | 53300 | 0.1580 | 1.0201 |
| 0.0797 | 9.66 | 53400 | 0.1599 | 1.0207 |
| 0.0783 | 9.68 | 53500 | 0.1577 | 1.0226 |
| 0.0783 | 9.7 | 53600 | 0.1593 | 1.0160 |
| 0.0783 | 9.71 | 53700 | 0.1570 | 1.0173 |
| 0.0783 | 9.73 | 53800 | 0.1614 | 1.0299 |
| 0.0783 | 9.75 | 53900 | 0.1610 | 1.0184 |
| 0.0779 | 9.77 | 54000 | 0.1606 | 1.0173 |
| 0.0779 | 9.79 | 54100 | 0.1577 | 1.0032 |
| 0.0779 | 9.8 | 54200 | 0.1590 | 1.0070 |
| 0.0779 | 9.82 | 54300 | 0.1580 | 1.0257 |
| 0.0779 | 9.84 | 54400 | 0.1592 | 1.0108 |
| 0.0778 | 9.86 | 54500 | 0.1617 | 0.9907 |
| 0.0778 | 9.88 | 54600 | 0.1605 | 1.0189 |
| 0.0778 | 9.89 | 54700 | 0.1605 | 1.0177 |
| 0.0778 | 9.91 | 54800 | 0.1536 | 1.0275 |
| 0.0778 | 9.93 | 54900 | 0.1658 | 1.0282 |
| 0.0777 | 9.95 | 55000 | 0.1543 | 1.0385 |
| 0.0777 | 9.97 | 55100 | 0.1559 | 1.0375 |
| 0.0777 | 9.99 | 55200 | 0.1590 | 1.0215 |
| 0.0777 | 10.0 | 55300 | 0.1624 | 1.0242 |
| 0.0777 | 10.02 | 55400 | 0.1635 | 1.0244 |
| 0.0712 | 10.04 | 55500 | 0.1629 | 1.0298 |
| 0.0712 | 10.06 | 55600 | 0.1601 | 1.0299 |
| 0.0712 | 10.08 | 55700 | 0.1625 | 1.0117 |
| 0.0712 | 10.09 | 55800 | 0.1650 | 1.0233 |
| 0.0712 | 10.11 | 55900 | 0.1631 | 1.0061 |
| 0.0667 | 10.13 | 56000 | 0.1637 | 1.0226 |
| 0.0667 | 10.15 | 56100 | 0.1607 | 1.0042 |
| 0.0667 | 10.17 | 56200 | 0.1599 | 1.0117 |
| 0.0667 | 10.18 | 56300 | 0.1623 | 1.0246 |
| 0.0667 | 10.2 | 56400 | 0.1639 | 1.0294 |
| 0.0695 | 10.22 | 56500 | 0.1650 | 1.0232 |
| 0.0695 | 10.24 | 56600 | 0.1620 | 1.0289 |
| 0.0695 | 10.26 | 56700 | 0.1667 | 1.0209 |
| 0.0695 | 10.27 | 56800 | 0.1580 | 1.0163 |
| 0.0695 | 10.29 | 56900 | 0.1646 | 1.0293 |
| 0.0686 | 10.31 | 57000 | 0.1636 | 1.0106 |
| 0.0686 | 10.33 | 57100 | 0.1586 | 1.0044 |
| 0.0686 | 10.35 | 57200 | 0.1582 | 1.0213 |
| 0.0686 | 10.37 | 57300 | 0.1627 | 1.0151 |
| 0.0686 | 10.38 | 57400 | 0.1619 | 1.0248 |
| 0.0686 | 10.4 | 57500 | 0.1596 | 1.0098 |
| 0.0686 | 10.42 | 57600 | 0.1606 | 1.0031 |
| 0.0686 | 10.44 | 57700 | 0.1620 | 1.0046 |
| 0.0686 | 10.46 | 57800 | 0.1592 | 1.0018 |
| 0.0686 | 10.47 | 57900 | 0.1592 | 1.0058 |
| 0.0669 | 10.49 | 58000 | 0.1605 | 0.9961 |
| 0.0669 | 10.51 | 58100 | 0.1632 | 1.0102 |
| 0.0669 | 10.53 | 58200 | 0.1593 | 1.0061 |
| 0.0669 | 10.55 | 58300 | 0.1586 | 1.0091 |
| 0.0669 | 10.56 | 58400 | 0.1603 | 1.0085 |
| 0.068 | 10.58 | 58500 | 0.1579 | 1.0031 |
| 0.068 | 10.6 | 58600 | 0.1591 | 1.0021 |
| 0.068 | 10.62 | 58700 | 0.1590 | 1.0163 |
| 0.068 | 10.64 | 58800 | 0.1584 | 1.0045 |
| 0.068 | 10.65 | 58900 | 0.1594 | 1.0158 |
| 0.0693 | 10.67 | 59000 | 0.1568 | 1.0052 |
| 0.0693 | 10.69 | 59100 | 0.1581 | 0.9955 |
| 0.0693 | 10.71 | 59200 | 0.1622 | 0.9917 |
| 0.0693 | 10.73 | 59300 | 0.1580 | 1.0018 |
| 0.0693 | 10.75 | 59400 | 0.1601 | 1.0077 |
| 0.0699 | 10.76 | 59500 | 0.1605 | 0.9997 |
| 0.0699 | 10.78 | 59600 | 0.1585 | 1.0009 |
| 0.0699 | 10.8 | 59700 | 0.1541 | 1.0058 |
| 0.0699 | 10.82 | 59800 | 0.1583 | 1.0026 |
| 0.0699 | 10.84 | 59900 | 0.1592 | 0.9992 |
| 0.0671 | 10.85 | 60000 | 0.1590 | 1.0004 |
| 0.0671 | 10.87 | 60100 | 0.1585 | 1.0060 |
| 0.0671 | 10.89 | 60200 | 0.1579 | 1.0063 |
| 0.0671 | 10.91 | 60300 | 0.1582 | 0.9949 |
| 0.0671 | 10.93 | 60400 | 0.1562 | 1.0004 |
| 0.0661 | 10.94 | 60500 | 0.1560 | 0.9950 |
| 0.0661 | 10.96 | 60600 | 0.1564 | 0.9990 |
| 0.0661 | 10.98 | 60700 | 0.1552 | 0.9982 |
| 0.0661 | 11.0 | 60800 | 0.1596 | 1.0018 |
| 0.0661 | 11.02 | 60900 | 0.1618 | 0.9905 |
| 0.0634 | 11.03 | 61000 | 0.1652 | 0.9890 |
| 0.0634 | 11.05 | 61100 | 0.1649 | 0.9886 |
| 0.0634 | 11.07 | 61200 | 0.1668 | 0.9870 |
| 0.0634 | 11.09 | 61300 | 0.1663 | 0.9921 |
| 0.0634 | 11.11 | 61400 | 0.1650 | 0.9919 |
| 0.0587 | 11.13 | 61500 | 0.1674 | 0.9831 |
| 0.0587 | 11.14 | 61600 | 0.1633 | 0.9793 |
| 0.0587 | 11.16 | 61700 | 0.1665 | 0.9781 |
| 0.0587 | 11.18 | 61800 | 0.1642 | 0.9821 |
| 0.0587 | 11.2 | 61900 | 0.1638 | 0.9797 |
| 0.0581 | 11.22 | 62000 | 0.1628 | 0.9727 |
| 0.0581 | 11.23 | 62100 | 0.1661 | 0.9796 |
| 0.0581 | 11.25 | 62200 | 0.1641 | 0.9830 |
| 0.0581 | 11.27 | 62300 | 0.1601 | 0.9867 |
| 0.0581 | 11.29 | 62400 | 0.1626 | 0.9757 |
| 0.0584 | 11.31 | 62500 | 0.1632 | 1.0014 |
| 0.0584 | 11.32 | 62600 | 0.1626 | 1.0052 |
| 0.0584 | 11.34 | 62700 | 0.1586 | 1.0098 |
| 0.0584 | 11.36 | 62800 | 0.1597 | 1.0151 |
| 0.0584 | 11.38 | 62900 | 0.1624 | 1.0054 |
| 0.0589 | 11.4 | 63000 | 0.1618 | 1.0018 |
| 0.0589 | 11.41 | 63100 | 0.1635 | 1.0032 |
| 0.0589 | 11.43 | 63200 | 0.1654 | 1.0142 |
| 0.0589 | 11.45 | 63300 | 0.1646 | 1.0031 |
| 0.0589 | 11.47 | 63400 | 0.1618 | 1.0118 |
| 0.0579 | 11.49 | 63500 | 0.1634 | 1.0218 |
| 0.0579 | 11.51 | 63600 | 0.1616 | 1.0179 |
| 0.0579 | 11.52 | 63700 | 0.1603 | 1.0036 |
| 0.0579 | 11.54 | 63800 | 0.1610 | 1.0150 |
| 0.0579 | 11.56 | 63900 | 0.1605 | 1.0285 |
| 0.0572 | 11.58 | 64000 | 0.1621 | 1.0261 |
| 0.0572 | 11.6 | 64100 | 0.1625 | 1.0252 |
| 0.0572 | 11.61 | 64200 | 0.1677 | 1.0257 |
| 0.0572 | 11.63 | 64300 | 0.1656 | 1.0243 |
| 0.0572 | 11.65 | 64400 | 0.1669 | 1.0270 |
| 0.0592 | 11.67 | 64500 | 0.1605 | 1.0305 |
| 0.0592 | 11.69 | 64600 | 0.1633 | 1.0277 |
| 0.0592 | 11.7 | 64700 | 0.1606 | 1.0176 |
| 0.0592 | 11.72 | 64800 | 0.1618 | 1.0249 |
| 0.0592 | 11.74 | 64900 | 0.1609 | 1.0113 |
| 0.0595 | 11.76 | 65000 | 0.1609 | 1.0254 |
| 0.0595 | 11.78 | 65100 | 0.1662 | 1.0275 |
| 0.0595 | 11.79 | 65200 | 0.1652 | 1.0164 |
| 0.0595 | 11.81 | 65300 | 0.1638 | 1.0266 |
| 0.0595 | 11.83 | 65400 | 0.1589 | 1.0274 |
| 0.0588 | 11.85 | 65500 | 0.1607 | 1.0136 |
| 0.0588 | 11.87 | 65600 | 0.1592 | 1.0136 |
| 0.0588 | 11.88 | 65700 | 0.1581 | 1.0183 |
| 0.0588 | 11.9 | 65800 | 0.1587 | 1.0133 |
| 0.0588 | 11.92 | 65900 | 0.1596 | 1.0170 |
| 0.0558 | 11.94 | 66000 | 0.1590 | 1.0161 |
| 0.0558 | 11.96 | 66100 | 0.1597 | 1.0193 |
| 0.0558 | 11.98 | 66200 | 0.1590 | 1.0193 |
| 0.0558 | 11.99 | 66300 | 0.1608 | 1.0242 |
| 0.0558 | 12.01 | 66400 | 0.1642 | 1.0231 |
| 0.0555 | 12.03 | 66500 | 0.1679 | 1.0168 |
| 0.0555 | 12.05 | 66600 | 0.1674 | 1.0083 |
| 0.0555 | 12.07 | 66700 | 0.1658 | 1.0069 |
| 0.0555 | 12.08 | 66800 | 0.1661 | 1.0134 |
| 0.0555 | 12.1 | 66900 | 0.1682 | 1.0274 |
| 0.0508 | 12.12 | 67000 | 0.1702 | 1.0219 |
| 0.0508 | 12.14 | 67100 | 0.1694 | 1.0219 |
| 0.0508 | 12.16 | 67200 | 0.1667 | 1.0236 |
| 0.0508 | 12.17 | 67300 | 0.1672 | 1.0253 |
| 0.0508 | 12.19 | 67400 | 0.1640 | 1.0215 |
| 0.0513 | 12.21 | 67500 | 0.1649 | 1.0242 |
| 0.0513 | 12.23 | 67600 | 0.1687 | 1.0262 |
| 0.0513 | 12.25 | 67700 | 0.1655 | 1.0231 |
| 0.0513 | 12.26 | 67800 | 0.1692 | 1.0176 |
| 0.0513 | 12.28 | 67900 | 0.1675 | 1.0202 |
| 0.0519 | 12.3 | 68000 | 0.1644 | 1.0241 |
| 0.0519 | 12.32 | 68100 | 0.1651 | 1.0297 |
| 0.0519 | 12.34 | 68200 | 0.1661 | 1.0287 |
| 0.0519 | 12.36 | 68300 | 0.1665 | 1.0257 |
| 0.0519 | 12.37 | 68400 | 0.1685 | 1.0233 |
| 0.0522 | 12.39 | 68500 | 0.1636 | 1.0177 |
| 0.0522 | 12.41 | 68600 | 0.1709 | 1.0200 |
| 0.0522 | 12.43 | 68700 | 0.1684 | 1.0164 |
| 0.0522 | 12.45 | 68800 | 0.1666 | 1.0119 |
| 0.0522 | 12.46 | 68900 | 0.1683 | 1.0136 |
| 0.05 | 12.48 | 69000 | 0.1696 | 1.0127 |
| 0.05 | 12.5 | 69100 | 0.1708 | 1.0184 |
| 0.05 | 12.52 | 69200 | 0.1654 | 1.0282 |
| 0.05 | 12.54 | 69300 | 0.1700 | 1.0235 |
| 0.05 | 12.55 | 69400 | 0.1688 | 1.0257 |
| 0.0513 | 12.57 | 69500 | 0.1646 | 1.0274 |
| 0.0513 | 12.59 | 69600 | 0.1660 | 1.0247 |
| 0.0513 | 12.61 | 69700 | 0.1657 | 1.0188 |
| 0.0513 | 12.63 | 69800 | 0.1654 | 1.0087 |
| 0.0513 | 12.64 | 69900 | 0.1681 | 1.0146 |
| 0.0512 | 12.66 | 70000 | 0.1660 | 1.0185 |
| 0.0512 | 12.68 | 70100 | 0.1690 | 1.0214 |
| 0.0512 | 12.7 | 70200 | 0.1683 | 1.0160 |
| 0.0512 | 12.72 | 70300 | 0.1695 | 1.0198 |
| 0.0512 | 12.74 | 70400 | 0.1666 | 1.0193 |
| 0.0484 | 12.75 | 70500 | 0.1654 | 1.0142 |
| 0.0484 | 12.77 | 70600 | 0.1598 | 1.0154 |
| 0.0484 | 12.79 | 70700 | 0.1623 | 1.0139 |
| 0.0484 | 12.81 | 70800 | 0.1662 | 1.0180 |
| 0.0484 | 12.83 | 70900 | 0.1659 | 1.0232 |
| 0.0501 | 12.84 | 71000 | 0.1662 | 1.0202 |
| 0.0501 | 12.86 | 71100 | 0.1639 | 1.0161 |
| 0.0501 | 12.88 | 71200 | 0.1666 | 1.0151 |
| 0.0501 | 12.9 | 71300 | 0.1644 | 1.0129 |
| 0.0501 | 12.92 | 71400 | 0.1642 | 1.0171 |
| 0.0482 | 12.93 | 71500 | 0.1635 | 1.0162 |
| 0.0482 | 12.95 | 71600 | 0.1637 | 1.0186 |
| 0.0482 | 12.97 | 71700 | 0.1639 | 1.0142 |
| 0.0482 | 12.99 | 71800 | 0.1643 | 1.0122 |
| 0.0482 | 13.01 | 71900 | 0.1679 | 1.0156 |
| 0.0483 | 13.02 | 72000 | 0.1717 | 1.0224 |
| 0.0483 | 13.04 | 72100 | 0.1742 | 1.0229 |
| 0.0483 | 13.06 | 72200 | 0.1718 | 1.0237 |
| 0.0483 | 13.08 | 72300 | 0.1742 | 1.0266 |
| 0.0483 | 13.1 | 72400 | 0.1736 | 1.0257 |
| 0.0443 | 13.12 | 72500 | 0.1741 | 1.0275 |
| 0.0443 | 13.13 | 72600 | 0.1745 | 1.0325 |
| 0.0443 | 13.15 | 72700 | 0.1737 | 1.0296 |
| 0.0443 | 13.17 | 72800 | 0.1722 | 1.0303 |
| 0.0443 | 13.19 | 72900 | 0.1702 | 1.0305 |
| 0.0424 | 13.21 | 73000 | 0.1733 | 1.0241 |
| 0.0424 | 13.22 | 73100 | 0.1748 | 1.0243 |
| 0.0424 | 13.24 | 73200 | 0.1760 | 1.0231 |
| 0.0424 | 13.26 | 73300 | 0.1745 | 1.0241 |
| 0.0424 | 13.28 | 73400 | 0.1772 | 1.0217 |
| 0.0424 | 13.3 | 73500 | 0.1755 | 1.0206 |
| 0.0424 | 13.31 | 73600 | 0.1743 | 1.0242 |
| 0.0424 | 13.33 | 73700 | 0.1738 | 1.0208 |
| 0.0424 | 13.35 | 73800 | 0.1736 | 1.0249 |
| 0.0424 | 13.37 | 73900 | 0.1747 | 1.0271 |
| 0.0437 | 13.39 | 74000 | 0.1707 | 1.0241 |
| 0.0437 | 13.4 | 74100 | 0.1731 | 1.0269 |
| 0.0437 | 13.42 | 74200 | 0.1743 | 1.0290 |
| 0.0437 | 13.44 | 74300 | 0.1739 | 1.0266 |
| 0.0437 | 13.46 | 74400 | 0.1763 | 1.0246 |
| 0.0443 | 13.48 | 74500 | 0.1724 | 1.0209 |
| 0.0443 | 13.49 | 74600 | 0.1744 | 1.0244 |
| 0.0443 | 13.51 | 74700 | 0.1717 | 1.0232 |
| 0.0443 | 13.53 | 74800 | 0.1754 | 1.0217 |
| 0.0443 | 13.55 | 74900 | 0.1721 | 1.0234 |
| 0.0435 | 13.57 | 75000 | 0.1751 | 1.0197 |
| 0.0435 | 13.59 | 75100 | 0.1727 | 1.0285 |
| 0.0435 | 13.6 | 75200 | 0.1715 | 1.0221 |
| 0.0435 | 13.62 | 75300 | 0.1746 | 1.0247 |
| 0.0435 | 13.64 | 75400 | 0.1712 | 1.0231 |
| 0.0436 | 13.66 | 75500 | 0.1719 | 1.0228 |
| 0.0436 | 13.68 | 75600 | 0.1727 | 1.0197 |
| 0.0436 | 13.69 | 75700 | 0.1750 | 1.0252 |
| 0.0436 | 13.71 | 75800 | 0.1702 | 1.0241 |
| 0.0436 | 13.73 | 75900 | 0.1720 | 1.0250 |
| 0.0433 | 13.75 | 76000 | 0.1744 | 1.0210 |
| 0.0433 | 13.77 | 76100 | 0.1735 | 1.0211 |
| 0.0433 | 13.78 | 76200 | 0.1727 | 1.0205 |
| 0.0433 | 13.8 | 76300 | 0.1706 | 1.0218 |
| 0.0433 | 13.82 | 76400 | 0.1709 | 1.0238 |
| 0.0431 | 13.84 | 76500 | 0.1705 | 1.0197 |
| 0.0431 | 13.86 | 76600 | 0.1734 | 1.0223 |
| 0.0431 | 13.87 | 76700 | 0.1695 | 1.0250 |
| 0.0431 | 13.89 | 76800 | 0.1734 | 1.0232 |
| 0.0431 | 13.91 | 76900 | 0.1724 | 1.0219 |
| 0.041 | 13.93 | 77000 | 0.1706 | 1.0236 |
| 0.041 | 13.95 | 77100 | 0.1689 | 1.0220 |
| 0.041 | 13.97 | 77200 | 0.1738 | 1.0230 |
| 0.041 | 13.98 | 77300 | 0.1727 | 1.0254 |
| 0.041 | 14.0 | 77400 | 0.1721 | 1.0261 |
| 0.041 | 14.02 | 77500 | 0.1760 | 1.0261 |
| 0.041 | 14.04 | 77600 | 0.1772 | 1.0202 |
| 0.041 | 14.06 | 77700 | 0.1782 | 1.0202 |
| 0.041 | 14.07 | 77800 | 0.1777 | 1.0222 |
| 0.041 | 14.09 | 77900 | 0.1787 | 1.0203 |
| 0.0383 | 14.11 | 78000 | 0.1790 | 1.0236 |
| 0.0383 | 14.13 | 78100 | 0.1812 | 1.0245 |
| 0.0383 | 14.15 | 78200 | 0.1778 | 1.0224 |
| 0.0383 | 14.16 | 78300 | 0.1771 | 1.0231 |
| 0.0383 | 14.18 | 78400 | 0.1782 | 1.0242 |
| 0.0391 | 14.2 | 78500 | 0.1785 | 1.0262 |
| 0.0391 | 14.22 | 78600 | 0.1791 | 1.0261 |
| 0.0391 | 14.24 | 78700 | 0.1770 | 1.0254 |
| 0.0391 | 14.25 | 78800 | 0.1810 | 1.0257 |
| 0.0391 | 14.27 | 78900 | 0.1794 | 1.0241 |
| 0.0387 | 14.29 | 79000 | 0.1774 | 1.0256 |
| 0.0387 | 14.31 | 79100 | 0.1774 | 1.0236 |
| 0.0387 | 14.33 | 79200 | 0.1759 | 1.0222 |
| 0.0387 | 14.35 | 79300 | 0.1787 | 1.0237 |
| 0.0387 | 14.36 | 79400 | 0.1788 | 1.0227 |
| 0.0372 | 14.38 | 79500 | 0.1789 | 1.0232 |
| 0.0372 | 14.4 | 79600 | 0.1771 | 1.0254 |
| 0.0372 | 14.42 | 79700 | 0.1777 | 1.0244 |
| 0.0372 | 14.44 | 79800 | 0.1791 | 1.0225 |
| 0.0372 | 14.45 | 79900 | 0.1786 | 1.0237 |
| 0.0385 | 14.47 | 80000 | 0.1782 | 1.0243 |
| 0.0385 | 14.49 | 80100 | 0.1770 | 1.0236 |
| 0.0385 | 14.51 | 80200 | 0.1782 | 1.0240 |
| 0.0385 | 14.53 | 80300 | 0.1764 | 1.0243 |
| 0.0385 | 14.54 | 80400 | 0.1748 | 1.0248 |
| 0.039 | 14.56 | 80500 | 0.1758 | 1.0232 |
| 0.039 | 14.58 | 80600 | 0.1763 | 1.0246 |
| 0.039 | 14.6 | 80700 | 0.1770 | 1.0220 |
| 0.039 | 14.62 | 80800 | 0.1788 | 1.0225 |
| 0.039 | 14.63 | 80900 | 0.1781 | 1.0230 |
| 0.039 | 14.65 | 81000 | 0.1779 | 1.0230 |
| 0.039 | 14.67 | 81100 | 0.1755 | 1.0212 |
| 0.039 | 14.69 | 81200 | 0.1765 | 1.0226 |
| 0.039 | 14.71 | 81300 | 0.1787 | 1.0241 |
| 0.039 | 14.72 | 81400 | 0.1782 | 1.0250 |
| 0.0368 | 14.74 | 81500 | 0.1780 | 1.0248 |
| 0.0368 | 14.76 | 81600 | 0.1782 | 1.0242 |
| 0.0368 | 14.78 | 81700 | 0.1782 | 1.0242 |
| 0.0368 | 14.8 | 81800 | 0.1792 | 1.0241 |
| 0.0368 | 14.82 | 81900 | 0.1796 | 1.0238 |
| 0.0378 | 14.83 | 82000 | 0.1795 | 1.0236 |
| 0.0378 | 14.85 | 82100 | 0.1796 | 1.0239 |
| 0.0378 | 14.87 | 82200 | 0.1792 | 1.0236 |
| 0.0378 | 14.89 | 82300 | 0.1789 | 1.0239 |
| 0.0378 | 14.91 | 82400 | 0.1788 | 1.0238 |
| 0.0386 | 14.92 | 82500 | 0.1787 | 1.0239 |
| 0.0386 | 14.94 | 82600 | 0.1786 | 1.0236 |
| 0.0386 | 14.96 | 82700 | 0.1786 | 1.0237 |
| 0.0386 | 14.98 | 82800 | 0.1787 | 1.0239 |
| 0.0386 | 15.0 | 82900 | 0.1788 | 1.0238 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|
fgaim/t5-small-squad-v2 | fgaim | 2022-01-30T21:35:54Z | 34 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:c4",
"dataset:squad",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
language:
- en
datasets:
- c4
- squad
tags:
- text2text-generation
widget:
- text: "question: What is the atomic number for oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8."
- text: "question: What is the chemical symbol of Oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8."
license: apache-2.0
---
T5-small for QA
---
[Google's T5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) pre-trained on the [C4](https://huggingface.co/datasets/c4) dataset, fine-tuned for Question-Answering on [SQuAD v2](https://huggingface.co/datasets/squad_v2) with the following hyperparameters:
```
optimizer=adamw_hf
learning_rate=3e-5
adam_beta1=0.9
adam_beta2=0.999
adam_epsilon=1e-08
num_train_epochs=2
per_device_train_batch_size=12
```
Usage
---
The input [context and question] has to be prepared in a specific way as follows:
```python
from transformers import pipeline
def prep_input(_context, _question):
return " ".join(["question:", _question.strip(), "context:", _context.strip()])
t5qa = pipeline("text2text-generation", "fgaim/t5-small-squad-v2")
context = """
Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O.
"""
t5qa(prep_input(context, "How many atoms combine to form dioxygen?"))
# [{'generated_text': 'two'}]
t5qa(prep_input(context, "What element makes up almost half of the earth's crust by mass?"))
# [{'generated_text': 'oxygen'}]
t5qa(prep_input(context, "What are the most abundent elements of the universe by mass?"))
# [{'generated_text': 'hydrogen and helium'}]
```
|
huggingtweets/newsfrmhome | huggingtweets | 2022-01-30T20:50:52Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/newsfrmhome/1643575848331/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1484642358641807369/XYfGxtPs_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sarah (allegedly)</div>
<div style="text-align: center; font-size: 14px;">@newsfrmhome</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sarah (allegedly).
| Data | sarah (allegedly) |
| --- | --- |
| Tweets downloaded | 3229 |
| Retweets | 448 |
| Short tweets | 378 |
| Tweets kept | 2403 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kr9qjmz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @newsfrmhome's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zjy142t4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zjy142t4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/newsfrmhome')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
osama7/t5-summarization-multinews | osama7 | 2022-01-30T20:42:51Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | This is a t5-base model trained on the multi_news dataset for abstraction summarization |
gagan3012/xls-r-300m-hi | gagan3012 | 2022-01-30T20:39:40Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"hi",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: xls-r-300m-hi
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-300m-hi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7522
- Wer: 1.0091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.0417 | 2.59 | 500 | 5.1484 | 1.0 |
| 3.3722 | 5.18 | 1000 | 3.3380 | 1.0001 |
| 1.9752 | 7.77 | 1500 | 1.3910 | 1.0074 |
| 1.5868 | 10.36 | 2000 | 1.0298 | 1.0084 |
| 1.4413 | 12.95 | 2500 | 0.9313 | 1.0175 |
| 1.3296 | 15.54 | 3000 | 0.8966 | 1.0194 |
| 1.2746 | 18.13 | 3500 | 0.8875 | 1.0097 |
| 1.2147 | 20.73 | 4000 | 0.8746 | 1.0089 |
| 1.1774 | 23.32 | 4500 | 0.8383 | 1.0198 |
| 1.129 | 25.91 | 5000 | 0.7848 | 1.0167 |
| 1.0995 | 28.5 | 5500 | 0.7992 | 1.0210 |
| 1.0665 | 31.09 | 6000 | 0.7878 | 1.0107 |
| 1.0321 | 33.68 | 6500 | 0.7653 | 1.0082 |
| 1.0068 | 36.27 | 7000 | 0.7635 | 1.0065 |
| 0.9916 | 38.86 | 7500 | 0.7728 | 1.0090 |
| 0.9735 | 41.45 | 8000 | 0.7688 | 1.0070 |
| 0.9745 | 44.04 | 8500 | 0.7455 | 1.0097 |
| 0.9677 | 46.63 | 9000 | 0.7605 | 1.0099 |
| 0.9313 | 49.22 | 9500 | 0.7527 | 1.0097 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
z-uo/vits-male-it | z-uo | 2022-01-30T20:20:35Z | 4 | 1 | transformers | [
"transformers",
"tensorboard",
"text-to-speech",
"it",
"dataset:z-uo/female-LJSpeech-italian",
"endpoints_compatible",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- text-to-speech
language:
- it
model-index:
- name: vits-male-it
results: []
datasets:
- z-uo/female-LJSpeech-italian
---
# Coqui Model for TTS
```
pip install TTS
git clone https://huggingface.co/z-uo/vits-male-it
# predict one
tts --text "ciao pluto" --model_path "vits-male-it/best_model.pth.tar" --config_path "vits-male-it/config.json"
# predict server
tts-server --model_path "vits-male-it/best_model.pth.tar" --config_path "vits-male-it/config.json"
firefox localhost:5002
```
More information about training script in [this repo](https://github.com/nicolalandro/train_coqui_tts_ita). |
Sindhu/rembert-squad2 | Sindhu | 2022-01-30T18:35:08Z | 5 | 3 | transformers | [
"transformers",
"pytorch",
"rembert",
"question-answering",
"multilingual",
"dataset:squad2",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
language:
- multilingual
tags:
- question-answering
datasets:
- squad2
metrics:
- squad2
---
# Rembert Squad2
This model is finetuned for QA task on Squad2 from [Rembert checkpoint](https://huggingface.co/google/rembert).
## Hyperparameters
```
Batch Size: 4
Grad Accumulation Steps = 8
Total epochs = 3
MLM Checkpoint = "rembert"
max_seq_len = 256
learning_rate = 1e-5
lr_schedule = LinearWarmup
warmup_ratio = 0.1
doc_stride = 128
```
## Squad 2 Evaluation stats:
Metrics generated from [the official Squad2 evaluation script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)
```json
{
"exact": 84.51107554956624,
"f1": 87.46644042781853,
"total": 11873,
"HasAns_exact": 80.97165991902834,
"HasAns_f1": 86.89086491219469,
"HasAns_total": 5928,
"NoAns_exact": 88.04037005887301,
"NoAns_f1": 88.04037005887301,
"NoAns_total": 5945
}
```
For any questions, you can reach out to me [on Twitter](https://twitter.com/batw0man) |
anuragshas/wav2vec2-xls-r-1b-hi-cv8 | anuragshas | 2022-01-30T15:20:16Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"hi",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6780
- Wer: 0.3670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.514 | 2.07 | 400 | 1.4589 | 0.8531 |
| 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 |
| 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 |
| 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 |
| 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 |
| 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 |
| 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 |
| 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 |
| 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 |
| 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 |
| 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 |
| 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 |
| 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 |
| 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 |
| 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 |
| 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 |
| 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 |
| 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 |
| 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 |
| 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 |
| 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 |
| 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 |
| 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 |
| 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
huggingtweets/sardoche_lol | huggingtweets | 2022-01-30T15:00:56Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/sardoche_lol/1643554725712/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1450594532186263560/hiL4EyAm_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sardoche</div>
<div style="text-align: center; font-size: 14px;">@sardoche_lol</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Sardoche.
| Data | Sardoche |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 242 |
| Short tweets | 374 |
| Tweets kept | 2633 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24g273w4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sardoche_lol's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k2srh5a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k2srh5a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/sardoche_lol')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
sshasnain/finetune-wav2vec2-large-xlsr-bengali | sshasnain | 2022-01-30T07:55:29Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"bn",
"audio",
"speech",
"dataset:custom",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: Bengali
datasets:
- custom
metrics:
- wer
tags:
- bn
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
model-index:
- name: finetune-wav2vec2-large-xlsr-bengali
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: custom
type: custom
args: ben
metrics:
- name: Test WER
type: wer
value: 0.011
---
# finetune-wav2vec2-large-xlsr-bengali
***
## Usage
*** |
pinecone/mpnet-retriever-discourse | pinecone | 2022-01-30T07:23:58Z | 4 | 2 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"question-answering",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- question-answering
---
# MPNet Retriever (Discourse)
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used as a retriever model in open-domain question-answering tasks.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was fine-tuned on question-answer pairs scraper from several ML-focused Discourse forums \[HuggingFace, PyTorch, Streamlit, TensorFlow\].
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 105 with parameters:
```
{'batch_size': 12}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
Fine-tuned by [James Briggs](https://www.youtube.com/c/jamesbriggs) at [Pinecone](https://www.pinecone.io). Learn more about the [fine-tuning process here](https://www.pinecone.io/learn/retriever-models/). |
jcmc/wav2vec-1b-cv8-ir-n | jcmc | 2022-01-30T07:16:19Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ga-IE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GA-IE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9810
- Wer: 0.4761
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.2427 | 15.15 | 500 | 1.4632 | 0.9481 |
| 1.3128 | 30.3 | 1000 | 0.8662 | 0.6195 |
| 0.9403 | 45.45 | 1500 | 0.8163 | 0.5169 |
| 0.6868 | 60.61 | 2000 | 0.8661 | 0.4858 |
| 0.563 | 75.76 | 2500 | 0.9447 | 0.4867 |
| 0.4887 | 90.91 | 3000 | 0.9650 | 0.4823 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
huggingtweets/hashimoto_lo | huggingtweets | 2022-01-30T01:43:17Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/hashimoto_lo/1643506993033/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/922396157493383169/LLKd_U72_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">橋下徹</div>
<div style="text-align: center; font-size: 14px;">@hashimoto_lo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 橋下徹.
| Data | 橋下徹 |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 759 |
| Short tweets | 137 |
| Tweets kept | 2351 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wi9n714/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hashimoto_lo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/240mb7l6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/240mb7l6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/hashimoto_lo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/shiikazuo | huggingtweets | 2022-01-30T01:27:28Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/shiikazuo/1643506044134/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/3624876884/b16d250401cc357c5be9859f7ba3db8f_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">志位和夫</div>
<div style="text-align: center; font-size: 14px;">@shiikazuo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 志位和夫.
| Data | 志位和夫 |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 38 |
| Short tweets | 35 |
| Tweets kept | 3176 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/243t6rzm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shiikazuo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/eiaaoe96) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/eiaaoe96/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/shiikazuo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/tjonthefloor | huggingtweets | 2022-01-29T22:53:02Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/tjonthefloor/1643496777814/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1466388620256948228/kkRWm2mR_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ash ψ</div>
<div style="text-align: center; font-size: 14px;">@tjonthefloor</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ash ψ.
| Data | ash ψ |
| --- | --- |
| Tweets downloaded | 470 |
| Retweets | 144 |
| Short tweets | 99 |
| Tweets kept | 227 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20bqlhah/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tjonthefloor's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ntjhfs1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ntjhfs1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tjonthefloor')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Adil617/wav2vec2-base-timit-demo-colab | Adil617 | 2022-01-29T21:05:59Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9314
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 8.686 | 0.16 | 20 | 13.6565 | 1.0 |
| 8.0711 | 0.32 | 40 | 12.5379 | 1.0 |
| 6.9967 | 0.48 | 60 | 9.7215 | 1.0 |
| 5.2368 | 0.64 | 80 | 5.8459 | 1.0 |
| 3.4499 | 0.8 | 100 | 3.3413 | 1.0 |
| 3.1261 | 0.96 | 120 | 3.2858 | 1.0 |
| 3.0654 | 1.12 | 140 | 3.1945 | 1.0 |
| 3.0421 | 1.28 | 160 | 3.1296 | 1.0 |
| 3.0035 | 1.44 | 180 | 3.1172 | 1.0 |
| 3.0067 | 1.6 | 200 | 3.1217 | 1.0 |
| 2.9867 | 1.76 | 220 | 3.0715 | 1.0 |
| 2.9653 | 1.92 | 240 | 3.0747 | 1.0 |
| 2.9629 | 2.08 | 260 | 2.9984 | 1.0 |
| 2.9462 | 2.24 | 280 | 2.9991 | 1.0 |
| 2.9391 | 2.4 | 300 | 3.0391 | 1.0 |
| 2.934 | 2.56 | 320 | 2.9682 | 1.0 |
| 2.9193 | 2.72 | 340 | 2.9701 | 1.0 |
| 2.8985 | 2.88 | 360 | 2.9314 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Harveenchadha/vakyansh-wav2vec2-hindi-him-4200 | Harveenchadha | 2022-01-29T06:03:43Z | 25,050 | 5 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"hi",
"arxiv:2107.07402",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
language: hi
#datasets:
#- Interspeech 2021
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: mit
model-index:
- name: Wav2Vec2 Vakyansh Hindi Model by Harveen Chadha
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice hi
type: common_voice
args: hi
metrics:
- name: Test WER
type: wer
value: 33.17
---
## Spaces Demo
Check the spaces demo [here](https://huggingface.co/spaces/Harveenchadha/wav2vec2-vakyansh-hindi/tree/main)
## Pretrained Model
Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz.
**Note: The result from this model is without a language model so you may witness a higher WER in some cases.**
## Dataset
This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now.
## Training Script
Models were trained using experimental platform setup by Vakyansh team at Ekstep. Here is the [training repository](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation).
In case you want to explore training logs on wandb they are [here](https://wandb.ai/harveenchadha/hindi_finetuning_multilingual?workspace=user-harveenchadha).
## [Colab Demo](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_hindi_him_4200_demo.ipynb)
## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import argparse
def parse_transcription(wav_file):
# load pretrained model
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
# load audio
audio_input, sample_rate = sf.read(wav_file)
# pad input values and return pt tensor
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
# INFERENCE
# retrieve logits & take argmax
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# transcribe
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
print(transcription)
```
## Evaluation
The model can be evaluated as follows on the hindi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 33.17 %
[**Colab Evaluation**](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_vakyansh_hindi_him_4200_evaluation_common_voice.ipynb)
## Credits
Thanks to Ekstep Foundation for making this possible. The vakyansh team will be open sourcing speech models in all the Indic Languages. |
k-partha/decision_style_bert_bio | k-partha | 2022-01-29T03:36:37Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2109.06402",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | Rates Twitter biographies on decision-making preference: Judging (focused, goal-oriented decision strategy) or Prospecting (open-ended, explorative strategy). Roughly corresponds to [conscientiousness](https://en.wikipedia.org/wiki/Conscientiousness)
Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit!
Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label.
Have fun!
Note: Performance on inputs other than Twitter biographies [the training data source] is not verified.
For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402). |
k-partha/extrabert_bio | k-partha | 2022-01-29T03:36:11Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2109.06402",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | Classifies Twitter biographies as either introverts or extroverts.
Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit!
Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun!
Barack Obama: Extrovert; Ellen DeGeneres: Extrovert; Naomi Osaka: Introvert
Note: Performance on inputs other than Twitter biographies [the training data source] is not verified.
For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402). |
k-partha/curiosity_bert_bio | k-partha | 2022-01-29T03:35:48Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2109.06402",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | Labels Twitter biographies on [Openness](https://en.wikipedia.org/wiki/Openness_to_experience), strongly related to intellectual curiosity.
Intuitive: Associated with higher intellectual curiosity
Sensing: Associated with lower intellectual curiosity
Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit!
Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun!
Note: Performance on inputs other than Twitter biographies [the training data source] is not verified.
For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402). |
facebook/tts_transformer-ru-cv7_css10 | facebook | 2022-01-28T23:28:04Z | 105 | 13 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"ru",
"dataset:common_voice",
"dataset:css10",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: ru
datasets:
- common_voice
- css10
widget:
- text: "Здравствуйте, это пробный запуск."
example_title: "Hello, this is a test run."
---
# tts_transformer-ru-cv7_css10
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Russian
- Single-speaker male voice
- Pre-trained on [Common Voice v7](https://commonvoice.mozilla.org/en/datasets), fine-tuned on [CSS10](https://github.com/Kyubyong/css10)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-ru-cv7_css10",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Здравствуйте, это пробный запуск."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/fastspeech2-en-ljspeech | facebook | 2022-01-28T23:25:24Z | 2,168 | 268 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"en",
"dataset:ljspeech",
"arxiv:2006.04558",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: en
datasets:
- ljspeech
widget:
- text: "Hello, this is a test run."
example_title: "Hello, this is a test run."
---
# fastspeech2-en-ljspeech
[FastSpeech 2](https://arxiv.org/abs/2006.04558) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- English
- Single-speaker female voice
- Trained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/fastspeech2-en-ljspeech",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Hello, this is a test run."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/ljspeech_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
Kneecapsnatcher/Unon | Kneecapsnatcher | 2022-01-28T21:21:10Z | 0 | 0 | null | [
"license:bsd-2-clause",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
license: bsd-2-clause
---
|
anjulRajendraSharma/wavlm-base-libri-clean-100 | anjulRajendraSharma | 2022-01-28T16:52:47Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wavlm",
"automatic-speech-recognition",
"librispeech_asr",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- automatic-speech-recognition
- librispeech_asr
- generated_from_trainer
model-index:
- name: wavlm-libri-clean-100h-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wavlm-libri-clean-100h-base
This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
- Wer: 0.0773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.8664 | 0.17 | 300 | 2.8439 | 1.0 |
| 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 |
| 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 |
| 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 |
| 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 |
| 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 |
| 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 |
| 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 |
| 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 |
| 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 |
| 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 1.18.0
- Tokenizers 0.10.3
|
anjulRajendraSharma/WavLm-base-en | anjulRajendraSharma | 2022-01-28T16:40:52Z | 58 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wavlm",
"automatic-speech-recognition",
"english_asr",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- automatic-speech-recognition
- english_asr
- generated_from_trainer
model-index:
- name: wavlm-base-english
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wavlm-base-english
This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the english_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
- Wer: 0.0773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.8664 | 0.17 | 300 | 2.8439 | 1.0 |
| 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 |
| 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 |
| 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 |
| 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 |
| 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 |
| 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 |
| 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 |
| 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 |
| 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 |
| 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 1.18.0
- Tokenizers 0.10.3
|
alperiox/autonlp-user-review-classification-536415182 | alperiox | 2022-01-28T16:30:08Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:alperiox/autonlp-data-user-review-classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- alperiox/autonlp-data-user-review-classification
co2_eq_emissions: 1.268309634217171
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 536415182
- CO2 Emissions (in grams): 1.268309634217171
## Validation Metrics
- Loss: 0.44733062386512756
- Accuracy: 0.8873239436619719
- Macro F1: 0.8859416445623343
- Micro F1: 0.8873239436619719
- Weighted F1: 0.8864646766540891
- Macro Precision: 0.8848522167487685
- Micro Precision: 0.8873239436619719
- Weighted Precision: 0.8883299798792756
- Macro Recall: 0.8908045977011494
- Micro Recall: 0.8873239436619719
- Weighted Recall: 0.8873239436619719
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alperiox/autonlp-user-review-classification-536415182
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("alperiox/autonlp-user-review-classification-536415182", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("alperiox/autonlp-user-review-classification-536415182", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
Rocketknight1/distilgpt2-finetuned-wikitext2 | Rocketknight1 | 2022-01-28T13:23:20Z | 14 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8577
- Validation Loss: 3.6752
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.8577 | 3.6752 | 0 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 1.17.0
- Tokenizers 0.11.0
|
Maniac/wav2vec2-xls-r-60-urdu | Maniac | 2022-01-28T13:03:37Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"ur",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
language:
- ur
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8433
- Wer: 0.9852
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.468 | 166.67 | 500 | 3.0262 | 1.0035 |
| 0.0572 | 333.33 | 1000 | 3.5352 | 0.9721 |
| 0.0209 | 500.0 | 1500 | 3.7266 | 0.9834 |
| 0.0092 | 666.67 | 2000 | 3.8433 | 0.9852 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
peterhsu/tf_bert-finetuned-ner | peterhsu | 2022-01-28T12:52:36Z | 3 | 0 | transformers | [
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: tf_bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tf_bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0272
- Validation Loss: 0.0522
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1727 | 0.0673 | 0 |
| 0.0462 | 0.0541 | 1 |
| 0.0272 | 0.0522 | 2 |
### Framework versions
- Transformers 4.16.0
- TensorFlow 2.7.0
- Datasets 1.18.1
- Tokenizers 0.11.0
|
huggingtweets/cobie-coinerstakingls | huggingtweets | 2022-01-28T11:19:03Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/cobie-coinerstakingls/1643368738479/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1471649307887558661/SpH6Dho7_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Cobie</div>
<div style="text-align: center; font-size: 14px;">@cobie-coinerstakingls</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Crypto Bros Taking Ls & Cobie.
| Data | Crypto Bros Taking Ls | Cobie |
| --- | --- | --- |
| Tweets downloaded | 566 | 3248 |
| Retweets | 94 | 93 |
| Short tweets | 222 | 500 |
| Tweets kept | 250 | 2655 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gjf29z1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cobie-coinerstakingls's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c8xc9umf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c8xc9umf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cobie-coinerstakingls')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
pitehu/T5_NER_CONLL_ENTITYREPLACE | pitehu | 2022-01-28T11:05:16Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:CoNLL-2003",
"arxiv:2111.10952",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z |
---
language:
- en
license: "apache-2.0"
datasets:
- CoNLL-2003
metrics:
- F1
---
This is a T5 small model finetuned on CoNLL-2003 dataset for named entity recognition (NER).
Example Input and Output:
“Recognize all the named entities in this sequence (replace named entities with one of [PER], [ORG], [LOC], [MISC]): When Alice visited New York” → “When PER visited LOC LOC"
Evaluation Result:
% of match (for comparison with ExT5: https://arxiv.org/pdf/2111.10952.pdf):
| Model| ExT5_{Base} | This Model | T5_NER_CONLL_OUTPUTLIST
| :---: | :---: | :---: | :---: |
| % of Complete Match| 86.53 | 79.03 | TBA|
There are some outputs (212/3453 or 6.14% that does not have the same length as the input)
F1 score on testing set of those with matching length :
| Model | This Model | T5_NER_CONLL_OUTPUTLIST | BERTbase
| :---: | :---: | :---: | :---: |
| F1| 0.8901 | 0.8691| 0.9240
**Caveat: The testing set of these aren't the same, due to matching length issue...
T5_NER_CONLL_OUTPUTLIST only has 27/3453 missing length (only 0.78%); The BERT number is directly from their paper (https://arxiv.org/pdf/1810.04805.pdf)
|
google/vit-large-patch32-224-in21k | google | 2022-01-28T10:21:30Z | 1,295 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"vit",
"image-feature-extraction",
"vision",
"dataset:imagenet-21k",
"arxiv:2010.11929",
"arxiv:2006.03677",
"license:apache-2.0",
"region:us"
] | image-feature-extraction | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- vision
datasets:
- imagenet-21k
inference: false
---
# Vision Transformer (large-sized model)
Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him.
Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.
Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state
```
Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.
## Training data
The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```bibtex
@misc{wu2020visual,
title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision},
author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
year={2020},
eprint={2006.03677},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-large-patch16-512 | microsoft | 2022-01-28T10:20:07Z | 824 | 9 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (large-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 512x512. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-512')
model = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-512')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-large-patch16-384 | microsoft | 2022-01-28T10:19:50Z | 242 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (large-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-384')
model = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-384')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-base-patch16-384 | microsoft | 2022-01-28T10:19:30Z | 409 | 5 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (base-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-384')
model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-384')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level | hrdipto | 2022-01-28T09:54:27Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-tf-left-right-shuru-word-level
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-shuru-word-level
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0504
- Wer: 0.6859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 23.217 | 23.81 | 500 | 1.3437 | 0.6859 |
| 1.1742 | 47.62 | 1000 | 1.0397 | 0.6859 |
| 1.0339 | 71.43 | 1500 | 1.0155 | 0.6859 |
| 0.9909 | 95.24 | 2000 | 1.0504 | 0.6859 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
hyyoka/wav2vec2-xlsr-korean-senior | hyyoka | 2022-01-28T06:08:19Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"kr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: kr
datasets:
- aihub 자유대화 음성(노인남녀)
tags:
- automatic-speech-recognition
license: apache-2.0
---
# wav2vec2-xlsr-korean-senior
Futher fine-tuned [fleek/wav2vec-large-xlsr-korean](https://huggingface.co/fleek/wav2vec-large-xlsr-korean) using the [AIhub 자유대화 음성(노인남녀)](https://aihub.or.kr/aidata/30704).
- Total train data size: 808,642
- Total vaild data size: 159,970
When using this model, make sure that your speech input is sampled at 16kHz.
The script used for training can be found here: https://github.com/hyyoka/wav2vec2-korean-senior
### Inference
``` py
import torchaudio
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import re
def clean_up(transcription):
hangul = re.compile('[^ ㄱ-ㅣ가-힣]+')
result = hangul.sub('', transcription)
return result
model_name "hyyoka/wav2vec2-xlsr-korean-senior"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
speech_array, sampling_rate = torchaudio.load(wav_file)
feat = processor(speech_array[0],
sampling_rate=16000,
padding=True,
max_length=800000,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
pad_token_id=49
)
input = {'input_values': feat['input_values'],'attention_mask':feat['attention_mask']}
outputs = model(**input, output_attentions=True)
logits = outputs.logits
predicted_ids = logits.argmax(axis=-1)
transcription = processor.decode(predicted_ids[0])
stt_result = clean_up(transcription)
```
|
huggingtweets/coinerstakingls-elonmusk-tyler | huggingtweets | 2022-01-28T05:27:03Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/coinerstakingls-elonmusk-tyler/1643347618705/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1474910968157249536/FS8-70Ie_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1439959943067709448/Z-Dsp_Ge_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Crypto Bros Taking Ls & Tyler Winklevoss</div>
<div style="text-align: center; font-size: 14px;">@coinerstakingls-elonmusk-tyler</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & Crypto Bros Taking Ls & Tyler Winklevoss.
| Data | Elon Musk | Crypto Bros Taking Ls | Tyler Winklevoss |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 566 | 3248 |
| Retweets | 163 | 94 | 1550 |
| Short tweets | 930 | 222 | 357 |
| Tweets kept | 2157 | 250 | 1341 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mpyx1oz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coinerstakingls-elonmusk-tyler's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mnlaoaj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mnlaoaj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/coinerstakingls-elonmusk-tyler')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bitfinexed-coinerstakingls-xeni | huggingtweets | 2022-01-28T04:55:36Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/bitfinexed-coinerstakingls-xeni/1643345731503/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1415442891015610370/1qyYwuHx_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357462788130578434/6ZRnYvCW_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Bitfinex’ed 🔥 & Xeni</div>
<div style="text-align: center; font-size: 14px;">@bitfinexed-coinerstakingls-xeni</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Crypto Bros Taking Ls & Bitfinex’ed 🔥 & Xeni.
| Data | Crypto Bros Taking Ls | Bitfinex’ed 🔥 | Xeni |
| --- | --- | --- | --- |
| Tweets downloaded | 566 | 3245 | 3229 |
| Retweets | 94 | 650 | 1834 |
| Short tweets | 222 | 613 | 402 |
| Tweets kept | 250 | 1982 | 993 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3eviqxf1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitfinexed-coinerstakingls-xeni's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kim6sku) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kim6sku/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bitfinexed-coinerstakingls-xeni')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
rodrigogelacio/autonlp-department-classification-534915130 | rodrigogelacio | 2022-01-28T02:06:52Z | 3 | 1 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"unk",
"dataset:rodrigogelacio/autonlp-data-department-classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- rodrigogelacio/autonlp-data-department-classification
co2_eq_emissions: 1.4862856774320061
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 534915130
- CO2 Emissions (in grams): 1.4862856774320061
## Validation Metrics
- Loss: 0.37066277861595154
- Accuracy: 0.9204545454545454
- Macro F1: 0.9103715740678612
- Micro F1: 0.9204545454545455
- Weighted F1: 0.9196871607509906
- Macro Precision: 0.9207759152612094
- Micro Precision: 0.9204545454545454
- Weighted Precision: 0.922177301864802
- Macro Recall: 0.9055002187355129
- Micro Recall: 0.9204545454545454
- Weighted Recall: 0.9204545454545454
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rodrigogelacio/autonlp-department-classification-534915130
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("rodrigogelacio/autonlp-department-classification-534915130", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("rodrigogelacio/autonlp-department-classification-534915130", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
kika2000/wav2vec2-large-xls-r-300m-kika4_my-colab | kika2000 | 2022-01-28T01:03:34Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-kika4_my-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-kika4_my-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 70
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
huggingtweets/hostagekiller-suicidepussy | huggingtweets | 2022-01-27T20:24:27Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/hostagekiller-suicidepussy/1643315062963/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1322637724470358022/ccOsLDPE_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">checking my mcdouble for nanochips & HUSSY2K.</div>
<div style="text-align: center; font-size: 14px;">@hostagekiller-suicidepussy</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from checking my mcdouble for nanochips & HUSSY2K..
| Data | checking my mcdouble for nanochips | HUSSY2K. |
| --- | --- | --- |
| Tweets downloaded | 3226 | 3193 |
| Retweets | 107 | 847 |
| Short tweets | 1124 | 389 |
| Tweets kept | 1995 | 1957 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1k8e9itd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hostagekiller-suicidepussy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dor6qtfm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dor6qtfm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/hostagekiller-suicidepussy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Jacobo/aristoBERTo | Jacobo | 2022-01-27T19:02:16Z | 10 | 5 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"grc",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
tags:
language:
- grc
model-index:
- name: aristoBERTo
results: []
widget:
- text: "Πλάτων ὁ Περικτιόνης [MASK] γένος ἀνέφερεν εἰς Σόλωνα."
- text: "ὁ Κριτίας ἀπέβλεψε [MASK] τὴν θύραν."
- text: "πρῶτοι δὲ καὶ οὐνόματα ἱρὰ ἔγνωσαν καὶ [MASK] ἱροὺς ἔλεξαν."
---
# aristoBERTo
aristoBERTo is a transformer model for ancient Greek, a low resource language. We initialized the pre-training with weights from [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1), a Greek version of BERT which was trained on a large corpus of modern Greek (~ 30 GB of texts). We continued the pre-training with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed.
Applied to the processing of ancient Greek, aristoBERTo outperforms xlm-roberta-base and mdeberta in most downstream tasks like the labeling of POS, MORPH, DEP and LEMMA.
aristoBERTo is provided by the [Diogenet project](https://diogenet.ucsd.edu) of the University of California, San Diego.
## Intended uses
This model was created for fine-tuning with spaCy and the ancient Greek Universal Dependency datasets as well as a NER corpus produced by the [Diogenet project](https://diogenet.ucsd.edu). As a fill-mask model, AristoBERTo can also be used in the restoration of damaged Greek papyri, inscriptions, and manuscripts.
It achieves the following results on the evaluation set:
- Loss: 1.6323
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-------:|:---------------:|
| 1.377 | 20.0 | 3414220 | 1.6314 |
### Framework versions
- Transformers 4.14.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
mbateman/marian-finetuned-kde4-en-to-fr | mbateman | 2022-01-27T17:33:02Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
Adinda/Adinda | Adinda | 2022-01-27T17:02:42Z | 0 | 0 | null | [
"license:artistic-2.0",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
license: artistic-2.0
---
|
wolfrage89/company_segment_ner | wolfrage89 | 2022-01-27T16:56:23Z | 23 | 2 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ## Roberta based NER
This model will take in a new article label 3 entities [ORGS, SEGNUM, NUM]. This model is train on reuters news articles
## Try out on huggingface Spaces
https://huggingface.co/spaces/wolfrage89/company_segments_ner
## colab sample notebook
https://colab.research.google.com/drive/165utMQzYVAX7-aQjWjpmPHwHpdKTaHBa?usp=sharing
## How to use
```python
from transformers import pipeline
# Minimum code
sentence = """Exxon Mobil Corporation is engaged in energy business. The Company is engaged in the exploration, production, trade, transportation and sale of crude oil and natural gas, and the manufacture, transportation and sale of crude oil, natural gas, petroleum products, petrochemicals and a range of specialty products. The Company's segments include Upstream, Downstream, Chemical, and Corporate and Financing. The Upstream segment operates to explore for and produce crude oil and natural gas. The Downstream manufactures, trades and sells petroleum products. The refining and supply operations consists of a global network of manufacturing plants, transportation systems, and distribution centers that provide a range of fuels, lubricants and other products and feedstocks to its customers around the world. The Chemical segment manufactures and sells petrochemicals. The Chemical business supplies olefins, polyolefins, aromatics, and a variety of other petrochemicals."""
model = pipeline('ner', "wolfrage89/company_segment_ner")
model_output = model(sentence)
print(model_ouput)
# [{'entity': 'B-ORG', 'score': 0.99996805, 'index': 1, 'word': 'Ex', 'start': 0, 'end': 2}, {'entity': 'I-ORG', 'score': 0.99971646, 'index': 2, 'word': 'xon', 'start': 2, 'end': 5}, ....]
# Sample helper function if you want to use
def ner_prediction(model, sentence):
entity_map = {
"B-ORG":"ORG",
"B-SEG":"SEG",
"B-SEGNUM":"SEGNUM"
}
results = []
model_output = model(sentence)
accumulate = ""
current_class = None
start = 0
end = 0
for item in model_output:
if item['entity'].startswith("B"):
if len(accumulate) >0:
results.append((current_class, accumulate, start, end))
accumulate = item['word'].lstrip("Ġ")
current_class = entity_map[item['entity']]
start=item['start']
end = item['end']
else:
if item['word'].startswith("Ġ"):
accumulate+=" "+item['word'].lstrip("Ġ")
else:
accumulate+=item['word']
end = item['end']
# clear last cache
if len(accumulate)>0:
results.append((current_class, accumulate, start, end))
return results
``` |
huggingtweets/northernlion | huggingtweets | 2022-01-27T16:46:04Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/northernlion/1643301960230/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2236512789/ChannelIcon_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ryan Letourneau</div>
<div style="text-align: center; font-size: 14px;">@northernlion</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ryan Letourneau.
| Data | Ryan Letourneau |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 85 |
| Short tweets | 480 |
| Tweets kept | 2684 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xmzb7x7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @northernlion's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dilt40l) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dilt40l/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/northernlion')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
bayartsogt/tts_transformer-mn-mbspeech | bayartsogt | 2022-01-27T16:35:40Z | 18 | 1 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"mn",
"dataset:mbspeech",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: mn
datasets:
- mbspeech
widget:
- text: "миний нэрийг баярцогт гэдэг"
example_title: "Say my name!"
- text: "би монгол улсын нийслэл, улаанбаатар хотод амьдардаг"
example_title: "Where I am from?"
- text: "энэхүү өгөгдлийг нээлттэй болгосон, болор соофтынхонд баярлалаа"
example_title: "Thank you!"
- text: "энэхүү ажлын ихэнх хэсгийг, төгөлдөр ах хийсэн болно"
example_title: "Shout out to original creater"
---
# tts_transformer-mn-mbspeech
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Mongolian
- Single-speaker male voice
- Trained on [MBSpeech](https://github.com/tugstugi/mongolian-nlp/blob/master/datasets/MBSpeech-1.0-csv.zip)
|
huggingtweets/dp_crazy_gamer | huggingtweets | 2022-01-27T15:58:51Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/dp_crazy_gamer/1643299090939/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1435032258868482049/AySjv2ON_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Donovan</div>
<div style="text-align: center; font-size: 14px;">@dp_crazy_gamer</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Donovan.
| Data | Donovan |
| --- | --- |
| Tweets downloaded | 3214 |
| Retweets | 763 |
| Short tweets | 824 |
| Tweets kept | 1627 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pvd0ays/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dp_crazy_gamer's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14bwewth) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14bwewth/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dp_crazy_gamer')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Tsubasaz/clinical-pubmed-bert-base-128 | Tsubasaz | 2022-01-27T15:44:06Z | 16 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"en",
"dataset:MIMIC-III",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language:
- en
license: mit
datasets:
- MIMIC-III
widget:
- text: "Due to shortness of breath, the patient is diagnosed with [MASK], and other respiratory problems."
example_title: "Example 1"
---
# ClinicalPubMedBERT
## Description
A BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes ([MIMIC-III](https://mimic.physionet.org/)). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions.
This model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens.
Pre-trained model: https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract |
tomascufaro/wav2vec2-large-xls-r-300m-spanish-custom | tomascufaro | 2022-01-27T15:27:27Z | 38 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-spanish-custom
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-spanish-custom
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4426
- Wer: 0.2117
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.2307 | 0.4 | 400 | 1.4431 | 0.9299 |
| 0.7066 | 0.79 | 800 | 0.5928 | 0.4836 |
| 0.4397 | 1.19 | 1200 | 0.4341 | 0.3730 |
| 0.3889 | 1.58 | 1600 | 0.4063 | 0.3499 |
| 0.3607 | 1.98 | 2000 | 0.3834 | 0.3235 |
| 0.2866 | 2.37 | 2400 | 0.3885 | 0.3163 |
| 0.2833 | 2.77 | 2800 | 0.3765 | 0.3140 |
| 0.2692 | 3.17 | 3200 | 0.3849 | 0.3132 |
| 0.2435 | 3.56 | 3600 | 0.3779 | 0.2984 |
| 0.2404 | 3.96 | 4000 | 0.3756 | 0.2934 |
| 0.2153 | 4.35 | 4400 | 0.3770 | 0.3075 |
| 0.2087 | 4.75 | 4800 | 0.3819 | 0.3022 |
| 0.1999 | 5.14 | 5200 | 0.3756 | 0.2959 |
| 0.1838 | 5.54 | 5600 | 0.3827 | 0.2858 |
| 0.1892 | 5.93 | 6000 | 0.3714 | 0.2999 |
| 0.1655 | 6.33 | 6400 | 0.3814 | 0.2812 |
| 0.1649 | 6.73 | 6800 | 0.3685 | 0.2727 |
| 0.1668 | 7.12 | 7200 | 0.3832 | 0.2825 |
| 0.1487 | 7.52 | 7600 | 0.3848 | 0.2788 |
| 0.152 | 7.91 | 8000 | 0.3810 | 0.2787 |
| 0.143 | 8.31 | 8400 | 0.3885 | 0.2856 |
| 0.1353 | 8.7 | 8800 | 0.4103 | 0.2827 |
| 0.1386 | 9.1 | 9200 | 0.4142 | 0.2874 |
| 0.1222 | 9.5 | 9600 | 0.3983 | 0.2830 |
| 0.1288 | 9.89 | 10000 | 0.4179 | 0.2781 |
| 0.1199 | 10.29 | 10400 | 0.4035 | 0.2789 |
| 0.1196 | 10.68 | 10800 | 0.4043 | 0.2746 |
| 0.1169 | 11.08 | 11200 | 0.4105 | 0.2753 |
| 0.1076 | 11.47 | 11600 | 0.4298 | 0.2686 |
| 0.1124 | 11.87 | 12000 | 0.4025 | 0.2704 |
| 0.1043 | 12.26 | 12400 | 0.4209 | 0.2659 |
| 0.0976 | 12.66 | 12800 | 0.4070 | 0.2672 |
| 0.1012 | 13.06 | 13200 | 0.4161 | 0.2720 |
| 0.0872 | 13.45 | 13600 | 0.4245 | 0.2697 |
| 0.0933 | 13.85 | 14000 | 0.4295 | 0.2684 |
| 0.0881 | 14.24 | 14400 | 0.4011 | 0.2650 |
| 0.0848 | 14.64 | 14800 | 0.3991 | 0.2675 |
| 0.0852 | 15.03 | 15200 | 0.4166 | 0.2617 |
| 0.0825 | 15.43 | 15600 | 0.4188 | 0.2639 |
| 0.081 | 15.83 | 16000 | 0.4181 | 0.2547 |
| 0.0753 | 16.22 | 16400 | 0.4103 | 0.2560 |
| 0.0747 | 16.62 | 16800 | 0.4017 | 0.2498 |
| 0.0761 | 17.01 | 17200 | 0.4159 | 0.2563 |
| 0.0711 | 17.41 | 17600 | 0.4112 | 0.2603 |
| 0.0698 | 17.8 | 18000 | 0.4335 | 0.2529 |
| 0.073 | 18.2 | 18400 | 0.4120 | 0.2512 |
| 0.0665 | 18.6 | 18800 | 0.4335 | 0.2496 |
| 0.0657 | 18.99 | 19200 | 0.4143 | 0.2468 |
| 0.0617 | 19.39 | 19600 | 0.4339 | 0.2435 |
| 0.06 | 19.78 | 20000 | 0.4179 | 0.2438 |
| 0.0613 | 20.18 | 20400 | 0.4251 | 0.2393 |
| 0.0583 | 20.57 | 20800 | 0.4347 | 0.2422 |
| 0.0562 | 20.97 | 21200 | 0.4246 | 0.2377 |
| 0.053 | 21.36 | 21600 | 0.4198 | 0.2338 |
| 0.0525 | 21.76 | 22000 | 0.4511 | 0.2427 |
| 0.0499 | 22.16 | 22400 | 0.4482 | 0.2353 |
| 0.0475 | 22.55 | 22800 | 0.4449 | 0.2329 |
| 0.0465 | 22.95 | 23200 | 0.4364 | 0.2320 |
| 0.0443 | 23.34 | 23600 | 0.4481 | 0.2304 |
| 0.0458 | 23.74 | 24000 | 0.4442 | 0.2267 |
| 0.0453 | 24.13 | 24400 | 0.4402 | 0.2261 |
| 0.0426 | 24.53 | 24800 | 0.4262 | 0.2232 |
| 0.0431 | 24.93 | 25200 | 0.4251 | 0.2210 |
| 0.0389 | 25.32 | 25600 | 0.4455 | 0.2232 |
| 0.039 | 25.72 | 26000 | 0.4372 | 0.2236 |
| 0.0378 | 26.11 | 26400 | 0.4236 | 0.2212 |
| 0.0348 | 26.51 | 26800 | 0.4359 | 0.2204 |
| 0.0361 | 26.9 | 27200 | 0.4248 | 0.2192 |
| 0.0356 | 27.3 | 27600 | 0.4397 | 0.2184 |
| 0.0325 | 27.7 | 28000 | 0.4367 | 0.2181 |
| 0.0313 | 28.09 | 28400 | 0.4477 | 0.2136 |
| 0.0306 | 28.49 | 28800 | 0.4533 | 0.2135 |
| 0.0314 | 28.88 | 29200 | 0.4410 | 0.2136 |
| 0.0307 | 29.28 | 29600 | 0.4457 | 0.2113 |
| 0.0309 | 29.67 | 30000 | 0.4426 | 0.2117 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
mrm8488/ppo-CartPole-v1 | mrm8488 | 2022-01-27T15:13:48Z | 0 | 1 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | #@title
---
tags:
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
---
# PPO CartPole v1 🤖⚖️
This is a pre-trained model of a PPO agent playing CartPole-v1 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
<video loop="" autoplay="" controls="" src="https://huggingface.co/mrm8488/ppo-CartPole-v1/resolve/main/output.mp4"></video>
### Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
```
pip install stable-baselines3
pip install huggingface_sb3
```
Then, you can use the model like this:
```python
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="mrm8488/ppo-CartPole-v1", filename="cartpole-v1.zip")
model = PPO.load(checkpoint)
# Evaluate the agent
eval_env = gym.make('CartPole-v1')
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Watch the agent play
obs = env.reset()
for i in range(1000):
action, _state = model.predict(obs)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
env.close()
```
### Evaluation Results
Mean_reward: mean_reward=500.00 +/- 0.0
|
jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom | jhonparra18 | 2022-01-27T14:58:01Z | 15 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-spanish-custom
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-spanish-custom
This model was trained from scratch on the common_voice dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2245
- eval_wer: 0.2082
- eval_runtime: 801.6784
- eval_samples_per_second: 18.822
- eval_steps_per_second: 2.354
- epoch: 0.76
- step: 8400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
ncoop57/codeparrot-neo-125M-py | ncoop57 | 2022-01-27T14:44:13Z | 14 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"rust",
"gpt_neo",
"text-generation",
"text generation",
"causal-lm",
"en",
"arxiv:2101.00027",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- text generation
- pytorch
- causal-lm
license: apache-2.0
datasets:
- The Pile
---
# GPT-Neo 125M
## Model Description
GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model.
## Training data
GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model.
## Training procedure
This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss.
## Intended Use and Limitations
This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
>>> generator("EleutherAI has", do_sample=True, min_length=50)
[{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}]
```
### Limitations and Biases
GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Eval results
TBD
### Down-Stream Applications
TBD
### BibTeX entry and citation info
To cite this model, use
```bibtex
@software{gpt-neo,
author = {Black, Sid and
Leo, Gao and
Wang, Phil and
Leahy, Connor and
Biderman, Stella},
title = {{GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow}},
month = mar,
year = 2021,
note = {{If you use this software, please cite it using
these metadata.}},
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.5297715},
url = {https://doi.org/10.5281/zenodo.5297715}
}
@article{gao2020pile,
title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
``` |
Iskaj/w2v-xlsr-dutch-lm | Iskaj | 2022-01-27T13:41:13Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | Model cloned from https://huggingface.co/facebook/wav2vec2-large-xlsr-53-dutch
Currently bugged: Logits size 48, vocab size 50 |
oskrmiguel/mt5-simplification-spanish | oskrmiguel | 2022-01-27T13:32:24Z | 22 | 6 | transformers | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"simplification",
"spanish",
"es",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z |
---
language:
- es
thumbnail:
tags:
- simplification
- mt5
- spanish
license: cc-by-nc-sa-4.0
metrics:
- sari
widget:
- text: "La Simplificación Textual es el proceso de transformación de un texto a otro texto equivalente más comprensible para un determinado tipo de grupo o población."
- text: "Los textos simplificados son apropiados para muchos grupos de lectores, como, por ejemplo: estudiantes de idiomas, personas con discapacidades intelectuales y otras personas con necesidades especiales de lectura y comprensión.
"
---
# mt5-simplification-spanish
## Model description
This is a fine-tuned mt5-small model for generating simple text from complex text.
This model was created with the IXA Group research group of the University of the Basque Country, the model has been evaluated with the Sari, Bleu and Fklg metrics; it was trained and tested using the [Simplext corpus](https://dl.acm.org/doi/10.1145/2738046).
## Dataset
Simplext
## Model Evaluation
Bleu: 13,186
Sari: 42,203
Fklg: 10,284
## Authors
Oscar M. Cumbicus-Pineda, Itziar Gonzalez-Dios, Aitor Soroa, November 2021
## Code
https://github.com/oskrmiguel/mt5-simplification |
anirudh21/bert-base-uncased-finetuned-qnli | anirudh21 | 2022-01-27T08:21:03Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.791689547867472
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-qnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6268
- Accuracy: 0.7917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 63 | 0.5339 | 0.7620 |
| No log | 2.0 | 126 | 0.4728 | 0.7866 |
| No log | 3.0 | 189 | 0.5386 | 0.7847 |
| No log | 4.0 | 252 | 0.6096 | 0.7904 |
| No log | 5.0 | 315 | 0.6268 | 0.7917 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
anas-awadalla/bert-small-pretrained-finetuned-squad | anas-awadalla | 2022-01-27T06:09:41Z | 30 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-small-pretrained-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small-pretrained-finetuned-squad
This model is a fine-tuned version of [anas-awadalla/bert-small-pretrained-on-squad](https://huggingface.co/anas-awadalla/bert-small-pretrained-on-squad) on the squad dataset.
- "exact_match": 72.20435193945127
- "f1": 81.31832229156294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
anas-awadalla/bert-medium-pretrained-finetuned-squad | anas-awadalla | 2022-01-27T06:07:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert_medium_pretrain_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_medium_pretrain_squad
This model is a fine-tuned version of [anas-awadalla/bert-medium-pretrained-on-squad](https://huggingface.co/anas-awadalla/bert-medium-pretrained-on-squad) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0973
- "exact_match": 77.95648060548723
- "f1": 85.85300366384631
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
sankhajay/mt5-base-sinaha-qa | sankhajay | 2022-01-27T05:35:18Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | \n
---
language: si
tags:
- question-answering
- Sinhala
widget:
- context: "ශ්රී ලංකාව යනු ඉන්දියානු සාගරයේ පිහිටි මනරම් දුපතකි."
text: "ශ්රී ලංකාව පිහිටා ඇත්තේ කොහෙද ?"
---
# mt5-base-sinhala-qa
This is an mt5-based Question Answering model for the Sinhalese language. Training is done on translated SQuAD dataset of 8k questions. The translation was done by google translate API.
The training was done on Google Colab TPU environment with parallel training techniques. The training was done on around 9k data points which consists of context, question, answer trios for the Sinhala language. Evaluation is done using standard SQuAD evaluation script on around 1k data points which gave following results on the best parameter setting. Evaluation matrices used are EM matric and F1 score matric.
Evaluation - {'EM': 39.413680781758956, 'f1': 66.16331104953571} |
anirudh21/albert-large-v2-finetuned-wnli | anirudh21 | 2022-01-27T05:02:43Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-large-v2-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5352112676056338
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-large-v2-finetuned-wnli
This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6919
- Accuracy: 0.5352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 17 | 0.7292 | 0.4366 |
| No log | 2.0 | 34 | 0.6919 | 0.5352 |
| No log | 3.0 | 51 | 0.7084 | 0.4648 |
| No log | 4.0 | 68 | 0.7152 | 0.5352 |
| No log | 5.0 | 85 | 0.7343 | 0.5211 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
anas-awadalla/bert-small-pretrained-on-squad | anas-awadalla | 2022-01-27T03:57:07Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert_small_pretrain_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_small_pretrain_squad
This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1410
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
asahi417/tner-roberta-large-multiconer-en-adapter | asahi417 | 2022-01-26T16:13:58Z | 10 | 0 | adapter-transformers | [
"adapter-transformers",
"adapterhub:named-entity-recognition/multiconer",
"roberta",
"dataset:multiconer",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- adapter-transformers
- adapterhub:named-entity-recognition/multiconer
- roberta
datasets:
- multiconer
---
# Adapter `asahi417/tner-roberta-large-multiconer-en-adapter` for roberta-large
An [adapter](https://adapterhub.ml) for the `roberta-large` model that was trained on the [named-entity-recognition/multiconer](https://adapterhub.ml/explore/named-entity-recognition/multiconer/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-large")
adapter_name = model.load_adapter("asahi417/tner-roberta-large-multiconer-en-adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here --> |
asahi417/tner-xlm-roberta-large-multiconer-mix-adapter | asahi417 | 2022-01-26T16:00:50Z | 3 | 0 | adapter-transformers | [
"adapter-transformers",
"adapterhub:named-entity-recognition/multiconer",
"xlm-roberta",
"dataset:multiconer",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- adapter-transformers
- adapterhub:named-entity-recognition/multiconer
- xlm-roberta
datasets:
- multiconer
---
# Adapter `asahi417/tner-xlm-roberta-large-multiconer-mix-adapter` for xlm-roberta-large
An [adapter](https://adapterhub.ml) for the `xlm-roberta-large` model that was trained on the [named-entity-recognition/multiconer](https://adapterhub.ml/explore/named-entity-recognition/multiconer/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("xlm-roberta-large")
adapter_name = model.load_adapter("asahi417/tner-xlm-roberta-large-multiconer-mix-adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here --> |
katrin-kc/dummy2 | katrin-kc | 2022-01-26T12:01:45Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Hello World!
This is a dummy repository.
Can be deleted. |
bitmorse/autonlp-ks-530615016 | bitmorse | 2022-01-26T11:40:24Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autonlp",
"en",
"dataset:bitmorse/autonlp-data-ks",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- bitmorse/autonlp-data-ks
co2_eq_emissions: 2.2247356264808964
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 530615016
- CO2 Emissions (in grams): 2.2247356264808964
## Validation Metrics
- Loss: 0.7859578132629395
- Accuracy: 0.676854818831649
- Macro F1: 0.3297126297995653
- Micro F1: 0.676854818831649
- Weighted F1: 0.6429522696884535
- Macro Precision: 0.33152557743856437
- Micro Precision: 0.676854818831649
- Weighted Precision: 0.6276125515413322
- Macro Recall: 0.33784302289888885
- Micro Recall: 0.676854818831649
- Weighted Recall: 0.676854818831649
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bitmorse/autonlp-ks-530615016
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("bitmorse/autonlp-ks-530615016", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("bitmorse/autonlp-ks-530615016", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
SetFit/MiniLM-L12-H384-uncased__sst2__all-train | SetFit | 2022-01-26T11:27:47Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MiniLM-L12-H384-uncased__sst2__all-train
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLM-L12-H384-uncased__sst2__all-train
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2632
- Accuracy: 0.9055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4183 | 1.0 | 433 | 0.3456 | 0.8720 |
| 0.2714 | 2.0 | 866 | 0.2632 | 0.9055 |
| 0.2016 | 3.0 | 1299 | 0.3357 | 0.8990 |
| 0.1501 | 4.0 | 1732 | 0.4474 | 0.8863 |
| 0.1119 | 5.0 | 2165 | 0.3998 | 0.8979 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Iskaj/hf-challenge-test | Iskaj | 2022-01-26T11:21:07Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"ab",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
language:
- ab
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 156.8789
- Wer: 1.3456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.1.dev0
- Tokenizers 0.11.0
|
jcmc/wav2vec2-large-xlsr-53-ir | jcmc | 2022-01-26T10:35:17Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ga-IE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0835
- Wer: 0.7490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1483 | 15.62 | 500 | 3.0498 | 1.0 |
| 2.8449 | 31.25 | 1000 | 2.7790 | 0.9493 |
| 1.8683 | 46.86 | 1500 | 1.2339 | 0.8161 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
SophieTr/fine-tune-Pegasus-large | SophieTr | 2022-01-26T07:56:10Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: fine-tune-Pegasus-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tune-Pegasus-large
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 11.0526
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.35e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|
danielbubiola/bangla_asr | danielbubiola | 2022-01-26T07:42:22Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: bangla_asr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bangla_asr
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 157.8652
- Wer: 0.4507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2601.5363 | 7.46 | 500 | 259.6630 | 0.6863 |
| 417.7386 | 14.93 | 1000 | 156.6117 | 0.5275 |
| 262.9455 | 22.39 | 1500 | 155.0886 | 0.5006 |
| 178.7715 | 29.85 | 2000 | 155.1077 | 0.4840 |
| 132.448 | 37.31 | 2500 | 163.8623 | 0.4770 |
| 116.3943 | 44.78 | 3000 | 161.5531 | 0.4609 |
| 87.1653 | 52.24 | 3500 | 165.6857 | 0.4597 |
| 80.5606 | 59.7 | 4000 | 157.8652 | 0.4507 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
kxiaoqiangrexian/bert_test | kxiaoqiangrexian | 2022-01-26T06:52:37Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
Ajay191191/autonlp-Test-530014983 | Ajay191191 | 2022-01-25T22:28:49Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:Ajay191191/autonlp-data-Test",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Ajay191191/autonlp-data-Test
co2_eq_emissions: 55.10196329868386
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 530014983
- CO2 Emissions (in grams): 55.10196329868386
## Validation Metrics
- Loss: 0.23171618580818176
- Accuracy: 0.9298837645294338
- Precision: 0.9314414866901055
- Recall: 0.9279459594696022
- AUC: 0.979447403984557
- F1: 0.9296904373981703
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Ajay191191/autonlp-Test-530014983
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Ajay191191/autonlp-Test-530014983", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Ajay191191/autonlp-Test-530014983", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
anirudh21/albert-base-v2-finetuned-rte | anirudh21 | 2022-01-25T22:23:12Z | 19 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-base-v2-finetuned-rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.7581227436823105
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-rte
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2496
- Accuracy: 0.7581
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 249 | 0.5914 | 0.6751 |
| No log | 2.0 | 498 | 0.5843 | 0.7184 |
| 0.5873 | 3.0 | 747 | 0.6925 | 0.7220 |
| 0.5873 | 4.0 | 996 | 1.1613 | 0.7545 |
| 0.2149 | 5.0 | 1245 | 1.2496 | 0.7581 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR | ghadeermobasher | 2022-01-25T21:02:42Z | 2 | 0 | adapter-transformers | [
"adapter-transformers",
"pytorch",
"xlm-roberta",
"adapterhub:other",
"dataset:ghadeermobasher/BC5CDR-Chemical-Disease",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- adapter-transformers
- adapterhub:other
- xlm-roberta
datasets:
- ghadeermobasher/BC5CDR-Chemical-Disease
---
# Adapter `ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR` for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR
An [adapter](https://adapterhub.ml) for the `ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR` model that was trained on the [other](https://adapterhub.ml/explore/other/) dataset.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR")
adapter_name = model.load_adapter("ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here --> |
jiobiala24/wav2vec2-base-checkpoint-9 | jiobiala24 | 2022-01-25T19:52:35Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-base-checkpoint-9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-checkpoint-9
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-8](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-8) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9203
- Wer: 0.3258
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2783 | 1.58 | 1000 | 0.5610 | 0.3359 |
| 0.2251 | 3.16 | 2000 | 0.5941 | 0.3374 |
| 0.173 | 4.74 | 3000 | 0.6026 | 0.3472 |
| 0.1475 | 6.32 | 4000 | 0.6750 | 0.3482 |
| 0.1246 | 7.9 | 5000 | 0.6673 | 0.3414 |
| 0.1081 | 9.48 | 6000 | 0.7072 | 0.3409 |
| 0.1006 | 11.06 | 7000 | 0.7413 | 0.3392 |
| 0.0879 | 12.64 | 8000 | 0.7831 | 0.3394 |
| 0.0821 | 14.22 | 9000 | 0.7371 | 0.3333 |
| 0.0751 | 15.8 | 10000 | 0.8321 | 0.3445 |
| 0.0671 | 17.38 | 11000 | 0.8362 | 0.3357 |
| 0.0646 | 18.96 | 12000 | 0.8709 | 0.3367 |
| 0.0595 | 20.54 | 13000 | 0.8352 | 0.3321 |
| 0.0564 | 22.12 | 14000 | 0.8854 | 0.3323 |
| 0.052 | 23.7 | 15000 | 0.9031 | 0.3315 |
| 0.0485 | 25.28 | 16000 | 0.9171 | 0.3278 |
| 0.046 | 26.86 | 17000 | 0.9390 | 0.3254 |
| 0.0438 | 28.44 | 18000 | 0.9203 | 0.3258 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
anirudh21/electra-base-discriminator-finetuned-rte | anirudh21 | 2022-01-25T15:43:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: electra-base-discriminator-finetuned-rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.8231046931407943
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-base-discriminator-finetuned-rte
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4793
- Accuracy: 0.8231
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 156 | 0.6076 | 0.6570 |
| No log | 2.0 | 312 | 0.4824 | 0.7762 |
| No log | 3.0 | 468 | 0.4793 | 0.8231 |
| 0.4411 | 4.0 | 624 | 0.7056 | 0.7906 |
| 0.4411 | 5.0 | 780 | 0.6849 | 0.8159 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
Iacopo/Shakespear-GPT2 | Iacopo | 2022-01-25T13:35:35Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on a dataset of Shakespeare's plays.
## Model description
The model is the original gpt-2 model fine-tuned on a custom dataset.
## Intended uses & limitations
The model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced.
## Training and evaluation data
Trained with Shakespeare's plays corpus.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.11.0
|
awsaf49/deep-chimpact | awsaf49 | 2022-01-25T12:59:16Z | 9 | 1 | tf-keras | [
"tf-keras",
"region:us"
] | null | 2022-03-02T23:29:05Z | # [Deep Chimpact](https://www.drivendata.org/competitions/82/competition-wildlife-video-depth-estimation/page/390/)
> Depth Estimation for Wildlife Conservation (1st place solution)
<div align=center> <img src="https://user-images.githubusercontent.com/36858976/138281204-c3cbcb77-11ca-448b-a693-cb3cfa3c5181.png" width=800>
## Overview
Healthy natural ecosystems have wide-ranging benefits from public health to the economy to agriculture. In order to protect the Earth's natural resources, conservationists need to be able to monitor species population sizes and population change. Camera traps are widely used in conservation research to capture images and videos of wildlife without human interference. Using statistical models for distance sampling, the frequency of animal sightings can be combined with the distance of each animal from the camera to estimate a species' full population size.
However, getting distances from camera trap footage currently entails an extremely manual, time-intensive process. It takes a researcher more than **10 minutes** on average to label distance for every **1 minute** of video - that’s a lot of time when you have a million videos! This also creates a bottleneck for critical information that conservationists can use to **monitor wildlife populations**.
> Your goal in this challenge is to use machine learning to automatically estimate the distance between a camera trap and an animal in a series of camera trap videos. You will be given a series of timestamps indicating when animals are visible in each camera trap video. To complete the challenge, you will predict the distance between the animal and the camera at each point in time.
Along the way, keep an eye out for some sneaky leopards hunting at night, baby chimpanzees getting piggy-back rides, and diva elephants that can't get enough of the limelight. By contributing to this challenge, you can help advance cutting-edge methods for keeping these animal populations (and humans) healthy and safe! |
dhanesh123in/layoutlmv2-finetuned-funsd-test | dhanesh123in | 2022-01-25T12:33:29Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-finetuned-funsd-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-funsd-test
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1
- Datasets 1.18.0
- Tokenizers 0.11.0
|
SamMorgan/yolo_v4_tflite | SamMorgan | 2022-01-25T10:15:51Z | 0 | 4 | tf-keras | [
"tf-keras",
"tflite",
"object detection",
"computer vision",
"darknet",
"yolo",
"object-detection",
"en",
"dataset:coco",
"dataset:imagenette",
"arxiv:2004.10934",
"license:mit",
"region:us"
] | object-detection | 2022-03-02T23:29:04Z | ---
language: en
tags:
- object detection
- computer vision
- darknet
- yolo
datasets:
- coco
- imagenette
license: mit
thumbnail: https://github.com/hunglc007/tensorflow-yolov4-tflite
pipeline_tag: object-detection
---
# YOLOv4
YOLO, for "You Only Look Once", is an object detection system in real-time, introduced in [this paper](https://arxiv.org/abs/2004.10934), that recognizes various objects in a single enclosure. It identifies objects more rapidly and more precisely than other recognition systems. Three authors Alexey Bochkovskiy, the Russian developer who built the YOLO Windows version, Chien-Yao Wang, and Hong-Yuan Mark Liao, are accounted for in this work and the entire code is available on [Github](https://github.com/AlexeyAB/darknet).
This YOLOv4 library, inspired by previous YOLOv3 implementations here:
* [Yolov3 tensorflow](https://github.com/YunYang1994/tensorflow-yolov3)
* [Yolov3 tf2](https://github.com/zzh8829/yolov3-tf2)uses Tensorflow 2.0 and is available on this [Github](https://github.com/hunglc007/tensorflow-yolov4-tflite).
### Limitations and biases
Object-recognition technology has improved drastically in the past few years across the industry, and it is now part of a huge variety of products and services that millions of people worldwide use. However, errors in object-recognition algorithms can stem from the training data used to create the system is geographically constrained and/or that it fails to recognize cultural differences.
The COCO dataset used to train yolov4-tflite has been found to have annotation errors on more than 20% of images. Such errors include captions describing people differently based on skin tone and gender expression. This serves as a reminder to be cognizant that these biases already exist and a warning to be careful about the increasing bias that is likely to come with advancements in image captioning technology.
### How to use YOLOv4tflite
You can use this model to detect objects in an image of choice. Follow the following scripts to implement on your own!
```bash
# install git lfs
git lfs install
# if presented with the error "git: 'lfs' is not a git command. See 'git --help'", try running these linux commands:
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
# change directory to base
cd ..
# install git-lfs
sudo apt-get install git-lfs
# for message "Git LFS initialized"
git lfs install
# change directory to yolo_v4_tflite
cd ./yolo_v4_tflite
# clone this repo into your notebook
git clone https://huggingface.co/SamMorgan/yolo_v4_tflite
# Run demo tensor flow for an example of how this model works
python detect.py --weights ./checkpoints/yolov4-416 --size 416 --model yolov4 --image ./data/kite.jpg --output ./test.jpg
# Try with your own image
python detect.py --weights ./checkpoints/yolov4-416 --size 416 --model yolov4 --image <insert path to image of choice> --output <insert path to output location of choice>
```
### Evaluate on COCO 2017 Dataset
```bash
# run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input ./coco/annotations/instances_val2017.json --output val2017.pkl
python coco_annotation.py --coco_path ./coco
cd ..
# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf
```
#### mAP50 on COCO 2017 Dataset
| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 | 55.43 | 52.32 | |
| YoloV4 | 61.96 | 57.33 | |
### Benchmark
```bash
python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights
```
#### TensorRT performance
| YoloV4 416 images/s | FP32 | FP16 | INT8 |
|---------------------|----------|----------|----------|
| Batch size 1 | 55 | 116 | |
| Batch size 8 | 70 | 152 | |
#### Tesla P100
| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 40.6 | 49.4 | 61.3 |
| YoloV4 FPS | 33.4 | 41.7 | 50.0 |
#### Tesla K80
| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 10.8 | 12.9 | 17.6 |
| YoloV4 FPS | 9.6 | 11.7 | 16.0 |
#### Tesla T4
| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 27.6 | 32.3 | 45.1 |
| YoloV4 FPS | 24.0 | 30.3 | 40.1 |
#### Tesla P4
| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 20.2 | 24.2 | 31.2 |
| YoloV4 FPS | 16.2 | 20.2 | 26.5 |
#### Macbook Pro 15 (2.3GHz i7)
| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | | | |
| YoloV4 FPS | | | |
### Traning your own model
```bash
# Prepare your dataset
# If you want to train from scratch:
In config.py set FISRT_STAGE_EPOCHS=0
# Run script:
python train.py
# Transfer learning:
python train.py --weights ./data/yolov4.weights
```
The training performance is not fully reproduced yet, so I recommended to use Alex's [Darknet](https://github.com/AlexeyAB/darknet) to train your own data, then convert the .weights to tensorflow or tflite.
### References
* YOLOv4: Optimal Speed and Accuracy of Object Detection [YOLOv4](https://arxiv.org/abs/2004.10934).
* [darknet](https://github.com/AlexeyAB/darknet)
|
z-uo/glowtts-male-it | z-uo | 2022-01-25T07:14:09Z | 4 | 1 | transformers | [
"transformers",
"tensorboard",
"text-to-speech",
"it",
"dataset:z-uo/male-LJSpeech-italian",
"endpoints_compatible",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- text-to-speech
language:
- it
model-index:
- name: glowtts-male-it
results: []
datasets:
- z-uo/male-LJSpeech-italian
---
# Coqui Model for TTS
```
pip install TTS
git clone https://huggingface.co/z-uo/glowtts-male-it
# predict one
server --text "ciao pluto" --model_path "glowtts-male-it/GOOD_best_model_3840.pth.tar" --config_path "glowtts-male-it/config.json"
# predict server
tts-server --model_path "glowtts-male-it/GOOD_best_model_3840.pth.tar" --config_path "glowtts-male-it/config.json"
firefox localhost:5002
```
More information about training script in [this repo](https://github.com/nicolalandro/train_coqui_tts_ita). |
arman0320/bert-base-cased-wikitext2 | arman0320 | 2022-01-25T05:51:08Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-cased-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-wikitext2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.8596
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.0963 | 1.0 | 2346 | 7.0570 |
| 6.9063 | 2.0 | 4692 | 6.8721 |
| 6.8585 | 3.0 | 7038 | 6.8931 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
anirudh21/electra-base-discriminator-finetuned-wnli | anirudh21 | 2022-01-25T04:41:03Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: electra-base-discriminator-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5633802816901409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-base-discriminator-finetuned-wnli
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6893
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.6893 | 0.5634 |
| No log | 2.0 | 80 | 0.7042 | 0.4225 |
| No log | 3.0 | 120 | 0.7008 | 0.3803 |
| No log | 4.0 | 160 | 0.6998 | 0.5634 |
| No log | 5.0 | 200 | 0.7016 | 0.5352 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
Suva/uptag-url-model | Suva | 2022-01-25T04:32:49Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"dataset:arxiv",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
datasets:
- arxiv
widget:
- text: "summarize: We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production
machinelearning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and
handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks.
In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year,
Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing.
In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors
1.7-2.9 times versus production systems."
license: mit
---
## Usage:
```python
abstract = """We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production
machine learning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and
handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a
set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks.
In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year,
Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time,
Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems.
"""
```
### Using Transformers🤗
```python
model_name = "Suva/uptag-url-model"
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_ids = tokenizer.encode("summarize: " + abstract, return_tensors="pt", add_special_tokens=True)
generated_ids = model.generate(input_ids=input_ids,num_beams=5,max_length=100,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=3)
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
print(preds)
# output
["Overton: Building, Deploying, and Monitoring Machine Learning Systems for Engineers",
"Overton: A System for Building, Monitoring, and Improving Production Machine Learning Systems",
"Overton: Building, Monitoring, and Improving Production Machine Learning Systems"]
``` |
kika2000/wav2vec2-large-xls-r-300m-kika_my-colab | kika2000 | 2022-01-25T04:10:14Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-kika_my-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-kika_my-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3300
- Wer: 0.5804
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.8067 | 4.82 | 400 | 1.2892 | 0.8886 |
| 0.3048 | 9.64 | 800 | 1.2285 | 0.6797 |
| 0.1413 | 14.46 | 1200 | 1.1970 | 0.6509 |
| 0.1047 | 19.28 | 1600 | 1.3628 | 0.6166 |
| 0.0799 | 24.1 | 2000 | 1.3345 | 0.6014 |
| 0.0638 | 28.92 | 2400 | 1.3300 | 0.5804 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
byeongal/gpt-j-6B-float16 | byeongal | 2022-01-25T03:21:06Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
mtglearn/roberta-mtg-cards | mtglearn | 2022-01-25T02:57:42Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
aviator-neural/gpt2-donald_trump | aviator-neural | 2022-01-24T22:09:58Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-donald_trump
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-donald_trump
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 391 | 2.8721 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
anirudh21/albert-base-v2-finetuned-qnli | anirudh21 | 2022-01-24T19:56:19Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-base-v2-finetuned-qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.9112209408749771
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-qnli
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3194
- Accuracy: 0.9112
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3116 | 1.0 | 6547 | 0.2818 | 0.8849 |
| 0.2467 | 2.0 | 13094 | 0.2532 | 0.9001 |
| 0.1858 | 3.0 | 19641 | 0.3194 | 0.9112 |
| 0.1449 | 4.0 | 26188 | 0.4338 | 0.9103 |
| 0.0584 | 5.0 | 32735 | 0.5752 | 0.9052 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
anas-awadalla/bert-small-finetuned-squad | anas-awadalla | 2022-01-24T19:25:29Z | 45 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-small-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small-finetuned-squad
This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on the squad dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.3138
- eval_runtime: 46.6577
- eval_samples_per_second: 231.13
- eval_steps_per_second: 14.446
- epoch: 4.0
- step: 22132
{'exact_match': 71.05960264900662, 'f1': 80.8260245470904}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
birgermoell/wav2vec2-common_voice-tr-demo | birgermoell | 2022-01-24T18:52:26Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-common_voice-tr-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-tr-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5528
- Wer: 0.3811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 0.74 | 100 | 3.4444 | 1.0 |
| No log | 1.47 | 200 | 2.9421 | 1.0 |
| No log | 2.21 | 300 | 2.2802 | 1.0137 |
| No log | 2.94 | 400 | 0.9683 | 0.7611 |
| 3.7264 | 3.68 | 500 | 0.7941 | 0.6594 |
| 3.7264 | 4.41 | 600 | 0.6695 | 0.5751 |
| 3.7264 | 5.15 | 700 | 0.6507 | 0.5314 |
| 3.7264 | 5.88 | 800 | 0.5731 | 0.4927 |
| 3.7264 | 6.62 | 900 | 0.5723 | 0.4580 |
| 0.4592 | 7.35 | 1000 | 0.5913 | 0.4479 |
| 0.4592 | 8.09 | 1100 | 0.5562 | 0.4423 |
| 0.4592 | 8.82 | 1200 | 0.5566 | 0.4292 |
| 0.4592 | 9.56 | 1300 | 0.5492 | 0.4303 |
| 0.4592 | 10.29 | 1400 | 0.5665 | 0.4331 |
| 0.2121 | 11.03 | 1500 | 0.5610 | 0.4084 |
| 0.2121 | 11.76 | 1600 | 0.5703 | 0.4014 |
| 0.2121 | 12.5 | 1700 | 0.5669 | 0.3898 |
| 0.2121 | 13.24 | 1800 | 0.5586 | 0.3962 |
| 0.2121 | 13.97 | 1900 | 0.5656 | 0.3897 |
| 0.1326 | 14.71 | 2000 | 0.5565 | 0.3813 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
younes9/AI-DAY-distilbert-base-uncased-finetuned-cola | younes9 | 2022-01-24T18:13:20Z | 17 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: AI-DAY-distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5382139717003264
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AI-DAY-distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7236
- Matthews Correlation: 0.5382
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5308 | 1.0 | 535 | 0.5065 | 0.4296 |
| 0.3565 | 2.0 | 1070 | 0.5109 | 0.4940 |
| 0.2399 | 3.0 | 1605 | 0.6056 | 0.5094 |
| 0.1775 | 4.0 | 2140 | 0.7236 | 0.5382 |
| 0.1242 | 5.0 | 2675 | 0.8659 | 0.5347 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_pubtabnet_c | deepdoctection | 2022-01-24T16:15:44Z | 0 | 0 | null | [
"Tensorflow",
"dataset:Pubtabnet",
"arxiv:1911.10683",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- Tensorflow
license: apache-2.0
datasets:
- Pubtabnet
---
# Tensorpacks Cascade-RCNN with FPN and Group Normalization on ResNext32xd4-50 trained on Pubtabnet for Semantic Segmentation of tables.
The model and its training code has been mainly taken from: [Tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) .
Regarding the dataset, please check: [Xu Zhong et. all. - Image-based table recognition: data, model, and evaluation](https://arxiv.org/abs/1911.10683).
The model has been trained on detecting cells from tables. Note, that the datasets contains tables only. Therefore, it is required to perform a table detection task before
detecting cells.
The code has been adapted so that it can be used in a **deep**doctection pipeline.
## How this model can be used
This model can be used with the **deep**doctection in a full pipeline, along with table recognition and OCR. Check the general instruction following this [Get_started](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Get_Started.ipynb) tutorial.
## How this model was trained.
To recreate the model run on the **deep**doctection framework, run:
```python
>>> import os
>>> from deep_doctection.datasets import DatasetRegistry
>>> from deep_doctection.eval import MetricRegistry
>>> from deep_doctection.utils import get_configs_dir_path
>>> from deep_doctection.train import train_faster_rcnn
pubtabnet = DatasetRegistry.get_dataset("pubtabnet")
pubtabnet.dataflow.categories.filter_categories(categories="CELL")
path_config_yaml=os.path.join(get_configs_dir_path(),"tp/cell/conf_frcnn_cell.yaml")
path_weights = ""
dataset_train = pubtabnet
config_overwrite=["TRAIN.STEPS_PER_EPOCH=500","TRAIN.STARTING_EPOCH=1",
"TRAIN.CHECKPOINT_PERIOD=50","BACKBONE.FREEZE_AT=0", "PREPROC.TRAIN_SHORT_EDGE_SIZE=[200,600]"]
build_train_config=["max_datapoints=500000"]
dataset_val = pubtabnet
build_val_config = ["max_datapoints=4000"]
coco_metric = MetricRegistry.get_metric("coco")
coco_metric.set_params(max_detections=[50,200,600], area_range=[[0,1000000],[0,200],[200,800],[800,1000000]])
train_faster_rcnn(path_config_yaml=path_config_yaml,
dataset_train=dataset_train,
path_weights=path_weights,
config_overwrite=config_overwrite,
log_dir="/path/to/dir",
build_train_config=build_train_config,
dataset_val=dataset_val,
build_val_config=build_val_config,
metric=coco_metric,
pipeline_component_name="ImageLayoutService"
)
```
## How to fine-tune this model
To fine tune this model, please check this [Fine-tune](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Fine_Tune.ipynb) tutorial. |
huggingtweets/yu_kisub21 | huggingtweets | 2022-01-24T15:24:45Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/yu_kisub21/1643037750346/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1476997379857723392/L6czpqmI_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ゆう🇲🇾英語を軸に人生に革新を🔥</div>
<div style="text-align: center; font-size: 14px;">@yu_kisub21</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ゆう🇲🇾英語を軸に人生に革新を🔥.
| Data | ゆう🇲🇾英語を軸に人生に革新を🔥 |
| --- | --- |
| Tweets downloaded | 1580 |
| Retweets | 366 |
| Short tweets | 1137 |
| Tweets kept | 77 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fswx6qh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yu_kisub21's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35tec8b2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35tec8b2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yu_kisub21')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Subsets and Splits