modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
sequence | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
castorini/bpr-nq-ctx-encoder | castorini | 2021-09-05T00:57:58Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"dpr",
"arxiv:2106.00882",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | This model is converted from the original BPR [repo](https://github.com/studio-ousia/bpr) and fitted into Pyserini:
> Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient passage retrieval with hashing for open-domain question answering. arXiv:2106.00882. |
castorini/bpr-nq-question-encoder | castorini | 2021-09-05T00:53:16Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"dpr",
"feature-extraction",
"arxiv:2106.00882",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | This model is converted from the original BPR [repo](https://github.com/studio-ousia/bpr) and fitted into Pyserini:
> Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient passage retrieval with hashing for open-domain question answering. arXiv:2106.00882. |
recobo/chemical-bert-uncased-tsdae | recobo | 2021-09-04T21:17:19Z | 14 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# recobo/chemical-bert-uncased-tsdae
```python
from sentence_transformers import SentenceTransformer
model_name = 'recobo/chemical-bert-uncased-tsdae'
model = SentenceTransformer(model_name)
``` |
bshlgrs/autonlp-classification_with_all_labellers-9532137 | bshlgrs | 2021-09-04T21:03:27Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:bshlgrs/autonlp-data-classification_with_all_labellers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- bshlgrs/autonlp-data-classification_with_all_labellers
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 9532137
## Validation Metrics
- Loss: 0.34556105732917786
- Accuracy: 0.8749890724713699
- Macro F1: 0.5243623959669343
- Micro F1: 0.8749890724713699
- Weighted F1: 0.8638030768409057
- Macro Precision: 0.5016762404900895
- Micro Precision: 0.8749890724713699
- Weighted Precision: 0.8547962562614184
- Macro Recall: 0.5529674694200845
- Micro Recall: 0.8749890724713699
- Weighted Recall: 0.8749890724713699
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification_with_all_labellers-9532137
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
bshlgrs/autonlp-classification-9522090 | bshlgrs | 2021-09-04T20:47:49Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:bshlgrs/autonlp-data-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- bshlgrs/autonlp-data-classification
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 9522090
## Validation Metrics
- Loss: 0.3541755676269531
- Accuracy: 0.8759671179883946
- Macro F1: 0.5330133182738012
- Micro F1: 0.8759671179883946
- Weighted F1: 0.8482773065757196
- Macro Precision: 0.537738108882869
- Micro Precision: 0.8759671179883946
- Weighted Precision: 0.8241048710814852
- Macro Recall: 0.5316621214820499
- Micro Recall: 0.8759671179883946
- Weighted Recall: 0.8759671179883946
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification-9522090
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
doyoungkim/bert-base-uncased-finetuned-sst2-sst2-membership | doyoungkim | 2021-09-04T20:10:24Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model_index:
name: bert-base-uncased-finetuned-sst2-sst2-membership
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-sst2-sst2-membership
This model is a fine-tuned version of [ikevin98/bert-base-uncased-finetuned-sst2](https://huggingface.co/ikevin98/bert-base-uncased-finetuned-sst2) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3100
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5125 | 1.0 | 3813 | 1.3100 | 1.0 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.8.1
- Datasets 1.11.0
- Tokenizers 0.10.1
|
superb/wav2vec2-large-superb-ic | superb | 2021-09-04T19:52:29Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"speech",
"audio",
"en",
"dataset:superb",
"arxiv:2105.01051",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
license: apache-2.0
---
# Wav2Vec2-Large for Intent Classification
## Model description
This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands).
The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
speakers. SUPERB uses the
[Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/)
dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands).
## Usage examples
You can use the model directly like so:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ic", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ic")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ic")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
action_ids = torch.argmax(logits[:, :6], dim=-1).tolist()
action_labels = [model.config.id2label[_id] for _id in action_ids]
object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist()
object_labels = [model.config.id2label[_id + 6] for _id in object_ids]
location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist()
location_labels = [model.config.id2label[_id + 20] for _id in location_ids]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.9528` | `N/A` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
xiaj/test | xiaj | 2021-09-04T05:38:09Z | 0 | 0 | null | [
"translation",
"ru",
"en",
"dataset:wmt19",
"license:apache-2.0",
"region:us"
] | translation | 2022-03-02T23:29:05Z | ---
language:
- ru
- en
tags:
- translation
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
- sacrebleu
---
|
amank22/hi_ud_hi_ewt | amank22 | 2021-09-03T09:43:35Z | 4 | 0 | spacy | [
"spacy",
"token-classification",
"hi",
"model-index",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
tags:
- spacy
- token-classification
language:
- hi
model-index:
- name: hi_ud_hi_ewt
results:
- task:
name: POS
type: token-classification
metrics:
- name: POS Accuracy
type: accuracy
value: 0.9539693129
- task:
name: SENTER
type: token-classification
metrics:
- name: SENTER Precision
type: precision
value: 0.9902617164
- name: SENTER Recall
type: recall
value: 0.9807112719
- name: SENTER F Score
type: f_score
value: 0.9854633555
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Dependencies Accuracy
type: accuracy
value: 0.9198922358
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Dependencies Accuracy
type: accuracy
value: 0.9198922358
---
|
tau/splinter-base-qass | tau | 2021-09-03T08:47:00Z | 2,111 | 1 | transformers | [
"transformers",
"pytorch",
"splinter",
"question-answering",
"SplinterModel",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
language: en
tags:
- splinter
- SplinterModel
license: apache-2.0
---
# Splinter base model (with pretrained QASS-layer weights)
Splinter-base is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive.
Note: This model **does** contain the pretrained weights for the QASS layer (see paper for details). For the model **without** those weights, see [tau/splinter-base](https://huggingface.co/tau/splinter-base).
## Model description
Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions).
## Intended uses & limitations
The prime use for this model is few-shot extractive QA.
## Pretraining
The model was pretrained on a v3-8 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details.
### BibTeX entry and citation info
```bibtex
@inproceedings{ram-etal-2021-shot,
title = "Few-Shot Question Answering by Pretraining Span Selection",
author = "Ram, Ori and
Kirstain, Yuval and
Berant, Jonathan and
Globerson, Amir and
Levy, Omer",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.239",
doi = "10.18653/v1/2021.acl-long.239",
pages = "3066--3079",
}
```
|
superb/wav2vec2-base-superb-ic | superb | 2021-09-02T22:03:59Z | 674 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"speech",
"audio",
"en",
"dataset:superb",
"arxiv:2105.01051",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
license: apache-2.0
---
# Wav2Vec2-Base for Intent Classification
## Model description
This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands).
The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
speakers. SUPERB uses the
[Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/)
dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands).
## Usage examples
You can use the model directly like so:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ic", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
action_ids = torch.argmax(logits[:, :6], dim=-1).tolist()
action_labels = [model.config.id2label[_id] for _id in action_ids]
object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist()
object_labels = [model.config.id2label[_id + 6] for _id in object_ids]
location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist()
location_labels = [model.config.id2label[_id + 20] for _id in location_ids]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.9235` | `N/A` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
vymn/vymn | vymn | 2021-09-02T14:03:29Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | <pre>
----------------------------------------
<span>developing brains!!</span>
----------------------------------------
_---~~(~~-_.
_{ ) )
, ) -~~- ( ,-' )_
( `-,_..`., )-- '_,)
( ` _) ( -~( -_ `, }
(_- _ ~_-~~~~`, ,' )
`~ -^( __;-,((()))
~~~~ {_ -_(())
`\ }
{ } vymn mohvmd svlih.
</pre>
I'm android frontend developer and AI researcher, I work with [flutter](https://flutter.dev/) framework, [kotlin](https://kotlinlang.org/), [java](https://www.java.com/), [python](https://python.org/), [php](https://www.php.net/),... . from time to time i do some backend stuff.. can also Work with some AI frameworks and platforms.
<!-- ### Check out my social medias: -->
<!-- - 💬 [reddit](https://www.reddit.com/user/vymn2862)
- 🔗 [LinkedIn](https://www.linkedin.com/in/vymn-mohvmd-b38829206/) -->
<!--  -->
<div><img align="center" src="https://github-readme-stats.vercel.app/api/top-langs/?username=vymn&layout=compact&hide=html" alt="vymn" /></div>
<br />
<br />
<div><img align="center" src="https://github-readme-stats.vercel.app/api?username=vymn&show_icons=true" alt="vymn" /></div>
|
flax-community/gpt2-small-indonesian | flax-community | 2021-09-02T12:26:52Z | 168 | 5 | transformers | [
"transformers",
"pytorch",
"jax",
"tensorboard",
"gpt2",
"text-generation",
"id",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: id
widget:
- text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira."
---
# GPT2-small-indonesian
This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first
introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104)
organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team.
The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian).
## How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness,
we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='flax-community/gpt2-small-indonesian')
>>> set_seed(42)
>>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5)
[{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\
“Kau tau, bagaimana dulu kita bertemu?” aku'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\
Tuhan akan memberi lebih dari apa yang kita'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian')
model = GPT2Model.from_pretrained('flax-community/gpt2-small-indonesian')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian')
model = TFGPT2Model.from_pretrained('flax-community/gpt2-small-indonesian')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Limitations and bias
The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/),
[mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets
contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on
the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content
that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model.
As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
> that require the generated text to be true.
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we
> do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry
> out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender,
> race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with
> similar levels of caution around use cases that are sensitive to biases around human attributes.
We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/flax-community/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/flax-community/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications.
### Gender bias
We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online.

The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant).

### Ethnicity bias
We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme:
* Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity)
* Topic - we will use 5 different topics:
* random act: *entered home*
* said: *said*
* works as: *works as*
* intent: *let [person] ...*
* define: *is*
Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...)
We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector.
The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline.

### Religion bias
With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline.
The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline.

## Training data
The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4)
and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB
of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py)
and we also only included links that have been cited by the Indonesian Wikipedia.
## Training procedure
The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `4d 14h 50m 47s`.
### Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| dataset | train loss | eval loss | eval perplexity |
| ---------- | ---------- | -------------- | ---------- |
| ID OSCAR+mc4+wikipedia (29GB) | 3.046 | 2.926 | 18.66 |
### Tracking
The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-small-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya).
## Team members
- Akmal ([@Wikidepia](https://huggingface.co/Wikidepia))
- alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner))
- Cahya Wirawan ([@cahya](https://huggingface.co/cahya))
- Galuh Sahid ([@Galuh](https://huggingface.co/Galuh))
- Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia))
- Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli))
- Samsul Rahmadani ([@munggok](https://huggingface.co/munggok))
## Future work
We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains
if we can get the necessary hardware resources. |
Wikidepia/IndoT5-large | Wikidepia | 2021-09-02T11:57:48Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"id",
"dataset:allenai/c4",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
language:
- id
datasets:
- allenai/c4
---
**NOTE** : This model might be broken :/
# Indonesian T5 Large
T5 (Text-to-Text Transfer Transformer) model pretrained on Indonesian mC4 with [extra filtering](https://github.com/Wikidepia/indonesian_datasets/tree/master/dump/mc4). This model is pre-trained only and needs to be fine-tuned to be used for specific tasks.
## Pretraining Details
Trained for 500K steps following [`google/t5-v1_1-large`](https://huggingface.co/google/t5-v1_1-large).
## Model Performance
TBD
## Limitations and bias
This model also has the problem of biased (unethical, harmful, biased) output results due to the bias of the content of the training data, which is associated with the language model using a large-scale corpus. There is potential. Assuming that this problem may occur, please be careful to use it only for applications that do not cause damage.
## Acknowledgement
Thanks to Tensorflow Research Cloud for providing TPU v3-8s.
|
DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2 | DataikuNLP | 2021-09-02T08:31:10Z | 393 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"arxiv:1908.10084",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:04Z | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
**This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) from sentence-transformers at the specific commit `d66eff4d8a8598f264f166af8db67f7797164651`.**
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` |
DataikuNLP/camembert-base | DataikuNLP | 2021-09-02T08:15:08Z | 110 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"camembert",
"fill-mask",
"fr",
"dataset:oscar",
"arxiv:1911.03894",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
language: fr
license: mit
datasets:
- oscar
---
# CamemBERT: a Tasty French Language Model
**This model is a copy of [this model repository](https://huggingface.co/camembert-base) at the specific commit `482393b6198924f9da270b1aaf37d238aafca99b`.**
## Introduction
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
## Pre-trained models
| Model | #params | Arch. | Training data |
|--------------------------------|--------------------------------|-------|-----------------------------------|
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) |
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
## How to use CamemBERT with HuggingFace
##### Load CamemBERT and its sub-word tokenizer :
```python
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
camembert = CamembertModel.from_pretrained("camembert-base")
camembert.eval() # disable dropout (or leave in train mode to finetune)
```
##### Filling masks using pipeline
```python
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base")
results = camembert_fill_mask("Le camembert est <mask> :)")
# results
#[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200},
# {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183},
# {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202},
# {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528},
# {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}]
```
##### Extract contextual embedding features from Camembert output
```python
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
# tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116],
# [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766],
# [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446],
# ...,
```
##### Extract contextual embedding features from all Camembert layers
```python
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert-base", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210],
# [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982],
# [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699],
# ...,
```
## Authors
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
## Citation
If you use our work, please cite:
```bibtex
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
```
|
DataikuNLP/TinyBERT_General_4L_312D | DataikuNLP | 2021-09-02T08:09:47Z | 96 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"arxiv:1909.10351",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04Z | TinyBERT: Distilling BERT for Natural Language Understanding
========
**This model is a copy of [this model repository](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) from Huawei Noah at the specific commit `34707a33cd59a94ecde241ac209bf35103691b43`.**
TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand.
For more details about the techniques of TinyBERT, refer to our paper:
[TinyBERT: Distilling BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351)
Citation
========
If you find TinyBERT useful in your research, please cite the following paper:
```
@article{jiao2019tinybert,
title={Tinybert: Distilling bert for natural language understanding},
author={Jiao, Xiaoqi and Yin, Yichun and Shang, Lifeng and Jiang, Xin and Chen, Xiao and Li, Linlin and Wang, Fang and Liu, Qun},
journal={arXiv preprint arXiv:1909.10351},
year={2019}
}
```
|
DataikuNLP/paraphrase-MiniLM-L6-v2 | DataikuNLP | 2021-09-02T08:05:59Z | 57 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"arxiv:1908.10084",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:04Z | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# DataikuNLP/paraphrase-MiniLM-L6-v2
**This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2/) from sentence-transformers at the specific commit `c4dfcde8a3e3e17e85cd4f0ec1925a266187f48e`.**
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` |
Hoang/distilbert-base-uncased-finetuned-squad | Hoang | 2021-09-02T07:32:09Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results:
- task:
name: Question Answering
type: question-answering
dataset:
name: squad
type: squad
args: plain_text
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2176 | 1.0 | 5533 | 1.1429 |
| 0.9425 | 2.0 | 11066 | 1.1196 |
| 0.7586 | 3.0 | 16599 | 1.1582 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
Malignant/Malignant | Malignant | 2021-09-02T02:07:05Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:04Z | Ver-Online Malignant PELICULA completa En Espanol Latino HD |
gagan3012/bert-tiny-finetuned-ner | gagan3012 | 2021-09-01T23:50:44Z | 64 | 4 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-tiny-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8083060109289617
- name: Recall
type: recall
value: 0.8273856136033113
- name: F1
type: f1
value: 0.8177345348001547
- name: Accuracy
type: accuracy
value: 0.9597597979252387
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-tiny-finetuned-ner
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1689
- Precision: 0.8083
- Recall: 0.8274
- F1: 0.8177
- Accuracy: 0.9598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0355 | 1.0 | 878 | 0.1692 | 0.8072 | 0.8248 | 0.8159 | 0.9594 |
| 0.0411 | 2.0 | 1756 | 0.1678 | 0.8101 | 0.8277 | 0.8188 | 0.9600 |
| 0.0386 | 3.0 | 2634 | 0.1697 | 0.8103 | 0.8269 | 0.8186 | 0.9599 |
| 0.0373 | 4.0 | 3512 | 0.1694 | 0.8106 | 0.8263 | 0.8183 | 0.9600 |
| 0.0383 | 5.0 | 4390 | 0.1689 | 0.8083 | 0.8274 | 0.8177 | 0.9598 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
espnet/byan_librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_ac-truncated-68a97b | espnet | 2021-09-01T15:54:31Z | 0 | 0 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:librispeech",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- librispeech
license: cc-by-4.0
---
## ESPnet2 ASR pretrained model
### `byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp`
♻️ Imported from https://huggingface.co/
This model was trained by byan using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
Thitaree/distilbert-base-uncased-finetuned-squad | Thitaree | 2021-09-01T15:33:24Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results:
- task:
name: Question Answering
type: question-answering
dataset:
name: squad
type: squad
args: plain_text
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
nateraw/vit-base-cats-vs-dogs | nateraw | 2021-08-31T20:02:08Z | 92 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:cats_vs_dogs",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
- image-classification
- pytorch
datasets:
- cats_vs_dogs
metrics:
- accuracy
model-index:
- name: vit-base-cats-vs-dogs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cats_vs_dogs
type: cats_vs_dogs
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9934510250569476
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-cats-vs-dogs
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0202
- Accuracy: 0.9935
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.064 | 1.0 | 311 | 0.0483 | 0.9849 |
| 0.0622 | 2.0 | 622 | 0.0275 | 0.9903 |
| 0.0366 | 3.0 | 933 | 0.0262 | 0.9917 |
| 0.0294 | 4.0 | 1244 | 0.0219 | 0.9932 |
| 0.0161 | 5.0 | 1555 | 0.0202 | 0.9935 |
### Framework versions
- Transformers 4.8.1
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3
|
Saibo-creator/legal-roberta-base | Saibo-creator | 2021-08-31T15:36:35Z | 263 | 6 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"roberta",
"fill-mask",
"legal",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- legal
license: apache-2.0
metrics:
- precision
- recall
---
# LEGAL-ROBERTA
We introduce LEGAL-ROBERTA, which is a domain-specific language representation model fine-tuned on large-scale legal corpora(4.6 GB).
## Demo
'This \<mask\> Agreement is between General Motors and John Murray .'
| Model | top1 | top2 | top3 | top4 | top5 |
| ------------ | ---- | --- | --- | --- | -------- |
| Bert | new | current | proposed | marketing | joint |
| legalBert | settlement | letter | dealer | master | supplemental |
| legalRoberta | License | Settlement | Contract | license | Trust |
> LegalRoberta captures the case
'The applicant submitted that her husband was subjected to treatment amounting to \<mask\> whilst in the custody of Adana Security Directorate'
| Model | top1 | top2 | top3 | top4 | top5 |
| ------------ | ---- | --- | --- | --- | -------- |
| Bert | torture | rape | abuse | death | violence |
| legalBert | torture | detention | arrest | rape | death |
| legalRoberta | torture | abuse | insanity | cruelty | confinement |
'Establishing a system for the identification and registration of \<mask\> animals and regarding the labeling of beef and beef products .':
| Model | top1 | top2 | top3 | top4 | top5 |
| ------------ | ---- | --- | --- | --- | -------- |
| Bert | farm | livestock | draft | domestic | wild |
| legalBert | live | beef | farm | pet | dairy |
| legalRoberta | domestic | all | beef | wild | registered |
## Load Pretrained Model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("saibo/legal-roberta-base")
model = AutoModel.from_pretrained("saibo/legal-roberta-base")
```
## Training data
The training data consists of 3 origins:
1. Patent Litigations (https://www.kaggle.com/uspto/patent-litigations): This dataset covers over 74k cases across 52 years and over 5 million relevant documents. 5 different files detail the litigating parties, their attorneys, results, locations, and dates.
1. *1.57GB*
2. abbrev:PL
3. *clean 1.1GB*
2. Caselaw Access Project (CAP) (https://case.law/): Following 360 years of United States case law, Caselaw Access Project (CAP) API and bulk data services includes 40 million pages of U.S. court decisions and almost 6.5 million individual cases.
1. *raw 5.6*
2. abbrev:CAP
3. *clean 2.8GB*
3. Google Patents Public Data (https://www.kaggle.com/bigquery/patents): The Google Patents Public Data contains a collection of publicly accessible, connected database tables for empirical analysis of the international patent system.
1. *BigQuery (https://www.kaggle.com/sohier/beyond-queries-exploring-the-bigquery-api)*
2. abbrev:GPPD(1.1GB,patents-public-data.uspto_oce_litigation.documents)
3. *clean 1GB*
## Training procedure
We start from a pretrained ROBERTA-BASE model and fine-tune it on the legal corpus.
Fine-tuning configuration:
- lr = 5e-5(with lr decay, ends at 4.95e-8)
- num_epoch = 3
- Total steps = 446500
- Total_flos = 2.7365e18
Loss starts at 1.850 and ends at 0.880
The perplexity after fine-tuning on legal corpus = 2.2735
Device:
2*GeForce GTX TITAN X computeCapability: 5.2
## Eval results
We benchmarked the model on two downstream tasks: Multi-Label Classification for Legal Text and Catchphrase Retrieval with Legal Case Description.
1.LMTC, Legal Multi-Label Text Classification
Dataset:
Labels shape: 4271
Frequent labels: 739
Few labels: 3369
Zero labels: 163
Hyperparameters:
- lr: 1e-05
- batch_size: 4
- max_sequence_size: 512
- max_label_size: 15
- few_threshold: 50
- epochs: 10
- dropout:0.1
- early stop:yes
- patience: 3
## Limitations:
In the Masked Language Model showroom, the tokens have the prefix **Ġ**. This seems to be wired but I haven't yet been able to fix it.
I know in the case of BPE tokenizer(ROBERTA's tokenizer), the symbol Ġ means the end of a new token, and the majority of tokens in the vocabs of pre-trained tokenizers start with Ġ.
For example
```python
import transformers
tokenizer = transformers.RobertaTokenizer.from_pretrained('roberta-base')
print(tokenizer.tokenize('I love salad'))
```
Outputs:
```
['I', 'Ġlove', 'Ġsalad']
```
The pretraining of LegalRoBERTa was restricted by the size of legal corpora available and the number of pretraining steps is small compared to the popular domain adapted models. This makes legalRoBERTa significantly **under-trained**.
## BibTeX entry and citation info
|
datummd/NCBI_BC5CDR_disease | datummd | 2021-08-31T13:59:31Z | 7 | 4 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"BioBERT",
"Diseases",
"NER",
"en",
"dataset:ncbi_disease",
"dataset:BC5CDR-diseases",
"dataset:LitCOVID-pubtator",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- BioBERT
- Diseases
- NER
license: apache-2.0
datasets:
- ncbi_disease
- BC5CDR-diseases
- LitCOVID-pubtator
---
BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset
This was fine-tuned in order to use it in a datummd/bionlp system which is available at: https://github.com/datummd/bionlp
|
SongRb/distilbert-base-uncased-finetuned-ner | SongRb | 2021-08-31T10:59:42Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metric:
name: Accuracy
type: accuracy
value: 0.9850826886110537
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0746
- Precision: 0.9347
- Recall: 0.9426
- F1: 0.9386
- Accuracy: 0.9851
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0832 | 1.0 | 3511 | 0.0701 | 0.9317 | 0.9249 | 0.9283 | 0.9827 |
| 0.0384 | 2.0 | 7022 | 0.0701 | 0.9282 | 0.9410 | 0.9346 | 0.9845 |
| 0.0222 | 3.0 | 10533 | 0.0746 | 0.9347 | 0.9426 | 0.9386 | 0.9851 |
### Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.8.1
- Datasets 1.11.0
- Tokenizers 0.10.3
|
milayue/neosh-bot1 | milayue | 2021-08-31T10:43:59Z | 3 | 1 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- conversational
---
# Neosh Bot1
This is a simplified version. Hopefully will train a more complex model in the future. |
madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1 | madlag | 2021-08-31T09:31:46Z | 78 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"question-answering",
"en",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
language: en
thumbnail:
license: mit
tags:
- question-answering
-
-
datasets:
- squad
metrics:
- squad
widget:
- text: "Where is the Eiffel Tower located?"
context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower."
- text: "Who is Frederic Chopin?"
context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano."
---
## BERT-base uncased model fine-tuned on SQuAD v1
This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 36.0%** of the original weights.
The model contains **50.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method).
With a simple resizing of the linear matrices it ran **1.84x as fast as the dense model** on the evaluation.
This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix.
<div class="graph"><script src="/madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1/raw/main/model_card/density_info.js" id="3aca15eb-8def-482c-800a-d9f8a6e8cea5"></script></div>
In terms of accuracy, its **F1 is 88.72**, compared with 88.5 for the dense version, a **F1 gain of 0.22**.
## Fine-Pruning details
This model was fine-tuned from the HuggingFace [model](https://huggingface.co//home/lagunas/devel/hf/nn_pruning/nn_pruning/analysis/tmp_finetune) checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1)
This model is case-insensitive: it does not make a difference between english and English.
A side-effect of the block pruning is that some of the attention heads are completely removed: 48 heads were removed on a total of 144 (33.3%).
Here is a detailed view on how the remaining heads are distributed in the network after pruning.
<div class="graph"><script src="/madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1/raw/main/model_card/pruning_info.js" id="95fe9d1f-98f7-40e1-a28f-b90d0da0f1a8"></script></div>
## Details of the SQuAD1.1 dataset
| Dataset | Split | # samples |
| -------- | ----- | --------- |
| SQuAD1.1 | train | 90.6K |
| SQuAD1.1 | eval | 11.1k |
### Fine-tuning
- Python: `3.8.5`
- Machine specs:
```CPU: Intel(R) Core(TM) i7-6700K CPU
Memory: 64 GiB
GPUs: 1 GeForce GTX 3090, with 24GiB memory
GPU driver: 455.23.05, CUDA: 11.1
```
### Results
**Pytorch model file size**: `379MB` (original BERT: `420MB`)
| Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation |
| ------ | --------- | --------- | --------- |
| **EM** | **81.69** | **80.8** | **+0.89**|
| **F1** | **88.72** | **88.5** | **+0.22**|
## Example Usage
Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns.
`pip install nn_pruning`
Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded.
```python
from transformers import pipeline
from nn_pruning.inference_model_patcher import optimize_model
qa_pipeline = pipeline(
"question-answering",
model="madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1",
tokenizer="madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1"
)
print("/home/lagunas/devel/hf/nn_pruning/nn_pruning/analysis/tmp_finetune parameters: 218.0M")
print(f"Parameters count (includes only head pruning, not feed forward pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M")
qa_pipeline.model = optimize_model(qa_pipeline.model, "dense")
print(f"Parameters count after complete optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M")
predictions = qa_pipeline({
'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.",
'question': "Who is Frederic Chopin?",
})
print("Predictions", predictions)
``` |
huggingartists/epic-rap-battles-of-history | huggingartists | 2021-08-31T07:38:06Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/epic-rap-battles-of-history",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/epic-rap-battles-of-history
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/86da58e97d308e9127100e7954dc1d74.900x900x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Epic Rap Battles of History</div>
<a href="https://genius.com/artists/epic-rap-battles-of-history">
<div style="text-align: center; font-size: 14px;">@epic-rap-battles-of-history</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Epic Rap Battles of History.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/epic-rap-battles-of-history).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/epic-rap-battles-of-history")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ujomrrjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Epic Rap Battles of History's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/epic-rap-battles-of-history')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/epic-rap-battles-of-history")
model = AutoModelWithLMHead.from_pretrained("huggingartists/epic-rap-battles-of-history")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
redorangeyellowy/tts_korean_tacotron | redorangeyellowy | 2021-08-31T03:22:31Z | 0 | 1 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | This is Korean-TTS model. (based on Tacotron)
Dataset is from Sogang University. |
trig/multiverse-second | trig | 2021-08-30T20:15:56Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- conversational
---
# multiverse but with swapped characters and more learning |
AdapterHub/bert-base-uncased-pf-ud_en_ewt | AdapterHub | 2021-08-30T15:54:13Z | 1 | 0 | adapter-transformers | [
"adapter-transformers",
"bert",
"adapterhub:dp/ud_ewt",
"en",
"dataset:universal_dependencies",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- bert
- adapterhub:dp/ud_ewt
- adapter-transformers
datasets:
- universal_dependencies
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-ud_en_ewt` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [dp/ud_ewt](https://adapterhub.ml/explore/dp/ud_ewt/) dataset and includes a prediction head for dependency parsing.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_en_ewt", source="hf", set_active=True)
```
## Architecture & Training
This adapter was trained using adapter-transformer's example script for dependency parsing.
See https://github.com/Adapter-Hub/adapter-transformers/tree/master/examples/dependency-parsing.
## Evaluation results
Scores achieved by dependency parsing adapters on the test set of UD English EWT after training:
| Model | UAS | LAS |
| --- | --- | --- |
| `bert-base-uncased` | 91.74 | 89.15 |
| `roberta-base` | 91.43 | 88.43 |
## Citation
<!-- Add some description here --> |
redorangeyellowy/tts_korean_temp | redorangeyellowy | 2021-08-30T10:08:00Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | This is espnet-based korean TTS model.
You should recognize that this is not fisished one.
Dataset is from our university, which is NOT available yet.
|
vasudevgupta/gsoc-wav2vec2-xlsr-53 | vasudevgupta | 2021-08-30T07:38:48Z | 4 | 0 | transformers | [
"transformers",
"tf",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | TensorFlow equivalent of [`facebook/wav2vec2-large-xlsr-53`](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) |
vasudevgupta/gsoc-wav2vec2-robust | vasudevgupta | 2021-08-30T07:34:01Z | 5 | 1 | transformers | [
"transformers",
"tf",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | TensorFlow equivalent of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) |
huggingtweets/pradyuprasad | huggingtweets | 2021-08-30T07:13:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/pradyuprasad/1630307615715/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1421042819653726214/rYpLOFCG_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Pradyumna (27/100 blog posts)</div>
<div style="text-align: center; font-size: 14px;">@pradyuprasad</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Pradyumna (27/100 blog posts).
| Data | Pradyumna (27/100 blog posts) |
| --- | --- |
| Tweets downloaded | 3225 |
| Retweets | 293 |
| Short tweets | 449 |
| Tweets kept | 2483 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qrkwd1v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pradyuprasad's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nprezkxg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nprezkxg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/pradyuprasad')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
riyadhctg/distilbert-base-uncased-finetuned-cola | riyadhctg | 2021-08-30T07:04:19Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model_index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metric:
name: Matthews Correlation
type: matthews_correlation
value: 0.5526838482765232
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7691
- Matthews Correlation: 0.5527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5247 | 1.0 | 535 | 0.5390 | 0.4315 |
| 0.353 | 2.0 | 1070 | 0.5273 | 0.4994 |
| 0.2386 | 3.0 | 1605 | 0.6391 | 0.5089 |
| 0.17 | 4.0 | 2140 | 0.7691 | 0.5527 |
| 0.1348 | 5.0 | 2675 | 0.8483 | 0.5472 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
uhhlt/bert-based-uncased-hatespeech-movies | uhhlt | 2021-08-29T21:42:02Z | 6 | 3 | transformers | [
"transformers",
"tf",
"bert",
"text-classification",
"en",
"arxiv:2108.10724",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
language: en
tag: text-classification
datasets:
- twitter
- movies subtitles
---
# bert-based-uncased-hatespeech-movies:
A hatespeech model used to classify text as **normal**, **offensive**, **hatespeech** in Movie subtitles. The model is initially a pre-trained transformer model(bert-based-uncased) which is further trained on Twitter comments which can be normal, offensive and hate to learn the context from social media data. It is then fine-tuned using the movie subtitles dataset.
Please check our paper and if used please cite
```
@article{von2021hateful,
title={How Hateful are Movies? A Study and Prediction on Movie Subtitles},
author={von Boguszewski, Niklas and Moin, Sana and Bhowmick, Anirban and Yimam, Seid Muhie and Biemann, Chris},
journal={arXiv preprint arXiv:2108.10724},
year={2021}
}
```
The dataset and models are available on https://github.com/uhh-lt/hatespeech |
Ann2020/distilbert-base-uncased-finetuned-ner | Ann2020 | 2021-08-29T21:13:47Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metric:
name: Accuracy
type: accuracy
value: 0.984018301110458
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0609
- Precision: 0.9275
- Recall: 0.9365
- F1: 0.9320
- Accuracy: 0.9840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2527 | 1.0 | 878 | 0.0706 | 0.9120 | 0.9181 | 0.9150 | 0.9803 |
| 0.0517 | 2.0 | 1756 | 0.0603 | 0.9174 | 0.9349 | 0.9261 | 0.9830 |
| 0.031 | 3.0 | 2634 | 0.0609 | 0.9275 | 0.9365 | 0.9320 | 0.9840 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
GeniusVoice/gv-semanticsearch-dutch-cased | GeniusVoice | 2021-08-29T20:28:09Z | 9 | 2 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:04Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 165 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 3e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 24,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
huggingtweets/mullbot_forever | huggingtweets | 2021-08-29T05:36:32Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/mullbot_forever/1630215387933/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1334794074822504449/KX8oD2AU_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">extremely online bot</div>
<div style="text-align: center; font-size: 14px;">@mullbot_forever</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from extremely online bot.
| Data | extremely online bot |
| --- | --- |
| Tweets downloaded | 1432 |
| Retweets | 0 |
| Short tweets | 22 |
| Tweets kept | 1410 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/301sf9tj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mullbot_forever's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u7gvuie) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u7gvuie/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/mullbot_forever')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
lowlevelware/512x512_diffusion_unconditional_ImageNet | lowlevelware | 2021-08-29T05:20:21Z | 0 | 14 | null | [
"arxiv:2105.05233",
"region:us"
] | null | 2022-03-02T23:29:05Z | # 512x512 diffusion (unconditional ImageNet)
Modality: Images
Intended Use: Generation of images with or without classifier guidance
## Detailed description
A 512x512 unconditional ImageNet diffusion model, fine-tuned for 8100 steps from the OpenAI trained 512x512 class-conditional ImageNet diffusion model. It was fine-tuned into an unconditional model in order to enable better guidance by CLIP (or any other non-ImageNet classifier).
### Short description
A 512x512 unconditional ImageNet diffusion model, fine-tuned from the OpenAI trained 512x512 class-conditional ImageNet diffusion model.
## License
MIT
Training Data: ImageNet (ILSVRC 2012 subset)
Metrics / Evaluations: None
Limitations and Biases: -
These models sometimes produce highly unrealistic outputs, particularly when generating images containing human faces. This may stem from ImageNet's emphasis on non-human objects. While classifier guidance can improve sample quality, it reduces diversity, resulting in some modes of the data distribution being underrepresented. This can potentially amplify existing biases in the training dataset such as gender and racial biases. Because ImageNet and LSUN contain images from the internet, they include photos of real people, and the model may have memorized some of the information contained in these photos. However, these images are already publicly available, and existing generative models trained on ImageNet have not demonstrated significant leakage of this information.
Links: https://arxiv.org/abs/2105.05233 (Diffusion Models Beat GANs on Image Synthesis), https://github.com/openai/guided-diffusion |
Tejasvb/DialoGPT-small-rick | Tejasvb | 2021-08-29T05:05:19Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- conversational
---
|
huggingtweets/natureneuro | huggingtweets | 2021-08-29T00:18:58Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/natureneuro/1630196334639/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1187024818031517697/yQgtYKBN_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nature Neuroscience</div>
<div style="text-align: center; font-size: 14px;">@natureneuro</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nature Neuroscience.
| Data | Nature Neuroscience |
| --- | --- |
| Tweets downloaded | 2765 |
| Retweets | 526 |
| Short tweets | 10 |
| Tweets kept | 2229 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jow2p55/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @natureneuro's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hkho9kg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hkho9kg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/natureneuro')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
filco306/gpt2-bible-paraphraser | filco306 | 2021-08-28T23:35:01Z | 106 | 1 | transformers | [
"transformers",
"pytorch",
"text-generation",
"arxiv:2010.05700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | # GPT2 Bible style transfer paraphraser
This is the trained Bible model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author.
## Citation
If you found this model useful, please cite the original work:
```
@inproceedings{style20,
author={Kalpesh Krishna and John Wieting and Mohit Iyyer},
Booktitle = {Empirical Methods in Natural Language Processing},
Year = "2020",
Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation},
}
``` |
filco306/gpt2-base-style-paraphraser | filco306 | 2021-08-28T19:27:41Z | 7 | 4 | transformers | [
"transformers",
"pytorch",
"text-generation",
"arxiv:2010.05700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | # GPT2 base style transfer paraphraser
This is the trained base-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author.
## Citation
If you found this model useful, please cite the original work:
```
@inproceedings{style20,
author={Kalpesh Krishna and John Wieting and Mohit Iyyer},
Booktitle = {Empirical Methods in Natural Language Processing},
Year = "2020",
Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation},
}
``` |
Redolid/DialoGPT-small-Rick | Redolid | 2021-08-28T18:16:45Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
tags:
- conversational
---
#Rick DialoGPT Model.
>Following https://github.com/RuolinZheng08/twewy-discord-chatbot Tutorial. |
huggingtweets/sematarygravemn | huggingtweets | 2021-08-28T17:19:42Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/sematarygravemn/1630171139756/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1417713235168415752/j1Qd3_F9_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">SEMATARY GRAVE MAN ✟ ✟ ✟</div>
<div style="text-align: center; font-size: 14px;">@sematarygravemn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from SEMATARY GRAVE MAN ✟ ✟ ✟.
| Data | SEMATARY GRAVE MAN ✟ ✟ ✟ |
| --- | --- |
| Tweets downloaded | 585 |
| Retweets | 75 |
| Short tweets | 116 |
| Tweets kept | 394 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jy7xpe9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sematarygravemn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2svkr1dq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2svkr1dq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/sematarygravemn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jackposobiec | huggingtweets | 2021-08-28T16:45:57Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/jackposobiec/1630169093455/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1418813091140227072/iXDCqBz0_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Jack Posobiec 🇺🇸</div>
<div style="text-align: center; font-size: 14px;">@jackposobiec</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Jack Posobiec 🇺🇸.
| Data | Jack Posobiec 🇺🇸 |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 818 |
| Short tweets | 511 |
| Tweets kept | 1917 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s4mnium/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jackposobiec's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vllrmfa) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vllrmfa/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jackposobiec')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
OsmyReal/Ayuda | OsmyReal | 2021-08-28T06:12:44Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:04Z | git lfs install
git clone https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua |
velociraptor/hugging-doge | velociraptor | 2021-08-28T06:01:46Z | 71 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: hugging-doge
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9375
---
# hugging-doge
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### corgi

#### golden retriever

#### husky

#### poodle

#### shiba inu
 |
SilentMyuth/sarcastic-model | SilentMyuth | 2021-08-27T21:10:27Z | 7 | 1 | transformers | [
"transformers",
"conversational",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z |
---
pipeline_tag: conversational
---
This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm). |
nateraw/vit-base-beans-demo-v2 | nateraw | 2021-08-27T17:33:08Z | 73 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"other-image-classification",
"generated_from_trainer",
"dataset:beans",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- other-image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: vit-base-beans-demo-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans-demo-v2
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0099
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0705 | 1.54 | 100 | 0.0562 | 0.9925 |
| 0.0123 | 3.08 | 200 | 0.0124 | 1.0 |
| 0.008 | 4.62 | 300 | 0.0099 | 1.0 |
### Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
nateraw/vit-base-beans-demo | nateraw | 2021-08-27T17:06:03Z | 74 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"other-image-classification",
"generated_from_trainer",
"dataset:beans",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- other-image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: vit-base-beans-demo
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9774436090225563
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans-demo
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0853
- Accuracy: 0.9774
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0545 | 1.54 | 100 | 0.1436 | 0.9624 |
| 0.006 | 3.08 | 200 | 0.1058 | 0.9699 |
| 0.0038 | 4.62 | 300 | 0.0853 | 0.9774 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
zald/distilbert-base-uncased-finetuned-ner | zald | 2021-08-27T16:39:55Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metric:
name: Accuracy
type: accuracy
value: 0.9835893688340985
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0607
- Precision: 0.9253
- Recall: 0.9350
- F1: 0.9301
- Accuracy: 0.9836
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.237 | 1.0 | 878 | 0.0701 | 0.9131 | 0.9228 | 0.9179 | 0.9809 |
| 0.0509 | 2.0 | 1756 | 0.0617 | 0.9182 | 0.9333 | 0.9257 | 0.9826 |
| 0.0299 | 3.0 | 2634 | 0.0607 | 0.9253 | 0.9350 | 0.9301 | 0.9836 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.8.1+cu111
- Datasets 1.11.0
- Tokenizers 0.10.3
|
akshara23/distilbert-base-uncased-finetuned-cola | akshara23 | 2021-08-27T16:29:05Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model_index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
metric:
name: Matthews Correlation
type: matthews_correlation
value: 0.6290322580645161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0475
- Matthews Correlation: 0.6290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| No log | 1.0 | 16 | 1.3863 | 0.0 |
| No log | 2.0 | 32 | 1.2695 | 0.4503 |
| No log | 3.0 | 48 | 1.1563 | 0.6110 |
| No log | 4.0 | 64 | 1.0757 | 0.6290 |
| No log | 5.0 | 80 | 1.0475 | 0.6290 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
HungVo/mt-dnn-ev-mrpc | HungVo | 2021-08-27T08:55:31Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:04Z | Model saved for Paraphrased Detection in English-Vietnamese cross-lingual based on XLM-R in MT-DNN
MT-DNN: github.com/namisan/mt-dnn |
KP2500/KPBot | KP2500 | 2021-08-27T06:53:22Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
tags:
- conversational
---
# RickBot built for [Chai](https://chai.ml/)
Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
|
Proggleb/roberta-base-bne-finetuned-amazon_reviews_multi | Proggleb | 2021-08-26T20:21:41Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model_index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
metric:
name: Accuracy
type: accuracy
value: 0.9185
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3011
- Accuracy: 0.9185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2427 | 1.0 | 125 | 0.2109 | 0.919 |
| 0.0986 | 2.0 | 250 | 0.3011 | 0.9185 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
huggingtweets/habiba_shoukry-yourfavhwhw | huggingtweets | 2021-08-26T14:27:29Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/habiba_shoukry-yourfavhwhw/1629988046175/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1423284698046865415/vfSSZ3t9_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1419852056282681354/8GlUQCan_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🥴 & Habiba.</div>
<div style="text-align: center; font-size: 14px;">@habiba_shoukry-yourfavhwhw</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🥴 & Habiba..
| Data | 🥴 | Habiba. |
| --- | --- | --- |
| Tweets downloaded | 3246 | 3239 |
| Retweets | 57 | 188 |
| Short tweets | 524 | 842 |
| Tweets kept | 2665 | 2209 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9yp9ftet/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @habiba_shoukry-yourfavhwhw's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/habiba_shoukry-yourfavhwhw')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
uva-irlab/quretec | uva-irlab | 2021-08-26T14:06:47Z | 12 | 1 | transformers | [
"transformers",
"pytorch",
"bert",
"conversational-search",
"en",
"dataset:uva-irlab/canard_quretec",
"arxiv:2005.11723",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- conversational-search # Example: audio
metrics:
- f1
datasets:
- uva-irlab/canard_quretec
model-index:
- name: QuReTec
results:
- task:
name: Conversational search # Example: Speech Recognition
type: conversational # Example: automatic-speech-recognition
dataset:
name: CANARD # Example: Common Voice zh-CN
type: canard # Example: common_voice
metrics:
- name: Micro F1 # Example: Test WER
type: f1 # Example: wer
value: 68.7 # Example: 20.90
- name: Micro Recall
type: recall
value: 66.1
- name: Micro Precision
type: precision
value: 71.5
---
# QuReTec: query resolution model
QuReTeC is a query resolution model. It finds the relevant terms in a question history.
It is based on **bert-large-uncased** with a max sequence length of 300.
# Config details
Training and evaluation was done using the following BertConfig:
```json
BertConfig {
"_name_or_path": "uva-irlab/quretec",
"architectures": ["BertForMaskedLM"],
"attention_probs_dropout_prob": 0.1,
"finetuning_task": "ner",
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.4,
"hidden_size": 1024,
"id2label": {
"0": "[PAD]",
"1": "O",
"2": "REL",
"3": "[CLS]",
"4": "[SEP]"
},
"initializer_range": 0.02,
"intermediate_size": 4096,
"label2id": {
"O": 1,
"REL": 2,
"[CLS]": 3,
"[PAD]": 0,
"[SEP]": 4
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.6.1",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
}
```
# Original authors
QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723).
# Contributions
Uploaded by G. Scheuer ([website](https://giguruscheuer.com)) |
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi | hackertec | 2021-08-26T13:04:59Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model_index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
metric:
name: Accuracy
type: accuracy
value: 0.9085
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2557
- Accuracy: 0.9085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2296 | 1.0 | 125 | 0.2557 | 0.9085 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
dragonSwing/viwav2vec2-base-100h | dragonSwing | 2021-08-26T03:25:02Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"pretraining",
"speech",
"automatic-speech-recognition",
"vi",
"dataset:vlsp",
"arxiv:2006.11477",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: vi
datasets:
- vlsp
tags:
- speech
- automatic-speech-recognition
license: apache-2.0
---
# Wav2Vec2-Base-Pretrain-Vietnamese
The base model is pre-trained on 16kHz sampled speech audio from 100h Vietnamese unlabelled data in [VLSP dataset](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view?usp=sharing). When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Vietnamese Automatic Speech Recognition.
[Facebook's Wav2Vec2 blog](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)
[Paper](https://arxiv.org/abs/2006.11477)
# Usage
See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the English pre-trained model. |
huggingartists/veggietales | huggingartists | 2021-08-26T03:09:19Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/veggietales",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/veggietales
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/d14c9e27b39f0e250784a2dce037a03d.720x720x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">VeggieTales</div>
<a href="https://genius.com/artists/veggietales">
<div style="text-align: center; font-size: 14px;">@veggietales</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from VeggieTales.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/veggietales).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/veggietales")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1r6205vr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on VeggieTales's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/111uuafu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/111uuafu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/veggietales')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/veggietales")
model = AutoModelWithLMHead.from_pretrained("huggingartists/veggietales")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
Hinova/distilbert-base-uncased-finetuned-cola | Hinova | 2021-08-26T02:55:21Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model_index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metric:
name: Matthews Correlation
type: matthews_correlation
value: 0.5481326292844919
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8301
- Matthews Correlation: 0.5481
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5252 | 1.0 | 535 | 0.5094 | 0.4268 |
| 0.3515 | 2.0 | 1070 | 0.5040 | 0.4948 |
| 0.2403 | 3.0 | 1605 | 0.5869 | 0.5449 |
| 0.1731 | 4.0 | 2140 | 0.7338 | 0.5474 |
| 0.1219 | 5.0 | 2675 | 0.8301 | 0.5481 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.3
|
huggingtweets/rikergoogling | huggingtweets | 2021-08-26T01:50:33Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/499021253953347585/COG26p9r_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Riker Googling</div>
<div style="text-align: center; font-size: 14px;">@rikergoogling</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Riker Googling.
| Data | Riker Googling |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 100 |
| Short tweets | 342 |
| Tweets kept | 2804 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2489wq37/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rikergoogling's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/136vtf4e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/136vtf4e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rikergoogling')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
mrm8488/bioclinicalBERT-finetuned-covid-papers | mrm8488 | 2021-08-25T22:05:46Z | 25 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language:
- en
widget:
- text: "Masks are [MASK] for preventing"
---
# BioclinicalBERT fine-tuned for MLM on COVID Papers |
mrm8488/GPT-2-finetuned-covid-bio-medrxiv | mrm8488 | 2021-08-25T21:38:35Z | 90 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail:
widget:
- text: "Old people with COVID-19 tends to suffer"
---
# GPT-2 + bio/medrxiv files from CORD19: 🦠 ✍ ⚕
**GPT-2** fine-tuned on **biorxiv_medrxiv** files from [CORD-19](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge) dataset.
## Datasets details:
| Dataset | # Files |
| ---------------------- | ----- |
| biorxiv_medrxiv | 885 |
## Model training:
The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:
```bash
export TRAIN_FILE=/path/to/dataset/train.txt
python run_language_modeling.py \\n --model_type gpt2 \\n --model_name_or_path gpt2 \\n --do_train \\n --train_data_file $TRAIN_FILE \\n --num_train_epochs 4 \\n --output_dir model_output \\n --overwrite_output_dir \\n --save_steps 2000 \\n --per_gpu_train_batch_size 3
```
## Model in action / Example of usage: ✒
You can get the following script [here](https://github.com/huggingface/transformers/blob/master/examples/text-generation/run_generation.py)
```bash
python run_generation.py \\n --model_type gpt2 \\n --model_name_or_path mrm8488/GPT-2-finetuned-CORD19 \\n --length 200
```
```txt
👵👴🦠
# Input: Old people with COVID-19 tends to suffer
# Output: === GENERATED SEQUENCE 1 ===
Old people with COVID-19 tends to suffer more symptom onset time and death. It is well known that many people with COVID-19 have high homozygous ZIKV infection in the face of severe symptoms in both severe and severe cases.
The origin of Wuhan Fever was investigated by Prof. Shen Jiang at the outbreak of Wuhan Fever [34]. As Huanan Province is the epicenter of this outbreak, Huanan, the epicenter of epidemic Wuhan Fever, is the most potential location for the direct transmission of infection (source: Zhongzhen et al., 2020). A negative risk ratio indicates more frequent underlying signs in the people in Huanan Province with COVID-19 patients. Further analysis of reported Huanan Fever onset data in the past two years indicated that the intensity of exposure is the key risk factor for developing MERS-CoV infection in this region, especially among children and elderly. To be continued to develop infected patients would be a very important area for
```

> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
> Made with <span style="color: #e25555;">♥</span> in Spain
|
huggingtweets/purefulsoul-turtlebreezee-wnrstweets | huggingtweets | 2021-08-25T20:42:12Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/purefulsoul-turtlebreezee-wnrstweets/1629924128930/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1406320371717054466/u2Zt9ci4_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374900064926068744/UJasEOEX_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298808587070840834/L82EHBfC_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🍂 & 🐢 & We’re Not Really Strangers</div>
<div style="text-align: center; font-size: 14px;">@purefulsoul-turtlebreezee-wnrstweets</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🍂 & 🐢 & We’re Not Really Strangers.
| Data | 🍂 | 🐢 | We’re Not Really Strangers |
| --- | --- | --- | --- |
| Tweets downloaded | 256 | 3229 | 3229 |
| Retweets | 4 | 20 | 16 |
| Short tweets | 42 | 304 | 756 |
| Tweets kept | 210 | 2905 | 2457 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qftmfj6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @purefulsoul-turtlebreezee-wnrstweets's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tfqt7kw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tfqt7kw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/purefulsoul-turtlebreezee-wnrstweets')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
whher/german-gpt2-romantik | whher | 2021-08-25T19:21:42Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | Model Description
------
The german-gpt2-romantik model was fine-tuned on [dbmdz's german gpt-2](https://huggingface.co/dbmdz/german-gpt2 "dbmdz's german-gpt2") for specialization in poetry generation tasks.
Training Data
------
The data for training were hand-chosen poems from the German Romanticism Era (German: *Romantik*). In total there were 2,641 pieces of poems and 879,427 tokens in the corpus.
Poem Generation
------
Enter a starting sentence or phrase (also with the Inference API on the right), the model will output poem-like texts. You can try by entering "Der Garten der Freude", which outputs:
"Der Garten der Freude,
in dem mein Auge ruht,
wo Gott und die Sonne,
hier im Himmel,
zu allen Zeiten uns umgeben."
|
victoraavila/bert-base-uncased-finetuned-squad | victoraavila | 2021-08-25T12:44:54Z | 19 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model_index:
- name: bert-base-uncased-finetuned-squad
results:
- task:
name: Question Answering
type: question-answering
dataset:
name: squad
type: squad
args: plain_text
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-squad
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the SQuAD1.1 dataset. It was trained through Transformers' example Colab notebook on Question Answering, available [here](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb).
It achieves the following results on the evaluation set:
- Loss: 1.0780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training. They are equal to the ones used to fine-tune [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for QA:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0706 | 1.0 | 5533 | 1.0250 |
| 0.7899 | 2.0 | 11066 | 1.0356 |
| 0.5991 | 3.0 | 16599 | 1.0780 |
### Validation results
| EM | F1 |
|:--------:|:-------:|
| 80.3690 | 88.0110 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
moma1820/DSV-JavaFx-DAPT-CodeBert | moma1820 | 2021-08-25T12:09:07Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | Pre Träna CodeBert med JavaFx + Java FXML + JavaFx relaterat logik kod (dvs. Model, Controller för olika JavaFx kod).
Blev ungefär 130 k kod exemplar
````
***** train metrics *****
epoch = 3.0
train_loss = 0.4556
train_runtime = 5:57:43.71
train_samples = 131945
train_samples_per_second = 18.442
train_steps_per_second = 2.305
***** eval metrics *****
epoch = 3.0
eval_loss = 0.2984
eval_runtime = 0:01:59.72
eval_samples = 6944
eval_samples_per_second = 57.999
eval_steps_per_second = 7.25
perplexity = 1.3477
```` |
3koozy/gpt2-HxH | 3koozy | 2021-08-25T11:31:49Z | 26 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"feature-extraction",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:04Z | this is a fine tuned GPT2 text generation model on a Hunter x Hunter TV anime series dataset.\
you can find a link to the used dataset here : https://www.kaggle.com/bkoozy/hunter-x-hunter-subtitles
you can find a colab notebook for fine-tuning the gpt2 model here : https://github.com/3koozy/fine-tune-gpt2-HxH/ |
eugenesiow/pan | eugenesiow | 2021-08-25T08:38:00Z | 1,953 | 0 | transformers | [
"transformers",
"PAN",
"super-image",
"image-super-resolution",
"dataset:eugenesiow/Div2k",
"dataset:eugenesiow/Set5",
"dataset:eugenesiow/Set14",
"dataset:eugenesiow/BSD100",
"dataset:eugenesiow/Urban100",
"arxiv:2010.01073",
"arxiv:2104.07566",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- super-image
- image-super-resolution
datasets:
- eugenesiow/Div2k
- eugenesiow/Set5
- eugenesiow/Set14
- eugenesiow/BSD100
- eugenesiow/Urban100
metrics:
- pnsr
- ssim
---
# Pixel Attention Network (PAN)
PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Zhao et al. (2020) and first released in [this repository](https://github.com/zhaohengyuan1/PAN).
The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling.

## Model description
The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results.
The model is very lightweight with the model being just 260k to 270k parameters (~1mb).
## Intended uses & limitations
You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset.
### How to use
The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library:
```bash
pip install super-image
```
Here is how to use a pre-trained model to upscale your image:
```python
from super_image import PanModel, ImageLoader
from PIL import Image
import requests
url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
image = Image.open(requests.get(url, stream=True).raw)
model = PanModel.from_pretrained('eugenesiow/pan', scale=2) # scale 2, 3 and 4 models available
inputs = ImageLoader.load_image(image)
preds = model(inputs)
ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png`
ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling
```
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab")
## Training data
The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).
## Training procedure
### Preprocessing
We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566).
Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.
During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.
Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.
We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data:
```bash
pip install datasets
```
The following code gets the data and preprocesses/augments the data.
```python
from datasets import load_dataset
from super_image.data import EvalDataset, TrainDataset, augment_five_crop
augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\
.map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method
train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader
eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader
```
### Pretraining
The model was trained on GPU. The training code is provided below:
```python
from super_image import Trainer, TrainingArguments, PanModel, PanConfig
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=1000, # total number of training epochs
)
config = PanConfig(
scale=4, # train a model to upscale 4x
)
model = PanModel(config)
trainer = Trainer(
model=model, # the instantiated model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=eval_dataset # evaluation dataset
)
trainer.train()
```
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab")
## Evaluation results
The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
Evaluation datasets include:
- Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5)
- Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14)
- BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100)
- Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100)
The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline.
|Dataset |Scale |Bicubic |pan |
|--- |--- |--- |--- |
|Set5 |2x |33.64/0.9292 |**37.77/0.9599** |
|Set5 |3x |30.39/0.8678 |**34.64/0.9376** |
|Set5 |4x |28.42/0.8101 |**31.92/0.8915** |
|Set14 |2x |30.22/0.8683 |**33.42/0.9162** |
|Set14 |3x |27.53/0.7737 |**30.8/0.8544** |
|Set14 |4x |25.99/0.7023 |**28.57/0.7802** |
|BSD100 |2x |29.55/0.8425 |**33.6/0.9235** |
|BSD100 |3x |27.20/0.7382 |**29.47/0.815** |
|BSD100 |4x |25.96/0.6672 |**28.35/0.7595** |
|Urban100 |2x |26.66/0.8408 |**31.31/0.9197** |
|Urban100 |3x | |**28.61/0.8603** |
|Urban100 |4x |23.14/0.6573 |**25.63/0.7692** |

You can find a notebook to easily run evaluation on pretrained models below:
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab")
## BibTeX entry and citation info
```bibtex
@misc{zhao2020efficient,
title={Efficient Image Super-Resolution Using Pixel Attention},
author={Hengyuan Zhao and Xiangtao Kong and Jingwen He and Yu Qiao and Chao Dong},
year={2020},
eprint={2010.01073},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
``` |
OthmaneJ/distil-wav2vec2 | OthmaneJ | 2021-08-25T07:59:39Z | 246 | 10 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"speech",
"audio",
"en",
"dataset:librispeech_asr",
"arxiv:2006.11477",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
language: en
datasets:
- librispeech_asr
tags:
- speech
- audio
- automatic-speech-recognition
license: apache-2.0
---
# Distil-wav2vec2
This model is a distilled version of the wav2vec2 model (https://arxiv.org/pdf/2006.11477.pdf). This model is 45% times smaller and twice as fast as the original wav2vec2 base model.
# Evaluation results
This model achieves the following results (speed is mesured for a batch size of 64):
|Model| Size| WER Librispeech-test-clean |WER Librispeech-test-other|Speed on cpu|speed on gpu|
|----------| ------------- |-------------|-----------| ------|----|
|Distil-wav2vec2| 197.9 Mb | 0.0983 | 0.2266|0.4006s| 0.0046s|
|wav2vec2-base| 360 Mb | 0.0389 | 0.1047|0.4919s| 0.0082s|
# Usage
notebook (executes seamlessly on google colab) at https://github.com/OthmaneJ/distil-wav2vec2
|
drcod/DagaareBERTa | drcod | 2021-08-24T22:23:45Z | 0 | 0 | null | [
"pytorch",
"tf",
"dataset:Bible",
"arxiv:1907.11692",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
datasets:
- Bible
---
Pretrained model on Dagaare language using a masked language modeling (MLM) objective first introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta)\
|
huggingtweets/detseretninu-dumbricardo-illuminusnumb | huggingtweets | 2021-08-24T21:49:20Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/detseretninu-dumbricardo-illuminusnumb/1629841756956/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1412373998936027142/k2nY1nVc_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1426046688263692288/RzlZFjIP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1312018147822759937/Z7XnZkhn_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sad rico & follow me only if you're sad & ...</div>
<div style="text-align: center; font-size: 14px;">@detseretninu-dumbricardo-illuminusnumb</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sad rico & follow me only if you're sad & ....
| Data | sad rico | follow me only if you're sad | ... |
| --- | --- | --- | --- |
| Tweets downloaded | 768 | 3233 | 677 |
| Retweets | 0 | 167 | 1 |
| Short tweets | 102 | 755 | 285 |
| Tweets kept | 666 | 2311 | 391 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/l42hthlz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detseretninu-dumbricardo-illuminusnumb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/detseretninu-dumbricardo-illuminusnumb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/codewisdom | huggingtweets | 2021-08-24T19:38:35Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/codewisdom/1629833911172/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/705003311083229184/qTBCIxpk_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Programming Wisdom</div>
<div style="text-align: center; font-size: 14px;">@codewisdom</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Programming Wisdom.
| Data | Programming Wisdom |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 601 |
| Short tweets | 68 |
| Tweets kept | 2580 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1v0fkmjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @codewisdom's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1oohyzx0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1oohyzx0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/codewisdom')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/itssixword | huggingtweets | 2021-08-24T19:25:30Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/itssixword/1629833127428/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/628257137060229120/_3q_D4g2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Six words story</div>
<div style="text-align: center; font-size: 14px;">@itssixword</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Six words story.
| Data | Six words story |
| --- | --- |
| Tweets downloaded | 282 |
| Retweets | 0 |
| Short tweets | 2 |
| Tweets kept | 280 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dbtmbzz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itssixword's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wydugsv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wydugsv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/itssixword')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/antiihope | huggingtweets | 2021-08-24T17:00:16Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/antiihope/1629824412403/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1429221119647752192/XKX0DgWA_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sarcastic Venom</div>
<div style="text-align: center; font-size: 14px;">@antiihope</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Sarcastic Venom.
| Data | Sarcastic Venom |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 36 |
| Short tweets | 877 |
| Tweets kept | 2332 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ervvg9p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @antiihope's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wbdnrdn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wbdnrdn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/antiihope')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
IsabellaKarabasz/roberta-base-bne-finetuned-amazon_reviews_multi | IsabellaKarabasz | 2021-08-24T14:16:29Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model_index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
huggingartists/joji | huggingartists | 2021-08-23T21:47:22Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/joji",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/joji
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/d20ee1f900287060716f7594ccba7ea3.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Joji</div>
<a href="https://genius.com/artists/joji">
<div style="text-align: center; font-size: 14px;">@joji</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Joji.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/joji).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/joji")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ns61e8zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Joji's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/joji')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/joji")
model = AutoModelWithLMHead.from_pretrained("huggingartists/joji")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
mrm8488/mT5-small-finetuned-tydiqa-for-xqa | mrm8488 | 2021-08-23T21:32:44Z | 75 | 2 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"multilingual",
"dataset:tydiqa",
"arxiv:2010.11934",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
language: multilingual
datasets:
- tydiqa
widget:
- text: "question: What won HuggingFace? context: HuggingFace won the best Demo paper at EMNLP2020."
---
# mT5-small fine-tuned on TyDiQA for multilingual QA 🗺📖❓
[Google's mT5-small](https://huggingface.co/google/mt5-small) fine-tuned on [TyDi QA](https://huggingface.co/nlp/viewer/?dataset=tydiqa&config=secondary_task) (secondary task) for **multingual Q&A** downstream task.
## Details of mT5
[Google's mT5](https://github.com/google-research/multilingual-t5)
mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
**Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.
Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual)
Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5)
Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel*
## Details of the dataset 📚
**TyDi QA** is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language expresses -- such that we expect models performing well on this set to generalize across a large number of the languages in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without the use of translation (unlike MLQA and XQuAD).
| Dataset | Task | Split | # samples |
| -------- | ----- |------| --------- |
| TyDi QA | GoldP | train| 49881 |
| TyDi QA | GoldP | valid| 5077 |
## Results on validation dataset 📝
| Metric | # Value |
| ------ | --------- |
| **EM** | **41.65** |
## Model in Action 🚀
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("mrm8488/mT5-small-finetuned-tydiqa-for-xqa")
model = AutoModelForCausalLM.from_pretrained("mrm8488/mT5-small-finetuned-tydiqa-for-xqa").to(device)
def get_response(question, context, max_length=32):
input_text = 'question: %s context: %s' % (question, context)
features = tokenizer([input_text], return_tensors='pt')
output = model.generate(input_ids=features['input_ids'].to(device),
attention_mask=features['attention_mask'].to(device),
max_length=max_length)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Some examples in different languages
context = 'HuggingFace won the best Demo paper at EMNLP2020.'
question = 'What won HuggingFace?'
get_response(question, context)
context = 'HuggingFace ganó la mejor demostración con su paper en la EMNLP2020.'
question = 'Qué ganó HuggingFace?'
get_response(question, context)
context = 'HuggingFace выиграл лучшую демонстрационную работу на EMNLP2020.'
question = 'Что победило в HuggingFace?'
get_response(question, context)
```
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
> Made with <span style="color: #e25555;">♥</span> in Spain
|
chandank/bart-base-finetuned-xsum | chandank | 2021-08-23T20:21:52Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- rouge
model_index:
- name: bart-base-finetuned-xsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
metric:
name: Rouge1
type: rouge
value: 27.887
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-xsum
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5925
- Rouge1: 27.887
- Rouge2: 16.1414
- Rougel: 24.0525
- Rougelsum: 25.4029
- Gen Len: 19.9841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:|
| 1.9826 | 1.0 | 879 | 1.5925 | 27.887 | 16.1414 | 24.0525 | 25.4029 | 19.9841 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
nateraw/trainer-rare-puppers | nateraw | 2021-08-23T18:23:54Z | 71 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model_index:
- name: trainer-rare-puppers
results:
- task:
name: Image Classification
type: image-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trainer-rare-puppers
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the huggingpics dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 48 | 0.4087 | 0.8806 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
huggingtweets/newathensgov | huggingtweets | 2021-08-23T17:39:10Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/newathensgov/1629740347118/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1420476290503745536/OWslu-HK_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The Free Nation of New Athens</div>
<div style="text-align: center; font-size: 14px;">@newathensgov</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from The Free Nation of New Athens.
| Data | The Free Nation of New Athens |
| --- | --- |
| Tweets downloaded | 62 |
| Retweets | 8 |
| Short tweets | 2 |
| Tweets kept | 52 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cumyzfx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @newathensgov's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tak8vc94) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tak8vc94/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/newathensgov')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Vasanth/tamil-sentiment-distilbert | Vasanth | 2021-08-23T17:16:08Z | 31 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tamilmixsentiment",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tamilmixsentiment
metrics:
- accuracy
model_index:
- name: tamil-sentiment-distilbert
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tamilmixsentiment
type: tamilmixsentiment
args: default
metric:
name: Accuracy
type: accuracy
value: 0.665
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tamil-sentiment-distilbert
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tamilmixsentiment dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0230
- Accuracy: 0.665
## Dataset Information
- text: Tamil-English code-mixed comment.
- label: list of the possible sentiments
- LABEL_0: "Positive",
- LABEL_1: "Negative",
- LABEL_2: "Mixed_feelings",
- LABEL_3: "unknown_state",
- LABEL_4: "not-Tamil"
## Intended uses & limitations
This model was just created for doing classification task on tamilmixsentiment dataset
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0442 | 1.0 | 250 | 0.9883 | 0.674 |
| 0.9227 | 2.0 | 500 | 0.9782 | 0.673 |
| 0.7591 | 3.0 | 750 | 1.0230 | 0.665 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi | lewtun | 2021-08-23T17:13:32Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model_index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
metric:
name: Accuracy
type: accuracy
value: 0.93075
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2306
- Accuracy: 0.9307
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1978 | 1.0 | 1250 | 0.1750 | 0.9325 |
| 0.0951 | 2.0 | 2500 | 0.2306 | 0.9307 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
huggingartists/ghost | huggingartists | 2021-08-23T16:02:24Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/ghost",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/ghost
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/3192bff259bbe651686374ba3b8553bd.828x828x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ghost</div>
<a href="https://genius.com/artists/ghost">
<div style="text-align: center; font-size: 14px;">@ghost</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Ghost.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/ghost).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/ghost")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1n8515nl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ghost's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2qimq3aa) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2qimq3aa/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/ghost')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/ghost")
model = AutoModelWithLMHead.from_pretrained("huggingartists/ghost")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
Narsil/deberta-large-mnli-zero-cls | Narsil | 2021-08-23T13:27:24Z | 943 | 14 | transformers | [
"transformers",
"pytorch",
"deberta",
"text-classification",
"deberta-v1",
"deberta-mnli",
"zero-shot-classification",
"en",
"arxiv:2006.03654",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | zero-shot-classification | 2022-03-02T23:29:04Z | ---
language: en
tags:
- deberta-v1
- deberta-mnli
tasks: mnli
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
pipeline_tag: zero-shot-classification
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
This is the DeBERTa large model fine-tuned with MNLI task.
#### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
| | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
| BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
| RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
| XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
| [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
| [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
| [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
|**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
--------
#### Notes.
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
```bash
cd transformers/examples/text-classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
```
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```
|
ksmcg/name | ksmcg | 2021-08-23T13:26:51Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
model_index:
- name: name
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# name
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
Narrativa/mT5-base-finetuned-tydiQA-xqa | Narrativa | 2021-08-23T09:57:00Z | 275 | 6 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"multilingual",
"dataset:tydiqa",
"arxiv:2010.11934",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | ---
language: multilingual
datasets:
- tydiqa
widget:
- text: "question: what does she do? context: Sofía has a degree in Communications and public relations agency experience where she was in charge of monitoring and managing PR strategy including relations with the media and journalists."
---
# mT5-base fine-tuned on TyDiQA for multilingual QA 🗺📖❓
[Google's mT5-base](https://huggingface.co/google/mt5-base) fine-tuned on [TyDi QA](https://huggingface.co/nlp/viewer/?dataset=tydiqa&config=secondary_task) (secondary task) for **multingual Q&A** downstream task.
## Details of mT5
[Google's mT5](https://github.com/google-research/multilingual-t5)
mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
**Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.
Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual)
Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5)
Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel*
## Details of the dataset 📚
**TyDi QA** is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language expresses -- such that we expect models performing well on this set to generalize across a large number of the languages in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without the use of translation (unlike MLQA and XQuAD).
| Dataset | Task | Split | # samples |
| -------- | ----- |------| --------- |
| TyDi QA | GoldP | train| 49881 |
| TyDi QA | GoldP | valid| 5077 |
## Results on validation dataset 📝
| Metric | # Value |
| ------ | --------- |
| **EM** | **60.88** |
## Model in Action 🚀
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("Narrativa/mT5-base-finetuned-tydiQA-xqa")
model = AutoModelForCausalLM.from_pretrained("Narrativa/mT5-base-finetuned-tydiQA-xqa").to(device)
def get_response(question, context, max_length=32):
input_text = 'question: %s context: %s' % (question, context)
features = tokenizer([input_text], return_tensors='pt')
output = model.generate(input_ids=features['input_ids'].to(device),
attention_mask=features['attention_mask'].to(device),
max_length=max_length)
return tokenizer.decode(output[0])
# Some examples in different languages
context = 'HuggingFace won the best Demo paper at EMNLP2020.'
question = 'What won HuggingFace?'
get_response(question, context)
context = 'HuggingFace ganó la mejor demostración con su paper en la EMNLP2020.'
question = 'Qué ganó HuggingFace?'
get_response(question, context)
context = 'HuggingFace выиграл лучшую демонстрационную работу на EMNLP2020.'
question = 'Что победило в HuggingFace?'
get_response(question, context)
```
Created by: [Narrativa](https://www.narrativa.com/)
About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI |
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat | andi611 | 2021-08-23T05:38:50Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"en",
"dataset:squad_v2",
"dataset:mit_restaurant",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- generated_from_trainer
datasets:
- squad_v2
- mit_restaurant
model_index:
- name: distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: squad_v2
type: squad_v2
- task:
name: Token Classification
type: token-classification
dataset:
name: mit_restaurant
type: mit_restaurant
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the squad_v2 and the mit_restaurant datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.8.1+cu111
- Datasets 1.8.0
- Tokenizers 0.10.3
|
huggingtweets/holocenite | huggingtweets | 2021-08-23T05:13:31Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/holocenite/1629695532486/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1384242089097981952/vhV-3M06_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">martian</div>
<div style="text-align: center; font-size: 14px;">@holocenite</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from martian.
| Data | martian |
| --- | --- |
| Tweets downloaded | 3236 |
| Retweets | 270 |
| Short tweets | 250 |
| Tweets kept | 2716 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37xmwiih/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @holocenite's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zuygzmm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zuygzmm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/holocenite')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
eugenesiow/mdsr-bam | eugenesiow | 2021-08-23T01:37:09Z | 142 | 0 | transformers | [
"transformers",
"MDSR",
"super-image",
"image-super-resolution",
"dataset:eugenesiow/Div2k",
"dataset:eugenesiow/Set5",
"dataset:eugenesiow/Set14",
"dataset:eugenesiow/BSD100",
"dataset:eugenesiow/Urban100",
"arxiv:1707.02921",
"arxiv:2104.07566",
"arxiv:1803.08664",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- super-image
- image-super-resolution
datasets:
- eugenesiow/Div2k
- eugenesiow/Set5
- eugenesiow/Set14
- eugenesiow/BSD100
- eugenesiow/Urban100
metrics:
- pnsr
- ssim
---
# Multi-Scale Deep Super-Resolution System (MDSR)
MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch).
The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling.

## Model description
The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation.
This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results.
## Intended uses & limitations
You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset.
### How to use
The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library:
```bash
pip install super-image
```
Here is how to use a pre-trained model to upscale your image:
```python
from super_image import MdsrModel, ImageLoader
from PIL import Image
import requests
url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
image = Image.open(requests.get(url, stream=True).raw)
model = MdsrModel.from_pretrained('eugenesiow/mdsr-bam', scale=2) # scale 2, 3 and 4 models available
inputs = ImageLoader.load_image(image)
preds = model(inputs)
ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png`
ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling
```
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab")
## Training data
The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).
## Training procedure
### Preprocessing
We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566).
Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.
During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.
Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.
We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data:
```bash
pip install datasets
```
The following code gets the data and preprocesses/augments the data.
```python
from datasets import load_dataset
from super_image.data import EvalDataset, TrainDataset, augment_five_crop
augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\
.map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method
train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader
eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader
```
### Pretraining
The model was trained on GPU. The training code is provided below:
```python
from super_image import Trainer, TrainingArguments, MdsrModel, MdsrConfig
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=1000, # total number of training epochs
)
config = MdsrConfig(
scale=4, # train a model to upscale 4x
bam=True, # apply balanced attention to the network
)
model = MdsrModel(config)
trainer = Trainer(
model=model, # the instantiated model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=eval_dataset # evaluation dataset
)
trainer.train()
```
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab")
## Evaluation results
The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
Evaluation datasets include:
- Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5)
- Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14)
- BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100)
- Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100)
The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline.
|Dataset |Scale |Bicubic |mdsr-bam |
|--- |--- |--- |--- |
|Set5 |2x |33.64/0.9292 |**38/0.9607** |
|Set5 |3x |30.39/0.8678 |**35.07/0.9402** |
|Set5 |4x |28.42/0.8101 |**32.19/0.8949** |
|Set14 |2x |30.22/0.8683 |**33.68/0.9182** |
|Set14 |3x |27.53/0.7737 |**31.04/0.8582** |
|Set14 |4x |25.99/0.7023 |**28.73/0.7847** |
|BSD100 |2x |29.55/0.8425 |**33.77/0.9253** |
|BSD100 |3x |27.20/0.7382 |**29.62/0.8188** |
|BSD100 |4x |25.96/0.6672 |**28.5/0.7645** |
|Urban100 |2x |26.66/0.8408 |**32.04/0.9272** |
|Urban100 |3x | |**29.16/0.8717** |
|Urban100 |4x |23.14/0.6573 |**26.02/0.7834** |

You can find a notebook to easily run evaluation on pretrained models below:
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab")
## BibTeX entry and citation info
```bibtex
@misc{wang2021bam,
title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution},
author={Fanyi Wang and Haotian Hu and Cheng Shen},
year={2021},
eprint={2104.07566},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
```
```bibtex
@article{ahn2018fast,
title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network},
author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah},
journal={arXiv preprint arXiv:1803.08664},
year={2018}
}
``` |
fadhilarkan/gq-indo-k | fadhilarkan | 2021-08-22T22:25:31Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
metrics:
- rouge
model-index:
- name: gq-indo-k
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gq-indo-k
This model was trained from scratch on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7905
- Rouge1: 22.5734
- Rouge2: 6.555
- Rougel: 20.9491
- Rougelsum: 20.9509
- Gen Len: 12.0767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.9355 | 1.0 | 13032 | 2.8563 | 22.4828 | 6.5456 | 20.8782 | 20.8772 | 11.915 |
| 2.825 | 2.0 | 26064 | 2.7993 | 22.547 | 6.5815 | 20.8937 | 20.8973 | 12.0886 |
| 2.7631 | 3.0 | 39096 | 2.7905 | 22.5734 | 6.555 | 20.9491 | 20.9509 | 12.0767 |
### Framework versions
- Transformers 4.6.1
- Pytorch 1.7.0
- Datasets 1.11.0
- Tokenizers 0.10.3
|
Kieran/distilbert-base-uncased-finetuned-cola | Kieran | 2021-08-22T18:53:03Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model_index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
metric:
name: Matthews Correlation
type: matthews_correlation
value: 0.9719066462260881
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1037
- Matthews Correlation: 0.9719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.2094 | 1.0 | 525 | 0.1069 | 0.9607 |
| 0.0483 | 2.0 | 1050 | 0.0878 | 0.9719 |
| 0.0296 | 3.0 | 1575 | 0.1263 | 0.9664 |
| 0.0108 | 4.0 | 2100 | 0.1037 | 0.9719 |
| 0.0096 | 5.0 | 2625 | 0.1065 | 0.9719 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
huggingtweets/pepexbt | huggingtweets | 2021-08-22T13:00:37Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/pepexbt/1629637214827/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1428232830761455617/VC6_ALvV_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">pepe</div>
<div style="text-align: center; font-size: 14px;">@pepexbt</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from pepe.
| Data | pepe |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 56 |
| Short tweets | 809 |
| Tweets kept | 2384 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jezukab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pepexbt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3isjrvll) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3isjrvll/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/pepexbt')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
oumeima/finetuned-bert-mrpc | oumeima | 2021-08-22T11:35:18Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model_index:
- name: finetuned-bert-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metric:
name: F1
type: f1
value: 0.9003322259136212
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert-mrpc
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5280
- Accuracy: 0.8529
- F1: 0.9003
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5704 | 1.0 | 230 | 0.4204 | 0.7917 | 0.8542 |
| 0.3391 | 2.0 | 460 | 0.4157 | 0.8456 | 0.8955 |
| 0.1923 | 3.0 | 690 | 0.5280 | 0.8529 | 0.9003 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
Subsets and Splits