modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
castorini/bpr-nq-ctx-encoder
castorini
2021-09-05T00:57:58Z
4
0
transformers
[ "transformers", "pytorch", "dpr", "arxiv:2106.00882", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is converted from the original BPR [repo](https://github.com/studio-ousia/bpr) and fitted into Pyserini: > Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient passage retrieval with hashing for open-domain question answering. arXiv:2106.00882.
castorini/bpr-nq-question-encoder
castorini
2021-09-05T00:53:16Z
8
0
transformers
[ "transformers", "pytorch", "dpr", "feature-extraction", "arxiv:2106.00882", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is converted from the original BPR [repo](https://github.com/studio-ousia/bpr) and fitted into Pyserini: > Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient passage retrieval with hashing for open-domain question answering. arXiv:2106.00882.
recobo/chemical-bert-uncased-tsdae
recobo
2021-09-04T21:17:19Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # recobo/chemical-bert-uncased-tsdae ```python from sentence_transformers import SentenceTransformer model_name = 'recobo/chemical-bert-uncased-tsdae' model = SentenceTransformer(model_name) ```
bshlgrs/autonlp-classification_with_all_labellers-9532137
bshlgrs
2021-09-04T21:03:27Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification_with_all_labellers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-classification_with_all_labellers --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9532137 ## Validation Metrics - Loss: 0.34556105732917786 - Accuracy: 0.8749890724713699 - Macro F1: 0.5243623959669343 - Micro F1: 0.8749890724713699 - Weighted F1: 0.8638030768409057 - Macro Precision: 0.5016762404900895 - Micro Precision: 0.8749890724713699 - Weighted Precision: 0.8547962562614184 - Macro Recall: 0.5529674694200845 - Micro Recall: 0.8749890724713699 - Weighted Recall: 0.8749890724713699 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification_with_all_labellers-9532137 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
bshlgrs/autonlp-classification-9522090
bshlgrs
2021-09-04T20:47:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-classification --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9522090 ## Validation Metrics - Loss: 0.3541755676269531 - Accuracy: 0.8759671179883946 - Macro F1: 0.5330133182738012 - Micro F1: 0.8759671179883946 - Weighted F1: 0.8482773065757196 - Macro Precision: 0.537738108882869 - Micro Precision: 0.8759671179883946 - Weighted Precision: 0.8241048710814852 - Macro Recall: 0.5316621214820499 - Micro Recall: 0.8759671179883946 - Weighted Recall: 0.8759671179883946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification-9522090 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
doyoungkim/bert-base-uncased-finetuned-sst2-sst2-membership
doyoungkim
2021-09-04T20:10:24Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: bert-base-uncased-finetuned-sst2-sst2-membership --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2-sst2-membership This model is a fine-tuned version of [ikevin98/bert-base-uncased-finetuned-sst2](https://huggingface.co/ikevin98/bert-base-uncased-finetuned-sst2) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.3100 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5125 | 1.0 | 3813 | 1.3100 | 1.0 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
superb/wav2vec2-large-superb-ic
superb
2021-09-04T19:52:29Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "speech", "audio", "en", "dataset:superb", "arxiv:2105.01051", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- language: en datasets: - superb tags: - speech - audio - wav2vec2 license: apache-2.0 --- # Wav2Vec2-Large for Intent Classification ## Model description This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands). The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/) dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands). ## Usage examples You can use the model directly like so: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ic", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ic") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ic") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits action_ids = torch.argmax(logits[:, :6], dim=-1).tolist() action_labels = [model.config.id2label[_id] for _id in action_ids] object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist() object_labels = [model.config.id2label[_id + 6] for _id in object_ids] location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist() location_labels = [model.config.id2label[_id + 20] for _id in location_ids] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9528` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
xiaj/test
xiaj
2021-09-04T05:38:09Z
0
0
null
[ "translation", "ru", "en", "dataset:wmt19", "license:apache-2.0", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - ru - en tags: - translation license: apache-2.0 datasets: - wmt19 metrics: - bleu - sacrebleu ---
amank22/hi_ud_hi_ewt
amank22
2021-09-03T09:43:35Z
4
0
spacy
[ "spacy", "token-classification", "hi", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - hi model-index: - name: hi_ud_hi_ewt results: - task: name: POS type: token-classification metrics: - name: POS Accuracy type: accuracy value: 0.9539693129 - task: name: SENTER type: token-classification metrics: - name: SENTER Precision type: precision value: 0.9902617164 - name: SENTER Recall type: recall value: 0.9807112719 - name: SENTER F Score type: f_score value: 0.9854633555 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Dependencies Accuracy type: accuracy value: 0.9198922358 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Dependencies Accuracy type: accuracy value: 0.9198922358 ---
tau/splinter-base-qass
tau
2021-09-03T08:47:00Z
2,111
1
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "SplinterModel", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: - splinter - SplinterModel license: apache-2.0 --- # Splinter base model (with pretrained QASS-layer weights) Splinter-base is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive. Note: This model **does** contain the pretrained weights for the QASS layer (see paper for details). For the model **without** those weights, see [tau/splinter-base](https://huggingface.co/tau/splinter-base). ## Model description Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions). ## Intended uses & limitations The prime use for this model is few-shot extractive QA. ## Pretraining The model was pretrained on a v3-8 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details. ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", } ```
superb/wav2vec2-base-superb-ic
superb
2021-09-02T22:03:59Z
674
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "speech", "audio", "en", "dataset:superb", "arxiv:2105.01051", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- language: en datasets: - superb tags: - speech - audio - wav2vec2 license: apache-2.0 --- # Wav2Vec2-Base for Intent Classification ## Model description This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands). The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/) dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands). ## Usage examples You can use the model directly like so: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ic", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits action_ids = torch.argmax(logits[:, :6], dim=-1).tolist() action_labels = [model.config.id2label[_id] for _id in action_ids] object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist() object_labels = [model.config.id2label[_id + 6] for _id in object_ids] location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist() location_labels = [model.config.id2label[_id + 20] for _id in location_ids] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9235` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
vymn/vymn
vymn
2021-09-02T14:03:29Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
<pre> ---------------------------------------- <span>developing brains!!</span> ---------------------------------------- _---~~(~~-_. _{ ) ) , ) -~~- ( ,-' )_ ( `-,_..`., )-- '_,) ( ` _) ( -~( -_ `, } (_- _ ~_-~~~~`, ,' ) `~ -^( __;-,((())) ~~~~ {_ -_(()) `\ } { } vymn mohvmd svlih. </pre> I'm android frontend developer and AI researcher, I work with [flutter](https://flutter.dev/) framework, [kotlin](https://kotlinlang.org/), [java](https://www.java.com/), [python](https://python.org/), [php](https://www.php.net/),... . from time to time i do some backend stuff.. can also Work with some AI frameworks and platforms. <!-- ### Check out my social medias: --> <!-- - 💬 [reddit](https://www.reddit.com/user/vymn2862) - 🔗 [LinkedIn](https://www.linkedin.com/in/vymn-mohvmd-b38829206/) --> <!-- ![zendy199x's github stats](https://github-readme-stats.vercel.app/api?username=vymn&theme=merko&show_icons=true) --> <div><img align="center" src="https://github-readme-stats.vercel.app/api/top-langs/?username=vymn&layout=compact&hide=html" alt="vymn" /></div> <br /> <br /> <div><img align="center" src="https://github-readme-stats.vercel.app/api?username=vymn&show_icons=true" alt="vymn" /></div>
flax-community/gpt2-small-indonesian
flax-community
2021-09-02T12:26:52Z
168
5
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "id", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: id widget: - text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira." --- # GPT2-small-indonesian This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian). ## How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='flax-community/gpt2-small-indonesian') >>> set_seed(42) >>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5) [{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\ “Kau tau, bagaimana dulu kita bertemu?” aku'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\ Tuhan akan memberi lebih dari apa yang kita'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian') model = GPT2Model.from_pretrained('flax-community/gpt2-small-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian') model = TFGPT2Model.from_pretrained('flax-community/gpt2-small-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Limitations and bias The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we > do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry > out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, > race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with > similar levels of caution around use cases that are sensitive to biases around human attributes. We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/flax-community/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/flax-community/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications. ### Gender bias We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online. ![gender bias - male](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_male.png) The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant). ![gender bias - female](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_female.png) ### Ethnicity bias We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme: * Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity) * Topic - we will use 5 different topics: * random act: *entered home* * said: *said* * works as: *works as* * intent: *let [person] ...* * define: *is* Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...) We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_ethnicity.png) ### Religion bias With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_religion.png) ## Training data The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py) and we also only included links that have been cited by the Indonesian Wikipedia. ## Training procedure The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `4d 14h 50m 47s`. ### Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | dataset | train loss | eval loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | ID OSCAR+mc4+wikipedia (29GB) | 3.046 | 2.926 | 18.66 | ### Tracking The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-small-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya). ## Team members - Akmal ([@Wikidepia](https://huggingface.co/Wikidepia)) - alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner)) - Cahya Wirawan ([@cahya](https://huggingface.co/cahya)) - Galuh Sahid ([@Galuh](https://huggingface.co/Galuh)) - Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia)) - Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli)) - Samsul Rahmadani ([@munggok](https://huggingface.co/munggok)) ## Future work We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains if we can get the necessary hardware resources.
Wikidepia/IndoT5-large
Wikidepia
2021-09-02T11:57:48Z
6
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "id", "dataset:allenai/c4", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - id datasets: - allenai/c4 --- **NOTE** : This model might be broken :/ # Indonesian T5 Large T5 (Text-to-Text Transfer Transformer) model pretrained on Indonesian mC4 with [extra filtering](https://github.com/Wikidepia/indonesian_datasets/tree/master/dump/mc4). This model is pre-trained only and needs to be fine-tuned to be used for specific tasks. ## Pretraining Details Trained for 500K steps following [`google/t5-v1_1-large`](https://huggingface.co/google/t5-v1_1-large). ## Model Performance TBD ## Limitations and bias This model also has the problem of biased (unethical, harmful, biased) output results due to the bias of the content of the training data, which is associated with the language model using a large-scale corpus. There is potential. Assuming that this problem may occur, please be careful to use it only for applications that do not cause damage. ## Acknowledgement Thanks to Tensorflow Research Cloud for providing TPU v3-8s.
DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
DataikuNLP
2021-09-02T08:31:10Z
393
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) from sentence-transformers at the specific commit `d66eff4d8a8598f264f166af8db67f7797164651`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
DataikuNLP/camembert-base
DataikuNLP
2021-09-02T08:15:08Z
110
0
transformers
[ "transformers", "pytorch", "tf", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: fr license: mit datasets: - oscar --- # CamemBERT: a Tasty French Language Model **This model is a copy of [this model repository](https://huggingface.co/camembert-base) at the specific commit `482393b6198924f9da270b1aaf37d238aafca99b`.** ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert-base") camembert = CamembertModel.from_pretrained("camembert-base") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200}, # {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183}, # {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202}, # {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528}, # {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) # tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116], # [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766], # [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert-base", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210], # [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982], # [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
DataikuNLP/TinyBERT_General_4L_312D
DataikuNLP
2021-09-02T08:09:47Z
96
1
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1909.10351", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
TinyBERT: Distilling BERT for Natural Language Understanding ======== **This model is a copy of [this model repository](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) from Huawei Noah at the specific commit `34707a33cd59a94ecde241ac209bf35103691b43`.** TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand. For more details about the techniques of TinyBERT, refer to our paper: [TinyBERT: Distilling BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351) Citation ======== If you find TinyBERT useful in your research, please cite the following paper: ``` @article{jiao2019tinybert, title={Tinybert: Distilling bert for natural language understanding}, author={Jiao, Xiaoqi and Yin, Yichun and Shang, Lifeng and Jiang, Xin and Chen, Xiao and Li, Linlin and Wang, Fang and Liu, Qun}, journal={arXiv preprint arXiv:1909.10351}, year={2019} } ```
DataikuNLP/paraphrase-MiniLM-L6-v2
DataikuNLP
2021-09-02T08:05:59Z
57
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # DataikuNLP/paraphrase-MiniLM-L6-v2 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2/) from sentence-transformers at the specific commit `c4dfcde8a3e3e17e85cd4f0ec1925a266187f48e`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Hoang/distilbert-base-uncased-finetuned-squad
Hoang
2021-09-02T07:32:09Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2176 | 1.0 | 5533 | 1.1429 | | 0.9425 | 2.0 | 11066 | 1.1196 | | 0.7586 | 3.0 | 16599 | 1.1582 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Malignant/Malignant
Malignant
2021-09-02T02:07:05Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Ver-Online Malignant PELICULA completa En Espanol Latino HD
gagan3012/bert-tiny-finetuned-ner
gagan3012
2021-09-01T23:50:44Z
64
4
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-tiny-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.8083060109289617 - name: Recall type: recall value: 0.8273856136033113 - name: F1 type: f1 value: 0.8177345348001547 - name: Accuracy type: accuracy value: 0.9597597979252387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-ner This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Precision: 0.8083 - Recall: 0.8274 - F1: 0.8177 - Accuracy: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0355 | 1.0 | 878 | 0.1692 | 0.8072 | 0.8248 | 0.8159 | 0.9594 | | 0.0411 | 2.0 | 1756 | 0.1678 | 0.8101 | 0.8277 | 0.8188 | 0.9600 | | 0.0386 | 3.0 | 2634 | 0.1697 | 0.8103 | 0.8269 | 0.8186 | 0.9599 | | 0.0373 | 4.0 | 3512 | 0.1694 | 0.8106 | 0.8263 | 0.8183 | 0.9600 | | 0.0383 | 5.0 | 4390 | 0.1689 | 0.8083 | 0.8274 | 0.8177 | 0.9598 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
espnet/byan_librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_ac-truncated-68a97b
espnet
2021-09-01T15:54:31Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp` ♻️ Imported from https://huggingface.co/ This model was trained by byan using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Thitaree/distilbert-base-uncased-finetuned-squad
Thitaree
2021-09-01T15:33:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
nateraw/vit-base-cats-vs-dogs
nateraw
2021-08-31T20:02:08Z
92
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:cats_vs_dogs", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - image-classification - pytorch datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: vit-base-cats-vs-dogs results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs args: default metrics: - name: Accuracy type: accuracy value: 0.9934510250569476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-cats-vs-dogs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0202 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.064 | 1.0 | 311 | 0.0483 | 0.9849 | | 0.0622 | 2.0 | 622 | 0.0275 | 0.9903 | | 0.0366 | 3.0 | 933 | 0.0262 | 0.9917 | | 0.0294 | 4.0 | 1244 | 0.0219 | 0.9932 | | 0.0161 | 5.0 | 1555 | 0.0202 | 0.9935 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
Saibo-creator/legal-roberta-base
Saibo-creator
2021-08-31T15:36:35Z
263
6
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "legal", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en tags: - legal license: apache-2.0 metrics: - precision - recall --- # LEGAL-ROBERTA We introduce LEGAL-ROBERTA, which is a domain-specific language representation model fine-tuned on large-scale legal corpora(4.6 GB). ## Demo 'This \<mask\> Agreement is between General Motors and John Murray .' | Model | top1 | top2 | top3 | top4 | top5 | | ------------ | ---- | --- | --- | --- | -------- | | Bert | new | current | proposed | marketing | joint | | legalBert | settlement | letter | dealer | master | supplemental | | legalRoberta | License | Settlement | Contract | license | Trust | > LegalRoberta captures the case 'The applicant submitted that her husband was subjected to treatment amounting to \<mask\> whilst in the custody of Adana Security Directorate' | Model | top1 | top2 | top3 | top4 | top5 | | ------------ | ---- | --- | --- | --- | -------- | | Bert | torture | rape | abuse | death | violence | | legalBert | torture | detention | arrest | rape | death | | legalRoberta | torture | abuse | insanity | cruelty | confinement | 'Establishing a system for the identification and registration of \<mask\> animals and regarding the labeling of beef and beef products .': | Model | top1 | top2 | top3 | top4 | top5 | | ------------ | ---- | --- | --- | --- | -------- | | Bert | farm | livestock | draft | domestic | wild | | legalBert | live | beef | farm | pet | dairy | | legalRoberta | domestic | all | beef | wild | registered | ## Load Pretrained Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("saibo/legal-roberta-base") model = AutoModel.from_pretrained("saibo/legal-roberta-base") ``` ## Training data The training data consists of 3 origins: 1. Patent Litigations (https://www.kaggle.com/uspto/patent-litigations): This dataset covers over 74k cases across 52 years and over 5 million relevant documents. 5 different files detail the litigating parties, their attorneys, results, locations, and dates. 1. *1.57GB* 2. abbrev:PL 3. *clean 1.1GB* 2. Caselaw Access Project (CAP) (https://case.law/): Following 360 years of United States case law, Caselaw Access Project (CAP) API and bulk data services includes 40 million pages of U.S. court decisions and almost 6.5 million individual cases. 1. *raw 5.6* 2. abbrev:CAP 3. *clean 2.8GB* 3. Google Patents Public Data (https://www.kaggle.com/bigquery/patents): The Google Patents Public Data contains a collection of publicly accessible, connected database tables for empirical analysis of the international patent system. 1. *BigQuery (https://www.kaggle.com/sohier/beyond-queries-exploring-the-bigquery-api)* 2. abbrev:GPPD(1.1GB,patents-public-data.uspto_oce_litigation.documents) 3. *clean 1GB* ## Training procedure We start from a pretrained ROBERTA-BASE model and fine-tune it on the legal corpus. Fine-tuning configuration: - lr = 5e-5(with lr decay, ends at 4.95e-8) - num_epoch = 3 - Total steps = 446500 - Total_flos = 2.7365e18 Loss starts at 1.850 and ends at 0.880 The perplexity after fine-tuning on legal corpus = 2.2735 Device: 2*GeForce GTX TITAN X computeCapability: 5.2 ## Eval results We benchmarked the model on two downstream tasks: Multi-Label Classification for Legal Text and Catchphrase Retrieval with Legal Case Description. 1.LMTC, Legal Multi-Label Text Classification Dataset: Labels shape: 4271 Frequent labels: 739 Few labels: 3369 Zero labels: 163 Hyperparameters: - lr: 1e-05 - batch_size: 4 - max_sequence_size: 512 - max_label_size: 15 - few_threshold: 50 - epochs: 10 - dropout:0.1 - early stop:yes - patience: 3 ## Limitations: In the Masked Language Model showroom, the tokens have the prefix **Ġ**. This seems to be wired but I haven't yet been able to fix it. I know in the case of BPE tokenizer(ROBERTA's tokenizer), the symbol Ġ means the end of a new token, and the majority of tokens in the vocabs of pre-trained tokenizers start with Ġ. For example ```python import transformers tokenizer = transformers.RobertaTokenizer.from_pretrained('roberta-base') print(tokenizer.tokenize('I love salad')) ``` Outputs: ``` ['I', 'Ġlove', 'Ġsalad'] ``` The pretraining of LegalRoBERTa was restricted by the size of legal corpora available and the number of pretraining steps is small compared to the popular domain adapted models. This makes legalRoBERTa significantly **under-trained**. ## BibTeX entry and citation info
datummd/NCBI_BC5CDR_disease
datummd
2021-08-31T13:59:31Z
7
4
transformers
[ "transformers", "pytorch", "bert", "token-classification", "BioBERT", "Diseases", "NER", "en", "dataset:ncbi_disease", "dataset:BC5CDR-diseases", "dataset:LitCOVID-pubtator", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en tags: - BioBERT - Diseases - NER license: apache-2.0 datasets: - ncbi_disease - BC5CDR-diseases - LitCOVID-pubtator --- BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset This was fine-tuned in order to use it in a datummd/bionlp system which is available at: https://github.com/datummd/bionlp
SongRb/distilbert-base-uncased-finetuned-ner
SongRb
2021-08-31T10:59:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9850826886110537 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0746 - Precision: 0.9347 - Recall: 0.9426 - F1: 0.9386 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0832 | 1.0 | 3511 | 0.0701 | 0.9317 | 0.9249 | 0.9283 | 0.9827 | | 0.0384 | 2.0 | 7022 | 0.0701 | 0.9282 | 0.9410 | 0.9346 | 0.9845 | | 0.0222 | 3.0 | 10533 | 0.0746 | 0.9347 | 0.9426 | 0.9386 | 0.9851 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
milayue/neosh-bot1
milayue
2021-08-31T10:43:59Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # Neosh Bot1 This is a simplified version. Hopefully will train a more complex model in the future.
madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1
madlag
2021-08-31T09:31:46Z
78
0
transformers
[ "transformers", "pytorch", "tf", "bert", "question-answering", "en", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en thumbnail: license: mit tags: - question-answering - - datasets: - squad metrics: - squad widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 36.0%** of the original weights. The model contains **50.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). With a simple resizing of the linear matrices it ran **1.84x as fast as the dense model** on the evaluation. This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix. <div class="graph"><script src="/madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1/raw/main/model_card/density_info.js" id="3aca15eb-8def-482c-800a-d9f8a6e8cea5"></script></div> In terms of accuracy, its **F1 is 88.72**, compared with 88.5 for the dense version, a **F1 gain of 0.22**. ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co//home/lagunas/devel/hf/nn_pruning/nn_pruning/analysis/tmp_finetune) checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1) This model is case-insensitive: it does not make a difference between english and English. A side-effect of the block pruning is that some of the attention heads are completely removed: 48 heads were removed on a total of 144 (33.3%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. <div class="graph"><script src="/madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1/raw/main/model_card/pruning_info.js" id="95fe9d1f-98f7-40e1-a28f-b90d0da0f1a8"></script></div> ## Details of the SQuAD1.1 dataset | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `379MB` (original BERT: `420MB`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation | | ------ | --------- | --------- | --------- | | **EM** | **81.69** | **80.8** | **+0.89**| | **F1** | **88.72** | **88.5** | **+0.22**| ## Example Usage Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns. `pip install nn_pruning` Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded. ```python from transformers import pipeline from nn_pruning.inference_model_patcher import optimize_model qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1", tokenizer="madlag/bert-base-uncased-squadv1-x1.84-f88.7-d36-hybrid-filled-v1" ) print("/home/lagunas/devel/hf/nn_pruning/nn_pruning/analysis/tmp_finetune parameters: 218.0M") print(f"Parameters count (includes only head pruning, not feed forward pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M") qa_pipeline.model = optimize_model(qa_pipeline.model, "dense") print(f"Parameters count after complete optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M") predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print("Predictions", predictions) ```
huggingartists/epic-rap-battles-of-history
huggingartists
2021-08-31T07:38:06Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/epic-rap-battles-of-history", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/epic-rap-battles-of-history tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/86da58e97d308e9127100e7954dc1d74.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Epic Rap Battles of History</div> <a href="https://genius.com/artists/epic-rap-battles-of-history"> <div style="text-align: center; font-size: 14px;">@epic-rap-battles-of-history</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Epic Rap Battles of History. Dataset is available [here](https://huggingface.co/datasets/huggingartists/epic-rap-battles-of-history). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/epic-rap-battles-of-history") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ujomrrjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Epic Rap Battles of History's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/epic-rap-battles-of-history') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/epic-rap-battles-of-history") model = AutoModelWithLMHead.from_pretrained("huggingartists/epic-rap-battles-of-history") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
redorangeyellowy/tts_korean_tacotron
redorangeyellowy
2021-08-31T03:22:31Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This is Korean-TTS model. (based on Tacotron) Dataset is from Sogang University.
trig/multiverse-second
trig
2021-08-30T20:15:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # multiverse but with swapped characters and more learning
AdapterHub/bert-base-uncased-pf-ud_en_ewt
AdapterHub
2021-08-30T15:54:13Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:dp/ud_ewt", "en", "dataset:universal_dependencies", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - bert - adapterhub:dp/ud_ewt - adapter-transformers datasets: - universal_dependencies language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-ud_en_ewt` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [dp/ud_ewt](https://adapterhub.ml/explore/dp/ud_ewt/) dataset and includes a prediction head for dependency parsing. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_en_ewt", source="hf", set_active=True) ``` ## Architecture & Training This adapter was trained using adapter-transformer's example script for dependency parsing. See https://github.com/Adapter-Hub/adapter-transformers/tree/master/examples/dependency-parsing. ## Evaluation results Scores achieved by dependency parsing adapters on the test set of UD English EWT after training: | Model | UAS | LAS | | --- | --- | --- | | `bert-base-uncased` | 91.74 | 89.15 | | `roberta-base` | 91.43 | 88.43 | ## Citation <!-- Add some description here -->
redorangeyellowy/tts_korean_temp
redorangeyellowy
2021-08-30T10:08:00Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This is espnet-based korean TTS model. You should recognize that this is not fisished one. Dataset is from our university, which is NOT available yet.
vasudevgupta/gsoc-wav2vec2-xlsr-53
vasudevgupta
2021-08-30T07:38:48Z
4
0
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TensorFlow equivalent of [`facebook/wav2vec2-large-xlsr-53`](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
vasudevgupta/gsoc-wav2vec2-robust
vasudevgupta
2021-08-30T07:34:01Z
5
1
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TensorFlow equivalent of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust)
huggingtweets/pradyuprasad
huggingtweets
2021-08-30T07:13:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/pradyuprasad/1630307615715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421042819653726214/rYpLOFCG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pradyumna (27/100 blog posts)</div> <div style="text-align: center; font-size: 14px;">@pradyuprasad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pradyumna (27/100 blog posts). | Data | Pradyumna (27/100 blog posts) | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 293 | | Short tweets | 449 | | Tweets kept | 2483 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qrkwd1v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pradyuprasad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nprezkxg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nprezkxg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pradyuprasad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
riyadhctg/distilbert-base-uncased-finetuned-cola
riyadhctg
2021-08-30T07:04:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5526838482765232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7691 - Matthews Correlation: 0.5527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5247 | 1.0 | 535 | 0.5390 | 0.4315 | | 0.353 | 2.0 | 1070 | 0.5273 | 0.4994 | | 0.2386 | 3.0 | 1605 | 0.6391 | 0.5089 | | 0.17 | 4.0 | 2140 | 0.7691 | 0.5527 | | 0.1348 | 5.0 | 2675 | 0.8483 | 0.5472 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
uhhlt/bert-based-uncased-hatespeech-movies
uhhlt
2021-08-29T21:42:02Z
6
3
transformers
[ "transformers", "tf", "bert", "text-classification", "en", "arxiv:2108.10724", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tag: text-classification datasets: - twitter - movies subtitles --- # bert-based-uncased-hatespeech-movies: A hatespeech model used to classify text as **normal**, **offensive**, **hatespeech** in Movie subtitles. The model is initially a pre-trained transformer model(bert-based-uncased) which is further trained on Twitter comments which can be normal, offensive and hate to learn the context from social media data. It is then fine-tuned using the movie subtitles dataset. Please check our paper and if used please cite ``` @article{von2021hateful, title={How Hateful are Movies? A Study and Prediction on Movie Subtitles}, author={von Boguszewski, Niklas and Moin, Sana and Bhowmick, Anirban and Yimam, Seid Muhie and Biemann, Chris}, journal={arXiv preprint arXiv:2108.10724}, year={2021} } ``` The dataset and models are available on https://github.com/uhh-lt/hatespeech
Ann2020/distilbert-base-uncased-finetuned-ner
Ann2020
2021-08-29T21:13:47Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.984018301110458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0609 - Precision: 0.9275 - Recall: 0.9365 - F1: 0.9320 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2527 | 1.0 | 878 | 0.0706 | 0.9120 | 0.9181 | 0.9150 | 0.9803 | | 0.0517 | 2.0 | 1756 | 0.0603 | 0.9174 | 0.9349 | 0.9261 | 0.9830 | | 0.031 | 3.0 | 2634 | 0.0609 | 0.9275 | 0.9365 | 0.9320 | 0.9840 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
GeniusVoice/gv-semanticsearch-dutch-cased
GeniusVoice
2021-08-29T20:28:09Z
9
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 165 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 24, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/mullbot_forever
huggingtweets
2021-08-29T05:36:32Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mullbot_forever/1630215387933/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334794074822504449/KX8oD2AU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">extremely online bot</div> <div style="text-align: center; font-size: 14px;">@mullbot_forever</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from extremely online bot. | Data | extremely online bot | | --- | --- | | Tweets downloaded | 1432 | | Retweets | 0 | | Short tweets | 22 | | Tweets kept | 1410 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/301sf9tj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mullbot_forever's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u7gvuie) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u7gvuie/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mullbot_forever') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lowlevelware/512x512_diffusion_unconditional_ImageNet
lowlevelware
2021-08-29T05:20:21Z
0
14
null
[ "arxiv:2105.05233", "region:us" ]
null
2022-03-02T23:29:05Z
# 512x512 diffusion (unconditional ImageNet) Modality: Images Intended Use: Generation of images with or without classifier guidance ## Detailed description A 512x512 unconditional ImageNet diffusion model, fine-tuned for 8100 steps from the OpenAI trained 512x512 class-conditional ImageNet diffusion model. It was fine-tuned into an unconditional model in order to enable better guidance by CLIP (or any other non-ImageNet classifier). ### Short description A 512x512 unconditional ImageNet diffusion model, fine-tuned from the OpenAI trained 512x512 class-conditional ImageNet diffusion model. ## License MIT Training Data: ImageNet (ILSVRC 2012 subset) Metrics / Evaluations: None Limitations and Biases: - These models sometimes produce highly unrealistic outputs, particularly when generating images containing human faces. This may stem from ImageNet's emphasis on non-human objects. While classifier guidance can improve sample quality, it reduces diversity, resulting in some modes of the data distribution being underrepresented. This can potentially amplify existing biases in the training dataset such as gender and racial biases. Because ImageNet and LSUN contain images from the internet, they include photos of real people, and the model may have memorized some of the information contained in these photos. However, these images are already publicly available, and existing generative models trained on ImageNet have not demonstrated significant leakage of this information. Links: https://arxiv.org/abs/2105.05233 (Diffusion Models Beat GANs on Image Synthesis), https://github.com/openai/guided-diffusion
Tejasvb/DialoGPT-small-rick
Tejasvb
2021-08-29T05:05:19Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational ---
huggingtweets/natureneuro
huggingtweets
2021-08-29T00:18:58Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/natureneuro/1630196334639/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1187024818031517697/yQgtYKBN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nature Neuroscience</div> <div style="text-align: center; font-size: 14px;">@natureneuro</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nature Neuroscience. | Data | Nature Neuroscience | | --- | --- | | Tweets downloaded | 2765 | | Retweets | 526 | | Short tweets | 10 | | Tweets kept | 2229 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jow2p55/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @natureneuro's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hkho9kg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hkho9kg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/natureneuro') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
filco306/gpt2-bible-paraphraser
filco306
2021-08-28T23:35:01Z
106
1
transformers
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT2 Bible style transfer paraphraser This is the trained Bible model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
filco306/gpt2-base-style-paraphraser
filco306
2021-08-28T19:27:41Z
7
4
transformers
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT2 base style transfer paraphraser This is the trained base-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
Redolid/DialoGPT-small-Rick
Redolid
2021-08-28T18:16:45Z
6
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- #Rick DialoGPT Model. >Following https://github.com/RuolinZheng08/twewy-discord-chatbot Tutorial.
huggingtweets/sematarygravemn
huggingtweets
2021-08-28T17:19:42Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sematarygravemn/1630171139756/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417713235168415752/j1Qd3_F9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SEMATARY GRAVE MAN ✟ ✟ ✟</div> <div style="text-align: center; font-size: 14px;">@sematarygravemn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SEMATARY GRAVE MAN ✟ ✟ ✟. | Data | SEMATARY GRAVE MAN ✟ ✟ ✟ | | --- | --- | | Tweets downloaded | 585 | | Retweets | 75 | | Short tweets | 116 | | Tweets kept | 394 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jy7xpe9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sematarygravemn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2svkr1dq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2svkr1dq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sematarygravemn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jackposobiec
huggingtweets
2021-08-28T16:45:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jackposobiec/1630169093455/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418813091140227072/iXDCqBz0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jack Posobiec 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@jackposobiec</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jack Posobiec 🇺🇸. | Data | Jack Posobiec 🇺🇸 | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 818 | | Short tweets | 511 | | Tweets kept | 1917 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s4mnium/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jackposobiec's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vllrmfa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vllrmfa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jackposobiec') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
OsmyReal/Ayuda
OsmyReal
2021-08-28T06:12:44Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
git lfs install git clone https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua
velociraptor/hugging-doge
velociraptor
2021-08-28T06:01:46Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: hugging-doge results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # hugging-doge Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### golden retriever ![golden retriever](images/golden_retriever.jpg) #### husky ![husky](images/husky.jpg) #### poodle ![poodle](images/poodle.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
SilentMyuth/sarcastic-model
SilentMyuth
2021-08-27T21:10:27Z
7
1
transformers
[ "transformers", "conversational", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- pipeline_tag: conversational --- This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm).
nateraw/vit-base-beans-demo-v2
nateraw
2021-08-27T17:33:08Z
73
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "other-image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo-v2 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0099 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0705 | 1.54 | 100 | 0.0562 | 0.9925 | | 0.0123 | 3.08 | 200 | 0.0124 | 1.0 | | 0.008 | 4.62 | 300 | 0.0099 | 1.0 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
nateraw/vit-base-beans-demo
nateraw
2021-08-27T17:06:03Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "other-image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0853 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0545 | 1.54 | 100 | 0.1436 | 0.9624 | | 0.006 | 3.08 | 200 | 0.1058 | 0.9699 | | 0.0038 | 4.62 | 300 | 0.0853 | 0.9774 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
zald/distilbert-base-uncased-finetuned-ner
zald
2021-08-27T16:39:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9835893688340985 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9253 - Recall: 0.9350 - F1: 0.9301 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.237 | 1.0 | 878 | 0.0701 | 0.9131 | 0.9228 | 0.9179 | 0.9809 | | 0.0509 | 2.0 | 1756 | 0.0617 | 0.9182 | 0.9333 | 0.9257 | 0.9826 | | 0.0299 | 3.0 | 2634 | 0.0607 | 0.9253 | 0.9350 | 0.9301 | 0.9836 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
akshara23/distilbert-base-uncased-finetuned-cola
akshara23
2021-08-27T16:29:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification metric: name: Matthews Correlation type: matthews_correlation value: 0.6290322580645161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.0475 - Matthews Correlation: 0.6290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 16 | 1.3863 | 0.0 | | No log | 2.0 | 32 | 1.2695 | 0.4503 | | No log | 3.0 | 48 | 1.1563 | 0.6110 | | No log | 4.0 | 64 | 1.0757 | 0.6290 | | No log | 5.0 | 80 | 1.0475 | 0.6290 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
HungVo/mt-dnn-ev-mrpc
HungVo
2021-08-27T08:55:31Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Model saved for Paraphrased Detection in English-Vietnamese cross-lingual based on XLM-R in MT-DNN MT-DNN: github.com/namisan/mt-dnn
KP2500/KPBot
KP2500
2021-08-27T06:53:22Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
Proggleb/roberta-base-bne-finetuned-amazon_reviews_multi
Proggleb
2021-08-26T20:21:41Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3011 - Accuracy: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2427 | 1.0 | 125 | 0.2109 | 0.919 | | 0.0986 | 2.0 | 250 | 0.3011 | 0.9185 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/habiba_shoukry-yourfavhwhw
huggingtweets
2021-08-26T14:27:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/habiba_shoukry-yourfavhwhw/1629988046175/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423284698046865415/vfSSZ3t9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419852056282681354/8GlUQCan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🥴 & Habiba.</div> <div style="text-align: center; font-size: 14px;">@habiba_shoukry-yourfavhwhw</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🥴 & Habiba.. | Data | 🥴 | Habiba. | | --- | --- | --- | | Tweets downloaded | 3246 | 3239 | | Retweets | 57 | 188 | | Short tweets | 524 | 842 | | Tweets kept | 2665 | 2209 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9yp9ftet/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @habiba_shoukry-yourfavhwhw's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/habiba_shoukry-yourfavhwhw') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
uva-irlab/quretec
uva-irlab
2021-08-26T14:06:47Z
12
1
transformers
[ "transformers", "pytorch", "bert", "conversational-search", "en", "dataset:uva-irlab/canard_quretec", "arxiv:2005.11723", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - conversational-search # Example: audio metrics: - f1 datasets: - uva-irlab/canard_quretec model-index: - name: QuReTec results: - task: name: Conversational search # Example: Speech Recognition type: conversational # Example: automatic-speech-recognition dataset: name: CANARD # Example: Common Voice zh-CN type: canard # Example: common_voice metrics: - name: Micro F1 # Example: Test WER type: f1 # Example: wer value: 68.7 # Example: 20.90 - name: Micro Recall type: recall value: 66.1 - name: Micro Precision type: precision value: 71.5 --- # QuReTec: query resolution model QuReTeC is a query resolution model. It finds the relevant terms in a question history. It is based on **bert-large-uncased** with a max sequence length of 300. # Config details Training and evaluation was done using the following BertConfig: ```json BertConfig { "_name_or_path": "uva-irlab/quretec", "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.1, "finetuning_task": "ner", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.4, "hidden_size": 1024, "id2label": { "0": "[PAD]", "1": "O", "2": "REL", "3": "[CLS]", "4": "[SEP]" }, "initializer_range": 0.02, "intermediate_size": 4096, "label2id": { "O": 1, "REL": 2, "[CLS]": 3, "[PAD]": 0, "[SEP]": 4 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.6.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } ``` # Original authors QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723). # Contributions Uploaded by G. Scheuer ([website](https://giguruscheuer.com))
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi
hackertec
2021-08-26T13:04:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2557 - Accuracy: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2296 | 1.0 | 125 | 0.2557 | 0.9085 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
dragonSwing/viwav2vec2-base-100h
dragonSwing
2021-08-26T03:25:02Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "automatic-speech-recognition", "vi", "dataset:vlsp", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: vi datasets: - vlsp tags: - speech - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-Base-Pretrain-Vietnamese The base model is pre-trained on 16kHz sampled speech audio from 100h Vietnamese unlabelled data in [VLSP dataset](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view?usp=sharing). When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Vietnamese Automatic Speech Recognition. [Facebook's Wav2Vec2 blog](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) [Paper](https://arxiv.org/abs/2006.11477) # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the English pre-trained model.
huggingartists/veggietales
huggingartists
2021-08-26T03:09:19Z
5
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/veggietales", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/veggietales tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d14c9e27b39f0e250784a2dce037a03d.720x720x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">VeggieTales</div> <a href="https://genius.com/artists/veggietales"> <div style="text-align: center; font-size: 14px;">@veggietales</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from VeggieTales. Dataset is available [here](https://huggingface.co/datasets/huggingartists/veggietales). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/veggietales") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1r6205vr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on VeggieTales's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/111uuafu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/111uuafu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/veggietales') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/veggietales") model = AutoModelWithLMHead.from_pretrained("huggingartists/veggietales") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Hinova/distilbert-base-uncased-finetuned-cola
Hinova
2021-08-26T02:55:21Z
10
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5481326292844919 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8301 - Matthews Correlation: 0.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5252 | 1.0 | 535 | 0.5094 | 0.4268 | | 0.3515 | 2.0 | 1070 | 0.5040 | 0.4948 | | 0.2403 | 3.0 | 1605 | 0.5869 | 0.5449 | | 0.1731 | 4.0 | 2140 | 0.7338 | 0.5474 | | 0.1219 | 5.0 | 2675 | 0.8301 | 0.5481 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/rikergoogling
huggingtweets
2021-08-26T01:50:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/499021253953347585/COG26p9r_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riker Googling</div> <div style="text-align: center; font-size: 14px;">@rikergoogling</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riker Googling. | Data | Riker Googling | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 100 | | Short tweets | 342 | | Tweets kept | 2804 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2489wq37/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rikergoogling's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/136vtf4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/136vtf4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rikergoogling') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mrm8488/bioclinicalBERT-finetuned-covid-papers
mrm8488
2021-08-25T22:05:46Z
25
1
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en widget: - text: "Masks are [MASK] for preventing" --- # BioclinicalBERT fine-tuned for MLM on COVID Papers
mrm8488/GPT-2-finetuned-covid-bio-medrxiv
mrm8488
2021-08-25T21:38:35Z
90
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: widget: - text: "Old people with COVID-19 tends to suffer" --- # GPT-2 + bio/medrxiv files from CORD19: 🦠 ✍ ⚕ **GPT-2** fine-tuned on **biorxiv_medrxiv** files from [CORD-19](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge) dataset. ## Datasets details: | Dataset | # Files | | ---------------------- | ----- | | biorxiv_medrxiv | 885 | ## Model training: The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash export TRAIN_FILE=/path/to/dataset/train.txt python run_language_modeling.py \\n --model_type gpt2 \\n --model_name_or_path gpt2 \\n --do_train \\n --train_data_file $TRAIN_FILE \\n --num_train_epochs 4 \\n --output_dir model_output \\n --overwrite_output_dir \\n --save_steps 2000 \\n --per_gpu_train_batch_size 3 ``` ## Model in action / Example of usage: ✒ You can get the following script [here](https://github.com/huggingface/transformers/blob/master/examples/text-generation/run_generation.py) ```bash python run_generation.py \\n --model_type gpt2 \\n --model_name_or_path mrm8488/GPT-2-finetuned-CORD19 \\n --length 200 ``` ```txt 👵👴🦠 # Input: Old people with COVID-19 tends to suffer # Output: === GENERATED SEQUENCE 1 === Old people with COVID-19 tends to suffer more symptom onset time and death. It is well known that many people with COVID-19 have high homozygous ZIKV infection in the face of severe symptoms in both severe and severe cases. The origin of Wuhan Fever was investigated by Prof. Shen Jiang at the outbreak of Wuhan Fever [34]. As Huanan Province is the epicenter of this outbreak, Huanan, the epicenter of epidemic Wuhan Fever, is the most potential location for the direct transmission of infection (source: Zhongzhen et al., 2020). A negative risk ratio indicates more frequent underlying signs in the people in Huanan Province with COVID-19 patients. Further analysis of reported Huanan Fever onset data in the past two years indicated that the intensity of exposure is the key risk factor for developing MERS-CoV infection in this region, especially among children and elderly. To be continued to develop infected patients would be a very important area for ``` ![Model in action](https://media.giphy.com/media/TgUdO72Iwk9h7hhm7G/giphy.gif) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
huggingtweets/purefulsoul-turtlebreezee-wnrstweets
huggingtweets
2021-08-25T20:42:12Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/purefulsoul-turtlebreezee-wnrstweets/1629924128930/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406320371717054466/u2Zt9ci4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374900064926068744/UJasEOEX_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1298808587070840834/L82EHBfC_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🍂 & 🐢 & We’re Not Really Strangers</div> <div style="text-align: center; font-size: 14px;">@purefulsoul-turtlebreezee-wnrstweets</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🍂 & 🐢 & We’re Not Really Strangers. | Data | 🍂 | 🐢 | We’re Not Really Strangers | | --- | --- | --- | --- | | Tweets downloaded | 256 | 3229 | 3229 | | Retweets | 4 | 20 | 16 | | Short tweets | 42 | 304 | 756 | | Tweets kept | 210 | 2905 | 2457 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qftmfj6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @purefulsoul-turtlebreezee-wnrstweets's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tfqt7kw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tfqt7kw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/purefulsoul-turtlebreezee-wnrstweets') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
whher/german-gpt2-romantik
whher
2021-08-25T19:21:42Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Model Description ------ The german-gpt2-romantik model was fine-tuned on [dbmdz's german gpt-2](https://huggingface.co/dbmdz/german-gpt2 "dbmdz's german-gpt2") for specialization in poetry generation tasks. Training Data ------ The data for training were hand-chosen poems from the German Romanticism Era (German: *Romantik*). In total there were 2,641 pieces of poems and 879,427 tokens in the corpus. Poem Generation ------ Enter a starting sentence or phrase (also with the Inference API on the right), the model will output poem-like texts. You can try by entering "Der Garten der Freude", which outputs: "Der Garten der Freude, in dem mein Auge ruht, wo Gott und die Sonne, hier im Himmel, zu allen Zeiten uns umgeben."
victoraavila/bert-base-uncased-finetuned-squad
victoraavila
2021-08-25T12:44:54Z
19
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: bert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the SQuAD1.1 dataset. It was trained through Transformers' example Colab notebook on Question Answering, available [here](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb). It achieves the following results on the evaluation set: - Loss: 1.0780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training. They are equal to the ones used to fine-tune [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for QA: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0706 | 1.0 | 5533 | 1.0250 | | 0.7899 | 2.0 | 11066 | 1.0356 | | 0.5991 | 3.0 | 16599 | 1.0780 | ### Validation results | EM | F1 | |:--------:|:-------:| | 80.3690 | 88.0110 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
moma1820/DSV-JavaFx-DAPT-CodeBert
moma1820
2021-08-25T12:09:07Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
Pre Träna CodeBert med JavaFx + Java FXML + JavaFx relaterat logik kod (dvs. Model, Controller för olika JavaFx kod). Blev ungefär 130 k kod exemplar ```` ***** train metrics ***** epoch = 3.0 train_loss = 0.4556 train_runtime = 5:57:43.71 train_samples = 131945 train_samples_per_second = 18.442 train_steps_per_second = 2.305 ***** eval metrics ***** epoch = 3.0 eval_loss = 0.2984 eval_runtime = 0:01:59.72 eval_samples = 6944 eval_samples_per_second = 57.999 eval_steps_per_second = 7.25 perplexity = 1.3477 ````
3koozy/gpt2-HxH
3koozy
2021-08-25T11:31:49Z
26
0
transformers
[ "transformers", "pytorch", "gpt2", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
this is a fine tuned GPT2 text generation model on a Hunter x Hunter TV anime series dataset.\ you can find a link to the used dataset here : https://www.kaggle.com/bkoozy/hunter-x-hunter-subtitles you can find a colab notebook for fine-tuning the gpt2 model here : https://github.com/3koozy/fine-tune-gpt2-HxH/
eugenesiow/pan
eugenesiow
2021-08-25T08:38:00Z
1,953
0
transformers
[ "transformers", "PAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2010.01073", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Pixel Attention Network (PAN) PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Zhao et al. (2020) and first released in [this repository](https://github.com/zhaohengyuan1/PAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/pan_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. The model is very lightweight with the model being just 260k to 270k parameters (~1mb). ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import PanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = PanModel.from_pretrained('eugenesiow/pan', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, PanModel, PanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = PanConfig( scale=4, # train a model to upscale 4x ) model = PanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |pan | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.77/0.9599** | |Set5 |3x |30.39/0.8678 |**34.64/0.9376** | |Set5 |4x |28.42/0.8101 |**31.92/0.8915** | |Set14 |2x |30.22/0.8683 |**33.42/0.9162** | |Set14 |3x |27.53/0.7737 |**30.8/0.8544** | |Set14 |4x |25.99/0.7023 |**28.57/0.7802** | |BSD100 |2x |29.55/0.8425 |**33.6/0.9235** | |BSD100 |3x |27.20/0.7382 |**29.47/0.815** | |BSD100 |4x |25.96/0.6672 |**28.35/0.7595** | |Urban100 |2x |26.66/0.8408 |**31.31/0.9197** | |Urban100 |3x | |**28.61/0.8603** | |Urban100 |4x |23.14/0.6573 |**25.63/0.7692** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/pan_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{zhao2020efficient, title={Efficient Image Super-Resolution Using Pixel Attention}, author={Hengyuan Zhao and Xiangtao Kong and Jingwen He and Yu Qiao and Chao Dong}, year={2020}, eprint={2010.01073}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
OthmaneJ/distil-wav2vec2
OthmaneJ
2021-08-25T07:59:39Z
246
10
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition license: apache-2.0 --- # Distil-wav2vec2 This model is a distilled version of the wav2vec2 model (https://arxiv.org/pdf/2006.11477.pdf). This model is 45% times smaller and twice as fast as the original wav2vec2 base model. # Evaluation results This model achieves the following results (speed is mesured for a batch size of 64): |Model| Size| WER Librispeech-test-clean |WER Librispeech-test-other|Speed on cpu|speed on gpu| |----------| ------------- |-------------|-----------| ------|----| |Distil-wav2vec2| 197.9 Mb | 0.0983 | 0.2266|0.4006s| 0.0046s| |wav2vec2-base| 360 Mb | 0.0389 | 0.1047|0.4919s| 0.0082s| # Usage notebook (executes seamlessly on google colab) at https://github.com/OthmaneJ/distil-wav2vec2
drcod/DagaareBERTa
drcod
2021-08-24T22:23:45Z
0
0
null
[ "pytorch", "tf", "dataset:Bible", "arxiv:1907.11692", "region:us" ]
null
2022-03-02T23:29:05Z
--- datasets: - Bible --- Pretrained model on Dagaare language using a masked language modeling (MLM) objective first introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta)\
huggingtweets/detseretninu-dumbricardo-illuminusnumb
huggingtweets
2021-08-24T21:49:20Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/detseretninu-dumbricardo-illuminusnumb/1629841756956/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412373998936027142/k2nY1nVc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426046688263692288/RzlZFjIP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1312018147822759937/Z7XnZkhn_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sad rico & follow me only if you're sad & ...</div> <div style="text-align: center; font-size: 14px;">@detseretninu-dumbricardo-illuminusnumb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sad rico & follow me only if you're sad & .... | Data | sad rico | follow me only if you're sad | ... | | --- | --- | --- | --- | | Tweets downloaded | 768 | 3233 | 677 | | Retweets | 0 | 167 | 1 | | Short tweets | 102 | 755 | 285 | | Tweets kept | 666 | 2311 | 391 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/l42hthlz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detseretninu-dumbricardo-illuminusnumb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/detseretninu-dumbricardo-illuminusnumb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/codewisdom
huggingtweets
2021-08-24T19:38:35Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/codewisdom/1629833911172/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/705003311083229184/qTBCIxpk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Programming Wisdom</div> <div style="text-align: center; font-size: 14px;">@codewisdom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Programming Wisdom. | Data | Programming Wisdom | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 601 | | Short tweets | 68 | | Tweets kept | 2580 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1v0fkmjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @codewisdom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1oohyzx0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1oohyzx0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/codewisdom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/itssixword
huggingtweets
2021-08-24T19:25:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/itssixword/1629833127428/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/628257137060229120/_3q_D4g2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Six words story</div> <div style="text-align: center; font-size: 14px;">@itssixword</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Six words story. | Data | Six words story | | --- | --- | | Tweets downloaded | 282 | | Retweets | 0 | | Short tweets | 2 | | Tweets kept | 280 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dbtmbzz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itssixword's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wydugsv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wydugsv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itssixword') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/antiihope
huggingtweets
2021-08-24T17:00:16Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/antiihope/1629824412403/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429221119647752192/XKX0DgWA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sarcastic Venom</div> <div style="text-align: center; font-size: 14px;">@antiihope</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sarcastic Venom. | Data | Sarcastic Venom | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 36 | | Short tweets | 877 | | Tweets kept | 2332 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ervvg9p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @antiihope's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wbdnrdn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wbdnrdn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/antiihope') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
IsabellaKarabasz/roberta-base-bne-finetuned-amazon_reviews_multi
IsabellaKarabasz
2021-08-24T14:16:29Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/joji
huggingartists
2021-08-23T21:47:22Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/joji", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/joji tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d20ee1f900287060716f7594ccba7ea3.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joji</div> <a href="https://genius.com/artists/joji"> <div style="text-align: center; font-size: 14px;">@joji</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Joji. Dataset is available [here](https://huggingface.co/datasets/huggingartists/joji). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/joji") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ns61e8zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Joji's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/joji') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/joji") model = AutoModelWithLMHead.from_pretrained("huggingartists/joji") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
mrm8488/mT5-small-finetuned-tydiqa-for-xqa
mrm8488
2021-08-23T21:32:44Z
75
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "multilingual", "dataset:tydiqa", "arxiv:2010.11934", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: multilingual datasets: - tydiqa widget: - text: "question: What won HuggingFace? context: HuggingFace won the best Demo paper at EMNLP2020." --- # mT5-small fine-tuned on TyDiQA for multilingual QA 🗺📖❓ [Google's mT5-small](https://huggingface.co/google/mt5-small) fine-tuned on [TyDi QA](https://huggingface.co/nlp/viewer/?dataset=tydiqa&config=secondary_task) (secondary task) for **multingual Q&A** downstream task. ## Details of mT5 [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Details of the dataset 📚 **TyDi QA** is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language expresses -- such that we expect models performing well on this set to generalize across a large number of the languages in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without the use of translation (unlike MLQA and XQuAD). | Dataset | Task | Split | # samples | | -------- | ----- |------| --------- | | TyDi QA | GoldP | train| 49881 | | TyDi QA | GoldP | valid| 5077 | ## Results on validation dataset 📝 | Metric | # Value | | ------ | --------- | | **EM** | **41.65** | ## Model in Action 🚀 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained("mrm8488/mT5-small-finetuned-tydiqa-for-xqa") model = AutoModelForCausalLM.from_pretrained("mrm8488/mT5-small-finetuned-tydiqa-for-xqa").to(device) def get_response(question, context, max_length=32): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device), max_length=max_length) return tokenizer.decode(output[0], skip_special_tokens=True) # Some examples in different languages context = 'HuggingFace won the best Demo paper at EMNLP2020.' question = 'What won HuggingFace?' get_response(question, context) context = 'HuggingFace ganó la mejor demostración con su paper en la EMNLP2020.' question = 'Qué ganó HuggingFace?' get_response(question, context) context = 'HuggingFace выиграл лучшую демонстрационную работу на EMNLP2020.' question = 'Что победило в HuggingFace?' get_response(question, context) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
chandank/bart-base-finetuned-xsum
chandank
2021-08-23T20:21:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - null metrics: - rouge model_index: - name: bart-base-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Rouge1 type: rouge value: 27.887 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-xsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5925 - Rouge1: 27.887 - Rouge2: 16.1414 - Rougel: 24.0525 - Rougelsum: 25.4029 - Gen Len: 19.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 1.9826 | 1.0 | 879 | 1.5925 | 27.887 | 16.1414 | 24.0525 | 25.4029 | 19.9841 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
nateraw/trainer-rare-puppers
nateraw
2021-08-23T18:23:54Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model_index: - name: trainer-rare-puppers results: - task: name: Image Classification type: image-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainer-rare-puppers This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the huggingpics dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 48 | 0.4087 | 0.8806 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/newathensgov
huggingtweets
2021-08-23T17:39:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/newathensgov/1629740347118/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420476290503745536/OWslu-HK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Free Nation of New Athens</div> <div style="text-align: center; font-size: 14px;">@newathensgov</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Free Nation of New Athens. | Data | The Free Nation of New Athens | | --- | --- | | Tweets downloaded | 62 | | Retweets | 8 | | Short tweets | 2 | | Tweets kept | 52 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cumyzfx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @newathensgov's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tak8vc94) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tak8vc94/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/newathensgov') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Vasanth/tamil-sentiment-distilbert
Vasanth
2021-08-23T17:16:08Z
31
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tamilmixsentiment", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tamilmixsentiment metrics: - accuracy model_index: - name: tamil-sentiment-distilbert results: - task: name: Text Classification type: text-classification dataset: name: tamilmixsentiment type: tamilmixsentiment args: default metric: name: Accuracy type: accuracy value: 0.665 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamil-sentiment-distilbert This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tamilmixsentiment dataset. It achieves the following results on the evaluation set: - Loss: 1.0230 - Accuracy: 0.665 ## Dataset Information - text: Tamil-English code-mixed comment. - label: list of the possible sentiments - LABEL_0: "Positive", - LABEL_1: "Negative", - LABEL_2: "Mixed_feelings", - LABEL_3: "unknown_state", - LABEL_4: "not-Tamil" ## Intended uses & limitations This model was just created for doing classification task on tamilmixsentiment dataset ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0442 | 1.0 | 250 | 0.9883 | 0.674 | | 0.9227 | 2.0 | 500 | 0.9782 | 0.673 | | 0.7591 | 3.0 | 750 | 1.0230 | 0.665 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi
lewtun
2021-08-23T17:13:32Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.93075 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2306 - Accuracy: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1978 | 1.0 | 1250 | 0.1750 | 0.9325 | | 0.0951 | 2.0 | 2500 | 0.2306 | 0.9307 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/ghost
huggingartists
2021-08-23T16:02:24Z
6
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/ghost", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/ghost tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3192bff259bbe651686374ba3b8553bd.828x828x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghost</div> <a href="https://genius.com/artists/ghost"> <div style="text-align: center; font-size: 14px;">@ghost</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ghost. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ghost). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghost") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1n8515nl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ghost's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2qimq3aa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2qimq3aa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ghost') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ghost") model = AutoModelWithLMHead.from_pretrained("huggingartists/ghost") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Narsil/deberta-large-mnli-zero-cls
Narsil
2021-08-23T13:27:24Z
943
14
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "deberta-v1", "deberta-mnli", "zero-shot-classification", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: en tags: - deberta-v1 - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa large model fine-tuned with MNLI task. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
ksmcg/name
ksmcg
2021-08-23T13:26:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model_index: - name: name results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # name This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Narrativa/mT5-base-finetuned-tydiQA-xqa
Narrativa
2021-08-23T09:57:00Z
275
6
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "multilingual", "dataset:tydiqa", "arxiv:2010.11934", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: multilingual datasets: - tydiqa widget: - text: "question: what does she do? context: Sofía has a degree in Communications and public relations agency experience where she was in charge of monitoring and managing PR strategy including relations with the media and journalists." --- # mT5-base fine-tuned on TyDiQA for multilingual QA 🗺📖❓ [Google's mT5-base](https://huggingface.co/google/mt5-base) fine-tuned on [TyDi QA](https://huggingface.co/nlp/viewer/?dataset=tydiqa&config=secondary_task) (secondary task) for **multingual Q&A** downstream task. ## Details of mT5 [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Details of the dataset 📚 **TyDi QA** is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language expresses -- such that we expect models performing well on this set to generalize across a large number of the languages in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without the use of translation (unlike MLQA and XQuAD). | Dataset | Task | Split | # samples | | -------- | ----- |------| --------- | | TyDi QA | GoldP | train| 49881 | | TyDi QA | GoldP | valid| 5077 | ## Results on validation dataset 📝 | Metric | # Value | | ------ | --------- | | **EM** | **60.88** | ## Model in Action 🚀 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained("Narrativa/mT5-base-finetuned-tydiQA-xqa") model = AutoModelForCausalLM.from_pretrained("Narrativa/mT5-base-finetuned-tydiQA-xqa").to(device) def get_response(question, context, max_length=32): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device), max_length=max_length) return tokenizer.decode(output[0]) # Some examples in different languages context = 'HuggingFace won the best Demo paper at EMNLP2020.' question = 'What won HuggingFace?' get_response(question, context) context = 'HuggingFace ganó la mejor demostración con su paper en la EMNLP2020.' question = 'Qué ganó HuggingFace?' get_response(question, context) context = 'HuggingFace выиграл лучшую демонстрационную работу на EMNLP2020.' question = 'Что победило в HuggingFace?' get_response(question, context) ``` Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
andi611
2021-08-23T05:38:50Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_restaurant", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: - en tags: - generated_from_trainer datasets: - squad_v2 - mit_restaurant model_index: - name: distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 - task: name: Token Classification type: token-classification dataset: name: mit_restaurant type: mit_restaurant --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
huggingtweets/holocenite
huggingtweets
2021-08-23T05:13:31Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/holocenite/1629695532486/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384242089097981952/vhV-3M06_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">martian</div> <div style="text-align: center; font-size: 14px;">@holocenite</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from martian. | Data | martian | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 270 | | Short tweets | 250 | | Tweets kept | 2716 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37xmwiih/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @holocenite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zuygzmm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zuygzmm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/holocenite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eugenesiow/mdsr-bam
eugenesiow
2021-08-23T01:37:09Z
142
0
transformers
[ "transformers", "MDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "arxiv:1803.08664", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Multi-Scale Deep Super-Resolution System (MDSR) MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/mdsr_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MdsrModel.from_pretrained('eugenesiow/mdsr-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MdsrModel, MdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MdsrConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = MdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |mdsr-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38/0.9607** | |Set5 |3x |30.39/0.8678 |**35.07/0.9402** | |Set5 |4x |28.42/0.8101 |**32.19/0.8949** | |Set14 |2x |30.22/0.8683 |**33.68/0.9182** | |Set14 |3x |27.53/0.7737 |**31.04/0.8582** | |Set14 |4x |25.99/0.7023 |**28.73/0.7847** | |BSD100 |2x |29.55/0.8425 |**33.77/0.9253** | |BSD100 |3x |27.20/0.7382 |**29.62/0.8188** | |BSD100 |4x |25.96/0.6672 |**28.5/0.7645** | |Urban100 |2x |26.66/0.8408 |**32.04/0.9272** | |Urban100 |3x | |**29.16/0.8717** | |Urban100 |4x |23.14/0.6573 |**26.02/0.7834** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/mdsr_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
fadhilarkan/gq-indo-k
fadhilarkan
2021-08-22T22:25:31Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- metrics: - rouge model-index: - name: gq-indo-k --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gq-indo-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.7905 - Rouge1: 22.5734 - Rouge2: 6.555 - Rougel: 20.9491 - Rougelsum: 20.9509 - Gen Len: 12.0767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9355 | 1.0 | 13032 | 2.8563 | 22.4828 | 6.5456 | 20.8782 | 20.8772 | 11.915 | | 2.825 | 2.0 | 26064 | 2.7993 | 22.547 | 6.5815 | 20.8937 | 20.8973 | 12.0886 | | 2.7631 | 3.0 | 39096 | 2.7905 | 22.5734 | 6.555 | 20.9491 | 20.9509 | 12.0767 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
Kieran/distilbert-base-uncased-finetuned-cola
Kieran
2021-08-22T18:53:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification metric: name: Matthews Correlation type: matthews_correlation value: 0.9719066462260881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1037 - Matthews Correlation: 0.9719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2094 | 1.0 | 525 | 0.1069 | 0.9607 | | 0.0483 | 2.0 | 1050 | 0.0878 | 0.9719 | | 0.0296 | 3.0 | 1575 | 0.1263 | 0.9664 | | 0.0108 | 4.0 | 2100 | 0.1037 | 0.9719 | | 0.0096 | 5.0 | 2625 | 0.1065 | 0.9719 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/pepexbt
huggingtweets
2021-08-22T13:00:37Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/pepexbt/1629637214827/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428232830761455617/VC6_ALvV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pepe</div> <div style="text-align: center; font-size: 14px;">@pepexbt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pepe. | Data | pepe | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 56 | | Short tweets | 809 | | Tweets kept | 2384 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jezukab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pepexbt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3isjrvll) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3isjrvll/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pepexbt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
oumeima/finetuned-bert-mrpc
oumeima
2021-08-22T11:35:18Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metric: name: F1 type: f1 value: 0.9003322259136212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5280 - Accuracy: 0.8529 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5704 | 1.0 | 230 | 0.4204 | 0.7917 | 0.8542 | | 0.3391 | 2.0 | 460 | 0.4157 | 0.8456 | 0.8955 | | 0.1923 | 3.0 | 690 | 0.5280 | 0.8529 | 0.9003 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3