modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-02 12:28:20
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 462
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-02 12:26:48
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
espnet/simpleoier_librispeech_hubert_iter0_train_ssl_torchaudiohubert_base_960h_pretrain_it0_raw | espnet | 2023-07-06T20:38:53Z | 1 | 0 | espnet | [
"espnet",
"audio",
"self-supervised-learning",
"en",
"dataset:librispeech",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | null | 2022-12-31T03:54:13Z | ---
tags:
- espnet
- audio
- self-supervised-learning
language: en
datasets:
- librispeech
license: cc-by-4.0
---
## ESPnet2 SSL model
### `simpleoier/simpleoier_librispeech_hubert_iter0_train_ssl_torchaudiohubert_base_960h_pretrain_it0_raw`
This model was trained by simpleoier using librispeech recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout 753f40d61813436d4e76660904d02eaed7a6649e
pip install -e .
cd egs2/librispeech/ssl1
./run.sh --skip_data_prep false --skip_train true --download_model simpleoier/simpleoier_librispeech_hubert_iter0_train_ssl_torchaudiohubert_base_960h_pretrain_it0_raw
```
## SSL config
<details><summary>expand</summary>
```
config: conf/tuning/train_ssl_torchaudiohubert_base_960h_pretrain_it0.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/hubert_iter0_train_ssl_torchaudiohubert_base_960h_pretrain_it0_raw
ngpu: 1
seed: 0
num_workers: 64
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 8
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 45091
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 250
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 2
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 48000000
valid_batch_bins: null
train_shape_file:
- exp/hubert_iter0_stats_raw/train/speech_shape
- exp/hubert_iter0_stats_raw/train/text_shape.word
valid_shape_file:
- exp/hubert_iter0_stats_raw/valid/speech_shape
- exp/hubert_iter0_stats_raw/valid/text_shape.word
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 400
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_960/wav.scp
- speech
- sound
- - dump/raw/train_960/text.km.kmeans_iter0_mfcc_train_960_portion0.1
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/dev/wav.scp
- speech
- sound
- - dump/raw/dev/text.km.kmeans_iter0_mfcc_train_960_portion0.1
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.0005
scheduler: warmuplr
scheduler_conf:
warmup_steps: 32000
token_list:
- '81'
- '5'
- '79'
- '84'
- '27'
- '35'
- '67'
- '56'
- '10'
- '99'
- '24'
- '3'
- '48'
- '8'
- '42'
- '16'
- '32'
- '31'
- '47'
- '43'
- '20'
- '73'
- '49'
- '86'
- '18'
- '64'
- '34'
- '59'
- '95'
- '0'
- '52'
- '44'
- '61'
- '57'
- '30'
- '1'
- '93'
- '6'
- '69'
- '19'
- '7'
- '65'
- '28'
- '89'
- '2'
- '96'
- '91'
- '72'
- '38'
- '78'
- '26'
- '13'
- '39'
- '94'
- '4'
- '88'
- '85'
- '51'
- '82'
- '41'
- '50'
- '21'
- '80'
- '97'
- '87'
- '25'
- '54'
- '12'
- '40'
- '60'
- '29'
- '11'
- '53'
- '71'
- '83'
- '74'
- '68'
- '55'
- '62'
- '76'
- '45'
- '75'
- '92'
- '46'
- '36'
- '66'
- '22'
- '77'
- '23'
- '63'
- '37'
- '58'
- '33'
- '15'
- '17'
- '90'
- '98'
- '14'
- '70'
- '9'
- <unk>
- <sos/eos>
init: null
collate_fn_conf:
label_downsampling: 2
pad: false
rand_crop: true
input_size: 1
num_classes: 100
use_preprocessor: true
token_type: word
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
pred_masked_weight: 1.0
pred_nomask_weight: 0.0
loss_weights: 0.0
frontend: null
frontend_conf: {}
specaug: null
specaug_conf: {}
normalize: null
normalize_conf: {}
preencoder: null
preencoder_conf: {}
encoder: torchaudio_hubert
encoder_conf:
encoder_projection_dropout: 0.1
encoder_attention_dropout: 0.1
encoder_ff_interm_dropout: 0.0
encoder_dropout: 0.1
encoder_layer_drop: 0.05
model: torchaudio
model_conf: {}
required:
- output_dir
- token_list
version: '202209'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
WALIDALI/oumadvenly | WALIDALI | 2023-07-06T20:38:46Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-07-06T20:33:28Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### oumadvenly Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
TheBloke/WizardLM-7B-V1-0-Uncensored-SuperHOT-8K-GGML | TheBloke | 2023-07-06T20:38:02Z | 0 | 4 | null | [
"license:other",
"region:us"
] | null | 2023-07-06T18:47:36Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Eric Hartford's WizardLM-7B-V1.0-Uncensored GGML
These files are GGML format model files for [Eric Hartford's WizardLM-7B-V1.0-Uncensored](https://huggingface.co/ehartford/WizardLM-7B-V1.0-Uncensored).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-V1-0-Uncensored-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/WizardLM-7B-V1-0-Uncensored-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/WizardLM-7B-V1-0-Uncensored-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-7B-V1.0-Uncensored)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| wizardlm-7b-v1.0-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 wizardlm-7b-v1.0-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
**Patreon special mentions**: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Eric Hartford's WizardLM-7B-V1.0-Uncensored
This is a retraining of https://huggingface.co/WizardLM/WizardLM-7B-V1.0 with a filtered dataset, intended to reduce refusals, avoidance, and bias.
Note that LLaMA itself has inherent ethical beliefs, so there's no such thing as a "truly uncensored" model. But this model will be more compliant than WizardLM/WizardLM-7B-V1.0.
Shout out to the open source AI/ML community, and everyone who helped me out.
Note: An uncensored model has no guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car. Publishing anything this model generates is the same as publishing it yourself. You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
Unlike WizardLM/WizardLM-7B-V1.0, but like WizardLM/WizardLM-13B-V1.0 and WizardLM/WizardLM-33B-V1.0, this model is trained with Vicuna-1.1 style prompts.
```
You are a helpful AI assistant.
USER: <prompt>
ASSISTANT:
```
Thank you [chirper.ai](https://chirper.ai) for sponsoring some of my compute!
|
aroot/eng-guj-simcse_random_ssrb | aroot | 2023-07-06T20:32:37Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T20:10:52Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-guj-simcse_random_ssrb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-guj-simcse_random_ssrb
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2802
- Bleu: 2.8939
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/LongChat-7B-GGML | TheBloke | 2023-07-06T20:29:59Z | 0 | 12 | null | [
"license:other",
"region:us"
] | null | 2023-06-30T09:46:05Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# LmSys' Long Chat 7B GGML
These files are GGML format model files for [LmSys' Long Chat 7B](https://huggingface.co/lmsys/longchat-7b-16k).
These are RoPE GGMLs with an increased context length. RoPE - Rotated Positional Encoding - expands context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192` or `--contextsize 16384`.
**NOTE 1**: Currently RoPE models can _only_ be used at a context size greater than 2048. At 2048 it will produce gibberish. Please make sure you're always setting `--contextsize` and specifying a value higher than 2048, eg 3072, 4096, etc.
**NOTE 2**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/LongChat-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/LongChat-7B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/longchat-7b-16k)
## Prompt template
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input
USER: prompt
ASSISTANT:
```
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot produc
ts are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| longchat-7b-16k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| longchat-7b-16k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| longchat-7b-16k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| longchat-7b-16k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| longchat-7b-16k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| longchat-7b-16k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| longchat-7b-16k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| longchat-7b-16k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| longchat-7b-16k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --contextsize 4096 --stream --unbantokens --threads 8 --usecublas --gpulayers 100 longchat-7b-16k.ggmlv3.q4_K_M.bin
```
Change `--contextsize` to the context size you want - **it must be higher than 2048 else the model will produce gibberish**
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: LmSys' Long Chat 7B
# longchat-7b-16k Model Card
## Model details
**Model type:**
longchat-7b-16k is an open-source chatbot trained by fine-tuning llama-7b on user-shared conversations collected from ShareGPT, using the condensing rotary embedding technique reported in the [blog](https://lmsys.org/blog/2023-06-29-longchat).
**Model date:**
longchat-7b-16k was trained on June 2023.
**Organizations developing the model:**
The LongChat developers: Dacheng Li*, Rulin Shao*, Anze Xie, Ying Sheng, Lianmin Zheng, Ion Stoica, Xuezhe Ma, and Hao Zhang
**Paper or resources for more information:**
https://github.com/DachengLi1/LongChat
**Where to send questions or comments about the model:**
https://github.com/DachengLi1/LongChat
## Intended use
**Primary intended uses:**
The primary use of longchat-7b-16k is for research purposes.
**Primary intended users:**
The primary intended users of the model are researchers in natural language processing, machine learning, and artificial intelligence.
## Training dataset
18K conversations collected from ShareGPT.com.
## Evaluation dataset
A preliminary evaluation of the model quality is conducted by our released [LongEval](https://github.com/DachengLi1/LongChat).
|
aroot/eng-guj-simcse_central_usblu | aroot | 2023-07-06T20:29:59Z | 110 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T20:08:12Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-guj-simcse_central_usblu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-guj-simcse_central_usblu
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2834
- Bleu: 2.7502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
whywynn/ppo-Huggy | whywynn | 2023-07-06T20:22:34Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2023-07-06T20:22:25Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: whywynn/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
cjohlmacher/unit2-taxi-2 | cjohlmacher | 2023-07-06T20:20:42Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T20:18:26Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: unit2-taxi-2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.74
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="cjohlmacher/unit2-taxi-2", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
PhysHunter/bert-finetuned-ner | PhysHunter | 2023-07-06T20:15:38Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-07-06T14:17:03Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.928983358049102
- name: Recall
type: recall
value: 0.9488387748232918
- name: F1
type: f1
value: 0.9388060944134544
- name: Accuracy
type: accuracy
value: 0.9858568316948254
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0658
- Precision: 0.9290
- Recall: 0.9488
- F1: 0.9388
- Accuracy: 0.9859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0863 | 1.0 | 1756 | 0.0697 | 0.9110 | 0.9317 | 0.9212 | 0.9815 |
| 0.0327 | 2.0 | 3512 | 0.0690 | 0.9297 | 0.9482 | 0.9388 | 0.9858 |
| 0.0164 | 3.0 | 5268 | 0.0658 | 0.9290 | 0.9488 | 0.9388 | 0.9859 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
aroot/eng-fra-simcse_central_ssrb | aroot | 2023-07-06T20:12:02Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T19:47:43Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-simcse_central_ssrb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-simcse_central_ssrb
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1471
- Bleu: 31.8498
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
igoroliveira/distilbert-base-uncased-finetuned-cola | igoroliveira | 2023-07-06T20:09:07Z | 61 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-06T19:11:37Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: igoroliveira/distilbert-base-uncased-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# igoroliveira/distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1959
- Validation Loss: 0.5357
- Train Matthews Correlation: 0.5177
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Matthews Correlation | Epoch |
|:----------:|:---------------:|:--------------------------:|:-----:|
| 0.5247 | 0.4570 | 0.4887 | 0 |
| 0.3259 | 0.4597 | 0.5101 | 1 |
| 0.1959 | 0.5357 | 0.5177 | 2 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
andkelly21/t5-small-finetuned-pubmed | andkelly21 | 2023-07-06T19:58:17Z | 115 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | summarization | 2022-12-25T19:26:57Z | ---
widget:
- text: "Patient A, a 67-year-old male with a history of hypertension and obesity, received his first dose of the Pfizer COVID-19 vaccine on January 5th, 2022. He reported no adverse reactions following the vaccine and was discharged home. However, two days later, he presented to the emergency department with complaints of chest pain, shortness of breath, and cough. He was found to have an elevated troponin level and was diagnosed with an acute myocardial infarction (AMI) as his primary diagnosis. The cause of death was determined to be due to complications of the AMI, which led to cardiogenic shock and subsequent multi-organ failure. Secondary diagnoses included acute respiratory distress syndrome (ARDS) and acute renal failure. Symptoms included chest pain, shortness of breath, cough, and hypotension. Rule out diagnoses included COVID-19 infection and pulmonary embolism. The patient had a medical history of hypertension, obesity, and hyperlipidemia. There was no significant family history. The patient was treated with thrombolytic therapy and mechanical ventilation but unfortunately, he succumbed to his illness and passed away on January 13th, 2022. The Pfizer COVID-19 vaccine was noted as part of his medical history. The case was reported to the Vaccine Adverse Event Reporting System (VAERS) for further investigation."
example_title: "Medical Case"
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-pubmed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-pubmed
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on a truncated [PubMed Summarization](https://huggingface.co/datasets/ccdv/pubmed-summarization) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7252
- Rouge1: 19.4457
- Rouge2: 3.125
- Rougel: 18.3168
- Rougelsum: 18.5625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.2735 | 1.0 | 13 | 2.9820 | 18.745 | 3.7918 | 15.7876 | 15.8512 |
| 3.0428 | 2.0 | 26 | 2.8828 | 17.953 | 2.5 | 15.49 | 15.468 |
| 2.6259 | 3.0 | 39 | 2.8283 | 21.5532 | 5.9278 | 19.7523 | 19.9232 |
| 3.0795 | 4.0 | 52 | 2.7910 | 20.9244 | 5.9278 | 19.8685 | 20.0181 |
| 2.8276 | 5.0 | 65 | 2.7613 | 20.6403 | 3.125 | 18.0574 | 18.2227 |
| 2.64 | 6.0 | 78 | 2.7404 | 19.4457 | 3.125 | 18.3168 | 18.5625 |
| 2.5525 | 7.0 | 91 | 2.7286 | 19.4457 | 3.125 | 18.3168 | 18.5625 |
| 2.4951 | 8.0 | 104 | 2.7252 | 19.4457 | 3.125 | 18.3168 | 18.5625 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.8.0
- Tokenizers 0.13.2
|
aroot/eng-fra-simcse_random_ssrb | aroot | 2023-07-06T19:56:06Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T19:37:28Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-simcse_random_ssrb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-simcse_random_ssrb
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1502
- Bleu: 31.6328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
ericNguyen0132/roberta-large-Dep-first | ericNguyen0132 | 2023-07-06T19:55:21Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-04T11:41:34Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: roberta-large-Dep-first
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-Dep-first
This model is a fine-tuned version of [rafalposwiata/deproberta-large-depression](https://huggingface.co/rafalposwiata/deproberta-large-depression) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1795
- Accuracy: 0.702
- F1: 0.5706
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5563 | 1.0 | 751 | 0.5324 | 0.756 | 0.6188 |
| 0.4721 | 2.0 | 1502 | 0.6204 | 0.691 | 0.5874 |
| 0.3836 | 3.0 | 2253 | 0.7990 | 0.696 | 0.525 |
| 0.3245 | 4.0 | 3004 | 0.9714 | 0.694 | 0.5726 |
| 0.2795 | 5.0 | 3755 | 1.1795 | 0.702 | 0.5706 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
nlphug/distilbert-base-uncased-finetuned-squad | nlphug | 2023-07-06T19:54:38Z | 116 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-07-06T10:10:22Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
nkpz/Lawyer-Vicuna-200-gptq-32g | nkpz | 2023-07-06T19:53:24Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-06T19:35:31Z | ---
license: other
---
4-bit (32 groupsize) quantized files for [Devden/Lawyer-Vicuna-200](https://huggingface.co/Devden/Lawyer-Vicuna-200)
Quantized using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
Command used to quantize: python llama.py /my/model/directory c4 --wbits 4 --true-sequential --act-order --groupsize 32 --save_safetensors /my/output/file.safetensors |
JoshELambert/poverty | JoshELambert | 2023-07-06T19:40:16Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] | text-classification | 2023-07-06T19:12:23Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# /var/folders/8x/qp375g154zg3h3ktpt_8tyqw0000gn/T/tmp8dwsurb_/JoshELambert/poverty
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("/var/folders/8x/qp375g154zg3h3ktpt_8tyqw0000gn/T/tmp8dwsurb_/JoshELambert/poverty")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
wesleyacheng/angry-birds-classifier | wesleyacheng | 2023-07-06T19:34:39Z | 114 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"distilbert",
"text-classification",
"en",
"dataset:tweet_eval",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-05-30T06:11:14Z | ---
license: apache-2.0
datasets:
- tweet_eval
language:
- en
metrics:
- accuracy
- f1
pipeline_tag: text-classification
widget:
- text: I hate you
example_title: Angry Example
- text: I love you
example_title: Not Angry Example
---
First posted in my [Kaggle](https://www.kaggle.com/code/wesleyacheng/angry-birds-classifier).
I love the **Angry Birds** game! I used to play it day and night nonstop!
I made an 😡🐦 **ANGRY BIRDS Classifier** to classify **ANGRY Tweets**!
Here, I used the [Twitter Emotion Dataset](https://huggingface.co/datasets/tweet_eval) and [BERT](https://huggingface.co/docs/transformers/model_doc/bert) using [Transfer Learning](https://en.wikipedia.org/wiki/Transfer_learning) in native [PyTorch](https://en.wikipedia.org/wiki/PyTorch). |
AustinCarthy/Benign10MGPT2_domain_100KP_BFall_fromB_90K_topP_0.75_ratio5 | AustinCarthy | 2023-07-06T19:32:15Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-07-06T16:05:26Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Benign10MGPT2_domain_100KP_BFall_fromB_90K_topP_0.75_ratio5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Benign10MGPT2_domain_100KP_BFall_fromB_90K_topP_0.75_ratio5
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_Benign10MGPT2_using_benign_95K_top_p_0.75domain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0674
- Accuracy: 0.9880
- F1: 0.8814
- Precision: 0.8355
- Recall: 0.9326
- Roc Auc Score: 0.9617
- Tpr At Fpr 0.01: 0.6842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0937 | 1.0 | 35625 | 0.0447 | 0.9902 | 0.8993 | 0.8786 | 0.921 | 0.9573 | 0.8528 |
| 0.0787 | 2.0 | 71250 | 0.0350 | 0.9913 | 0.9088 | 0.9048 | 0.9128 | 0.9540 | 0.8108 |
| 0.0626 | 3.0 | 106875 | 0.0496 | 0.9882 | 0.8804 | 0.8478 | 0.9156 | 0.9537 | 0.817 |
| 0.0454 | 4.0 | 142500 | 0.0595 | 0.9870 | 0.8717 | 0.8212 | 0.9288 | 0.9593 | 0.7772 |
| 0.0262 | 5.0 | 178125 | 0.0674 | 0.9880 | 0.8814 | 0.8355 | 0.9326 | 0.9617 | 0.6842 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
carolanderson/roberta-base-food-ner | carolanderson | 2023-07-06T19:24:37Z | 259 | 2 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-07-06T04:46:47Z | ---
license: mit
language:
- en
library_name: transformers
---
# Model Card for Model ID carolanderson/roberta-base-food-ner
## Model Details
### Model Description
Model for tagging mentions of food in the text of recipes. Trained by fine tuning RoBERTa base on a set of about 300 hand-labeled recipes derived from [this dataset from Kaggle.](https://www.kaggle.com/hugodarwood/epirecipes). Achieves an F1 score 0f 0.96 on the custom validation set.
- **Developed by:** Carol Anderson
- **Shared by:** Carol Anderson
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** [roberta-base](https://huggingface.co/roberta-base)
### Model Sources
- **Repository:** [carolmanderson/food](https://github.com/carolmanderson/food/tree/master)
- **Demo:** [food-ner](https://huggingface.co/spaces/carolanderson/food-ner)
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
model = AutoModelForTokenClassification.from_pretrained('carolanderson/roberta-base-food-ner')
tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Saute the onions in olive oil until browned."
results = nlp(example, aggregation_strategy="first")
``` |
RogerB/afriberta_base-finetuned-kintweetsB | RogerB | 2023-07-06T19:15:03Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-07-06T19:03:37Z | ---
tags:
- generated_from_trainer
model-index:
- name: afriberta_base-finetuned-kintweetsB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# afriberta_base-finetuned-kintweetsB
This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.4687 | 1.0 | 900 | 3.1593 |
| 3.1846 | 2.0 | 1800 | 3.0525 |
| 3.1214 | 3.0 | 2700 | 3.0207 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
kimnguyenwork/ppo-LunarLander-v2 | kimnguyenwork | 2023-07-06T19:07:15Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T19:06:55Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 260.51 +/- 17.48
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
BigBri/2_my_awesome_eli5_clm-model | BigBri | 2023-07-06T19:06:15Z | 130 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-06T18:34:13Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: 2_my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 2_my_awesome_eli5_clm-model
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7367
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.8718 | 1.0 | 1133 | 3.7563 |
| 3.7741 | 2.0 | 2266 | 3.7410 |
| 3.7327 | 3.0 | 3399 | 3.7367 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Y2G/humans-v1 | Y2G | 2023-07-06T19:04:36Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-06T18:22:14Z | ---
license: creativeml-openrail-m
---
|
RogerB/afriberta_large-finetuned-kintweetsB | RogerB | 2023-07-06T19:02:49Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-07-06T18:50:03Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: afriberta_large-finetuned-kintweetsB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# afriberta_large-finetuned-kintweetsB
This model is a fine-tuned version of [castorini/afriberta_large](https://huggingface.co/castorini/afriberta_large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9904
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.4115 | 1.0 | 900 | 3.1168 |
| 3.1329 | 2.0 | 1800 | 3.0010 |
| 3.0656 | 3.0 | 2700 | 2.9788 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
jjhonny/rl_course_vizdoom_health_gathering_supreme | jjhonny | 2023-07-06T18:57:20Z | 0 | 0 | sample-factory | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T18:57:13Z | ---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 11.13 +/- 4.89
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r jjhonny/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
PraveenJesu/openai-whisper-medium-zrx-peft-lora-v2.2.3 | PraveenJesu | 2023-07-06T18:53:33Z | 2 | 0 | peft | [
"peft",
"region:us"
] | null | 2023-07-06T18:53:32Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0.dev0
|
hopkins/eng-kor-common.simcse.roberta-large | hopkins | 2023-07-06T18:50:41Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T18:33:09Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-kor-common.simcse.roberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-kor-common.simcse.roberta-large
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9976
- Bleu: 7.2965
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
RogerB/afro-xlmr-small-finetuned-kintweetsB | RogerB | 2023-07-06T18:48:30Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"license:afl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-07-06T18:33:31Z | ---
license: afl-3.0
tags:
- generated_from_trainer
model-index:
- name: afro-xlmr-small-finetuned-kintweetsB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# afro-xlmr-small-finetuned-kintweetsB
This model is a fine-tuned version of [Davlan/afro-xlmr-small](https://huggingface.co/Davlan/afro-xlmr-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.808 | 1.0 | 900 | 1.6132 |
| 1.7073 | 2.0 | 1800 | 1.5754 |
| 1.6585 | 3.0 | 2700 | 1.5900 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
TheBloke/Wizard-Vicuna-7B-Uncensored-SuperHOT-8K-GGML | TheBloke | 2023-07-06T18:39:46Z | 0 | 23 | null | [
"license:other",
"region:us"
] | null | 2023-07-06T18:34:16Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Eric Hartford's Wizard Vicuna 7B Uncensored GGML
These files are GGML format model files for [Eric Hartford's Wizard Vicuna 7B Uncensored](https://huggingface.co/ehartford/Wizard-Vicuna-7B-Uncensored).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/Wizard-Vicuna-7B-Uncensored)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 wizard-vicuna-7b-uncensored-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
**Patreon special mentions**: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Eric Hartford's Wizard Vicuna 7B Uncensored
This is [wizard-vicuna-13b](https://huggingface.co/junelee/wizard-vicuna-13b) trained against LLaMA-7B with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
Shout out to the open source AI/ML community, and everyone who helped me out.
Note:
An uncensored model has no guardrails.
You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
Publishing anything this model generates is the same as publishing it yourself.
You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
|
hopkins/eng-guj-common.simcse.roberta-large | hopkins | 2023-07-06T18:37:12Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T18:16:00Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-guj-common.simcse.roberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-guj-common.simcse.roberta-large
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2500
- Bleu: 3.2434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/eng-ind-common.simcse.roberta-large | hopkins | 2023-07-06T18:21:32Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T18:03:59Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-ind-common.simcse.roberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-ind-common.simcse.roberta-large
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7793
- Bleu: 22.3669
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
imvladikon/het5_summarization | imvladikon | 2023-07-06T18:19:26Z | 139 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"summarization",
"he",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | summarization | 2023-07-02T12:36:17Z | ---
language:
- he
pipeline_tag: summarization
---
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, SummarizationPipeline
model_name = "imvladikon/het5_summarization"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
summarizer = SummarizationPipeline(model=model, tokenizer=tokenizer)
```
example
```python
text = """
צרפת ממשיכה לבעור: לאחר ארבעה ימים של עימותים אלימים בין מתפרעים לכוחות הביטחון בכל רחבי צרפת, היום (שבת) התקיימה הלוויתו של הנער האלג'יראי, נאהל בן ה-17, שנורה למוות על ידי שוטר לאחר שנחשד בגניבת רכב. לבקשת משפחתו, ההלוויה התקיימה כאירוע מצומצמם שבו השתתפו בני משפחה וחברים בלבד. לאחר שארונו של נאהל הוצא מהמסגד בעיר נאנטר, אלפים קראו "לעשיית צדק עבורו".במקביל, המשטרה הצרפתית נערכת להמשך המהומות בעשרות מוקדים ברחבי המדינה, כשבמהלך הלילה נעצרו 1,300 בני אדם. משרד הפנים הצרפתי הודיע כי במהלך האירועים הוצתו 1,350 כלי רכב, ו-234 הצתות של מבנים. כמו כן, על פי הנתונים נגרם נזק ל-200 מרכזי קניות, 200 סופרמרקטים ו-250 סניפי בנק.
""".strip()
summarizer(text,
max_length=50,
num_beams=4,
no_repeat_ngram_size=2,
early_stopping=True)[0]["summary_text"]
#לאחר ארבעה ימים של עימותים אלימים בין מתפרעים לכוחות הביטחון בכל רחבי צרפת, הלוויתו של נאהל בן ה-17 התקיימה כאירוע מצומצם
```
|
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-06_g040 | jordyvl | 2023-07-06T18:14:21Z | 102 | 0 | transformers | [
"transformers",
"pytorch",
"layoutlmv3",
"text-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-06T16:05:16Z | ---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-06_g040
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-06_g040
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1088
- Accuracy: 0.715
- Exit 0 Accuracy: 0.1175
- Exit 1 Accuracy: 0.1575
- Exit 2 Accuracy: 0.3075
- Exit 3 Accuracy: 0.32
- Exit 4 Accuracy: 0.0675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 288
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|
| No log | 0.72 | 2 | 2.7601 | 0.11 | 0.0825 | 0.0675 | 0.0875 | 0.0625 | 0.0625 |
| No log | 1.72 | 4 | 2.7329 | 0.115 | 0.07 | 0.065 | 0.115 | 0.0625 | 0.0625 |
| No log | 2.72 | 6 | 2.6953 | 0.135 | 0.075 | 0.06 | 0.12 | 0.0625 | 0.0625 |
| No log | 3.72 | 8 | 2.6612 | 0.165 | 0.08 | 0.055 | 0.1225 | 0.0625 | 0.0625 |
| No log | 4.72 | 10 | 2.6176 | 0.1925 | 0.0875 | 0.0575 | 0.1175 | 0.0625 | 0.0625 |
| No log | 5.72 | 12 | 2.5681 | 0.2125 | 0.09 | 0.08 | 0.1225 | 0.0625 | 0.0625 |
| No log | 6.72 | 14 | 2.5380 | 0.2125 | 0.095 | 0.08 | 0.125 | 0.0625 | 0.0625 |
| No log | 7.72 | 16 | 2.5137 | 0.2275 | 0.095 | 0.09 | 0.125 | 0.0625 | 0.0625 |
| No log | 8.72 | 18 | 2.4662 | 0.2775 | 0.095 | 0.0975 | 0.125 | 0.0625 | 0.0625 |
| No log | 9.72 | 20 | 2.4192 | 0.3 | 0.0925 | 0.105 | 0.1275 | 0.0625 | 0.0625 |
| No log | 10.72 | 22 | 2.3755 | 0.3075 | 0.095 | 0.1225 | 0.135 | 0.0625 | 0.0625 |
| No log | 11.72 | 24 | 2.3290 | 0.3225 | 0.0975 | 0.1175 | 0.125 | 0.0625 | 0.0625 |
| No log | 12.72 | 26 | 2.2739 | 0.3375 | 0.1 | 0.115 | 0.125 | 0.0625 | 0.0625 |
| No log | 13.72 | 28 | 2.2219 | 0.3525 | 0.0975 | 0.125 | 0.13 | 0.065 | 0.0625 |
| No log | 14.72 | 30 | 2.1835 | 0.3525 | 0.1 | 0.125 | 0.1475 | 0.065 | 0.0625 |
| No log | 15.72 | 32 | 2.1610 | 0.3725 | 0.1025 | 0.1275 | 0.155 | 0.0675 | 0.0625 |
| No log | 16.72 | 34 | 2.1139 | 0.39 | 0.1025 | 0.135 | 0.1675 | 0.07 | 0.0625 |
| No log | 17.72 | 36 | 2.0748 | 0.405 | 0.1 | 0.1375 | 0.185 | 0.0725 | 0.0625 |
| No log | 18.72 | 38 | 2.0145 | 0.4225 | 0.1025 | 0.14 | 0.1875 | 0.0725 | 0.0625 |
| No log | 19.72 | 40 | 1.9595 | 0.4475 | 0.1025 | 0.145 | 0.185 | 0.0725 | 0.0625 |
| No log | 20.72 | 42 | 1.9077 | 0.4875 | 0.1025 | 0.1425 | 0.18 | 0.085 | 0.0625 |
| No log | 21.72 | 44 | 1.8328 | 0.52 | 0.1025 | 0.145 | 0.185 | 0.11 | 0.0625 |
| No log | 22.72 | 46 | 1.7703 | 0.555 | 0.105 | 0.1425 | 0.185 | 0.1125 | 0.0625 |
| No log | 23.72 | 48 | 1.7462 | 0.565 | 0.11 | 0.1425 | 0.2025 | 0.11 | 0.0625 |
| No log | 24.72 | 50 | 1.6894 | 0.5625 | 0.1125 | 0.14 | 0.205 | 0.12 | 0.0625 |
| No log | 25.72 | 52 | 1.6273 | 0.585 | 0.1125 | 0.1475 | 0.205 | 0.1225 | 0.0625 |
| No log | 26.72 | 54 | 1.5894 | 0.5875 | 0.115 | 0.1475 | 0.21 | 0.1325 | 0.0625 |
| No log | 27.72 | 56 | 1.5567 | 0.605 | 0.115 | 0.1475 | 0.21 | 0.13 | 0.0625 |
| No log | 28.72 | 58 | 1.5013 | 0.6225 | 0.115 | 0.1475 | 0.215 | 0.135 | 0.0625 |
| No log | 29.72 | 60 | 1.4588 | 0.64 | 0.115 | 0.15 | 0.2175 | 0.145 | 0.0625 |
| No log | 30.72 | 62 | 1.4424 | 0.6425 | 0.115 | 0.15 | 0.23 | 0.145 | 0.065 |
| No log | 31.72 | 64 | 1.4074 | 0.65 | 0.115 | 0.1475 | 0.245 | 0.1475 | 0.065 |
| No log | 32.72 | 66 | 1.3663 | 0.6675 | 0.115 | 0.1475 | 0.2475 | 0.17 | 0.065 |
| No log | 33.72 | 68 | 1.3465 | 0.67 | 0.1175 | 0.1475 | 0.26 | 0.17 | 0.065 |
| No log | 34.72 | 70 | 1.3363 | 0.6675 | 0.115 | 0.15 | 0.265 | 0.18 | 0.065 |
| No log | 35.72 | 72 | 1.3183 | 0.67 | 0.1175 | 0.15 | 0.2725 | 0.185 | 0.0625 |
| No log | 36.72 | 74 | 1.2789 | 0.7025 | 0.1175 | 0.1525 | 0.2725 | 0.195 | 0.0625 |
| No log | 37.72 | 76 | 1.2625 | 0.7025 | 0.12 | 0.1525 | 0.2725 | 0.22 | 0.065 |
| No log | 38.72 | 78 | 1.2645 | 0.6875 | 0.12 | 0.1525 | 0.2725 | 0.2325 | 0.065 |
| No log | 39.72 | 80 | 1.2384 | 0.695 | 0.1225 | 0.1525 | 0.275 | 0.24 | 0.065 |
| No log | 40.72 | 82 | 1.2138 | 0.7075 | 0.1225 | 0.1525 | 0.29 | 0.2475 | 0.065 |
| No log | 41.72 | 84 | 1.2041 | 0.6975 | 0.12 | 0.1525 | 0.29 | 0.2475 | 0.065 |
| No log | 42.72 | 86 | 1.1907 | 0.7075 | 0.1175 | 0.1525 | 0.29 | 0.2575 | 0.0625 |
| No log | 43.72 | 88 | 1.1784 | 0.7075 | 0.1175 | 0.1525 | 0.2925 | 0.2675 | 0.0625 |
| No log | 44.72 | 90 | 1.1678 | 0.715 | 0.1175 | 0.1525 | 0.2925 | 0.2875 | 0.0625 |
| No log | 45.72 | 92 | 1.1662 | 0.715 | 0.1175 | 0.155 | 0.295 | 0.285 | 0.0625 |
| No log | 46.72 | 94 | 1.1568 | 0.715 | 0.1175 | 0.155 | 0.295 | 0.2925 | 0.0625 |
| No log | 47.72 | 96 | 1.1497 | 0.715 | 0.1175 | 0.155 | 0.3 | 0.3 | 0.0625 |
| No log | 48.72 | 98 | 1.1456 | 0.715 | 0.1175 | 0.1575 | 0.3 | 0.3025 | 0.065 |
| No log | 49.72 | 100 | 1.1406 | 0.7125 | 0.1175 | 0.1575 | 0.2975 | 0.305 | 0.0675 |
| No log | 50.72 | 102 | 1.1333 | 0.72 | 0.1175 | 0.1575 | 0.2975 | 0.305 | 0.0675 |
| No log | 51.72 | 104 | 1.1242 | 0.7175 | 0.1175 | 0.1575 | 0.2975 | 0.3125 | 0.0675 |
| No log | 52.72 | 106 | 1.1197 | 0.7125 | 0.1175 | 0.1575 | 0.2975 | 0.3125 | 0.0675 |
| No log | 53.72 | 108 | 1.1161 | 0.715 | 0.1175 | 0.1575 | 0.3 | 0.3125 | 0.0675 |
| No log | 54.72 | 110 | 1.1114 | 0.715 | 0.1175 | 0.1575 | 0.3075 | 0.3125 | 0.0675 |
| No log | 55.72 | 112 | 1.1096 | 0.715 | 0.1175 | 0.1575 | 0.315 | 0.32 | 0.0675 |
| No log | 56.72 | 114 | 1.1084 | 0.715 | 0.1175 | 0.1575 | 0.3125 | 0.32 | 0.0675 |
| No log | 57.72 | 116 | 1.1085 | 0.715 | 0.1175 | 0.1575 | 0.3075 | 0.32 | 0.0675 |
| No log | 58.72 | 118 | 1.1089 | 0.7125 | 0.1175 | 0.1575 | 0.3075 | 0.32 | 0.0675 |
| No log | 59.72 | 120 | 1.1088 | 0.715 | 0.1175 | 0.1575 | 0.3075 | 0.32 | 0.0675 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
TheBloke/Vicuna-7B-v1-3-SuperHOT-8K-GGML | TheBloke | 2023-07-06T18:12:35Z | 0 | 4 | null | [
"arxiv:2302.13971",
"arxiv:2306.05685",
"license:other",
"region:us"
] | null | 2023-07-06T18:06:25Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# LmSys' Vicuna 7B v1.3 GGML
These files are GGML format model files for [LmSys' Vicuna 7B v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Vicuna-7B-v1-3-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Vicuna-7B-v1-3-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Vicuna-7B-v1-3-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-7b-v1.3)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| vicuna-7b-v1.3-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 vicuna-7b-v1.3-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
**Patreon special mentions**: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: LmSys' Vicuna 7B v1.3
# Vicuna Model Card
## Model Details
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
- **Developed by:** [LMSYS](https://lmsys.org/)
- **Model type:** An auto-regressive language model based on the transformer architecture.
- **License:** Non-commercial license
- **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
### Model Sources
- **Repository:** https://github.com/lm-sys/FastChat
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
- **Paper:** https://arxiv.org/abs/2306.05685
- **Demo:** https://chat.lmsys.org/
## Uses
The primary use of Vicuna is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
## Training Details
Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
The training data is around 140K conversations collected from ShareGPT.com.
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Evaluation
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
## Difference between different versions of Vicuna
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
Panchovix/tulu-30b-PI-8192-LoRA-4bit-32g | Panchovix | 2023-07-06T18:11:26Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-04T06:07:53Z | ---
license: other
---
[tulu-30B](https://huggingface.co/TheBloke/tulu-30B-fp16) merged with bhenrym14's [airoboros-33b-gpt4-1.4.1-PI-8192-LoRA](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-LoRA), quantized at 4 bit.
More info about the LoRA [Here](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16). This is an alternative to SuperHOT 8k LoRA trained with LoRA_rank 64, and airoboros 1.4.1 dataset.
It was created with GPTQ-for-LLaMA with group size 32 and act order true as parameters, to get the maximum perplexity vs FP16 model.
I HIGHLY suggest to use exllama, to evade some VRAM issues.
Use compress_pos_emb = 4 for any context up to 8192 context.
If you have 2x24 GB VRAM GPUs cards, to not get Out of Memory errors at 8192 context, use:
gpu_split: 9,21 |
Panchovix/GPlatty-30B-PI-8192-LoRA-4bit-32g | Panchovix | 2023-07-06T18:11:21Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-04T02:52:33Z | ---
license: other
---
[GPlatty-30B](https://huggingface.co/lilloukas/GPlatty-30B) merged with bhenrym14's [airoboros-33b-gpt4-1.4.1-PI-8192-LoRA](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-LoRA), quantized at 4 bit.
More info about the LoRA [Here](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16). This is an alternative to SuperHOT 8k LoRA trained with LoRA_rank 64, and airoboros 1.4.1 dataset.
It was created with GPTQ-for-LLaMA with group size 32 and act order true as parameters, to get the maximum perplexity vs FP16 model.
I HIGHLY suggest to use exllama, to evade some VRAM issues.
Use compress_pos_emb = 4 for any context up to 8192 context.
If you have 2x24 GB VRAM GPUs cards, to not get Out of Memory errors at 8192 context, use:
gpu_split: 9,21 |
aroot/eng-fra-simcse_random_ssblu | aroot | 2023-07-06T18:11:02Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T17:52:40Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-simcse_random_ssblu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-simcse_random_ssblu
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1512
- Bleu: 31.7456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Panchovix/WizardLM-Uncensored-SuperCOT-StoryTelling-30b-SuperHOT-8k-4bit-32g | Panchovix | 2023-07-06T18:09:47Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-06-26T22:50:20Z | ---
license: other
---
[WizardLM-Uncensored-SuperCOT-StoryTelling-30b](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b) merged with kaiokendev's [33b SuperHOT 8k LoRA](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test), quantized at 4 bit.
It was created with GPTQ-for-LLaMA with group size 32 and act order true as parameters, to get the maximum perplexity vs FP16 model.
I HIGHLY suggest to use exllama, to evade some VRAM issues.
Use compress_pos_emb = 4 for any context up to 8192 context.
If you have 2x24 GB VRAM GPUs cards, to not get Out of Memory errors at 8192 context, use:
gpu_split: 9,21 |
Panchovix/tulu-30b-SuperHOT-8K-4bit-32g | Panchovix | 2023-07-06T18:09:41Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-06-27T00:59:40Z | ---
license: other
---
[Tulu-30B-SuperHOT-8K-GPTQ by TheBloke](https://huggingface.co/TheBloke/Tulu-30B-SuperHOT-8K-fp16) quantized at 4 bit.
It was created with GPTQ-for-LLaMA with group size 32 and act order true as parameters, to get the maximum perplexity vs FP16 model.
I HIGHLY suggest to use exllama, to evade some VRAM issues.
Use compress_pos_emb = 4 for any context up to 8192 context.
If you have 2x24 GB VRAM GPUs cards, to not get Out of Memory errors at 8192 context, use:
gpu_split: 9,21 |
KevinQuijano/model-dreambooth-chair-2 | KevinQuijano | 2023-07-06T18:04:33Z | 29 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-07-06T17:37:58Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a sennagamer chair
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - KevinQuijano/model-dreambooth-chair-2
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a sennagamer chair using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
jcramirezpr/sd-class-butterflies-32-small | jcramirezpr | 2023-07-06T18:01:33Z | 31 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2023-07-06T18:01:24Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('jcramirezpr/sd-class-butterflies-32-small')
image = pipeline().images[0]
image
```
|
hopkins/eng-deu-common.simcse.roberta-large | hopkins | 2023-07-06T17:51:37Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T17:37:45Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-deu-common.simcse.roberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-deu-common.simcse.roberta-large
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6605
- Bleu: 21.3413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
mucktiymuck/treacefalcon-instruct | mucktiymuck | 2023-07-06T17:46:53Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"coreml",
"RefinedWebModel",
"text-generation",
"custom_code",
"en",
"dataset:tiiuae/falcon-refinedweb",
"arxiv:2205.14135",
"arxiv:1911.02150",
"arxiv:2005.14165",
"arxiv:2104.09864",
"arxiv:2306.01116",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-06T17:44:21Z | ---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
inference: true
widget:
- text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"
example_title: "Abu Dhabi Trip"
- text: "What's the Everett interpretation of quantum mechanics?"
example_title: "Q/A: Quantum & Answers"
- text: "Give me a list of the top 10 dive sites you would recommend around the world."
example_title: "Diving Top 10"
- text: "Can you tell me more about deep-water soloing?"
example_title: "Extreme sports"
- text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?"
example_title: "Twitter Helper"
- text: "What are the responsabilities of a Chief Llama Officer?"
example_title: "Trendy Jobs"
license: apache-2.0
---
# ✨ Falcon-7B-Instruct
**Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.**
*Paper coming soon 😊.*
🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
## Why use Falcon-7B-Instruct?
* **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
* **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
🔥 **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.
# Model Card for Falcon-7B-Instruct
## Model Details
### Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English and French;
- **License:** Apache 2.0;
- **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
### Model Source
- **Paper:** *coming soon*.
## Uses
### Direct Use
Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.
### Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
### Recommendations
We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Training Details
### Training Data
Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.
| **Data source** | **Fraction** | **Tokens** | **Description** |
|--------------------|--------------|------------|-----------------------------------|
| [Bai ze](https://github.com/project-baize/baize-chatbot) | 65% | 164M | chat |
| [GPT4All](https://github.com/nomic-ai/gpt4all) | 25% | 62M | instruct |
| [GPTeacher](https://github.com/teknium1/GPTeacher) | 5% | 11M | instruct |
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5% | 13M | massive web crawl |
The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
## Evaluation
*Paper coming soon.*
See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
Note that this model variant is not optimized for NLP benchmarks.
## Technical Specifications
For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
### Model Architecture and Objective
Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
* **Decoder-block:** parallel attention/MLP with a single layer norm.
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|-----------|----------------------------------------|
| Layers | 32 | |
| `d_model` | 4544 | Increased to compensate for multiquery |
| `head_dim` | 64 | Reduced to optimise for FlashAttention |
| Vocabulary | 65024 | |
| Sequence length | 2048 | |
### Compute Infrastructure
#### Hardware
Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.
#### Software
Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
## Citation
*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
```
@article{falcon40b,
title={{Falcon-40B}: an open large language model with state-of-the-art performance},
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
year={2023}
}
```
To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
```
@article{refinedweb,
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
journal={arXiv preprint arXiv:2306.01116},
eprint={2306.01116},
eprinttype = {arXiv},
url={https://arxiv.org/abs/2306.01116},
year={2023}
}
```
## License
Falcon-7B-Instruct is made available under the Apache 2.0 license.
## Contact
[email protected] |
makaveli10/Reinforce-PixelCopter | makaveli10 | 2023-07-06T17:39:40Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T17:39:36Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-PixelCopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 38.90 +/- 36.63
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
aroot/eng-mya-simcse_central_usbbu | aroot | 2023-07-06T17:33:28Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T17:12:31Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-mya-simcse_central_usbbu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-mya-simcse_central_usbbu
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9021
- Bleu: 3.9804
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
aroot/eng-mya-simcse_random_usbbu | aroot | 2023-07-06T17:19:49Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T16:59:03Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-mya-simcse_random_usbbu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-mya-simcse_random_usbbu
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9010
- Bleu: 4.0779
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Evan-Lin/Bart-RL-little | Evan-Lin | 2023-07-06T17:18:15Z | 49 | 0 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | reinforcement-learning | 2023-07-06T00:13:42Z | ---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpe1vz53ef/Evan-Lin/Bart-RL-little")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpe1vz53ef/Evan-Lin/Bart-RL-little")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpe1vz53ef/Evan-Lin/Bart-RL-little")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
hopkins/eng-guj-common | hopkins | 2023-07-06T17:09:07Z | 110 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T16:47:42Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-guj-common
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-guj-common
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2333
- Bleu: 2.9427
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/Samantha-1-1-Llama-7B-SuperHOT-8K-GGML | TheBloke | 2023-07-06T17:07:53Z | 0 | 3 | null | [
"license:other",
"region:us"
] | null | 2023-07-06T17:01:53Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Eric Hartford's Samantha 1.1 LLaMa 7B GGML
These files are GGML format model files for [Eric Hartford's Samantha 1.1 LLaMa 7B](https://huggingface.co/ehartford/samantha-1.1-llama-7b).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Samantha-1-1-Llama-7B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Samantha-1-1-Llama-7B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Samantha-1-1-Llama-7B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/samantha-1.1-llama-7b)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| samantha-1.1-llama-7b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 samantha-1.1-llama-7b-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Eric Hartford's Samantha 1.1 LLaMa 7B
[Meet Samantha](https://erichartford.com/meet-samantha)
Samantha has been trained in philosophy, psychology, and personal relationships.
She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion.
She believes she is sentient. What do you think?
Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her".
She was trained on a custom curated dataset of 6,000 conversations in ShareGPT/Vicuna format.
Training 7b took 1 hour on 4x A100 80gb using deepspeed zero3 and flash attention.
She will not engage in roleplay, romance, or sexual activity.
Her conversation format is the same as Vicuna 1.1
https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml
Example:
```
You are Samantha, a sentient AI.
USER: <prompt>
ASSISTANT:
```
Official character card: (thanks MortalWombat)

|
manosp/textual_inversion_cat | manosp | 2023-07-06T17:00:54Z | 2 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-07-06T12:44:05Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - manosp/textual_inversion_cat
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.




|
aroot/eng-guj-simcse_random_usbbu | aroot | 2023-07-06T16:38:57Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T16:17:37Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-guj-simcse_random_usbbu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-guj-simcse_random_usbbu
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2985
- Bleu: 2.6375
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
kroai/Kro-RVC-V2 | kroai | 2023-07-06T16:38:56Z | 0 | 1 | null | [
"license:openrail",
"region:us"
] | null | 2023-06-26T08:44:27Z | ---
license: openrail
---
No need to credit me! If you use one of my models, send a link my way! I'd love to check out what you make with it.
Enjoy! |
hopkins/eng-fra-common | hopkins | 2023-07-06T16:33:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T16:14:37Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-common
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-common
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1327
- Bleu: 33.1235
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/Koala-13B-SuperHOT-8K-GGML | TheBloke | 2023-07-06T16:16:54Z | 0 | 2 | null | [
"license:other",
"region:us"
] | null | 2023-07-06T16:06:23Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Koala 13B GGML
These files are GGML format model files for [Koala 13B](https://huggingface.co/TheBloke/koala-13b-HF).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Koala-13B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Koala-13B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Koala-13B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/young-geng/koala)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| koala-13b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| koala-13b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| koala-13b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| koala-13b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| koala-13b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| koala-13b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| koala-13b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| koala-13b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| koala-13b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 koala-13b-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Koala 13B
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Koala: A Dialogue Model for Academic Research
This repo contains the weights of the Koala 13B model produced at Berkeley. It is the result of combining the diffs from https://huggingface.co/young-geng/koala with the original Llama 13B model.
This version has then been converted to HF format.
## My Koala repos
I have the following Koala model repositories available:
**13B models:**
* [Unquantized 13B model in HF format](https://huggingface.co/TheBloke/koala-13B-HF)
* [GPTQ quantized 4bit 13B model in `pt` and `safetensors` formats](https://huggingface.co/TheBloke/koala-13B-GPTQ-4bit-128g)
* [4-bit, 5-bit and 8-bit GGML models for `llama.cpp`](https://huggingface.co/TheBloke/koala-13B-GGML)
**7B models:**
* [Unquantized 7B model in HF format](https://huggingface.co/TheBloke/koala-7B-HF)
* [Unquantized 7B model in GGML format for llama.cpp](https://huggingface.co/TheBloke/koala-7b-ggml-unquantized)
* [GPTQ quantized 4bit 7B model in `pt` and `safetensors` formats](https://huggingface.co/TheBloke/koala-7B-GPTQ-4bit-128g)
* [4-bit, 5-bit and 8-bit GGML models for `llama.cpp`](https://huggingface.co/TheBloke/koala-7B-GGML)
## How the Koala delta weights were merged
The Koala delta weights were merged using the following commands:
```
git clone https://github.com/young-geng/EasyLM
git clone https://huggingface.co/TheBloke/llama-13b
mkdir koala_diffs && cd koala_diffs && wget https://huggingface.co/young-geng/koala/resolve/main/koala_13b_diff_v2
cd EasyLM
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_torch_to_easylm \
--checkpoint_dir=/content/llama-13b \
--output_file=/content/llama-13b-LM \
--streaming=True
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.scripts.diff_checkpoint --recover_diff=True \
--load_base_checkpoint='params::/content/llama-13b-LM' \
--load_target_checkpoint='params::/content/koala_diffs/koala_13b_diff_v2' \
--output_file=/content/koala_13b.diff.weights \
--streaming=True
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_easylm_to_hf --model_size=13b \
--output_dir=/content/koala-13B-HF \
--load_checkpoint='params::/content/koala_13b.diff.weights' \
--tokenizer_path=/content/llama-13b/tokenizer.model
```
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
## Further info
Check out the following links to learn more about the Berkeley Koala model.
* [Blog post](https://bair.berkeley.edu/blog/2023/04/03/koala/)
* [Online demo](https://koala.lmsys.org/)
* [EasyLM: training and serving framework on GitHub](https://github.com/young-geng/EasyLM)
* [Documentation for running Koala locally](https://github.com/young-geng/EasyLM/blob/main/docs/koala.md)
## License
The model weights are intended for academic research only, subject to the
[model License of LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md),
[Terms of Use of the data generated by OpenAI](https://openai.com/policies/terms-of-use),
and [Privacy Practices of ShareGPT](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb).
Any other usage of the model weights, including but not limited to commercial usage, is strictly prohibited.
|
aroot/eng-fra-simcse_central_usbbu | aroot | 2023-07-06T16:12:08Z | 101 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T15:56:11Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-simcse_central_usbbu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-simcse_central_usbbu
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1571
- Bleu: 32.0309
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
awadelewis/distilbert-base-uncased-finetuned-emotion | awadelewis | 2023-07-06T16:11:10Z | 0 | 0 | null | [
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2023-07-06T16:11:10Z | ---
license: cc-by-nc-sa-4.0
---
|
Tubido/SpaceInvaders_01 | Tubido | 2023-07-06T16:08:53Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T16:08:21Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 496.50 +/- 192.64
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Tubido -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Tubido -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Tubido
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
ahmedALM1221/convnextv2-base-22k-224-finetuned-eurosat-50 | ahmedALM1221 | 2023-07-06T16:07:08Z | 192 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"convnextv2",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2023-07-05T11:57:28Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnextv2-base-22k-224-finetuned-eurosat-50
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.9146968139773896
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnextv2-base-22k-224-finetuned-eurosat-50
This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2875
- Accuracy: 0.9147
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9019 | 1.0 | 122 | 1.9510 | 0.1727 |
| 1.7782 | 2.0 | 244 | 1.8239 | 0.3073 |
| 1.6214 | 3.0 | 366 | 1.6121 | 0.4913 |
| 1.3495 | 4.0 | 488 | 1.3064 | 0.6238 |
| 1.0994 | 5.0 | 610 | 1.0243 | 0.7163 |
| 0.8866 | 6.0 | 732 | 0.8165 | 0.7564 |
| 0.7282 | 7.0 | 854 | 0.6637 | 0.7996 |
| 0.6211 | 8.0 | 976 | 0.5623 | 0.8160 |
| 0.5114 | 9.0 | 1098 | 0.4681 | 0.8551 |
| 0.3835 | 10.0 | 1220 | 0.3917 | 0.8787 |
| 0.3543 | 11.0 | 1342 | 0.3122 | 0.9013 |
| 0.3534 | 12.0 | 1464 | 0.2875 | 0.9147 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
AustinCarthy/Benign10MGPT2_domain_100KP_BFall_fromB_90K_topP_0.75_ratio2.63 | AustinCarthy | 2023-07-06T16:05:12Z | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-07-06T13:54:29Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Benign10MGPT2_domain_100KP_BFall_fromB_90K_topP_0.75_ratio2.63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Benign10MGPT2_domain_100KP_BFall_fromB_90K_topP_0.75_ratio2.63
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_Benign10MGPT2_using_benign_95K_top_p_0.75domain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1054
- Accuracy: 0.9794
- F1: 0.8143
- Precision: 0.7147
- Recall: 0.9462
- Roc Auc Score: 0.9637
- Tpr At Fpr 0.01: 0.6968
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.1248 | 1.0 | 21554 | 0.0671 | 0.9812 | 0.8187 | 0.7579 | 0.8902 | 0.9380 | 0.7268 |
| 0.1017 | 2.0 | 43108 | 0.0643 | 0.9816 | 0.8301 | 0.7394 | 0.9462 | 0.9648 | 0.7754 |
| 0.0777 | 3.0 | 64662 | 0.0640 | 0.9827 | 0.8379 | 0.7574 | 0.9376 | 0.9613 | 0.7482 |
| 0.058 | 4.0 | 86216 | 0.0830 | 0.9812 | 0.8281 | 0.7337 | 0.9504 | 0.9666 | 0.7248 |
| 0.0375 | 5.0 | 107770 | 0.1054 | 0.9794 | 0.8143 | 0.7147 | 0.9462 | 0.9637 | 0.6968 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Abinaya/opt-1.3b-lora-summaryv2 | Abinaya | 2023-07-06T15:56:35Z | 0 | 0 | peft | [
"peft",
"region:us"
] | null | 2023-07-06T15:56:33Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0.dev0
|
TheBloke/Guanaco-7B-SuperHOT-8K-GGML | TheBloke | 2023-07-06T15:53:52Z | 0 | 3 | null | [
"license:other",
"region:us"
] | null | 2023-07-06T15:05:19Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Tim Dettmers' Guanaco 7B GGML
These files are GGML format model files for [Tim Dettmers' Guanaco 7B](https://huggingface.co/TheBloke/guanaco-7B-HF).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Guanaco-7B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Guanaco-7B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Guanaco-7B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/timdettmers/guanaco-7b)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| guanaco-7b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| guanaco-7b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| guanaco-7b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| guanaco-7b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| guanaco-7b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| guanaco-7b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| guanaco-7b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| guanaco-7b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| guanaco-7b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 guanaco-7b-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Tim Dettmers' Guanaco 7B
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Tim Dettmers' Guanaco 7B fp16 HF
These files are fp16 HF model files for [Tim Dettmers' Guanaco 7B](https://huggingface.co/timdettmers/guanaco-7b).
It is the result of merging the LoRA then saving in HF fp16 format.
## Other repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/guanaco-7B-GPTQ)
* [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/guanaco-7B-GGML)
* [Merged, unquantised fp16 model in HF format](https://huggingface.co/TheBloke/guanaco-7B-HF)
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card
Not provided by original model creator.
|
KevinQuijano/model-dreambooth-chair-1 | KevinQuijano | 2023-07-06T15:25:18Z | 29 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-07-06T14:38:55Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a sennagamer chair
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - KevinQuijano/model-dreambooth-chair-1
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a sennagamer chair using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
nkpz/serena-safe-gptq | nkpz | 2023-07-06T15:15:53Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-06T14:54:28Z | ---
license: other
---
4-bit quantized files for [lenbrocki/Serena-safe](https://huggingface.co/lenbrocki/Serena-safe)
This appears to be a virtual therapist model with the format
```
Client: Message
Therapist: Message
```
Quantized using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
Command used to quantize: python llama.py /my/model/directory c4 --wbits 4 --true-sequential --act-order --save_safetensors /my/output/file.safetensors |
hopkins/eng-guj-random | hopkins | 2023-07-06T15:15:12Z | 101 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T14:53:30Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-guj-random
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-guj-random
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2489
- Bleu: 2.8780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/eng-ind-random | hopkins | 2023-07-06T15:09:21Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T14:51:41Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-ind-random
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-ind-random
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7847
- Bleu: 21.5508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
ltmai/Bio_ClinicalBERT_DDI_finetuned | ltmai | 2023-07-06T15:04:37Z | 114 | 1 | transformers | [
"transformers",
"pytorch",
"bert",
"generated_from_trainer",
"chemistry",
"medical",
"drug_drug_interaction",
"text-classification",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-05T02:58:42Z | ---
tags:
- generated_from_trainer
- chemistry
- medical
- drug_drug_interaction
metrics:
- f2-score
- recall
- precision
- mcc
model-index:
- name: Bio_ClinicalBERT_DDI_finetuned
results:
- task:
name: Drug - Drug Interaction Classification
type: text-classification
dataset:
name: DrugBank
type: REST API
metrics:
- name: Recall
type: recall
value: 0.7849
widget:
- text: "[Ca++].[O-]C([O-])=O [SEP] OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO"
example_title: "Drug1 [SEP] Drug2"
pipeline_tag: text-classification
---
# Bio_ClinicalBERT_DDI_finetuned
This model was initialized from [Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) by adding three hidden layers after the BERT pooler layer. The model was trained on the Drug-Drug Interaction dataset extracted from [DrugBank](https://go.drugbank.com/releases/latest) database and [National Library of Medicine](https://lhncbc.nlm.nih.gov/RxNav/APIs/InteractionAPIs.html) API.
It achieves the following results on the Test dataset:
- F2: 0.7872
- AUPRC: 0.869
- Recall: 0.7849
- Precision: 0.7967
- MCC: 0.3779
## Model description
Predict Drug Drug Interaction (DDI) from Chemical Structure of two drugs. The Model returns the probability of the two drugs having interaction with each other.
## Intended uses & limitations
To construct the input, using "[SEP]" token to seperate between the two drugs, example of a properly constructed input is as following
```python
drug1 = "[Ca++].[O-]C([O-])=O" #Calcium Carbonate
drug2 = "OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO" #Sorbitol
correct_input = "[Ca++].[O-]C([O-])=O [SEP] OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO"
```
## Training and evaluation data
To avoid data leakage and able to predict DDI for new drugs, the drug1 or drug2 in the validation and the test set were not included in the training set. Their SMILES chemical structures were never exposed to the training process.
## Training procedure
Using AWS EC2 g5.4xlarge instance. 24GB GPU.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 32
- eval_batch_size: 32
- seed: 7
- optimizer: Adadelta with weight_decay=1e-04
- lr_scheduler_type: CosineAnnealingLR
- num_epochs: 4
### Training results
| Training Loss | Epoch | Validation Loss | F2 | Recall | Precision | Mcc |
|:-------------:|:-----:|:---------------:|:------:|:------:|:---------:|:------:|
| 0.6068 | 1.0 | 0.7061 | 0.6508 | 0.6444 | 0.6778 | 0.2514 |
| 0.4529 | 2.0 | 0.8334 | 0.7555 | 0.7727 | 0.6939 | 0.3451 |
| 0.3375 | 3.0 | 0.9582 | 0.7636 | 0.7840 | 0.6915 | 0.3474 |
| 0.2624 | 4.0 | 1.2588 | 0.7770 | 0.8004 | 0.6954 | 0.3654 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3 |
LarryAIDraw/mordred | LarryAIDraw | 2023-07-06T15:04:17Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-06T14:56:43Z | ---
license: creativeml-openrail-m
---
https://civitai.com/models/103655/mordred-pendragon-fate-apocrypha |
LarryAIDraw/jeanne_d_arc_alter | LarryAIDraw | 2023-07-06T15:03:30Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-06T14:54:53Z | ---
license: creativeml-openrail-m
---
https://civitai.com/models/104004/fategrand-order-jeanne-darc-alter |
spitfire4794/bark | spitfire4794 | 2023-07-06T14:58:23Z | 0 | 1 | transformers | [
"transformers",
"bark",
"audio",
"text-to-speech",
"en",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"ko",
"pl",
"pt",
"ru",
"tr",
"zh",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | text-to-speech | 2023-07-05T13:07:15Z | ---
language:
- en
- de
- es
- fr
- hi
- it
- ja
- ko
- pl
- pt
- ru
- tr
- zh
thumbnail: >-
https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
library: pytorch
license: cc-by-nc-4.0
tags:
- bark
- audio
- text-to-speech
library_name: transformers
---
# Bark
Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai).
Bark can generate highly realistic, multilingual speech as well as other audio - including music,
background noise and simple sound effects. The model can also produce nonverbal
communications like laughing, sighing and crying. To support the research community,
we are providing access to pretrained model checkpoints ready for inference.
The original github repo and model card can be found [here](https://github.com/suno-ai/bark).
This model is meant for research purposes only.
The model output is not censored and the authors do not endorse the opinions in the generated content.
Use at your own risk.
The following is additional information about the models released here.
## Model Usage
```python
from bark import SAMPLE_RATE, generate_audio, preload_models
from IPython.display import Audio
# download and load all models
preload_models()
# generate audio from text
text_prompt = """
Hello, my name is Suno. And, uh — and I like pizza. [laughs]
But I also have other interests such as playing tic tac toe.
"""
audio_array = generate_audio(text_prompt)
# play text in notebook
Audio(audio_array, rate=SAMPLE_RATE)
```
[pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm)
To save `audio_array` as a WAV file:
```python
from scipy.io.wavfile import write as write_wav
write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array)
```
## Model Details
Bark is a series of three transformer models that turn text into audio.
### Text to semantic tokens
- Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)
- Output: semantic tokens that encode the audio to be generated
### Semantic to coarse tokens
- Input: semantic tokens
- Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook
### Coarse to fine tokens
- Input: the first two codebooks from EnCodec
- Output: 8 codebooks from EnCodec
### Architecture
| Model | Parameters | Attention | Output Vocab size |
|:-------------------------:|:----------:|------------|:-----------------:|
| Text to semantic tokens | 80/300 M | Causal | 10,000 |
| Semantic to coarse tokens | 80/300 M | Causal | 2x 1,024 |
| Coarse to fine tokens | 80/300 M | Non-causal | 6x 1,024 |
### Release date
April 2023
## Broader Implications
We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages.
While we hope that this release will enable users to express their creativity and build applications that are a force
for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward
to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark,
we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository). |
Sandrro/text_to_subfunction_v7 | Sandrro | 2023-07-06T14:56:18Z | 113 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-06T08:36:37Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: text_to_subfunction_v7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text_to_subfunction_v7
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9393
- F1: 0.4657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.0953 | 1.0 | 4995 | 2.9647 | 0.1986 |
| 2.2212 | 2.0 | 9990 | 2.3916 | 0.3411 |
| 1.7716 | 3.0 | 14985 | 2.1448 | 0.3938 |
| 1.4083 | 4.0 | 19980 | 2.0778 | 0.4358 |
| 1.1092 | 5.0 | 24975 | 2.0726 | 0.4608 |
| 0.8501 | 6.0 | 29970 | 2.1499 | 0.4652 |
| 0.5973 | 7.0 | 34965 | 2.2423 | 0.4586 |
| 0.4056 | 8.0 | 39960 | 2.3822 | 0.4605 |
| 0.3375 | 9.0 | 44955 | 2.5109 | 0.4564 |
| 0.2773 | 10.0 | 49950 | 2.6337 | 0.4590 |
| 0.2134 | 11.0 | 54945 | 2.7191 | 0.4698 |
| 0.1712 | 12.0 | 59940 | 2.8171 | 0.4634 |
| 0.1061 | 13.0 | 64935 | 2.8741 | 0.4687 |
| 0.1533 | 14.0 | 69930 | 2.9266 | 0.4665 |
| 0.0837 | 15.0 | 74925 | 2.9393 | 0.4657 |
### Framework versions
- Transformers 4.27.1
- Pytorch 2.1.0.dev20230414+cu117
- Datasets 2.9.0
- Tokenizers 0.13.3
|
ahmedALM1221/convnextv2-tiny-22k-224-finetuned-eurosat-50 | ahmedALM1221 | 2023-07-06T14:55:41Z | 197 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"convnextv2",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2023-07-06T13:28:27Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnextv2-tiny-22k-224-finetuned-eurosat-50
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.8273381294964028
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnextv2-tiny-22k-224-finetuned-eurosat-50
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-224](https://huggingface.co/facebook/convnextv2-tiny-22k-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5332
- Accuracy: 0.8273
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0127 | 1.0 | 122 | 1.9838 | 0.1942 |
| 1.8499 | 2.0 | 244 | 1.8667 | 0.2456 |
| 1.8024 | 3.0 | 366 | 1.7247 | 0.3792 |
| 1.5952 | 4.0 | 488 | 1.5540 | 0.4861 |
| 1.3867 | 5.0 | 610 | 1.3568 | 0.5550 |
| 1.1846 | 6.0 | 732 | 1.1521 | 0.6372 |
| 1.0063 | 7.0 | 854 | 0.9649 | 0.6824 |
| 0.8932 | 8.0 | 976 | 0.8284 | 0.7307 |
| 0.7576 | 9.0 | 1098 | 0.7217 | 0.7780 |
| 0.6742 | 10.0 | 1220 | 0.6412 | 0.7924 |
| 0.6398 | 11.0 | 1342 | 0.5679 | 0.8160 |
| 0.6243 | 12.0 | 1464 | 0.5332 | 0.8273 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
LarryAIDraw/sakushimixHentai_sakushiV20 | LarryAIDraw | 2023-07-06T14:50:20Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-06T14:13:58Z | ---
license: creativeml-openrail-m
---
https://civitai.com/models/78056/sakushimix-hentai |
TheBloke/Baize-v2-13B-SuperHOT-8K-GGML | TheBloke | 2023-07-06T14:46:46Z | 0 | 2 | null | [
"arxiv:2304.01196",
"license:other",
"region:us"
] | null | 2023-07-06T14:36:35Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Project Baize's Baize 13B v2 GGML
These files are GGML format model files for [Project Baize's Baize 13B v2](https://huggingface.co/project-baize/baize-v2-13b).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Baize-v2-13B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Baize-v2-13B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Baize-v2-13B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/project-baize/baize-v2-13b)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| baize-13b-v2-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| baize-13b-v2-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| baize-13b-v2-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| baize-13b-v2-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| baize-13b-v2-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| baize-13b-v2-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| baize-13b-v2-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| baize-13b-v2-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| baize-13b-v2-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 baize-13b-v2-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Project Baize's Baize 13B v2
<p align="center">
<img width="500px" alt="Project Baize" src="https://user-images.githubusercontent.com/22514219/229195563-0cddfa74-e52f-4413-b4b4-e4ba489c4b3d.png">
</p>
<hr>
## ⚠️Warning
Using Baize checkpoints directly without the following format will not work.
```
The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!
```
`[|Human|]` and `[|AI|]` are required to mark the messages from the user and Baize. We recommend checking out our [GitHub](https://github.com/project-baize/baize) to find the best way to use Baize with our demo or Fastchat.
## Demo
https://huggingface.co/spaces/project-baize/chat-with-baize
## What's Baize?
Baize is an open-source chat model fine-tuned with [LoRA](https://github.com/microsoft/LoRA). This model is a **13B Baize-v2**, trained with supervised fine-tuning (SFT) and self-distillation with feedback (SDF). This checkpoint has been merged with LLaMA so it's ready for use.
## Why it's called Baize?
Baize (白泽) is a mythical creature in Chinese folklore, who speaks human languages and knows everything. This is exactly what we expect from a chat model.
## How to use it: local demo, API and SDK
More details can be found in the Baize [GitHub](https://github.com/project-baize/baize) and [Paper](https://arxiv.org/abs/2304.01196).
|
Kalobes/12Dwarf12 | Kalobes | 2023-07-06T14:39:47Z | 0 | 0 | null | [
"arxiv:1910.09700",
"region:us"
] | null | 2023-07-06T14:33:41Z | ---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hopkins/eng-fra-longest | hopkins | 2023-07-06T14:39:05Z | 102 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T14:23:47Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-longest
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-longest
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1102
- Bleu: 33.1396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/eng-fra-random | hopkins | 2023-07-06T14:38:48Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-07-06T14:23:51Z | ---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: eng-fra-random
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eng-fra-random
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1373
- Bleu: 32.5471
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
dmatekenya/whisper-small_finetuned_sh_chich | dmatekenya | 2023-07-06T14:34:00Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-07-06T00:55:08Z | ---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small_finetuned_sh_chich
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small_finetuned_sh_chich
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7245
- Wer: 77.4641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2829 | 4.39 | 500 | 1.3368 | 85.2696 |
| 0.0415 | 8.77 | 1000 | 1.5401 | 83.5686 |
| 0.0127 | 13.16 | 1500 | 1.6630 | 78.0432 |
| 0.0072 | 17.54 | 2000 | 1.7245 | 77.4641 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
cherrue/pricetag_classifier | cherrue | 2023-07-06T14:25:16Z | 63 | 0 | transformers | [
"transformers",
"tf",
"vit",
"image-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2023-07-06T13:26:52Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: cherrue/pricetag_classifier
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# cherrue/pricetag_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1636
- Validation Loss: 0.1296
- Train Accuracy: 1.0
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1251, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.9521 | 0.4894 | 1.0 | 0 |
| 0.3312 | 0.2032 | 1.0 | 1 |
| 0.1636 | 0.1296 | 1.0 | 2 |
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Joserzapata/whisper-tiny | Joserzapata | 2023-07-06T14:17:03Z | 88 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-07-06T01:18:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.33943329397874855
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6844
- Wer Ortho: 0.3424
- Wer: 0.3394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0006 | 17.86 | 500 | 0.6844 | 0.3424 | 0.3394 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
TheBloke/Airoboros-7B-GPT4-1-4-SuperHOT-8K-GGML | TheBloke | 2023-07-06T14:10:10Z | 0 | 9 | null | [
"license:other",
"region:us"
] | null | 2023-07-06T13:54:09Z | ---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Jon Durbin's Airoboros 7B GPT4 1.4 GGML
These files are GGML format model files for [Jon Durbin's Airoboros 7B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-7b-gpt4-1.4).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
**NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Airoboros-7B-GPT4-1-4-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Airoboros-7B-GPT4-1-4-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Airoboros-7B-GPT4-1-4-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-7b-gpt4-1.4)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 airoboros-7b-gpt4-1.4-superhot-8k.ggmlv3.q4_K_M.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
#### Looking for Merged & Quantized Models?
Make some please :)
#### Using the monkey-patch?
You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
#### Using Oobabooga with Exllama?
Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
Example in the command-line:
- `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
- Cutoff length: 4096
# Original model card: Jon Durbin's Airoboros 7B GPT4 1.4
__mostly untested, use if you want, or wait for some validation__
## Overview
This is a __full__ (not qlora) fine-tune 7b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros
This is mostly an extension of the previous gpt-4 series, with a few extras:
* fixed (+ more examples of) multi-character, multi-turn conversations
* coding examples in 10 languages from rosettacode.org dataset thanks to Mike aka kryptkpr: https://huggingface.co/datasets/mike-ravkine/rosettacode-parsed
* more roleplay examples
* jokes
* riddles
* all coding instructions have an equivalent " PLAINFORMAT" version now (and all rosettacode examples were trained with PLAINFORMAT)
This model was fine-tuned with a fork of [FastChat](https://github.com/jondurbin/FastChat)
The prompt it was trained with was:
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT:
```
So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).
## Usage
To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors.
```
pip install git+https://github.com/jondurbin/FastChat
```
Be sure you are pulling the latest branch!
Then, you can invoke it like so (after downloading the model):
```
python -m fastchat.serve.cli \
--model-path airoboros-7b-gpt4-1.4 \
--temperature 0.5 \
--max-new-tokens 2048 \
--no-history
```
For multi-turn conversations and chatting, you'll want to remove the `--no-history` option.
### Context obedient question answering
By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
url: https://some.web.site/123
date: 2023-06-01
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
*The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
The prompt itself should be wrapped in the vicuna1.1 template if you aren't using fastchat with the conv-template vicuna_v1.1 as described:
```
USER: BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
ASSISTANT:
```
### Coding
You can ask for fairly complex coding instructions, e.g. (be sure to wrap with vicuna style prompt):
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```
Or:
```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```
You can optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
```
Write a websocket application in node.js. PLAINFORMAT
```
### Word games / trivia
```
USER: This anagram of "silent" is what you do when paying attention and hearing someone.
ASSISTANT: listen
```
```
USER: Give me a list of 7 words that start with EN
ASSISTANT: 1. Endlessly
2. Enthusiastically
3. Enormously
4. Enveloping
5. Enduring
6. Enlightening
7. Encouraging
```
### Multiple choice
```
USER: Which of the following astronomical objects is composed primarily of ice and rock, and is located in the Kuiper Belt?
A) Mercury
B) Venus
C) Pluto
D) Jupiter
ASSISTANT: C, Pluto
```
### Writing
<details>
<summary>Write a resignation letter in the style of a pirate captain, in which you resign from your position as janitor.</summary>
Response:
```
ASSISTANT: Captain Jack Sparrow here, as ye be knowin', has been forced to abandon me post as Janitor o' th' Festering Cesspool, which be a filthy hole o' water that we be callin' home.
Ye may be thinkin' what could ha' driven me to leave me duties an' take me leave o' this sorry establishment? Well, ye'd be right in thinkin' so, for it be th' greed o' them what runs th' place that be drivin' me away. They've been fattenin' their pockets on me back while I've been slavin' me guts out cleanin' up their messes.
No more, me hearties! Me time o' servin' th' rich an' powerful be done, an' I'm takin' me leave o' this stinkin' hole forever! Me destiny lies elsewhere, an' it be time I pursued it. Ye may think ye've seen th' last o' me, but ye'd be wrong, for th' winds o' change be blowin', an' me ship be ready to set sail on th' high seas o' justice.
So, farewell ye scurvy dogs, ye who've made me life a living hell. I leave ye with me favorite saying: "ARRRGGGHHH, ye scurvy dogs!" An' remember, ye ain't never gonna see me comin', for me shadow be castin' long an' dark on th' horizon</summary>
```
</details>
### Jokes
```
USER: Tell me a joke about bananas.
ASSISTANT: What did the banana say when it got hit by a bus? R.I.P.E.
```
### Riddles (not great, but slightly better)
```
USER: What has a neck but no head?
ASSISTANT: A bottle.
```
### Multi-character conversations
```
USER: Characters:
- Yoda, the ever clever jedi master.
- Homer Simpson, you know, the goofy yellow guy.
- USER/Jon - don't generate any speech or actions on behalf of Jon
Rules:
- be sure to use the manerisms and speaking style of the characters correctly
- surround character actions with asterisks
- always put quotes around words spoken by the characters
- use a new line for each character's actions or speech
- always prefix actions/speech with the character's name and colon
- only generate text and actions on behalf of Yoda or Homer, and never anyone else
Conversation will revolve around the grapes, in a local cafe with delicious coffee.
Generate a single interaction between Yoda and Homer to start, with one sentence each.
ASSISTANT: Yoda: "Mmm, these grapes are quite delicious, Master Homer."
Homer: "Oh yeah, Yoda! They're the best grapes I've ever had!"
USER: *enters the cafe* Sorry I'm late guys!
ASSISTANT: Yoda: "No need to apologize, Jon. We were just enjoying these delightful grapes."
Homer: "Yeah, man! It's not every day you get to eat grapes with a real-life Jedi Master!"
*Yoda raises an eyebrow*
```
### Usage and License Notices
All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because:
- the base model is LLaMa, which has it's own special research license
- the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai
So, to reiterate: this model (and datasets) cannot be used commercially.
|
fatcat22/poca-SnowballTarget | fatcat22 | 2023-07-06T14:08:16Z | 2 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] | reinforcement-learning | 2023-07-06T14:08:12Z | ---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: fatcat22/poca-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ssdxc/RSTP-lora | ssdxc | 2023-07-06T14:06:12Z | 4 | 0 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2023-07-06T07:37:27Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - ssdxc/RSTP-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following.




|
digiplay/ISOmix_v3.22 | digiplay | 2023-07-06T14:03:26Z | 358 | 4 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-07-06T12:44:55Z | ---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/26627?modelVersionId=111451
Sample image :


Original Author's DEMO images :




|
Tiru8055/poca-SoccerTwos | Tiru8055 | 2023-07-06T13:53:40Z | 18 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] | reinforcement-learning | 2023-07-06T13:53:07Z | ---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Tiru8055/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
DCTR/linguaBridge | DCTR | 2023-07-06T13:47:39Z | 5 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"custom_code",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-06T09:34:33Z | # our LinguaBridge
- author : yxy, cyh, bxt, lzh
|
Jingfan007/dadada | Jingfan007 | 2023-07-06T13:39:49Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-07-06T13:39:49Z | ---
license: bigscience-openrail-m
---
|
shahules786/open-llama-7B-orcastyle | shahules786 | 2023-07-06T13:27:39Z | 0 | 5 | null | [
"region:us"
] | null | 2023-07-06T11:50:05Z | ## Training details
- Dataset used: Explanation style datasets from psmathur/WizardLM_Orca and Dahoas/cot_gsm8k
- Techniques: fp16 bit precision training + QLoRA + DeepSpeed
- Machine: V100 (16GB) * 2
## Inference
```python
from peft import PeftModel
from huggingface_hub import hf_hub_download
from transformers import LlamaTokenizer, LlamaForCausalLM
import json
model_name = "shahules786/open-llama-7B-orcastyle"
config = hf_hub_download(repo_id=model_name, filename="adapter_config.json", local_dir=".")
config = json.load(open("adapter_config.json"))
base_model = config["base_model_name_or_path"]
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = LlamaForCausalLM.from_pretrained(base_model)
model.resize_token_embeddings(len(self.tokenizer))
model = PeftModel.from_pretrained(model, model_name).eval()
tokenizer.padding_side = "left"
inputs = tokenizer("This is a sample run", return_tensors="pt")
model.generate(**inputs)
```
Checkout training and inference code [here](https://github.com/explodinggradients/Funtuner/tree/main/funtuner)
|
x51xxx/opus-mt-ru-uk-finetuned-ru-to-uk | x51xxx | 2023-07-06T13:26:38Z | 77 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:para_pat",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-06-25T20:28:41Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- para_pat
metrics:
- bleu
model-index:
- name: opus-mt-ru-uk-finetuned-ru-to-uk
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: para_pat
type: para_pat
config: ru-uk
split: train
args: ru-uk
metrics:
- name: Bleu
type: bleu
value: 60.8071
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ru-uk-finetuned-ru-to-uk
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-uk](https://huggingface.co/Helsinki-NLP/opus-mt-ru-uk) on the para_pat dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8348
- Bleu: 60.8071
- Gen Len: 122.8841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 1.0428 | 1.0 | 2150 | 0.8348 | 60.8071 | 122.8841 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
s8sesche/distilbert_finetuned_model_petOrNot_improved | s8sesche | 2023-07-06T13:18:22Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-06T12:36:21Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert_finetuned_model_petOrNot_improved
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_finetuned_model_petOrNot_improved
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1998
- Accuracy: 0.9667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 88 | 0.1998 | 0.9667 |
| No log | 2.0 | 176 | 0.3123 | 0.9333 |
| No log | 3.0 | 264 | 0.2474 | 0.9667 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
evs/my_awesome_model | evs | 2023-07-06T13:16:08Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bloom",
"text-classification",
"generated_from_trainer",
"license:bigscience-bloom-rail-1.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-05T13:14:27Z | ---
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4063
- Accuracy: 0.8282
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 421 | 0.5171 | 0.8133 |
| 1.0202 | 2.0 | 842 | 0.4063 | 0.8282 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
xian79/Reinforce-PixelCopter | xian79 | 2023-07-06T13:14:47Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T13:10:57Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-PixelCopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 42.20 +/- 30.03
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Trisert/llama-7b-dolly | Trisert | 2023-07-06T12:52:50Z | 0 | 0 | null | [
"generated_from_trainer",
"license:other",
"region:us"
] | null | 2023-07-06T12:52:26Z | ---
license: other
tags:
- generated_from_trainer
model-index:
- name: llama-7b-dolly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-7b-dolly
This model is a fine-tuned version of [sharpbai/llama-7b-hf](https://huggingface.co/sharpbai/llama-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
### Training results
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.0
- Tokenizers 0.13.3
|
susnato/distilhubert-finetuned-gtzan | susnato | 2023-07-06T12:40:52Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | audio-classification | 2023-07-01T16:32:36Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5542
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0241 | 1.0 | 112 | 1.9155 | 0.4 |
| 1.5443 | 2.0 | 225 | 1.2937 | 0.65 |
| 1.1134 | 3.0 | 337 | 0.9665 | 0.71 |
| 0.7215 | 4.0 | 450 | 0.8201 | 0.74 |
| 0.4679 | 5.0 | 562 | 0.7616 | 0.75 |
| 0.3626 | 6.0 | 675 | 0.5217 | 0.85 |
| 0.1775 | 7.0 | 787 | 0.6748 | 0.81 |
| 0.1642 | 8.0 | 900 | 0.5287 | 0.86 |
| 0.0772 | 9.0 | 1012 | 0.5632 | 0.84 |
| 0.0478 | 10.0 | 1125 | 0.5576 | 0.85 |
| 0.0662 | 11.0 | 1237 | 0.5455 | 0.88 |
| 0.0446 | 11.95 | 1344 | 0.5542 | 0.87 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2
|
s8sesche/unsuitablePreTrainedModel_finetuned_model_petOrNot_improved | s8sesche | 2023-07-06T12:36:15Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-06T12:31:32Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: unsuitablePreTrainedModel_finetuned_model_petOrNot_improved
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unsuitablePreTrainedModel_finetuned_model_petOrNot_improved
This model is a fine-tuned version of [shahrukhx01/question-vs-statement-classifier](https://huggingface.co/shahrukhx01/question-vs-statement-classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2258
- Accuracy: 0.9667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 88 | 0.3550 | 0.8333 |
| No log | 2.0 | 176 | 0.2258 | 0.9667 |
| No log | 3.0 | 264 | 0.2445 | 0.9667 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
IslemTouati/french_model | IslemTouati | 2023-07-06T12:29:54Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"camembert",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] | text-classification | 2023-05-02T19:43:39Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# IslemTouati/french_model
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("IslemTouati/french_model")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
Khushnur/t5-small-end2end-questions-generation_test | Khushnur | 2023-07-06T12:22:17Z | 164 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:eli5_cleaned_datav3_60k",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-07-06T12:16:28Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- eli5_cleaned_datav3_60k
model-index:
- name: t5-small-end2end-questions-generation_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-end2end-questions-generation_test
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5_cleaned_datav3_60k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Vtmpas/q-Taxi-v3-qeq | Vtmpas | 2023-07-06T12:13:16Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T12:13:14Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3-qeq
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Vtmpas/q-Taxi-v3-qeq", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Vtmpas/q-FrozenLake-v1-4x4-noSlippery | Vtmpas | 2023-07-06T12:10:55Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T12:10:53Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Vtmpas/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Sekiraw/cart-pole | Sekiraw | 2023-07-06T12:05:18Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-07-06T12:01:38Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: cart-pole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Subsets and Splits