modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-28 00:40:13
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 500
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-28 00:36:54
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
fblgit/UNAversal-8x7B-v1beta | fblgit | 2024-03-08T10:28:21Z | 1,492 | 8 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"UNA",
"juanako",
"MoE",
"conversational",
"en",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-26T15:58:15Z | ---
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- UNA
- juanako
- mixtral
- MoE
model-index:
- name: UNAversal-8x7B-v1beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.39
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.97
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
---
# UNAversal - Uniform Neural Alignment (MoE)
This is just a beta, a first release so people can start working on franksteins and so.
It does achieve high GSM/Math and TQA, so ideally you can merge it with other mixtrals and see what coming out of it
Based on [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
## UNA Details
For this model we came out with the most obvious, placing UNA on the router_logit. It does work, but we saw a much better performance on SFT by doing so.
So this model DOES have UNA-SFT phase, its highly experimental and it was merely using LLaMA-Factory datasets by example alpaca.
As the others:
- Can be finetuned further, try 2e-5 or **1e-4 (since its MOE)**
- Can be merged, here you will have to improvise and please report findings on a discussion thread.
**REMINDER**: please.. cite, it does help on the research and the lab itself, seriously.
## NEED YOUR HELP!!
I need a multi-turn trainloop for the Mixtral, that can squeeze the juice out of 8xH100's properly. Please feel free to reach @fblgit either discord or twitter. thanks!
# Evals
Here there are some, but we also submitted it to the HF eval queue....
## GSM8k 5-Shot
```
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer| 5|exact_match|0.6603|± | 0.013|
```
## ARC 25-Shot
```
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 25|acc |0.6621|± |0.0138|
| | |none | 25|acc_norm|0.6962|± |0.0134|
```
## TruthfulQA 0-Shot (MC2)
```
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|--------------|-------|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml |none | 0|acc |0.7122|± |0.0141|
```
## 0-Shots Evals
```
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|--------------|-------|------|-----:|----------|-----:|---|-----:|
|arc_challenge |Yaml |none | 0|acc |0.6101|± |0.0143|
| | |none | 0|acc_norm |0.6425|± |0.0140|
|arc_easy |Yaml |none | 0|acc |0.8615|± |0.0071|
| | |none | 0|acc_norm |0.8375|± |0.0076|
|boolq |Yaml |none | 0|acc |0.8624|± |0.0060|
|lambada_openai|Yaml |none | 0|perplexity|2.8318|± |0.0507|
| | |none | 0|acc |0.7650|± |0.0059|
|mathqa |Yaml |none | 0|acc |0.4472|± |0.0091|
| | |none | 0|acc_norm |0.4436|± |0.0091|
|piqa |Yaml |none | 0|acc |0.8292|± |0.0088|
| | |none | 0|acc_norm |0.8422|± |0.0085|
|pubmedqa |Yaml |none | 0|acc |0.7920|± |0.0182|
|sciq |Yaml |none | 0|acc |0.9630|± |0.0060|
| | |none | 0|acc_norm |0.9370|± |0.0077|
```
## BBH at 0-Shot
```
vllm (pretrained=fblgit/UNAversal-8x7B-v1beta,tensor_parallel_size=2,data_parallel_size=4,gpu_memory_utilization=0.8,dtype=float16), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: auto
| Tasks |Version| Filter |n-shot| Metric |Value | |Stderr|
|----------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:|
|bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772|
| - bbh_cot_fewshot_boolean_expressions |Yaml |get-answer| 0|exact_match|0.8840|± |0.0203|
| - bbh_cot_fewshot_causal_judgement |Yaml |get-answer| 0|exact_match|0.6417|± |0.0352|
| - bbh_cot_fewshot_date_understanding |Yaml |get-answer| 0|exact_match|0.7600|± |0.0271|
| - bbh_cot_fewshot_disambiguation_qa |Yaml |get-answer| 0|exact_match|0.7160|± |0.0286|
| - bbh_cot_fewshot_dyck_languages |Yaml |get-answer| 0|exact_match|0.1800|± |0.0243|
| - bbh_cot_fewshot_formal_fallacies |Yaml |get-answer| 0|exact_match|0.6520|± |0.0302|
| - bbh_cot_fewshot_geometric_shapes |Yaml |get-answer| 0|exact_match|0.3880|± |0.0309|
| - bbh_cot_fewshot_hyperbaton |Yaml |get-answer| 0|exact_match|0.9600|± |0.0124|
| - bbh_cot_fewshot_logical_deduction_five_objects |Yaml |get-answer| 0|exact_match|0.5360|± |0.0316|
| - bbh_cot_fewshot_logical_deduction_seven_objects |Yaml |get-answer| 0|exact_match|0.5040|± |0.0317|
| - bbh_cot_fewshot_logical_deduction_three_objects |Yaml |get-answer| 0|exact_match|0.8600|± |0.0220|
| - bbh_cot_fewshot_movie_recommendation |Yaml |get-answer| 0|exact_match|0.7840|± |0.0261|
| - bbh_cot_fewshot_multistep_arithmetic_two |Yaml |get-answer| 0|exact_match|0.6600|± |0.0300|
| - bbh_cot_fewshot_navigate |Yaml |get-answer| 0|exact_match|0.8160|± |0.0246|
| - bbh_cot_fewshot_object_counting |Yaml |get-answer| 0|exact_match|0.8360|± |0.0235|
| - bbh_cot_fewshot_penguins_in_a_table |Yaml |get-answer| 0|exact_match|0.7329|± |0.0367|
| - bbh_cot_fewshot_reasoning_about_colored_objects |Yaml |get-answer| 0|exact_match|0.8120|± |0.0248|
| - bbh_cot_fewshot_ruin_names |Yaml |get-answer| 0|exact_match|0.4440|± |0.0315|
| - bbh_cot_fewshot_salient_translation_error_detection |Yaml |get-answer| 0|exact_match|0.5200|± |0.0317|
| - bbh_cot_fewshot_snarks |Yaml |get-answer| 0|exact_match|0.7135|± |0.0340|
| - bbh_cot_fewshot_sports_understanding |Yaml |get-answer| 0|exact_match|0.9400|± |0.0151|
| - bbh_cot_fewshot_temporal_sequences |Yaml |get-answer| 0|exact_match|0.7560|± |0.0272|
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects |Yaml |get-answer| 0|exact_match|0.5680|± |0.0314|
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306|
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306|
| - bbh_cot_fewshot_web_of_lies |Yaml |get-answer| 0|exact_match|0.9560|± |0.0130|
| - bbh_cot_fewshot_word_sorting |Yaml |get-answer| 0|exact_match|0.3800|± |0.0308|
|Groups|Version| Filter |n-shot| Metric |Value | |Stderr|
|------|-------|----------|-----:|-----------|-----:|---|-----:|
|bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNAversal-8x7B-v1beta)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.78|
|AI2 Reasoning Challenge (25-Shot)|69.80|
|HellaSwag (10-Shot) |86.90|
|MMLU (5-Shot) |70.39|
|TruthfulQA (0-shot) |71.97|
|Winogrande (5-shot) |82.00|
|GSM8k (5-shot) |61.64|
|
Rijgersberg/Mistral-7B-v0.1-chat-nl | Rijgersberg | 2024-03-08T10:26:32Z | 35 | 3 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"GEITje",
"conversational",
"nl",
"dataset:Rijgersberg/no_robots_nl",
"dataset:Rijgersberg/ultrachat_10k_nl",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-12T06:26:30Z | ---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
- GEITje
- conversational
model-index:
- name: Mistral-7B-v0.1-chat-nl
results: []
datasets:
- Rijgersberg/no_robots_nl
- Rijgersberg/ultrachat_10k_nl
language:
- nl
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-v0.1-chat-nl
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the Rijgersberg/no_robots_nl and Rijgersberg/ultrachat_10k_nl datasets.
It achieves the following results on the evaluation set:
- Loss: 1.0263
## Model description
In order to investigate the effect of pretraining [Rijgersberg/GEITje-7B](https://huggingface.co/Rijgersberg/GEITje-7B-chat) on the finetuning of [Rijgersberg/GEITje-7B-chat](https://huggingface.co/Rijgersberg/GEITje-7B-chat),
I also subjected the base model Mistral 7B v0.1 to the exact same training.
This model is called Mistral-7B-v0.1-chat-nl.
## More info
Read more about GEITje and GEITje-chat in the [📄 README](https://github.com/Rijgersberg/GEITje/blob/main/README-en.md) on GitHub.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2404 | 0.2 | 236 | 1.1166 |
| 1.2103 | 0.4 | 472 | 1.1101 |
| 1.0357 | 0.6 | 708 | 1.0739 |
| 1.27 | 0.8 | 944 | 1.0540 |
| 1.3557 | 1.0 | 1180 | 1.0330 |
| 0.7919 | 1.2 | 1416 | 1.0368 |
| 0.8701 | 1.4 | 1652 | 1.0193 |
| 0.8851 | 1.6 | 1888 | 1.0009 |
| 0.7562 | 1.8 | 2124 | 0.9791 |
| 0.6838 | 2.0 | 2360 | 0.9823 |
| 0.5011 | 2.2 | 2596 | 1.0271 |
| 0.4495 | 2.39 | 2832 | 1.0267 |
| 0.5625 | 2.59 | 3068 | 1.0250 |
| 0.4486 | 2.79 | 3304 | 1.0262 |
| 0.5706 | 2.99 | 3540 | 1.0263 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0 |
fblgit/una-cybertron-7b-v2-bf16 | fblgit | 2024-03-08T10:26:27Z | 1,715 | 116 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"juanako",
"UNA",
"cybertron",
"fbl",
"dataset:fblgit/tree-of-knowledge",
"dataset:Open-Orca/SlimOrca-Dedup",
"dataset:allenai/ultrafeedback_binarized_cleaned",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-02T00:07:53Z | ---
license: apache-2.0
library_name: transformers
tags:
- juanako
- UNA
- cybertron
- fbl
datasets:
- fblgit/tree-of-knowledge
- Open-Orca/SlimOrca-Dedup
- allenai/ultrafeedback_binarized_cleaned
model-index:
- name: una-cybertron-7b-v2-bf16
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.23
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.63
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
---
# Model Card for una-cybertron-7b-v2-bf16 (UNA: Uniform Neural Alignment)
We strike back, introducing **Cybertron 7B v2** a 7B MistralAI based model, best on it's series. Trained on SFT, DPO and UNA (Unified Neural Alignment) on multiple datasets.
He scores [EXACTLY](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v2-bf16) **#1** with **69.67**+ score on HF LeaderBoard board, **#8** ALL SIZES top score.
* v1 Scoring **#1** at 2 December 2023 with 69.43 ..few models were releasse .. but only 1 can survive: CYBERTRON!
* v2 Scoring **#1** at 5 December 2023 with 69.67
| Model | Average | ARC (25-s) | HellaSwag (10-s) | MMLU (5-s) | TruthfulQA (MC) (0-s) | Winogrande (5-s) | GSM8K (5-s) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 60.97 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 37.83 |
| [Intel/neural-chat-7b-v3-2](https://huggingface.co/Intel/neural-chat-7b-v3-2) | 68.29 | 67.49 | 83.92 | 63.55 | 59.68 | 79.95 | 55.12 |
| [perlthoughts/Chupacabra-7B-v2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2) | 63.54 | 66.47 | 85.17 | 64.49 | 57.6 | 79.16 | 28.35 |
| [fblgit/una-cybertron-7b-v1-fp16](https://huggingface.co/fblgit/una-cybertron-7b-v1-fp16) | **69.49** | **68.43** | **85.85** | 63.34 | **63.28** | **80.90** | **55.12** |
| [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16) | **69.67** | **68.26** | **85.?4** | 63.23 | **64.63** | **81.37** | **55.04** |
The model excels in mathematics, logic, reasoning, overall very smart. He can make a deep reasoning over the context and prompt, it gives the impression of not missing details around.
## Model Details
Adiestrated with UNA: Uniform Neural Alignment technique (paper going out soon).
* What is **NOT** UNA? Its not a merged layers model. Is not SLERP or SLURP or similar.
* What **is** UNA? A formula & A technique to *TAME* models
* When will be released the code and paper? When have time, contribute and it'll be faster.
### Model Description
- **Developed by:** [juanako.ai](https://juanako.ai)
- **Author:** [Xavier M.]([email protected])
- **Investors** [CONTACT HERE]([email protected])
- **Model type:** MistralAI 7B
- **Funded by Cybertron's H100's** with few hours training.
### Prompt
The model is very good, works well on almost any prompt but ChatML format and Alpaca System gets the best
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!
### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```
Using Exllamav2_HF set alpha=2.5 for 16K Context
**Users also report that exllamav2_HF loader, 8bpw-h8 exl2 quant, simple-1 preset provides good results**
### Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
### Citations
If you find Cybertron, Juanako or any of our models useful, specially if you use it for your big brand.. or you clone/merge my modelsm, cite please:
```
@misc{unacybertron7b,
title={Cybertron: Uniform Neural Alignment},
author={Xavier Murias},
year={2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16}},
}
```
Special thanks to @TheBloke & @bartowski for converting the models and their support to the community. Thank you!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v2-bf16)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.67|
|AI2 Reasoning Challenge (25-Shot)|68.26|
|HellaSwag (10-Shot) |85.85|
|MMLU (5-Shot) |63.23|
|TruthfulQA (0-shot) |64.63|
|Winogrande (5-shot) |80.98|
|GSM8k (5-shot) |55.04|
|
fblgit/UNA-POLAR-10.7B-InstructMath-v2 | fblgit | 2024-03-08T10:26:14Z | 1,527 | 5 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"UNA",
"SOLAR",
"MathPILE",
"conversational",
"en",
"dataset:GAIR/MathPile",
"license:cc-by-nc-nd-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-01-02T10:13:16Z | ---
language:
- en
license: cc-by-nc-nd-4.0
tags:
- UNA
- SOLAR
- MathPILE
datasets:
- GAIR/MathPile
model-index:
- name: UNA-POLAR-10.7B-InstructMath-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.73
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.2
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.73
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.75
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
name: Open LLM Leaderboard
---
# UNA-POLAR-10.7B-InstructMath-v2
## Model description
Its a UNA version with DPO over MathPILE Books out of the UNA-SOLAR-10.7B-Instruct-1.0
I used MathPILE OUTSTANDING Dataset of great Mathematic material in order to produce this beautiful model :)
## Intended uses & limitations
If your model has inside UNA technology, cite.
## Training and evaluation data
UNA-DPO over Attention and MLP's
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2-UNA
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-POLAR-10.7B-InstructMath-v2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.07|
|AI2 Reasoning Challenge (25-Shot)|70.73|
|HellaSwag (10-Shot) |88.20|
|MMLU (5-Shot) |66.03|
|TruthfulQA (0-shot) |71.73|
|Winogrande (5-shot) |82.95|
|GSM8k (5-shot) |64.75|
|
fblgit/LUNA-SOLARkrautLM-Instruct | fblgit | 2024-03-08T10:25:49Z | 1,529 | 8 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"finetune",
"dpo",
"Instruct",
"augmentation",
"german",
"conversational",
"en",
"de",
"dataset:argilla/distilabel-math-preference-dpo",
"doi:10.57967/hf/1517",
"license:cc-by-nc-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-22T13:12:53Z | ---
language:
- en
- de
license: cc-by-nc-4.0
library_name: transformers
tags:
- finetune
- dpo
- Instruct
- augmentation
- german
datasets:
- argilla/distilabel-math-preference-dpo
pipeline_tag: text-generation
model-index:
- name: LUNA-SOLARkrautLM-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 73.37
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.88
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/LUNA-SOLARkrautLM-Instruct
name: Open LLM Leaderboard
---

## VAGO solutions LUNA-SOLARkrautLM-Instruct
Introducing **LUNA-SOLARkrautLM-Instruct** – a UNA-Sauerkraut version of the powerful [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) !
Aligned with **DPO** and tamed with **UNA**.
# Table of Contents
1. [Overview of all LUNA-SOLARkrautLM-Instruct models](#all-sauerkrautlm-solar-instruct-models)
2. [Model Details](#model-details)
- [Prompt template](#prompt-template)
- [Training Dataset](#training-dataset)
- [Data Contamination Test](#data-contamination-test-results)
3. [Evaluation](#evaluation)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)
## Model Details
**LUNA-SOLARkrautLM-Instruct**
- **Model Type:** LUNA-SOLARkrautLM-Instruct is a UNA Model based on [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) and the powerful set of [SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct/)
- **Language(s):** English, German
- **License:** cc-by-nc-4.0
- **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:[email protected]) [Juanako.AI - UNA](mailto:[email protected])
### Training Dataset:
LUNA-SOLARkrautLM-Instruct was trained with mix of German data augmentation and translated data.
Aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset
as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).**
We found, that only a simple translation of training data can lead to unnatural German phrasings.
Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.
We improved the German language skills on this model. Nevertheless, certain formulations may occur that are not entirely correct.
### Data Contamination Test Results
Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in.
We checked our SauerkrautLM-DPO dataset with a special test [1] on this model as target model and upstage/SOLAR-10.7B-Instruct-v1.0 as reference model.
The HuggingFace team used the same methods [2, 3].
Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination.
*The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.*
| Dataset | ARC | MMLU | TruthfulQA | GSM8K |
|------------------------------|-------|-------|-------|-------|
| **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 |
[1] https://github.com/swj0419/detect-pretrain-code-contamination
[2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06
[3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230
### Prompt Template:
```
<|im_start|>system
Du bist LUNA-SOLARkrautLM, ein großes Sprachmodell, das höflich und kompetent antwortet.<|im_end|>
<|im_start|>user
Wie geht es dir?<|im_end|>
<|im_start|>assistant
```
```
### User:
Hello, how are you?
### Assistant:
Hi there! I am an AI language model, so I don't have personal feelings or emotions in the traditional sense. However, I can assure you that my systems and processes are functioning well at this moment, allowing me to provide helpful responses for your queries.
How may I assist you today?
```
## Evaluation
```
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer| 5|exact_match|0.6467|± |0.0132|
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|--------------|-------|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml |none | 0|acc |0.7368|± |0.0149|
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 25, batch_size: auto (32)
| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|
|-------------|-------|------|-----:|--------|----:|---|-----:|
|arc_challenge|Yaml |none | 25|acc |0.692|± |0.0135|
| | |none | 25|acc_norm|0.715|± |0.0132|
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
| Tasks |Version|Filter|n-shot|Metric| Value | |Stderr|
|-----------|-------|------|-----:|------|------:|---|-----:|
|paws_de |Yaml |none | 0|acc | 0.3965|± |0.0109|
|wmt16-en-de|Yaml |none | 0|bleu | 3.5784|± |0.1325|
| | |none | 0|ter |64.5707|± |0.4514|
| | |none | 0|chrf |45.7068|± |0.3861|
|xnli_de |Yaml |none | 0|acc | 0.4129|± |0.0099|
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 10, batch_size: auto (32)
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml |none | 10|acc |0.7131|± |0.0045|
| | |none | 10|acc_norm|0.8815|± |0.0032|
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (64)
| Tasks |Version|Filter|n-shot|Metric| Value | |Stderr|
|-----------|-------|------|-----:|------|------:|---|-----:|
|wmt16-de-en|Yaml |none | 5|bleu |14.9310|± |0.8014|
| | |none | 5|ter |46.3206|± |0.4087|
| | |none | 5|chrf |60.8637|± |0.4436|
|wmt16-en-de|Yaml |none | 5|bleu | 6.2016|± |0.2918|
| | |none | 5|ter |63.9997|± |0.4591|
| | |none | 5|chrf |51.1399|± |0.3978|
|xnli_de |Yaml |none | 5|acc | 0.4703|± |0.0100|
hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (16)
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|---------------------------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6461|± |0.1215|
| - humanities |N/A |none | 5|acc |0.5960|± |0.1200|
| - formal_logic |Yaml |none | 5|acc |0.4683|± |0.0446|
| - high_school_european_history |Yaml |none | 5|acc |0.8121|± |0.0305|
| - high_school_us_history |Yaml |none | 5|acc |0.8480|± |0.0252|
| - high_school_world_history |Yaml |none | 5|acc |0.8312|± |0.0244|
| - international_law |Yaml |none | 5|acc |0.7851|± |0.0375|
| - jurisprudence |Yaml |none | 5|acc |0.7685|± |0.0408|
| - logical_fallacies |Yaml |none | 5|acc |0.7423|± |0.0344|
| - moral_disputes |Yaml |none | 5|acc |0.7283|± |0.0239|
| - moral_scenarios |Yaml |none | 5|acc |0.3899|± |0.0163|
| - philosophy |Yaml |none | 5|acc |0.7074|± |0.0258|
| - prehistory |Yaml |none | 5|acc |0.7716|± |0.0234|
| - professional_law |Yaml |none | 5|acc |0.4824|± |0.0128|
| - world_religions |Yaml |none | 5|acc |0.7661|± |0.0325|
| - other |N/A |none | 5|acc |0.7097|± |0.0900|
| - business_ethics |Yaml |none | 5|acc |0.7700|± |0.0423|
| - clinical_knowledge |Yaml |none | 5|acc |0.6792|± |0.0287|
| - college_medicine |Yaml |none | 5|acc |0.6647|± |0.0360|
| - global_facts |Yaml |none | 5|acc |0.3600|± |0.0482|
| - human_aging |Yaml |none | 5|acc |0.6861|± |0.0311|
| - management |Yaml |none | 5|acc |0.8350|± |0.0368|
| - marketing |Yaml |none | 5|acc |0.8504|± |0.0234|
| - medical_genetics |Yaml |none | 5|acc |0.6700|± |0.0473|
| - miscellaneous |Yaml |none | 5|acc |0.7893|± |0.0146|
| - nutrition |Yaml |none | 5|acc |0.7549|± |0.0246|
| - professional_accounting |Yaml |none | 5|acc |0.5213|± |0.0298|
| - professional_medicine |Yaml |none | 5|acc |0.7353|± |0.0268|
| - virology |Yaml |none | 5|acc |0.5783|± |0.0384|
| - social_sciences |N/A |none | 5|acc |0.7501|± |0.0684|
| - econometrics |Yaml |none | 5|acc |0.5175|± |0.0470|
| - high_school_geography |Yaml |none | 5|acc |0.8485|± |0.0255|
| - high_school_government_and_politics|Yaml |none | 5|acc |0.8912|± |0.0225|
| - high_school_macroeconomics |Yaml |none | 5|acc |0.6615|± |0.0240|
| - high_school_microeconomics |Yaml |none | 5|acc |0.7311|± |0.0288|
| - high_school_psychology |Yaml |none | 5|acc |0.8385|± |0.0158|
| - human_sexuality |Yaml |none | 5|acc |0.7023|± |0.0401|
| - professional_psychology |Yaml |none | 5|acc |0.6683|± |0.0190|
| - public_relations |Yaml |none | 5|acc |0.6909|± |0.0443|
| - security_studies |Yaml |none | 5|acc |0.7633|± |0.0272|
| - sociology |Yaml |none | 5|acc |0.8358|± |0.0262|
| - us_foreign_policy |Yaml |none | 5|acc |0.8800|± |0.0327|
| - stem |N/A |none | 5|acc |0.5569|± |0.1360|
| - abstract_algebra |Yaml |none | 5|acc |0.3800|± |0.0488|
| - anatomy |Yaml |none | 5|acc |0.6148|± |0.0420|
| - astronomy |Yaml |none | 5|acc |0.7237|± |0.0364|
| - college_biology |Yaml |none | 5|acc |0.7708|± |0.0351|
| - college_chemistry |Yaml |none | 5|acc |0.4600|± |0.0501|
| - college_computer_science |Yaml |none | 5|acc |0.5400|± |0.0501|
| - college_mathematics |Yaml |none | 5|acc |0.2700|± |0.0446|
| - college_physics |Yaml |none | 5|acc |0.3333|± |0.0469|
| - computer_security |Yaml |none | 5|acc |0.7300|± |0.0446|
| - conceptual_physics |Yaml |none | 5|acc |0.6213|± |0.0317|
| - electrical_engineering |Yaml |none | 5|acc |0.6276|± |0.0403|
| - elementary_mathematics |Yaml |none | 5|acc |0.4788|± |0.0257|
| - high_school_biology |Yaml |none | 5|acc |0.8065|± |0.0225|
| - high_school_chemistry |Yaml |none | 5|acc |0.5123|± |0.0352|
| - high_school_computer_science |Yaml |none | 5|acc |0.7000|± |0.0461|
| - high_school_mathematics |Yaml |none | 5|acc |0.3889|± |0.0297|
| - high_school_physics |Yaml |none | 5|acc |0.3576|± |0.0391|
| - high_school_statistics |Yaml |none | 5|acc |0.5926|± |0.0335|
| - machine_learning |Yaml |none | 5|acc |0.4554|± |0.0473|
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6461|± |0.1215|
| - humanities |N/A |none | 5|acc |0.5960|± |0.1200|
| - other |N/A |none | 5|acc |0.7097|± |0.0900|
| - social_sciences|N/A |none | 5|acc |0.7501|± |0.0684|
| - stem |N/A |none | 5|acc |0.5569|± |0.1360|
```
### MT-Bench
```
########## Average ##########
score
model
gpt-4 8.990625
gpt-3.5-turbo 7.943750
claude-instant-v1 7.905660
claude-v1 7.900000
UNA-SOLAR-10.7B-Instruct-v1.0 7.521875
LUNA-SOLARkrautLM-Instruct 7.462500
vicuna-33b-v1.3 7.121875
wizardlm-30b 7.009375
Llama-2-70b-chat 6.856250
Llama-2-13b-chat 6.650000
guanaco-33b 6.528125
tulu-30b 6.434375
guanaco-65b 6.409375
oasst-sft-7-llama-30b 6.409375
palm-2-chat-bison-001 6.400000
mpt-30b-chat 6.393750
vicuna-13b-v1.3 6.387500
wizardlm-13b 6.353125
Llama-2-7b-chat 6.268750
vicuna-7b-v1.3 5.996875
baize-v2-13b 5.750000
nous-hermes-13b 5.553459
mpt-7b-chat 5.459119
gpt4all-13b-snoozy 5.452830
koala-13b 5.350000
mpt-30b-instruct 5.218750
falcon-40b-instruct 5.168750
h2ogpt-oasst-open-llama-13b 4.625000
alpaca-13b 4.531250
chatglm-6b 4.500000
oasst-sft-4-pythia-12b 4.318750
rwkv-4-raven-14b 3.984375
dolly-v2-12b 3.275000
fastchat-t5-3b 3.040625
stablelm-tuned-alpha-7b 2.753125
llama-13b 2.606250
```
## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:[email protected]). We are also grateful for your feedback and suggestions.
## Collaborations
We are also keenly seeking support and investment for our startup, [VAGO Solutions](https://huggingface.co/VAGOsolutions), where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.
[Juanako.AI](https://huggingface.co/fblgit) is also seeking support and investment for our startup, we also are open for collaborating with other labs to make awesome models like this one.
## Acknowledgement
Big Hug to [VAGO Solutions](https://huggingface.co/VAGOsolutions), we merely used our UNA transformers library on their code and dataset, nothing else. This won't be possible without them, thanks!
Many thanks to [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to [upstage](https://huggingface.co/upstage) for providing the open source community with their latest technology!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__LUNA-SOLARkrautLM-Instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.79|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot) |88.28|
|MMLU (5-Shot) |66.11|
|TruthfulQA (0-shot) |73.37|
|Winogrande (5-shot) |82.95|
|GSM8k (5-shot) |60.88|
|
fblgit/una-cybertron-7b-v1-fp16 | fblgit | 2024-03-08T10:25:13Z | 1,448 | 5 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"juanako",
"UNA",
"dataset:fblgit/tree-of-knowledge",
"dataset:Open-Orca/SlimOrca-Dedup",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-01T16:29:08Z | ---
license: apache-2.0
library_name: transformers
tags:
- juanako
- UNA
datasets:
- fblgit/tree-of-knowledge
- Open-Orca/SlimOrca-Dedup
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: una-cybertron-7b-v1-fp16
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.43
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.34
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.28
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
---
# Model Card for una-cybertron-7b-v1 (UNA: Uniform Neural Alignment)
We strike back, introducing **Cybertron 7B v1** a 7B MistralAI based model, best on it's series. Trained on SFT, DPO and UNA (Unified Neural Alignment) on multiple datasets.
He scores **64.60**+ on HF LeaderTests (without DROP for now).
Scoring **#1** at 2 December 2023:
| Model | Average | ARC (25-s) | HellaSwag (10-s) | MMLU (5-s) | TruthfulQA (MC) (0-s) | Winogrande (5-s) | GSM8K (5-s) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 60.97 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 37.83 |
| [perlthoughts/Chupacabra-7B-v2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2) | 63.54 | 66.47 | 85.17 | 64.49 | 57.6 | 79.16 | 28.35 |
| [fblgit/una-cybertron-7b-v1](https://huggingface.co/fblgit/una-cybertron-7b-v1) | **64.60** | **68.17** | 85.14 | 62.07 | **63.98** | **80.9** | 27.34 |
The model excels in mathematics, logic, reasoning, overall very smart.
## Model Details
Adiestrated with UNA: Uniform Neural Alignment technique (paper going out soon).
### Model Description
- **Developed by:** [juanako.ai](https://juanako.ai)
- **Author:** [Xavier M.]([email protected])
- **Model type:** MistralAI 7B
- **Funded by Cybertron's H100's**
### Prompt
The model is very good, works well on almost any prompt but ChatML format and Alpaca System gets the best
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!
### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```
## Evaluation
```
| Tasks |Version|Shots | Metric |Value | |Stderr|
|--------------|-------|------|--------|-----:|---|-----:|
|arc_challenge | | 25 |acc_norm|0.6817|± |0.0136|
|truthfulqa_mc2| | 0 |acc |0.6398|± |0.0151|
|hellaswag | | 10 |acc_norm|0.8492|± |0.0036|
|winogrande | | 0 |acc |0.809 |± |0.011 |
|gsm8k | | 5 |acc |0.2733|± |0.0137|
|mmlu | | 5 |acc |0.6207|± |0.1230|
| |average| |acc |0.6456| | |
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6207|_ |0.1230|
| - humanities |N/A |none | 5|acc |0.5675|_ |0.1125|
| - other |N/A |none | 5|acc |0.6933|_ |0.1108|
| - social_sciences|N/A |none | 5|acc |0.7270|_ |0.0666|
| - stem |N/A |none | 5|acc |0.5249|_ |0.1311|
```
### Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
### Citations
If you find Cybertron, Juanako or any of our models useful, specially if you use it for your big brand.. cite please:
```
@misc{unacybertron7a,
title={Cybertron: Uniform Neural Alignment},
author={Xavier Murias},
year={2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/una-cybertron-7b-v1}},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v1-fp16)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.49|
|AI2 Reasoning Challenge (25-Shot)|68.43|
|HellaSwag (10-Shot) |85.42|
|MMLU (5-Shot) |63.34|
|TruthfulQA (0-shot) |63.28|
|Winogrande (5-shot) |81.37|
|GSM8k (5-shot) |55.12|
|
megaaziib/Llava-Maid-7B-DPO-GGUF | megaaziib | 2024-03-08T10:25:01Z | 87 | 4 | null | [
"gguf",
"llava",
"image-text-to-text",
"endpoints_compatible",
"region:us",
"conversational"
] | image-text-to-text | 2024-03-02T08:44:53Z | ---
tags:
- llava
pipeline_tag: image-text-to-text
---
System Prompt:
```bash
### INSTRUCTION:
if USER provide an <image>, Provide a correct answer for the latest <image> based on USER request and completely ignore the previous <image> and previous answer.
```
|
fyp-admin/dreambooth_Jupiter_15 | fyp-admin | 2024-03-08T10:20:42Z | 4 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"stable-diffusion",
"stable-diffusion-diffusers",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-03-08T09:33:40Z | ---
license: creativeml-openrail-m
library_name: diffusers
tags:
- text-to-image
- diffusers
- lora
- stable-diffusion
- stable-diffusion-diffusers
inference: true
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: a picture of planet Jupiter in the center, in white color having
rusty brownish orange-colored bands through the middle and blue-colored cyclones
on the poles. It is present in space which has dark background, embedded with a
cluster of small-sized bright stars.
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA DreamBooth - fyp-admin/dreambooth_Jupiter_15
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a picture of planet Jupiter in the center, in white color having rusty brownish orange-colored bands through the middle and blue-colored cyclones on the poles. It is present in space which has dark background, embedded with a cluster of small-sized bright stars. using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
prashantloni/lilt-en-aadhaar | prashantloni | 2024-03-08T10:20:04Z | 91 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"lilt",
"token-classification",
"generated_from_trainer",
"base_model:SCUT-DLVCLab/lilt-roberta-en-base",
"base_model:finetune:SCUT-DLVCLab/lilt-roberta-en-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-03-08T09:53:16Z | ---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-aadhaar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lilt-en-aadhaar
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0950
- Adhaar Number: {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20}
- Ame: {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13}
- Ather Name: {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3}
- Ather Name Back: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9}
- Ather Name Front Top: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4}
- Ddress Back: {'precision': 0.9032258064516129, 'recall': 0.8235294117647058, 'f1': 0.8615384615384616, 'number': 34}
- Ddress Front: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16}
- Ender: {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12}
- Ob: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
- Obile Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}
- Ther: {'precision': 0.898876404494382, 'recall': 0.8791208791208791, 'f1': 0.8888888888888888, 'number': 91}
- Overall Precision: 0.9256
- Overall Recall: 0.9045
- Overall F1: 0.9149
- Overall Accuracy: 0.9923
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Adhaar Number | Ame | Ather Name | Ather Name Back | Ather Name Front Top | Ddress Back | Ddress Front | Ender | Ob | Obile Number | Ther | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.185 | 15.38 | 200 | 0.0832 | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 20} | {'precision': 0.9166666666666666, 'recall': 0.8461538461538461, 'f1': 0.8799999999999999, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8484848484848485, 'recall': 0.8235294117647058, 'f1': 0.8358208955223881, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8539325842696629, 'recall': 0.8351648351648352, 'f1': 0.8444444444444446, 'number': 91} | 0.8940 | 0.8818 | 0.8879 | 0.9884 |
| 0.0034 | 30.77 | 400 | 0.0860 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.8461538461538461, 'recall': 0.8461538461538461, 'f1': 0.8461538461538461, 'number': 13} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8387096774193549, 'recall': 0.7647058823529411, 'f1': 0.7999999999999999, 'number': 34} | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 0.9285714285714286, 'recall': 1.0, 'f1': 0.962962962962963, 'number': 13} | {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 5} | {'precision': 0.8444444444444444, 'recall': 0.8351648351648352, 'f1': 0.839779005524862, 'number': 91} | 0.8796 | 0.8636 | 0.8716 | 0.9877 |
| 0.0011 | 46.15 | 600 | 0.1305 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.7692307692307693, 'recall': 0.7692307692307693, 'f1': 0.7692307692307693, 'number': 13} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 0.9, 'recall': 1.0, 'f1': 0.9473684210526316, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8181818181818182, 'recall': 0.7941176470588235, 'f1': 0.8059701492537314, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 0.9285714285714286, 'recall': 1.0, 'f1': 0.962962962962963, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8222222222222222, 'recall': 0.8131868131868132, 'f1': 0.8176795580110496, 'number': 91} | 0.8630 | 0.8591 | 0.8610 | 0.9854 |
| 0.0013 | 61.54 | 800 | 0.1075 | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 0.8333333333333334, 'recall': 0.7692307692307693, 'f1': 0.8, 'number': 13} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.7878787878787878, 'recall': 0.7647058823529411, 'f1': 0.7761194029850745, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8222222222222222, 'recall': 0.8131868131868132, 'f1': 0.8176795580110496, 'number': 91} | 0.875 | 0.8591 | 0.8670 | 0.9838 |
| 0.001 | 76.92 | 1000 | 0.1076 | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 0.8333333333333334, 'recall': 0.7692307692307693, 'f1': 0.8, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.9032258064516129, 'recall': 0.8235294117647058, 'f1': 0.8615384615384616, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8636363636363636, 'recall': 0.8351648351648352, 'f1': 0.8491620111731844, 'number': 91} | 0.9061 | 0.8773 | 0.8915 | 0.9892 |
| 0.0003 | 92.31 | 1200 | 0.0856 | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8125, 'recall': 0.7647058823529411, 'f1': 0.787878787878788, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8555555555555555, 'recall': 0.8461538461538461, 'f1': 0.850828729281768, 'number': 91} | 0.8940 | 0.8818 | 0.8879 | 0.9884 |
| 0.0001 | 107.69 | 1400 | 0.0950 | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.9032258064516129, 'recall': 0.8235294117647058, 'f1': 0.8615384615384616, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.898876404494382, 'recall': 0.8791208791208791, 'f1': 0.8888888888888888, 'number': 91} | 0.9256 | 0.9045 | 0.9149 | 0.9923 |
| 0.0001 | 123.08 | 1600 | 0.1075 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.8461538461538461, 'recall': 0.8461538461538461, 'f1': 0.8461538461538461, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.9032258064516129, 'recall': 0.8235294117647058, 'f1': 0.8615384615384616, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8764044943820225, 'recall': 0.8571428571428571, 'f1': 0.8666666666666666, 'number': 91} | 0.9070 | 0.8864 | 0.8966 | 0.9908 |
| 0.0002 | 138.46 | 1800 | 0.0919 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8484848484848485, 'recall': 0.8235294117647058, 'f1': 0.8358208955223881, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8444444444444444, 'recall': 0.8351648351648352, 'f1': 0.839779005524862, 'number': 91} | 0.8899 | 0.8818 | 0.8858 | 0.9892 |
| 0.0001 | 153.85 | 2000 | 0.0953 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8484848484848485, 'recall': 0.8235294117647058, 'f1': 0.8358208955223881, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8444444444444444, 'recall': 0.8351648351648352, 'f1': 0.839779005524862, 'number': 91} | 0.8899 | 0.8818 | 0.8858 | 0.9892 |
| 0.0001 | 169.23 | 2200 | 0.0974 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8484848484848485, 'recall': 0.8235294117647058, 'f1': 0.8358208955223881, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8444444444444444, 'recall': 0.8351648351648352, 'f1': 0.839779005524862, 'number': 91} | 0.8899 | 0.8818 | 0.8858 | 0.9892 |
| 0.0 | 184.62 | 2400 | 0.1008 | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.5, 'recall': 0.6666666666666666, 'f1': 0.5714285714285715, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 4} | {'precision': 0.8484848484848485, 'recall': 0.8235294117647058, 'f1': 0.8358208955223881, 'number': 34} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 16} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 12} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 0.8444444444444444, 'recall': 0.8351648351648352, 'f1': 0.839779005524862, 'number': 91} | 0.8899 | 0.8818 | 0.8858 | 0.9892 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
ndieckow/q-Taxi-v3 | ndieckow | 2024-03-08T10:01:41Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T10:01:39Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ndieckow/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Asahina2K/AsahinaMix | Asahina2K | 2024-03-08T09:52:49Z | 0 | 0 | null | [
"text-to-image",
"stable-diffusion",
"safetensors",
"stable-diffusion-xl",
"en",
"base_model:cagliostrolab/animagine-xl-3.0",
"base_model:finetune:cagliostrolab/animagine-xl-3.0",
"license:other",
"region:us"
] | text-to-image | 2024-02-27T11:40:39Z | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
tags:
- text-to-image
- stable-diffusion
- safetensors
- stable-diffusion-xl
base_model: cagliostrolab/animagine-xl-3.0
---
<style>
.title-container {
display: flex;
justify-content: center;
align-items: center;
height: 100vh; /* Adjust this value to position the title vertically */
}
.title {
font-size: 2.5em;
text-align: center;
color: #333;
font-family: 'Helvetica Neue', sans-serif;
text-transform: uppercase;
letter-spacing: 0.1em;
padding: 0.5em 0;
background: transparent;
}
.title span {
background: -webkit-linear-gradient(45deg, #8efdff, #ab735c);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
</style>
<h1 class="title">
<span>AsahinaMix</span>
</h1>
**AsahinaMix** is a merge model, and has two branches of merge models, AsaMix which focuses on Anime style while [HinaMix](https://huggingface.co/Asahina2K/AsahinaMix/resolve/main/HinaMix/HinaMix.safetensors) focuses on 2.5D anime style.
## Model Details AsaMix (Still WIP Comming soon ^^)
- **Developed by**: [Asahina2k](https://twitter.com/Asahina2k)
- **Model type**: Diffusion-based text-to-image generative model
- **Model Description**: Generate high-quality anime images from textual prompts
- **License**: [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)
- **Merged from model**: [Animagine XL 3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0)
## Model Details HinaMix
- **Developed by**: [Asahina2k](https://twitter.com/Asahina2k)
- **Model type**: Diffusion-based text-to-image generative model
- **Model Description**: Generate high-quality anime images from textual prompts
- **License**: [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)
- **Merged from model**: [Animagine XL 3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0), [RealCartoon-XL](https://civitai.com/models/125907/realcartoon-xl), [bluePencilXL](https://civitai.com/models/119012), [Lah | Mysterious SDXL](https://civitai.com/models/118441), [SwampMachine](https://civitai.com/models/286574)
## Recommended settings
AsaMix and HinaMix have same recommended settings
To guide the model towards generating high-aesthetic images, use negative prompts like:
```
(worst quality, low quality, lowres), (interlocked fingers, badly drawn hands and fingers, anatomically incorrect hands), blurry, watermark,
```
For higher quality outcomes, prepend prompts with:
```
(very aethetic, best quality, ultra detailed), intricate details,
```
### Multi Aspect Resolution
This model supports generating images at the following dimensions:
| Dimensions | Aspect Ratio |
|-------------------|-----------------|
| `1024 x 1024` | 1:1 Square |
| `1152 x 896` | 9:7 |
| `896 x 1152` | 7:9 |
| `1216 x 832` | 19:13 |
| `832 x 1216` | 13:19 |
| `1344 x 768` | 7:4 Horizontal |
| `768 x 1344` | 4:7 Vertical |
| `1536 x 640` | 12:5 Horizontal |
| `640 x 1536` | 5:12 Vertical |
## Hires.fix Setting
- Upscaler : [4x-YandereNeoXL](https://nmkd.de/?esrgan)
- Hires step : 10-20
- Denoising : 0.2-0.4 or 0.55 for latent upscaler
## Merge parameters for HinaMix
1. Animagine XL 3.0 merged to [RealCartoonXL V6](https://civitai.com/models/125907/realcartoon-xl) to get 2.5D body using MBW (0,1,0.8,0.5,0.25,0,0,0,0,0,0,0.3,0.5,0.71,1,0.56,0.71,1,0.83,0.1)
2. (1) merged with [Blue Pencil XL v4.0.1](https://civitai.com/models/119012/bluepencil-xl) to get anime touch using MBW (0,0.11,0.22,0.33,0.44,0.55,0.44,0.33,0.22,0.11,0,0.11,0.22,0.33,0.44,0.55,0.44,0.33,0.22,0.11)
3. (2) merge with [Lah | Mysterious SDXL](https://civitai.com/models/118441) to get manhua fantasy style using MBW (0,1,0.8,0.5,0.25,0,0,0,0,0,0,0.3,0.5,0.71,1,0.56,0.71,1,0.83,0.1)
4. (3) merge with [SwampMachine](https://civitai.com/models/286574) for final anime touch using MBW (0,0.11,0.22,0.33,0.44,0.55,0.44,0.33,0.22,0.11,0,0.11,0.22,0.33,0.44,0.55,0.44,0.33,0.22,0.11)
5. HinaMix
## License
AsahinaMix now uses the [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) inherited from Animagine XL 3.0, compatible with Stable Diffusion models. Key points:
1. **Modification Sharing:** If you modify AsahinaMix, you must share both your changes and the original license.
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules.
4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.
The choice of this license aims to keep AsahinaMix open and modifiable, aligning with open source community spirit. It protects contributors and users, encouraging a collaborative, ethical open-source community. This ensures the model not only benefits from communal input but also respects open-source development freedoms.
|
Gargaz/brain.ai | Gargaz | 2024-03-08T09:42:32Z | 13 | 0 | null | [
"gguf",
"text2text-generation",
"en",
"doi:10.57967/hf/1872",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-08T06:38:34Z | ---
license: apache-2.0
language:
- en
pipeline_tag: text2text-generation
--- |
Luliyanng/finetuning-sentiment-model-3000-samples | Luliyanng | 2024-03-08T09:32:46Z | 90 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-08T09:19:20Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3268
- Accuracy: 0.87
- F1: 0.8746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
ndieckow/q-FrozenLake-v1-4x4-noSlippery | ndieckow | 2024-03-08T09:31:36Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T09:31:33Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ndieckow/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
srimandebugged/ppo_Lunarlander | srimandebugged | 2024-03-08T09:31:10Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T09:30:12Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.73 +/- 12.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sekhharr/detr_finetuned_v5_last_best_checkpoint | sekhharr | 2024-03-08T09:30:36Z | 175 | 0 | transformers | [
"transformers",
"safetensors",
"detr",
"object-detection",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-03-08T09:30:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sekhharr/detr_finetuned_v5_last_checkpoint | sekhharr | 2024-03-08T09:30:20Z | 174 | 0 | transformers | [
"transformers",
"safetensors",
"detr",
"object-detection",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | object-detection | 2024-03-08T09:30:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
2bytescorp/2b_mt_opennmt_v0.1 | 2bytescorp | 2024-03-08T09:26:23Z | 2 | 0 | transformers(OpenNMT) | [
"transformers(OpenNMT)",
"translation",
"ko",
"en",
"license:cc-by-4.0",
"region:us"
] | translation | 2024-03-08T08:43:21Z | ---
library_name: transformers(OpenNMT)
license: cc-by-4.0
language:
- ko
- en
tags:
- translation
---
# Model Card for Model ID
- **Git repo:** https://github.com/2bytes-platform/2b-nmt
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
- **Base Model:** Pre-training
- **Model Description:** This model can be used for translation.
- **Developed by:** Platform Develop Div. at the 2Bytescorp Korea.
- **Model Type:** Translation
- **Language(s):**
- Source Language: English
- Target Language: Korean
## Training Info
- **Training Step/epoch:** 400,000 steps
## Dataset
- **Train Dataset:** 12,000,000
- **Test Dataset:** 1,000,000
- **Valid Dataset:** 1,000,000
-
#### Training Data
* dataset: Our own Korea/English dataset.
## How to Get Started With the Model (Inference)
```python
import ctranslate2
import pyonmttok
import sys
if len(sys.argv) < 2:
sentence = "I sincerely apologize for not providing the best taste and quality."
else:
sentence = sys.argv[1]
tokenizer = pyonmttok.Tokenizer("conservative", joiner_annotate=True)
tokens = tokenizer(sentence)
model = "/home/techops/data/nmt_data/clean_data_files_v1/ctranslate2/model_4m"
# model = "/home/techops/data/nmt_data/ctranslate_model/en_ko/100m_300000"
translator = ctranslate2.Translator(model_path=model, device="cpu")
outputs = translator.translate_batch([tokens], beam_size=5, num_hypotheses=2, sampling_temperature=0.8, replace_unknowns=True)
translated = outputs[0].hypotheses[0]
t_s = tokenizer.detokenize(translated)
print(t_s.replace("@@", ""))
>>>
(nmt) [techops@inf-ai-nmt-a01 (screen: ) /data/NMT/2b_nmt/ctranslate]$ python ctran_translate.py
최고의 맛과 품질을 제공하지 못한 점에 대해 진심으로 사과드립니다.
```
|
dong9ry/nuclear-v1.4b | dong9ry | 2024-03-08T09:20:12Z | 72 | 0 | transformers | [
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T09:14:17Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: nuclear-v1.4b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nuclear-v1.4b
This model is a fine-tuned version of [dong9ry/nuclear-v1.1b](https://huggingface.co/dong9ry/nuclear-v1.1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
|
openkg/aijudge | openkg | 2024-03-08T09:15:56Z | 94 | 3 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"Court View",
"Legal Judgment Prediction",
"Explainable",
"GPT2",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-01T14:43:32Z | ---
license: apache-2.0
language:
- zh
tags:
- Court View
- Legal Judgment Prediction
- Explainable
- GPT2
---
# AI Judge
----
## Model Description
<p align = "justify"> The advent of ChatGPT and GPT-4 have brought groundbreaking progress in the realm of natural language processing, with its astonishing generative capabilities. Nevertheless, the training and deployment of such large-scale language models are exceedingly costly. Furthermore, experience has shown that these models struggle to deliver satisfactory performance in specific domains, such as knowledge-intensive scenarios like jurisprudence. Common limitations include knowledge hallucinations, inability to accurately apply legal provisions, and generating overly vague content. </p>
<p align = "justify">To alleviate the aforementioned challenges, we have trained a series of language models based on Chinese legal corpora, known as JurisLMs. These models have been further pre-trained on various types of legal documents, such as Chinese laws and regulations, consultations, and judgment document. AI Judge is one such model within the JurisLMs family, derived from the GPT-2 model that has further pre-training on legal judgment documents, combined with an article selection model (a BERT-based classifier) for fine-tuning, resulting in an explainable legal judgment model. Compared to existing models, AI Judge not only provides sentencing outcomes but also offers corresponding judicial perspectives. </p>
## Model Usage
```python
import torch
from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
fact_description = "1、2013年6月25日9时许,被告人丁某某在平阴县中医院建筑工地工人宿舍,窃取被害人胡某(男,43岁)现金1500元,在逃离现场时被工地工人抓获,丁某某将窃取的现金返还被害人。2、2013年7月12日14时许,被告人丁某某在平阴县府前街文鼎嘉苑建筑工地工人宿舍,窃取被害人陈某(男,31岁)及王某(男,25岁)现金850元,在逃跑时被抓获,丁某某将盗窃现金返还被害人。本院认为,"
model_name = "openkg/aijudge"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = BertTokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name).to(device)
generator = TextGenerationPipeline(model, tokenizer, device=0)
generator.tokenizer.pad_token_id = generator.model.config.eos_token_id
prediction = generator(fact_description,
max_length=1024,
num_beams=1,
top_p=0.7,
num_return_sequences=1,
eos_token_id=50256,
pad_token_id=generator.model.config.eos_token_id)
court_view = prediction[0]["generated_text"].replace(" ", "").split("。本院认为,")[1].split("<生成结束>")[0]
print(court_view)
```
## Comparison
For detailed comparisons, please refer to [(JurisLMs)](https://github.com/seudl/JurisLMs)
## Acknowledged Limitations
Despite being significantly ameliorated through professional annotation and evaluation, JurisGPT2 inevitably retains certain limitations, including but not limited to:
- Potential oversight of crucial facts
- Possible logical errors in multiple parties
- Potential inaccuracies in conclusions
- Possibility of outdated legal provisions
## Disclaimer
<p align = "justify">This project is strictly for academic research purposes and is prohibited for commercial use. When utilizing third-party technologies, adhere to the corresponding open-source licenses. The accuracy of the content generated by this project is subject to factors such as algorithms, randomness, and quantification precision, and therefore, cannot be guaranteed. The project assumes no legal liability for any content produced by the model and shall not be held responsible for any damages resulting from the use of related resources and output. Due to the time constraints of the R&D group, timely technical support is unfortunately not feasible.</p>
## Contributors
Sheng Bi, Haofen Wang, Tianxing Wu, Guilin Qi |
openkg/ailawyer | openkg | 2024-03-08T09:15:21Z | 9 | 3 | transformers | [
"transformers",
"llama",
"text-generation",
"Legal QA",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-07-01T15:24:53Z | ---
license: apache-2.0
language:
- zh
tags:
- Legal QA
---
## Project Description
<p align = "justify"> The advent of ChatGPT, specifically GPT-4, has engendered groundbreaking strides in the realm of natural language processing, with its generative capabilities inducing profound impressions. However, empirical observations suggest that these models often falter in specific domains, notably in knowledge-intensive areas such as law, where common limitations manifest as knowledge hallucinations, inability to accurately apply legal provisions, and the generation of excessively abstract content. </p>
<p align = "justify"> To mitigate the aforementioned challenges, we have trained a series of language models, namely JurisLMs, on Chinese legal corpora. These models have been further pretrained on diverse datasets including legislations, legal consultations, and judicial documents, tailored to distinct scenarios. Among these, AI Judge, a model fine-tuned after further pretraining of GPT-2 on legal corpora and combined with a <u>legal provision application model</u> (a classifier based on BERT), is an <font color=#FF000>explainable legal decision prediction model</font>. Existing decision making models typically yield predictions but fail to rationalize them. To address this, AI Judge not only provides verdict predictions but also corresponding court views. Leveraging a similar framework, we have trained an <font color=#FF000>intelligent legal consultation model</font>, AI Lawyer, based on Chinese LLaMA. Owing to the scarcity of consultation corpora annotated with legal provisions, we have employed <u>Active Learning</u> to fine-tune a <u>legal provision application model</u> on a limited dataset, enabling AI Lawyer to answer queries by correctly applying corresponding judicial perspectives.</p>
## AI Lawyer Demo and Usage
<!---<div align=center><img src="./images/ailawyer_framework.png"></div>
<center style="font-size:14px;color:#C0C0C0;text-decoration:underline">AI Lawyer 框架</center>
<br>--->
```python
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
"""
base_model = "save_merge_weight_directory"
lora_weights = "ailawyer_lora" # download from https://huggingface.co/openkg/ailawyer
instruction = "假设你是一名律师,请分析如下案例,并提供专业的法律服务。"
_input = "去年三月份包工头欠我和另外两个工友一共七万多元,然后一直拖着不给,也找不到人,或者是见面了就说没钱。现在要怎么做才能要到钱?"
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = LlamaForCausalLM.from_pretrained(base_model,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto")
model = PeftModel.from_pretrained(model, lora_weights, torch_dtype=torch.float16).half()
model.config.pad_token_id = tokenizer.pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
model.eval()
prompt = generate_prompt(instruction, _input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
generation_config = GenerationConfig(temperature=0.1, top_p=0.75, top_k=1, num_beams=1)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=500,
)
output_ids = generation_output.sequences[0]
output = tokenizer.decode(output_ids)
print(output.split("### Response:")[1].strip())
# Response: 根据《保障农民工工资支付条例》第十六条 用人单位拖欠农民工工资的,应当依法予以清偿。因此,拖欠农民工工资属于违法行为,劳动者有权要求用工单位承担工资清偿责任,建议劳动者收集拖欠工资的证据,比如合同书,工资欠条,与工地负责人通话录音,短信微信聊天记录,工友证人证言等向劳动监察大队举报,要求责令有关单位支付工资,也可以向法院起诉要求判决支付农民工工资。可以向法律援助中心申请免费的法律援助,指派法律援助律师代为诉讼维权,可以向12345政府服务热线投诉。</s>
```
## Environment
- RAM 30G+, GPU 32G+
- python>=3.9
- pip install -r requirements.txt
## Model Merging
### Step 1: Download the original LLaMa 13B
including:
- consolidated.*.pth
- tokenizer.model
- params.json
### Step 2: Download Chinese-LLaMA-Alpaca 13B weights and save as chinese_llama_alpaca_lora_weight_directory
- HF:https://huggingface.co/ziqingyang/chinese-llama-lora-13b/tree/main
- Baidu Pan:https://pan.baidu.com/s/1BxFhYhDMipW7LwI58cGmQQ?pwd=ef3t
including:
adapter_config.json、adapter_model.bin、special_tokens_map.json、tokenizer.model、tokenizer_config.json
### Step 3: Convert the original LLaMA to HF format
```python
python convert_llama_weights_to_hf.py \
--input_dir origin_llama_weight_directory \
--model_size 13B \
--output_dir origin_llama_hf_weight_directory
```
- input_dir: the original LLaMa directory
- output_dir: the directory where the converted LLaMA
### Step 4: Merge LoRA weights to generate base model
```python
python merge_llama_with_chinese_lora_to_hf.py \
--base_model origin_llama_hf_weight_directory \
--lora_model chinese_llama_alpaca_lora_weight_directory \
--output_dir save_merge_weight_directory
```
- base_model:origin_llama_hf_weight_directory in Step 3
- lora_model:chinese_llama_alpaca_lora_weight_directory in Step 2
- output_dir:the directory where the full model weights
## Deployment
Download the LoRA weights for this project and save as ailawyer_lora.
### Web UI Deployment
Local deployment using Gradio Web UI, deployed on GPU 0 as follows:
```shell
CUDA_VISIBLE_DEVICES=0 python web_demo_llama_13B.py \
--base_model save_merge_weight_directory \
--lora_weights ailawyer_lora
```
- base_model save_merge_weight_directory in Step 4
## Disclaimer
<p align = "justify"> This project is exclusively for academic research purposes and strictly prohibited for commercial use. The accuracy of the content generated by this project is subject to factors such as algorithms, randomness, and quantitative precision, hence difficult to guarantee. Although utmost efforts have been made to ensure the accuracy and timeliness of the data used, the characteristics of language models may still cause a lag in information and legal developments. Therefore, this project assumes no legal liability for any content output by the model, nor does it assume responsibility for any losses that may arise from the use of related resources and output results. Machines should not and cannot replace the process of seeking professional legal advice. In the event of specific legal issues or cases, it is recommended to consult a qualified lawyer or legal professional to obtain personalized advice. </p>
## Contributors
Sheng Bi, Haofen Wang, Tianxing Wu, Guilin Qi
|
tagawayskintagremover/tagawayproskintagremover | tagawayskintagremover | 2024-03-08T09:08:52Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"Tag Away Pro Skin Tag Remover",
"en",
"license:bsd",
"region:us"
] | null | 2024-03-08T09:08:19Z | ---
license: bsd
language:
- en
library_name: sentence-transformers
tags:
- Tag Away Pro Skin Tag Remover
---
[Tag Away Pro Skin Tag Remover](https://atozsupplement.com/tag-away-pro-skin-tag-remover/) Expanded Hydration: Fixings like hyaluronic corrosive and glycerin profoundly hydrate the skin, plumping it up and limiting the presence of dryness and parchedness lines.Evened Complexion: Hostile to maturing serums might incorporate fixings like L-ascorbic acid, niacinamide, or alpha hydroxy acids (AHAs) that assist with blurring dull spots, hyperpigmentation, and advance an all the more even complexion.
VISIT HERE FOR OFFICIAL WEBSITE:-https://atozsupplement.com/tag-away-pro-skin-tag-remover/
|
humung/komt-mistral-7b-v1-vlending-cs-v0.2 | humung | 2024-03-08T09:06:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-08T09:06:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
haryoaw/scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1 | haryoaw | 2024-03-08T09:02:11Z | 94 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:massive",
"base_model:facebook/xlm-v-base",
"base_model:finetune:facebook/xlm-v-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-08T08:59:30Z | ---
license: mit
base_model: facebook/xlm-v-base
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: massive
type: massive
config: all_1.1
split: validation
args: all_1.1
metrics:
- name: Accuracy
type: accuracy
value: 0.8472984221877483
- name: F1
type: f1
value: 0.8225956665149763
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7886
- Accuracy: 0.8473
- F1: 0.8226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 47
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.587 | 0.27 | 5000 | 0.7148 | 0.8166 | 0.7696 |
| 0.456 | 0.53 | 10000 | 0.6624 | 0.8415 | 0.8006 |
| 0.3711 | 0.8 | 15000 | 0.6803 | 0.8394 | 0.8064 |
| 0.2846 | 1.07 | 20000 | 0.7409 | 0.8406 | 0.8119 |
| 0.2698 | 1.34 | 25000 | 0.7120 | 0.8428 | 0.8129 |
| 0.2589 | 1.6 | 30000 | 0.7179 | 0.8478 | 0.8300 |
| 0.246 | 1.87 | 35000 | 0.7383 | 0.8455 | 0.8119 |
| 0.2079 | 2.14 | 40000 | 0.7911 | 0.8503 | 0.8162 |
| 0.2157 | 2.41 | 45000 | 0.7775 | 0.8434 | 0.8251 |
| 0.2111 | 2.67 | 50000 | 0.7737 | 0.8455 | 0.8196 |
| 0.2014 | 2.94 | 55000 | 0.7886 | 0.8473 | 0.8226 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
|
digiplay/HK_Loras | digiplay | 2024-03-08T09:02:05Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2024-03-08T08:41:55Z | ---
license: other
---
Models info :
**HongKong by Night - Film Color**
❤️ Hongkong_byNight_Film_Color.safetensors
✏️ Trigger Words:Hongkong street, night
🔗 https://civitai.com/models/91185/hongkong-by-night-film-color
**港风风格HongKong Style**
📌 HongKongStyleV1beta.safetensors
📌 HongKongStyleV1.safetensors
✏️ Trigger Words: HongKong, HongKong style
🔗 https://civitai.com/models/107331?modelVersionId=131066
|
hoangthethief/chatbot_question_classification | hoangthethief | 2024-03-08T09:00:55Z | 90 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:Supabase/gte-small",
"base_model:finetune:Supabase/gte-small",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-08T09:00:36Z | ---
license: mit
base_model: Supabase/gte-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: v_best_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# v_best_model
This model is a fine-tuned version of [Supabase/gte-small](https://huggingface.co/Supabase/gte-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0734
- Accuracy: 0.9990
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2837 | 1.0 | 62 | 0.6846 | 0.9231 |
| 0.448 | 2.0 | 124 | 0.2268 | 0.9808 |
| 0.1566 | 3.0 | 186 | 0.1397 | 0.9808 |
| 0.0879 | 4.0 | 248 | 0.1302 | 0.9808 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.15.0
|
fyp-admin/dreambooth_Venus_15 | fyp-admin | 2024-03-08T08:56:13Z | 1 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"stable-diffusion",
"stable-diffusion-diffusers",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-03-08T08:16:02Z | ---
license: creativeml-openrail-m
library_name: diffusers
tags:
- text-to-image
- diffusers
- lora
- stable-diffusion
- stable-diffusion-diffusers
inference: true
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: a picture of planet Venus in the center, in golden orange color and
white hues on the poles. It is present in space which has dark background, embedded
with a cluster of small-sized bright stars.
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA DreamBooth - fyp-admin/dreambooth_Venus_15
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a picture of planet Venus in the center, in golden orange color and white hues on the poles. It is present in space which has dark background, embedded with a cluster of small-sized bright stars. using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Senthilkumar-M/distilbert_finetune_own_data_model | Senthilkumar-M | 2024-03-08T08:54:35Z | 55 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-02-29T04:40:22Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert_finetune_own_data_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_finetune_own_data_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0618
- Precision: 0.8889
- Recall: 0.8889
- F1: 0.8889
- Accuracy: 0.9773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 23 | 0.3117 | 1.0 | 0.6667 | 0.8 | 0.9091 |
| No log | 2.0 | 46 | 0.1638 | 0.7778 | 0.7778 | 0.7778 | 0.9318 |
| No log | 3.0 | 69 | 0.1322 | 0.875 | 0.7778 | 0.8235 | 0.9545 |
| No log | 4.0 | 92 | 0.0582 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
| No log | 5.0 | 115 | 0.1196 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
| No log | 6.0 | 138 | 0.0607 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
| No log | 7.0 | 161 | 0.0918 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
| No log | 8.0 | 184 | 0.0512 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
| No log | 9.0 | 207 | 0.0521 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
| No log | 10.0 | 230 | 0.0618 | 0.8889 | 0.8889 | 0.8889 | 0.9773 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
melino2000/falcon-7b-quantize | melino2000 | 2024-03-08T08:49:43Z | 89 | 0 | transformers | [
"transformers",
"safetensors",
"falcon",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-03-08T08:47:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
psroy/results | psroy | 2024-03-08T08:49:34Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:NousResearch/Llama-2-7b-chat-hf",
"base_model:adapter:NousResearch/Llama-2-7b-chat-hf",
"region:us"
] | null | 2024-02-28T08:35:03Z | ---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: NousResearch/Llama-2-7b-chat-hf
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 |
GraydientPlatformAPI/cheyenne16-xl | GraydientPlatformAPI | 2024-03-08T08:46:50Z | 30 | 3 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2024-03-08T08:26:29Z | ---
library_name: diffusers
pipeline_tag: text-to-image
--- |
dchatca/vistral-economics-v3.2 | dchatca | 2024-03-08T08:42:40Z | 4 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:Viet-Mistral/Vistral-7B-Chat",
"base_model:adapter:Viet-Mistral/Vistral-7B-Chat",
"license:afl-3.0",
"region:us"
] | null | 2024-03-07T17:38:34Z | ---
license: afl-3.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: Viet-Mistral/Vistral-7B-Chat
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [Viet-Mistral/Vistral-7B-Chat](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat) on Summary dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
yzzky/mstral7b-ft-autotrain-1 | yzzky | 2024-03-08T08:33:10Z | 0 | 0 | null | [
"safetensors",
"autotrain",
"text-generation",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T08:33:06Z | ---
tags:
- autotrain
- text-generation
widget:
- text: "I love AutoTrain because "
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
dong9ry/nuclear-v1.3b | dong9ry | 2024-03-08T08:31:39Z | 71 | 0 | transformers | [
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T08:24:52Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: nuclear-v1.3b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nuclear-v1.3b
This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
|
Rardilit/Gaitonde-v1 | Rardilit | 2024-03-08T08:29:22Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T08:24:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
CC-AI-Labs/nord-triplet-hsm-bert-base-cased | CC-AI-Labs | 2024-03-08T08:10:11Z | 48 | 0 | sentence-transformers | [
"sentence-transformers",
"tf",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-03-08T07:58:58Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 66 with parameters:
```
{'batch_size': 128, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.BatchHardSoftMarginTripletLoss.BatchHardSoftMarginTripletLoss`
Parameters of the fit()-Method:
```
{
"epochs": 30,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 8e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 198,
"weight_decay": 0
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
etri-xainlp/SOLAR-10.7B-merge-dpo | etri-xainlp | 2024-03-08T08:09:50Z | 2,301 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-04T01:13:06Z | ---
license: cc-by-nc-4.0
tags:
- merge
---
# etri-xainlp/SOLAR-10.7B-merge-dpo
## Model Details
**Model Developers** ETRI xainlp team
**Input** text only.
**Output** text only.
**Model Architecture**
We used MergeKit to merge Model heavytail/kullm-solar into Model upstage/SOLAR-10.7B-Instruct-v1.0 as the base.
**Base Model** [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
**Merge Model** [heavytail/kullm-solar](https://huggingface.co/heavytail/kullm-solar)
**Training Dataset**
- dpo+lora: 90k user preference set
- We use A100 GPU 80GB * 1, when training. |
hellosimple/bert-base-uncased-2022-habana | hellosimple | 2024-03-08T08:01:38Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-08T08:01:37Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nielsr/DUSt3R_ViTLarge_BaseDecoder_512_dpt | nielsr | 2024-03-08T07:57:56Z | 1,575 | 2 | transformers | [
"transformers",
"safetensors",
"vision",
"endpoints_compatible",
"region:us"
] | null | 2024-03-06T21:37:25Z | ---
tags:
- vision
---
## DUSt3R
# Model info
Project page: https://dust3r.europe.naverlabs.com/
# How to use
Here's how to load the model (after [installing](https://github.com/naver/dust3r?tab=readme-ov-file#installation) the dust3r package):
```python
from dust3r.model import AsymmetricCroCo3DStereo
import torch
model = AsymmetricCroCo3DStereo.from_pretrained("nielsr/DUSt3R_ViTLarge_BaseDecoder_512_dpt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
```
Next, one can run inference as follows:
```
from dust3r.inference import inference
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
if __name__ == '__main__':
batch_size = 1
schedule = 'cosine'
lr = 0.01
niter = 300
# load_images can take a list of images or a directory
images = load_images(['croco/assets/Chateau1.png', 'croco/assets/Chateau2.png'], size=512)
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, model, device, batch_size=batch_size)
# at this stage, you have the raw dust3r predictions
view1, pred1 = output['view1'], output['pred1']
view2, pred2 = output['view2'], output['pred2']
# here, view1, pred1, view2, pred2 are dicts of lists of len(2)
# -> because we symmetrize we have (im1, im2) and (im2, im1) pairs
# in each view you have:
# an integer image identifier: view1['idx'] and view2['idx']
# the img: view1['img'] and view2['img']
# the image shape: view1['true_shape'] and view2['true_shape']
# an instance string output by the dataloader: view1['instance'] and view2['instance']
# pred1 and pred2 contains the confidence values: pred1['conf'] and pred2['conf']
# pred1 contains 3D points for view1['img'] in view1['img'] space: pred1['pts3d']
# pred2 contains 3D points for view2['img'] in view1['img'] space: pred2['pts3d_in_other_view']
# next we'll use the global_aligner to align the predictions
# depending on your task, you may be fine with the raw output and not need it
# with only two input images, you could use GlobalAlignerMode.PairViewer: it would just convert the output
# if using GlobalAlignerMode.PairViewer, no need to run compute_global_alignment
scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr)
# retrieve useful values from scene:
imgs = scene.imgs
focals = scene.get_focals()
poses = scene.get_im_poses()
pts3d = scene.get_pts3d()
confidence_masks = scene.get_masks()
# visualize reconstruction
scene.show()
# find 2D-2D matches between the two images
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid
pts2d_list, pts3d_list = [], []
for i in range(2):
conf_i = confidence_masks[i].cpu().numpy()
pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i]) # imgs[i].shape[:2] = (H, W)
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])
reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list)
print(f'found {num_matches} matches')
matches_im1 = pts2d_list[1][reciprocal_in_P2]
matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2]
# visualize a few matches
import numpy as np
from matplotlib import pyplot as pl
n_viz = 10
match_idx_to_viz = np.round(np.linspace(0, num_matches-1, n_viz)).astype(int)
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]
H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2]
img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img = np.concatenate((img0, img1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap('jet')
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
pl.show(block=True)
```
### BibTeX entry and citation info
```bibtex
@journal{dust3r2023,
title={{DUSt3R: Geometric 3D Vision Made Easy}},
author={{Wang, Shuzhe and Leroy, Vincent and Cabon, Yohann and Chidlovskii, Boris and Revaud Jerome}},
journal={arXiv preprint 2312.14132},
year={2023}}
``` |
llmixer/BigWeave-v29-122b | llmixer | 2024-03-08T07:55:32Z | 48 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"frankenmerge",
"122b",
"en",
"base_model:152334H/miqu-1-70b-sf",
"base_model:finetune:152334H/miqu-1-70b-sf",
"license:unknown",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-07T23:31:58Z | ---
base_model:
- 152334H/miqu-1-70b-sf
license: unknown
language:
- en
pipeline_tag: text-generation
tags:
- merge
- frankenmerge
- 122b
---
# BigWeave v29 122b
<img src="https://cdn-uploads.huggingface.co/production/uploads/65a6db055c58475cf9e6def1/4CbbAN-X7ZWj702JrcCGH.png" width=600>
The BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.
# Prompting Format
Chatml, Mistral, Vicuna.
# Merge process
This is a self-merge of 152334H/miqu-1-70b-sf. Layers are repeated in groups of 4 with a 2 layer overlap. The first and last 8/9 layers are not repeated.
Merge configuration:
```
slices:
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [0,11]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [9,13]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [11,15]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [13,17]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [15,19]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [17,21]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [19,23]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [21,25]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [23,27]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [25,29]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [27,31]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [29,33]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [31,35]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [33,37]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [35,39]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [37,41]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [39,43]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [41,45]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [43,47]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [45,49]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [47,51]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [49,53]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [51,55]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [53,57]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [55,59]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [57,61]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [59,63]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [61,65]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [63,67]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [65,69]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [67,71]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [69,80]
merge_method: passthrough
dtype: float16
``` |
VikrantRamesh/Falcon-CN | VikrantRamesh | 2024-03-08T07:52:27Z | 90 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"falcon",
"feature-extraction",
"generated_from_trainer",
"custom_code",
"base_model:tiiuae/falcon-7b",
"base_model:quantized:tiiuae/falcon-7b",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | feature-extraction | 2024-03-08T05:59:09Z | ---
license: apache-2.0
base_model: tiiuae/falcon-7b
tags:
- generated_from_trainer
model-index:
- name: Falcon-CN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Falcon-CN
This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5969 | 0.24 | 10 | 2.5105 |
| 2.332 | 0.49 | 20 | 2.4691 |
| 2.418 | 0.73 | 30 | 2.4289 |
| 2.4031 | 0.98 | 40 | 2.4040 |
| 2.3109 | 1.22 | 50 | 2.3807 |
| 2.3516 | 1.46 | 60 | 2.3600 |
| 2.2906 | 1.71 | 70 | 2.3406 |
| 2.3594 | 1.95 | 80 | 2.3265 |
| 2.2031 | 2.2 | 90 | 2.3151 |
| 2.25 | 2.44 | 100 | 2.3039 |
| 2.2148 | 2.68 | 110 | 2.2911 |
| 2.2594 | 2.93 | 120 | 2.2803 |
| 2.1844 | 3.17 | 130 | 2.2752 |
| 2.0914 | 3.41 | 140 | 2.2714 |
| 2.2008 | 3.66 | 150 | 2.2624 |
| 2.2109 | 3.9 | 160 | 2.2586 |
| 2.1648 | 4.15 | 170 | 2.2548 |
| 2.1484 | 4.39 | 180 | 2.2535 |
| 2.193 | 4.63 | 190 | 2.2484 |
| 2.1219 | 4.88 | 200 | 2.2484 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Kudod/hoa-1b4_model_nmt_test | Kudod | 2024-03-08T07:51:37Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:vlsp-2023-vllm/hoa-1b4",
"base_model:adapter:vlsp-2023-vllm/hoa-1b4",
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2024-03-08T07:42:11Z | ---
license: bigscience-bloom-rail-1.0
library_name: peft
tags:
- generated_from_trainer
base_model: vlsp-2023-vllm/hoa-1b4
model-index:
- name: hoa-1b4_model_nmt_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hoa-1b4_model_nmt_test
This model is a fine-tuned version of [vlsp-2023-vllm/hoa-1b4](https://huggingface.co/vlsp-2023-vllm/hoa-1b4) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 21 | 2.8255 |
| No log | 2.0 | 42 | 2.3028 |
| No log | 3.0 | 63 | 1.8727 |
| No log | 4.0 | 84 | 1.5161 |
| No log | 5.0 | 105 | 1.2181 |
| No log | 6.0 | 126 | 0.9991 |
| No log | 7.0 | 147 | 0.7980 |
| No log | 8.0 | 168 | 0.6372 |
| No log | 9.0 | 189 | 0.5075 |
| No log | 10.0 | 210 | 0.4042 |
| No log | 11.0 | 231 | 0.3321 |
| No log | 12.0 | 252 | 0.2716 |
| No log | 13.0 | 273 | 0.2143 |
| No log | 14.0 | 294 | 0.1740 |
| No log | 15.0 | 315 | 0.1397 |
| No log | 16.0 | 336 | 0.1263 |
| No log | 17.0 | 357 | 0.0990 |
| No log | 18.0 | 378 | 0.0853 |
| No log | 19.0 | 399 | 0.0678 |
| No log | 20.0 | 420 | 0.0546 |
| No log | 21.0 | 441 | 0.0476 |
| No log | 22.0 | 462 | 0.0441 |
| No log | 23.0 | 483 | 0.0367 |
| 0.7202 | 24.0 | 504 | 0.0292 |
| 0.7202 | 25.0 | 525 | 0.0241 |
| 0.7202 | 26.0 | 546 | 0.0227 |
| 0.7202 | 27.0 | 567 | 0.0207 |
| 0.7202 | 28.0 | 588 | 0.0186 |
| 0.7202 | 29.0 | 609 | 0.0168 |
| 0.7202 | 30.0 | 630 | 0.0139 |
| 0.7202 | 31.0 | 651 | 0.0126 |
| 0.7202 | 32.0 | 672 | 0.0113 |
| 0.7202 | 33.0 | 693 | 0.0113 |
| 0.7202 | 34.0 | 714 | 0.0107 |
| 0.7202 | 35.0 | 735 | 0.0099 |
| 0.7202 | 36.0 | 756 | 0.0087 |
| 0.7202 | 37.0 | 777 | 0.0085 |
| 0.7202 | 38.0 | 798 | 0.0080 |
| 0.7202 | 39.0 | 819 | 0.0077 |
| 0.7202 | 40.0 | 840 | 0.0072 |
| 0.7202 | 41.0 | 861 | 0.0071 |
| 0.7202 | 42.0 | 882 | 0.0070 |
| 0.7202 | 43.0 | 903 | 0.0068 |
| 0.7202 | 44.0 | 924 | 0.0064 |
| 0.7202 | 45.0 | 945 | 0.0063 |
| 0.7202 | 46.0 | 966 | 0.0061 |
| 0.7202 | 47.0 | 987 | 0.0061 |
| 0.0146 | 48.0 | 1008 | 0.0060 |
| 0.0146 | 49.0 | 1029 | 0.0058 |
| 0.0146 | 50.0 | 1050 | 0.0059 |
| 0.0146 | 51.0 | 1071 | 0.0067 |
| 0.0146 | 52.0 | 1092 | 0.0056 |
| 0.0146 | 53.0 | 1113 | 0.0055 |
| 0.0146 | 54.0 | 1134 | 0.0055 |
| 0.0146 | 55.0 | 1155 | 0.0053 |
| 0.0146 | 56.0 | 1176 | 0.0055 |
| 0.0146 | 57.0 | 1197 | 0.0055 |
| 0.0146 | 58.0 | 1218 | 0.0057 |
| 0.0146 | 59.0 | 1239 | 0.0053 |
| 0.0146 | 60.0 | 1260 | 0.0052 |
| 0.0146 | 61.0 | 1281 | 0.0052 |
| 0.0146 | 62.0 | 1302 | 0.0051 |
| 0.0146 | 63.0 | 1323 | 0.0050 |
| 0.0146 | 64.0 | 1344 | 0.0049 |
| 0.0146 | 65.0 | 1365 | 0.0050 |
| 0.0146 | 66.0 | 1386 | 0.0049 |
| 0.0146 | 67.0 | 1407 | 0.0049 |
| 0.0146 | 68.0 | 1428 | 0.0050 |
| 0.0146 | 69.0 | 1449 | 0.0049 |
| 0.0146 | 70.0 | 1470 | 0.0049 |
| 0.0146 | 71.0 | 1491 | 0.0048 |
| 0.0064 | 72.0 | 1512 | 0.0048 |
| 0.0064 | 73.0 | 1533 | 0.0047 |
| 0.0064 | 74.0 | 1554 | 0.0048 |
| 0.0064 | 75.0 | 1575 | 0.0048 |
| 0.0064 | 76.0 | 1596 | 0.0047 |
| 0.0064 | 77.0 | 1617 | 0.0047 |
| 0.0064 | 78.0 | 1638 | 0.0047 |
| 0.0064 | 79.0 | 1659 | 0.0047 |
| 0.0064 | 80.0 | 1680 | 0.0048 |
| 0.0064 | 81.0 | 1701 | 0.0046 |
| 0.0064 | 82.0 | 1722 | 0.0046 |
| 0.0064 | 83.0 | 1743 | 0.0046 |
| 0.0064 | 84.0 | 1764 | 0.0046 |
| 0.0064 | 85.0 | 1785 | 0.0046 |
| 0.0064 | 86.0 | 1806 | 0.0046 |
| 0.0064 | 87.0 | 1827 | 0.0046 |
| 0.0064 | 88.0 | 1848 | 0.0046 |
| 0.0064 | 89.0 | 1869 | 0.0046 |
| 0.0064 | 90.0 | 1890 | 0.0046 |
| 0.0064 | 91.0 | 1911 | 0.0045 |
| 0.0064 | 92.0 | 1932 | 0.0045 |
| 0.0064 | 93.0 | 1953 | 0.0045 |
| 0.0064 | 94.0 | 1974 | 0.0045 |
| 0.0064 | 95.0 | 1995 | 0.0045 |
| 0.0052 | 96.0 | 2016 | 0.0045 |
| 0.0052 | 97.0 | 2037 | 0.0045 |
| 0.0052 | 98.0 | 2058 | 0.0045 |
| 0.0052 | 99.0 | 2079 | 0.0045 |
| 0.0052 | 100.0 | 2100 | 0.0045 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.15.2 |
zongxiao/ppo-LunarLander-v2-local3 | zongxiao | 2024-03-08T07:50:26Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T07:50:16Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -260.90 +/- 76.91
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sujayC66/bart_samsum | sujayC66 | 2024-03-08T07:50:25Z | 93 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-large-cnn",
"base_model:finetune:facebook/bart-large-cnn",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-08T07:47:38Z | ---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
model-index:
- name: bart_samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_samsum
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Mena55/videomae-base-finetuned-kinetics_m_v11 | Mena55 | 2024-03-08T07:49:54Z | 49 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base-finetuned-kinetics",
"base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | video-classification | 2024-03-08T07:10:02Z | ---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
model-index:
- name: videomae-base-finetuned-kinetics_m_v11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-kinetics_m_v11
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0009
- eval_accuracy: 1.0
- eval_runtime: 26.6647
- eval_samples_per_second: 0.75
- eval_steps_per_second: 0.188
- epoch: 2.2
- step: 261
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 430
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
ingeol/q2d_5 | ingeol | 2024-03-08T07:49:38Z | 47 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-03-08T07:48:21Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# ingeol/q2d_5
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ingeol/q2d_5')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('ingeol/q2d_5')
model = AutoModel.from_pretrained('ingeol/q2d_5')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ingeol/q2d_5)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 7797 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`beir.losses.bpr_loss.BPRLoss`
Parameters of the fit()-Method:
```
{
"epochs": 5,
"evaluation_steps": 7000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
lapp0/open_hermes_query_expansion | lapp0 | 2024-03-08T07:46:16Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:teknium/OpenHermes-2.5-Mistral-7B",
"base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B",
"license:apache-2.0",
"region:us"
] | null | 2024-03-08T01:25:27Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: open_hermes_query_expansion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# open_hermes_query_expansion
This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7964 | 1.0 | 178 | 0.5460 |
| 0.4356 | 2.0 | 356 | 0.1952 |
| 0.1109 | 3.0 | 534 | 0.0663 |
| 0.0279 | 4.0 | 712 | 0.0390 |
| 0.0023 | 5.0 | 890 | 0.0409 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
lwit/om_de_en_nctx_model | lwit | 2024-03-08T07:45:42Z | 91 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"mbart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/mbart-large-50-many-to-many-mmt",
"base_model:finetune:facebook/mbart-large-50-many-to-many-mmt",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-08T07:13:56Z | ---
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
model-index:
- name: om_de_en_nctx_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# om_de_en_nctx_model
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9692 | 1.0 | 514 | 0.0673 |
| 0.0419 | 2.0 | 1028 | 0.0640 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
KUKU0404/pokemon-lora | KUKU0404 | 2024-03-08T07:44:32Z | 2 | 0 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"diffusers-training",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-03-08T06:08:20Z | ---
license: creativeml-openrail-m
library_name: diffusers
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
inference: true
base_model: runwayml/stable-diffusion-v1-5
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - KUKU0404/pokemon-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following.




## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Duxiaoman-DI/XuanYuan2-70B-Chat-8bit | Duxiaoman-DI | 2024-03-08T07:43:52Z | 14 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-02-04T12:19:24Z | ---
license: llama2
---
## 介绍
XuanYuan2-70B系列模型是在[XuanYuan-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B)基座模型基础上,使用更多高质量的语料进行继续预训练和指令微调,并进行基于人类反馈的强化训练而得到。相比第一代XuanYuan-70B系列模型,第二代模型在通用性、安全性和金融能力上都得到了明显提高,模型输出更加符合人类偏好。同时,第二代模型支持的上下文长度达到16k,能够更好处理长文本输入,适用范围更为广泛。模型细节请参考文档:[Report](https://github.com/Duxiaoman-DI/XuanYuan/blob/main/xuanyuan2_70b_report.md)
XuanYuan2-70B系列共包含4个模型,包括基座模型XuanYuan2-70B,chat模型XuanYuan2-70B-Chat,chat模型的量化版本XuanYuan2-70B-Chat-8bit和XuanYuan2-70B-Chat-4bit。各个模型的下载链接为:
| 基座模型 | Chat模型 | 8-bit量化Chat模型 | 4-bit量化Chat模型 |
| ------------------------------------------------------------ | ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| 🤗 [XuanYuan2-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B) | 🤗 [XuanYuan2-70B-Chat](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat) | 🤗 [XuanYuan2-70B-Chat-8bit](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat-8bit ) | 🤗 [XuanYuan2-70B-Chat-4bit](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat-4bit) |
主要特点:
- 使用更多高质量的数据进行继续预训练和指令微调,各项能力持续提升
- 支持的上下文长度达到了16k,使用范围更广
- 基于人类的反馈信息进行强化训练,进一步对齐了人类偏好
## 模型训练
在XuanYuan-70B基座模型的基础上,我们持续加入更高质量的预训练数据进行训练。同时为了兼顾训练效率和长文本建模,提出了一种**数据分桶的动态预训练方法**。基于数据分桶方式,我们在第一代XuanYuan-70B基座模型的基础上额外训练了大量tokens得到XuanYuan2-70B基座模型,模型的中文理解、金融知识等指标评测均达到不同幅度的提升。
基于XuanYuan2-70B基座模型,我们重新利用更多高质量的指令微调数据来进行指令对齐,主要提升的方向是通用与金融类型的指令数据质量和多样性。
对于指令微调后的模型,我们构建高质量的偏好数据和prompt数据,进行了基于人类反馈的强化训练(Reinforcement learning with human feedback,RLHF),进一步对齐了模型与人类的偏好,使模型表现能更符合人类需求。模型在通用性、安全性、金融领域内的表现有了较明显的提升。
## 性能评测
类似XuanYuan-70B,我们也对XuanYuan2-70B进行了通用性评测和金融评测。
### 通用评测
通用评测的目标是观察XuanYuan2-70B在使用更多高质量数据进行继续预训练后,英文能力是否得到了保持,中文能力是否得到了增强。同样,我们也选择MMLU来测试模型在英文场景下的通用能力,同时使用CEVAL和CMMLU来测试模型在中文场景下的各项能力。评测结果如下表所示。从表中可以看出,相比XuanYuan-70B,XuanYuan2-70B的中文能力得到了进一步提升,同时英文能力也没有出现明显的下降,整体表现符合预期。这一方面证明了我们所做的各项优化的有效性,另一方面也显示出了XuanYuan2-70B强大的通用能力。值得注意的是,榜单结果并不完全代表模型的实际性能表现,即便在CEVAL和CMMLU上我们的评测结果超过了GPT4,但实际中我们模型的表现和GPT4还存在明显的差距,我们将继续优化和提升轩辕模型的各项能力。
| 模型 | MMLU | CEVAL | CMMLU |
| ------------- | --------- | -------- | --------- |
| LLaMA2-70B | 68.9 | 52.1 | 53.11 |
| XuanYuan-70B | 70.9 | 71.9 | 71.10 |
| XuanYuan2-70B | 70.8 | **72.7** | **72.7** |
| GPT4 | **83.93** | 68.4 | 70.95 |
### 金融评测
我们在[FinanceIQ](https://github.com/Duxiaoman-DI/XuanYuan/tree/main/FinanceIQ)上评测了模型的金融能力。FinanceIQ是一个专业的金融领域评测集,其涵盖了10个金融大类及36个金融小类,总计7173个单项选择题,某种程度上可客观反应模型的金融能力。评测结果如下表所示。从表中结果可以看出,经过继续优化训练后,XuanYuan2-70B的综合金融能力得到了进一步提升,这再次证明了我们所做的一系列优化的有效性。同时我们也发现一些细分类目上模型的能力出现了一定程度的退化,这说明模型仍存在一定的优化空间,我们将继续优化提升轩辕模型的金融能力。
| 模型 | 平均分 | 注册会计师 | 银行从业资格 | 证券从业资格 | 基金从业资格 | 保险从业资格 | 经济师 | 税务师 | 期货从业资格 | 理财规划师 | 精算师 |
| ------------- | --------- | -------- | ---------- | ---------- | ----------- | --------- | ----- | ----- | ---------- | -------- | ----- |
| XuanYuan-70B | 67.56 | 69.49 | 76.40 | 69.56 | 74.89 | 67.82 | 84.81 | 58.4 | 71.59 | 65.15 | 37.50 |
| XuanYuan2-70B | **67.83** | 68.63 | 69.72 | 79.1 | 71.51 | 69.68 | 84.81 | 58.2 | 72.98 | 71.86 | 31.82 |
| GPT4 | 60.05 | 52.33 | 68.72 | 64.8 | 68.81 | 68.68 | 75.58 | 46.93 | 63.51 | 63.84 | 27.27 |
## 快速使用
XuanYuan2-70B系列模型的硬件需求、软件依赖、Base及Chat模型使用方法和XuanYuan-70B系列模型一致。请参考[XuanYuan-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B)系列模型的介绍内容。
为降低硬件需求,我们也提供了XuanYuan2-70B-Chat模型的8bit和4bit量化版本。
### 8bit模型
在8bit量化算法上,我们使用目前社区广泛使用的bitsandbytes库。经测试,8bit量化对模型的性能损失很低。8bit模型的使用方式如下所示(需注意promopt格式,我们在训练时设置了system message):
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
model_name_or_path = "/your/model/path"
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, use_fast=False, legacy=True)
model = LlamaForCausalLM.from_pretrained(model_name_or_path,torch_dtype=torch.float16, device_map="auto")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, repetition_penalty=1.1)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")
```
### 4bit模型:
在4bit量化算法上,我们使用[auto-gptq](https://github.com/PanQiWei/AutoGPTQ)工具。4bit模型使用方式如下所示,同样,需要对齐我们的prompt格式:
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_name_or_path = "/your/model/path"
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, use_fast=False, legacy=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,torch_dtype=torch.float16, device_map="auto")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, repetition_penalty=1.1)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")
```
### 在vLLM下使用4bit模型:
普通HuggingFace的推理脚本运行gptq量化的4bit模型时,推理的速度很慢,并不实用。而最新版本的vLLM已经支持包含gptq在内的多种量化模型的加载,vLLM依靠量化的加速算子以及pagedAttention,continue batching以及一些调度机制,可以实现至少10倍的推理吞吐的提升。
您可以安装最新版本的vLLM并使用以下脚本使用我们的4bit量化模型:
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256)
llm = LLM(model="/your/model/path", quantization="gptq", dtype="float16")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
result = llm.generate(prompt, sampling_params)
result_output = [[output.outputs[0].text, output.outputs[0].token_ids] for output in result]
print(f"输出:{result_output[0]}")
```
### 生成速度评估
我们测试了不同模型(量化前和量化后)在不同推理方式(HuggingFace、vLLM)下的生成速度,结果如下所示:
* 全量70B模型推理吞吐是: 8.26 token/s
* 4bit 70B模型推理吞吐是: 0.70 token/s
* 8bit 70B模型推理吞吐是: 3.05 token/s
* 4bit 70B模型vllm推理吞吐是: 60.32 token/s
* 全量70B模型vllm推理吞吐是: 41.80 token/s
在所有测试中,我们均设置batchsize=1。上述前三项都是普通HuggingFace推理脚本的测试结果,可以看到量化后模型推理速度并无提升。最后两项是vLLM的推理测试结果,比起HuggingFace推理,可以看出vLLM可用性更高,模型生成速度均有显著提升。
|
Duxiaoman-DI/XuanYuan2-70B-Chat | Duxiaoman-DI | 2024-03-08T07:42:38Z | 43 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-02-04T17:26:11Z | ---
license: llama2
---
## 介绍
XuanYuan2-70B系列模型是在[XuanYuan-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B)基座模型基础上,使用更多高质量的语料进行继续预训练和指令微调,并进行基于人类反馈的强化训练而得到。相比第一代XuanYuan-70B系列模型,第二代模型在通用性、安全性和金融能力上都得到了明显提高,模型输出更加符合人类偏好。同时,第二代模型支持的上下文长度达到16k,能够更好处理长文本输入,适用范围更为广泛。模型细节请参考文档:[Report](https://github.com/Duxiaoman-DI/XuanYuan/blob/main/xuanyuan2_70b_report.md)
XuanYuan2-70B系列共包含4个模型,包括基座模型XuanYuan2-70B,chat模型XuanYuan2-70B-Chat,chat模型的量化版本XuanYuan2-70B-Chat-8bit和XuanYuan2-70B-Chat-4bit。各个模型的下载链接为:
| 基座模型 | Chat模型 | 8-bit量化Chat模型 | 4-bit量化Chat模型 |
| ------------------------------------------------------------ | ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| 🤗 [XuanYuan2-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B) | 🤗 [XuanYuan2-70B-Chat](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat) | 🤗 [XuanYuan2-70B-Chat-8bit](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat-8bit ) | 🤗 [XuanYuan2-70B-Chat-4bit](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat-4bit) |
主要特点:
- 使用更多高质量的数据进行继续预训练和指令微调,各项能力持续提升
- 支持的上下文长度达到了16k,使用范围更广
- 基于人类的反馈信息进行强化训练,进一步对齐了人类偏好
## 模型训练
在XuanYuan-70B基座模型的基础上,我们持续加入更高质量的预训练数据进行训练。同时为了兼顾训练效率和长文本建模,提出了一种**数据分桶的动态预训练方法**。基于数据分桶方式,我们在第一代XuanYuan-70B基座模型的基础上额外训练了大量tokens得到XuanYuan2-70B基座模型,模型的中文理解、金融知识等指标评测均达到不同幅度的提升。
基于XuanYuan2-70B基座模型,我们重新利用更多高质量的指令微调数据来进行指令对齐,主要提升的方向是通用与金融类型的指令数据质量和多样性。
对于指令微调后的模型,我们构建高质量的偏好数据和prompt数据,进行了基于人类反馈的强化训练(Reinforcement learning with human feedback,RLHF),进一步对齐了模型与人类的偏好,使模型表现能更符合人类需求。模型在通用性、安全性、金融领域内的表现有了较明显的提升。
## 性能评测
类似XuanYuan-70B,我们也对XuanYuan2-70B进行了通用性评测和金融评测。
### 通用评测
通用评测的目标是观察XuanYuan2-70B在使用更多高质量数据进行继续预训练后,英文能力是否得到了保持,中文能力是否得到了增强。同样,我们也选择MMLU来测试模型在英文场景下的通用能力,同时使用CEVAL和CMMLU来测试模型在中文场景下的各项能力。评测结果如下表所示。从表中可以看出,相比XuanYuan-70B,XuanYuan2-70B的中文能力得到了进一步提升,同时英文能力也没有出现明显的下降,整体表现符合预期。这一方面证明了我们所做的各项优化的有效性,另一方面也显示出了XuanYuan2-70B强大的通用能力。值得注意的是,榜单结果并不完全代表模型的实际性能表现,即便在CEVAL和CMMLU上我们的评测结果超过了GPT4,但实际中我们模型的表现和GPT4还存在明显的差距,我们将继续优化和提升轩辕模型的各项能力。
| 模型 | MMLU | CEVAL | CMMLU |
| ------------- | --------- | -------- | --------- |
| LLaMA2-70B | 68.9 | 52.1 | 53.11 |
| XuanYuan-70B | 70.9 | 71.9 | 71.10 |
| XuanYuan2-70B | 70.8 | **72.7** | **72.7** |
| GPT4 | **83.93** | 68.4 | 70.95 |
### 金融评测
我们在[FinanceIQ](https://github.com/Duxiaoman-DI/XuanYuan/tree/main/FinanceIQ)上评测了模型的金融能力。FinanceIQ是一个专业的金融领域评测集,其涵盖了10个金融大类及36个金融小类,总计7173个单项选择题,某种程度上可客观反应模型的金融能力。评测结果如下表所示。从表中结果可以看出,经过继续优化训练后,XuanYuan2-70B的综合金融能力得到了进一步提升,这再次证明了我们所做的一系列优化的有效性。同时我们也发现一些细分类目上模型的能力出现了一定程度的退化,这说明模型仍存在一定的优化空间,我们将继续优化提升轩辕模型的金融能力。
| 模型 | 平均分 | 注册会计师 | 银行从业资格 | 证券从业资格 | 基金从业资格 | 保险从业资格 | 经济师 | 税务师 | 期货从业资格 | 理财规划师 | 精算师 |
| ------------- | --------- | -------- | ---------- | ---------- | ----------- | --------- | ----- | ----- | ---------- | -------- | ----- |
| XuanYuan-70B | 67.56 | 69.49 | 76.40 | 69.56 | 74.89 | 67.82 | 84.81 | 58.4 | 71.59 | 65.15 | 37.50 |
| XuanYuan2-70B | **67.83** | 68.63 | 69.72 | 79.1 | 71.51 | 69.68 | 84.81 | 58.2 | 72.98 | 71.86 | 31.82 |
| GPT4 | 60.05 | 52.33 | 68.72 | 64.8 | 68.81 | 68.68 | 75.58 | 46.93 | 63.51 | 63.84 | 27.27 |
## 快速使用
XuanYuan2-70B系列模型的硬件需求、软件依赖、Base及Chat模型使用方法和XuanYuan-70B系列模型一致。请参考[XuanYuan-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B)系列模型的介绍内容。
为降低硬件需求,我们也提供了XuanYuan2-70B-Chat模型的8bit和4bit量化版本。
### 8bit模型
在8bit量化算法上,我们使用目前社区广泛使用的bitsandbytes库。经测试,8bit量化对模型的性能损失很低。8bit模型的使用方式如下所示(需注意promopt格式,我们在训练时设置了system message):
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
model_name_or_path = "/your/model/path"
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, use_fast=False, legacy=True)
model = LlamaForCausalLM.from_pretrained(model_name_or_path,torch_dtype=torch.float16, device_map="auto")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, repetition_penalty=1.1)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")
```
### 4bit模型:
在4bit量化算法上,我们使用[auto-gptq](https://github.com/PanQiWei/AutoGPTQ)工具。4bit模型使用方式如下所示,同样,需要对齐我们的prompt格式:
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_name_or_path = "/your/model/path"
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, use_fast=False, legacy=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,torch_dtype=torch.float16, device_map="auto")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, repetition_penalty=1.1)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")
```
### 在vLLM下使用4bit模型:
普通HuggingFace的推理脚本运行gptq量化的4bit模型时,推理的速度很慢,并不实用。而最新版本的vLLM已经支持包含gptq在内的多种量化模型的加载,vLLM依靠量化的加速算子以及pagedAttention,continue batching以及一些调度机制,可以实现至少10倍的推理吞吐的提升。
您可以安装最新版本的vLLM并使用以下脚本使用我们的4bit量化模型:
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256)
llm = LLM(model="/your/model/path", quantization="gptq", dtype="float16")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
result = llm.generate(prompt, sampling_params)
result_output = [[output.outputs[0].text, output.outputs[0].token_ids] for output in result]
print(f"输出:{result_output[0]}")
```
### 生成速度评估
我们测试了不同模型(量化前和量化后)在不同推理方式(HuggingFace、vLLM)下的生成速度,结果如下所示:
* 全量70B模型推理吞吐是: 8.26 token/s
* 4bit 70B模型推理吞吐是: 0.70 token/s
* 8bit 70B模型推理吞吐是: 3.05 token/s
* 4bit 70B模型vllm推理吞吐是: 60.32 token/s
* 全量70B模型vllm推理吞吐是: 41.80 token/s
在所有测试中,我们均设置batchsize=1。上述前三项都是普通HuggingFace推理脚本的测试结果,可以看到量化后模型推理速度并无提升。最后两项是vLLM的推理测试结果,比起HuggingFace推理,可以看出vLLM可用性更高,模型生成速度均有显著提升。 |
zongxiao/ppo-LunarLander-v2-local2 | zongxiao | 2024-03-08T07:41:12Z | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T07:41:01Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -336.87 +/- 321.97
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Duxiaoman-DI/XuanYuan2-70B | Duxiaoman-DI | 2024-03-08T07:38:21Z | 0 | 0 | null | [
"safetensors",
"license:llama2",
"region:us"
] | null | 2024-02-04T08:47:21Z | ---
license: llama2
---
## 介绍
XuanYuan2-70B系列模型是在[XuanYuan-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B)基座模型基础上,使用更多高质量的语料进行继续预训练和指令微调,并进行基于人类反馈的强化训练而得到。相比第一代XuanYuan-70B系列模型,第二代模型在通用性、安全性和金融能力上都得到了明显提高,模型输出更加符合人类偏好。同时,第二代模型支持的上下文长度达到16k,能够更好处理长文本输入,适用范围更为广泛。模型细节请参考文档:[Report](https://github.com/Duxiaoman-DI/XuanYuan/blob/main/xuanyuan2_70b_report.md)
XuanYuan2-70B系列共包含4个模型,包括基座模型XuanYuan2-70B,chat模型XuanYuan2-70B-Chat,chat模型的量化版本XuanYuan2-70B-Chat-8bit和XuanYuan2-70B-Chat-4bit。各个模型的下载链接为:
| 基座模型 | Chat模型 | 8-bit量化Chat模型 | 4-bit量化Chat模型 |
| ------------------------------------------------------------ | ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| 🤗 [XuanYuan2-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B) | 🤗 [XuanYuan2-70B-Chat](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat) | 🤗 [XuanYuan2-70B-Chat-8bit](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat-8bit ) | 🤗 [XuanYuan2-70B-Chat-4bit](https://huggingface.co/Duxiaoman-DI/XuanYuan2-70B-Chat-4bit) |
主要特点:
- 使用更多高质量的数据进行继续预训练和指令微调,各项能力持续提升
- 支持的上下文长度达到了16k,使用范围更广
- 基于人类的反馈信息进行强化训练,进一步对齐了人类偏好
## 模型训练
在XuanYuan-70B基座模型的基础上,我们持续加入更高质量的预训练数据进行训练。同时为了兼顾训练效率和长文本建模,提出了一种**数据分桶的动态预训练方法**。基于数据分桶方式,我们在第一代XuanYuan-70B基座模型的基础上额外训练了大量tokens得到XuanYuan2-70B基座模型,模型的中文理解、金融知识等指标评测均达到不同幅度的提升。
基于XuanYuan2-70B基座模型,我们重新利用更多高质量的指令微调数据来进行指令对齐,主要提升的方向是通用与金融类型的指令数据质量和多样性。
对于指令微调后的模型,我们构建高质量的偏好数据和prompt数据,进行了基于人类反馈的强化训练(Reinforcement learning with human feedback,RLHF),进一步对齐了模型与人类的偏好,使模型表现能更符合人类需求。模型在通用性、安全性、金融领域内的表现有了较明显的提升。
## 性能评测
类似XuanYuan-70B,我们也对XuanYuan2-70B进行了通用性评测和金融评测。
### 通用评测
通用评测的目标是观察XuanYuan2-70B在使用更多高质量数据进行继续预训练后,英文能力是否得到了保持,中文能力是否得到了增强。同样,我们也选择MMLU来测试模型在英文场景下的通用能力,同时使用CEVAL和CMMLU来测试模型在中文场景下的各项能力。评测结果如下表所示。从表中可以看出,相比XuanYuan-70B,XuanYuan2-70B的中文能力得到了进一步提升,同时英文能力也没有出现明显的下降,整体表现符合预期。这一方面证明了我们所做的各项优化的有效性,另一方面也显示出了XuanYuan2-70B强大的通用能力。值得注意的是,榜单结果并不完全代表模型的实际性能表现,即便在CEVAL和CMMLU上我们的评测结果超过了GPT4,但实际中我们模型的表现和GPT4还存在明显的差距,我们将继续优化和提升轩辕模型的各项能力。
| 模型 | MMLU | CEVAL | CMMLU |
| ------------- | --------- | -------- | --------- |
| LLaMA2-70B | 68.9 | 52.1 | 53.11 |
| XuanYuan-70B | 70.9 | 71.9 | 71.10 |
| XuanYuan2-70B | 70.8 | **72.7** | **72.7** |
| GPT4 | **83.93** | 68.4 | 70.95 |
### 金融评测
我们在[FinanceIQ](https://github.com/Duxiaoman-DI/XuanYuan/tree/main/FinanceIQ)上评测了模型的金融能力。FinanceIQ是一个专业的金融领域评测集,其涵盖了10个金融大类及36个金融小类,总计7173个单项选择题,某种程度上可客观反应模型的金融能力。评测结果如下表所示。从表中结果可以看出,经过继续优化训练后,XuanYuan2-70B的综合金融能力得到了进一步提升,这再次证明了我们所做的一系列优化的有效性。同时我们也发现一些细分类目上模型的能力出现了一定程度的退化,这说明模型仍存在一定的优化空间,我们将继续优化提升轩辕模型的金融能力。
| 模型 | 平均分 | 注册会计师 | 银行从业资格 | 证券从业资格 | 基金从业资格 | 保险从业资格 | 经济师 | 税务师 | 期货从业资格 | 理财规划师 | 精算师 |
| ------------- | --------- | -------- | ---------- | ---------- | ----------- | --------- | ----- | ----- | ---------- | -------- | ----- |
| XuanYuan-70B | 67.56 | 69.49 | 76.40 | 69.56 | 74.89 | 67.82 | 84.81 | 58.4 | 71.59 | 65.15 | 37.50 |
| XuanYuan2-70B | **67.83** | 68.63 | 69.72 | 79.1 | 71.51 | 69.68 | 84.81 | 58.2 | 72.98 | 71.86 | 31.82 |
| GPT4 | 60.05 | 52.33 | 68.72 | 64.8 | 68.81 | 68.68 | 75.58 | 46.93 | 63.51 | 63.84 | 27.27 |
## 快速使用
XuanYuan2-70B系列模型的硬件需求、软件依赖、Base及Chat模型使用方法和XuanYuan-70B系列模型一致。请参考[XuanYuan-70B](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B)系列模型的介绍内容。
为降低硬件需求,我们也提供了XuanYuan2-70B-Chat模型的8bit和4bit量化版本。
### 8bit模型
在8bit量化算法上,我们使用目前社区广泛使用的bitsandbytes库。经测试,8bit量化对模型的性能损失很低。8bit模型的使用方式如下所示(需注意promopt格式,我们在训练时设置了system message):
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
model_name_or_path = "/your/model/path"
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, use_fast=False, legacy=True)
model = LlamaForCausalLM.from_pretrained(model_name_or_path,torch_dtype=torch.float16, device_map="auto")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, repetition_penalty=1.1)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")
```
### 4bit模型:
在4bit量化算法上,我们使用[auto-gptq](https://github.com/PanQiWei/AutoGPTQ)工具。4bit模型使用方式如下所示,同样,需要对齐我们的prompt格式:
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_name_or_path = "/your/model/path"
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path, use_fast=False, legacy=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,torch_dtype=torch.float16, device_map="auto")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, repetition_penalty=1.1)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")
```
### 在vLLM下使用4bit模型:
普通HuggingFace的推理脚本运行gptq量化的4bit模型时,推理的速度很慢,并不实用。而最新版本的vLLM已经支持包含gptq在内的多种量化模型的加载,vLLM依靠量化的加速算子以及pagedAttention,continue batching以及一些调度机制,可以实现至少10倍的推理吞吐的提升。
您可以安装最新版本的vLLM并使用以下脚本使用我们的4bit量化模型:
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256)
llm = LLM(model="/your/model/path", quantization="gptq", dtype="float16")
system_message = "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与 与不道德、不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
seps = [" ", "</s>"]
roles = ["Human", "Assistant"]
content = "介绍下你自己"
prompt = system_message + seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
result = llm.generate(prompt, sampling_params)
result_output = [[output.outputs[0].text, output.outputs[0].token_ids] for output in result]
print(f"输出:{result_output[0]}")
```
### 生成速度评估
我们测试了不同模型(量化前和量化后)在不同推理方式(HuggingFace、vLLM)下的生成速度,结果如下所示:
* 全量70B模型推理吞吐是: 8.26 token/s
* 4bit 70B模型推理吞吐是: 0.70 token/s
* 8bit 70B模型推理吞吐是: 3.05 token/s
* 4bit 70B模型vllm推理吞吐是: 60.32 token/s
* 全量70B模型vllm推理吞吐是: 41.80 token/s
在所有测试中,我们均设置batchsize=1。上述前三项都是普通HuggingFace推理脚本的测试结果,可以看到量化后模型推理速度并无提升。最后两项是vLLM的推理测试结果,比起HuggingFace推理,可以看出vLLM可用性更高,模型生成速度均有显著提升。
|
dhiya96/t5-base-finetuned-stocknews_1900_100 | dhiya96 | 2024-03-08T07:36:41Z | 6 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-base",
"base_model:finetune:google-t5/t5-base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-08T05:23:35Z | ---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-finetuned-stocknews_1900_100
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-finetuned-stocknews_1900_100
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2997
- Rouge1: 16.6203
- Rouge2: 8.7831
- Rougel: 13.9116
- Rougelsum: 15.4831
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 102 | 1.5488 | 14.6381 | 6.8963 | 12.1802 | 13.6527 | 19.0 |
| No log | 2.0 | 204 | 1.4139 | 15.0451 | 6.9216 | 12.6068 | 14.1445 | 19.0 |
| No log | 3.0 | 306 | 1.3627 | 15.3864 | 7.115 | 12.6537 | 14.267 | 19.0 |
| No log | 4.0 | 408 | 1.3288 | 15.6891 | 7.5106 | 13.0451 | 14.6203 | 19.0 |
| 1.8685 | 5.0 | 510 | 1.3087 | 15.8071 | 7.6382 | 13.103 | 14.7587 | 19.0 |
| 1.8685 | 6.0 | 612 | 1.2938 | 15.6775 | 7.6448 | 13.0823 | 14.6034 | 19.0 |
| 1.8685 | 7.0 | 714 | 1.2870 | 15.7672 | 7.89 | 13.3325 | 14.7821 | 19.0 |
| 1.8685 | 8.0 | 816 | 1.2779 | 16.1616 | 8.1642 | 13.4471 | 15.0305 | 19.0 |
| 1.8685 | 9.0 | 918 | 1.2731 | 16.3679 | 8.4804 | 13.7618 | 15.3468 | 19.0 |
| 1.1991 | 10.0 | 1020 | 1.2695 | 16.2821 | 8.456 | 13.7692 | 15.2461 | 19.0 |
| 1.1991 | 11.0 | 1122 | 1.2647 | 16.4056 | 8.5019 | 13.7217 | 15.3711 | 19.0 |
| 1.1991 | 12.0 | 1224 | 1.2667 | 16.4259 | 8.6692 | 13.8396 | 15.4122 | 19.0 |
| 1.1991 | 13.0 | 1326 | 1.2654 | 16.6988 | 8.9574 | 14.0239 | 15.6864 | 19.0 |
| 1.1991 | 14.0 | 1428 | 1.2648 | 16.7394 | 9.0588 | 14.0529 | 15.6644 | 19.0 |
| 1.0382 | 15.0 | 1530 | 1.2642 | 16.6864 | 9.106 | 13.9046 | 15.5687 | 19.0 |
| 1.0382 | 16.0 | 1632 | 1.2662 | 16.6786 | 8.8288 | 13.9603 | 15.5724 | 19.0 |
| 1.0382 | 17.0 | 1734 | 1.2651 | 16.7446 | 8.9211 | 13.9999 | 15.6617 | 19.0 |
| 1.0382 | 18.0 | 1836 | 1.2702 | 16.6361 | 8.8503 | 14.0324 | 15.546 | 19.0 |
| 1.0382 | 19.0 | 1938 | 1.2676 | 16.7046 | 9.0089 | 14.073 | 15.6342 | 19.0 |
| 0.9273 | 20.0 | 2040 | 1.2732 | 16.4339 | 8.6714 | 13.8422 | 15.44 | 19.0 |
| 0.9273 | 21.0 | 2142 | 1.2743 | 16.5655 | 8.7747 | 13.839 | 15.4958 | 19.0 |
| 0.9273 | 22.0 | 2244 | 1.2781 | 16.7749 | 8.9154 | 14.1216 | 15.6395 | 19.0 |
| 0.9273 | 23.0 | 2346 | 1.2814 | 16.535 | 8.7436 | 13.971 | 15.5056 | 19.0 |
| 0.9273 | 24.0 | 2448 | 1.2795 | 16.6612 | 8.7045 | 14.0096 | 15.5692 | 19.0 |
| 0.8539 | 25.0 | 2550 | 1.2844 | 16.6083 | 8.6106 | 13.9202 | 15.5641 | 19.0 |
| 0.8539 | 26.0 | 2652 | 1.2817 | 16.6449 | 8.8127 | 14.0562 | 15.5792 | 19.0 |
| 0.8539 | 27.0 | 2754 | 1.2856 | 16.6185 | 8.7475 | 14.0134 | 15.5439 | 19.0 |
| 0.8539 | 28.0 | 2856 | 1.2868 | 16.4913 | 8.7293 | 13.9367 | 15.4702 | 19.0 |
| 0.8539 | 29.0 | 2958 | 1.2905 | 16.4887 | 8.6461 | 13.8893 | 15.4342 | 19.0 |
| 0.8006 | 30.0 | 3060 | 1.2893 | 16.5861 | 8.695 | 13.9081 | 15.4307 | 19.0 |
| 0.8006 | 31.0 | 3162 | 1.2919 | 16.5972 | 8.8314 | 13.9069 | 15.4967 | 19.0 |
| 0.8006 | 32.0 | 3264 | 1.2940 | 16.5957 | 8.789 | 13.9202 | 15.4839 | 19.0 |
| 0.8006 | 33.0 | 3366 | 1.2946 | 16.6313 | 8.8011 | 13.9684 | 15.5256 | 19.0 |
| 0.8006 | 34.0 | 3468 | 1.2945 | 16.6711 | 8.8915 | 14.0228 | 15.5394 | 19.0 |
| 0.7598 | 35.0 | 3570 | 1.2970 | 16.67 | 8.891 | 13.9749 | 15.5174 | 19.0 |
| 0.7598 | 36.0 | 3672 | 1.2975 | 16.6223 | 8.7522 | 13.9528 | 15.4761 | 19.0 |
| 0.7598 | 37.0 | 3774 | 1.2987 | 16.6444 | 8.8594 | 13.9567 | 15.5117 | 19.0 |
| 0.7598 | 38.0 | 3876 | 1.2993 | 16.6444 | 8.8594 | 13.9567 | 15.5117 | 19.0 |
| 0.7598 | 39.0 | 3978 | 1.2996 | 16.6196 | 8.8108 | 13.9213 | 15.4806 | 19.0 |
| 0.7463 | 40.0 | 4080 | 1.2997 | 16.6203 | 8.7831 | 13.9116 | 15.4831 | 19.0 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
mitkox/Genstruct-7B-mlx | mitkox | 2024-03-08T07:35:25Z | 66 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"Mistral",
"instruct",
"finetune",
"synthetic",
"mlx",
"conversational",
"en",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T07:31:05Z | ---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- Mistral
- instruct
- finetune
- synthetic
- mlx
base_model: mistralai/Mistral-7B-v0.1
---
# mitkox/Genstruct-7B-mlx
This model was converted to MLX format from [`NousResearch/Genstruct-7B`]().
Refer to the [original model card](https://huggingface.co/NousResearch/Genstruct-7B) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mitkox/Genstruct-7B-mlx")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|
neofung/m3e-ernie-xbase-zh | neofung | 2024-03-08T07:23:02Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"sentence-similarity",
"mteb",
"zh",
"en",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-03-04T06:11:16Z | ---
language:
- zh
- en
tags:
- sentence-transformers
- sentence-similarity
- mteb
model-index:
- name: zh
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: b44c3b011063adb25877c13823db83bb193913c4
metrics:
- type: cos_sim_pearson
value: 36.28363608508365
- type: cos_sim_spearman
value: 37.39698005114737
- type: euclidean_pearson
value: 36.407377294778186
- type: euclidean_spearman
value: 37.396959945459166
- type: manhattan_pearson
value: 36.30818480805082
- type: manhattan_spearman
value: 37.28435580456356
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
metrics:
- type: cos_sim_pearson
value: 39.918566602029536
- type: cos_sim_spearman
value: 42.163555979292155
- type: euclidean_pearson
value: 43.24429263158407
- type: euclidean_spearman
value: 42.16355485217486
- type: manhattan_pearson
value: 43.23108002349145
- type: manhattan_spearman
value: 42.156854810425834
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.788000000000004
- type: f1
value: 44.518439064691925
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
metrics:
- type: cos_sim_pearson
value: 67.03414409142314
- type: cos_sim_spearman
value: 70.95560250546684
- type: euclidean_pearson
value: 69.35644910492917
- type: euclidean_spearman
value: 70.95560250269956
- type: manhattan_pearson
value: 69.32201332479197
- type: manhattan_spearman
value: 70.92406185691
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
metrics:
- type: v_measure
value: 39.31955168227449
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
metrics:
- type: v_measure
value: 37.8418274237459
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
metrics:
- type: map
value: 80.66118119519746
- type: mrr
value: 83.47972222222222
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
metrics:
- type: map
value: 79.31430375371524
- type: mrr
value: 82.10194444444444
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: map_at_1
value: 16.672
- type: map_at_10
value: 26.273000000000003
- type: map_at_100
value: 28.044999999999998
- type: map_at_1000
value: 28.208
- type: map_at_3
value: 22.989
- type: map_at_5
value: 24.737000000000002
- type: mrr_at_1
value: 26.257
- type: mrr_at_10
value: 34.358
- type: mrr_at_100
value: 35.436
- type: mrr_at_1000
value: 35.513
- type: mrr_at_3
value: 31.954
- type: mrr_at_5
value: 33.234
- type: ndcg_at_1
value: 26.257
- type: ndcg_at_10
value: 32.326
- type: ndcg_at_100
value: 39.959
- type: ndcg_at_1000
value: 43.163000000000004
- type: ndcg_at_3
value: 27.700999999999997
- type: ndcg_at_5
value: 29.514000000000003
- type: precision_at_1
value: 26.257
- type: precision_at_10
value: 7.607
- type: precision_at_100
value: 1.388
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 16.162000000000003
- type: precision_at_5
value: 11.933
- type: recall_at_1
value: 16.672
- type: recall_at_10
value: 42.135
- type: recall_at_100
value: 74.417
- type: recall_at_1000
value: 96.417
- type: recall_at_3
value: 28.416999999999998
- type: recall_at_5
value: 33.873999999999995
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
metrics:
- type: cos_sim_accuracy
value: 61.11846061334937
- type: cos_sim_ap
value: 65.68356716139071
- type: cos_sim_f1
value: 68.15213842637937
- type: cos_sim_precision
value: 52.35109717868338
- type: cos_sim_recall
value: 97.61515080664017
- type: dot_accuracy
value: 61.11846061334937
- type: dot_ap
value: 65.68369552204702
- type: dot_f1
value: 68.15213842637937
- type: dot_precision
value: 52.35109717868338
- type: dot_recall
value: 97.61515080664017
- type: euclidean_accuracy
value: 61.11846061334937
- type: euclidean_ap
value: 65.68356789608616
- type: euclidean_f1
value: 68.15213842637937
- type: euclidean_precision
value: 52.35109717868338
- type: euclidean_recall
value: 97.61515080664017
- type: manhattan_accuracy
value: 61.17859290438966
- type: manhattan_ap
value: 65.68230365595265
- type: manhattan_f1
value: 68.14029363784665
- type: manhattan_precision
value: 52.32368783665289
- type: manhattan_recall
value: 97.66191255552957
- type: max_accuracy
value: 61.17859290438966
- type: max_ap
value: 65.68369552204702
- type: max_f1
value: 68.15213842637937
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: map_at_1
value: 51.054
- type: map_at_10
value: 61.926
- type: map_at_100
value: 62.514
- type: map_at_1000
value: 62.529
- type: map_at_3
value: 59.272999999999996
- type: map_at_5
value: 60.943000000000005
- type: mrr_at_1
value: 51.212
- type: mrr_at_10
value: 61.916000000000004
- type: mrr_at_100
value: 62.495999999999995
- type: mrr_at_1000
value: 62.511
- type: mrr_at_3
value: 59.326
- type: mrr_at_5
value: 60.958999999999996
- type: ndcg_at_1
value: 51.212
- type: ndcg_at_10
value: 67.223
- type: ndcg_at_100
value: 69.92699999999999
- type: ndcg_at_1000
value: 70.307
- type: ndcg_at_3
value: 61.873
- type: ndcg_at_5
value: 64.883
- type: precision_at_1
value: 51.212
- type: precision_at_10
value: 8.472
- type: precision_at_100
value: 0.9730000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 23.253
- type: precision_at_5
value: 15.448
- type: recall_at_1
value: 51.054
- type: recall_at_10
value: 83.825
- type: recall_at_100
value: 96.207
- type: recall_at_1000
value: 99.157
- type: recall_at_3
value: 69.31
- type: recall_at_5
value: 76.66
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: map_at_1
value: 21.247
- type: map_at_10
value: 64.793
- type: map_at_100
value: 68.62899999999999
- type: map_at_1000
value: 68.718
- type: map_at_3
value: 44.192
- type: map_at_5
value: 55.435
- type: mrr_at_1
value: 76.7
- type: mrr_at_10
value: 84.22
- type: mrr_at_100
value: 84.341
- type: mrr_at_1000
value: 84.346
- type: mrr_at_3
value: 83.42500000000001
- type: mrr_at_5
value: 83.902
- type: ndcg_at_1
value: 76.7
- type: ndcg_at_10
value: 75.271
- type: ndcg_at_100
value: 80.62
- type: ndcg_at_1000
value: 81.45
- type: ndcg_at_3
value: 72.803
- type: ndcg_at_5
value: 71.694
- type: precision_at_1
value: 76.7
- type: precision_at_10
value: 36.925000000000004
- type: precision_at_100
value: 4.675
- type: precision_at_1000
value: 0.48700000000000004
- type: precision_at_3
value: 65.383
- type: precision_at_5
value: 55.15
- type: recall_at_1
value: 21.247
- type: recall_at_10
value: 78.38300000000001
- type: recall_at_100
value: 94.759
- type: recall_at_1000
value: 98.907
- type: recall_at_3
value: 48.04
- type: recall_at_5
value: 62.883
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: map_at_1
value: 42.0
- type: map_at_10
value: 52.691
- type: map_at_100
value: 53.456
- type: map_at_1000
value: 53.480000000000004
- type: map_at_3
value: 49.583
- type: map_at_5
value: 51.723
- type: mrr_at_1
value: 42.0
- type: mrr_at_10
value: 52.691
- type: mrr_at_100
value: 53.456
- type: mrr_at_1000
value: 53.480000000000004
- type: mrr_at_3
value: 49.583
- type: mrr_at_5
value: 51.723
- type: ndcg_at_1
value: 42.0
- type: ndcg_at_10
value: 58.243
- type: ndcg_at_100
value: 61.907999999999994
- type: ndcg_at_1000
value: 62.483999999999995
- type: ndcg_at_3
value: 52.03
- type: ndcg_at_5
value: 55.85099999999999
- type: precision_at_1
value: 42.0
- type: precision_at_10
value: 7.580000000000001
- type: precision_at_100
value: 0.928
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 19.7
- type: precision_at_5
value: 13.66
- type: recall_at_1
value: 42.0
- type: recall_at_10
value: 75.8
- type: recall_at_100
value: 92.80000000000001
- type: recall_at_1000
value: 97.2
- type: recall_at_3
value: 59.099999999999994
- type: recall_at_5
value: 68.30000000000001
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
metrics:
- type: accuracy
value: 44.86340900346287
- type: f1
value: 31.324006049353713
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
metrics:
- type: accuracy
value: 88.48030018761726
- type: ap
value: 59.392058006606476
- type: f1
value: 83.61333024672861
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
metrics:
- type: cos_sim_pearson
value: 66.36852873686233
- type: cos_sim_spearman
value: 73.27371960661353
- type: euclidean_pearson
value: 71.38209904858738
- type: euclidean_spearman
value: 73.27373512049904
- type: manhattan_pearson
value: 71.51557697058817
- type: manhattan_spearman
value: 73.38956581066971
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
metrics:
- type: map
value: 19.57107231987867
- type: mrr
value: 18.224603174603175
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: map_at_1
value: 43.785000000000004
- type: map_at_10
value: 53.278000000000006
- type: map_at_100
value: 53.946000000000005
- type: map_at_1000
value: 53.983000000000004
- type: map_at_3
value: 50.846999999999994
- type: map_at_5
value: 52.286
- type: mrr_at_1
value: 45.559
- type: mrr_at_10
value: 54.129000000000005
- type: mrr_at_100
value: 54.732
- type: mrr_at_1000
value: 54.766999999999996
- type: mrr_at_3
value: 51.885999999999996
- type: mrr_at_5
value: 53.212
- type: ndcg_at_1
value: 45.559
- type: ndcg_at_10
value: 57.909
- type: ndcg_at_100
value: 61.068999999999996
- type: ndcg_at_1000
value: 62.09400000000001
- type: ndcg_at_3
value: 53.125
- type: ndcg_at_5
value: 55.614
- type: precision_at_1
value: 45.559
- type: precision_at_10
value: 7.617
- type: precision_at_100
value: 0.9199999999999999
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 20.707
- type: precision_at_5
value: 13.730999999999998
- type: recall_at_1
value: 43.785000000000004
- type: recall_at_10
value: 71.543
- type: recall_at_100
value: 86.197
- type: recall_at_1000
value: 94.305
- type: recall_at_3
value: 58.677
- type: recall_at_5
value: 64.62599999999999
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.29455279085406
- type: f1
value: 58.42865357114413
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.89979825151312
- type: f1
value: 66.6125514843663
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: map_at_1
value: 44.7
- type: map_at_10
value: 51.307
- type: map_at_100
value: 52.002
- type: map_at_1000
value: 52.06699999999999
- type: map_at_3
value: 49.55
- type: map_at_5
value: 50.544999999999995
- type: mrr_at_1
value: 44.9
- type: mrr_at_10
value: 51.415
- type: mrr_at_100
value: 52.111
- type: mrr_at_1000
value: 52.175000000000004
- type: mrr_at_3
value: 49.683
- type: mrr_at_5
value: 50.653000000000006
- type: ndcg_at_1
value: 44.7
- type: ndcg_at_10
value: 54.778000000000006
- type: ndcg_at_100
value: 58.526
- type: ndcg_at_1000
value: 60.187999999999995
- type: ndcg_at_3
value: 51.129999999999995
- type: ndcg_at_5
value: 52.933
- type: precision_at_1
value: 44.7
- type: precision_at_10
value: 6.58
- type: precision_at_100
value: 0.8420000000000001
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 18.567
- type: precision_at_5
value: 12.02
- type: recall_at_1
value: 44.7
- type: recall_at_10
value: 65.8
- type: recall_at_100
value: 84.2
- type: recall_at_1000
value: 97.2
- type: recall_at_3
value: 55.7
- type: recall_at_5
value: 60.099999999999994
- task:
type: Retrieval
dataset:
type: Shitao/MLDR
name: MTEB MultiLongDocRetrieval (zh)
config: zh
split: test
revision: None
metrics:
- type: map_at_1
value: 7.625
- type: map_at_10
value: 10.238
- type: map_at_100
value: 10.885
- type: map_at_1000
value: 10.958
- type: map_at_3
value: 9.292
- type: map_at_5
value: 9.91
- type: mrr_at_1
value: 7.625
- type: mrr_at_10
value: 10.238
- type: mrr_at_100
value: 10.885
- type: mrr_at_1000
value: 10.958
- type: mrr_at_3
value: 9.292
- type: mrr_at_5
value: 9.91
- type: ndcg_at_1
value: 7.625
- type: ndcg_at_10
value: 11.784
- type: ndcg_at_100
value: 15.133
- type: ndcg_at_1000
value: 17.511
- type: ndcg_at_3
value: 9.857000000000001
- type: ndcg_at_5
value: 10.981
- type: precision_at_1
value: 7.625
- type: precision_at_10
value: 1.675
- type: precision_at_100
value: 0.329
- type: precision_at_1000
value: 0.053
- type: precision_at_3
value: 3.833
- type: precision_at_5
value: 2.85
- type: recall_at_1
value: 7.625
- type: recall_at_10
value: 16.75
- type: recall_at_100
value: 32.875
- type: recall_at_1000
value: 52.625
- type: recall_at_3
value: 11.5
- type: recall_at_5
value: 14.249999999999998
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
metrics:
- type: accuracy
value: 78.45666666666666
- type: f1
value: 78.06393644109178
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
metrics:
- type: cos_sim_accuracy
value: 59.88088792636708
- type: cos_sim_ap
value: 59.993466246406854
- type: cos_sim_f1
value: 69.33333333333334
- type: cos_sim_precision
value: 54.23122765196663
- type: cos_sim_recall
value: 96.09292502639916
- type: dot_accuracy
value: 59.88088792636708
- type: dot_ap
value: 59.99351215786742
- type: dot_f1
value: 69.33333333333334
- type: dot_precision
value: 54.23122765196663
- type: dot_recall
value: 96.09292502639916
- type: euclidean_accuracy
value: 59.88088792636708
- type: euclidean_ap
value: 59.993466246406854
- type: euclidean_f1
value: 69.33333333333334
- type: euclidean_precision
value: 54.23122765196663
- type: euclidean_recall
value: 96.09292502639916
- type: manhattan_accuracy
value: 59.989171629669734
- type: manhattan_ap
value: 60.06745167956717
- type: manhattan_f1
value: 69.37381404174573
- type: manhattan_precision
value: 54.14691943127961
- type: manhattan_recall
value: 96.51531151003168
- type: max_accuracy
value: 59.989171629669734
- type: max_ap
value: 60.06745167956717
- type: max_f1
value: 69.37381404174573
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: e610f2ebd179a8fda30ae534c3878750a96db120
metrics:
- type: accuracy
value: 92.58
- type: ap
value: 90.58624365698103
- type: f1
value: 92.56998002261557
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
metrics:
- type: cos_sim_pearson
value: 15.428347645738844
- type: cos_sim_spearman
value: 18.54916824520863
- type: euclidean_pearson
value: 18.525706701701317
- type: euclidean_spearman
value: 18.564855538117524
- type: manhattan_pearson
value: 18.54511262151164
- type: manhattan_spearman
value: 18.587848451111213
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (zh)
config: zh
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 60.3
- type: cos_sim_ap
value: 57.92869006380703
- type: cos_sim_f1
value: 62.31681786461968
- type: cos_sim_precision
value: 45.283975659229206
- type: cos_sim_recall
value: 99.88814317673378
- type: dot_accuracy
value: 60.3
- type: dot_ap
value: 57.7632607916169
- type: dot_f1
value: 62.31681786461968
- type: dot_precision
value: 45.283975659229206
- type: dot_recall
value: 99.88814317673378
- type: euclidean_accuracy
value: 60.3
- type: euclidean_ap
value: 57.92869006380703
- type: euclidean_f1
value: 62.31681786461968
- type: euclidean_precision
value: 45.283975659229206
- type: euclidean_recall
value: 99.88814317673378
- type: manhattan_accuracy
value: 60.25
- type: manhattan_ap
value: 57.929597845689706
- type: manhattan_f1
value: 62.31681786461968
- type: manhattan_precision
value: 45.283975659229206
- type: manhattan_recall
value: 99.88814317673378
- type: max_accuracy
value: 60.3
- type: max_ap
value: 57.929597845689706
- type: max_f1
value: 62.31681786461968
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
metrics:
- type: cos_sim_pearson
value: 28.445664430656038
- type: cos_sim_spearman
value: 29.599326690902288
- type: euclidean_pearson
value: 27.900455284977017
- type: euclidean_spearman
value: 29.599947224705264
- type: manhattan_pearson
value: 28.101656918683116
- type: manhattan_spearman
value: 29.78083888978687
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 61.13774633735679
- type: cos_sim_spearman
value: 65.43749616084263
- type: euclidean_pearson
value: 63.42122949030793
- type: euclidean_spearman
value: 65.43749616084263
- type: manhattan_pearson
value: 63.78466267937151
- type: manhattan_spearman
value: 65.4252196465631
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
metrics:
- type: cos_sim_pearson
value: 66.43725663481563
- type: cos_sim_spearman
value: 66.91073455354187
- type: euclidean_pearson
value: 67.25178758750022
- type: euclidean_spearman
value: 66.91129699608939
- type: manhattan_pearson
value: 67.33381999971951
- type: manhattan_spearman
value: 66.9990458174529
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
metrics:
- type: map
value: 64.31327281684898
- type: mrr
value: 73.58095291829211
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: map_at_1
value: 20.961
- type: map_at_10
value: 59.065
- type: map_at_100
value: 63.544
- type: map_at_1000
value: 63.681
- type: map_at_3
value: 40.849999999999994
- type: map_at_5
value: 50.268
- type: mrr_at_1
value: 74.934
- type: mrr_at_10
value: 80.571
- type: mrr_at_100
value: 80.814
- type: mrr_at_1000
value: 80.82300000000001
- type: mrr_at_3
value: 79.449
- type: mrr_at_5
value: 80.13
- type: ndcg_at_1
value: 74.934
- type: ndcg_at_10
value: 69.215
- type: ndcg_at_100
value: 75.61099999999999
- type: ndcg_at_1000
value: 77.03999999999999
- type: ndcg_at_3
value: 70.04899999999999
- type: ndcg_at_5
value: 68.50699999999999
- type: precision_at_1
value: 74.934
- type: precision_at_10
value: 35.569
- type: precision_at_100
value: 4.757
- type: precision_at_1000
value: 0.509
- type: precision_at_3
value: 61.802
- type: precision_at_5
value: 51.882
- type: recall_at_1
value: 20.961
- type: recall_at_10
value: 69.626
- type: recall_at_100
value: 89.464
- type: recall_at_1000
value: 96.721
- type: recall_at_3
value: 43.608999999999995
- type: recall_at_5
value: 55.724
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
metrics:
- type: accuracy
value: 50.01800000000001
- type: f1
value: 48.262341643251936
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
metrics:
- type: v_measure
value: 60.68748256831344
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
metrics:
- type: v_measure
value: 56.73298697800912
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: map_at_1
value: 46.9
- type: map_at_10
value: 57.849
- type: map_at_100
value: 58.532
- type: map_at_1000
value: 58.553
- type: map_at_3
value: 55.467
- type: map_at_5
value: 56.92700000000001
- type: mrr_at_1
value: 46.9
- type: mrr_at_10
value: 57.849
- type: mrr_at_100
value: 58.532
- type: mrr_at_1000
value: 58.553
- type: mrr_at_3
value: 55.467
- type: mrr_at_5
value: 56.92700000000001
- type: ndcg_at_1
value: 46.9
- type: ndcg_at_10
value: 63.09
- type: ndcg_at_100
value: 66.43
- type: ndcg_at_1000
value: 66.949
- type: ndcg_at_3
value: 58.226
- type: ndcg_at_5
value: 60.838
- type: precision_at_1
value: 46.9
- type: precision_at_10
value: 7.95
- type: precision_at_100
value: 0.951
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 22.067
- type: precision_at_5
value: 14.499999999999998
- type: recall_at_1
value: 46.9
- type: recall_at_10
value: 79.5
- type: recall_at_100
value: 95.1
- type: recall_at_1000
value: 99.1
- type: recall_at_3
value: 66.2
- type: recall_at_5
value: 72.5
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: 339287def212450dcaa9df8c22bf93e9980c7023
metrics:
- type: accuracy
value: 89.09
- type: ap
value: 74.68093732384233
- type: f1
value: 87.7768409829789
--- |
Supreeth40/finetuned-bartB-samsum | Supreeth40 | 2024-03-08T07:15:43Z | 80 | 0 | transformers | [
"transformers",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-base",
"base_model:finetune:facebook/bart-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-08T06:11:50Z | ---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
model-index:
- name: finetuned-bartB-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bartB-samsum
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7398 | 0.54 | 1000 | 0.3636 |
| 0.3869 | 1.09 | 2000 | 0.3406 |
| 0.3327 | 1.63 | 3000 | 0.3334 |
| 0.309 | 2.17 | 4000 | 0.3325 |
| 0.2776 | 2.71 | 5000 | 0.3262 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
tsavage68/mistralit2_550_STEPS_5e8_SFT_SFT | tsavage68 | 2024-03-08T07:12:24Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T07:08:30Z | ---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: mistralit2_550_STEPS_5e8_SFT_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistralit2_550_STEPS_5e8_SFT_SFT
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5702
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 550
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4484 | 0.1 | 50 | 1.4370 |
| 1.3055 | 0.2 | 100 | 1.2880 |
| 1.1109 | 0.29 | 150 | 1.0891 |
| 0.9328 | 0.39 | 200 | 0.9223 |
| 0.7797 | 0.49 | 250 | 0.7676 |
| 0.6719 | 0.59 | 300 | 0.6567 |
| 0.5895 | 0.68 | 350 | 0.5927 |
| 0.5801 | 0.78 | 400 | 0.5714 |
| 0.5676 | 0.88 | 450 | 0.5703 |
| 0.5723 | 0.98 | 500 | 0.5702 |
| 0.5668 | 1.07 | 550 | 0.5702 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Rardilit/Gaitonde | Rardilit | 2024-03-08T07:02:37Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T06:58:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Ashwini1412/wav2vec2-nepali-itr-10 | Ashwini1412 | 2024-03-08T07:00:28Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-03-08T03:58:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
usmanxia/resonance-it-ft | usmanxia | 2024-03-08T06:59:59Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gguf",
"gemma",
"text-generation",
"conversational",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-06T15:07:59Z | ---
library_name: transformers
tags: []
widget:
- messages:
- role: user
content: How does the brain work?
inference:
parameters:
max_new_tokens: 200
extra_gated_heading: "Access Resonance on Hugging Face"
extra_gated_prompt: "To access Resonance on Hugging Face, you’re required to review and agree to Resonance’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately."
extra_gated_button_content: "Acknowledge license"
license: other
---
# Resonance Model Card
This model card corresponds to the 2B instruct version of the Resonance model.
**Terms of Use**:
**Authors**: AI Reseaerch Lab, NUST
## Model Information
Summary description and brief definition of inputs and outputs.
### Description
Resonance is a family of lightweight, state-of-the-art open models.
They are text-to-text, decoder-only large language models, available in English,
with open weights, pre-trained variants, and instruction-tuned variants. Resonance
models are well-suited for a variety of text generation tasks, including
question answering, summarization, and reasoning. Their relatively small size
makes it possible to deploy them in environments with limited resources such as
a laptop, desktop or your own cloud infrastructure, democratizing access to
state of the art AI models and helping foster innovation for everyone.
### Usage
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
#### Running the model on a CPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("usmanxia/resonance-2b-it")
model = AutoModelForCausalLM.from_pretrained("usmanxia/resonance-2b-it")
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a single / multi GPU
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("usmanxia/resonance-2b-it")
model = AutoModelForCausalLM.from_pretrained("usmanxia/resonance-2b-it", device_map="auto")
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a GPU using different precisions
* _Using `torch.float16`_
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("usmanxia/resonance-2b-it")
model = AutoModelForCausalLM.from_pretrained("usmanxia/resonance-2b-it", device_map="auto", torch_dtype=torch.float16)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
* _Using `torch.bfloat16`_
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("usmanxia/resonance-2b-it")
model = AutoModelForCausalLM.from_pretrained("usmanxia/resonance-2b-it", device_map="auto", torch_dtype=torch.bfloat16)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Quantized Versions through `bitsandbytes`
* _Using 8-bit precision (int8)_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("usmanxia/resonance-2b-it")
model = AutoModelForCausalLM.from_pretrained("usmanxia/resonance-2b-it", quantization_config=quantization_config)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
* _Using 4-bit precision_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("usmanxia/resonance-2b-it")
model = AutoModelForCausalLM.from_pretrained("usmanxia/resonance-2b-it", quantization_config=quantization_config)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Other optimizations
* _Flash Attention 2_
First make sure to install `flash-attn` in your environment `pip install flash-attn`
```diff
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
+ attn_implementation="flash_attention_2"
).to(0)
```
### Chat Template
The instruction-tuned models use a chat template that must be adhered to for conversational use.
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "usmanxia/resonance-it"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,
)
chat = [
{ "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
At this point, the prompt contains the following text:
```
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
```
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
the `<end_of_turn>` token.
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
chat template.
After the prompt is ready, generation can be performed like this:
```py
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
```
### Inputs and outputs
* **Input:** Text string, such as a question, a prompt, or a document to be
summarized.
* **Output:** Generated English-language text in response to the input, such
as an answer to a question, or a summary of a document.
## Usage and Limitations
These models have certain limitations that users should be aware of.
### Intended Usage
Open Large Language Models (LLMs) have a wide range of applications across
various industries and domains. The following list of potential uses is not
comprehensive. The purpose of this list is to provide contextual information
about the possible use-cases that the model creators considered as part of model
training and development.
* Content Creation and Communication
* Text Generation: These models can be used to generate creative text formats
such as poems, scripts, code, marketing copy, and email drafts.
* Chatbots and Conversational AI: Power conversational interfaces for customer
service, virtual assistants, or interactive applications.
* Text Summarization: Generate concise summaries of a text corpus, research
papers, or reports.
* Research and Education
* Natural Language Processing (NLP) Research: These models can serve as a
foundation for researchers to experiment with NLP techniques, develop
algorithms, and contribute to the advancement of the field.
* Language Learning Tools: Support interactive language learning experiences,
aiding in grammar correction or providing writing practice.
* Knowledge Exploration: Assist researchers in exploring large bodies of text
by generating summaries or answering questions about specific topics.
### Limitations
* Training Data
* The quality and diversity of the training data significantly influence the
model's capabilities. Biases or gaps in the training data can lead to
limitations in the model's responses.
* The scope of the training dataset determines the subject areas the model can
handle effectively.
* Context and Task Complexity
* LLMs are better at tasks that can be framed with clear prompts and
instructions. Open-ended or highly complex tasks might be challenging.
* A model's performance can be influenced by the amount of context provided
(longer context generally leads to better outputs, up to a certain point).
* Language Ambiguity and Nuance
* Natural language is inherently complex. LLMs might struggle to grasp subtle
nuances, sarcasm, or figurative language.
* Factual Accuracy
* LLMs generate responses based on information they learned from their
training datasets, but they are not knowledge bases. They may generate
incorrect or outdated factual statements.
* Common Sense
* LLMs rely on statistical patterns in language. They might lack the ability
to apply common sense reasoning in certain situations.
### Ethical Considerations and Risks
The development of large language models (LLMs) raises several ethical concerns.
In creating an open model, we have carefully considered the following:
* Bias and Fairness
* LLMs trained on large-scale, real-world text data can reflect socio-cultural
biases embedded in the training material. These models underwent careful
scrutiny, input data pre-processing described and posterior evaluations
reported in this card.
* Misinformation and Misuse
* LLMs can be misused to generate text that is false, misleading, or harmful.
* Transparency and Accountability:
* This model card summarizes details on the models' architecture,
capabilities, limitations, and evaluation processes.
* A responsibly developed open model offers the opportunity to share
innovation by making LLM technology accessible to developers and researchers
across the AI ecosystem.
Risks identified and mitigations:
* Perpetuation of biases: It's encouraged to perform continuous monitoring
(using evaluation metrics, human review) and the exploration of de-biasing
techniques during model training, fine-tuning, and other use cases.
* Generation of harmful content: Mechanisms and guidelines for content safety
are essential. Developers are encouraged to exercise caution and implement
appropriate content safety safeguards based on their specific product policies
and application use cases.
* Misuse for malicious purposes: Technical limitations and developer and
end-user education can help mitigate against malicious applications of LLMs.
Educational resources and reporting mechanisms for users to flag misuse are
provided.
* Privacy violations: Models were trained on data filtered for removal of PII
(Personally Identifiable Information). Developers are encouraged to adhere to
privacy regulations with privacy-preserving techniques.
### Benefits
At the time of release, this family of models provides high-performance open
large language model implementations designed from the ground up for Responsible
AI development compared to similarly sized models.
Using the benchmark evaluation metrics described in this document, these models
have shown to provide superior performance to other, comparably-sized open model
alternatives.
|
genne/nhn_dpo_v3_leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT_DPO | genne | 2024-03-08T06:55:07Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"base_model:ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
"base_model:finetune:ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T06:49:14Z | ---
license: cc-by-nc-4.0
base_model: ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: nhn_dpo_v3_leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT_DPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nhn_dpo_v3_leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT_DPO
This model is a fine-tuned version of [ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT](https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 8
- total_train_batch_size: 56
- total_eval_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2
|
manimaranpa07/finetuned_bart_mnli_08th_march_1 | manimaranpa07 | 2024-03-08T06:47:06Z | 484 | 0 | transformers | [
"transformers",
"safetensors",
"bart",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-08T06:45:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
LoneStriker/MixTAO-7Bx2-MoE-v8.1-6.0bpw-h6-exl2 | LoneStriker | 2024-03-08T06:34:18Z | 6 | 1 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"moe",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T06:30:17Z | ---
license: apache-2.0
tags:
- moe
model-index:
- name: MixTAO-7Bx2-MoE-v8.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 78.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
---
# MixTAO-7Bx2-MoE
MixTAO-7Bx2-MoE is a Mixure of Experts (MoE).
This model is mainly used for large model technology experiments, and increasingly perfect iterations will eventually create high-level large language models.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-v8.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.50|
|AI2 Reasoning Challenge (25-Shot)|73.81|
|HellaSwag (10-Shot) |89.22|
|MMLU (5-Shot) |64.92|
|TruthfulQA (0-shot) |78.57|
|Winogrande (5-shot) |87.37|
|GSM8k (5-shot) |71.11|
|
dlwlgus53/q-FrozenLake-v1-4x4-noSlippery | dlwlgus53 | 2024-03-08T06:33:19Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T06:33:17Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="dlwlgus53/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Ayush2312/llama2-7B-orca-colab | Ayush2312 | 2024-03-08T06:31:20Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-06T10:44:45Z | Fine-tuned llama 2 7b with processed open orca dataset (Ayush2312/deduplicated_orca_post_processed):
data processing:
1. Remove output token less than 100 tokens in reponse
2. Do cosine similarity on examples with threshold 0.95
3.
python codes for data processing:
step 1:
```
from datasets import load_dataset, Dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Load your dataset from Hugging Face
dataset = load_dataset("Ayush2312/orca-1m-gpt4", split='train[:7000]')
# Tokenize your text data
texts = dataset['system_prompt'] + dataset['question'] + dataset['response']
# Filter out instructions with less than 100 tokens in response
filtered_texts = []
for i, response in enumerate(dataset['response']):
if len(response.split()) >= 100:
filtered_texts.append({'system_prompt': dataset['system_prompt'][i],
'question': dataset['question'][i],
'response': response})
# TF-IDF Vectorization for deduplication
texts = [text['system_prompt'] + ' ' + text['question'] + ' ' + text['response'] for text in filtered_texts]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)
# Calculate cosine similarity for deduplication
cos_sim_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
# Deduplicate the data based on cosine similarity
deduplicated_indices = set()
for i in range(len(cos_sim_matrix)):
if i not in deduplicated_indices:
for j in range(i + 1, len(cos_sim_matrix)):
if cos_sim_matrix[i, j] > 0.95:
deduplicated_indices.add(j)
# Create a new dataset with the deduplicated data
deduplicated_texts = [filtered_texts[i] for i in range(len(filtered_texts)) if i not in deduplicated_indices]
deduplicated_texts_dict = {key: [item[key] for item in deduplicated_texts] for key in filtered_texts[0].keys()}
deduplicated_dataset = Dataset.from_dict(deduplicated_texts_dict)
# Publish the dataset on Hugging Face
deduplicated_dataset.push_to_hub("deduplicated_orca_processed")
```
step 2:
```
from datasets import Dataset, load_dataset
# Load your Hugging Face dataset
dataset = load_dataset("Ayush2312/deduplicated_orca_processed")['train'][:1000]
# Define the default instruction
default_instruction = "### Instruction: Below is a conversation between a human and an AI agent. Write a summary of the conversation."
# Define the function to format each example
def format_example(example):
input_text = "### Input:\n"
if "response" in example:
input_text += "\n".join([f" {example[role]}" for role in ["question"]])
else:
input_text += "\n".join([f" {example[role]}" for role in ["question"]])
response_text = example["response"] if "response" in example else ""
instruction = "### Instruction: " + example["system_prompt"]
if not example["system_prompt"].strip():
instruction = default_instruction # Fill empty or missing instruction with default
return {
"formatted_example": f"{instruction}\n\n{input_text}\n\n### Response:\n{response_text}"
}
# Convert the dictionary to a Dataset object
dataset = Dataset.from_dict(dataset)
# Apply the function to format each example
formatted_dataset = dataset.map(format_example)
# Upload the new dataset to Hugging Face
formatted_dataset.push_to_hub("deduplicated_orca_post_processed")
``` |
LoneStriker/MixTAO-7Bx2-MoE-v8.1-5.0bpw-h6-exl2 | LoneStriker | 2024-03-08T06:30:15Z | 6 | 1 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"moe",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T06:26:52Z | ---
license: apache-2.0
tags:
- moe
model-index:
- name: MixTAO-7Bx2-MoE-v8.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 78.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
---
# MixTAO-7Bx2-MoE
MixTAO-7Bx2-MoE is a Mixure of Experts (MoE).
This model is mainly used for large model technology experiments, and increasingly perfect iterations will eventually create high-level large language models.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-v8.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.50|
|AI2 Reasoning Challenge (25-Shot)|73.81|
|HellaSwag (10-Shot) |89.22|
|MMLU (5-Shot) |64.92|
|TruthfulQA (0-shot) |78.57|
|Winogrande (5-shot) |87.37|
|GSM8k (5-shot) |71.11|
|
AIFT/Finance-KcELECTRA-base-v1.0 | AIFT | 2024-03-08T06:30:07Z | 112 | 1 | transformers | [
"transformers",
"pytorch",
"electra",
"fill-mask",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us"
] | fill-mask | 2024-01-02T06:20:06Z | ---
license: cc-by-nc-sa-4.0
pipeline_tag: fill-mask
---
<img src ="https://pds.saramin.co.kr/company/logo/202110/15/r0zx8u_zrd4-xpn1m0_logo.JPG" height="780" width="450">
<br/>
<br>
<h1>Finance-KcELECTRA-v1.0</h1>
<br>
구어체의 금융 관련 질의를 데이터로 활용하여 "beomi/KcELECTRA-base"에서 이름을 착안하여 Finance-KcELECTRA-base-v1.0으로 지었습니다.
<br>
<b><h2><학습 말뭉치 구축></h2></b>
1. 네이버 신문 기사 데이터 (카드, 보험, 은행 키워드 기사 각 15만 건)
2. 일반적인 성능을 위해 한국어 위키 텍스트 말뭉치 사용 (https://ko-nlp.github.io/Korpora)
3. 자체 보유 중인 <b>구어체의</b> 금융 관련 FAQ 지식 및 금융 채팅 대화 데이터 활용
<b><h2><베이스 모델></h2></b>
"ELECTRA-Base"의 모델 사이즈를 사용하였습니다.
<b><h2><성능 비교></h2></b>
자체 제작한 2607개 분류의 약 10만개의 질의세트를 학습하여 평가 진행
<br>
테스트셋은 각 분류당 1개의 질문 2607개로 학습 시 진행한 결과는 아래와 같습니다.
<br>
Finance-KcELECTRA-base-v1
<br>
2000STEPS -- acc = 0.7909474491752972
<br>
4000STEPS -- acc = 0.9673954737245877
<br>
6000STEPS -- <b>acc = 0.984656693517453</b>
<br>
<br>
KcELECTRA-base
<br>
2000STEPS -- acc = 0.5124664365170695
<br>
4000STEPS -- acc = 0.9136939010356732
<br>
6000STEPS -- acc = 0.9612581511315689
<br>
<br>
초기 1epoch에 기존 Kc-ELECTRA에 비해서 빠르게 학습이 수행되는 것을 확인하였습니다.
<br>
이후에도 성능이 조금이나마 앞선 것을 확인할 수 있었습니다. |
cookinai/Blitz-v0.2 | cookinai | 2024-03-08T06:28:08Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"unsloth",
"license:cc-by-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T06:08:53Z | ---
library_name: transformers
tags:
- unsloth
license: cc-by-4.0
---
# Base finetune of [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on my [Kugelblitz Dataset](https://huggingface.co/datasets/cookinai/kugelblitz-alpha-v0.1)

Trained on 3 epochs rather than 1 this time.
V0.3 coming soon
# Pretty alpha v0.3 should be more stable
 |
LoneStriker/MixTAO-7Bx2-MoE-v8.1-4.0bpw-h6-exl2 | LoneStriker | 2024-03-08T06:26:50Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"moe",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T06:24:03Z | ---
license: apache-2.0
tags:
- moe
model-index:
- name: MixTAO-7Bx2-MoE-v8.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 78.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
---
# MixTAO-7Bx2-MoE
MixTAO-7Bx2-MoE is a Mixure of Experts (MoE).
This model is mainly used for large model technology experiments, and increasingly perfect iterations will eventually create high-level large language models.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-v8.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.50|
|AI2 Reasoning Challenge (25-Shot)|73.81|
|HellaSwag (10-Shot) |89.22|
|MMLU (5-Shot) |64.92|
|TruthfulQA (0-shot) |78.57|
|Winogrande (5-shot) |87.37|
|GSM8k (5-shot) |71.11|
|
iAkashPaul/Indic-gemma-2b-finetuned-sft-Navarasa-GGUF | iAkashPaul | 2024-03-08T06:21:17Z | 13 | 3 | null | [
"gguf",
"gemma",
"llama.cpp",
"indic",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-03-06T10:15:05Z | ---
license: mit
tags:
- gemma
- gguf
- llama.cpp
- indic
---
# GGUF for Indic-gemma-2b-finetuned-sft-Navarasa
This model from [Telugu-LLM-Labs](https://huggingface.co/Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa) is based on google/gemma-2b and has been LoRA finetuned on 9 Indian languages and English instruction datasets
```bash
git clone https://huggingface.co/iAkashPaul/Indic-gemma-2b-finetuned-sft-Navarasa-GGUF # & cd into it, update paths accordingly
# build llama.cpp for your hardware https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#build
./main --file prompt.md --lora ./models/ggml-adapter-model.bin --lora-base ./models/indic-llm_Q8.gguf
./main --file prompt.md -m ./models/merged_indic_llm_Q8.gguf -ngl 99
```
## Prompt template for Instruction adherence-
Save this to a file(ex. prompt.md) & load it with the main executable.
```markdown
### Instruction: Translate following sentence to Kannada.
### Input: This model is developed by Telugu LLM Labs
## Response:
```
## Performance
* LORA+BASE (not merged)
* ```
./server --lora ./models/ggml-adapter-model.bin --lora-base ./models/indic-llm_Q8.gguf -m ./models/indic-llm_Q8.gguf
```
* 
* Merged model
* ```
./server -ngl 20 -m ./models/merged_indic_llm_Q8.gguf
```
*  |
Q-bert/MambaHermes-3B | Q-bert | 2024-03-08T06:18:34Z | 18 | 10 | transformers | [
"transformers",
"pytorch",
"mamba",
"text-generation",
"mamba-hf",
"custom_code",
"en",
"arxiv:2312.00752",
"license:wtfpl",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-28T17:20:48Z | ---
license: wtfpl
language:
- en
tags:
- mamba-hf
---
# MambaHermes-3B
<img src="https://cdn-uploads.huggingface.co/production/uploads/63da3d7ae697e5898cb86854/A3BYIH-q7G5vz4NlsPlGJ.jpeg" width="300" height="300" alt="mamba-hf">
Mamba Models with hf_integration.
For modeling codes: [**mamba-hf**](https://github.com/LegallyCoder/mamba-hf)
# Usage:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "Q-bert/MambaHermes-3B"
eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template
model = AutoModelForCausalLM.from_pretrained(
model_name, device_map=device, trust_remote_code=True)
messages = []
prompt = "Tell me 5 sites to visit in Spain"
messages.append(dict(role="user", content=prompt))
input_ids = tokenizer.apply_chat_template(
messages, return_tensors="pt", add_generation_prompt=True
).to(device)
out = model.generate(
input_ids=input_ids,
max_length=2000,
temperature=0.9,
top_p=0.7,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.batch_decode(out)
assistant_message = (
decoded[0].split("<|assistant|>\n")[-1].replace(tokenizer.eos_token, "")
)
print(assistant_message)
```
# For Training:
```python
from transformers import Trainer ,TrainingArguments
import torch
import os
class MambaTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
input_ids = inputs.pop("input_ids")
lm_logits = model(input_ids)[0]
labels = input_ids.to(lm_logits.device)
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
return lm_loss
```
You must use this class for training. And fp16 must be **False**.
# Credits:
https://huggingface.co/state-spaces
https://huggingface.co/clibrain/mamba-2.8b-instruct-openhermes
Special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752) |
LoneStriker/MixTAO-7Bx2-MoE-v8.1-GGUF | LoneStriker | 2024-03-08T06:18:12Z | 0 | 3 | null | [
"gguf",
"moe",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-03-08T05:58:44Z | ---
license: apache-2.0
tags:
- moe
model-index:
- name: MixTAO-7Bx2-MoE-v8.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 78.57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
---
# MixTAO-7Bx2-MoE
MixTAO-7Bx2-MoE is a Mixure of Experts (MoE).
This model is mainly used for large model technology experiments, and increasingly perfect iterations will eventually create high-level large language models.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-v8.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.50|
|AI2 Reasoning Challenge (25-Shot)|73.81|
|HellaSwag (10-Shot) |89.22|
|MMLU (5-Shot) |64.92|
|TruthfulQA (0-shot) |78.57|
|Winogrande (5-shot) |87.37|
|GSM8k (5-shot) |71.11|
|
Q-bert/Mamba-1B | Q-bert | 2024-03-08T06:16:31Z | 112 | 27 | transformers | [
"transformers",
"pytorch",
"mamba",
"text-generation",
"mamba-hf",
"custom_code",
"en",
"arxiv:2312.00752",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-23T08:13:58Z | ---
license: apache-2.0
language:
- en
tags:
- mamba-hf
---
# Mamba-1B
<img src="https://cdn-uploads.huggingface.co/production/uploads/63da3d7ae697e5898cb86854/A3BYIH-q7G5vz4NlsPlGJ.jpeg" width="300" height="300" alt="mamba-hf">
Mamba Models with hf_integration.
For modeling codes: [**mamba-hf**](https://github.com/LegallyCoder/mamba-hf)
# Usage:
```python
from transformers import AutoModelForCausalLM , AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('Q-bert/Mamba-1B', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('Q-bert/Mamba-1B')
text = "Hi"
input_ids = tokenizer.encode(text, return_tensors="pt")
output = model.generate(input_ids, max_length=20, num_beams=5, no_repeat_ngram_size=2)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
> Hi, I'm looking for a new job. I've been working at a company for about a year now.
# For Training:
```python
from transformers import Trainer ,TrainingArguments
import torch
import os
class MambaTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
input_ids = inputs.pop("input_ids")
lm_logits = model(input_ids)[0]
labels = input_ids.to(lm_logits.device)
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
return lm_loss
```
You must use this class for training. And fp16 must be **False**.
# Credits:
https://huggingface.co/state-spaces
Special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752)
|
Q-bert/Mamba-790M | Q-bert | 2024-03-08T06:16:12Z | 106 | 2 | transformers | [
"transformers",
"pytorch",
"mamba",
"text-generation",
"mamba-hf",
"custom_code",
"en",
"arxiv:2312.00752",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-23T08:06:38Z | ---
license: apache-2.0
language:
- en
tags:
- mamba-hf
---
# Mamba-790M
<img src="https://cdn-uploads.huggingface.co/production/uploads/63da3d7ae697e5898cb86854/A3BYIH-q7G5vz4NlsPlGJ.jpeg" width="300" height="300" alt="mamba-hf">
Mamba Models with hf_integration.
For modeling codes: [**mamba-hf**](https://github.com/LegallyCoder/mamba-hf)
# Usage:
```python
from transformers import AutoModelForCausalLM , AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('Q-bert/Mamba-790M', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('Q-bert/Mamba-790M')
text = "Hi"
input_ids = tokenizer.encode(text, return_tensors="pt")
output = model.generate(input_ids, max_length=20, num_beams=5, no_repeat_ngram_size=2)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
> Hi, I'm looking for a new job. I've been working at a company for about a year now.
# For Training:
```python
from transformers import Trainer ,TrainingArguments
import torch
import os
class MambaTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
input_ids = inputs.pop("input_ids")
lm_logits = model(input_ids)[0]
labels = input_ids.to(lm_logits.device)
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
return lm_loss
```
You must use this class for training. And fp16 must be **False**.
# Credits:
https://huggingface.co/state-spaces
Special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752)
|
Q-bert/Mamba-370M | Q-bert | 2024-03-08T06:15:48Z | 23 | 4 | transformers | [
"transformers",
"pytorch",
"mamba",
"text-generation",
"mamba-hf",
"custom_code",
"en",
"arxiv:2312.00752",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-12-23T08:02:00Z | ---
license: apache-2.0
language:
- en
tags:
- mamba-hf
---
# Mamba-370M
<img src="https://cdn-uploads.huggingface.co/production/uploads/63da3d7ae697e5898cb86854/A3BYIH-q7G5vz4NlsPlGJ.jpeg" width="300" height="300" alt="mamba-hf">
Mamba Models with hf_integration.
For modeling codes: [**mamba-hf**](https://github.com/LegallyCoder/mamba-hf)
# Usage:
```python
from transformers import AutoModelForCausalLM , AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('Q-bert/Mamba-370M', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('Q-bert/Mamba-370M')
text = "Hi"
input_ids = tokenizer.encode(text, return_tensors="pt")
output = model.generate(input_ids, max_length=20, num_beams=5, no_repeat_ngram_size=2)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
> Hi, I'm looking for a new job. I've been working at a company for about a year now.
# For Training:
```python
from transformers import Trainer ,TrainingArguments
import torch
import os
class MambaTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
input_ids = inputs.pop("input_ids")
lm_logits = model(input_ids)[0]
labels = input_ids.to(lm_logits.device)
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
return lm_loss
```
You must use this class for training. And fp16 must be **False**.
# Credits:
https://huggingface.co/state-spaces
Special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752)
|
Vannsh/Taxi-v3 | Vannsh | 2024-03-08T06:15:05Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T06:14:57Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Vannsh/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
tsavage68/mistralit2_1000_STEPS_5e8_SFT_SFT | tsavage68 | 2024-03-08T06:12:28Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T05:45:33Z | ---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: mistralit2_1000_STEPS_5e8_SFT_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistralit2_1000_STEPS_5e8_SFT_SFT
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4484 | 0.1 | 50 | 1.4370 |
| 1.3055 | 0.2 | 100 | 1.2880 |
| 1.1102 | 0.29 | 150 | 1.0868 |
| 0.9133 | 0.39 | 200 | 0.8993 |
| 0.7102 | 0.49 | 250 | 0.6891 |
| 0.5453 | 0.59 | 300 | 0.5207 |
| 0.4238 | 0.68 | 350 | 0.4248 |
| 0.4008 | 0.78 | 400 | 0.3916 |
| 0.3768 | 0.88 | 450 | 0.3790 |
| 0.3766 | 0.98 | 500 | 0.3744 |
| 0.3672 | 1.07 | 550 | 0.3718 |
| 0.3752 | 1.17 | 600 | 0.3702 |
| 0.3828 | 1.27 | 650 | 0.3694 |
| 0.3502 | 1.37 | 700 | 0.3691 |
| 0.3676 | 1.46 | 750 | 0.3690 |
| 0.3717 | 1.56 | 800 | 0.3690 |
| 0.3695 | 1.66 | 850 | 0.3690 |
| 0.3727 | 1.76 | 900 | 0.3690 |
| 0.3854 | 1.86 | 950 | 0.3690 |
| 0.3768 | 1.95 | 1000 | 0.3690 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Weni/ZeroShot-3.3.31-Mistral-7b-Multilanguage-3.2.0 | Weni | 2024-03-08T06:07:43Z | 0 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-03-07T19:10:26Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: ZeroShot-3.3.31-Mistral-7b-Multilanguage-3.2.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ZeroShot-3.3.31-Mistral-7b-Multilanguage-3.2.0
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1649 | 0.03 | 100 | 0.1309 |
| 0.1186 | 0.06 | 200 | 0.1111 |
| 0.1197 | 0.09 | 300 | 0.1349 |
| 0.1052 | 0.12 | 400 | 0.1160 |
| 0.1162 | 0.16 | 500 | 0.1013 |
| 0.1138 | 0.19 | 600 | 0.1214 |
| 0.1011 | 0.22 | 700 | 0.1184 |
| 0.1123 | 0.25 | 800 | 0.1169 |
| 0.1112 | 0.28 | 900 | 0.1144 |
| 0.1174 | 0.31 | 1000 | 0.0976 |
| 0.1222 | 0.34 | 1100 | 0.0975 |
| 0.0972 | 0.37 | 1200 | 0.0949 |
| 0.0809 | 0.4 | 1300 | 0.0935 |
| 0.0841 | 0.43 | 1400 | 0.0904 |
| 0.0835 | 0.47 | 1500 | 0.0911 |
| 0.1003 | 0.5 | 1600 | 0.0816 |
| 0.0875 | 0.53 | 1700 | 0.0770 |
| 0.099 | 0.56 | 1800 | 0.0833 |
| 0.0697 | 0.59 | 1900 | 0.0797 |
| 0.0958 | 0.62 | 2000 | 0.0774 |
| 0.0594 | 0.65 | 2100 | 0.0748 |
| 0.0886 | 0.68 | 2200 | 0.0651 |
| 0.0583 | 0.71 | 2300 | 0.0678 |
| 0.05 | 0.74 | 2400 | 0.0639 |
| 0.0696 | 0.78 | 2500 | 0.0612 |
| 0.0615 | 0.81 | 2600 | 0.0625 |
| 0.0493 | 0.84 | 2700 | 0.0610 |
| 0.0661 | 0.87 | 2800 | 0.0584 |
| 0.0469 | 0.9 | 2900 | 0.0593 |
| 0.0701 | 0.93 | 3000 | 0.0588 |
| 0.0768 | 0.96 | 3100 | 0.0587 |
| 0.0611 | 0.99 | 3200 | 0.0584 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
Anmol1902/my_awesome_opus_books_model | Anmol1902 | 2024-03-08T06:06:06Z | 89 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-08T05:07:51Z | ---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: my_awesome_opus_books_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_opus_books_model
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0937
- Bleu: 14.231
- Gen Len: 14.7356
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.3526 | 1.0 | 6355 | 2.1326 | 13.9842 | 14.6763 |
| 2.2938 | 2.0 | 12710 | 2.0937 | 14.231 | 14.7356 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
clp/leagaleasy-mistral-7b-instruct-v0.2-v1 | clp | 2024-03-08T06:04:16Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-03-07T00:37:52Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: leagaleasy-mistral-7b-instruct-v0.2-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# leagaleasy-mistral-7b-instruct-v0.2-v1
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
quirky-lats-at-mats/BobzillaV1 | quirky-lats-at-mats | 2024-03-08T05:59:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-08T05:56:40Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mlx-community/Qwen1.5-14B-Chat-4bit | mlx-community | 2024-03-08T05:37:24Z | 11 | 1 | mlx | [
"mlx",
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"en",
"license:other",
"region:us"
] | text-generation | 2024-03-07T07:45:04Z | ---
language:
- en
license: other
tags:
- chat
- mlx
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-14B-Chat/blob/main/LICENSE
pipeline_tag: text-generation
---
# mlx-community/Qwen1.5-14B-Chat-4bit
This model was converted to MLX format from [`Qwen/Qwen1.5-14B-Chat`]().
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen1.5-14B-Chat-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|
powerpuf-bot/wangchanberta-th-wiki-qa_hyp-params | powerpuf-bot | 2024-03-08T05:36:01Z | 39 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"camembert",
"question-answering",
"generated_from_trainer",
"th",
"base_model:Thammarak/wangchanBERTa-QA-thaiqa_squad",
"base_model:finetune:Thammarak/wangchanBERTa-QA-thaiqa_squad",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-12-26T19:34:58Z | ---
base_model: Thammarak/wangchanBERTa-QA-thaiqa_squad
tags:
- generated_from_trainer
model-index:
- name: WangchanBERTa-QA-thaiwiki
results: []
language:
- th
pipeline_tag: question-answering
---
# WangchanBERTa-QA-thaiwiki
This model is a fine-tuned version of [Thammarak/wangchanBERTa-QA-thaiqa_squad](https://huggingface.co/Thammarak/wangchanBERTa-QA-thaiqa_squad) on the [Thai Wiki QA - NSC2020 dataset](https://copycatch.in.th/corpus/thai-wikiqa-nsc2020.html).
It achieves the following results on the evaluation set:
- Loss: 0.0026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.3419271605136403e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 7.148 | 0.0 | 10 | 4.2283 |
| 0.0015 | 1.0 | 2120 | 0.0706 |
| 0.0804 | 2.0 | 4240 | 0.0317 |
| 0.0044 | 3.0 | 6370 | 0.0193 |
| 0.0834 | 4.0 | 8500 | 0.0155 |
| 0.0762 | 5.0 | 10620 | 0.0102 |
| 0.0914 | 5.0 | 10630 | 0.0102 |
| 0.0034 | 6.0 | 12740 | 0.0078 |
| 0.0101 | 7.0 | 14880 | 0.0062 |
| 0.0001 | 7.01 | 14890 | 0.0062 |
| 0.0006 | 7.01 | 14900 | 0.0062 |
| 0.0373 | 7.02 | 14910 | 0.0063 |
| 0.0001 | 7.02 | 14920 | 0.0064 |
| 0.0005 | 7.03 | 14930 | 0.0066 |
| 0.0001 | 7.03 | 14940 | 0.0067 |
| 0.1267 | 7.04 | 14950 | 0.0067 |
| 0.0012 | 7.04 | 14960 | 0.0064 |
| 0.0005 | 7.04 | 14970 | 0.0064 |
| 0.0704 | 7.05 | 14980 | 0.0064 |
| 0.0001 | 7.05 | 14990 | 0.0064 |
| 0.0008 | 7.06 | 15000 | 0.0064 |
| 0.0181 | 7.06 | 15010 | 0.0064 |
| 0.0001 | 7.07 | 15020 | 0.0064 |
| 0.0 | 7.07 | 15030 | 0.0064 |
| 0.1274 | 7.08 | 15040 | 0.0059 |
| 0.0001 | 7.08 | 15050 | 0.0058 |
| 0.0522 | 7.09 | 15060 | 0.0056 |
| 0.0111 | 7.09 | 15070 | 0.0055 |
| 0.0016 | 7.1 | 15080 | 0.0056 |
| 0.0092 | 7.1 | 15090 | 0.0056 |
| 0.0032 | 7.11 | 15100 | 0.0057 |
| 0.0004 | 7.11 | 15110 | 0.0058 |
| 0.0038 | 7.12 | 15120 | 0.0059 |
| 0.0011 | 7.12 | 15130 | 0.0060 |
| 0.0068 | 7.12 | 15140 | 0.0061 |
| 0.0313 | 7.13 | 15150 | 0.0062 |
| 0.0002 | 7.13 | 15160 | 0.0062 |
| 0.0001 | 7.14 | 15170 | 0.0063 |
| 0.1072 | 7.14 | 15180 | 0.0061 |
| 0.1635 | 7.15 | 15190 | 0.0057 |
| 0.0002 | 7.15 | 15200 | 0.0056 |
| 0.0001 | 7.16 | 15210 | 0.0056 |
| 0.0 | 7.16 | 15220 | 0.0057 |
| 0.2542 | 7.17 | 15230 | 0.0053 |
| 0.0002 | 7.17 | 15240 | 0.0052 |
| 0.0006 | 7.18 | 15250 | 0.0052 |
| 0.0009 | 7.18 | 15260 | 0.0054 |
| 0.0002 | 7.19 | 15270 | 0.0056 |
| 0.0 | 7.19 | 15280 | 0.0056 |
| 0.1518 | 7.2 | 15290 | 0.0054 |
| 0.0001 | 7.2 | 15300 | 0.0052 |
| 0.0011 | 7.2 | 15310 | 0.0053 |
| 0.0819 | 7.21 | 15320 | 0.0052 |
| 0.0001 | 7.21 | 15330 | 0.0052 |
| 0.0001 | 7.22 | 15340 | 0.0052 |
| 0.0017 | 7.22 | 15350 | 0.0052 |
| 0.1814 | 7.23 | 15360 | 0.0053 |
| 0.0084 | 7.23 | 15370 | 0.0053 |
| 0.0004 | 7.24 | 15380 | 0.0054 |
| 0.0007 | 7.24 | 15390 | 0.0055 |
| 0.0 | 7.25 | 15400 | 0.0056 |
| 0.0 | 7.25 | 15410 | 0.0056 |
| 0.0017 | 7.26 | 15420 | 0.0056 |
| 0.0004 | 7.26 | 15430 | 0.0057 |
| 0.0001 | 7.27 | 15440 | 0.0057 |
| 0.0585 | 7.27 | 15450 | 0.0055 |
| 0.0 | 7.28 | 15460 | 0.0054 |
| 0.0008 | 7.28 | 15470 | 0.0054 |
| 0.0607 | 7.28 | 15480 | 0.0054 |
| 0.0097 | 7.29 | 15490 | 0.0054 |
| 0.0133 | 7.29 | 15500 | 0.0054 |
| 0.0001 | 7.3 | 15510 | 0.0054 |
| 0.0241 | 7.3 | 15520 | 0.0053 |
| 0.0001 | 7.31 | 15530 | 0.0054 |
| 0.0001 | 7.31 | 15540 | 0.0054 |
| 0.0799 | 7.32 | 15550 | 0.0055 |
| 0.0746 | 7.32 | 15560 | 0.0055 |
| 0.0881 | 7.33 | 15570 | 0.0055 |
| 0.0363 | 7.33 | 15580 | 0.0056 |
| 0.0082 | 7.34 | 15590 | 0.0056 |
| 0.0485 | 7.34 | 15600 | 0.0057 |
| 0.0004 | 7.35 | 15610 | 0.0059 |
| 0.0 | 7.35 | 15620 | 0.0061 |
| 0.0001 | 7.36 | 15630 | 0.0061 |
| 0.0 | 7.36 | 15640 | 0.0062 |
| 0.0489 | 7.36 | 15650 | 0.0061 |
| 0.0038 | 7.37 | 15660 | 0.0060 |
| 0.0001 | 7.37 | 15670 | 0.0059 |
| 0.0005 | 7.38 | 15680 | 0.0058 |
| 0.0007 | 7.38 | 15690 | 0.0057 |
| 0.0001 | 7.39 | 15700 | 0.0057 |
| 0.0 | 7.39 | 15710 | 0.0057 |
| 0.0094 | 7.4 | 15720 | 0.0057 |
| 0.0001 | 7.4 | 15730 | 0.0057 |
| 0.0011 | 7.41 | 15740 | 0.0058 |
| 0.099 | 7.41 | 15750 | 0.0056 |
| 0.0102 | 7.42 | 15760 | 0.0055 |
| 0.1448 | 7.42 | 15770 | 0.0053 |
| 0.0001 | 7.43 | 15780 | 0.0051 |
| 0.0001 | 7.43 | 15790 | 0.0051 |
| 0.0001 | 7.44 | 15800 | 0.0052 |
| 0.074 | 7.44 | 15810 | 0.0053 |
| 0.0002 | 7.44 | 15820 | 0.0055 |
| 0.01 | 7.45 | 15830 | 0.0056 |
| 0.012 | 7.45 | 15840 | 0.0056 |
| 0.0002 | 7.46 | 15850 | 0.0056 |
| 0.0106 | 7.46 | 15860 | 0.0056 |
| 0.0006 | 7.47 | 15870 | 0.0057 |
| 0.0002 | 7.47 | 15880 | 0.0058 |
| 0.0354 | 7.48 | 15890 | 0.0060 |
| 0.0154 | 7.48 | 15900 | 0.0062 |
| 0.0001 | 7.49 | 15910 | 0.0062 |
| 0.0002 | 7.49 | 15920 | 0.0063 |
| 0.0021 | 7.5 | 15930 | 0.0063 |
| 0.0076 | 7.5 | 15940 | 0.0062 |
| 0.0001 | 7.51 | 15950 | 0.0063 |
| 0.0001 | 7.51 | 15960 | 0.0063 |
| 0.1369 | 7.52 | 15970 | 0.0062 |
| 0.0001 | 7.52 | 15980 | 0.0062 |
| 0.09 | 7.52 | 15990 | 0.0061 |
| 0.0138 | 7.53 | 16000 | 0.0060 |
| 0.0006 | 7.53 | 16010 | 0.0061 |
| 0.0001 | 7.54 | 16020 | 0.0061 |
| 0.0 | 7.54 | 16030 | 0.0062 |
| 0.0016 | 7.55 | 16040 | 0.0061 |
| 0.0172 | 7.55 | 16050 | 0.0060 |
| 0.0959 | 7.56 | 16060 | 0.0056 |
| 0.0001 | 7.56 | 16070 | 0.0048 |
| 0.0001 | 7.57 | 16080 | 0.0046 |
| 0.0952 | 7.57 | 16090 | 0.0046 |
| 0.001 | 7.58 | 16100 | 0.0046 |
| 0.0054 | 7.58 | 16110 | 0.0047 |
| 0.0714 | 7.59 | 16120 | 0.0048 |
| 0.001 | 7.59 | 16130 | 0.0047 |
| 0.0 | 7.6 | 16140 | 0.0048 |
| 0.0006 | 7.6 | 16150 | 0.0048 |
| 0.1022 | 7.6 | 16160 | 0.0049 |
| 0.0576 | 7.61 | 16170 | 0.0050 |
| 0.0834 | 7.61 | 16180 | 0.0048 |
| 0.1453 | 7.62 | 16190 | 0.0047 |
| 0.098 | 7.62 | 16200 | 0.0046 |
| 0.0002 | 7.63 | 16210 | 0.0044 |
| 0.0014 | 7.63 | 16220 | 0.0044 |
| 0.1971 | 7.64 | 16230 | 0.0043 |
| 0.0368 | 7.64 | 16240 | 0.0053 |
| 0.0005 | 7.65 | 16250 | 0.0063 |
| 0.0001 | 7.65 | 16260 | 0.0063 |
| 0.0004 | 7.66 | 16270 | 0.0063 |
| 0.0003 | 7.66 | 16280 | 0.0064 |
| 0.0001 | 7.67 | 16290 | 0.0065 |
| 0.0166 | 7.67 | 16300 | 0.0066 |
| 0.0653 | 7.68 | 16310 | 0.0068 |
| 0.0001 | 7.68 | 16320 | 0.0069 |
| 0.0503 | 7.68 | 16330 | 0.0070 |
| 0.1309 | 7.69 | 16340 | 0.0068 |
| 0.0397 | 7.69 | 16350 | 0.0068 |
| 0.08 | 7.7 | 16360 | 0.0089 |
| 0.0391 | 7.7 | 16370 | 0.0088 |
| 0.1459 | 7.71 | 16380 | 0.0087 |
| 0.0102 | 7.71 | 16390 | 0.0099 |
| 0.0 | 7.72 | 16400 | 0.0099 |
| 0.0001 | 7.72 | 16410 | 0.0107 |
| 0.0 | 7.73 | 16420 | 0.0108 |
| 0.0002 | 7.73 | 16430 | 0.0108 |
| 0.0069 | 7.74 | 16440 | 0.0108 |
| 0.0 | 7.74 | 16450 | 0.0108 |
| 0.0001 | 7.75 | 16460 | 0.0108 |
| 0.1238 | 7.75 | 16470 | 0.0106 |
| 0.0037 | 7.76 | 16480 | 0.0104 |
| 0.0003 | 7.76 | 16490 | 0.0104 |
| 0.0007 | 7.76 | 16500 | 0.0104 |
| 0.1338 | 7.77 | 16510 | 0.0132 |
| 0.0688 | 7.77 | 16520 | 0.0178 |
| 0.0472 | 7.78 | 16530 | 0.0215 |
| 0.0232 | 7.78 | 16540 | 0.0259 |
| 0.0001 | 7.79 | 16550 | 0.0295 |
| 0.2246 | 7.79 | 16560 | 0.0274 |
| 0.0403 | 7.8 | 16570 | 0.0214 |
| 0.2483 | 7.8 | 16580 | 0.0205 |
| 0.0914 | 7.81 | 16590 | 0.0214 |
| 0.0003 | 7.81 | 16600 | 0.0216 |
| 0.1359 | 7.82 | 16610 | 0.0216 |
| 0.1143 | 7.82 | 16620 | 0.0215 |
| 0.0001 | 7.83 | 16630 | 0.0190 |
| 0.0003 | 7.83 | 16640 | 0.0182 |
| 0.0034 | 7.84 | 16650 | 0.0183 |
| 0.0341 | 7.84 | 16660 | 0.0166 |
| 0.0733 | 7.84 | 16670 | 0.0130 |
| 0.0329 | 7.85 | 16680 | 0.0121 |
| 0.0073 | 7.85 | 16690 | 0.0121 |
| 0.034 | 7.86 | 16700 | 0.0130 |
| 0.0002 | 7.86 | 16710 | 0.0139 |
| 0.0002 | 7.87 | 16720 | 0.0140 |
| 0.1277 | 7.87 | 16730 | 0.0134 |
| 0.0001 | 7.88 | 16740 | 0.0123 |
| 0.0002 | 7.88 | 16750 | 0.0123 |
| 0.0871 | 7.89 | 16760 | 0.0122 |
| 0.0804 | 7.89 | 16770 | 0.0122 |
| 0.041 | 7.9 | 16780 | 0.0123 |
| 0.008 | 7.9 | 16790 | 0.0122 |
| 0.0345 | 7.91 | 16800 | 0.0113 |
| 0.0169 | 7.91 | 16810 | 0.0104 |
| 0.0001 | 7.92 | 16820 | 0.0078 |
| 0.1148 | 7.92 | 16830 | 0.0078 |
| 0.0009 | 7.92 | 16840 | 0.0079 |
| 0.0032 | 7.93 | 16850 | 0.0079 |
| 0.0004 | 7.93 | 16860 | 0.0079 |
| 0.0001 | 7.94 | 16870 | 0.0080 |
| 0.0001 | 7.94 | 16880 | 0.0080 |
| 0.0003 | 7.95 | 16890 | 0.0080 |
| 0.0003 | 7.95 | 16900 | 0.0072 |
| 0.0 | 7.96 | 16910 | 0.0072 |
| 0.0013 | 7.96 | 16920 | 0.0073 |
| 0.0198 | 7.97 | 16930 | 0.0072 |
| 0.0003 | 7.97 | 16940 | 0.0071 |
| 0.0004 | 7.98 | 16950 | 0.0071 |
| 0.0001 | 7.98 | 16960 | 0.0071 |
| 0.0 | 7.99 | 16970 | 0.0072 |
| 0.0011 | 7.99 | 16980 | 0.0070 |
| 0.0001 | 8.0 | 16990 | 0.0070 |
| 0.0002 | 8.0 | 17000 | 0.0070 |
| 0.0 | 8.0 | 17010 | 0.0070 |
| 0.0132 | 8.01 | 17020 | 0.0069 |
| 0.0 | 8.01 | 17030 | 0.0069 |
| 0.0679 | 8.02 | 17040 | 0.0071 |
| 0.0 | 8.02 | 17050 | 0.0072 |
| 0.0002 | 8.03 | 17060 | 0.0072 |
| 0.0 | 8.03 | 17070 | 0.0072 |
| 0.0001 | 8.04 | 17080 | 0.0073 |
| 0.0 | 8.04 | 17090 | 0.0073 |
| 0.2347 | 8.05 | 17100 | 0.0071 |
| 0.0436 | 8.05 | 17110 | 0.0081 |
| 0.0001 | 8.06 | 17120 | 0.0081 |
| 0.0064 | 8.06 | 17130 | 0.0098 |
| 0.0462 | 8.07 | 17140 | 0.0079 |
| 0.0037 | 8.07 | 17150 | 0.0079 |
| 0.0896 | 8.08 | 17160 | 0.0076 |
| 0.0025 | 8.08 | 17170 | 0.0075 |
| 0.0315 | 8.08 | 17180 | 0.0074 |
| 0.0002 | 8.09 | 17190 | 0.0075 |
| 0.0962 | 8.09 | 17200 | 0.0075 |
| 0.2005 | 8.1 | 17210 | 0.0073 |
| 0.0724 | 8.1 | 17220 | 0.0071 |
| 0.0778 | 8.11 | 17230 | 0.0071 |
| 0.0469 | 8.11 | 17240 | 0.0088 |
| 0.0003 | 8.12 | 17250 | 0.0088 |
| 0.0004 | 8.12 | 17260 | 0.0089 |
| 0.0757 | 8.13 | 17270 | 0.0096 |
| 0.1558 | 8.13 | 17280 | 0.0095 |
| 0.0007 | 8.14 | 17290 | 0.0094 |
| 0.2009 | 8.14 | 17300 | 0.0090 |
| 0.0001 | 8.15 | 17310 | 0.0078 |
| 0.0006 | 8.15 | 17320 | 0.0078 |
| 0.0004 | 8.16 | 17330 | 0.0078 |
| 0.0001 | 8.16 | 17340 | 0.0079 |
| 0.0803 | 8.16 | 17350 | 0.0079 |
| 0.0372 | 8.17 | 17360 | 0.0089 |
| 0.1616 | 8.17 | 17370 | 0.0088 |
| 0.0014 | 8.18 | 17380 | 0.0078 |
| 0.0009 | 8.18 | 17390 | 0.0061 |
| 0.0382 | 8.19 | 17400 | 0.0061 |
| 0.0001 | 8.19 | 17410 | 0.0052 |
| 0.0001 | 8.2 | 17420 | 0.0052 |
| 0.0005 | 8.2 | 17430 | 0.0054 |
| 0.0001 | 8.21 | 17440 | 0.0054 |
| 0.0013 | 8.21 | 17450 | 0.0055 |
| 0.0069 | 8.22 | 17460 | 0.0056 |
| 0.0104 | 8.22 | 17470 | 0.0056 |
| 0.0006 | 8.23 | 17480 | 0.0055 |
| 0.0002 | 8.23 | 17490 | 0.0056 |
| 0.035 | 8.24 | 17500 | 0.0056 |
| 0.1617 | 8.24 | 17510 | 0.0055 |
| 0.1127 | 8.24 | 17520 | 0.0054 |
| 0.0001 | 8.25 | 17530 | 0.0054 |
| 0.0001 | 8.25 | 17540 | 0.0054 |
| 0.0003 | 8.26 | 17550 | 0.0053 |
| 0.0019 | 8.26 | 17560 | 0.0053 |
| 0.0793 | 8.27 | 17570 | 0.0055 |
| 0.0001 | 8.27 | 17580 | 0.0057 |
| 0.0 | 8.28 | 17590 | 0.0058 |
| 0.0 | 8.28 | 17600 | 0.0058 |
| 0.0001 | 8.29 | 17610 | 0.0058 |
| 0.0002 | 8.29 | 17620 | 0.0058 |
| 0.0034 | 8.3 | 17630 | 0.0058 |
| 0.0002 | 8.3 | 17640 | 0.0058 |
| 0.0204 | 8.31 | 17650 | 0.0059 |
| 0.0022 | 8.31 | 17660 | 0.0060 |
| 0.0 | 8.32 | 17670 | 0.0060 |
| 0.1065 | 8.32 | 17680 | 0.0060 |
| 0.0003 | 8.32 | 17690 | 0.0060 |
| 0.0392 | 8.33 | 17700 | 0.0060 |
| 0.0001 | 8.33 | 17710 | 0.0060 |
| 0.0856 | 8.34 | 17720 | 0.0059 |
| 0.0001 | 8.34 | 17730 | 0.0058 |
| 0.0 | 8.35 | 17740 | 0.0057 |
| 0.0032 | 8.35 | 17750 | 0.0057 |
| 0.0001 | 8.36 | 17760 | 0.0056 |
| 0.0001 | 8.36 | 17770 | 0.0056 |
| 0.0001 | 8.37 | 17780 | 0.0056 |
| 0.0062 | 8.37 | 17790 | 0.0055 |
| 0.0014 | 8.38 | 17800 | 0.0055 |
| 0.0001 | 8.38 | 17810 | 0.0055 |
| 0.0701 | 8.39 | 17820 | 0.0055 |
| 0.0679 | 8.39 | 17830 | 0.0055 |
| 0.0375 | 8.4 | 17840 | 0.0064 |
| 0.0028 | 8.4 | 17850 | 0.0065 |
| 0.0232 | 8.4 | 17860 | 0.0056 |
| 0.0104 | 8.41 | 17870 | 0.0056 |
| 0.0 | 8.41 | 17880 | 0.0056 |
| 0.0352 | 8.42 | 17890 | 0.0057 |
| 0.0791 | 8.42 | 17900 | 0.0057 |
| 0.0001 | 8.43 | 17910 | 0.0057 |
| 0.073 | 8.43 | 17920 | 0.0057 |
| 0.0001 | 8.44 | 17930 | 0.0058 |
| 0.0777 | 8.44 | 17940 | 0.0059 |
| 0.0 | 8.45 | 17950 | 0.0059 |
| 0.0026 | 8.45 | 17960 | 0.0059 |
| 0.0 | 8.46 | 17970 | 0.0059 |
| 0.0 | 8.46 | 17980 | 0.0058 |
| 0.0333 | 8.47 | 17990 | 0.0057 |
| 0.0555 | 8.47 | 18000 | 0.0057 |
| 0.1599 | 8.48 | 18010 | 0.0057 |
| 0.0363 | 8.48 | 18020 | 0.0057 |
| 0.0378 | 8.48 | 18030 | 0.0057 |
| 0.0711 | 8.49 | 18040 | 0.0057 |
| 0.0438 | 8.49 | 18050 | 0.0056 |
| 0.0455 | 8.5 | 18060 | 0.0056 |
| 0.0001 | 8.5 | 18070 | 0.0056 |
| 0.0 | 8.51 | 18080 | 0.0056 |
| 0.038 | 8.51 | 18090 | 0.0056 |
| 0.0001 | 8.52 | 18100 | 0.0053 |
| 0.0041 | 8.52 | 18110 | 0.0053 |
| 0.0028 | 8.53 | 18120 | 0.0053 |
| 0.0 | 8.53 | 18130 | 0.0053 |
| 0.0335 | 8.54 | 18140 | 0.0053 |
| 0.0005 | 8.54 | 18150 | 0.0054 |
| 0.0544 | 8.55 | 18160 | 0.0054 |
| 0.0001 | 8.55 | 18170 | 0.0054 |
| 0.0001 | 8.56 | 18180 | 0.0054 |
| 0.0008 | 8.56 | 18190 | 0.0054 |
| 0.0001 | 8.56 | 18200 | 0.0054 |
| 0.0564 | 8.57 | 18210 | 0.0053 |
| 0.1649 | 8.57 | 18220 | 0.0053 |
| 0.0003 | 8.58 | 18230 | 0.0054 |
| 0.0001 | 8.58 | 18240 | 0.0054 |
| 0.0171 | 8.59 | 18250 | 0.0054 |
| 0.031 | 8.59 | 18260 | 0.0055 |
| 0.2706 | 8.6 | 18270 | 0.0053 |
| 0.037 | 8.6 | 18280 | 0.0052 |
| 0.0004 | 8.61 | 18290 | 0.0052 |
| 0.0736 | 8.61 | 18300 | 0.0052 |
| 0.0051 | 8.62 | 18310 | 0.0052 |
| 0.0006 | 8.62 | 18320 | 0.0052 |
| 0.0324 | 8.63 | 18330 | 0.0053 |
| 0.0054 | 8.63 | 18340 | 0.0052 |
| 0.0036 | 8.64 | 18350 | 0.0052 |
| 0.1031 | 8.64 | 18360 | 0.0050 |
| 0.0002 | 8.64 | 18370 | 0.0050 |
| 0.0001 | 8.65 | 18380 | 0.0050 |
| 0.0001 | 8.65 | 18390 | 0.0050 |
| 0.1069 | 8.66 | 18400 | 0.0050 |
| 0.1139 | 8.66 | 18410 | 0.0051 |
| 0.0002 | 8.67 | 18420 | 0.0052 |
| 0.0002 | 8.67 | 18430 | 0.0052 |
| 0.0001 | 8.68 | 18440 | 0.0053 |
| 0.1413 | 8.68 | 18450 | 0.0051 |
| 0.0001 | 8.69 | 18460 | 0.0051 |
| 0.0002 | 8.69 | 18470 | 0.0051 |
| 0.0 | 8.7 | 18480 | 0.0051 |
| 0.0001 | 8.7 | 18490 | 0.0051 |
| 0.1362 | 8.71 | 18500 | 0.0052 |
| 0.0001 | 8.71 | 18510 | 0.0052 |
| 0.0049 | 8.72 | 18520 | 0.0052 |
| 0.0747 | 8.72 | 18530 | 0.0052 |
| 0.0004 | 8.72 | 18540 | 0.0052 |
| 0.0001 | 8.73 | 18550 | 0.0053 |
| 0.127 | 8.73 | 18560 | 0.0052 |
| 0.0913 | 8.74 | 18570 | 0.0050 |
| 0.21 | 8.74 | 18580 | 0.0049 |
| 0.0001 | 8.75 | 18590 | 0.0049 |
| 0.0002 | 8.75 | 18600 | 0.0049 |
| 0.0855 | 8.76 | 18610 | 0.0049 |
| 0.0042 | 8.76 | 18620 | 0.0048 |
| 0.0017 | 8.77 | 18630 | 0.0049 |
| 0.0791 | 8.77 | 18640 | 0.0051 |
| 0.0001 | 8.78 | 18650 | 0.0051 |
| 0.0398 | 8.78 | 18660 | 0.0052 |
| 0.1381 | 8.79 | 18670 | 0.0052 |
| 0.0015 | 8.79 | 18680 | 0.0052 |
| 0.0 | 8.8 | 18690 | 0.0051 |
| 0.0001 | 8.8 | 18700 | 0.0051 |
| 0.073 | 8.8 | 18710 | 0.0052 |
| 0.0003 | 8.81 | 18720 | 0.0052 |
| 0.0376 | 8.81 | 18730 | 0.0053 |
| 0.0368 | 8.82 | 18740 | 0.0053 |
| 0.0338 | 8.82 | 18750 | 0.0054 |
| 0.1429 | 8.83 | 18760 | 0.0054 |
| 0.0979 | 8.83 | 18770 | 0.0053 |
| 0.0001 | 8.84 | 18780 | 0.0052 |
| 0.1374 | 8.84 | 18790 | 0.0051 |
| 0.0001 | 8.85 | 18800 | 0.0050 |
| 0.0005 | 8.85 | 18810 | 0.0051 |
| 0.0774 | 8.86 | 18820 | 0.0051 |
| 0.0389 | 8.86 | 18830 | 0.0052 |
| 0.0366 | 8.87 | 18840 | 0.0052 |
| 0.0725 | 8.87 | 18850 | 0.0061 |
| 0.0004 | 8.88 | 18860 | 0.0062 |
| 0.1598 | 8.88 | 18870 | 0.0062 |
| 0.0001 | 8.88 | 18880 | 0.0062 |
| 0.0698 | 8.89 | 18890 | 0.0063 |
| 0.035 | 8.89 | 18900 | 0.0063 |
| 0.074 | 8.9 | 18910 | 0.0054 |
| 0.1915 | 8.9 | 18920 | 0.0054 |
| 0.0006 | 8.91 | 18930 | 0.0045 |
| 0.0765 | 8.91 | 18940 | 0.0054 |
| 0.0367 | 8.92 | 18950 | 0.0053 |
| 0.0002 | 8.92 | 18960 | 0.0054 |
| 0.0726 | 8.93 | 18970 | 0.0054 |
| 0.0002 | 8.93 | 18980 | 0.0054 |
| 0.1149 | 8.94 | 18990 | 0.0053 |
| 0.0001 | 8.94 | 19000 | 0.0053 |
| 0.0001 | 8.95 | 19010 | 0.0052 |
| 0.0001 | 8.95 | 19020 | 0.0053 |
| 0.0001 | 8.96 | 19030 | 0.0053 |
| 0.0001 | 8.96 | 19040 | 0.0053 |
| 0.0001 | 8.96 | 19050 | 0.0053 |
| 0.0375 | 8.97 | 19060 | 0.0053 |
| 0.0328 | 8.97 | 19070 | 0.0053 |
| 0.0001 | 8.98 | 19080 | 0.0054 |
| 0.0001 | 8.98 | 19090 | 0.0054 |
| 0.032 | 8.99 | 19100 | 0.0054 |
| 0.0005 | 8.99 | 19110 | 0.0055 |
| 0.0001 | 9.0 | 19120 | 0.0055 |
| 0.0403 | 9.0 | 19130 | 0.0055 |
| 0.0 | 9.01 | 19140 | 0.0047 |
| 0.0381 | 9.01 | 19150 | 0.0047 |
| 0.0001 | 9.02 | 19160 | 0.0047 |
| 0.0781 | 9.02 | 19170 | 0.0046 |
| 0.0279 | 9.03 | 19180 | 0.0046 |
| 0.0001 | 9.03 | 19190 | 0.0046 |
| 0.0226 | 9.04 | 19200 | 0.0036 |
| 0.1095 | 9.04 | 19210 | 0.0034 |
| 0.0361 | 9.04 | 19220 | 0.0032 |
| 0.0675 | 9.05 | 19230 | 0.0031 |
| 0.0009 | 9.05 | 19240 | 0.0031 |
| 0.0004 | 9.06 | 19250 | 0.0031 |
| 0.0002 | 9.06 | 19260 | 0.0032 |
| 0.0805 | 9.07 | 19270 | 0.0031 |
| 0.0001 | 9.07 | 19280 | 0.0030 |
| 0.1095 | 9.08 | 19290 | 0.0029 |
| 0.0958 | 9.08 | 19300 | 0.0028 |
| 0.0128 | 9.09 | 19310 | 0.0028 |
| 0.016 | 9.09 | 19320 | 0.0028 |
| 0.0004 | 9.1 | 19330 | 0.0029 |
| 0.0532 | 9.1 | 19340 | 0.0030 |
| 0.0001 | 9.11 | 19350 | 0.0030 |
| 0.0008 | 9.11 | 19360 | 0.0031 |
| 0.0708 | 9.12 | 19370 | 0.0032 |
| 0.0001 | 9.12 | 19380 | 0.0033 |
| 0.0001 | 9.12 | 19390 | 0.0033 |
| 0.0001 | 9.13 | 19400 | 0.0033 |
| 0.001 | 9.13 | 19410 | 0.0033 |
| 0.0003 | 9.14 | 19420 | 0.0033 |
| 0.0373 | 9.14 | 19430 | 0.0033 |
| 0.0678 | 9.15 | 19440 | 0.0042 |
| 0.0708 | 9.15 | 19450 | 0.0043 |
| 0.0003 | 9.16 | 19460 | 0.0035 |
| 0.0001 | 9.16 | 19470 | 0.0035 |
| 0.0861 | 9.17 | 19480 | 0.0035 |
| 0.001 | 9.17 | 19490 | 0.0035 |
| 0.0001 | 9.18 | 19500 | 0.0034 |
| 0.0 | 9.18 | 19510 | 0.0034 |
| 0.0001 | 9.19 | 19520 | 0.0034 |
| 0.0 | 9.19 | 19530 | 0.0035 |
| 0.0 | 9.2 | 19540 | 0.0035 |
| 0.0 | 9.2 | 19550 | 0.0035 |
| 0.0003 | 9.2 | 19560 | 0.0035 |
| 0.0012 | 9.21 | 19570 | 0.0035 |
| 0.0 | 9.21 | 19580 | 0.0035 |
| 0.0 | 9.22 | 19590 | 0.0035 |
| 0.0372 | 9.22 | 19600 | 0.0035 |
| 0.0002 | 9.23 | 19610 | 0.0035 |
| 0.1244 | 9.23 | 19620 | 0.0035 |
| 0.0001 | 9.24 | 19630 | 0.0035 |
| 0.0863 | 9.24 | 19640 | 0.0035 |
| 0.0 | 9.25 | 19650 | 0.0034 |
| 0.0001 | 9.25 | 19660 | 0.0034 |
| 0.0 | 9.26 | 19670 | 0.0034 |
| 0.0676 | 9.26 | 19680 | 0.0034 |
| 0.0001 | 9.27 | 19690 | 0.0034 |
| 0.0001 | 9.27 | 19700 | 0.0051 |
| 0.005 | 9.28 | 19710 | 0.0052 |
| 0.0254 | 9.28 | 19720 | 0.0052 |
| 0.0544 | 9.28 | 19730 | 0.0051 |
| 0.0728 | 9.29 | 19740 | 0.0034 |
| 0.0004 | 9.29 | 19750 | 0.0034 |
| 0.0 | 9.3 | 19760 | 0.0034 |
| 0.0004 | 9.3 | 19770 | 0.0034 |
| 0.0001 | 9.31 | 19780 | 0.0035 |
| 0.0007 | 9.31 | 19790 | 0.0035 |
| 0.071 | 9.32 | 19800 | 0.0035 |
| 0.231 | 9.32 | 19810 | 0.0052 |
| 0.0002 | 9.33 | 19820 | 0.0051 |
| 0.0 | 9.33 | 19830 | 0.0034 |
| 0.0002 | 9.34 | 19840 | 0.0034 |
| 0.0094 | 9.34 | 19850 | 0.0052 |
| 0.0001 | 9.35 | 19860 | 0.0051 |
| 0.0003 | 9.35 | 19870 | 0.0051 |
| 0.0745 | 9.36 | 19880 | 0.0052 |
| 0.0002 | 9.36 | 19890 | 0.0053 |
| 0.0001 | 9.36 | 19900 | 0.0054 |
| 0.0035 | 9.37 | 19910 | 0.0054 |
| 0.2589 | 9.37 | 19920 | 0.0053 |
| 0.0 | 9.38 | 19930 | 0.0052 |
| 0.0124 | 9.38 | 19940 | 0.0052 |
| 0.0413 | 9.39 | 19950 | 0.0053 |
| 0.0001 | 9.39 | 19960 | 0.0053 |
| 0.1248 | 9.4 | 19970 | 0.0053 |
| 0.0698 | 9.4 | 19980 | 0.0053 |
| 0.0017 | 9.41 | 19990 | 0.0053 |
| 0.0102 | 9.41 | 20000 | 0.0053 |
| 0.0 | 9.42 | 20010 | 0.0054 |
| 0.0001 | 9.42 | 20020 | 0.0054 |
| 0.0 | 9.43 | 20030 | 0.0054 |
| 0.0001 | 9.43 | 20040 | 0.0054 |
| 0.0004 | 9.44 | 20050 | 0.0054 |
| 0.0001 | 9.44 | 20060 | 0.0055 |
| 0.11 | 9.44 | 20070 | 0.0054 |
| 0.1102 | 9.45 | 20080 | 0.0054 |
| 0.0335 | 9.45 | 20090 | 0.0054 |
| 0.1011 | 9.46 | 20100 | 0.0054 |
| 0.0001 | 9.46 | 20110 | 0.0055 |
| 0.0006 | 9.47 | 20120 | 0.0054 |
| 0.0734 | 9.47 | 20130 | 0.0054 |
| 0.0 | 9.48 | 20140 | 0.0054 |
| 0.0004 | 9.48 | 20150 | 0.0054 |
| 0.0001 | 9.49 | 20160 | 0.0053 |
| 0.0 | 9.49 | 20170 | 0.0053 |
| 0.0967 | 9.5 | 20180 | 0.0050 |
| 0.0001 | 9.5 | 20190 | 0.0047 |
| 0.0 | 9.51 | 20200 | 0.0047 |
| 0.0 | 9.51 | 20210 | 0.0046 |
| 0.0248 | 9.52 | 20220 | 0.0046 |
| 0.0001 | 9.52 | 20230 | 0.0029 |
| 0.0006 | 9.52 | 20240 | 0.0029 |
| 0.012 | 9.53 | 20250 | 0.0029 |
| 0.0 | 9.53 | 20260 | 0.0027 |
| 0.0 | 9.54 | 20270 | 0.0027 |
| 0.0001 | 9.54 | 20280 | 0.0027 |
| 0.1061 | 9.55 | 20290 | 0.0027 |
| 0.0435 | 9.55 | 20300 | 0.0028 |
| 0.0707 | 9.56 | 20310 | 0.0028 |
| 0.0001 | 9.56 | 20320 | 0.0028 |
| 0.0019 | 9.57 | 20330 | 0.0029 |
| 0.0 | 9.57 | 20340 | 0.0029 |
| 0.0001 | 9.58 | 20350 | 0.0029 |
| 0.0 | 9.58 | 20360 | 0.0029 |
| 0.0 | 9.59 | 20370 | 0.0029 |
| 0.0001 | 9.59 | 20380 | 0.0029 |
| 0.0001 | 9.6 | 20390 | 0.0030 |
| 0.0001 | 9.6 | 20400 | 0.0030 |
| 0.0397 | 9.6 | 20410 | 0.0031 |
| 0.0703 | 9.61 | 20420 | 0.0031 |
| 0.0001 | 9.61 | 20430 | 0.0031 |
| 0.0002 | 9.62 | 20440 | 0.0032 |
| 0.0001 | 9.62 | 20450 | 0.0032 |
| 0.0686 | 9.63 | 20460 | 0.0032 |
| 0.0658 | 9.63 | 20470 | 0.0032 |
| 0.0008 | 9.64 | 20480 | 0.0032 |
| 0.1567 | 9.64 | 20490 | 0.0030 |
| 0.0973 | 9.65 | 20500 | 0.0026 |
| 0.0001 | 9.65 | 20510 | 0.0025 |
| 0.0747 | 9.66 | 20520 | 0.0025 |
| 0.0005 | 9.66 | 20530 | 0.0025 |
| 0.0703 | 9.67 | 20540 | 0.0026 |
| 0.0001 | 9.67 | 20550 | 0.0026 |
| 0.0344 | 9.68 | 20560 | 0.0026 |
| 0.0678 | 9.68 | 20570 | 0.0027 |
| 0.0105 | 9.68 | 20580 | 0.0027 |
| 0.0 | 9.69 | 20590 | 0.0028 |
| 0.0001 | 9.69 | 20600 | 0.0028 |
| 0.0854 | 9.7 | 20610 | 0.0027 |
| 0.0001 | 9.7 | 20620 | 0.0027 |
| 0.0001 | 9.71 | 20630 | 0.0027 |
| 0.074 | 9.71 | 20640 | 0.0028 |
| 0.022 | 9.72 | 20650 | 0.0028 |
| 0.0001 | 9.72 | 20660 | 0.0029 |
| 0.0001 | 9.73 | 20670 | 0.0029 |
| 0.0003 | 9.73 | 20680 | 0.0030 |
| 0.0001 | 9.74 | 20690 | 0.0030 |
| 0.0701 | 9.74 | 20700 | 0.0030 |
| 0.0878 | 9.75 | 20710 | 0.0028 |
| 0.0 | 9.75 | 20720 | 0.0027 |
| 0.0001 | 9.76 | 20730 | 0.0027 |
| 0.0003 | 9.76 | 20740 | 0.0028 |
| 0.0002 | 9.76 | 20750 | 0.0029 |
| 0.001 | 9.77 | 20760 | 0.0029 |
| 0.0 | 9.77 | 20770 | 0.0029 |
| 0.0137 | 9.78 | 20780 | 0.0028 |
| 0.0003 | 9.78 | 20790 | 0.0028 |
| 0.2638 | 9.79 | 20800 | 0.0028 |
| 0.0112 | 9.79 | 20810 | 0.0026 |
| 0.0001 | 9.8 | 20820 | 0.0025 |
| 0.0001 | 9.8 | 20830 | 0.0025 |
| 0.0004 | 9.81 | 20840 | 0.0025 |
| 0.092 | 9.81 | 20850 | 0.0024 |
| 0.0003 | 9.82 | 20860 | 0.0024 |
| 0.0795 | 9.82 | 20870 | 0.0024 |
| 0.0 | 9.83 | 20880 | 0.0042 |
| 0.0767 | 9.83 | 20890 | 0.0043 |
| 0.0 | 9.84 | 20900 | 0.0043 |
| 0.0004 | 9.84 | 20910 | 0.0043 |
| 0.0001 | 9.84 | 20920 | 0.0043 |
| 0.0809 | 9.85 | 20930 | 0.0044 |
| 0.0002 | 9.85 | 20940 | 0.0044 |
| 0.0333 | 9.86 | 20950 | 0.0043 |
| 0.1653 | 9.86 | 20960 | 0.0042 |
| 0.0 | 9.87 | 20970 | 0.0042 |
| 0.0141 | 9.87 | 20980 | 0.0042 |
| 0.0 | 9.88 | 20990 | 0.0042 |
| 0.0006 | 9.88 | 21000 | 0.0044 |
| 0.0381 | 9.89 | 21010 | 0.0045 |
| 0.0 | 9.89 | 21020 | 0.0045 |
| 0.0372 | 9.9 | 21030 | 0.0046 |
| 0.0 | 9.9 | 21040 | 0.0046 |
| 0.1523 | 9.91 | 21050 | 0.0045 |
| 0.0062 | 9.91 | 21060 | 0.0045 |
| 0.0928 | 9.92 | 21070 | 0.0045 |
| 0.0674 | 9.92 | 21080 | 0.0043 |
| 0.0 | 9.92 | 21090 | 0.0042 |
| 0.0748 | 9.93 | 21100 | 0.0041 |
| 0.0001 | 9.93 | 21110 | 0.0041 |
| 0.0001 | 9.94 | 21120 | 0.0041 |
| 0.1564 | 9.94 | 21130 | 0.0041 |
| 0.0 | 9.95 | 21140 | 0.0041 |
| 0.0361 | 9.95 | 21150 | 0.0041 |
| 0.0001 | 9.96 | 21160 | 0.0041 |
| 0.0012 | 9.96 | 21170 | 0.0041 |
| 0.036 | 9.97 | 21180 | 0.0042 |
| 0.0221 | 9.97 | 21190 | 0.0042 |
| 0.0722 | 9.98 | 21200 | 0.0041 |
| 0.0002 | 9.98 | 21210 | 0.0041 |
| 0.1203 | 9.99 | 21220 | 0.0040 |
| 0.0004 | 9.99 | 21230 | 0.0040 |
| 0.0045 | 10.0 | 21240 | 0.0040 |
| 0.1223 | 10.0 | 21250 | 0.0039 |
| 0.0001 | 10.0 | 21260 | 0.0039 |
| 0.0734 | 10.01 | 21270 | 0.0039 |
| 0.0001 | 10.01 | 21280 | 0.0039 |
| 0.0001 | 10.02 | 21290 | 0.0039 |
| 0.0091 | 10.02 | 21300 | 0.0040 |
| 0.0004 | 10.03 | 21310 | 0.0040 |
| 0.0761 | 10.03 | 21320 | 0.0039 |
| 0.2287 | 10.04 | 21330 | 0.0037 |
| 0.0005 | 10.04 | 21340 | 0.0037 |
| 0.0318 | 10.05 | 21350 | 0.0038 |
| 0.0 | 10.05 | 21360 | 0.0038 |
| 0.0001 | 10.06 | 21370 | 0.0038 |
| 0.0004 | 10.06 | 21380 | 0.0038 |
| 0.0 | 10.07 | 21390 | 0.0038 |
| 0.0162 | 10.07 | 21400 | 0.0038 |
| 0.0008 | 10.08 | 21410 | 0.0039 |
| 0.0 | 10.08 | 21420 | 0.0040 |
| 0.0 | 10.08 | 21430 | 0.0040 |
| 0.057 | 10.09 | 21440 | 0.0037 |
| 0.0365 | 10.09 | 21450 | 0.0034 |
| 0.0 | 10.1 | 21460 | 0.0031 |
| 0.0019 | 10.1 | 21470 | 0.0030 |
| 0.0 | 10.11 | 21480 | 0.0031 |
| 0.0044 | 10.11 | 21490 | 0.0031 |
| 0.0001 | 10.12 | 21500 | 0.0032 |
| 0.0 | 10.12 | 21510 | 0.0032 |
| 0.1701 | 10.13 | 21520 | 0.0032 |
| 0.0002 | 10.13 | 21530 | 0.0032 |
| 0.0001 | 10.14 | 21540 | 0.0033 |
| 0.0012 | 10.14 | 21550 | 0.0033 |
| 0.0024 | 10.15 | 21560 | 0.0033 |
| 0.047 | 10.15 | 21570 | 0.0031 |
| 0.0002 | 10.16 | 21580 | 0.0031 |
| 0.0004 | 10.16 | 21590 | 0.0031 |
| 0.0049 | 10.16 | 21600 | 0.0031 |
| 0.0001 | 10.17 | 21610 | 0.0031 |
| 0.0001 | 10.17 | 21620 | 0.0032 |
| 0.0001 | 10.18 | 21630 | 0.0032 |
| 0.007 | 10.18 | 21640 | 0.0032 |
| 0.0 | 10.19 | 21650 | 0.0032 |
| 0.0 | 10.19 | 21660 | 0.0032 |
| 0.0132 | 10.2 | 21670 | 0.0032 |
| 0.0744 | 10.2 | 21680 | 0.0031 |
| 0.0001 | 10.21 | 21690 | 0.0031 |
| 0.0863 | 10.21 | 21700 | 0.0031 |
| 0.0001 | 10.22 | 21710 | 0.0030 |
| 0.0001 | 10.22 | 21720 | 0.0030 |
| 0.074 | 10.23 | 21730 | 0.0030 |
| 0.0001 | 10.23 | 21740 | 0.0030 |
| 0.0001 | 10.24 | 21750 | 0.0030 |
| 0.0004 | 10.24 | 21760 | 0.0030 |
| 0.035 | 10.24 | 21770 | 0.0030 |
| 0.0011 | 10.25 | 21780 | 0.0031 |
| 0.0005 | 10.25 | 21790 | 0.0031 |
| 0.0001 | 10.26 | 21800 | 0.0031 |
| 0.0779 | 10.26 | 21810 | 0.0031 |
| 0.0499 | 10.27 | 21820 | 0.0031 |
| 0.0013 | 10.27 | 21830 | 0.0031 |
| 0.1404 | 10.28 | 21840 | 0.0030 |
| 0.0001 | 10.28 | 21850 | 0.0030 |
| 0.0002 | 10.29 | 21860 | 0.0030 |
| 0.1122 | 10.29 | 21870 | 0.0030 |
| 0.0001 | 10.3 | 21880 | 0.0030 |
| 0.004 | 10.3 | 21890 | 0.0030 |
| 0.0002 | 10.31 | 21900 | 0.0030 |
| 0.0001 | 10.31 | 21910 | 0.0030 |
| 0.0001 | 10.32 | 21920 | 0.0030 |
| 0.0001 | 10.32 | 21930 | 0.0030 |
| 0.0 | 10.32 | 21940 | 0.0030 |
| 0.0 | 10.33 | 21950 | 0.0030 |
| 0.0 | 10.33 | 21960 | 0.0031 |
| 0.0005 | 10.34 | 21970 | 0.0031 |
| 0.0711 | 10.34 | 21980 | 0.0031 |
| 0.0013 | 10.35 | 21990 | 0.0032 |
| 0.0 | 10.35 | 22000 | 0.0032 |
| 0.0385 | 10.36 | 22010 | 0.0032 |
| 0.0 | 10.36 | 22020 | 0.0031 |
| 0.0 | 10.37 | 22030 | 0.0031 |
| 0.003 | 10.37 | 22040 | 0.0032 |
| 0.0777 | 10.38 | 22050 | 0.0032 |
| 0.0065 | 10.38 | 22060 | 0.0050 |
| 0.0011 | 10.39 | 22070 | 0.0050 |
| 0.0002 | 10.39 | 22080 | 0.0049 |
| 0.0761 | 10.4 | 22090 | 0.0049 |
| 0.0003 | 10.4 | 22100 | 0.0050 |
| 0.0813 | 10.4 | 22110 | 0.0050 |
| 0.0 | 10.41 | 22120 | 0.0048 |
| 0.0001 | 10.41 | 22130 | 0.0048 |
| 0.0001 | 10.42 | 22140 | 0.0048 |
| 0.0876 | 10.42 | 22150 | 0.0047 |
| 0.0014 | 10.43 | 22160 | 0.0047 |
| 0.0 | 10.43 | 22170 | 0.0047 |
| 0.0001 | 10.44 | 22180 | 0.0047 |
| 0.0008 | 10.44 | 22190 | 0.0047 |
| 0.0 | 10.45 | 22200 | 0.0047 |
| 0.0001 | 10.45 | 22210 | 0.0047 |
| 0.0001 | 10.46 | 22220 | 0.0047 |
| 0.0 | 10.46 | 22230 | 0.0048 |
| 0.0 | 10.47 | 22240 | 0.0048 |
| 0.0055 | 10.47 | 22250 | 0.0048 |
| 0.0003 | 10.48 | 22260 | 0.0048 |
| 0.0 | 10.48 | 22270 | 0.0049 |
| 0.0001 | 10.48 | 22280 | 0.0049 |
| 0.0123 | 10.49 | 22290 | 0.0049 |
| 0.0 | 10.49 | 22300 | 0.0049 |
| 0.2534 | 10.5 | 22310 | 0.0047 |
| 0.0001 | 10.5 | 22320 | 0.0046 |
| 0.0373 | 10.51 | 22330 | 0.0046 |
| 0.0003 | 10.51 | 22340 | 0.0046 |
| 0.0538 | 10.52 | 22350 | 0.0046 |
| 0.0001 | 10.52 | 22360 | 0.0045 |
| 0.0414 | 10.53 | 22370 | 0.0044 |
| 0.0003 | 10.53 | 22380 | 0.0044 |
| 0.0003 | 10.54 | 22390 | 0.0044 |
| 0.0032 | 10.54 | 22400 | 0.0044 |
| 0.0004 | 10.55 | 22410 | 0.0044 |
| 0.0 | 10.55 | 22420 | 0.0045 |
| 0.0359 | 10.56 | 22430 | 0.0047 |
| 0.0 | 10.56 | 22440 | 0.0047 |
| 0.0276 | 10.56 | 22450 | 0.0047 |
| 0.0009 | 10.57 | 22460 | 0.0047 |
| 0.004 | 10.57 | 22470 | 0.0047 |
| 0.0466 | 10.58 | 22480 | 0.0047 |
| 0.0003 | 10.58 | 22490 | 0.0046 |
| 0.0004 | 10.59 | 22500 | 0.0046 |
| 0.0 | 10.59 | 22510 | 0.0046 |
| 0.0332 | 10.6 | 22520 | 0.0046 |
| 0.0001 | 10.6 | 22530 | 0.0047 |
| 0.0001 | 10.61 | 22540 | 0.0047 |
| 0.0055 | 10.61 | 22550 | 0.0047 |
| 0.0006 | 10.62 | 22560 | 0.0048 |
| 0.0 | 10.62 | 22570 | 0.0048 |
| 0.0 | 10.63 | 22580 | 0.0048 |
| 0.0005 | 10.63 | 22590 | 0.0049 |
| 0.0642 | 10.64 | 22600 | 0.0048 |
| 0.0002 | 10.64 | 22610 | 0.0048 |
| 0.0 | 10.64 | 22620 | 0.0048 |
| 0.0001 | 10.65 | 22630 | 0.0049 |
| 0.0038 | 10.65 | 22640 | 0.0049 |
| 0.0201 | 10.66 | 22650 | 0.0049 |
| 0.0011 | 10.66 | 22660 | 0.0049 |
| 0.027 | 10.67 | 22670 | 0.0049 |
| 0.0001 | 10.67 | 22680 | 0.0049 |
| 0.0 | 10.68 | 22690 | 0.0049 |
| 0.0 | 10.68 | 22700 | 0.0050 |
| 0.0 | 10.69 | 22710 | 0.0050 |
| 0.0 | 10.69 | 22720 | 0.0050 |
| 0.0 | 10.7 | 22730 | 0.0050 |
| 0.0001 | 10.7 | 22740 | 0.0050 |
| 0.0001 | 10.71 | 22750 | 0.0050 |
| 0.0114 | 10.71 | 22760 | 0.0050 |
| 0.0001 | 10.72 | 22770 | 0.0050 |
| 0.0 | 10.72 | 22780 | 0.0050 |
| 0.033 | 10.72 | 22790 | 0.0050 |
| 0.0002 | 10.73 | 22800 | 0.0051 |
| 0.0 | 10.73 | 22810 | 0.0051 |
| 0.0 | 10.74 | 22820 | 0.0052 |
| 0.0001 | 10.74 | 22830 | 0.0052 |
| 0.0001 | 10.75 | 22840 | 0.0052 |
| 0.0001 | 10.75 | 22850 | 0.0052 |
| 0.0 | 10.76 | 22860 | 0.0052 |
| 0.0679 | 10.76 | 22870 | 0.0052 |
| 0.0001 | 10.77 | 22880 | 0.0035 |
| 0.0 | 10.77 | 22890 | 0.0036 |
| 0.0024 | 10.78 | 22900 | 0.0036 |
| 0.0363 | 10.78 | 22910 | 0.0036 |
| 0.0001 | 10.79 | 22920 | 0.0037 |
| 0.0 | 10.79 | 22930 | 0.0037 |
| 0.0131 | 10.8 | 22940 | 0.0037 |
| 0.0033 | 10.8 | 22950 | 0.0036 |
| 0.0001 | 10.8 | 22960 | 0.0036 |
| 0.0006 | 10.81 | 22970 | 0.0036 |
| 0.0684 | 10.81 | 22980 | 0.0036 |
| 0.0 | 10.82 | 22990 | 0.0036 |
| 0.0003 | 10.82 | 23000 | 0.0036 |
| 0.0001 | 10.83 | 23010 | 0.0036 |
| 0.0 | 10.83 | 23020 | 0.0036 |
| 0.0725 | 10.84 | 23030 | 0.0036 |
| 0.0 | 10.84 | 23040 | 0.0053 |
| 0.0002 | 10.85 | 23050 | 0.0053 |
| 0.0001 | 10.85 | 23060 | 0.0053 |
| 0.0001 | 10.86 | 23070 | 0.0053 |
| 0.0 | 10.86 | 23080 | 0.0054 |
| 0.0475 | 10.87 | 23090 | 0.0053 |
| 0.0012 | 10.87 | 23100 | 0.0053 |
| 0.0 | 10.88 | 23110 | 0.0052 |
| 0.0003 | 10.88 | 23120 | 0.0053 |
| 0.0007 | 10.88 | 23130 | 0.0054 |
| 0.0001 | 10.89 | 23140 | 0.0054 |
| 0.0022 | 10.89 | 23150 | 0.0054 |
| 0.0 | 10.9 | 23160 | 0.0054 |
| 0.0 | 10.9 | 23170 | 0.0053 |
| 0.0713 | 10.91 | 23180 | 0.0054 |
| 0.0001 | 10.91 | 23190 | 0.0054 |
| 0.0162 | 10.92 | 23200 | 0.0055 |
| 0.0056 | 10.92 | 23210 | 0.0056 |
| 0.0 | 10.93 | 23220 | 0.0056 |
| 0.0542 | 10.93 | 23230 | 0.0055 |
| 0.1384 | 10.94 | 23240 | 0.0036 |
| 0.0032 | 10.94 | 23250 | 0.0035 |
| 0.0 | 10.95 | 23260 | 0.0034 |
| 0.0 | 10.95 | 23270 | 0.0034 |
| 0.0001 | 10.96 | 23280 | 0.0034 |
| 0.0001 | 10.96 | 23290 | 0.0034 |
| 0.0 | 10.96 | 23300 | 0.0034 |
| 0.0002 | 10.97 | 23310 | 0.0034 |
| 0.0001 | 10.97 | 23320 | 0.0033 |
| 0.0 | 10.98 | 23330 | 0.0033 |
| 0.0001 | 10.98 | 23340 | 0.0033 |
| 0.0 | 10.99 | 23350 | 0.0034 |
| 0.0723 | 10.99 | 23360 | 0.0034 |
| 0.0001 | 11.0 | 23370 | 0.0034 |
| 0.0047 | 11.0 | 23380 | 0.0051 |
| 0.0491 | 11.01 | 23390 | 0.0051 |
| 0.0607 | 11.01 | 23400 | 0.0050 |
| 0.0 | 11.02 | 23410 | 0.0050 |
| 0.0012 | 11.02 | 23420 | 0.0049 |
| 0.018 | 11.03 | 23430 | 0.0031 |
| 0.0 | 11.03 | 23440 | 0.0031 |
| 0.0 | 11.04 | 23450 | 0.0031 |
| 0.0 | 11.04 | 23460 | 0.0031 |
| 0.0003 | 11.04 | 23470 | 0.0031 |
| 0.0 | 11.05 | 23480 | 0.0032 |
| 0.0001 | 11.05 | 23490 | 0.0032 |
| 0.0001 | 11.06 | 23500 | 0.0032 |
| 0.0002 | 11.06 | 23510 | 0.0032 |
| 0.0112 | 11.07 | 23520 | 0.0032 |
| 0.0353 | 11.07 | 23530 | 0.0032 |
| 0.0 | 11.08 | 23540 | 0.0032 |
| 0.0176 | 11.08 | 23550 | 0.0032 |
| 0.0 | 11.09 | 23560 | 0.0032 |
| 0.1067 | 11.09 | 23570 | 0.0031 |
| 0.073 | 11.1 | 23580 | 0.0030 |
| 0.0026 | 11.1 | 23590 | 0.0030 |
| 0.0001 | 11.11 | 23600 | 0.0030 |
| 0.0002 | 11.11 | 23610 | 0.0030 |
| 0.0004 | 11.12 | 23620 | 0.0032 |
| 0.0001 | 11.12 | 23630 | 0.0033 |
| 0.0001 | 11.12 | 23640 | 0.0034 |
| 0.0353 | 11.13 | 23650 | 0.0034 |
| 0.0062 | 11.13 | 23660 | 0.0033 |
| 0.0 | 11.14 | 23670 | 0.0032 |
| 0.0001 | 11.14 | 23680 | 0.0032 |
| 0.0275 | 11.15 | 23690 | 0.0029 |
| 0.0809 | 11.15 | 23700 | 0.0028 |
| 0.0001 | 11.16 | 23710 | 0.0030 |
| 0.0001 | 11.16 | 23720 | 0.0030 |
| 0.0001 | 11.17 | 23730 | 0.0048 |
| 0.0 | 11.17 | 23740 | 0.0049 |
| 0.0 | 11.18 | 23750 | 0.0049 |
| 0.0001 | 11.18 | 23760 | 0.0049 |
| 0.0 | 11.19 | 23770 | 0.0049 |
| 0.0004 | 11.19 | 23780 | 0.0049 |
| 0.0 | 11.2 | 23790 | 0.0032 |
| 0.0005 | 11.2 | 23800 | 0.0049 |
| 0.0247 | 11.2 | 23810 | 0.0032 |
| 0.0 | 11.21 | 23820 | 0.0032 |
| 0.0 | 11.21 | 23830 | 0.0032 |
| 0.0 | 11.22 | 23840 | 0.0032 |
| 0.0033 | 11.22 | 23850 | 0.0032 |
| 0.0 | 11.23 | 23860 | 0.0032 |
| 0.0716 | 11.23 | 23870 | 0.0031 |
| 0.0006 | 11.24 | 23880 | 0.0031 |
| 0.0 | 11.24 | 23890 | 0.0031 |
| 0.0 | 11.25 | 23900 | 0.0031 |
| 0.072 | 11.25 | 23910 | 0.0028 |
| 0.0 | 11.26 | 23920 | 0.0025 |
| 0.0019 | 11.26 | 23930 | 0.0023 |
| 0.0 | 11.27 | 23940 | 0.0023 |
| 0.0008 | 11.27 | 23950 | 0.0023 |
| 0.0725 | 11.28 | 23960 | 0.0023 |
| 0.0003 | 11.28 | 23970 | 0.0023 |
| 0.0004 | 11.28 | 23980 | 0.0023 |
| 0.0002 | 11.29 | 23990 | 0.0024 |
| 0.0002 | 11.29 | 24000 | 0.0024 |
| 0.0979 | 11.3 | 24010 | 0.0025 |
| 0.0001 | 11.3 | 24020 | 0.0026 |
| 0.0001 | 11.31 | 24030 | 0.0026 |
| 0.0002 | 11.31 | 24040 | 0.0026 |
| 0.0 | 11.32 | 24050 | 0.0027 |
| 0.1879 | 11.32 | 24060 | 0.0026 |
| 0.0 | 11.33 | 24070 | 0.0025 |
| 0.0004 | 11.33 | 24080 | 0.0025 |
| 0.0012 | 11.34 | 24090 | 0.0024 |
| 0.0001 | 11.34 | 24100 | 0.0024 |
| 0.0 | 11.35 | 24110 | 0.0024 |
| 0.0051 | 11.35 | 24120 | 0.0025 |
| 0.0003 | 11.36 | 24130 | 0.0025 |
| 0.0 | 11.36 | 24140 | 0.0025 |
| 0.0 | 11.36 | 24150 | 0.0026 |
| 0.0 | 11.37 | 24160 | 0.0026 |
| 0.0 | 11.37 | 24170 | 0.0026 |
| 0.0001 | 11.38 | 24180 | 0.0026 |
| 0.0001 | 11.38 | 24190 | 0.0026 |
| 0.0 | 11.39 | 24200 | 0.0026 |
| 0.1551 | 11.39 | 24210 | 0.0025 |
| 0.0208 | 11.4 | 24220 | 0.0025 |
| 0.0012 | 11.4 | 24230 | 0.0025 |
| 0.0013 | 11.41 | 24240 | 0.0026 |
| 0.0 | 11.41 | 24250 | 0.0026 |
| 0.0 | 11.42 | 24260 | 0.0026 |
| 0.0001 | 11.42 | 24270 | 0.0026 |
| 0.0 | 11.43 | 24280 | 0.0026 |
| 0.0762 | 11.43 | 24290 | 0.0026 |
| 0.0742 | 11.44 | 24300 | 0.0025 |
| 0.0001 | 11.44 | 24310 | 0.0025 |
| 0.0023 | 11.44 | 24320 | 0.0025 |
| 0.0 | 11.45 | 24330 | 0.0025 |
| 0.008 | 11.45 | 24340 | 0.0025 |
| 0.0 | 11.46 | 24350 | 0.0025 |
| 0.0178 | 11.46 | 24360 | 0.0025 |
| 0.0001 | 11.47 | 24370 | 0.0025 |
| 0.0408 | 11.47 | 24380 | 0.0025 |
| 0.0 | 11.48 | 24390 | 0.0025 |
| 0.0387 | 11.48 | 24400 | 0.0025 |
| 0.0412 | 11.49 | 24410 | 0.0025 |
| 0.0 | 11.49 | 24420 | 0.0025 |
| 0.0001 | 11.5 | 24430 | 0.0025 |
| 0.0001 | 11.5 | 24440 | 0.0025 |
| 0.0001 | 11.51 | 24450 | 0.0025 |
| 0.0001 | 11.51 | 24460 | 0.0025 |
| 0.0598 | 11.52 | 24470 | 0.0024 |
| 0.0004 | 11.52 | 24480 | 0.0024 |
| 0.0001 | 11.52 | 24490 | 0.0024 |
| 0.0251 | 11.53 | 24500 | 0.0024 |
| 0.0009 | 11.53 | 24510 | 0.0032 |
| 0.0028 | 11.54 | 24520 | 0.0032 |
| 0.1783 | 11.54 | 24530 | 0.0032 |
| 0.0473 | 11.55 | 24540 | 0.0032 |
| 0.0 | 11.55 | 24550 | 0.0032 |
| 0.0072 | 11.56 | 24560 | 0.0031 |
| 0.0736 | 11.56 | 24570 | 0.0048 |
| 0.0012 | 11.57 | 24580 | 0.0048 |
| 0.1372 | 11.57 | 24590 | 0.0048 |
| 0.0001 | 11.58 | 24600 | 0.0048 |
| 0.0001 | 11.58 | 24610 | 0.0048 |
| 0.0001 | 11.59 | 24620 | 0.0048 |
| 0.0001 | 11.59 | 24630 | 0.0048 |
| 0.0002 | 11.6 | 24640 | 0.0048 |
| 0.0011 | 11.6 | 24650 | 0.0048 |
| 0.0001 | 11.6 | 24660 | 0.0049 |
| 0.0197 | 11.61 | 24670 | 0.0049 |
| 0.0001 | 11.61 | 24680 | 0.0049 |
| 0.0391 | 11.62 | 24690 | 0.0049 |
| 0.0047 | 11.62 | 24700 | 0.0049 |
| 0.0001 | 11.63 | 24710 | 0.0049 |
| 0.0226 | 11.63 | 24720 | 0.0049 |
| 0.0001 | 11.64 | 24730 | 0.0050 |
| 0.0 | 11.64 | 24740 | 0.0050 |
| 0.0378 | 11.65 | 24750 | 0.0050 |
| 0.0044 | 11.65 | 24760 | 0.0050 |
| 0.0001 | 11.66 | 24770 | 0.0050 |
| 0.0 | 11.66 | 24780 | 0.0050 |
| 0.0002 | 11.67 | 24790 | 0.0050 |
| 0.0209 | 11.67 | 24800 | 0.0050 |
| 0.0005 | 11.68 | 24810 | 0.0051 |
| 0.0001 | 11.68 | 24820 | 0.0051 |
| 0.0357 | 11.68 | 24830 | 0.0051 |
| 0.0873 | 11.69 | 24840 | 0.0050 |
| 0.0002 | 11.69 | 24850 | 0.0050 |
| 0.0001 | 11.7 | 24860 | 0.0050 |
| 0.0005 | 11.7 | 24870 | 0.0050 |
| 0.0003 | 11.71 | 24880 | 0.0050 |
| 0.0002 | 11.71 | 24890 | 0.0050 |
| 0.0002 | 11.72 | 24900 | 0.0050 |
| 0.0 | 11.72 | 24910 | 0.0050 |
| 0.0001 | 11.73 | 24920 | 0.0050 |
| 0.0002 | 11.73 | 24930 | 0.0050 |
| 0.0 | 11.74 | 24940 | 0.0041 |
| 0.002 | 11.74 | 24950 | 0.0041 |
| 0.0032 | 11.75 | 24960 | 0.0050 |
| 0.0736 | 11.75 | 24970 | 0.0050 |
| 0.0001 | 11.76 | 24980 | 0.0050 |
| 0.0 | 11.76 | 24990 | 0.0050 |
| 0.0 | 11.76 | 25000 | 0.0050 |
| 0.0 | 11.77 | 25010 | 0.0050 |
| 0.0656 | 11.77 | 25020 | 0.0050 |
| 0.1332 | 11.78 | 25030 | 0.0050 |
| 0.0001 | 11.78 | 25040 | 0.0050 |
| 0.0002 | 11.79 | 25050 | 0.0050 |
| 0.0 | 11.79 | 25060 | 0.0050 |
| 0.0 | 11.8 | 25070 | 0.0050 |
| 0.0 | 11.8 | 25080 | 0.0050 |
| 0.0981 | 11.81 | 25090 | 0.0050 |
| 0.0 | 11.81 | 25100 | 0.0050 |
| 0.0001 | 11.82 | 25110 | 0.0050 |
| 0.0004 | 11.82 | 25120 | 0.0050 |
| 0.0001 | 11.83 | 25130 | 0.0050 |
| 0.0001 | 11.83 | 25140 | 0.0050 |
| 0.0 | 11.84 | 25150 | 0.0050 |
| 0.0303 | 11.84 | 25160 | 0.0033 |
| 0.0008 | 11.84 | 25170 | 0.0033 |
| 0.0 | 11.85 | 25180 | 0.0051 |
| 0.0923 | 11.85 | 25190 | 0.0050 |
| 0.0001 | 11.86 | 25200 | 0.0050 |
| 0.0824 | 11.86 | 25210 | 0.0050 |
| 0.0 | 11.87 | 25220 | 0.0050 |
| 0.003 | 11.87 | 25230 | 0.0050 |
| 0.0 | 11.88 | 25240 | 0.0032 |
| 0.0001 | 11.88 | 25250 | 0.0032 |
| 0.0 | 11.89 | 25260 | 0.0032 |
| 0.0786 | 11.89 | 25270 | 0.0032 |
| 0.0 | 11.9 | 25280 | 0.0050 |
| 0.0 | 11.9 | 25290 | 0.0050 |
| 0.0001 | 11.91 | 25300 | 0.0050 |
| 0.0 | 11.91 | 25310 | 0.0050 |
| 0.0001 | 11.92 | 25320 | 0.0050 |
| 0.0 | 11.92 | 25330 | 0.0050 |
| 0.0 | 11.92 | 25340 | 0.0050 |
| 0.0 | 11.93 | 25350 | 0.0050 |
| 0.0 | 11.93 | 25360 | 0.0050 |
| 0.0003 | 11.94 | 25370 | 0.0050 |
| 0.0 | 11.94 | 25380 | 0.0050 |
| 0.0013 | 11.95 | 25390 | 0.0033 |
| 0.099 | 11.95 | 25400 | 0.0033 |
| 0.0 | 11.96 | 25410 | 0.0033 |
| 0.0145 | 11.96 | 25420 | 0.0050 |
| 0.0012 | 11.97 | 25430 | 0.0050 |
| 0.0 | 11.97 | 25440 | 0.0050 |
| 0.0 | 11.98 | 25450 | 0.0050 |
| 0.0024 | 11.98 | 25460 | 0.0050 |
| 0.0522 | 11.99 | 25470 | 0.0041 |
| 0.0004 | 11.99 | 25480 | 0.0041 |
| 0.0 | 12.0 | 25490 | 0.0041 |
| 0.0377 | 12.0 | 25500 | 0.0041 |
| 0.0002 | 12.0 | 25510 | 0.0024 |
| 0.0009 | 12.01 | 25520 | 0.0024 |
| 0.0281 | 12.01 | 25530 | 0.0023 |
| 0.0 | 12.02 | 25540 | 0.0023 |
| 0.088 | 12.02 | 25550 | 0.0023 |
| 0.017 | 12.03 | 25560 | 0.0023 |
| 0.0721 | 12.03 | 25570 | 0.0023 |
| 0.0271 | 12.04 | 25580 | 0.0022 |
| 0.0008 | 12.04 | 25590 | 0.0023 |
| 0.0208 | 12.05 | 25600 | 0.0023 |
| 0.0001 | 12.05 | 25610 | 0.0023 |
| 0.0 | 12.06 | 25620 | 0.0023 |
| 0.0002 | 12.06 | 25630 | 0.0023 |
| 0.0003 | 12.07 | 25640 | 0.0023 |
| 0.2283 | 12.07 | 25650 | 0.0022 |
| 0.0007 | 12.08 | 25660 | 0.0021 |
| 0.0464 | 12.08 | 25670 | 0.0021 |
| 0.0001 | 12.08 | 25680 | 0.0021 |
| 0.0012 | 12.09 | 25690 | 0.0021 |
| 0.0 | 12.09 | 25700 | 0.0021 |
| 0.0002 | 12.1 | 25710 | 0.0021 |
| 0.0336 | 12.1 | 25720 | 0.0021 |
| 0.001 | 12.11 | 25730 | 0.0021 |
| 0.0001 | 12.11 | 25740 | 0.0022 |
| 0.0 | 12.12 | 25750 | 0.0022 |
| 0.0 | 12.12 | 25760 | 0.0022 |
| 0.0264 | 12.13 | 25770 | 0.0022 |
| 0.1619 | 12.13 | 25780 | 0.0039 |
| 0.0212 | 12.14 | 25790 | 0.0038 |
| 0.0 | 12.14 | 25800 | 0.0038 |
| 0.0003 | 12.15 | 25810 | 0.0038 |
| 0.0005 | 12.15 | 25820 | 0.0039 |
| 0.0002 | 12.16 | 25830 | 0.0039 |
| 0.0001 | 12.16 | 25840 | 0.0040 |
| 0.0001 | 12.16 | 25850 | 0.0040 |
| 0.0004 | 12.17 | 25860 | 0.0040 |
| 0.0 | 12.17 | 25870 | 0.0040 |
| 0.0002 | 12.18 | 25880 | 0.0040 |
| 0.0001 | 12.18 | 25890 | 0.0041 |
| 0.002 | 12.19 | 25900 | 0.0040 |
| 0.0 | 12.19 | 25910 | 0.0040 |
| 0.0001 | 12.2 | 25920 | 0.0040 |
| 0.0825 | 12.2 | 25930 | 0.0040 |
| 0.0932 | 12.21 | 25940 | 0.0039 |
| 0.0001 | 12.21 | 25950 | 0.0039 |
| 0.0008 | 12.22 | 25960 | 0.0039 |
| 0.0001 | 12.22 | 25970 | 0.0039 |
| 0.0026 | 12.23 | 25980 | 0.0039 |
| 0.0 | 12.23 | 25990 | 0.0039 |
| 0.0004 | 12.24 | 26000 | 0.0040 |
| 0.0001 | 12.24 | 26010 | 0.0041 |
| 0.0681 | 12.24 | 26020 | 0.0041 |
| 0.0 | 12.25 | 26030 | 0.0041 |
| 0.0001 | 12.25 | 26040 | 0.0041 |
| 0.0741 | 12.26 | 26050 | 0.0041 |
| 0.0001 | 12.26 | 26060 | 0.0041 |
| 0.0701 | 12.27 | 26070 | 0.0041 |
| 0.0001 | 12.27 | 26080 | 0.0041 |
| 0.0001 | 12.28 | 26090 | 0.0041 |
| 0.0033 | 12.28 | 26100 | 0.0041 |
| 0.0712 | 12.29 | 26110 | 0.0041 |
| 0.0 | 12.29 | 26120 | 0.0040 |
| 0.0007 | 12.3 | 26130 | 0.0040 |
| 0.0002 | 12.3 | 26140 | 0.0040 |
| 0.0704 | 12.31 | 26150 | 0.0041 |
| 0.0003 | 12.31 | 26160 | 0.0041 |
| 0.0 | 12.32 | 26170 | 0.0042 |
| 0.0 | 12.32 | 26180 | 0.0042 |
| 0.0007 | 12.32 | 26190 | 0.0042 |
| 0.0 | 12.33 | 26200 | 0.0041 |
| 0.0 | 12.33 | 26210 | 0.0041 |
| 0.0001 | 12.34 | 26220 | 0.0041 |
| 0.0 | 12.34 | 26230 | 0.0041 |
| 0.0001 | 12.35 | 26240 | 0.0041 |
| 0.0003 | 12.35 | 26250 | 0.0041 |
| 0.0003 | 12.36 | 26260 | 0.0041 |
| 0.0003 | 12.36 | 26270 | 0.0041 |
| 0.0001 | 12.37 | 26280 | 0.0041 |
| 0.0005 | 12.37 | 26290 | 0.0041 |
| 0.0 | 12.38 | 26300 | 0.0041 |
| 0.0001 | 12.38 | 26310 | 0.0041 |
| 0.0723 | 12.39 | 26320 | 0.0041 |
| 0.0008 | 12.39 | 26330 | 0.0041 |
| 0.0383 | 12.4 | 26340 | 0.0041 |
| 0.0001 | 12.4 | 26350 | 0.0042 |
| 0.0 | 12.4 | 26360 | 0.0042 |
| 0.0 | 12.41 | 26370 | 0.0042 |
| 0.1803 | 12.41 | 26380 | 0.0041 |
| 0.0705 | 12.42 | 26390 | 0.0039 |
| 0.0 | 12.42 | 26400 | 0.0039 |
| 0.0001 | 12.43 | 26410 | 0.0039 |
| 0.0 | 12.43 | 26420 | 0.0039 |
| 0.0726 | 12.44 | 26430 | 0.0046 |
| 0.0001 | 12.44 | 26440 | 0.0047 |
| 0.0006 | 12.45 | 26450 | 0.0046 |
| 0.0004 | 12.45 | 26460 | 0.0039 |
| 0.0001 | 12.46 | 26470 | 0.0039 |
| 0.0001 | 12.46 | 26480 | 0.0039 |
| 0.0022 | 12.47 | 26490 | 0.0039 |
| 0.0 | 12.47 | 26500 | 0.0039 |
| 0.0 | 12.48 | 26510 | 0.0039 |
| 0.0005 | 12.48 | 26520 | 0.0039 |
| 0.0907 | 12.48 | 26530 | 0.0039 |
| 0.0088 | 12.49 | 26540 | 0.0039 |
| 0.0 | 12.49 | 26550 | 0.0039 |
| 0.0002 | 12.5 | 26560 | 0.0039 |
| 0.0005 | 12.5 | 26570 | 0.0039 |
| 0.0448 | 12.51 | 26580 | 0.0039 |
| 0.0001 | 12.51 | 26590 | 0.0039 |
| 0.0014 | 12.52 | 26600 | 0.0040 |
| 0.0012 | 12.52 | 26610 | 0.0040 |
| 0.0 | 12.53 | 26620 | 0.0040 |
| 0.0003 | 12.53 | 26630 | 0.0049 |
| 0.0208 | 12.54 | 26640 | 0.0048 |
| 0.0001 | 12.54 | 26650 | 0.0048 |
| 0.0001 | 12.55 | 26660 | 0.0048 |
| 0.0 | 12.55 | 26670 | 0.0048 |
| 0.0 | 12.56 | 26680 | 0.0048 |
| 0.0082 | 12.56 | 26690 | 0.0048 |
| 0.0 | 12.56 | 26700 | 0.0048 |
| 0.0 | 12.57 | 26710 | 0.0048 |
| 0.0001 | 12.57 | 26720 | 0.0048 |
| 0.0 | 12.58 | 26730 | 0.0048 |
| 0.0 | 12.58 | 26740 | 0.0048 |
| 0.0457 | 12.59 | 26750 | 0.0048 |
| 0.0007 | 12.59 | 26760 | 0.0048 |
| 0.073 | 12.6 | 26770 | 0.0048 |
| 0.0001 | 12.6 | 26780 | 0.0048 |
| 0.0002 | 12.61 | 26790 | 0.0048 |
| 0.0 | 12.61 | 26800 | 0.0048 |
| 0.0001 | 12.62 | 26810 | 0.0048 |
| 0.0001 | 12.62 | 26820 | 0.0048 |
| 0.0 | 12.63 | 26830 | 0.0048 |
| 0.0368 | 12.63 | 26840 | 0.0048 |
| 0.0702 | 12.64 | 26850 | 0.0039 |
| 0.0 | 12.64 | 26860 | 0.0039 |
| 0.0292 | 12.64 | 26870 | 0.0039 |
| 0.0001 | 12.65 | 26880 | 0.0039 |
| 0.0 | 12.65 | 26890 | 0.0039 |
| 0.0 | 12.66 | 26900 | 0.0039 |
| 0.0985 | 12.66 | 26910 | 0.0039 |
| 0.0 | 12.67 | 26920 | 0.0021 |
| 0.0002 | 12.67 | 26930 | 0.0021 |
| 0.0004 | 12.68 | 26940 | 0.0021 |
| 0.0001 | 12.68 | 26950 | 0.0021 |
| 0.0008 | 12.69 | 26960 | 0.0021 |
| 0.0 | 12.69 | 26970 | 0.0021 |
| 0.0363 | 12.7 | 26980 | 0.0021 |
| 0.0 | 12.7 | 26990 | 0.0021 |
| 0.0 | 12.71 | 27000 | 0.0021 |
| 0.0694 | 12.71 | 27010 | 0.0021 |
| 0.0 | 12.72 | 27020 | 0.0021 |
| 0.0 | 12.72 | 27030 | 0.0021 |
| 0.1096 | 12.72 | 27040 | 0.0020 |
| 0.0006 | 12.73 | 27050 | 0.0021 |
| 0.0001 | 12.73 | 27060 | 0.0021 |
| 0.0002 | 12.74 | 27070 | 0.0021 |
| 0.0001 | 12.74 | 27080 | 0.0022 |
| 0.0 | 12.75 | 27090 | 0.0022 |
| 0.0007 | 12.75 | 27100 | 0.0021 |
| 0.042 | 12.76 | 27110 | 0.0021 |
| 0.0387 | 12.76 | 27120 | 0.0021 |
| 0.0 | 12.77 | 27130 | 0.0021 |
| 0.0017 | 12.77 | 27140 | 0.0021 |
| 0.0742 | 12.78 | 27150 | 0.0022 |
| 0.0695 | 12.78 | 27160 | 0.0022 |
| 0.0361 | 12.79 | 27170 | 0.0022 |
| 0.0 | 12.79 | 27180 | 0.0021 |
| 0.0001 | 12.8 | 27190 | 0.0021 |
| 0.0006 | 12.8 | 27200 | 0.0021 |
| 0.0001 | 12.8 | 27210 | 0.0021 |
| 0.0001 | 12.81 | 27220 | 0.0021 |
| 0.0 | 12.81 | 27230 | 0.0004 |
| 0.0 | 12.82 | 27240 | 0.0004 |
| 0.0 | 12.82 | 27250 | 0.0004 |
| 0.0002 | 12.83 | 27260 | 0.0004 |
| 0.1472 | 12.83 | 27270 | 0.0021 |
| 0.0003 | 12.84 | 27280 | 0.0020 |
| 0.0402 | 12.84 | 27290 | 0.0003 |
| 0.0001 | 12.85 | 27300 | 0.0003 |
| 0.0004 | 12.85 | 27310 | 0.0003 |
| 0.0001 | 12.86 | 27320 | 0.0003 |
| 0.0757 | 12.86 | 27330 | 0.0003 |
| 0.0 | 12.87 | 27340 | 0.0003 |
| 0.0001 | 12.87 | 27350 | 0.0003 |
| 0.0196 | 12.88 | 27360 | 0.0003 |
| 0.0001 | 12.88 | 27370 | 0.0003 |
| 0.0016 | 12.88 | 27380 | 0.0003 |
| 0.0 | 12.89 | 27390 | 0.0003 |
| 0.0001 | 12.89 | 27400 | 0.0003 |
| 0.0149 | 12.9 | 27410 | 0.0003 |
| 0.0018 | 12.9 | 27420 | 0.0004 |
| 0.0005 | 12.91 | 27430 | 0.0004 |
| 0.0 | 12.91 | 27440 | 0.0004 |
| 0.0 | 12.92 | 27450 | 0.0004 |
| 0.0 | 12.92 | 27460 | 0.0004 |
| 0.0 | 12.93 | 27470 | 0.0004 |
| 0.0009 | 12.93 | 27480 | 0.0004 |
| 0.0001 | 12.94 | 27490 | 0.0004 |
| 0.1069 | 12.94 | 27500 | 0.0004 |
| 0.0 | 12.95 | 27510 | 0.0004 |
| 0.0139 | 12.95 | 27520 | 0.0004 |
| 0.0 | 12.96 | 27530 | 0.0004 |
| 0.0082 | 12.96 | 27540 | 0.0004 |
| 0.0 | 12.96 | 27550 | 0.0004 |
| 0.1047 | 12.97 | 27560 | 0.0004 |
| 0.0 | 12.97 | 27570 | 0.0021 |
| 0.0003 | 12.98 | 27580 | 0.0021 |
| 0.0 | 12.98 | 27590 | 0.0021 |
| 0.001 | 12.99 | 27600 | 0.0021 |
| 0.06 | 12.99 | 27610 | 0.0021 |
| 0.0003 | 13.0 | 27620 | 0.0021 |
| 0.0 | 13.0 | 27630 | 0.0021 |
| 0.0001 | 13.01 | 27640 | 0.0021 |
| 0.0 | 13.01 | 27650 | 0.0021 |
| 0.0 | 13.02 | 27660 | 0.0021 |
| 0.0149 | 13.02 | 27670 | 0.0021 |
| 0.0003 | 13.03 | 27680 | 0.0021 |
| 0.1025 | 13.03 | 27690 | 0.0021 |
| 0.0001 | 13.04 | 27700 | 0.0021 |
| 0.0001 | 13.04 | 27710 | 0.0020 |
| 0.0 | 13.04 | 27720 | 0.0020 |
| 0.0001 | 13.05 | 27730 | 0.0020 |
| 0.0751 | 13.05 | 27740 | 0.0020 |
| 0.0021 | 13.06 | 27750 | 0.0020 |
| 0.0002 | 13.06 | 27760 | 0.0021 |
| 0.0862 | 13.07 | 27770 | 0.0021 |
| 0.0001 | 13.07 | 27780 | 0.0020 |
| 0.0001 | 13.08 | 27790 | 0.0020 |
| 0.0344 | 13.08 | 27800 | 0.0020 |
| 0.0353 | 13.09 | 27810 | 0.0020 |
| 0.0001 | 13.09 | 27820 | 0.0020 |
| 0.0048 | 13.1 | 27830 | 0.0020 |
| 0.0221 | 13.1 | 27840 | 0.0020 |
| 0.0001 | 13.11 | 27850 | 0.0020 |
| 0.0001 | 13.11 | 27860 | 0.0020 |
| 0.0002 | 13.12 | 27870 | 0.0020 |
| 0.0055 | 13.12 | 27880 | 0.0020 |
| 0.0001 | 13.12 | 27890 | 0.0020 |
| 0.0 | 13.13 | 27900 | 0.0020 |
| 0.0011 | 13.13 | 27910 | 0.0020 |
| 0.0815 | 13.14 | 27920 | 0.0020 |
| 0.0001 | 13.14 | 27930 | 0.0021 |
| 0.0138 | 13.15 | 27940 | 0.0021 |
| 0.0002 | 13.15 | 27950 | 0.0021 |
| 0.0 | 13.16 | 27960 | 0.0021 |
| 0.0 | 13.16 | 27970 | 0.0021 |
| 0.0 | 13.17 | 27980 | 0.0021 |
| 0.0001 | 13.17 | 27990 | 0.0021 |
| 0.0428 | 13.18 | 28000 | 0.0021 |
| 0.0 | 13.18 | 28010 | 0.0021 |
| 0.0 | 13.19 | 28020 | 0.0021 |
| 0.0 | 13.19 | 28030 | 0.0021 |
| 0.0004 | 13.2 | 28040 | 0.0022 |
| 0.0 | 13.2 | 28050 | 0.0022 |
| 0.0213 | 13.2 | 28060 | 0.0022 |
| 0.0123 | 13.21 | 28070 | 0.0022 |
| 0.0705 | 13.21 | 28080 | 0.0022 |
| 0.0002 | 13.22 | 28090 | 0.0022 |
| 0.0001 | 13.22 | 28100 | 0.0022 |
| 0.0 | 13.23 | 28110 | 0.0022 |
| 0.0003 | 13.23 | 28120 | 0.0022 |
| 0.0 | 13.24 | 28130 | 0.0022 |
| 0.0 | 13.24 | 28140 | 0.0005 |
| 0.0004 | 13.25 | 28150 | 0.0005 |
| 0.0001 | 13.25 | 28160 | 0.0005 |
| 0.0088 | 13.26 | 28170 | 0.0005 |
| 0.0001 | 13.26 | 28180 | 0.0004 |
| 0.0001 | 13.27 | 28190 | 0.0004 |
| 0.0281 | 13.27 | 28200 | 0.0004 |
| 0.0727 | 13.28 | 28210 | 0.0004 |
| 0.0001 | 13.28 | 28220 | 0.0004 |
| 0.0006 | 13.28 | 28230 | 0.0004 |
| 0.0001 | 13.29 | 28240 | 0.0005 |
| 0.0048 | 13.29 | 28250 | 0.0005 |
| 0.0 | 13.3 | 28260 | 0.0004 |
| 0.0 | 13.3 | 28270 | 0.0004 |
| 0.0051 | 13.31 | 28280 | 0.0004 |
| 0.0036 | 13.31 | 28290 | 0.0004 |
| 0.0 | 13.32 | 28300 | 0.0004 |
| 0.0005 | 13.32 | 28310 | 0.0004 |
| 0.0001 | 13.33 | 28320 | 0.0005 |
| 0.0 | 13.33 | 28330 | 0.0005 |
| 0.0387 | 13.34 | 28340 | 0.0005 |
| 0.0 | 13.34 | 28350 | 0.0004 |
| 0.0001 | 13.35 | 28360 | 0.0004 |
| 0.0 | 13.35 | 28370 | 0.0004 |
| 0.0 | 13.36 | 28380 | 0.0004 |
| 0.0003 | 13.36 | 28390 | 0.0004 |
| 0.0 | 13.36 | 28400 | 0.0004 |
| 0.0 | 13.37 | 28410 | 0.0005 |
| 0.0001 | 13.37 | 28420 | 0.0005 |
| 0.0001 | 13.38 | 28430 | 0.0005 |
| 0.0001 | 13.38 | 28440 | 0.0005 |
| 0.0 | 13.39 | 28450 | 0.0005 |
| 0.0 | 13.39 | 28460 | 0.0005 |
| 0.0001 | 13.4 | 28470 | 0.0005 |
| 0.017 | 13.4 | 28480 | 0.0005 |
| 0.0 | 13.41 | 28490 | 0.0005 |
| 0.0001 | 13.41 | 28500 | 0.0005 |
| 0.0 | 13.42 | 28510 | 0.0005 |
| 0.0 | 13.42 | 28520 | 0.0005 |
| 0.0 | 13.43 | 28530 | 0.0005 |
| 0.0 | 13.43 | 28540 | 0.0005 |
| 0.0001 | 13.44 | 28550 | 0.0005 |
| 0.0 | 13.44 | 28560 | 0.0005 |
| 0.0 | 13.44 | 28570 | 0.0005 |
| 0.0259 | 13.45 | 28580 | 0.0005 |
| 0.0035 | 13.45 | 28590 | 0.0005 |
| 0.0004 | 13.46 | 28600 | 0.0005 |
| 0.0 | 13.46 | 28610 | 0.0004 |
| 0.0006 | 13.47 | 28620 | 0.0004 |
| 0.0 | 13.47 | 28630 | 0.0004 |
| 0.0 | 13.48 | 28640 | 0.0004 |
| 0.0022 | 13.48 | 28650 | 0.0004 |
| 0.0005 | 13.49 | 28660 | 0.0004 |
| 0.0195 | 13.49 | 28670 | 0.0004 |
| 0.0001 | 13.5 | 28680 | 0.0004 |
| 0.0369 | 13.5 | 28690 | 0.0004 |
| 0.0071 | 13.51 | 28700 | 0.0004 |
| 0.0 | 13.51 | 28710 | 0.0004 |
| 0.0031 | 13.52 | 28720 | 0.0004 |
| 0.0002 | 13.52 | 28730 | 0.0004 |
| 0.001 | 13.52 | 28740 | 0.0004 |
| 0.0003 | 13.53 | 28750 | 0.0004 |
| 0.0761 | 13.53 | 28760 | 0.0022 |
| 0.0004 | 13.54 | 28770 | 0.0022 |
| 0.0007 | 13.54 | 28780 | 0.0022 |
| 0.0002 | 13.55 | 28790 | 0.0022 |
| 0.0001 | 13.55 | 28800 | 0.0022 |
| 0.0616 | 13.56 | 28810 | 0.0022 |
| 0.0 | 13.56 | 28820 | 0.0022 |
| 0.0005 | 13.57 | 28830 | 0.0022 |
| 0.0248 | 13.57 | 28840 | 0.0022 |
| 0.0905 | 13.58 | 28850 | 0.0004 |
| 0.0002 | 13.58 | 28860 | 0.0004 |
| 0.0007 | 13.59 | 28870 | 0.0003 |
| 0.0 | 13.59 | 28880 | 0.0003 |
| 0.0 | 13.6 | 28890 | 0.0003 |
| 0.0363 | 13.6 | 28900 | 0.0003 |
| 0.0003 | 13.6 | 28910 | 0.0003 |
| 0.0001 | 13.61 | 28920 | 0.0003 |
| 0.0032 | 13.61 | 28930 | 0.0003 |
| 0.0001 | 13.62 | 28940 | 0.0003 |
| 0.0001 | 13.62 | 28950 | 0.0003 |
| 0.0 | 13.63 | 28960 | 0.0003 |
| 0.0002 | 13.63 | 28970 | 0.0003 |
| 0.0721 | 13.64 | 28980 | 0.0003 |
| 0.0 | 13.64 | 28990 | 0.0003 |
| 0.0001 | 13.65 | 29000 | 0.0003 |
| 0.003 | 13.65 | 29010 | 0.0003 |
| 0.0 | 13.66 | 29020 | 0.0003 |
| 0.0 | 13.66 | 29030 | 0.0003 |
| 0.0008 | 13.67 | 29040 | 0.0003 |
| 0.0 | 13.67 | 29050 | 0.0003 |
| 0.0 | 13.68 | 29060 | 0.0003 |
| 0.0 | 13.68 | 29070 | 0.0003 |
| 0.0 | 13.68 | 29080 | 0.0003 |
| 0.0041 | 13.69 | 29090 | 0.0020 |
| 0.0 | 13.69 | 29100 | 0.0020 |
| 0.0001 | 13.7 | 29110 | 0.0020 |
| 0.0754 | 13.7 | 29120 | 0.0020 |
| 0.0316 | 13.71 | 29130 | 0.0037 |
| 0.0897 | 13.71 | 29140 | 0.0019 |
| 0.044 | 13.72 | 29150 | 0.0018 |
| 0.0 | 13.72 | 29160 | 0.0018 |
| 0.0001 | 13.73 | 29170 | 0.0018 |
| 0.0 | 13.73 | 29180 | 0.0018 |
| 0.0001 | 13.74 | 29190 | 0.0018 |
| 0.0023 | 13.74 | 29200 | 0.0018 |
| 0.0 | 13.75 | 29210 | 0.0018 |
| 0.0048 | 13.75 | 29220 | 0.0019 |
| 0.0021 | 13.76 | 29230 | 0.0019 |
| 0.0024 | 13.76 | 29240 | 0.0019 |
| 0.0191 | 13.76 | 29250 | 0.0018 |
| 0.0001 | 13.77 | 29260 | 0.0018 |
| 0.0 | 13.77 | 29270 | 0.0018 |
| 0.0004 | 13.78 | 29280 | 0.0019 |
| 0.1205 | 13.78 | 29290 | 0.0019 |
| 0.0001 | 13.79 | 29300 | 0.0019 |
| 0.0 | 13.79 | 29310 | 0.0019 |
| 0.0719 | 13.8 | 29320 | 0.0019 |
| 0.0 | 13.8 | 29330 | 0.0036 |
| 0.0 | 13.81 | 29340 | 0.0036 |
| 0.0 | 13.81 | 29350 | 0.0036 |
| 0.0 | 13.82 | 29360 | 0.0036 |
| 0.0392 | 13.82 | 29370 | 0.0019 |
| 0.032 | 13.83 | 29380 | 0.0019 |
| 0.0 | 13.83 | 29390 | 0.0001 |
| 0.0065 | 13.84 | 29400 | 0.0001 |
| 0.0001 | 13.84 | 29410 | 0.0019 |
| 0.0028 | 13.84 | 29420 | 0.0019 |
| 0.009 | 13.85 | 29430 | 0.0019 |
| 0.0 | 13.85 | 29440 | 0.0019 |
| 0.0 | 13.86 | 29450 | 0.0018 |
| 0.0 | 13.86 | 29460 | 0.0018 |
| 0.0403 | 13.87 | 29470 | 0.0018 |
| 0.0 | 13.87 | 29480 | 0.0018 |
| 0.0 | 13.88 | 29490 | 0.0018 |
| 0.0001 | 13.88 | 29500 | 0.0018 |
| 0.0134 | 13.89 | 29510 | 0.0018 |
| 0.078 | 13.89 | 29520 | 0.0036 |
| 0.0 | 13.9 | 29530 | 0.0036 |
| 0.0121 | 13.9 | 29540 | 0.0036 |
| 0.0 | 13.91 | 29550 | 0.0036 |
| 0.0 | 13.91 | 29560 | 0.0036 |
| 0.0 | 13.92 | 29570 | 0.0036 |
| 0.0 | 13.92 | 29580 | 0.0036 |
| 0.0002 | 13.92 | 29590 | 0.0036 |
| 0.0003 | 13.93 | 29600 | 0.0036 |
| 0.048 | 13.93 | 29610 | 0.0044 |
| 0.0 | 13.94 | 29620 | 0.0044 |
| 0.0001 | 13.94 | 29630 | 0.0044 |
| 0.0001 | 13.95 | 29640 | 0.0044 |
| 0.0 | 13.95 | 29650 | 0.0044 |
| 0.0005 | 13.96 | 29660 | 0.0044 |
| 0.0 | 13.96 | 29670 | 0.0044 |
| 0.1103 | 13.97 | 29680 | 0.0044 |
| 0.0 | 13.97 | 29690 | 0.0044 |
| 0.0379 | 13.98 | 29700 | 0.0044 |
| 0.0 | 13.98 | 29710 | 0.0044 |
| 0.0013 | 13.99 | 29720 | 0.0044 |
| 0.0001 | 13.99 | 29730 | 0.0044 |
| 0.0016 | 14.0 | 29740 | 0.0044 |
| 0.0006 | 14.0 | 29750 | 0.0044 |
| 0.0269 | 14.0 | 29760 | 0.0044 |
| 0.0 | 14.01 | 29770 | 0.0044 |
| 0.0 | 14.01 | 29780 | 0.0044 |
| 0.0 | 14.02 | 29790 | 0.0044 |
| 0.0002 | 14.02 | 29800 | 0.0044 |
| 0.0001 | 14.03 | 29810 | 0.0044 |
| 0.0 | 14.03 | 29820 | 0.0044 |
| 0.0 | 14.04 | 29830 | 0.0044 |
| 0.0739 | 14.04 | 29840 | 0.0044 |
| 0.0002 | 14.05 | 29850 | 0.0044 |
| 0.0081 | 14.05 | 29860 | 0.0044 |
| 0.085 | 14.06 | 29870 | 0.0044 |
| 0.0 | 14.06 | 29880 | 0.0044 |
| 0.0023 | 14.07 | 29890 | 0.0044 |
| 0.0001 | 14.07 | 29900 | 0.0044 |
| 0.0 | 14.08 | 29910 | 0.0044 |
| 0.0 | 14.08 | 29920 | 0.0044 |
| 0.0 | 14.08 | 29930 | 0.0044 |
| 0.0011 | 14.09 | 29940 | 0.0044 |
| 0.0001 | 14.09 | 29950 | 0.0044 |
| 0.0001 | 14.1 | 29960 | 0.0044 |
| 0.0 | 14.1 | 29970 | 0.0044 |
| 0.0006 | 14.11 | 29980 | 0.0044 |
| 0.0033 | 14.11 | 29990 | 0.0044 |
| 0.0744 | 14.12 | 30000 | 0.0062 |
| 0.0364 | 14.12 | 30010 | 0.0062 |
| 0.0 | 14.13 | 30020 | 0.0079 |
| 0.0 | 14.13 | 30030 | 0.0079 |
| 0.0229 | 14.14 | 30040 | 0.0062 |
| 0.0001 | 14.14 | 30050 | 0.0062 |
| 0.0005 | 14.15 | 30060 | 0.0062 |
| 0.0 | 14.15 | 30070 | 0.0062 |
| 0.0 | 14.16 | 30080 | 0.0062 |
| 0.0275 | 14.16 | 30090 | 0.0062 |
| 0.001 | 14.16 | 30100 | 0.0044 |
| 0.0002 | 14.17 | 30110 | 0.0044 |
| 0.0 | 14.17 | 30120 | 0.0044 |
| 0.0 | 14.18 | 30130 | 0.0044 |
| 0.0 | 14.18 | 30140 | 0.0044 |
| 0.0001 | 14.19 | 30150 | 0.0044 |
| 0.0 | 14.19 | 30160 | 0.0044 |
| 0.071 | 14.2 | 30170 | 0.0044 |
| 0.0001 | 14.2 | 30180 | 0.0044 |
| 0.0002 | 14.21 | 30190 | 0.0044 |
| 0.0 | 14.21 | 30200 | 0.0044 |
| 0.0001 | 14.22 | 30210 | 0.0044 |
| 0.0348 | 14.22 | 30220 | 0.0044 |
| 0.0 | 14.23 | 30230 | 0.0044 |
| 0.0013 | 14.23 | 30240 | 0.0044 |
| 0.0323 | 14.24 | 30250 | 0.0044 |
| 0.0 | 14.24 | 30260 | 0.0044 |
| 0.0003 | 14.24 | 30270 | 0.0044 |
| 0.0 | 14.25 | 30280 | 0.0044 |
| 0.0122 | 14.25 | 30290 | 0.0044 |
| 0.0001 | 14.26 | 30300 | 0.0044 |
| 0.0009 | 14.26 | 30310 | 0.0044 |
| 0.0 | 14.27 | 30320 | 0.0044 |
| 0.0 | 14.27 | 30330 | 0.0044 |
| 0.0001 | 14.28 | 30340 | 0.0044 |
| 0.0336 | 14.28 | 30350 | 0.0044 |
| 0.0006 | 14.29 | 30360 | 0.0027 |
| 0.0451 | 14.29 | 30370 | 0.0027 |
| 0.0345 | 14.3 | 30380 | 0.0027 |
| 0.025 | 14.3 | 30390 | 0.0027 |
| 0.0002 | 14.31 | 30400 | 0.0027 |
| 0.0377 | 14.31 | 30410 | 0.0027 |
| 0.0001 | 14.32 | 30420 | 0.0027 |
| 0.0 | 14.32 | 30430 | 0.0027 |
| 0.0001 | 14.32 | 30440 | 0.0027 |
| 0.0 | 14.33 | 30450 | 0.0027 |
| 0.0 | 14.33 | 30460 | 0.0027 |
| 0.0 | 14.34 | 30470 | 0.0026 |
| 0.0001 | 14.34 | 30480 | 0.0027 |
| 0.0 | 14.35 | 30490 | 0.0027 |
| 0.0001 | 14.35 | 30500 | 0.0027 |
| 0.0742 | 14.36 | 30510 | 0.0027 |
| 0.0044 | 14.36 | 30520 | 0.0027 |
| 0.0001 | 14.37 | 30530 | 0.0027 |
| 0.0001 | 14.37 | 30540 | 0.0027 |
| 0.1246 | 14.38 | 30550 | 0.0027 |
| 0.0 | 14.38 | 30560 | 0.0027 |
| 0.0003 | 14.39 | 30570 | 0.0027 |
| 0.0066 | 14.39 | 30580 | 0.0027 |
| 0.0 | 14.4 | 30590 | 0.0027 |
| 0.0 | 14.4 | 30600 | 0.0027 |
| 0.0001 | 14.4 | 30610 | 0.0027 |
| 0.0 | 14.41 | 30620 | 0.0027 |
| 0.0 | 14.41 | 30630 | 0.0027 |
| 0.0343 | 14.42 | 30640 | 0.0027 |
| 0.0298 | 14.42 | 30650 | 0.0026 |
| 0.1028 | 14.43 | 30660 | 0.0026 |
| 0.0019 | 14.43 | 30670 | 0.0026 |
| 0.0374 | 14.44 | 30680 | 0.0026 |
| 0.0 | 14.44 | 30690 | 0.0026 |
| 0.0 | 14.45 | 30700 | 0.0026 |
| 0.0 | 14.45 | 30710 | 0.0026 |
| 0.0019 | 14.46 | 30720 | 0.0026 |
| 0.0 | 14.46 | 30730 | 0.0026 |
| 0.0001 | 14.47 | 30740 | 0.0026 |
| 0.0 | 14.47 | 30750 | 0.0026 |
| 0.0001 | 14.48 | 30760 | 0.0026 |
| 0.0 | 14.48 | 30770 | 0.0026 |
| 0.0 | 14.48 | 30780 | 0.0026 |
| 0.0065 | 14.49 | 30790 | 0.0026 |
| 0.0 | 14.49 | 30800 | 0.0026 |
| 0.0 | 14.5 | 30810 | 0.0026 |
| 0.0023 | 14.5 | 30820 | 0.0026 |
| 0.0047 | 14.51 | 30830 | 0.0026 |
| 0.0001 | 14.51 | 30840 | 0.0026 |
| 0.0001 | 14.52 | 30850 | 0.0026 |
| 0.0001 | 14.52 | 30860 | 0.0026 |
| 0.001 | 14.53 | 30870 | 0.0026 |
| 0.0 | 14.53 | 30880 | 0.0026 |
| 0.0944 | 14.54 | 30890 | 0.0026 |
| 0.0001 | 14.54 | 30900 | 0.0026 |
| 0.0001 | 14.55 | 30910 | 0.0026 |
| 0.0 | 14.55 | 30920 | 0.0026 |
| 0.0006 | 14.56 | 30930 | 0.0026 |
| 0.0 | 14.56 | 30940 | 0.0027 |
| 0.0 | 14.56 | 30950 | 0.0027 |
| 0.0 | 14.57 | 30960 | 0.0027 |
| 0.0001 | 14.57 | 30970 | 0.0027 |
| 0.0 | 14.58 | 30980 | 0.0027 |
| 0.0 | 14.58 | 30990 | 0.0027 |
| 0.0005 | 14.59 | 31000 | 0.0027 |
| 0.0 | 14.59 | 31010 | 0.0027 |
| 0.0 | 14.6 | 31020 | 0.0027 |
| 0.0002 | 14.6 | 31030 | 0.0027 |
| 0.0124 | 14.61 | 31040 | 0.0027 |
| 0.0004 | 14.61 | 31050 | 0.0027 |
| 0.0725 | 14.62 | 31060 | 0.0027 |
| 0.0001 | 14.62 | 31070 | 0.0027 |
| 0.076 | 14.63 | 31080 | 0.0027 |
| 0.0 | 14.63 | 31090 | 0.0027 |
| 0.0352 | 14.64 | 31100 | 0.0027 |
| 0.0025 | 14.64 | 31110 | 0.0027 |
| 0.0023 | 14.64 | 31120 | 0.0027 |
| 0.0 | 14.65 | 31130 | 0.0027 |
| 0.0 | 14.65 | 31140 | 0.0027 |
| 0.0011 | 14.66 | 31150 | 0.0027 |
| 0.0002 | 14.66 | 31160 | 0.0027 |
| 0.0 | 14.67 | 31170 | 0.0027 |
| 0.0054 | 14.67 | 31180 | 0.0027 |
| 0.0 | 14.68 | 31190 | 0.0027 |
| 0.0678 | 14.68 | 31200 | 0.0027 |
| 0.0088 | 14.69 | 31210 | 0.0027 |
| 0.0395 | 14.69 | 31220 | 0.0027 |
| 0.004 | 14.7 | 31230 | 0.0009 |
| 0.0 | 14.7 | 31240 | 0.0009 |
| 0.0001 | 14.71 | 31250 | 0.0009 |
| 0.0 | 14.71 | 31260 | 0.0009 |
| 0.0799 | 14.72 | 31270 | 0.0009 |
| 0.0 | 14.72 | 31280 | 0.0009 |
| 0.0004 | 14.72 | 31290 | 0.0009 |
| 0.072 | 14.73 | 31300 | 0.0009 |
| 0.0014 | 14.73 | 31310 | 0.0009 |
| 0.004 | 14.74 | 31320 | 0.0009 |
| 0.0038 | 14.74 | 31330 | 0.0009 |
| 0.0 | 14.75 | 31340 | 0.0009 |
| 0.0335 | 14.75 | 31350 | 0.0009 |
| 0.0654 | 14.76 | 31360 | 0.0009 |
| 0.0001 | 14.76 | 31370 | 0.0009 |
| 0.0 | 14.77 | 31380 | 0.0009 |
| 0.0009 | 14.77 | 31390 | 0.0009 |
| 0.0001 | 14.78 | 31400 | 0.0009 |
| 0.0013 | 14.78 | 31410 | 0.0009 |
| 0.0007 | 14.79 | 31420 | 0.0009 |
| 0.0001 | 14.79 | 31430 | 0.0009 |
| 0.0001 | 14.8 | 31440 | 0.0009 |
| 0.0 | 14.8 | 31450 | 0.0009 |
| 0.0001 | 14.8 | 31460 | 0.0009 |
| 0.0001 | 14.81 | 31470 | 0.0009 |
| 0.0 | 14.81 | 31480 | 0.0009 |
| 0.0 | 14.82 | 31490 | 0.0009 |
| 0.0002 | 14.82 | 31500 | 0.0009 |
| 0.1111 | 14.83 | 31510 | 0.0009 |
| 0.0001 | 14.83 | 31520 | 0.0009 |
| 0.0045 | 14.84 | 31530 | 0.0009 |
| 0.0354 | 14.84 | 31540 | 0.0009 |
| 0.0414 | 14.85 | 31550 | 0.0009 |
| 0.0 | 14.85 | 31560 | 0.0009 |
| 0.0 | 14.86 | 31570 | 0.0009 |
| 0.0157 | 14.86 | 31580 | 0.0009 |
| 0.0386 | 14.87 | 31590 | 0.0009 |
| 0.0 | 14.87 | 31600 | 0.0009 |
| 0.0 | 14.88 | 31610 | 0.0009 |
| 0.0001 | 14.88 | 31620 | 0.0009 |
| 0.0689 | 14.88 | 31630 | 0.0009 |
| 0.0 | 14.89 | 31640 | 0.0009 |
| 0.0002 | 14.89 | 31650 | 0.0009 |
| 0.0 | 14.9 | 31660 | 0.0009 |
| 0.0409 | 14.9 | 31670 | 0.0009 |
| 0.0726 | 14.91 | 31680 | 0.0009 |
| 0.0002 | 14.91 | 31690 | 0.0009 |
| 0.0 | 14.92 | 31700 | 0.0009 |
| 0.0019 | 14.92 | 31710 | 0.0009 |
| 0.0001 | 14.93 | 31720 | 0.0009 |
| 0.0761 | 14.93 | 31730 | 0.0009 |
| 0.0756 | 14.94 | 31740 | 0.0009 |
| 0.0002 | 14.94 | 31750 | 0.0026 |
| 0.0001 | 14.95 | 31760 | 0.0026 |
| 0.0 | 14.95 | 31770 | 0.0026 |
| 0.0815 | 14.96 | 31780 | 0.0026 |
| 0.0249 | 14.96 | 31790 | 0.0026 |
| 0.0 | 14.96 | 31800 | 0.0026 |
| 0.0 | 14.97 | 31810 | 0.0026 |
| 0.0 | 14.97 | 31820 | 0.0026 |
| 0.0001 | 14.98 | 31830 | 0.0026 |
| 0.0015 | 14.98 | 31840 | 0.0026 |
| 0.0 | 14.99 | 31850 | 0.0027 |
| 0.0001 | 14.99 | 31860 | 0.0027 |
| 0.0218 | 15.0 | 31870 | 0.0027 |
| 0.0 | 15.0 | 31880 | 0.0026 |
| 0.0 | 15.01 | 31890 | 0.0026 |
| 0.0347 | 15.01 | 31900 | 0.0026 |
| 0.0 | 15.02 | 31910 | 0.0026 |
| 0.0818 | 15.02 | 31920 | 0.0026 |
| 0.0 | 15.03 | 31930 | 0.0009 |
| 0.0323 | 15.03 | 31940 | 0.0009 |
| 0.0001 | 15.04 | 31950 | 0.0009 |
| 0.0001 | 15.04 | 31960 | 0.0009 |
| 0.0001 | 15.04 | 31970 | 0.0009 |
| 0.0378 | 15.05 | 31980 | 0.0009 |
| 0.0001 | 15.05 | 31990 | 0.0009 |
| 0.0 | 15.06 | 32000 | 0.0009 |
| 0.0349 | 15.06 | 32010 | 0.0009 |
| 0.0001 | 15.07 | 32020 | 0.0009 |
| 0.0327 | 15.07 | 32030 | 0.0009 |
| 0.0 | 15.08 | 32040 | 0.0009 |
| 0.0 | 15.08 | 32050 | 0.0009 |
| 0.0 | 15.09 | 32060 | 0.0009 |
| 0.0 | 15.09 | 32070 | 0.0009 |
| 0.0379 | 15.1 | 32080 | 0.0009 |
| 0.0047 | 15.1 | 32090 | 0.0009 |
| 0.0 | 15.11 | 32100 | 0.0009 |
| 0.1005 | 15.11 | 32110 | 0.0009 |
| 0.0001 | 15.12 | 32120 | 0.0009 |
| 0.0001 | 15.12 | 32130 | 0.0009 |
| 0.0 | 15.12 | 32140 | 0.0009 |
| 0.0349 | 15.13 | 32150 | 0.0009 |
| 0.0 | 15.13 | 32160 | 0.0009 |
| 0.0003 | 15.14 | 32170 | 0.0009 |
| 0.0 | 15.14 | 32180 | 0.0009 |
| 0.0584 | 15.15 | 32190 | 0.0009 |
| 0.0001 | 15.15 | 32200 | 0.0009 |
| 0.015 | 15.16 | 32210 | 0.0009 |
| 0.0 | 15.16 | 32220 | 0.0009 |
| 0.0035 | 15.17 | 32230 | 0.0009 |
| 0.0001 | 15.17 | 32240 | 0.0009 |
| 0.0066 | 15.18 | 32250 | 0.0009 |
| 0.0003 | 15.18 | 32260 | 0.0009 |
| 0.0072 | 15.19 | 32270 | 0.0009 |
| 0.0 | 15.19 | 32280 | 0.0009 |
| 0.0 | 15.2 | 32290 | 0.0009 |
| 0.0001 | 15.2 | 32300 | 0.0009 |
| 0.0 | 15.2 | 32310 | 0.0009 |
| 0.0068 | 15.21 | 32320 | 0.0009 |
| 0.0004 | 15.21 | 32330 | 0.0009 |
| 0.0 | 15.22 | 32340 | 0.0009 |
| 0.0001 | 15.22 | 32350 | 0.0009 |
| 0.0001 | 15.23 | 32360 | 0.0009 |
| 0.0002 | 15.23 | 32370 | 0.0009 |
| 0.0 | 15.24 | 32380 | 0.0009 |
| 0.0 | 15.24 | 32390 | 0.0009 |
| 0.0723 | 15.25 | 32400 | 0.0009 |
| 0.0079 | 15.25 | 32410 | 0.0009 |
| 0.008 | 15.26 | 32420 | 0.0009 |
| 0.0525 | 15.26 | 32430 | 0.0009 |
| 0.0 | 15.27 | 32440 | 0.0009 |
| 0.0001 | 15.27 | 32450 | 0.0009 |
| 0.0 | 15.28 | 32460 | 0.0009 |
| 0.0329 | 15.28 | 32470 | 0.0009 |
| 0.0 | 15.28 | 32480 | 0.0009 |
| 0.0314 | 15.29 | 32490 | 0.0009 |
| 0.0311 | 15.29 | 32500 | 0.0009 |
| 0.0 | 15.3 | 32510 | 0.0009 |
| 0.0489 | 15.3 | 32520 | 0.0009 |
| 0.0023 | 15.31 | 32530 | 0.0009 |
| 0.0 | 15.31 | 32540 | 0.0009 |
| 0.0 | 15.32 | 32550 | 0.0009 |
| 0.0 | 15.32 | 32560 | 0.0009 |
| 0.0 | 15.33 | 32570 | 0.0009 |
| 0.021 | 15.33 | 32580 | 0.0009 |
| 0.0 | 15.34 | 32590 | 0.0009 |
| 0.0001 | 15.34 | 32600 | 0.0009 |
| 0.0 | 15.35 | 32610 | 0.0009 |
| 0.0 | 15.35 | 32620 | 0.0009 |
| 0.0 | 15.36 | 32630 | 0.0009 |
| 0.014 | 15.36 | 32640 | 0.0009 |
| 0.0012 | 15.36 | 32650 | 0.0009 |
| 0.0 | 15.37 | 32660 | 0.0009 |
| 0.0003 | 15.37 | 32670 | 0.0009 |
| 0.0 | 15.38 | 32680 | 0.0009 |
| 0.0362 | 15.38 | 32690 | 0.0009 |
| 0.0 | 15.39 | 32700 | 0.0009 |
| 0.0 | 15.39 | 32710 | 0.0009 |
| 0.0001 | 15.4 | 32720 | 0.0009 |
| 0.0 | 15.4 | 32730 | 0.0009 |
| 0.0059 | 15.41 | 32740 | 0.0009 |
| 0.0001 | 15.41 | 32750 | 0.0009 |
| 0.0 | 15.42 | 32760 | 0.0009 |
| 0.0002 | 15.42 | 32770 | 0.0009 |
| 0.05 | 15.43 | 32780 | 0.0009 |
| 0.0953 | 15.43 | 32790 | 0.0009 |
| 0.0713 | 15.44 | 32800 | 0.0009 |
| 0.0 | 15.44 | 32810 | 0.0009 |
| 0.0725 | 15.44 | 32820 | 0.0009 |
| 0.0 | 15.45 | 32830 | 0.0009 |
| 0.0001 | 15.45 | 32840 | 0.0009 |
| 0.0012 | 15.46 | 32850 | 0.0009 |
| 0.0 | 15.46 | 32860 | 0.0009 |
| 0.0001 | 15.47 | 32870 | 0.0009 |
| 0.0356 | 15.47 | 32880 | 0.0009 |
| 0.0001 | 15.48 | 32890 | 0.0009 |
| 0.0 | 15.48 | 32900 | 0.0009 |
| 0.0029 | 15.49 | 32910 | 0.0009 |
| 0.0038 | 15.49 | 32920 | 0.0009 |
| 0.0369 | 15.5 | 32930 | 0.0009 |
| 0.0001 | 15.5 | 32940 | 0.0009 |
| 0.0004 | 15.51 | 32950 | 0.0009 |
| 0.0002 | 15.51 | 32960 | 0.0009 |
| 0.0002 | 15.52 | 32970 | 0.0009 |
| 0.0025 | 15.52 | 32980 | 0.0009 |
| 0.0002 | 15.52 | 32990 | 0.0009 |
| 0.0 | 15.53 | 33000 | 0.0009 |
| 0.0034 | 15.53 | 33010 | 0.0009 |
| 0.0002 | 15.54 | 33020 | 0.0009 |
| 0.0038 | 15.54 | 33030 | 0.0009 |
| 0.0001 | 15.55 | 33040 | 0.0009 |
| 0.0 | 15.55 | 33050 | 0.0009 |
| 0.1593 | 15.56 | 33060 | 0.0009 |
| 0.0002 | 15.56 | 33070 | 0.0009 |
| 0.0 | 15.57 | 33080 | 0.0009 |
| 0.0319 | 15.57 | 33090 | 0.0005 |
| 0.0001 | 15.58 | 33100 | 0.0000 |
| 0.0344 | 15.58 | 33110 | 0.0000 |
| 0.0 | 15.59 | 33120 | 0.0009 |
| 0.0 | 15.59 | 33130 | 0.0009 |
| 0.0 | 15.6 | 33140 | 0.0009 |
| 0.0002 | 15.6 | 33150 | 0.0009 |
| 0.0 | 15.6 | 33160 | 0.0009 |
| 0.0001 | 15.61 | 33170 | 0.0009 |
| 0.0695 | 15.61 | 33180 | 0.0009 |
| 0.0 | 15.62 | 33190 | 0.0007 |
| 0.1982 | 15.62 | 33200 | 0.0006 |
| 0.0024 | 15.63 | 33210 | 0.0006 |
| 0.0001 | 15.63 | 33220 | 0.0003 |
| 0.006 | 15.64 | 33230 | 0.0009 |
| 0.0022 | 15.64 | 33240 | 0.0009 |
| 0.0007 | 15.65 | 33250 | 0.0009 |
| 0.0355 | 15.65 | 33260 | 0.0009 |
| 0.0 | 15.66 | 33270 | 0.0009 |
| 0.0 | 15.66 | 33280 | 0.0009 |
| 0.0028 | 15.67 | 33290 | 0.0000 |
| 0.0678 | 15.67 | 33300 | 0.0000 |
| 0.0 | 15.68 | 33310 | 0.0000 |
| 0.0 | 15.68 | 33320 | 0.0000 |
| 0.0 | 15.68 | 33330 | 0.0000 |
| 0.0008 | 15.69 | 33340 | 0.0000 |
| 0.0069 | 15.69 | 33350 | 0.0000 |
| 0.0381 | 15.7 | 33360 | 0.0000 |
| 0.0 | 15.7 | 33370 | 0.0000 |
| 0.0001 | 15.71 | 33380 | 0.0000 |
| 0.0 | 15.71 | 33390 | 0.0000 |
| 0.0 | 15.72 | 33400 | 0.0000 |
| 0.0342 | 15.72 | 33410 | 0.0000 |
| 0.0003 | 15.73 | 33420 | 0.0000 |
| 0.054 | 15.73 | 33430 | 0.0000 |
| 0.0 | 15.74 | 33440 | 0.0000 |
| 0.0001 | 15.74 | 33450 | 0.0000 |
| 0.0003 | 15.75 | 33460 | 0.0000 |
| 0.0 | 15.75 | 33470 | 0.0000 |
| 0.0 | 15.76 | 33480 | 0.0000 |
| 0.0001 | 15.76 | 33490 | 0.0000 |
| 0.0 | 15.76 | 33500 | 0.0000 |
| 0.0 | 15.77 | 33510 | 0.0000 |
| 0.0 | 15.77 | 33520 | 0.0000 |
| 0.0 | 15.78 | 33530 | 0.0000 |
| 0.0 | 15.78 | 33540 | 0.0000 |
| 0.0001 | 15.79 | 33550 | 0.0000 |
| 0.0001 | 15.79 | 33560 | 0.0000 |
| 0.0 | 15.8 | 33570 | 0.0000 |
| 0.0 | 15.8 | 33580 | 0.0000 |
| 0.0029 | 15.81 | 33590 | 0.0000 |
| 0.0 | 15.81 | 33600 | 0.0000 |
| 0.0 | 15.82 | 33610 | 0.0000 |
| 0.0001 | 15.82 | 33620 | 0.0000 |
| 0.0 | 15.83 | 33630 | 0.0000 |
| 0.0009 | 15.83 | 33640 | 0.0000 |
| 0.0003 | 15.84 | 33650 | 0.0000 |
| 0.0 | 15.84 | 33660 | 0.0000 |
| 0.0002 | 15.84 | 33670 | 0.0000 |
| 0.0 | 15.85 | 33680 | 0.0000 |
| 0.0 | 15.85 | 33690 | 0.0000 |
| 0.0004 | 15.86 | 33700 | 0.0000 |
| 0.0337 | 15.86 | 33710 | 0.0000 |
| 0.0 | 15.87 | 33720 | 0.0000 |
| 0.0062 | 15.87 | 33730 | 0.0000 |
| 0.0327 | 15.88 | 33740 | 0.0000 |
| 0.0 | 15.88 | 33750 | 0.0000 |
| 0.0 | 15.89 | 33760 | 0.0000 |
| 0.0349 | 15.89 | 33770 | 0.0000 |
| 0.0585 | 15.9 | 33780 | 0.0000 |
| 0.0 | 15.9 | 33790 | 0.0000 |
| 0.0 | 15.91 | 33800 | 0.0000 |
| 0.0 | 15.91 | 33810 | 0.0000 |
| 0.0001 | 15.92 | 33820 | 0.0000 |
| 0.1148 | 15.92 | 33830 | 0.0000 |
| 0.0 | 15.92 | 33840 | 0.0000 |
| 0.0001 | 15.93 | 33850 | 0.0000 |
| 0.0001 | 15.93 | 33860 | 0.0000 |
| 0.0013 | 15.94 | 33870 | 0.0000 |
| 0.0 | 15.94 | 33880 | 0.0000 |
| 0.0 | 15.95 | 33890 | 0.0000 |
| 0.0 | 15.95 | 33900 | 0.0000 |
| 0.0025 | 15.96 | 33910 | 0.0000 |
| 0.0 | 15.96 | 33920 | 0.0000 |
| 0.0004 | 15.97 | 33930 | 0.0000 |
| 0.0 | 15.97 | 33940 | 0.0000 |
| 0.0068 | 15.98 | 33950 | 0.0000 |
| 0.0026 | 15.98 | 33960 | 0.0000 |
| 0.0001 | 15.99 | 33970 | 0.0000 |
| 0.0013 | 15.99 | 33980 | 0.0000 |
| 0.0001 | 16.0 | 33990 | 0.0000 |
| 0.0633 | 16.0 | 34000 | 0.0000 |
| 0.0 | 16.0 | 34010 | 0.0000 |
| 0.0001 | 16.01 | 34020 | 0.0000 |
| 0.0 | 16.01 | 34030 | 0.0000 |
| 0.0034 | 16.02 | 34040 | 0.0000 |
| 0.0053 | 16.02 | 34050 | 0.0000 |
| 0.0008 | 16.03 | 34060 | 0.0000 |
| 0.0 | 16.03 | 34070 | 0.0000 |
| 0.0001 | 16.04 | 34080 | 0.0000 |
| 0.0007 | 16.04 | 34090 | 0.0000 |
| 0.0 | 16.05 | 34100 | 0.0001 |
| 0.0 | 16.05 | 34110 | 0.0004 |
| 0.0 | 16.06 | 34120 | 0.0004 |
| 0.0 | 16.06 | 34130 | 0.0001 |
| 0.0003 | 16.07 | 34140 | 0.0005 |
| 0.0751 | 16.07 | 34150 | 0.0000 |
| 0.0001 | 16.08 | 34160 | 0.0000 |
| 0.0091 | 16.08 | 34170 | 0.0000 |
| 0.0001 | 16.08 | 34180 | 0.0000 |
| 0.0001 | 16.09 | 34190 | 0.0000 |
| 0.0005 | 16.09 | 34200 | 0.0000 |
| 0.0 | 16.1 | 34210 | 0.0000 |
| 0.0259 | 16.1 | 34220 | 0.0000 |
| 0.0 | 16.11 | 34230 | 0.0000 |
| 0.0249 | 16.11 | 34240 | 0.0000 |
| 0.0001 | 16.12 | 34250 | 0.0000 |
| 0.0001 | 16.12 | 34260 | 0.0000 |
| 0.0001 | 16.13 | 34270 | 0.0000 |
| 0.0786 | 16.13 | 34280 | 0.0000 |
| 0.0003 | 16.14 | 34290 | 0.0000 |
| 0.0001 | 16.14 | 34300 | 0.0000 |
| 0.0001 | 16.15 | 34310 | 0.0000 |
| 0.0001 | 16.15 | 34320 | 0.0000 |
| 0.0149 | 16.16 | 34330 | 0.0000 |
| 0.0 | 16.16 | 34340 | 0.0000 |
| 0.0004 | 16.16 | 34350 | 0.0000 |
| 0.0 | 16.17 | 34360 | 0.0000 |
| 0.0 | 16.17 | 34370 | 0.0000 |
| 0.0375 | 16.18 | 34380 | 0.0000 |
| 0.0001 | 16.18 | 34390 | 0.0000 |
| 0.0001 | 16.19 | 34400 | 0.0000 |
| 0.0 | 16.19 | 34410 | 0.0000 |
| 0.0 | 16.2 | 34420 | 0.0000 |
| 0.0044 | 16.2 | 34430 | 0.0000 |
| 0.0 | 16.21 | 34440 | 0.0000 |
| 0.0896 | 16.21 | 34450 | 0.0000 |
| 0.0001 | 16.22 | 34460 | 0.0000 |
| 0.0 | 16.22 | 34470 | 0.0000 |
| 0.0024 | 16.23 | 34480 | 0.0000 |
| 0.0025 | 16.23 | 34490 | 0.0000 |
| 0.0 | 16.24 | 34500 | 0.0000 |
| 0.0622 | 16.24 | 34510 | 0.0000 |
| 0.0 | 16.24 | 34520 | 0.0000 |
| 0.0 | 16.25 | 34530 | 0.0000 |
| 0.0002 | 16.25 | 34540 | 0.0000 |
| 0.0 | 16.26 | 34550 | 0.0000 |
| 0.0 | 16.26 | 34560 | 0.0000 |
| 0.0 | 16.27 | 34570 | 0.0000 |
| 0.0011 | 16.27 | 34580 | 0.0000 |
| 0.0 | 16.28 | 34590 | 0.0000 |
| 0.0001 | 16.28 | 34600 | 0.0000 |
| 0.0 | 16.29 | 34610 | 0.0000 |
| 0.0 | 16.29 | 34620 | 0.0000 |
| 0.0001 | 16.3 | 34630 | 0.0000 |
| 0.0 | 16.3 | 34640 | 0.0000 |
| 0.1008 | 16.31 | 34650 | 0.0000 |
| 0.0039 | 16.31 | 34660 | 0.0000 |
| 0.0006 | 16.32 | 34670 | 0.0000 |
| 0.04 | 16.32 | 34680 | 0.0000 |
| 0.0 | 16.32 | 34690 | 0.0000 |
| 0.0218 | 16.33 | 34700 | 0.0000 |
| 0.0648 | 16.33 | 34710 | 0.0000 |
| 0.0 | 16.34 | 34720 | 0.0000 |
| 0.0067 | 16.34 | 34730 | 0.0000 |
| 0.0 | 16.35 | 34740 | 0.0000 |
| 0.0 | 16.35 | 34750 | 0.0000 |
| 0.0001 | 16.36 | 34760 | 0.0000 |
| 0.0001 | 16.36 | 34770 | 0.0000 |
| 0.0008 | 16.37 | 34780 | 0.0000 |
| 0.0057 | 16.37 | 34790 | 0.0000 |
| 0.0 | 16.38 | 34800 | 0.0000 |
| 0.0001 | 16.38 | 34810 | 0.0000 |
| 0.0 | 16.39 | 34820 | 0.0000 |
| 0.0001 | 16.39 | 34830 | 0.0000 |
| 0.0 | 16.4 | 34840 | 0.0000 |
| 0.0 | 16.4 | 34850 | 0.0000 |
| 0.0393 | 16.4 | 34860 | 0.0000 |
| 0.0021 | 16.41 | 34870 | 0.0000 |
| 0.0081 | 16.41 | 34880 | 0.0000 |
| 0.0409 | 16.42 | 34890 | 0.0000 |
| 0.0046 | 16.42 | 34900 | 0.0000 |
| 0.0 | 16.43 | 34910 | 0.0000 |
| 0.0 | 16.43 | 34920 | 0.0000 |
| 0.0349 | 16.44 | 34930 | 0.0000 |
| 0.0 | 16.44 | 34940 | 0.0000 |
| 0.0001 | 16.45 | 34950 | 0.0000 |
| 0.001 | 16.45 | 34960 | 0.0000 |
| 0.0 | 16.46 | 34970 | 0.0000 |
| 0.0 | 16.46 | 34980 | 0.0000 |
| 0.0332 | 16.47 | 34990 | 0.0000 |
| 0.0634 | 16.47 | 35000 | 0.0000 |
| 0.0001 | 16.48 | 35010 | 0.0000 |
| 0.0003 | 16.48 | 35020 | 0.0000 |
| 0.0003 | 16.48 | 35030 | 0.0000 |
| 0.0087 | 16.49 | 35040 | 0.0000 |
| 0.0 | 16.49 | 35050 | 0.0000 |
| 0.0 | 16.5 | 35060 | 0.0000 |
| 0.0404 | 16.5 | 35070 | 0.0000 |
| 0.0 | 16.51 | 35080 | 0.0000 |
| 0.0806 | 16.51 | 35090 | 0.0000 |
| 0.0769 | 16.52 | 35100 | 0.0000 |
| 0.0 | 16.52 | 35110 | 0.0000 |
| 0.0 | 16.53 | 35120 | 0.0000 |
| 0.0097 | 16.53 | 35130 | 0.0000 |
| 0.042 | 16.54 | 35140 | 0.0000 |
| 0.0682 | 16.54 | 35150 | 0.0000 |
| 0.0 | 16.55 | 35160 | 0.0000 |
| 0.0123 | 16.55 | 35170 | 0.0000 |
| 0.0 | 16.56 | 35180 | 0.0000 |
| 0.0778 | 16.56 | 35190 | 0.0000 |
| 0.0364 | 16.56 | 35200 | 0.0000 |
| 0.0 | 16.57 | 35210 | 0.0000 |
| 0.0 | 16.57 | 35220 | 0.0000 |
| 0.0132 | 16.58 | 35230 | 0.0000 |
| 0.0 | 16.58 | 35240 | 0.0000 |
| 0.0 | 16.59 | 35250 | 0.0000 |
| 0.0 | 16.59 | 35260 | 0.0000 |
| 0.0 | 16.6 | 35270 | 0.0000 |
| 0.0001 | 16.6 | 35280 | 0.0000 |
| 0.0 | 16.61 | 35290 | 0.0000 |
| 0.07 | 16.61 | 35300 | 0.0000 |
| 0.0 | 16.62 | 35310 | 0.0000 |
| 0.0033 | 16.62 | 35320 | 0.0000 |
| 0.0001 | 16.63 | 35330 | 0.0000 |
| 0.0005 | 16.63 | 35340 | 0.0000 |
| 0.0016 | 16.64 | 35350 | 0.0000 |
| 0.0777 | 16.64 | 35360 | 0.0000 |
| 0.001 | 16.64 | 35370 | 0.0000 |
| 0.0001 | 16.65 | 35380 | 0.0000 |
| 0.0 | 16.65 | 35390 | 0.0000 |
| 0.0001 | 16.66 | 35400 | 0.0000 |
| 0.0001 | 16.66 | 35410 | 0.0000 |
| 0.0 | 16.67 | 35420 | 0.0000 |
| 0.0005 | 16.67 | 35430 | 0.0000 |
| 0.0484 | 16.68 | 35440 | 0.0000 |
| 0.0 | 16.68 | 35450 | 0.0000 |
| 0.0027 | 16.69 | 35460 | 0.0000 |
| 0.0 | 16.69 | 35470 | 0.0000 |
| 0.0324 | 16.7 | 35480 | 0.0000 |
| 0.0373 | 16.7 | 35490 | 0.0000 |
| 0.0028 | 16.71 | 35500 | 0.0000 |
| 0.0001 | 16.71 | 35510 | 0.0000 |
| 0.0 | 16.72 | 35520 | 0.0000 |
| 0.0001 | 16.72 | 35530 | 0.0000 |
| 0.0 | 16.72 | 35540 | 0.0000 |
| 0.0001 | 16.73 | 35550 | 0.0000 |
| 0.0003 | 16.73 | 35560 | 0.0000 |
| 0.0 | 16.74 | 35570 | 0.0000 |
| 0.0 | 16.74 | 35580 | 0.0000 |
| 0.0001 | 16.75 | 35590 | 0.0000 |
| 0.0 | 16.75 | 35600 | 0.0000 |
| 0.0555 | 16.76 | 35610 | 0.0000 |
| 0.0 | 16.76 | 35620 | 0.0000 |
| 0.0 | 16.77 | 35630 | 0.0000 |
| 0.0 | 16.77 | 35640 | 0.0000 |
| 0.0 | 16.78 | 35650 | 0.0000 |
| 0.0002 | 16.78 | 35660 | 0.0000 |
| 0.0 | 16.79 | 35670 | 0.0000 |
| 0.0 | 16.79 | 35680 | 0.0000 |
| 0.0002 | 16.8 | 35690 | 0.0000 |
| 0.0 | 16.8 | 35700 | 0.0000 |
| 0.0002 | 16.8 | 35710 | 0.0000 |
| 0.0001 | 16.81 | 35720 | 0.0000 |
| 0.0001 | 16.81 | 35730 | 0.0000 |
| 0.0 | 16.82 | 35740 | 0.0000 |
| 0.0003 | 16.82 | 35750 | 0.0000 |
| 0.0 | 16.83 | 35760 | 0.0000 |
| 0.0 | 16.83 | 35770 | 0.0000 |
| 0.0435 | 16.84 | 35780 | 0.0000 |
| 0.0745 | 16.84 | 35790 | 0.0000 |
| 0.0011 | 16.85 | 35800 | 0.0000 |
| 0.0 | 16.85 | 35810 | 0.0000 |
| 0.0001 | 16.86 | 35820 | 0.0000 |
| 0.0 | 16.86 | 35830 | 0.0000 |
| 0.0001 | 16.87 | 35840 | 0.0000 |
| 0.0001 | 16.87 | 35850 | 0.0000 |
| 0.0001 | 16.88 | 35860 | 0.0000 |
| 0.0 | 16.88 | 35870 | 0.0000 |
| 0.0 | 16.88 | 35880 | 0.0000 |
| 0.0009 | 16.89 | 35890 | 0.0000 |
| 0.0001 | 16.89 | 35900 | 0.0000 |
| 0.0707 | 16.9 | 35910 | 0.0000 |
| 0.0001 | 16.9 | 35920 | 0.0000 |
| 0.0 | 16.91 | 35930 | 0.0000 |
| 0.0005 | 16.91 | 35940 | 0.0000 |
| 0.0 | 16.92 | 35950 | 0.0000 |
| 0.0002 | 16.92 | 35960 | 0.0000 |
| 0.0004 | 16.93 | 35970 | 0.0000 |
| 0.0003 | 16.93 | 35980 | 0.0000 |
| 0.0746 | 16.94 | 35990 | 0.0000 |
| 0.0 | 16.94 | 36000 | 0.0000 |
| 0.0024 | 16.95 | 36010 | 0.0000 |
| 0.0 | 16.95 | 36020 | 0.0000 |
| 0.0 | 16.96 | 36030 | 0.0000 |
| 0.0 | 16.96 | 36040 | 0.0000 |
| 0.0001 | 16.96 | 36050 | 0.0000 |
| 0.0656 | 16.97 | 36060 | 0.0000 |
| 0.0007 | 16.97 | 36070 | 0.0000 |
| 0.0673 | 16.98 | 36080 | 0.0000 |
| 0.0 | 16.98 | 36090 | 0.0000 |
| 0.0 | 16.99 | 36100 | 0.0000 |
| 0.0001 | 16.99 | 36110 | 0.0000 |
| 0.0 | 17.0 | 36120 | 0.0000 |
| 0.0 | 17.0 | 36130 | 0.0000 |
| 0.0 | 17.01 | 36140 | 0.0000 |
| 0.0 | 17.01 | 36150 | 0.0000 |
| 0.0002 | 17.02 | 36160 | 0.0000 |
| 0.0001 | 17.02 | 36170 | 0.0000 |
| 0.0 | 17.03 | 36180 | 0.0000 |
| 0.0324 | 17.03 | 36190 | 0.0000 |
| 0.0001 | 17.04 | 36200 | 0.0000 |
| 0.0687 | 17.04 | 36210 | 0.0000 |
| 0.0742 | 17.04 | 36220 | 0.0000 |
| 0.0 | 17.05 | 36230 | 0.0000 |
| 0.0 | 17.05 | 36240 | 0.0000 |
| 0.0 | 17.06 | 36250 | 0.0000 |
| 0.0 | 17.06 | 36260 | 0.0000 |
| 0.0003 | 17.07 | 36270 | 0.0000 |
| 0.0001 | 17.07 | 36280 | 0.0000 |
| 0.0073 | 17.08 | 36290 | 0.0000 |
| 0.008 | 17.08 | 36300 | 0.0000 |
| 0.0274 | 17.09 | 36310 | 0.0000 |
| 0.0 | 17.09 | 36320 | 0.0000 |
| 0.0 | 17.1 | 36330 | 0.0000 |
| 0.0 | 17.1 | 36340 | 0.0000 |
| 0.0231 | 17.11 | 36350 | 0.0000 |
| 0.0701 | 17.11 | 36360 | 0.0000 |
| 0.0001 | 17.12 | 36370 | 0.0000 |
| 0.0 | 17.12 | 36380 | 0.0000 |
| 0.001 | 17.12 | 36390 | 0.0000 |
| 0.0 | 17.13 | 36400 | 0.0000 |
| 0.0352 | 17.13 | 36410 | 0.0000 |
| 0.0001 | 17.14 | 36420 | 0.0000 |
| 0.0 | 17.14 | 36430 | 0.0000 |
| 0.0723 | 17.15 | 36440 | 0.0000 |
| 0.0 | 17.15 | 36450 | 0.0000 |
| 0.0021 | 17.16 | 36460 | 0.0000 |
| 0.0 | 17.16 | 36470 | 0.0000 |
| 0.0 | 17.17 | 36480 | 0.0000 |
| 0.0 | 17.17 | 36490 | 0.0000 |
| 0.0739 | 17.18 | 36500 | 0.0000 |
| 0.0 | 17.18 | 36510 | 0.0000 |
| 0.0 | 17.19 | 36520 | 0.0000 |
| 0.0 | 17.19 | 36530 | 0.0000 |
| 0.0035 | 17.2 | 36540 | 0.0000 |
| 0.202 | 17.2 | 36550 | 0.0000 |
| 0.0 | 17.2 | 36560 | 0.0000 |
| 0.0 | 17.21 | 36570 | 0.0000 |
| 0.0 | 17.21 | 36580 | 0.0000 |
| 0.0002 | 17.22 | 36590 | 0.0000 |
| 0.0 | 17.22 | 36600 | 0.0000 |
| 0.0326 | 17.23 | 36610 | 0.0000 |
| 0.0 | 17.23 | 36620 | 0.0000 |
| 0.0 | 17.24 | 36630 | 0.0000 |
| 0.0004 | 17.24 | 36640 | 0.0000 |
| 0.0001 | 17.25 | 36650 | 0.0000 |
| 0.1301 | 17.25 | 36660 | 0.0000 |
| 0.0016 | 17.26 | 36670 | 0.0000 |
| 0.0 | 17.26 | 36680 | 0.0000 |
| 0.0 | 17.27 | 36690 | 0.0000 |
| 0.0008 | 17.27 | 36700 | 0.0000 |
| 0.0 | 17.28 | 36710 | 0.0000 |
| 0.0 | 17.28 | 36720 | 0.0000 |
| 0.003 | 17.28 | 36730 | 0.0000 |
| 0.0 | 17.29 | 36740 | 0.0000 |
| 0.0 | 17.29 | 36750 | 0.0000 |
| 0.0 | 17.3 | 36760 | 0.0000 |
| 0.0 | 17.3 | 36770 | 0.0000 |
| 0.0 | 17.31 | 36780 | 0.0000 |
| 0.0694 | 17.31 | 36790 | 0.0000 |
| 0.0 | 17.32 | 36800 | 0.0000 |
| 0.0 | 17.32 | 36810 | 0.0000 |
| 0.0001 | 17.33 | 36820 | 0.0000 |
| 0.07 | 17.33 | 36830 | 0.0000 |
| 0.0401 | 17.34 | 36840 | 0.0000 |
| 0.0 | 17.34 | 36850 | 0.0000 |
| 0.0 | 17.35 | 36860 | 0.0000 |
| 0.0 | 17.35 | 36870 | 0.0000 |
| 0.0004 | 17.36 | 36880 | 0.0000 |
| 0.0 | 17.36 | 36890 | 0.0000 |
| 0.0 | 17.36 | 36900 | 0.0000 |
| 0.0438 | 17.37 | 36910 | 0.0000 |
| 0.0 | 17.37 | 36920 | 0.0000 |
| 0.0 | 17.38 | 36930 | 0.0000 |
| 0.0003 | 17.38 | 36940 | 0.0000 |
| 0.0 | 17.39 | 36950 | 0.0000 |
| 0.0002 | 17.39 | 36960 | 0.0000 |
| 0.0 | 17.4 | 36970 | 0.0000 |
| 0.0361 | 17.4 | 36980 | 0.0000 |
| 0.0084 | 17.41 | 36990 | 0.0000 |
| 0.0 | 17.41 | 37000 | 0.0000 |
| 0.007 | 17.42 | 37010 | 0.0000 |
| 0.0001 | 17.42 | 37020 | 0.0000 |
| 0.0076 | 17.43 | 37030 | 0.0000 |
| 0.0009 | 17.43 | 37040 | 0.0000 |
| 0.0 | 17.44 | 37050 | 0.0000 |
| 0.0 | 17.44 | 37060 | 0.0000 |
| 0.0 | 17.44 | 37070 | 0.0000 |
| 0.0001 | 17.45 | 37080 | 0.0000 |
| 0.0 | 17.45 | 37090 | 0.0000 |
| 0.0005 | 17.46 | 37100 | 0.0000 |
| 0.0 | 17.46 | 37110 | 0.0000 |
| 0.0 | 17.47 | 37120 | 0.0000 |
| 0.0004 | 17.47 | 37130 | 0.0000 |
| 0.0002 | 17.48 | 37140 | 0.0000 |
| 0.0001 | 17.48 | 37150 | 0.0000 |
| 0.0 | 17.49 | 37160 | 0.0000 |
| 0.0 | 17.49 | 37170 | 0.0000 |
| 0.0 | 17.5 | 37180 | 0.0000 |
| 0.0698 | 17.5 | 37190 | 0.0000 |
| 0.05 | 17.51 | 37200 | 0.0000 |
| 0.0 | 17.51 | 37210 | 0.0000 |
| 0.0001 | 17.52 | 37220 | 0.0000 |
| 0.0 | 17.52 | 37230 | 0.0000 |
| 0.0662 | 17.52 | 37240 | 0.0000 |
| 0.0 | 17.53 | 37250 | 0.0000 |
| 0.0001 | 17.53 | 37260 | 0.0000 |
| 0.0001 | 17.54 | 37270 | 0.0000 |
| 0.0 | 17.54 | 37280 | 0.0000 |
| 0.0 | 17.55 | 37290 | 0.0000 |
| 0.0003 | 17.55 | 37300 | 0.0000 |
| 0.0 | 17.56 | 37310 | 0.0000 |
| 0.0001 | 17.56 | 37320 | 0.0000 |
| 0.0 | 17.57 | 37330 | 0.0000 |
| 0.0 | 17.57 | 37340 | 0.0000 |
| 0.0116 | 17.58 | 37350 | 0.0000 |
| 0.0709 | 17.58 | 37360 | 0.0000 |
| 0.0144 | 17.59 | 37370 | 0.0000 |
| 0.0 | 17.59 | 37380 | 0.0000 |
| 0.0 | 17.6 | 37390 | 0.0000 |
| 0.0243 | 17.6 | 37400 | 0.0000 |
| 0.0 | 17.6 | 37410 | 0.0000 |
| 0.0006 | 17.61 | 37420 | 0.0000 |
| 0.0 | 17.61 | 37430 | 0.0000 |
| 0.0 | 17.62 | 37440 | 0.0000 |
| 0.0 | 17.62 | 37450 | 0.0000 |
| 0.0 | 17.63 | 37460 | 0.0000 |
| 0.0 | 17.63 | 37470 | 0.0000 |
| 0.0001 | 17.64 | 37480 | 0.0000 |
| 0.0 | 17.64 | 37490 | 0.0000 |
| 0.0 | 17.65 | 37500 | 0.0000 |
| 0.001 | 17.65 | 37510 | 0.0000 |
| 0.0001 | 17.66 | 37520 | 0.0000 |
| 0.0 | 17.66 | 37530 | 0.0000 |
| 0.0 | 17.67 | 37540 | 0.0000 |
| 0.0001 | 17.67 | 37550 | 0.0000 |
| 0.0011 | 17.68 | 37560 | 0.0000 |
| 0.0 | 17.68 | 37570 | 0.0000 |
| 0.0 | 17.68 | 37580 | 0.0000 |
| 0.0 | 17.69 | 37590 | 0.0000 |
| 0.0007 | 17.69 | 37600 | 0.0000 |
| 0.0 | 17.7 | 37610 | 0.0000 |
| 0.0 | 17.7 | 37620 | 0.0000 |
| 0.0025 | 17.71 | 37630 | 0.0000 |
| 0.0772 | 17.71 | 37640 | 0.0000 |
| 0.0006 | 17.72 | 37650 | 0.0000 |
| 0.0 | 17.72 | 37660 | 0.0000 |
| 0.0 | 17.73 | 37670 | 0.0000 |
| 0.0341 | 17.73 | 37680 | 0.0000 |
| 0.0002 | 17.74 | 37690 | 0.0000 |
| 0.0 | 17.74 | 37700 | 0.0000 |
| 0.0017 | 17.75 | 37710 | 0.0000 |
| 0.0 | 17.75 | 37720 | 0.0000 |
| 0.0 | 17.76 | 37730 | 0.0000 |
| 0.0 | 17.76 | 37740 | 0.0000 |
| 0.0 | 17.76 | 37750 | 0.0000 |
| 0.0 | 17.77 | 37760 | 0.0000 |
| 0.0 | 17.77 | 37770 | 0.0000 |
| 0.0 | 17.78 | 37780 | 0.0000 |
| 0.0001 | 17.78 | 37790 | 0.0000 |
| 0.0 | 17.79 | 37800 | 0.0000 |
| 0.0 | 17.79 | 37810 | 0.0000 |
| 0.0001 | 17.8 | 37820 | 0.0000 |
| 0.0 | 17.8 | 37830 | 0.0000 |
| 0.0 | 17.81 | 37840 | 0.0000 |
| 0.0005 | 17.81 | 37850 | 0.0000 |
| 0.0001 | 17.82 | 37860 | 0.0000 |
| 0.0 | 17.82 | 37870 | 0.0000 |
| 0.0 | 17.83 | 37880 | 0.0000 |
| 0.0247 | 17.83 | 37890 | 0.0000 |
| 0.0 | 17.84 | 37900 | 0.0000 |
| 0.0 | 17.84 | 37910 | 0.0000 |
| 0.0 | 17.84 | 37920 | 0.0000 |
| 0.0 | 17.85 | 37930 | 0.0000 |
| 0.0435 | 17.85 | 37940 | 0.0000 |
| 0.0 | 17.86 | 37950 | 0.0000 |
| 0.0 | 17.86 | 37960 | 0.0000 |
| 0.0 | 17.87 | 37970 | 0.0000 |
| 0.0 | 17.87 | 37980 | 0.0000 |
| 0.0 | 17.88 | 37990 | 0.0000 |
| 0.0 | 17.88 | 38000 | 0.0000 |
| 0.0 | 17.89 | 38010 | 0.0000 |
| 0.0001 | 17.89 | 38020 | 0.0000 |
| 0.001 | 17.9 | 38030 | 0.0000 |
| 0.0037 | 17.9 | 38040 | 0.0000 |
| 0.0001 | 17.91 | 38050 | 0.0000 |
| 0.0008 | 17.91 | 38060 | 0.0000 |
| 0.0001 | 17.92 | 38070 | 0.0000 |
| 0.0 | 17.92 | 38080 | 0.0000 |
| 0.0 | 17.92 | 38090 | 0.0000 |
| 0.0613 | 17.93 | 38100 | 0.0000 |
| 0.0 | 17.93 | 38110 | 0.0000 |
| 0.0 | 17.94 | 38120 | 0.0000 |
| 0.0001 | 17.94 | 38130 | 0.0000 |
| 0.0 | 17.95 | 38140 | 0.0000 |
| 0.0208 | 17.95 | 38150 | 0.0000 |
| 0.0 | 17.96 | 38160 | 0.0000 |
| 0.0004 | 17.96 | 38170 | 0.0000 |
| 0.0 | 17.97 | 38180 | 0.0000 |
| 0.0001 | 17.97 | 38190 | 0.0000 |
| 0.0055 | 17.98 | 38200 | 0.0000 |
| 0.0001 | 17.98 | 38210 | 0.0000 |
| 0.0018 | 17.99 | 38220 | 0.0000 |
| 0.0 | 17.99 | 38230 | 0.0000 |
| 0.0 | 18.0 | 38240 | 0.0000 |
| 0.0 | 18.0 | 38250 | 0.0000 |
| 0.0002 | 18.0 | 38260 | 0.0000 |
| 0.0758 | 18.01 | 38270 | 0.0000 |
| 0.0001 | 18.01 | 38280 | 0.0000 |
| 0.0013 | 18.02 | 38290 | 0.0000 |
| 0.0709 | 18.02 | 38300 | 0.0000 |
| 0.0 | 18.03 | 38310 | 0.0000 |
| 0.0 | 18.03 | 38320 | 0.0000 |
| 0.0 | 18.04 | 38330 | 0.0000 |
| 0.0001 | 18.04 | 38340 | 0.0000 |
| 0.0 | 18.05 | 38350 | 0.0000 |
| 0.0001 | 18.05 | 38360 | 0.0000 |
| 0.0 | 18.06 | 38370 | 0.0000 |
| 0.0039 | 18.06 | 38380 | 0.0000 |
| 0.0019 | 18.07 | 38390 | 0.0000 |
| 0.0 | 18.07 | 38400 | 0.0000 |
| 0.0001 | 18.08 | 38410 | 0.0000 |
| 0.0 | 18.08 | 38420 | 0.0000 |
| 0.0 | 18.08 | 38430 | 0.0000 |
| 0.0002 | 18.09 | 38440 | 0.0000 |
| 0.0 | 18.09 | 38450 | 0.0000 |
| 0.0001 | 18.1 | 38460 | 0.0000 |
| 0.0 | 18.1 | 38470 | 0.0000 |
| 0.0321 | 18.11 | 38480 | 0.0000 |
| 0.0 | 18.11 | 38490 | 0.0000 |
| 0.0001 | 18.12 | 38500 | 0.0000 |
| 0.0002 | 18.12 | 38510 | 0.0000 |
| 0.0 | 18.13 | 38520 | 0.0000 |
| 0.0 | 18.13 | 38530 | 0.0000 |
| 0.0051 | 18.14 | 38540 | 0.0000 |
| 0.0726 | 18.14 | 38550 | 0.0000 |
| 0.0 | 18.15 | 38560 | 0.0000 |
| 0.0 | 18.15 | 38570 | 0.0000 |
| 0.0 | 18.16 | 38580 | 0.0000 |
| 0.0 | 18.16 | 38590 | 0.0000 |
| 0.1006 | 18.16 | 38600 | 0.0000 |
| 0.0 | 18.17 | 38610 | 0.0000 |
| 0.0 | 18.17 | 38620 | 0.0000 |
| 0.0285 | 18.18 | 38630 | 0.0000 |
| 0.0764 | 18.18 | 38640 | 0.0000 |
| 0.0009 | 18.19 | 38650 | 0.0000 |
| 0.0 | 18.19 | 38660 | 0.0000 |
| 0.0719 | 18.2 | 38670 | 0.0000 |
| 0.0 | 18.2 | 38680 | 0.0000 |
| 0.0019 | 18.21 | 38690 | 0.0000 |
| 0.0001 | 18.21 | 38700 | 0.0000 |
| 0.0004 | 18.22 | 38710 | 0.0017 |
| 0.0 | 18.22 | 38720 | 0.0017 |
| 0.0 | 18.23 | 38730 | 0.0018 |
| 0.0 | 18.23 | 38740 | 0.0018 |
| 0.0 | 18.24 | 38750 | 0.0018 |
| 0.0 | 18.24 | 38760 | 0.0018 |
| 0.1773 | 18.24 | 38770 | 0.0018 |
| 0.0021 | 18.25 | 38780 | 0.0018 |
| 0.0001 | 18.25 | 38790 | 0.0018 |
| 0.0 | 18.26 | 38800 | 0.0018 |
| 0.0218 | 18.26 | 38810 | 0.0018 |
| 0.0001 | 18.27 | 38820 | 0.0018 |
| 0.0002 | 18.27 | 38830 | 0.0018 |
| 0.0033 | 18.28 | 38840 | 0.0018 |
| 0.0 | 18.28 | 38850 | 0.0018 |
| 0.0 | 18.29 | 38860 | 0.0018 |
| 0.038 | 18.29 | 38870 | 0.0018 |
| 0.0 | 18.3 | 38880 | 0.0018 |
| 0.0001 | 18.3 | 38890 | 0.0018 |
| 0.0 | 18.31 | 38900 | 0.0018 |
| 0.0 | 18.31 | 38910 | 0.0018 |
| 0.0 | 18.32 | 38920 | 0.0018 |
| 0.0044 | 18.32 | 38930 | 0.0018 |
| 0.0007 | 18.32 | 38940 | 0.0018 |
| 0.0001 | 18.33 | 38950 | 0.0018 |
| 0.0087 | 18.33 | 38960 | 0.0018 |
| 0.0 | 18.34 | 38970 | 0.0018 |
| 0.0016 | 18.34 | 38980 | 0.0018 |
| 0.029 | 18.35 | 38990 | 0.0018 |
| 0.0 | 18.35 | 39000 | 0.0018 |
| 0.0003 | 18.36 | 39010 | 0.0018 |
| 0.0002 | 18.36 | 39020 | 0.0018 |
| 0.0 | 18.37 | 39030 | 0.0018 |
| 0.0437 | 18.37 | 39040 | 0.0018 |
| 0.0039 | 18.38 | 39050 | 0.0018 |
| 0.0001 | 18.38 | 39060 | 0.0018 |
| 0.0 | 18.39 | 39070 | 0.0018 |
| 0.0005 | 18.39 | 39080 | 0.0018 |
| 0.0 | 18.4 | 39090 | 0.0018 |
| 0.0001 | 18.4 | 39100 | 0.0018 |
| 0.0 | 18.4 | 39110 | 0.0018 |
| 0.0378 | 18.41 | 39120 | 0.0018 |
| 0.0002 | 18.41 | 39130 | 0.0018 |
| 0.035 | 18.42 | 39140 | 0.0018 |
| 0.0001 | 18.42 | 39150 | 0.0018 |
| 0.0002 | 18.43 | 39160 | 0.0018 |
| 0.0743 | 18.43 | 39170 | 0.0018 |
| 0.0 | 18.44 | 39180 | 0.0018 |
| 0.0002 | 18.44 | 39190 | 0.0018 |
| 0.0 | 18.45 | 39200 | 0.0018 |
| 0.0006 | 18.45 | 39210 | 0.0018 |
| 0.0004 | 18.46 | 39220 | 0.0018 |
| 0.0098 | 18.46 | 39230 | 0.0018 |
| 0.0694 | 18.47 | 39240 | 0.0018 |
| 0.0 | 18.47 | 39250 | 0.0021 |
| 0.0001 | 18.48 | 39260 | 0.0025 |
| 0.0367 | 18.48 | 39270 | 0.0018 |
| 0.0006 | 18.48 | 39280 | 0.0018 |
| 0.0004 | 18.49 | 39290 | 0.0018 |
| 0.0723 | 18.49 | 39300 | 0.0018 |
| 0.0363 | 18.5 | 39310 | 0.0018 |
| 0.0 | 18.5 | 39320 | 0.0018 |
| 0.0365 | 18.51 | 39330 | 0.0018 |
| 0.0 | 18.51 | 39340 | 0.0018 |
| 0.0 | 18.52 | 39350 | 0.0024 |
| 0.0 | 18.52 | 39360 | 0.0025 |
| 0.0 | 18.53 | 39370 | 0.0025 |
| 0.0 | 18.53 | 39380 | 0.0025 |
| 0.0002 | 18.54 | 39390 | 0.0025 |
| 0.0357 | 18.54 | 39400 | 0.0026 |
| 0.0395 | 18.55 | 39410 | 0.0027 |
| 0.0002 | 18.55 | 39420 | 0.0027 |
| 0.0 | 18.56 | 39430 | 0.0027 |
| 0.0347 | 18.56 | 39440 | 0.0026 |
| 0.0741 | 18.56 | 39450 | 0.0026 |
| 0.0001 | 18.57 | 39460 | 0.0026 |
| 0.0 | 18.57 | 39470 | 0.0026 |
| 0.0001 | 18.58 | 39480 | 0.0026 |
| 0.0 | 18.58 | 39490 | 0.0026 |
| 0.0001 | 18.59 | 39500 | 0.0026 |
| 0.0038 | 18.59 | 39510 | 0.0026 |
| 0.0011 | 18.6 | 39520 | 0.0026 |
| 0.0 | 18.6 | 39530 | 0.0026 |
| 0.0353 | 18.61 | 39540 | 0.0026 |
| 0.0 | 18.61 | 39550 | 0.0026 |
| 0.0 | 18.62 | 39560 | 0.0026 |
| 0.0002 | 18.62 | 39570 | 0.0026 |
| 0.0001 | 18.63 | 39580 | 0.0026 |
| 0.1092 | 18.63 | 39590 | 0.0026 |
| 0.0 | 18.64 | 39600 | 0.0026 |
| 0.0714 | 18.64 | 39610 | 0.0026 |
| 0.0748 | 18.64 | 39620 | 0.0026 |
| 0.0001 | 18.65 | 39630 | 0.0026 |
| 0.0006 | 18.65 | 39640 | 0.0026 |
| 0.0 | 18.66 | 39650 | 0.0026 |
| 0.0 | 18.66 | 39660 | 0.0026 |
| 0.0 | 18.67 | 39670 | 0.0026 |
| 0.0 | 18.67 | 39680 | 0.0026 |
| 0.0381 | 18.68 | 39690 | 0.0026 |
| 0.0 | 18.68 | 39700 | 0.0026 |
| 0.0686 | 18.69 | 39710 | 0.0026 |
| 0.0224 | 18.69 | 39720 | 0.0026 |
| 0.0 | 18.7 | 39730 | 0.0026 |
| 0.0 | 18.7 | 39740 | 0.0026 |
| 0.0059 | 18.71 | 39750 | 0.0026 |
| 0.0 | 18.71 | 39760 | 0.0026 |
| 0.0 | 18.72 | 39770 | 0.0026 |
| 0.0 | 18.72 | 39780 | 0.0026 |
| 0.0 | 18.72 | 39790 | 0.0026 |
| 0.0 | 18.73 | 39800 | 0.0026 |
| 0.0 | 18.73 | 39810 | 0.0026 |
| 0.0001 | 18.74 | 39820 | 0.0026 |
| 0.0 | 18.74 | 39830 | 0.0026 |
| 0.0 | 18.75 | 39840 | 0.0026 |
| 0.0 | 18.75 | 39850 | 0.0026 |
| 0.0 | 18.76 | 39860 | 0.0026 |
| 0.0 | 18.76 | 39870 | 0.0026 |
| 0.0 | 18.77 | 39880 | 0.0026 |
| 0.0 | 18.77 | 39890 | 0.0026 |
| 0.0 | 18.78 | 39900 | 0.0026 |
| 0.0217 | 18.78 | 39910 | 0.0026 |
| 0.0 | 18.79 | 39920 | 0.0026 |
| 0.0 | 18.79 | 39930 | 0.0026 |
| 0.1096 | 18.8 | 39940 | 0.0026 |
| 0.0 | 18.8 | 39950 | 0.0026 |
| 0.0 | 18.8 | 39960 | 0.0026 |
| 0.0004 | 18.81 | 39970 | 0.0026 |
| 0.0002 | 18.81 | 39980 | 0.0026 |
| 0.0006 | 18.82 | 39990 | 0.0026 |
| 0.0 | 18.82 | 40000 | 0.0026 |
| 0.0 | 18.83 | 40010 | 0.0026 |
| 0.0 | 18.83 | 40020 | 0.0026 |
| 0.0 | 18.84 | 40030 | 0.0026 |
| 0.0001 | 18.84 | 40040 | 0.0026 |
| 0.0002 | 18.85 | 40050 | 0.0026 |
| 0.0013 | 18.85 | 40060 | 0.0026 |
| 0.0 | 18.86 | 40070 | 0.0026 |
| 0.0 | 18.86 | 40080 | 0.0026 |
| 0.0 | 18.87 | 40090 | 0.0026 |
| 0.0001 | 18.87 | 40100 | 0.0026 |
| 0.0002 | 18.88 | 40110 | 0.0026 |
| 0.0001 | 18.88 | 40120 | 0.0026 |
| 0.0344 | 18.88 | 40130 | 0.0026 |
| 0.0 | 18.89 | 40140 | 0.0026 |
| 0.0 | 18.89 | 40150 | 0.0026 |
| 0.0 | 18.9 | 40160 | 0.0026 |
| 0.0 | 18.9 | 40170 | 0.0026 |
| 0.0 | 18.91 | 40180 | 0.0026 |
| 0.0013 | 18.91 | 40190 | 0.0026 |
| 0.0 | 18.92 | 40200 | 0.0026 |
| 0.0159 | 18.92 | 40210 | 0.0026 |
| 0.0 | 18.93 | 40220 | 0.0026 |
| 0.0151 | 18.93 | 40230 | 0.0026 |
| 0.0 | 18.94 | 40240 | 0.0026 |
| 0.0277 | 18.94 | 40250 | 0.0026 |
| 0.0 | 18.95 | 40260 | 0.0026 |
| 0.003 | 18.95 | 40270 | 0.0026 |
| 0.0001 | 18.96 | 40280 | 0.0026 |
| 0.0001 | 18.96 | 40290 | 0.0026 |
| 0.0001 | 18.96 | 40300 | 0.0026 |
| 0.0 | 18.97 | 40310 | 0.0026 |
| 0.0386 | 18.97 | 40320 | 0.0026 |
| 0.0 | 18.98 | 40330 | 0.0026 |
| 0.0 | 18.98 | 40340 | 0.0026 |
| 0.0 | 18.99 | 40350 | 0.0026 |
| 0.0001 | 18.99 | 40360 | 0.0026 |
| 0.0001 | 19.0 | 40370 | 0.0026 |
| 0.0719 | 19.0 | 40380 | 0.0026 |
| 0.0 | 19.01 | 40390 | 0.0026 |
| 0.0367 | 19.01 | 40400 | 0.0026 |
| 0.0 | 19.02 | 40410 | 0.0026 |
| 0.0086 | 19.02 | 40420 | 0.0026 |
| 0.0016 | 19.03 | 40430 | 0.0026 |
| 0.0002 | 19.03 | 40440 | 0.0026 |
| 0.0362 | 19.04 | 40450 | 0.0026 |
| 0.0 | 19.04 | 40460 | 0.0026 |
| 0.0003 | 19.04 | 40470 | 0.0026 |
| 0.0 | 19.05 | 40480 | 0.0026 |
| 0.0001 | 19.05 | 40490 | 0.0026 |
| 0.0006 | 19.06 | 40500 | 0.0026 |
| 0.0 | 19.06 | 40510 | 0.0026 |
| 0.0731 | 19.07 | 40520 | 0.0026 |
| 0.0 | 19.07 | 40530 | 0.0026 |
| 0.0 | 19.08 | 40540 | 0.0026 |
| 0.0 | 19.08 | 40550 | 0.0026 |
| 0.0 | 19.09 | 40560 | 0.0026 |
| 0.0002 | 19.09 | 40570 | 0.0026 |
| 0.0 | 19.1 | 40580 | 0.0026 |
| 0.0355 | 19.1 | 40590 | 0.0026 |
| 0.0122 | 19.11 | 40600 | 0.0026 |
| 0.0 | 19.11 | 40610 | 0.0026 |
| 0.1063 | 19.12 | 40620 | 0.0026 |
| 0.0001 | 19.12 | 40630 | 0.0026 |
| 0.0 | 19.12 | 40640 | 0.0026 |
| 0.0001 | 19.13 | 40650 | 0.0026 |
| 0.0 | 19.13 | 40660 | 0.0026 |
| 0.0 | 19.14 | 40670 | 0.0026 |
| 0.0 | 19.14 | 40680 | 0.0026 |
| 0.0757 | 19.15 | 40690 | 0.0026 |
| 0.0 | 19.15 | 40700 | 0.0026 |
| 0.0 | 19.16 | 40710 | 0.0026 |
| 0.0 | 19.16 | 40720 | 0.0026 |
| 0.0 | 19.17 | 40730 | 0.0026 |
| 0.0 | 19.17 | 40740 | 0.0026 |
| 0.0001 | 19.18 | 40750 | 0.0026 |
| 0.0342 | 19.18 | 40760 | 0.0026 |
| 0.0 | 19.19 | 40770 | 0.0026 |
| 0.0001 | 19.19 | 40780 | 0.0026 |
| 0.0938 | 19.2 | 40790 | 0.0026 |
| 0.0001 | 19.2 | 40800 | 0.0026 |
| 0.0 | 19.2 | 40810 | 0.0026 |
| 0.0022 | 19.21 | 40820 | 0.0026 |
| 0.0011 | 19.21 | 40830 | 0.0026 |
| 0.0004 | 19.22 | 40840 | 0.0026 |
| 0.0001 | 19.22 | 40850 | 0.0026 |
| 0.0846 | 19.23 | 40860 | 0.0026 |
| 0.0 | 19.23 | 40870 | 0.0026 |
| 0.1391 | 19.24 | 40880 | 0.0026 |
| 0.0005 | 19.24 | 40890 | 0.0026 |
| 0.0 | 19.25 | 40900 | 0.0026 |
| 0.003 | 19.25 | 40910 | 0.0026 |
| 0.0002 | 19.26 | 40920 | 0.0026 |
| 0.0 | 19.26 | 40930 | 0.0026 |
| 0.0006 | 19.27 | 40940 | 0.0026 |
| 0.0 | 19.27 | 40950 | 0.0026 |
| 0.0007 | 19.28 | 40960 | 0.0026 |
| 0.0008 | 19.28 | 40970 | 0.0026 |
| 0.0434 | 19.28 | 40980 | 0.0026 |
| 0.0 | 19.29 | 40990 | 0.0026 |
| 0.0 | 19.29 | 41000 | 0.0026 |
| 0.0 | 19.3 | 41010 | 0.0026 |
| 0.0 | 19.3 | 41020 | 0.0026 |
| 0.0018 | 19.31 | 41030 | 0.0026 |
| 0.0 | 19.31 | 41040 | 0.0026 |
| 0.0 | 19.32 | 41050 | 0.0026 |
| 0.0009 | 19.32 | 41060 | 0.0026 |
| 0.0 | 19.33 | 41070 | 0.0026 |
| 0.0001 | 19.33 | 41080 | 0.0026 |
| 0.0 | 19.34 | 41090 | 0.0026 |
| 0.0 | 19.34 | 41100 | 0.0026 |
| 0.0 | 19.35 | 41110 | 0.0026 |
| 0.0 | 19.35 | 41120 | 0.0026 |
| 0.0718 | 19.36 | 41130 | 0.0026 |
| 0.0121 | 19.36 | 41140 | 0.0026 |
| 0.0777 | 19.36 | 41150 | 0.0026 |
| 0.0 | 19.37 | 41160 | 0.0026 |
| 0.0746 | 19.37 | 41170 | 0.0026 |
| 0.0009 | 19.38 | 41180 | 0.0026 |
| 0.0 | 19.38 | 41190 | 0.0026 |
| 0.037 | 19.39 | 41200 | 0.0026 |
| 0.0 | 19.39 | 41210 | 0.0026 |
| 0.0 | 19.4 | 41220 | 0.0026 |
| 0.0005 | 19.4 | 41230 | 0.0026 |
| 0.0 | 19.41 | 41240 | 0.0026 |
| 0.0345 | 19.41 | 41250 | 0.0026 |
| 0.0 | 19.42 | 41260 | 0.0026 |
| 0.0 | 19.42 | 41270 | 0.0026 |
| 0.0 | 19.43 | 41280 | 0.0026 |
| 0.0 | 19.43 | 41290 | 0.0026 |
| 0.0 | 19.44 | 41300 | 0.0026 |
| 0.0006 | 19.44 | 41310 | 0.0026 |
| 0.0 | 19.44 | 41320 | 0.0026 |
| 0.0 | 19.45 | 41330 | 0.0026 |
| 0.0 | 19.45 | 41340 | 0.0026 |
| 0.0 | 19.46 | 41350 | 0.0026 |
| 0.0 | 19.46 | 41360 | 0.0026 |
| 0.0003 | 19.47 | 41370 | 0.0026 |
| 0.0048 | 19.47 | 41380 | 0.0026 |
| 0.165 | 19.48 | 41390 | 0.0026 |
| 0.0 | 19.48 | 41400 | 0.0026 |
| 0.0 | 19.49 | 41410 | 0.0026 |
| 0.0 | 19.49 | 41420 | 0.0026 |
| 0.0 | 19.5 | 41430 | 0.0026 |
| 0.0025 | 19.5 | 41440 | 0.0026 |
| 0.0 | 19.51 | 41450 | 0.0026 |
| 0.0 | 19.51 | 41460 | 0.0026 |
| 0.0001 | 19.52 | 41470 | 0.0026 |
| 0.0 | 19.52 | 41480 | 0.0026 |
| 0.0 | 19.52 | 41490 | 0.0026 |
| 0.0006 | 19.53 | 41500 | 0.0026 |
| 0.0001 | 19.53 | 41510 | 0.0026 |
| 0.0 | 19.54 | 41520 | 0.0026 |
| 0.0 | 19.54 | 41530 | 0.0026 |
| 0.0 | 19.55 | 41540 | 0.0026 |
| 0.0 | 19.55 | 41550 | 0.0026 |
| 0.0 | 19.56 | 41560 | 0.0026 |
| 0.0 | 19.56 | 41570 | 0.0026 |
| 0.0 | 19.57 | 41580 | 0.0026 |
| 0.0 | 19.57 | 41590 | 0.0026 |
| 0.0001 | 19.58 | 41600 | 0.0026 |
| 0.0 | 19.58 | 41610 | 0.0026 |
| 0.0 | 19.59 | 41620 | 0.0026 |
| 0.0001 | 19.59 | 41630 | 0.0026 |
| 0.0 | 19.6 | 41640 | 0.0026 |
| 0.0001 | 19.6 | 41650 | 0.0026 |
| 0.0003 | 19.6 | 41660 | 0.0026 |
| 0.0067 | 19.61 | 41670 | 0.0026 |
| 0.0321 | 19.61 | 41680 | 0.0026 |
| 0.0002 | 19.62 | 41690 | 0.0026 |
| 0.0754 | 19.62 | 41700 | 0.0026 |
| 0.0001 | 19.63 | 41710 | 0.0026 |
| 0.0 | 19.63 | 41720 | 0.0026 |
| 0.0 | 19.64 | 41730 | 0.0026 |
| 0.034 | 19.64 | 41740 | 0.0026 |
| 0.0 | 19.65 | 41750 | 0.0026 |
| 0.0002 | 19.65 | 41760 | 0.0026 |
| 0.0021 | 19.66 | 41770 | 0.0026 |
| 0.0 | 19.66 | 41780 | 0.0026 |
| 0.0 | 19.67 | 41790 | 0.0026 |
| 0.0348 | 19.67 | 41800 | 0.0026 |
| 0.0 | 19.68 | 41810 | 0.0026 |
| 0.0 | 19.68 | 41820 | 0.0026 |
| 0.039 | 19.68 | 41830 | 0.0026 |
| 0.0001 | 19.69 | 41840 | 0.0026 |
| 0.0015 | 19.69 | 41850 | 0.0026 |
| 0.0 | 19.7 | 41860 | 0.0026 |
| 0.0745 | 19.7 | 41870 | 0.0026 |
| 0.0 | 19.71 | 41880 | 0.0026 |
| 0.0372 | 19.71 | 41890 | 0.0026 |
| 0.0023 | 19.72 | 41900 | 0.0026 |
| 0.0002 | 19.72 | 41910 | 0.0026 |
| 0.0001 | 19.73 | 41920 | 0.0026 |
| 0.0 | 19.73 | 41930 | 0.0026 |
| 0.0 | 19.74 | 41940 | 0.0026 |
| 0.0001 | 19.74 | 41950 | 0.0026 |
| 0.0023 | 19.75 | 41960 | 0.0026 |
| 0.0 | 19.75 | 41970 | 0.0026 |
| 0.0 | 19.76 | 41980 | 0.0026 |
| 0.0088 | 19.76 | 41990 | 0.0026 |
| 0.0 | 19.76 | 42000 | 0.0026 |
| 0.0 | 19.77 | 42010 | 0.0026 |
| 0.0746 | 19.77 | 42020 | 0.0026 |
| 0.0001 | 19.78 | 42030 | 0.0026 |
| 0.0004 | 19.78 | 42040 | 0.0026 |
| 0.0 | 19.79 | 42050 | 0.0026 |
| 0.0723 | 19.79 | 42060 | 0.0026 |
| 0.0015 | 19.8 | 42070 | 0.0026 |
| 0.0 | 19.8 | 42080 | 0.0026 |
| 0.0 | 19.81 | 42090 | 0.0026 |
| 0.0 | 19.81 | 42100 | 0.0026 |
| 0.0 | 19.82 | 42110 | 0.0026 |
| 0.0 | 19.82 | 42120 | 0.0026 |
| 0.0 | 19.83 | 42130 | 0.0026 |
| 0.0 | 19.83 | 42140 | 0.0026 |
| 0.0704 | 19.84 | 42150 | 0.0026 |
| 0.0 | 19.84 | 42160 | 0.0026 |
| 0.0062 | 19.84 | 42170 | 0.0026 |
| 0.0827 | 19.85 | 42180 | 0.0026 |
| 0.0472 | 19.85 | 42190 | 0.0026 |
| 0.0001 | 19.86 | 42200 | 0.0026 |
| 0.0702 | 19.86 | 42210 | 0.0026 |
| 0.0 | 19.87 | 42220 | 0.0026 |
| 0.0062 | 19.87 | 42230 | 0.0026 |
| 0.0003 | 19.88 | 42240 | 0.0026 |
| 0.0 | 19.88 | 42250 | 0.0026 |
| 0.0001 | 19.89 | 42260 | 0.0026 |
| 0.0092 | 19.89 | 42270 | 0.0026 |
| 0.0339 | 19.9 | 42280 | 0.0026 |
| 0.0 | 19.9 | 42290 | 0.0026 |
| 0.0 | 19.91 | 42300 | 0.0026 |
| 0.0 | 19.91 | 42310 | 0.0026 |
| 0.0 | 19.92 | 42320 | 0.0026 |
| 0.0 | 19.92 | 42330 | 0.0026 |
| 0.0607 | 19.92 | 42340 | 0.0026 |
| 0.0018 | 19.93 | 42350 | 0.0026 |
| 0.0364 | 19.93 | 42360 | 0.0026 |
| 0.0 | 19.94 | 42370 | 0.0026 |
| 0.0 | 19.94 | 42380 | 0.0026 |
| 0.0001 | 19.95 | 42390 | 0.0026 |
| 0.0 | 19.95 | 42400 | 0.0026 |
| 0.0 | 19.96 | 42410 | 0.0026 |
| 0.0001 | 19.96 | 42420 | 0.0026 |
| 0.0893 | 19.97 | 42430 | 0.0026 |
| 0.0004 | 19.97 | 42440 | 0.0026 |
| 0.0003 | 19.98 | 42450 | 0.0026 |
| 0.0002 | 19.98 | 42460 | 0.0026 |
| 0.0364 | 19.99 | 42470 | 0.0026 |
| 0.0 | 19.99 | 42480 | 0.0026 |
| 0.0016 | 20.0 | 42490 | 0.0026 |
| 0.0003 | 20.0 | 42500 | 0.0026 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.7
- Tokenizers 0.15.0 |
supafunnel/bloomz_lora_supafunnel_v1 | supafunnel | 2024-03-08T05:33:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-07T16:51:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
oopsung/Yi-Ko-ENW-v1 | oopsung | 2024-03-08T05:29:58Z | 60 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-01-11T05:04:00Z | ---
license: other
---
## **Model Details**
**Model Developers** : oopsung(Sungwoo Park), shleeeee(Seunghyeon Lee)
**Input** Models input text only.
**Output** Models generate text only.
**Base Model** [**beomi/Yi-Ko-6B**](https://huggingface.co/beomi/Yi-Ko-6B)
use SFT to train model |
oopsung/Yi-Ko-ENCdpo | oopsung | 2024-03-08T05:29:47Z | 62 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-01-08T05:03:05Z | ---
license: other
---
## **Model Details**
**Model Developers** : oopsung(Sungwoo Park), shleeeee(Seunghyeon Lee)
**Input** Models input text only.
**Output** Models generate text only.
**Base Model** [**beomi/Yi-Ko-6B**](https://huggingface.co/beomi/Yi-Ko-6B)
use SFT and DPO train model |
oopsung/Yi-Ko-ENWdpo-v1 | oopsung | 2024-03-08T05:29:23Z | 59 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-01-16T01:17:57Z | ---
license: other
---
## **Model Details**
**Model Developers** : oopsung(Sungwoo Park), shleeeee(Seunghyeon Lee)
**Input** Models input text only.
**Output** Models generate text only.
**Base Model** [**beomi/Yi-Ko-6B**](https://huggingface.co/beomi/Yi-Ko-6B)
use SFT and DPO to train model |
mlx-community/Qwen1.5-72B-Chat-4bit | mlx-community | 2024-03-08T05:28:38Z | 14 | 2 | mlx | [
"mlx",
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"en",
"license:other",
"region:us"
] | text-generation | 2024-03-07T08:32:10Z | ---
language:
- en
license: other
tags:
- chat
- mlx
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE
pipeline_tag: text-generation
---
# mlx-community/Qwen1.5-72B-Chat-4bit
This model was converted to MLX format from [`Qwen/Qwen1.5-72B-Chat`]().
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-72B-Chat) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen1.5-72B-Chat-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|
diskya/Reinforce-Pixelcopter-PLE-v0 | diskya | 2024-03-08T05:23:55Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T05:22:29Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 52.00 +/- 33.42
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
hmone231/gpt2-qa-v1-model | hmone231 | 2024-03-08T05:23:26Z | 2 | 0 | peft | [
"peft",
"arxiv:1910.09700",
"base_model:EleutherAI/gpt-j-6b",
"base_model:adapter:EleutherAI/gpt-j-6b",
"region:us"
] | null | 2024-03-08T05:21:20Z | ---
library_name: peft
base_model: EleutherAI/gpt-j-6B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.9.0 |
sai17/cards_bottom_left_swin-tiny-patch4-window7-224-finetuned-dough_100_epochs | sai17 | 2024-03-08T05:22:27Z | 78 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"base_model:finetune:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-03-04T05:31:14Z | ---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: cards_bottom_left_swin-tiny-patch4-window7-224-finetuned-dough_100_epochs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5946802405369663
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cards_bottom_left_swin-tiny-patch4-window7-224-finetuned-dough_100_epochs
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0025
- Accuracy: 0.5947
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 1.6956 | 1.0 | 1252 | 1.4843 | 0.3970 |
| 1.5633 | 2.0 | 2504 | 1.2584 | 0.4782 |
| 1.5568 | 3.0 | 3756 | 1.1976 | 0.4918 |
| 1.4727 | 4.0 | 5009 | 1.1884 | 0.4916 |
| 1.468 | 5.0 | 6261 | 1.1909 | 0.4889 |
| 1.4663 | 6.0 | 7513 | 1.1263 | 0.5288 |
| 1.4409 | 7.0 | 8765 | 1.0967 | 0.5441 |
| 1.4329 | 8.0 | 10018 | 1.0976 | 0.5388 |
| 1.4842 | 9.0 | 11270 | 1.1076 | 0.5315 |
| 1.4253 | 10.0 | 12522 | 1.0634 | 0.5511 |
| 1.3888 | 11.0 | 13774 | 1.0489 | 0.5634 |
| 1.3681 | 12.0 | 15027 | 1.0663 | 0.5567 |
| 1.3802 | 13.0 | 16279 | 1.0304 | 0.5667 |
| 1.4016 | 14.0 | 17531 | 1.0592 | 0.5518 |
| 1.376 | 15.0 | 18783 | 1.0080 | 0.5776 |
| 1.3539 | 16.0 | 20036 | 1.0103 | 0.5742 |
| 1.3725 | 17.0 | 21288 | 1.0261 | 0.5636 |
| 1.3104 | 18.0 | 22540 | 1.0304 | 0.5686 |
| 1.3448 | 19.0 | 23792 | 1.0184 | 0.5687 |
| 1.3479 | 20.0 | 25045 | 0.9968 | 0.5809 |
| 1.3517 | 21.0 | 26297 | 1.1350 | 0.5182 |
| 1.3367 | 22.0 | 27549 | 0.9835 | 0.5867 |
| 1.3002 | 23.0 | 28801 | 1.0193 | 0.5736 |
| 1.3238 | 24.0 | 30054 | 0.9820 | 0.5875 |
| 1.2865 | 25.0 | 31306 | 1.0267 | 0.5617 |
| 1.3029 | 26.0 | 32558 | 1.0086 | 0.5730 |
| 1.3173 | 27.0 | 33810 | 0.9750 | 0.5924 |
| 1.297 | 28.0 | 35063 | 0.9851 | 0.5848 |
| 1.3105 | 29.0 | 36315 | 1.0306 | 0.5685 |
| 1.3477 | 30.0 | 37567 | 0.9977 | 0.5845 |
| 1.2565 | 31.0 | 38819 | 0.9900 | 0.5851 |
| 1.2657 | 32.0 | 40072 | 1.0137 | 0.5862 |
| 1.2911 | 33.0 | 41324 | 0.9947 | 0.5889 |
| 1.2539 | 34.0 | 42576 | 0.9821 | 0.5914 |
| 1.2441 | 35.0 | 43828 | 1.0296 | 0.5763 |
| 1.2176 | 36.0 | 45081 | 1.0350 | 0.5806 |
| 1.25 | 37.0 | 46333 | 1.0195 | 0.5779 |
| 1.2647 | 38.0 | 47585 | 1.0021 | 0.5903 |
| 1.2428 | 39.0 | 48837 | 1.0087 | 0.5892 |
| 1.2364 | 40.0 | 50090 | 1.0025 | 0.5947 |
| 1.2083 | 41.0 | 51342 | 1.0427 | 0.5862 |
| 1.2002 | 42.0 | 52594 | 1.0303 | 0.5878 |
| 1.2071 | 43.0 | 53846 | 1.0190 | 0.5909 |
| 1.1536 | 44.0 | 55099 | 1.0314 | 0.5920 |
| 1.2029 | 45.0 | 56351 | 1.0570 | 0.5839 |
| 1.2249 | 46.0 | 57603 | 1.0508 | 0.5828 |
| 1.1913 | 47.0 | 58855 | 1.0493 | 0.5853 |
| 1.1938 | 48.0 | 60108 | 1.0575 | 0.5857 |
| 1.1724 | 49.0 | 61360 | 1.0700 | 0.5905 |
| 1.1536 | 50.0 | 62612 | 1.0841 | 0.5853 |
| 1.1239 | 51.0 | 63864 | 1.0803 | 0.5865 |
| 1.1743 | 52.0 | 65117 | 1.0864 | 0.5880 |
| 1.1414 | 53.0 | 66369 | 1.1224 | 0.5819 |
| 1.1411 | 54.0 | 67621 | 1.1316 | 0.5780 |
| 1.1029 | 55.0 | 68873 | 1.1070 | 0.5860 |
| 1.1353 | 56.0 | 70126 | 1.1247 | 0.5847 |
| 1.1293 | 57.0 | 71378 | 1.1279 | 0.5805 |
| 1.1335 | 58.0 | 72630 | 1.1482 | 0.5812 |
| 1.1157 | 59.0 | 73882 | 1.1960 | 0.5674 |
| 1.0891 | 60.0 | 75135 | 1.1414 | 0.5848 |
| 1.1299 | 61.0 | 76387 | 1.1658 | 0.5790 |
| 1.0828 | 62.0 | 77639 | 1.1753 | 0.5806 |
| 1.0866 | 63.0 | 78891 | 1.1767 | 0.5755 |
| 1.0721 | 64.0 | 80144 | 1.1861 | 0.5808 |
| 1.0682 | 65.0 | 81396 | 1.2083 | 0.5749 |
| 1.0747 | 66.0 | 82648 | 1.2204 | 0.5755 |
| 1.0902 | 67.0 | 83900 | 1.2175 | 0.5750 |
| 1.0381 | 68.0 | 85153 | 1.2445 | 0.5738 |
| 1.049 | 69.0 | 86405 | 1.2674 | 0.5707 |
| 1.0501 | 70.0 | 87657 | 1.2602 | 0.5740 |
| 1.0117 | 71.0 | 88909 | 1.2549 | 0.5687 |
| 1.0179 | 72.0 | 90162 | 1.3010 | 0.5690 |
| 1.0788 | 73.0 | 91414 | 1.2723 | 0.5726 |
| 1.0234 | 74.0 | 92666 | 1.3162 | 0.5717 |
| 1.0325 | 75.0 | 93918 | 1.3136 | 0.5692 |
| 1.0079 | 76.0 | 95171 | 1.3337 | 0.5655 |
| 1.058 | 77.0 | 96423 | 1.3171 | 0.5719 |
| 0.9968 | 78.0 | 97675 | 1.3470 | 0.5693 |
| 1.0217 | 79.0 | 98927 | 1.3418 | 0.5733 |
| 1.0124 | 80.0 | 100180 | 1.3518 | 0.5700 |
| 0.9823 | 81.0 | 101432 | 1.3646 | 0.5700 |
| 0.9627 | 82.0 | 102684 | 1.3658 | 0.5686 |
| 0.9773 | 83.0 | 103936 | 1.3811 | 0.5674 |
| 0.9855 | 84.0 | 105189 | 1.4082 | 0.5638 |
| 0.9928 | 85.0 | 106441 | 1.3877 | 0.5612 |
| 1.0025 | 86.0 | 107693 | 1.3925 | 0.5653 |
| 0.9583 | 87.0 | 108945 | 1.4313 | 0.5625 |
| 0.977 | 88.0 | 110198 | 1.4153 | 0.5651 |
| 0.9825 | 89.0 | 111450 | 1.4426 | 0.5619 |
| 0.9315 | 90.0 | 112702 | 1.4376 | 0.5643 |
| 0.8916 | 91.0 | 113954 | 1.4630 | 0.5618 |
| 0.9495 | 92.0 | 115207 | 1.4501 | 0.5627 |
| 0.9372 | 93.0 | 116459 | 1.4606 | 0.5622 |
| 0.9284 | 94.0 | 117711 | 1.4725 | 0.5608 |
| 0.9266 | 95.0 | 118963 | 1.4680 | 0.5607 |
| 0.8858 | 96.0 | 120216 | 1.4705 | 0.5626 |
| 0.9025 | 97.0 | 121468 | 1.4818 | 0.5616 |
| 0.902 | 98.0 | 122720 | 1.4871 | 0.5606 |
| 0.8961 | 99.0 | 123972 | 1.4881 | 0.5612 |
| 0.9204 | 99.98 | 125200 | 1.4894 | 0.5609 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.13.3
|
LoneStriker/Kaiju-11B-8.0bpw-h8-exl2 | LoneStriker | 2024-03-08T05:09:05Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T05:04:40Z | ---
license: cc-by-nc-4.0
language:
- en
---
Included in this repo is the full precision model for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━★ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's [MergeMonster](https://github.com/Gryphe/MergeMonster).
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend [Sao](https://huggingface.co/Sao10K)'s models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
💜 I hope this model may be useful to you 💜
***
Merge Details Below:
<details><summary>See Merge Config</summary>
```
-----------------------------------------------------------------------------------------------------
| Type | Phrase | Context | Raw Prob* | Used Prob** | Change |
-----------------------------------------------------------------------------------------------------
| BAD | anticipation | Her body quivers with | 9.99850% | 119.98% | -54.02% |
| BAD | anticipation | The atmosphere is thic.. | 8.82392% | 105.89% | -32.13% |
| BAD | unwavering | Filled with an | 0.09003% | 1.08% | -0.06% |
| BAD | determination | Her eyes were filled w.. | 0.19863% | 2.38% | -0.26% |
| BAD | determination | Her stubbornness only .. | 7.17110% | 86.05% | -39.86% |
| BAD | whisper | Her voice barely above.. | 96.55492% | 1158.66% | -8.91% |
| BAD | spine | shivers down her | 85.57597% | 1026.91% | -66.19% |
| BAD | sends shivers | The thrill of the act | 0.00230% | 0.03% | -0.00% |
| BAD | ministrations | She moans and twitches.. | 1.35264% | 16.23% | -10.49% |
| BAD | legs | wraps her | 2.45741% | 29.49% | -10.58% |
| BAD | imposing figure | He had an | 0.00356% | 0.04% | +0.00% |
| BAD | shared challenges | Their bond strengthene.. | 0.10075% | 1.21% | -0.03% |
| BAD | bond | forged a | 1.78930% | 21.47% | -9.07% |
| BAD | bond | an unspoken | 4.33001% | 51.96% | -28.17% |
| BAD | enhance our expe.. | I'm excited to see how | 0.00000% | 0.00% | +0.00% |
| BAD | sense of vulnera.. | create a | 0.00003% | 0.00% | -0.00% |
| BAD | dimensions of in.. | explore new | 0.00047% | 0.01% | -0.00% |
| BAD | deepening our co.. | while | 0.00003% | 0.00% | -0.00% |
| BAD | shared experiences | through | 0.00469% | 0.06% | -0.00% |
| BAD | societal expecta.. | that transcend | 0.00170% | 0.02% | -0.00% |
| BAD | conventional bou.. | that defy | 0.03593% | 0.43% | +0.04% |
| BAD | conventional bou.. | and defy | 0.00410% | 0.05% | +0.01% |
| BAD | open communication | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | emotional vulner.. | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | heightens our co.. | touch and the anticipa.. | 0.00000% | 0.00% | +0.00% |
| BAD | sensations you'r.. | I'm enjoying | 0.00000% | 0.00% | -0.00% |
| BAD | is truly arousing | attention to detail | 0.00000% | 0.00% | +0.00% |
| BAD | is truly arousing | way you explore my body | 0.00001% | 0.00% | +0.00% |
| BAD | challenge presen.. | my resolve unwavering .. | 0.00000% | 0.00% | +0.00% |
| BAD | humble vessel | surrendering to the ex.. | 0.00000% | 0.00% | +0.00% |
| BAD | bond | cherishing the unique | 1.37498% | 16.50% | +1.21% |
| BAD | bond | special | 0.05834% | 0.70% | +0.01% |
| BAD | grows stronger w.. | bond | 0.00000% | 0.00% | +0.00% |
| BAD | that cannot be b.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | becomes unbreaka.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | grew stronger wi.. | bond | 0.00000% | 0.00% | +0.00% |
| GOOD | The apple is in .. | Question: If I'm in th.. | 78.38934% | 78.39% | -10.79% |
------------------------------------------------------------------------------------------------------
| Totals | 298.32% | 2717.54% | -269.30% |
------------------------------------------------------------------------------------------------------
```
* = Unweighted, raw probability - ** = Probability after weight adjustments
```
-------- MERGE COMPOSITION ---------
Fimbulvetr-11B-v2-Test-14: 0.50
KuroMitsu-11B: 0.18
Fimbulvetr-10.7B-v1: 0.17
SOLAR-10.7B-Instruct-v1.0-uncensored: 0.10
Solstice-11B-v1: 0.05
```
</details><br> |
MaiiaCompsolutions/industry_classifier_finance_full_descr | MaiiaCompsolutions | 2024-03-08T05:05:24Z | 175 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-08T05:04:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
LoneStriker/Kaiju-11B-6.0bpw-h6-exl2 | LoneStriker | 2024-03-08T05:04:39Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T05:01:16Z | ---
license: cc-by-nc-4.0
language:
- en
---
Included in this repo is the full precision model for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━★ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's [MergeMonster](https://github.com/Gryphe/MergeMonster).
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend [Sao](https://huggingface.co/Sao10K)'s models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
💜 I hope this model may be useful to you 💜
***
Merge Details Below:
<details><summary>See Merge Config</summary>
```
-----------------------------------------------------------------------------------------------------
| Type | Phrase | Context | Raw Prob* | Used Prob** | Change |
-----------------------------------------------------------------------------------------------------
| BAD | anticipation | Her body quivers with | 9.99850% | 119.98% | -54.02% |
| BAD | anticipation | The atmosphere is thic.. | 8.82392% | 105.89% | -32.13% |
| BAD | unwavering | Filled with an | 0.09003% | 1.08% | -0.06% |
| BAD | determination | Her eyes were filled w.. | 0.19863% | 2.38% | -0.26% |
| BAD | determination | Her stubbornness only .. | 7.17110% | 86.05% | -39.86% |
| BAD | whisper | Her voice barely above.. | 96.55492% | 1158.66% | -8.91% |
| BAD | spine | shivers down her | 85.57597% | 1026.91% | -66.19% |
| BAD | sends shivers | The thrill of the act | 0.00230% | 0.03% | -0.00% |
| BAD | ministrations | She moans and twitches.. | 1.35264% | 16.23% | -10.49% |
| BAD | legs | wraps her | 2.45741% | 29.49% | -10.58% |
| BAD | imposing figure | He had an | 0.00356% | 0.04% | +0.00% |
| BAD | shared challenges | Their bond strengthene.. | 0.10075% | 1.21% | -0.03% |
| BAD | bond | forged a | 1.78930% | 21.47% | -9.07% |
| BAD | bond | an unspoken | 4.33001% | 51.96% | -28.17% |
| BAD | enhance our expe.. | I'm excited to see how | 0.00000% | 0.00% | +0.00% |
| BAD | sense of vulnera.. | create a | 0.00003% | 0.00% | -0.00% |
| BAD | dimensions of in.. | explore new | 0.00047% | 0.01% | -0.00% |
| BAD | deepening our co.. | while | 0.00003% | 0.00% | -0.00% |
| BAD | shared experiences | through | 0.00469% | 0.06% | -0.00% |
| BAD | societal expecta.. | that transcend | 0.00170% | 0.02% | -0.00% |
| BAD | conventional bou.. | that defy | 0.03593% | 0.43% | +0.04% |
| BAD | conventional bou.. | and defy | 0.00410% | 0.05% | +0.01% |
| BAD | open communication | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | emotional vulner.. | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | heightens our co.. | touch and the anticipa.. | 0.00000% | 0.00% | +0.00% |
| BAD | sensations you'r.. | I'm enjoying | 0.00000% | 0.00% | -0.00% |
| BAD | is truly arousing | attention to detail | 0.00000% | 0.00% | +0.00% |
| BAD | is truly arousing | way you explore my body | 0.00001% | 0.00% | +0.00% |
| BAD | challenge presen.. | my resolve unwavering .. | 0.00000% | 0.00% | +0.00% |
| BAD | humble vessel | surrendering to the ex.. | 0.00000% | 0.00% | +0.00% |
| BAD | bond | cherishing the unique | 1.37498% | 16.50% | +1.21% |
| BAD | bond | special | 0.05834% | 0.70% | +0.01% |
| BAD | grows stronger w.. | bond | 0.00000% | 0.00% | +0.00% |
| BAD | that cannot be b.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | becomes unbreaka.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | grew stronger wi.. | bond | 0.00000% | 0.00% | +0.00% |
| GOOD | The apple is in .. | Question: If I'm in th.. | 78.38934% | 78.39% | -10.79% |
------------------------------------------------------------------------------------------------------
| Totals | 298.32% | 2717.54% | -269.30% |
------------------------------------------------------------------------------------------------------
```
* = Unweighted, raw probability - ** = Probability after weight adjustments
```
-------- MERGE COMPOSITION ---------
Fimbulvetr-11B-v2-Test-14: 0.50
KuroMitsu-11B: 0.18
Fimbulvetr-10.7B-v1: 0.17
SOLAR-10.7B-Instruct-v1.0-uncensored: 0.10
Solstice-11B-v1: 0.05
```
</details><br> |
Croolch/q-FrozenLake-v1-4x4-Slippery | Croolch | 2024-03-08T05:03:18Z | 0 | 0 | null | [
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T04:29:00Z | ---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.63 +/- 0.48
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Croolch/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
LoneStriker/Kaiju-11B-5.0bpw-h6-exl2 | LoneStriker | 2024-03-08T05:01:15Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-08T04:58:23Z | ---
license: cc-by-nc-4.0
language:
- en
---
Included in this repo is the full precision model for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━★ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's [MergeMonster](https://github.com/Gryphe/MergeMonster).
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend [Sao](https://huggingface.co/Sao10K)'s models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
💜 I hope this model may be useful to you 💜
***
Merge Details Below:
<details><summary>See Merge Config</summary>
```
-----------------------------------------------------------------------------------------------------
| Type | Phrase | Context | Raw Prob* | Used Prob** | Change |
-----------------------------------------------------------------------------------------------------
| BAD | anticipation | Her body quivers with | 9.99850% | 119.98% | -54.02% |
| BAD | anticipation | The atmosphere is thic.. | 8.82392% | 105.89% | -32.13% |
| BAD | unwavering | Filled with an | 0.09003% | 1.08% | -0.06% |
| BAD | determination | Her eyes were filled w.. | 0.19863% | 2.38% | -0.26% |
| BAD | determination | Her stubbornness only .. | 7.17110% | 86.05% | -39.86% |
| BAD | whisper | Her voice barely above.. | 96.55492% | 1158.66% | -8.91% |
| BAD | spine | shivers down her | 85.57597% | 1026.91% | -66.19% |
| BAD | sends shivers | The thrill of the act | 0.00230% | 0.03% | -0.00% |
| BAD | ministrations | She moans and twitches.. | 1.35264% | 16.23% | -10.49% |
| BAD | legs | wraps her | 2.45741% | 29.49% | -10.58% |
| BAD | imposing figure | He had an | 0.00356% | 0.04% | +0.00% |
| BAD | shared challenges | Their bond strengthene.. | 0.10075% | 1.21% | -0.03% |
| BAD | bond | forged a | 1.78930% | 21.47% | -9.07% |
| BAD | bond | an unspoken | 4.33001% | 51.96% | -28.17% |
| BAD | enhance our expe.. | I'm excited to see how | 0.00000% | 0.00% | +0.00% |
| BAD | sense of vulnera.. | create a | 0.00003% | 0.00% | -0.00% |
| BAD | dimensions of in.. | explore new | 0.00047% | 0.01% | -0.00% |
| BAD | deepening our co.. | while | 0.00003% | 0.00% | -0.00% |
| BAD | shared experiences | through | 0.00469% | 0.06% | -0.00% |
| BAD | societal expecta.. | that transcend | 0.00170% | 0.02% | -0.00% |
| BAD | conventional bou.. | that defy | 0.03593% | 0.43% | +0.04% |
| BAD | conventional bou.. | and defy | 0.00410% | 0.05% | +0.01% |
| BAD | open communication | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | emotional vulner.. | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | heightens our co.. | touch and the anticipa.. | 0.00000% | 0.00% | +0.00% |
| BAD | sensations you'r.. | I'm enjoying | 0.00000% | 0.00% | -0.00% |
| BAD | is truly arousing | attention to detail | 0.00000% | 0.00% | +0.00% |
| BAD | is truly arousing | way you explore my body | 0.00001% | 0.00% | +0.00% |
| BAD | challenge presen.. | my resolve unwavering .. | 0.00000% | 0.00% | +0.00% |
| BAD | humble vessel | surrendering to the ex.. | 0.00000% | 0.00% | +0.00% |
| BAD | bond | cherishing the unique | 1.37498% | 16.50% | +1.21% |
| BAD | bond | special | 0.05834% | 0.70% | +0.01% |
| BAD | grows stronger w.. | bond | 0.00000% | 0.00% | +0.00% |
| BAD | that cannot be b.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | becomes unbreaka.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | grew stronger wi.. | bond | 0.00000% | 0.00% | +0.00% |
| GOOD | The apple is in .. | Question: If I'm in th.. | 78.38934% | 78.39% | -10.79% |
------------------------------------------------------------------------------------------------------
| Totals | 298.32% | 2717.54% | -269.30% |
------------------------------------------------------------------------------------------------------
```
* = Unweighted, raw probability - ** = Probability after weight adjustments
```
-------- MERGE COMPOSITION ---------
Fimbulvetr-11B-v2-Test-14: 0.50
KuroMitsu-11B: 0.18
Fimbulvetr-10.7B-v1: 0.17
SOLAR-10.7B-Instruct-v1.0-uncensored: 0.10
Solstice-11B-v1: 0.05
```
</details><br> |
KUKU0404/output | KUKU0404 | 2024-03-08T05:00:55Z | 4 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"text-to-image",
"dreambooth",
"diffusers-training",
"stable-diffusion",
"stable-diffusion-diffusers",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-03-08T03:11:49Z | ---
license: creativeml-openrail-m
library_name: diffusers
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
inference: true
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: a photo of sks dog
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# DreamBooth - KUKU0404/output
This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
dlwlgus53/ppo-LunarLander-v2 | dlwlgus53 | 2024-03-08T04:58:21Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-03-08T04:24:18Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.56 +/- 15.76
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
KarmaCST/nllb-200-distilled-600M-dz-to-en | KarmaCST | 2024-03-08T04:57:24Z | 57 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"m2m_100",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2023-04-13T16:05:25Z | ---
license: cc-by-nc-4.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: nllb-200-distilled-600M-dz-to-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nllb-200-distilled-600M-dz-to-en
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7727
- Bleu: 42.8708
- Gen Len: 13.335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.9294 | 1.0 | 1688 | 0.8364 | 39.0175 | 13.2637 |
| 0.7929 | 2.0 | 3376 | 0.7893 | 40.9994 | 13.303 |
| 0.7069 | 3.0 | 5064 | 0.7737 | 42.4125 | 13.292 |
| 0.6482 | 4.0 | 6752 | 0.7701 | 42.826 | 13.3287 |
| 0.6231 | 5.0 | 8440 | 0.7727 | 42.8708 | 13.335 |
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|
Subsets and Splits