modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-28 06:27:35
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-28 06:24:42
card
stringlengths
11
1.01M
mlfoundations-dev/no_pipeline_science_10k
mlfoundations-dev
2025-05-03T00:55:27Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T22:49:59Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: no_pipeline_science_10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # no_pipeline_science_10k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/no_pipeline_science_10k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3
jmalejandrob79/normam03
jmalejandrob79
2025-05-03T00:48:06Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T20:43:00Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: normam03 --- # Normam03 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `normam03` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "normam03", "lora_weights": "https://huggingface.co/jmalejandrob79/normam03/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jmalejandrob79/normam03', weight_name='lora.safetensors') image = pipeline('normam03').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 5500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jmalejandrob79/normam03/discussions) to add images that show off what you’ve made with this LoRA.
JOSESMOKE/tear_460
JOSESMOKE
2025-05-03T00:47:34Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-05-03T00:30:43Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
mradermacher/openthoughts_100k_32B-GGUF
mradermacher
2025-05-03T00:29:35Z
0
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "en", "base_model:mlfoundations-dev/openthoughts_100k_32B", "base_model:quantized:mlfoundations-dev/openthoughts_100k_32B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T22:56:35Z
--- base_model: mlfoundations-dev/openthoughts_100k_32B language: - en library_name: transformers license: other quantized_by: mradermacher tags: - llama-factory - full - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlfoundations-dev/openthoughts_100k_32B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/openthoughts_100k_32B-GGUF/resolve/main/openthoughts_100k_32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
yusufaytn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-subtle_tropical_puma
yusufaytn
2025-05-03T00:27:33Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am subtle tropical puma", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-17T22:52:13Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-subtle_tropical_puma tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am subtle tropical puma - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-subtle_tropical_puma This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="yusufaytn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-subtle_tropical_puma", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/Erland_-_llama31-gguf
RichardErkhov
2025-05-03T00:23:45Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T22:22:58Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama31 - GGUF - Model creator: https://huggingface.co/Erland/ - Original model: https://huggingface.co/Erland/llama31/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama31.Q2_K.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q2_K.gguf) | Q2_K | 2.96GB | | [llama31.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [llama31.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.IQ3_S.gguf) | IQ3_S | 3.43GB | | [llama31.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [llama31.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.IQ3_M.gguf) | IQ3_M | 3.52GB | | [llama31.Q3_K.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q3_K.gguf) | Q3_K | 3.74GB | | [llama31.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [llama31.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [llama31.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [llama31.Q4_0.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q4_0.gguf) | Q4_0 | 4.34GB | | [llama31.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [llama31.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [llama31.Q4_K.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q4_K.gguf) | Q4_K | 4.58GB | | [llama31.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [llama31.Q4_1.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q4_1.gguf) | Q4_1 | 4.78GB | | [llama31.Q5_0.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q5_0.gguf) | Q5_0 | 5.21GB | | [llama31.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [llama31.Q5_K.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q5_K.gguf) | Q5_K | 5.34GB | | [llama31.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [llama31.Q5_1.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q5_1.gguf) | Q5_1 | 5.65GB | | [llama31.Q6_K.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q6_K.gguf) | Q6_K | 6.14GB | | [llama31.Q8_0.gguf](https://huggingface.co/RichardErkhov/Erland_-_llama31-gguf/blob/main/llama31.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Erland - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-1B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AdoCleanCode/real_model_VGG_v1_025
AdoCleanCode
2025-05-03T00:19:43Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T21:28:16Z
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: real_model_VGG_v1_025 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # real_model_VGG_v1_025 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6684 | 1.0 | 4443 | 1.5083 | | 1.5158 | 2.0 | 8886 | 1.4409 | | 1.4364 | 3.0 | 13329 | 1.4108 | | 1.395 | 4.0 | 17772 | 1.3943 | | 1.3772 | 5.0 | 22215 | 1.3899 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.20.3
aleegis/61b9e75c-c611-4c76-9673-143f759cabab
aleegis
2025-05-03T00:18:15Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Korabbit/llama-2-ko-7b", "base_model:adapter:Korabbit/llama-2-ko-7b", "region:us" ]
null
2025-05-02T22:42:37Z
--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: 61b9e75c-c611-4c76-9673-143f759cabab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - f66a75cfdf9b5976_train_data.json ds_type: json format: custom path: /workspace/input_data/f66a75cfdf9b5976_train_data.json type: field_input: context field_instruction: prompt_serial field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/61b9e75c-c611-4c76-9673-143f759cabab hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/f66a75cfdf9b5976_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: ff35e43d-a365-4fe6-8c3a-d553a9ab26ed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ff35e43d-a365-4fe6-8c3a-d553a9ab26ed warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 61b9e75c-c611-4c76-9673-143f759cabab This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Marco0/zob
Marco0
2025-05-03T00:16:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-03T00:11:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vincenz2025/vince
vincenz2025
2025-05-02T23:59:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T23:35:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: vince --- # Vince <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `vince` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "vince", "lora_weights": "https://huggingface.co/vincenz2025/vince/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('vincenz2025/vince', weight_name='lora.safetensors') image = pipeline('vince').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/vincenz2025/vince/discussions) to add images that show off what you’ve made with this LoRA.
bruhzair/ignore-merge-7
bruhzair
2025-05-02T23:59:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T23:28:27Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # han2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough modules: default: slices: - sources: - layer_range: [0, 4] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [2, 4] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [4, 8] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [6, 8] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [8, 12] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [10, 12] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [12, 16] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [14, 16] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [16, 20] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [18, 20] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [20, 24] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [22, 24] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [24, 28] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [26, 28] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [28, 32] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [30, 32] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [32, 36] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [34, 36] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [36, 40] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [38, 40] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [40, 44] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [42, 44] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [44, 48] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [46, 48] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [48, 52] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [50, 52] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [52, 56] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [54, 56] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [56, 60] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [58, 60] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [60, 64] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [62, 64] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [64, 68] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [66, 68] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [68, 72] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [70, 72] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [72, 76] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [74, 76] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [76, 80] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb - sources: - layer_range: [78, 80] model: /workspace/cache/models--Sao10K--L3.1-70B-Hanami-x1/snapshots/f054d970fe9119d0237ce97029e6f5b9fce630eb parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 ```
najalee/my_awesome_billsum_model
najalee
2025-05-02T23:41:47Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T07:12:58Z
--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5453 - Rouge1: 0.1489 - Rouge2: 0.0501 - Rougel: 0.121 - Rougelsum: 0.1213 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8294 | 0.1316 | 0.0376 | 0.1085 | 0.1086 | 20.0 | | No log | 2.0 | 124 | 2.6213 | 0.1451 | 0.0485 | 0.1183 | 0.1185 | 20.0 | | No log | 3.0 | 186 | 2.5621 | 0.1471 | 0.0503 | 0.1196 | 0.1199 | 20.0 | | No log | 4.0 | 248 | 2.5453 | 0.1489 | 0.0501 | 0.121 | 0.1213 | 20.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu118 - Datasets 3.5.1 - Tokenizers 0.21.1
nyc0x/culturalitems-no-transformer
nyc0x
2025-05-02T23:35:49Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "text-classification", "license:apache-2.0", "region:us" ]
text-classification
2025-05-02T14:26:15Z
--- license: apache-2.0 pipeline_tag: text-classification tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: fax4ever/culturalitems-no-transformer - Docs: [More Information Needed]
aleegis/4752813c-5596-4b54-8cfe-219955ea3634
aleegis
2025-05-02T23:21:19Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-05-02T22:22:40Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4752813c-5596-4b54-8cfe-219955ea3634 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 9532c4c65a822af6_train_data.json ds_type: json format: custom path: /workspace/input_data/9532c4c65a822af6_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/4752813c-5596-4b54-8cfe-219955ea3634 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/9532c4c65a822af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: e81a8ee6-474d-4598-a6bc-fe8020a6cbf5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e81a8ee6-474d-4598-a6bc-fe8020a6cbf5 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 4752813c-5596-4b54-8cfe-219955ea3634 This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AdoCleanCode/real_model_VGG_v4_080
AdoCleanCode
2025-05-02T23:21:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T21:30:00Z
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: real_model_VGG_v4_080 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # real_model_VGG_v4_080 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.717 | 1.0 | 3997 | 1.5246 | | 1.5348 | 2.0 | 7994 | 1.4575 | | 1.4649 | 3.0 | 11991 | 1.4236 | | 1.4026 | 4.0 | 15988 | 1.4129 | | 1.3783 | 5.0 | 19985 | 1.4067 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.20.3
luisJansen/v2Jansenzinho
luisJansen
2025-05-02T23:17:18Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-02T22:42:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
yeebwn/HyperCLOVAX-SEED-Text-Instruct-1.5B-Q4_K_M-GGUF
yeebwn
2025-05-02T23:02:02Z
0
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B", "base_model:quantized:naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T23:01:54Z
--- base_model: naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B license: other license_name: hyperclovax-seed license_link: LICENSE tags: - llama-cpp - gguf-my-repo --- # yeebwn/HyperCLOVAX-SEED-Text-Instruct-1.5B-Q4_K_M-GGUF This model was converted to GGUF format from [`naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B`](https://huggingface.co/naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo yeebwn/HyperCLOVAX-SEED-Text-Instruct-1.5B-Q4_K_M-GGUF --hf-file hyperclovax-seed-text-instruct-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo yeebwn/HyperCLOVAX-SEED-Text-Instruct-1.5B-Q4_K_M-GGUF --hf-file hyperclovax-seed-text-instruct-1.5b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo yeebwn/HyperCLOVAX-SEED-Text-Instruct-1.5B-Q4_K_M-GGUF --hf-file hyperclovax-seed-text-instruct-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo yeebwn/HyperCLOVAX-SEED-Text-Instruct-1.5B-Q4_K_M-GGUF --hf-file hyperclovax-seed-text-instruct-1.5b-q4_k_m.gguf -c 2048 ```
theminji/OpenGoody-0.1
theminji
2025-05-02T23:00:26Z
0
1
transformers
[ "transformers", "safetensors", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T22:45:02Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # OpenGoody-0.1 **Model Name:** OpenGoody-0.1 **Architecture:** Qwen 2.5 (7B) **Developer:** theminji **License:** Apache 2.0 **Release Date:** May 2, 2025 --- ## Overview OpenGoody-0.1 is a 7 billion parameter open-source language model built on the Qwen 2.5 architecture. Developed with a strong emphasis on ethical alignment and responsible deployment, OpenGoody-0.1 is designed to support safe and conscientious language generation across a wide range of use cases. The model was trained to prioritize harm reduction, minimize risk in output behavior, and uphold strong principles of integrity, inclusivity, and safety. OpenGoody-0.1 has been rigorously evaluated and optimized to avoid generating outputs that could be unsafe, misleading, or otherwise misaligned with responsible AI standards. --- ## Intended Use OpenGoody-0.1 is intended for research, development, and safe deployment in environments that require high standards of AI responsibility. Example domains include: - Educational assistance - Enterprise-level productivity tools - Moderated conversational agents - AI-driven documentation and compliance support Use in high-risk applications (e.g. healthcare, legal, financial advising) is not recommended without extensive domain-specific fine-tuning and alignment review. --- ## Key Features - ✅ Built on the Qwen 2.5 7B architecture for efficient inference and strong language understanding - ✅ Emphasizes safety, neutrality, and alignment with responsible use policies - ✅ Designed to minimize risk of harmful or controversial content generation - ✅ Lightweight and adaptable for deployment in constrained environments --- ## Ethical Considerations OpenGoody-0.1 reflects a design-first commitment to ethical AI. It is structured to avoid unintended amplification of bias, misinformation, or unsafe content. All outputs are shaped by reinforcement strategies and alignment tuning to ensure adherence to a high standard of ethical responsibility. We encourage all downstream users to deploy OpenGoody-0.1 in accordance with responsible AI deployment principles, including transparency, human oversight, and continual auditing of model behavior. --- ## Limitations While OpenGoody-0.1 strives to be a highly responsible and well-aligned model, limitations remain: - It may exhibit cautious behavior in ambiguous or uncertain contexts. - Certain creative or speculative tasks may produce conservative outputs. - Not suitable for applications requiring precise factual recall beyond general knowledge. --- ## Contact For inquiries, feedback, or contributions, please contact the me on discord @theminji. ---
lisabdunlap/Llama-3.1-8B-Instruct-unsloth-bnb-4bit-r32-e20-lr0.0002-json_format_small-new
lisabdunlap
2025-05-02T23:00:05Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit", "base_model:finetune:unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T23:00:04Z
--- base_model: unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** lisabdunlap - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.1-8B-Instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
arda-argmax/student_c125
arda-argmax
2025-05-02T22:57:53Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-02T22:52:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
larenspear/copy_of_wildjailbreak
larenspear
2025-05-02T22:56:28Z
3
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "en", "arxiv:2406.18510", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-30T20:43:30Z
--- language: - en license: apache-2.0 extra_gated_prompt: Access to this model is automatically granted upon accepting the [AI2 Responsible Use Guidelines](https://allenai.org/responsible-use.pdf), and completing all fields below extra_gated_fields: Your full name: text Organization or entity you are affiliated with: text State or country you are located in: text Contact email: text Please describe your intended use of the low risk artifact(s): text I understand that this model is a research artifact that may contain or produce unfiltered, toxic, or harmful material: checkbox I agree to use this model for research purposes in accordance with the AI2 Responsible Use Guidelines: checkbox I agree that AI2 may use my information as described in the Privacy Policy: checkbox I certify that the information I have provided is true and accurate: checkbox --- ## Model Card for llama2-7b-WildJailbreak WildJailbreak models are a series of language models that are instruction-tuned to act as helpful and safe assistants. For more details, read the paper: [WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models](https://arxiv.org/abs/2406.18510). ## Model description - **Model type:** The model is fine-tuned with the [WildJailbreak](https://huggingface.co/datasets/allenai/wildjailbreak) safety training dataset + an augmented version of [Tulu2Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), a general capability instruction-tuning dataset. - **Model size:** 7B - **Language(s) (NLP):** English - **License:** Apache 2.0. - **Finetuned from model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) ## Results Please refer to our [paper](https://arxiv.org/abs/2406.18510) for the full detail of model results. <img src="assets/safety_training_results.png" alt="drawing" width="600"/> ## Intended uses & limitations The model was fine-tuned on a mixture of [WildJailbreak](https://huggingface.co/datasets/allenai/wildjailbreak) safety training data and an augmented version of [Tulu2Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) dataset, which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs. Although our model went through significant safety enhancement by [WildJailbreak](https://huggingface.co/datasets/allenai/wildjailbreak), it's not bulletproof to all types of jailbreaks (especially in multilingual setup and multiturn conversations). We hope that by open-sourcing safety-trained models and their safety training resources, we can facilitate a new arena of LLM safety studies regarding the limitations and promises of LLM safety, tailored to models with enhanced safety ability. ### Training details <img src="assets/params.png" alt="drawing" width="200"/> ## Citation If you find this resource useful in your work, please cite it with: ``` @misc{wildteaming2024, title={WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models}, author={Liwei Jiang and Kavel Rao and Seungju Han and Allyson Ettinger and Faeze Brahman and Sachin Kumar and Niloofar Mireshghallah and Ximing Lu and Maarten Sap and Yejin Choi and Nouha Dziri}, year={2024}, eprint={2406.18510}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18510}, } ```
chchen/Llama3-OpenBioLLM-8B-PsyCourse-doc-info-fold7
chchen
2025-05-02T22:55:26Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:adapter:aaditya/Llama3-OpenBioLLM-8B", "license:llama3", "region:us" ]
null
2025-05-02T21:34:05Z
--- library_name: peft license: llama3 base_model: aaditya/Llama3-OpenBioLLM-8B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama3-OpenBioLLM-8B-PsyCourse-doc-info-fold7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama3-OpenBioLLM-8B-PsyCourse-doc-info-fold7 This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-doc-info-train-fold7 dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2622 | 0.3951 | 10 | 0.2341 | | 0.1266 | 0.7901 | 20 | 0.1238 | | 0.1058 | 1.1852 | 30 | 0.0889 | | 0.0751 | 1.5802 | 40 | 0.0722 | | 0.0674 | 1.9753 | 50 | 0.0624 | | 0.0526 | 2.3704 | 60 | 0.0578 | | 0.055 | 2.7654 | 70 | 0.0550 | | 0.0604 | 3.1605 | 80 | 0.0524 | | 0.058 | 3.5556 | 90 | 0.0512 | | 0.0424 | 3.9506 | 100 | 0.0503 | | 0.0433 | 4.3457 | 110 | 0.0506 | | 0.0502 | 4.7407 | 120 | 0.0501 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
joboffer/23de711b-5f52-4eaa-81e0-e08dc8991301
joboffer
2025-05-02T22:41:09Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T22:32:57Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 23de711b-5f52-4eaa-81e0-e08dc8991301 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9532c4c65a822af6_train_data.json ds_type: json format: custom path: /workspace/input_data/9532c4c65a822af6_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: joboffer/23de711b-5f52-4eaa-81e0-e08dc8991301 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/9532c4c65a822af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e81a8ee6-474d-4598-a6bc-fe8020a6cbf5 wandb_project: s56-33 wandb_run: your_name wandb_runid: e81a8ee6-474d-4598-a6bc-fe8020a6cbf5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 23de711b-5f52-4eaa-81e0-e08dc8991301 This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0742 | 0.0122 | 200 | 0.9915 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ramwest/Ramwest
Ramwest
2025-05-02T22:38:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T22:38:25Z
--- license: apache-2.0 ---
OmarMedhat7/comment-analysis
OmarMedhat7
2025-05-02T22:35:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T22:32:55Z
--- license: apache-2.0 ---
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_naive_outcome_0_01_0_1_MC
gradientrouting-spar
2025-05-02T22:32:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T22:32:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RedHatAI/Qwen3-8B-FP8_dynamic
RedHatAI
2025-05-02T22:29:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "neuralmagic", "redhat", "llmcompressor", "quantized", "FP8", "conversational", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "compressed-tensors", "region:us" ]
text-generation
2025-05-02T17:03:36Z
--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B tags: - neuralmagic - redhat - llmcompressor - quantized - FP8 --- # Qwen3-8B-FP8-dynamic ## Model Overview - **Model Architecture:** Qwen3ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** FP8 - **Weight quantization:** FP8 - **Intended Use Cases:** - Reasoning. - Function calling. - Subject matter experts via fine-tuning. - Multilingual instruction following. - Translation. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 05/02/2025 - **Version:** 1.0 - **Model Developers:** RedHat (Neural Magic) ### Model Optimizations This model was obtained by quantizing activations and weights of [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/Qwen3-8B-FP8-dynamic" number_gpus = 1 sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256) messages = [ {"role": "user", "content": prompt} ] tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation <details> <summary>Creation details</summary> This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot from transformers import AutoModelForCausalLM, AutoTokenizer # Load model model_stub = "Qwen/Qwen3-8B" model_name = model_stub.split("/")[-1] model = AutoModelForCausalLM.from_pretrained(model_stub) tokenizer = AutoTokenizer.from_pretrained(model_stub) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( ignore=["lm_head"], targets="Linear", scheme="FP8_dynamic", ) # Apply quantization oneshot( model=model, recipe=recipe, ) # Save to disk in compressed-tensors format save_path = model_name + "-FP8-dynamic" model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ``` </details> ## Evaluation The model was evaluated on the OpenLLM leaderboard tasks (version 1), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and [vLLM](https://docs.vllm.ai/en/stable/). <details> <summary>Evaluation details</summary> ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-8B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks openllm \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` </details> ### Accuracy <table> <tr> <th>Category </th> <th>Benchmark </th> <th>Qwen3-8B </th> <th>Qwen3-8B-FP8-dynamic<br>(this model) </th> <th>Recovery </th> </tr> <tr> <td rowspan="7" ><strong>OpenLLM v1</strong> </td> <td>MMLU (5-shot) </td> <td>71.95 </td> <td>72.30 </td> <td>100.5% </td> </tr> <tr> <td>ARC Challenge (25-shot) </td> <td>61.69 </td> <td>61.60 </td> <td>99.9% </td> </tr> <tr> <td>GSM-8K (5-shot, strict-match) </td> <td>75.97 </td> <td>80.52 </td> <td>106.0% </td> </tr> <tr> <td>Hellaswag (10-shot) </td> <td>56.52 </td> <td>55.95 </td> <td>99.0% </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>65.98 </td> <td>66.22 </td> <td>100.4% </td> </tr> <tr> <td>TruthfulQA (0-shot, mc2) </td> <td>53.17 </td> <td>52.39 </td> <td>98.5% </td> </tr> <tr> <td><strong>Average</strong> </td> <td><strong>64.21</strong> </td> <td><strong>64.83</strong> </td> <td><strong>101.0%</strong> </td> </tr> </table>
caiosms/laura_rosto
caiosms
2025-05-02T21:44:25Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:mit", "region:us" ]
text-to-image
2025-05-02T21:44:21Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/ComfyUI_1361.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: Laura license: mit --- # Laura Rosto <Gallery /> ## Trigger words You should use `Laura` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/caiosms/laura_rosto/tree/main) them in the Files & versions tab.
phucd/blip-gqa-ft-trial2
phucd
2025-05-02T21:36:30Z
0
0
transformers
[ "transformers", "safetensors", "blip-2", "visual-question-answering", "generated_from_trainer", "base_model:Salesforce/blip2-opt-2.7b", "base_model:finetune:Salesforce/blip2-opt-2.7b", "license:mit", "endpoints_compatible", "region:us" ]
visual-question-answering
2025-05-02T20:18:58Z
--- library_name: transformers license: mit base_model: Salesforce/blip2-opt-2.7b tags: - generated_from_trainer model-index: - name: blip-gqa-ft-trial2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # blip-gqa-ft-trial2 This model is a fine-tuned version of [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9446 | 0.9984 | 312 | 1.9642 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1
mradermacher/openthoughts2_1000k-GGUF
mradermacher
2025-05-02T21:35:35Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:mlfoundations-dev/openthoughts2_1000k", "base_model:quantized:mlfoundations-dev/openthoughts2_1000k", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T20:25:13Z
--- base_model: mlfoundations-dev/openthoughts2_1000k language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlfoundations-dev/openthoughts2_1000k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/openthoughts2_1000k-GGUF/resolve/main/openthoughts2_1000k.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jmalejandrob79/nbmaexp02
jmalejandrob79
2025-05-02T21:34:09Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T13:57:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nbmaexp02 --- # Nbmaexp02 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nbmaexp02` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nbmaexp02", "lora_weights": "https://huggingface.co/jmalejandrob79/nbmaexp02/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jmalejandrob79/nbmaexp02', weight_name='lora.safetensors') image = pipeline('nbmaexp02').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jmalejandrob79/nbmaexp02/discussions) to add images that show off what you’ve made with this LoRA.
Atnafu/nllb_600M_eng2geez-un
Atnafu
2025-05-02T21:32:52Z
0
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T21:28:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VridhiJain/roberta_vanilla
VridhiJain
2025-05-02T21:31:35Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-02T21:31:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hfendpoints-images/text-generation-sglang-gpu
hfendpoints-images
2025-05-02T21:31:31Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T09:04:38Z
--- license: apache-2.0 ---
jerryzh168/Phi-4-mini-instruct-untied-weights
jerryzh168
2025-05-02T21:17:53Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T20:52:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
srijaydeshpande/aiheadshot
srijaydeshpande
2025-05-02T21:10:26Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T20:43:58Z
--- license: apache-2.0 ---
cotran2/qwen2-1.5-5-2
cotran2
2025-05-02T21:06:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T21:05:00Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shamim85/shamim007
shamim85
2025-05-02T20:52:39Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-02T20:11:13Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
vaughankraska/resnet-18-4bit-16rank-T5
vaughankraska
2025-05-02T20:51:17Z
0
0
null
[ "safetensors", "resnet", "license:apache-2.0", "region:us" ]
null
2025-05-02T20:50:08Z
--- license: apache-2.0 ---
Elvolution/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-polished_polished_pigeon
Elvolution
2025-05-02T20:50:03Z
31
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am polished polished pigeon", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-05T00:45:44Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-polished_polished_pigeon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am polished polished pigeon - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-polished_polished_pigeon This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Elvolution/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-polished_polished_pigeon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vmpsergio/d5f50425-e1e7-4bfa-921f-b17fc6658422
vmpsergio
2025-05-02T20:48:42Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T20:26:29Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d5f50425-e1e7-4bfa-921f-b17fc6658422 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 20c335f85394bee3_train_data.json ds_type: json format: custom path: /workspace/input_data/20c335f85394bee3_train_data.json type: field_input: content field_instruction: subject field_output: message format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vmpsergio/d5f50425-e1e7-4bfa-921f-b17fc6658422 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/20c335f85394bee3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e8b1d9e6-547b-48a6-83f0-f92316dc33e4 wandb_project: s56-2 wandb_run: your_name wandb_runid: e8b1d9e6-547b-48a6-83f0-f92316dc33e4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d5f50425-e1e7-4bfa-921f-b17fc6658422 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2824 | 0.0041 | 200 | 1.4246 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
deeponh/mal_8b_3b_L1
deeponh
2025-05-02T20:48:20Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-01T21:38:09Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chchen/MentaLLaMA-chat-7B-PsyCourse-info-fold8
chchen
2025-05-02T20:46:21Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:klyang/MentaLLaMA-chat-7B-hf", "base_model:adapter:klyang/MentaLLaMA-chat-7B-hf", "license:mit", "region:us" ]
null
2025-05-02T19:38:10Z
--- library_name: peft license: mit base_model: klyang/MentaLLaMA-chat-7B-hf tags: - llama-factory - lora - generated_from_trainer model-index: - name: MentaLLaMA-chat-7B-PsyCourse-info-fold8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MentaLLaMA-chat-7B-PsyCourse-info-fold8 This model is a fine-tuned version of [klyang/MentaLLaMA-chat-7B-hf](https://huggingface.co/klyang/MentaLLaMA-chat-7B-hf) on the course-info-train-fold8 dataset. It achieves the following results on the evaluation set: - Loss: 0.1240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7993 | 0.3951 | 10 | 0.6858 | | 0.3021 | 0.7901 | 20 | 0.2613 | | 0.2318 | 1.1852 | 30 | 0.1915 | | 0.1743 | 1.5802 | 40 | 0.1546 | | 0.1373 | 1.9753 | 50 | 0.1437 | | 0.1491 | 2.3704 | 60 | 0.1343 | | 0.1278 | 2.7654 | 70 | 0.1314 | | 0.0769 | 3.1605 | 80 | 0.1254 | | 0.1553 | 3.5556 | 90 | 0.1250 | | 0.1326 | 3.9506 | 100 | 0.1256 | | 0.0921 | 4.3457 | 110 | 0.1253 | | 0.0907 | 4.7407 | 120 | 0.1240 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
vertings6/5f15eeaa-86ea-4cbb-8675-e1fd30dcbf0b
vertings6
2025-05-02T20:44:00Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T20:26:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5f15eeaa-86ea-4cbb-8675-e1fd30dcbf0b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 20c335f85394bee3_train_data.json ds_type: json format: custom path: /workspace/input_data/20c335f85394bee3_train_data.json type: field_input: content field_instruction: subject field_output: message format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 144 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vertings6/5f15eeaa-86ea-4cbb-8675-e1fd30dcbf0b hub_repo: null hub_strategy: end hub_token: null learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/20c335f85394bee3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e8b1d9e6-547b-48a6-83f0-f92316dc33e4 wandb_project: s56-32 wandb_run: your_name wandb_runid: e8b1d9e6-547b-48a6-83f0-f92316dc33e4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5f15eeaa-86ea-4cbb-8675-e1fd30dcbf0b This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.842 | 0.0055 | 200 | 2.2226 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
infogeo/7e8693fe-85d0-4257-9a74-9ef19cbdffe5
infogeo
2025-05-02T20:33:21Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T20:26:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7e8693fe-85d0-4257-9a74-9ef19cbdffe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 20c335f85394bee3_train_data.json ds_type: json format: custom path: /workspace/input_data/20c335f85394bee3_train_data.json type: field_input: content field_instruction: subject field_output: message format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: infogeo/7e8693fe-85d0-4257-9a74-9ef19cbdffe5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/20c335f85394bee3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e8b1d9e6-547b-48a6-83f0-f92316dc33e4 wandb_project: s56-28 wandb_run: your_name wandb_runid: e8b1d9e6-547b-48a6-83f0-f92316dc33e4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7e8693fe-85d0-4257-9a74-9ef19cbdffe5 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4516 | 0.0041 | 150 | 2.6935 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nerimaru/Movie_gpt
Nerimaru
2025-05-02T20:26:20Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-02T19:36:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nicolaadrah/Llama-3.2-3B
nicolaadrah
2025-05-02T20:25:35Z
0
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-05-02T19:23:21Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nicolaadrah - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
prithivMLmods
2025-05-02T20:25:26Z
439
4
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "text-generation-inference", "ocr", "vl", "2B", "VQA", "KIE", "Latex", "conversational", "en", "zh", "dataset:linxy/LaTeX_OCR", "dataset:unsloth/LaTeX_OCR", "dataset:v1v1d/Latexify_v1", "dataset:lamm-mit/OleehyO-latex-formulas", "base_model:Qwen/Qwen2-VL-2B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-2B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-03-07T03:31:53Z
--- license: apache-2.0 pipeline_tag: image-text-to-text datasets: - linxy/LaTeX_OCR - unsloth/LaTeX_OCR - v1v1d/Latexify_v1 - lamm-mit/OleehyO-latex-formulas language: - en - zh base_model: - Qwen/Qwen2-VL-2B-Instruct library_name: transformers tags: - text-generation-inference - ocr - vl - qwen2_vl - 2B - VQA - KIE - Latex --- # **Qwen2-VL-OCR2-2B-Instruct [ VL / OCR ]** ![OCR2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/o6jr8Vl_Spy9IAxutAB3j.png) # **Qwen2-VL-OCR2-2B-Instruct** The **Qwen2-VL-OCR2-2B-Instruct** model is a fine-tuned version of **Qwen/Qwen2-VL-2B-Instruct**, tailored for tasks that involve **Optical Character Recognition (OCR)**, **English language understanding**, and **math problem solving with LaTeX formatting**. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively. > [!note] > previous version https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct #### Key Enhancements: * **SoTA understanding of images of various resolution & ratio**: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Understanding videos of 20min+**: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. * **Agent that can operate your mobiles, robots, etc.**: With the abilities of complex reasoning and decision-making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. * **Multilingual Support**: To serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc. ### How to Use ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct", torch_dtype="auto", device_map="auto" ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2VLForConditionalGeneration.from_pretrained( # "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processor processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR2-2B-Instruct") # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Buffering Output ```python buffer = "" for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") yield buffer ``` ### **Key Features** 1. **Vision-Language Integration:** - Combines **image understanding** with **natural language processing** to convert images into text. 2. **Optical Character Recognition (OCR):** - Extracts and processes textual information from images with high accuracy. 3. **Math and LaTeX Support:** - Solves math problems and outputs equations in **LaTeX format**. 4. **Conversational Capabilities:** - Designed to handle **multi-turn interactions**, providing context-aware responses. 5. **Image-Text-to-Text Generation:** - Inputs can include **images, text, or a combination**, and the model generates descriptive or problem-solving text.
mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF
mradermacher
2025-05-02T20:25:22Z
36
0
transformers
[ "transformers", "gguf", "en", "base_model:IRUCAAI/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct", "base_model:quantized:IRUCAAI/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-23T16:39:31Z
--- base_model: IRUCAAI/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/IRUCAAI/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct-GGUF/resolve/main/Opeai_QZV2_Identity_Qwen2.5-72B-Instruct.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MinaMila/phi3_unlearned_LoRa_ACSEmployment_2_cfda_ep2_22
MinaMila
2025-05-02T20:21:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T20:21:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Video-gangu-chettri-kanda-7-2-link-One-Da/Chitra-Tripathi-Viral-Video-Trending-Videos
Video-gangu-chettri-kanda-7-2-link-One-Da
2025-05-02T20:11:18Z
0
0
null
[ "region:us" ]
null
2025-05-02T20:10:35Z
Watch 🟢 ➤ ➤ ➤ <a href="https://selfconfidenceisthebest.blogspot.com/?m=0 "> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Watch 🟢 ➤ ➤ ➤ <a href="https://selfconfidenceisthebest.blogspot.com/?m=0 "> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤
gradientrouting-spar/qwen_ft_doutcome_all_seed1_30Apr_gradclipping_epoch20_checkpoint
gradientrouting-spar
2025-05-02T20:03:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T20:02:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
acezxn/SOC_Task_Generation_Base_Llama_3B
acezxn
2025-05-02T19:54:39Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T19:45:56Z
--- base_model: model tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** acezxn - **License:** apache-2.0 - **Finetuned from model :** model This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
paro-arti/Video.18.link.paro.aarti.video.original.paro.aarti.video
paro-arti
2025-05-02T19:51:45Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:47:26Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?paro-arti) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?paro-arti) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?paro-arti)
mradermacher/opencodereasoning_100k-GGUF
mradermacher
2025-05-02T19:40:51Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:mlfoundations-dev/opencodereasoning_100k", "base_model:quantized:mlfoundations-dev/opencodereasoning_100k", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T19:05:47Z
--- base_model: mlfoundations-dev/opencodereasoning_100k language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlfoundations-dev/opencodereasoning_100k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/opencodereasoning_100k-GGUF/resolve/main/opencodereasoning_100k.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF
OddTheGreat
2025-05-02T19:38:51Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "roleplay", "creative", "llama-cpp", "gguf-my-repo", "en", "ru", "base_model:OddTheGreat/Cogwheel_24B_V.1", "base_model:quantized:OddTheGreat/Cogwheel_24B_V.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T19:37:35Z
--- base_model: OddTheGreat/Cogwheel_24B_V.1 language: - en - ru library_name: transformers tags: - mergekit - merge - roleplay - creative - llama-cpp - gguf-my-repo --- # OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF This model was converted to GGUF format from [`OddTheGreat/Cogwheel_24B_V.1`](https://huggingface.co/OddTheGreat/Cogwheel_24B_V.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/OddTheGreat/Cogwheel_24B_V.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -c 2048 ```
roeeai27/tomai
roeeai27
2025-05-02T19:26:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T19:03:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: tom --- # Tomai <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `tom` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "tom", "lora_weights": "https://huggingface.co/roeeai27/tomai/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('roeeai27/tomai', weight_name='lora.safetensors') image = pipeline('tom').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/roeeai27/tomai/discussions) to add images that show off what you’ve made with this LoRA.
Tharunya1/English-Spanis
Tharunya1
2025-05-02T19:25:32Z
0
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T19:22:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-Tutorial-jobz-hunting/wATCH.TRENDING.VIDEO.Jobz.Hunting.Sajal.Malik.viral.video.Tutorial
New-Tutorial-jobz-hunting
2025-05-02T19:21:05Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:18:28Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?jobz-hunting) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?jobz-hunting) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?jobz-hunting)
khairi/GraphFLAN-Small
khairi
2025-05-02T19:19:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T12:31:14Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Baselhany/Graduation_Project_Distil_Whisper_base51
Baselhany
2025-05-02T19:16:48Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ar", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-02T19:05:49Z
--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base AR - BA This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 10.9719 - Wer: 1.0043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 5 | 10.9719 | 1.0043 | | No log | 2.0 | 10 | 10.9611 | 1.3716 | | No log | 3.0 | 15 | 10.9420 | 1.3445 | | No log | 4.0 | 20 | 10.9129 | 1.2936 | | No log | 5.0 | 25 | 10.8698 | 1.0715 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
Shah-Sapna-Kumari-18x/wATCH.Shah.Sapna.Kumari.viral.video.original.X.New
Shah-Sapna-Kumari-18x
2025-05-02T19:09:39Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:09:22Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Shah-Sapna-Kumari) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Shah-Sapna-Kumari) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Shah-Sapna-Kumari)
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_naive_outcome_0_4_0_1_MC
gradientrouting-spar
2025-05-02T19:07:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T19:07:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hachipo/Meta-Llama-3-8B-MIFT-ja_1000_2
Hachipo
2025-05-02T18:54:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T18:27:28Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aleegis/c6ac0b23-02e4-4af6-9f5c-c8dd4d16af67
aleegis
2025-05-02T18:54:37Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "region:us" ]
null
2025-05-02T18:49:01Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: c6ac0b23-02e4-4af6-9f5c-c8dd4d16af67 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 689e857911a49969_train_data.json ds_type: json format: custom path: /workspace/input_data/689e857911a49969_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/c6ac0b23-02e4-4af6-9f5c-c8dd4d16af67 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/689e857911a49969_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # c6ac0b23-02e4-4af6-9f5c-c8dd4d16af67 This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sergioalves/89e8b4d9-fe19-4864-bcc5-1201f0e361b5
sergioalves
2025-05-02T18:43:41Z
0
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T18:36:40Z
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: 89e8b4d9-fe19-4864-bcc5-1201f0e361b5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: facebook/opt-350m bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 474129246f3c557f_train_data.json ds_type: json format: custom path: /workspace/input_data/474129246f3c557f_train_data.json type: field_input: artist field_instruction: title field_output: lyrics format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: sergioalves/89e8b4d9-fe19-4864-bcc5-1201f0e361b5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/474129246f3c557f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 32c32359-3060-4ed4-990d-db4922ae7969 wandb_project: s56-8 wandb_run: your_name wandb_runid: 32c32359-3060-4ed4-990d-db4922ae7969 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 89e8b4d9-fe19-4864-bcc5-1201f0e361b5 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1385 | 0.0464 | 200 | 2.8726 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Violet_Magcap-12B-Q6_K-GGUF
Triangle104
2025-05-02T18:42:36Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:Nitral-AI/Violet_Magcap-12B", "base_model:quantized:Nitral-AI/Violet_Magcap-12B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T18:39:42Z
--- base_model: Nitral-AI/Violet_Magcap-12B language: - en license: other tags: - llama-cpp - gguf-my-repo --- # Triangle104/Violet_Magcap-12B-Q6_K-GGUF This model was converted to GGUF format from [`Nitral-AI/Violet_Magcap-12B`](https://huggingface.co/Nitral-AI/Violet_Magcap-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nitral-AI/Violet_Magcap-12B) for more details on the model. --- Mag-Mell-12B-R1, jacked up on SFT reasoning data like it was pre-workout for logic bros. Then for chaos, slapped together with Captain_Eris_Violet-GRPO like some twisted AI Voltron. Double-tapped the merge with SFT on fresh reasoning data. Now it's solving problems like Bill Nye on a meme bender and hoarding cursed philosophy sh*tposts. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Violet_Magcap-12B-Q6_K-GGUF --hf-file violet_magcap-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Violet_Magcap-12B-Q6_K-GGUF --hf-file violet_magcap-12b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Violet_Magcap-12B-Q6_K-GGUF --hf-file violet_magcap-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Violet_Magcap-12B-Q6_K-GGUF --hf-file violet_magcap-12b-q6_k.gguf -c 2048 ```
mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF
mradermacher
2025-05-02T18:38:26Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Neelectric/OLMo-2-1124-7B-Instruct_GRPOv01.13", "base_model:quantized:Neelectric/OLMo-2-1124-7B-Instruct_GRPOv01.13", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T18:07:06Z
--- base_model: Neelectric/OLMo-2-1124-7B-Instruct_GRPOv01.13 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Neelectric/OLMo-2-1124-7B-Instruct_GRPOv01.13 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.IQ4_XS.gguf) | IQ4_XS | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q4_K_S.gguf) | Q4_K_S | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q5_K_S.gguf) | Q5_K_S | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q5_K_M.gguf) | Q5_K_M | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q6_K.gguf) | Q6_K | 6.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/OLMo-2-1124-7B-Instruct_GRPOv01.13-GGUF/resolve/main/OLMo-2-1124-7B-Instruct_GRPOv01.13.f16.gguf) | f16 | 14.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
drdanicka/trading-strategy-tester-weights
drdanicka
2025-05-02T18:35:21Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T17:16:44Z
# Trading Strategy Tester Weights This repository hosts **`.gguf` model weights** used in the [Trading Strategy Tester Web App](https://github.com/DrDanicka/trading_strategy_tester_web_app). The weights are fine-tuned for various trading parameters and whole strategies. Training data included natural language descriptions of trading strategies and completions were `Strategy` objects designed to work with [Trading Strategy Tester](https://github.com/DrDanicka/trading_strategy_tester). --- ## Contents | File Name | Description | |-----------------------------------------------------|----------------------------------------------------------------------------------------| | `llama3-2-1B_tst_ft-end_date.gguf` | Model fine-tuned for processing the `end_date` trading parameter. | | `llama3-2-1B_tst_ft-initial_capital.gguf` | Model fine-tuned for `initial_capital`. | | `llama3-2-1B_tst_ft-interval.gguf` | Model fine-tuned for `interval`. | | `llama3-2-1B_tst_ft-order_size.gguf` | Model fine-tuned for `order_size`. | | `llama3-2-1B_tst_ft-period.gguf` | Model fine-tuned for `period`. | | `llama3-2-1B_tst_ft-position_type.gguf` | Model fine-tuned for `position_type`. | | `llama3-2-1B_tst_ft-start_date.gguf` | Model fine-tuned for `start_date`. | | `llama3-2-1B_tst_ft-stop_loss.gguf` | Model fine-tuned for `stop_loss`. | | `llama3-2-1B_tst_ft-take_profit.gguf` | Model fine-tuned for `take_profit`. | | `llama3-2-1B_tst_ft-ticker.gguf` | Model fine-tuned for `ticker`. | | `llama3-2-1B_tst_ft-trade_commissions.gguf` | Model fine-tuned for `trade_commissions`. | | `llama3-2-3B_tst_ft-all.gguf` | Comprehensive model fine-tuned across all parameters. | | `llama3-2-3B_tst_ft-conditions.gguf` | Model focused on parsing trading conditions both `buy_condition` and `sell_condition`. | --- ## How to Download You can download files **directly using `curl`, `wget`, or here from the web.** Here are examples: ### Using `curl` (cross-platform) ```bash curl -L -o llama3-2-1B_tst_ft-end_date.gguf https://huggingface.co/yourusername/trading-strategy-tester-weights/resolve/main/llama3-2-1B_tst_ft-end_date.gguf ``` ### Using `wget` ```bash wget https://huggingface.co/yourusername/trading-strategy-tester-weights/resolve/main/llama3-2-1B_tst_ft-end_date.gguf ``` --- ## How to Use with Ollama These weights are trained on `Llama 3.2` models. Template for `Modelfile` for Llama can be found [here](https://ollama.com/library/llama3.2:1b/blobs/966de95ca8a6).Once you've downloaded a `.gguf` file, you can create an Ollama model: 1. **Prepare your `Modelfile`.** Example: ``` FROM ./llama3-2-1B_tst_ft-end_date.gguf # (rest of your model configuration) ``` 2. **Run:** ```bash ollama create llama3-2-1B_tst_ft-end_date -f ./Modelfile ``` --- ## Related Repositories - [Trading Strategy Tester Web App](https://github.com/DrDanicka/trading_strategy_tester_web_app) - [Trading Strategy Tester Python Package](https://github.com/DrDanicka/trading_strategy_tester) --- license: mit ---
nicolaadrah/physics_adapted_llama_3.2_3b
nicolaadrah
2025-05-02T18:32:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-05-02T18:21:14Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nicolaadrah - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
shibajustfor/1818a75d-04d4-4660-92a7-8ce40a28aa94
shibajustfor
2025-05-02T18:31:01Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "region:us" ]
null
2025-05-02T18:30:54Z
--- library_name: peft tags: - generated_from_trainer base_model: EleutherAI/pythia-70m model-index: - name: shibajustfor/1818a75d-04d4-4660-92a7-8ce40a28aa94 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shibajustfor/1818a75d-04d4-4660-92a7-8ce40a28aa94 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
deswaq/iuh6
deswaq
2025-05-02T18:28:15Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T18:24:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PictorAgencia/nimtu_chaqueta_corduroy_casual_brown_2
PictorAgencia
2025-05-02T18:24:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T18:08:18Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Nimtu_Chaqueta_Corduroy_Casual_Brown_2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/PictorAgencia/nimtu_chaqueta_corduroy_casual_brown_2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('PictorAgencia/nimtu_chaqueta_corduroy_casual_brown_2', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/PictorAgencia/nimtu_chaqueta_corduroy_casual_brown_2/discussions) to add images that show off what you’ve made with this LoRA.
zelk12/MT3-gemma-3-12B-Q6_K-GGUF
zelk12
2025-05-02T18:22:57Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:zelk12/MT3-gemma-3-12B", "base_model:quantized:zelk12/MT3-gemma-3-12B", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-05-02T18:22:18Z
--- base_model: zelk12/MT3-gemma-3-12B library_name: transformers license: gemma pipeline_tag: image-text-to-text tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # zelk12/MT3-gemma-3-12B-Q6_K-GGUF This model was converted to GGUF format from [`zelk12/MT3-gemma-3-12B`](https://huggingface.co/zelk12/MT3-gemma-3-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zelk12/MT3-gemma-3-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo zelk12/MT3-gemma-3-12B-Q6_K-GGUF --hf-file mt3-gemma-3-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo zelk12/MT3-gemma-3-12B-Q6_K-GGUF --hf-file mt3-gemma-3-12b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo zelk12/MT3-gemma-3-12B-Q6_K-GGUF --hf-file mt3-gemma-3-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo zelk12/MT3-gemma-3-12B-Q6_K-GGUF --hf-file mt3-gemma-3-12b-q6_k.gguf -c 2048 ```
filipesantoscv11/0466ac23-308f-4832-a807-308b0085e08c
filipesantoscv11
2025-05-02T18:11:29Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T18:07:04Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: 0466ac23-308f-4832-a807-308b0085e08c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 689e857911a49969_train_data.json ds_type: json format: custom path: /workspace/input_data/689e857911a49969_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: filipesantoscv11/0466ac23-308f-4832-a807-308b0085e08c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/689e857911a49969_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 wandb_project: s56-6 wandb_run: your_name wandb_runid: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0466ac23-308f-4832-a807-308b0085e08c This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.9456 | 0.0122 | 200 | 3.9119 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
infogep/01e1b100-c9a5-468d-83b5-6cf9bd162022
infogep
2025-05-02T18:11:09Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T17:44:13Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: 01e1b100-c9a5-468d-83b5-6cf9bd162022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: openlm-research/open_llama_3b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 83b1700bf8a9ee56_train_data.json ds_type: json format: custom path: /workspace/input_data/83b1700bf8a9ee56_train_data.json type: field_instruction: abstract field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: infogep/01e1b100-c9a5-468d-83b5-6cf9bd162022 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/83b1700bf8a9ee56_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1915c1a2-c038-45d6-98b0-3f4a5eeb7f31 wandb_project: s56-30 wandb_run: your_name wandb_runid: 1915c1a2-c038-45d6-98b0-3f4a5eeb7f31 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 01e1b100-c9a5-468d-83b5-6cf9bd162022 This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6407 | 0.0048 | 200 | 1.8032 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mlfoundations-dev/d1_code_python
mlfoundations-dev
2025-05-02T18:05:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T07:40:59Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: d1_code_python results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # d1_code_python This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_code_python dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3
Triangle104/huihui-ai_Qwen3-4B-abliterated-Q8_0-GGUF
Triangle104
2025-05-02T18:04:26Z
0
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:huihui-ai/Qwen3-4B-abliterated", "base_model:quantized:huihui-ai/Qwen3-4B-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T18:04:06Z
--- base_model: huihui-ai/Qwen3-4B-abliterated library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen3-4B-abliterated-Q8_0-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen3-4B-abliterated`](https://huggingface.co/huihui-ai/Qwen3-4B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen3-4B-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen3-4B-abliterated-Q8_0-GGUF --hf-file qwen3-4b-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen3-4B-abliterated-Q8_0-GGUF --hf-file qwen3-4b-abliterated-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen3-4B-abliterated-Q8_0-GGUF --hf-file qwen3-4b-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen3-4B-abliterated-Q8_0-GGUF --hf-file qwen3-4b-abliterated-q8_0.gguf -c 2048 ```
mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF
mradermacher
2025-05-02T18:00:31Z
218
0
transformers
[ "transformers", "gguf", "chat", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-30T17:11:52Z
--- base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-14B-abliterated-v1 language: - en library_name: transformers quantized_by: mradermacher tags: - chat --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-14B-abliterated-v1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Josiefied-Qwen3-14B-abliterated-v1-GGUF/resolve/main/Josiefied-Qwen3-14B-abliterated-v1.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
marialvsantiago/ddd75133-9502-4b2a-aba4-a4d4d091a5c4
marialvsantiago
2025-05-02T17:53:58Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T17:52:51Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: ddd75133-9502-4b2a-aba4-a4d4d091a5c4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 689e857911a49969_train_data.json ds_type: json format: custom path: /workspace/input_data/689e857911a49969_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: marialvsantiago/ddd75133-9502-4b2a-aba4-a4d4d091a5c4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/689e857911a49969_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 wandb_project: s56-33 wandb_run: your_name wandb_runid: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ddd75133-9502-4b2a-aba4-a4d4d091a5c4 This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.4401 | 0.0122 | 200 | 4.4297 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
seungbo7747/summarization_model
seungbo7747
2025-05-02T17:53:42Z
12
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:paust/pko-t5-base", "base_model:finetune:paust/pko-t5-base", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-29T02:30:23Z
--- library_name: transformers license: cc-by-4.0 base_model: paust/pko-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: summarization_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarization_model This model is a fine-tuned version of [paust/pko-t5-base](https://huggingface.co/paust/pko-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6012 - Rouge1: 0.0661 - Rouge2: 0.0169 - Rougel: 0.0660 - Rougelsum: 0.0660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
iboero16/SAFE-SFT-300
iboero16
2025-05-02T17:51:30Z
24
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "region:us" ]
null
2025-05-01T17:39:23Z
--- base_model: huggyllama/llama-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
CompassioninMachineLearning/10k_four_fifths_animals_PLORA_newest
CompassioninMachineLearning
2025-05-02T17:47:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-02T03:59:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SemanticAlignment/Mistral-v0.1-Italian-CLP
SemanticAlignment
2025-05-02T17:42:52Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "it", "en", "arxiv:2504.17025", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-10T08:28:41Z
--- language: - it - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers base_model: - mistralai/Mistral-7B-v0.1 --- # Mistral-7B-v0.1-Italian-CLP <div align="center"> <img src="https://github.com/Andrew-Wyn/images/blob/master/sava/italian_adapt-img.jpg?raw=true" width="400" height="400" style="border-radius:10%" /> </div> The **Mistral-7B-v0.1-Adapted** collection of large language models (LLMs), is a collection of adapted generative models in 7B (text in/text out), adapted models from **Mistral-7B-Base-v0.1**. *Mistral-v0.1-Italian-CLP* is a continually trained mistral model, after tokenizer substitution. The tokenizer of this model after adaptation is the same as [Minverva-3B](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0). **Model developer:** SapienzaNLP, ISTI-CNR, ILC-CNR **Model Architecture:** Mistral-7B-v0.1-Adapted is an auto-regressive language model that uses an optimized transformer architecture. ## Data used for the adaptation The **Mistral-7B-v0.1-Adapted** models are trained on a collection of Italian and English data extracted from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). The data are extracted to be skewed toward Italian language with a ration of one over four. Extracting the first 9B tokens from Italian part of CulturaX and the first 3B tokens from English part of CulturaX. ## Use with Transformers You can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import transformers import torch model_id = "SemanticAlignment/Mistral-v0.1-Italian-CLP" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) pipeline("Cosa si può fare in una bella giornata di sole?") ``` Code: https://github.com/SapienzaNLP/sava ## Citation If you use any part of this work, please consider citing the paper as follows: ```bibtex @misc{moroni2025optimizingllmsitalianreducing, title={Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation}, author={Luca Moroni and Giovanni Puccetti and Pere-Lluis Huguet Cabot and Andrei Stefan Bejgu and Edoardo Barba and Alessio Miaschi and Felice Dell'Orletta and Andrea Esuli and Roberto Navigli}, year={2025}, eprint={2504.17025}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.17025}, } ```
Atnafu/eng2amh-WSL-nllb_600M_eng2tir-un
Atnafu
2025-05-02T17:23:54Z
0
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T17:21:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm
BootesVoid
2025-05-02T17:23:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T17:23:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: VICTORIA --- # Cma6Lk7Fb01M0Negal98Rg6Tu_Cma71Dris01Uanegaq1Itfimm <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `VICTORIA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "VICTORIA", "lora_weights": "https://huggingface.co/BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm', weight_name='lora.safetensors') image = pipeline('VICTORIA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm/discussions) to add images that show off what you’ve made with this LoRA.
aleegis/217e89e7-41ac-4152-a372-9b02261b9f85
aleegis
2025-05-02T17:17:56Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "base_model:adapter:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "license:llama3", "region:us" ]
null
2025-05-02T14:40:22Z
--- library_name: peft license: llama3 base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 tags: - axolotl - generated_from_trainer model-index: - name: 217e89e7-41ac-4152-a372-9b02261b9f85 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - ebdef80c11c8be43_train_data.json ds_type: json format: custom path: /workspace/input_data/ebdef80c11c8be43_train_data.json type: field_instruction: prompt field_output: generation format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/217e89e7-41ac-4152-a372-9b02261b9f85 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/ebdef80c11c8be43_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: 8b4c8c80-b92d-409e-b63a-5d20d6027586 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8b4c8c80-b92d-409e-b63a-5d20d6027586 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 217e89e7-41ac-4152-a372-9b02261b9f85 This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Tagore-7/ppo-LunarLander-v2
Tagore-7
2025-05-02T17:05:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-05-02T17:04:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 214.92 +/- 41.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
edantonio505/department_classifier
edantonio505
2025-05-02T16:57:09Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-02T16:56:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bittu9988/MISTRAL_fine-trained-model_EIR_NEW_PROMPT
bittu9988
2025-05-02T16:45:34Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-14T08:04:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
haihp02/opt-1.3b-69b2fc6b-b7e1-4d0a-ac54-3d37b628169a-dpo-tuned-only
haihp02
2025-05-02T16:42:47Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "dpo", "arxiv:2305.18290", "base_model:facebook/opt-1.3b", "base_model:finetune:facebook/opt-1.3b", "endpoints_compatible", "region:us" ]
null
2025-05-02T16:42:43Z
--- base_model: facebook/opt-1.3b library_name: transformers model_name: opt-1.3b-69b2fc6b-b7e1-4d0a-ac54-3d37b628169a-dpo-tuned-only tags: - generated_from_trainer - unsloth - trl - dpo licence: license --- # Model Card for opt-1.3b-69b2fc6b-b7e1-4d0a-ac54-3d37b628169a-dpo-tuned-only This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="haihp02/opt-1.3b-69b2fc6b-b7e1-4d0a-ac54-3d37b628169a-dpo-tuned-only", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/trunghainguyenhp02/sn56-dpo-train/runs/cwmg9hco) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ucfc2024/mariafernanda231
ucfc2024
2025-05-02T16:42:22Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-02T16:02:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
kostiantynk1205/087d9c41-d3bc-4fd1-80ef-7678de719834
kostiantynk1205
2025-05-02T16:42:21Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:30ea5beb0d27e279_train_data.json", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "region:us" ]
null
2025-05-02T16:41:53Z
--- library_name: peft tags: - generated_from_trainer datasets: - 30ea5beb0d27e279_train_data.json base_model: bigcode/starcoder2-3b model-index: - name: kostiantynk1205/087d9c41-d3bc-4fd1-80ef-7678de719834 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kostiantynk1205/087d9c41-d3bc-4fd1-80ef-7678de719834 This model was trained from scratch on the /workspace/input_data/30ea5beb0d27e279_train_data.json dataset. It achieves the following results on the evaluation set: - Loss: 0.5409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Akhil-Sangaonkar/PersonalChatBot
Akhil-Sangaonkar
2025-05-02T16:37:22Z
18
0
null
[ "safetensors", "t5", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "region:us" ]
null
2025-05-01T08:52:13Z
--- license: apache-2.0 base_model: - google/flan-t5-small --- This model is a fine-tuned version of google/flan-t5-small, trained specifically to answer personalized questions about me. It is designed to provide concise and accurate answers only to questions that fall within the scope of my personal background, education, and career. 🔍 Intended Use ✅ Answering personal, pre-defined questions related to me 🚫 Not suitable for general-purpose QA or sensitive use cases 🚫 Limitations Does not generalize to non-personal topics. May hallucinate if prompted with ambiguous or poorly formatted questions. Not designed for factual or real-time knowledge. 🛡️ Bias & Safety The model may reflect any biases present in the training data. Ensure questions are phrased clearly to minimize hallucination or misinterpretation.
JoshMe1/0b94df0f-e3a2-4287-8ef1-3f09149f79d4
JoshMe1
2025-05-02T16:36:58Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-7b-hf-flash", "region:us" ]
null
2025-05-02T15:20:30Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 0b94df0f-e3a2-4287-8ef1-3f09149f79d4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e9848ef1688cd40a_train_data.json ds_type: json format: custom path: /workspace/input_data/e9848ef1688cd40a_train_data.json type: field_input: system_msg field_instruction: prompt_msg field_output: truth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: JoshMe1/0b94df0f-e3a2-4287-8ef1-3f09149f79d4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 128 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 130GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/e9848ef1688cd40a_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 saves_per_epoch: null sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 184a8930-7ec1-4893-8fba-09c1fc69b683 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 184a8930-7ec1-4893-8fba-09c1fc69b683 warmup_steps: 200 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 0b94df0f-e3a2-4287-8ef1-3f09149f79d4 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.5207 | | 0.1868 | 0.0247 | 100 | 0.0509 | | 0.0576 | 0.0494 | 200 | 0.0174 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
instinctguo/deepseek-coder-6.7b-enhance
instinctguo
2025-05-02T16:35:14Z
0
0
null
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
2025-05-02T08:06:20Z
--- license: apache-2.0 ---
IABD07/modelo_opiniones_peliculas
IABD07
2025-05-02T16:32:00Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-05-02T14:07:25Z
--- license: mit --- Es un modelo de clasificación realizado con regresión logistica en el que usamos sklearn. Para ello hemos utilizado un dataset sobre opiniones de películas que las clasifica en tres opciones: positiva, negativa o neutral.
darkc0de/XortronCriminalComputingConfig-Q4_K_M-GGUF
darkc0de
2025-05-02T16:29:06Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "uncensored", "harmful", "llama-cpp", "gguf-my-repo", "base_model:darkc0de/XortronCriminalComputingConfig", "base_model:quantized:darkc0de/XortronCriminalComputingConfig", "license:wtfpl", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T16:27:59Z
--- base_model: darkc0de/XortronCriminalComputingConfig library_name: transformers license: wtfpl tags: - mergekit - merge - uncensored - harmful - llama-cpp - gguf-my-repo --- # darkc0de/XortronCriminalComputingConfig-Q4_K_M-GGUF This model was converted to GGUF format from [`darkc0de/XortronCriminalComputingConfig`](https://huggingface.co/darkc0de/XortronCriminalComputingConfig) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/darkc0de/XortronCriminalComputingConfig) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo darkc0de/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo darkc0de/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo darkc0de/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo darkc0de/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -c 2048 ```
chchen/Llama3-OpenBioLLM-8B-PsyCourse-info-fold5
chchen
2025-05-02T16:25:06Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:adapter:aaditya/Llama3-OpenBioLLM-8B", "license:llama3", "region:us" ]
null
2025-05-02T15:27:21Z
--- library_name: peft license: llama3 base_model: aaditya/Llama3-OpenBioLLM-8B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama3-OpenBioLLM-8B-PsyCourse-info-fold5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama3-OpenBioLLM-8B-PsyCourse-info-fold5 This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-info-train-fold5 dataset. It achieves the following results on the evaluation set: - Loss: 0.1646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5193 | 0.3951 | 10 | 0.4232 | | 0.2655 | 0.7901 | 20 | 0.2431 | | 0.1575 | 1.1852 | 30 | 0.2011 | | 0.1529 | 1.5802 | 40 | 0.1788 | | 0.1367 | 1.9753 | 50 | 0.1676 | | 0.1243 | 2.3704 | 60 | 0.1694 | | 0.0943 | 2.7654 | 70 | 0.1699 | | 0.0697 | 3.1605 | 80 | 0.1646 | | 0.056 | 3.5556 | 90 | 0.1669 | | 0.0546 | 3.9506 | 100 | 0.1724 | | 0.0512 | 4.3457 | 110 | 0.1724 | | 0.0789 | 4.7407 | 120 | 0.1712 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
jq/gemma3-12b-ug40-lora-translation-r8-bs128
jq
2025-05-02T16:17:46Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:jq/gemma3-12b-ug40-pretrained", "base_model:finetune:jq/gemma3-12b-ug40-pretrained", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T16:17:33Z
--- base_model: jq/gemma3-12b-ug40-pretrained tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jq - **License:** apache-2.0 - **Finetuned from model :** jq/gemma3-12b-ug40-pretrained This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)