modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-28 18:27:08
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 501
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-28 18:25:37
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Meet04/BERT_trainer_irony | Meet04 | 2024-03-13T17:37:05Z | 195 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T16:19:41Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BERT_trainer_irony
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_trainer_irony
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the irony dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3282
- Accuracy: 0.7015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 358 | 1.4982 | 0.7005 |
| 0.1652 | 2.0 | 716 | 1.9033 | 0.7047 |
| 0.0643 | 3.0 | 1074 | 2.0941 | 0.7079 |
| 0.0643 | 4.0 | 1432 | 2.3087 | 0.7016 |
| 0.0161 | 5.0 | 1790 | 2.3704 | 0.7026 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Holarissun/mar13_zephyr3b_aisft_gsm8k_seq_alphalinear_epoch3-subset7000 | Holarissun | 2024-03-13T17:30:06Z | 0 | 0 | peft | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:stabilityai/stablelm-zephyr-3b",
"base_model:adapter:stabilityai/stablelm-zephyr-3b",
"license:other",
"region:us"
] | null | 2024-03-13T17:30:02Z | ---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: stabilityai/stablelm-zephyr-3b
model-index:
- name: mar13_zephyr3b_aisft_gsm8k_seq_alphalinear_epoch3-subset7000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mar13_zephyr3b_aisft_gsm8k_seq_alphalinear_epoch3-subset7000
This model is a fine-tuned version of [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
HuggingFaceH4/starchat2-15b-v0.1 | HuggingFaceH4 | 2024-03-13T17:27:53Z | 30,504 | 111 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"starcoder2",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"dataset:HuggingFaceH4/orca_dpo_pairs",
"arxiv:2311.07911",
"arxiv:2402.19173",
"base_model:HuggingFaceH4/starchat2-15b-sft-v0.1",
"base_model:finetune:HuggingFaceH4/starchat2-15b-sft-v0.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-10T12:40:02Z | ---
base_model: HuggingFaceH4/starchat2-15b-sft-v0.1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
model-index:
- name: starchat2-15b-v0.1
results: []
---
<img src="https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/resolve/main/model_logo.png" alt="StarChat2 15B Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for StarChat2 15B
StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat2 is the latest model in the series, and is a fine-tuned version of [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b) that was trained with SFT and DPO on a mix of synthetic datasets.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** A 16B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English and 600+ programming languages.
- **License:** BigCode Open RAIL-M v1
- **Finetuned from model:** [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground
## Performance
StarChat2 15B was trained to balance chat and programming capabilities. It achieves strong performance on chat benchmarks like [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [IFEval](https://arxiv.org/abs/2311.07911), as well as the canonical HumanEval benchmark for Python code completion. The scores reported below were obtained using the [LightEval](https://github.com/huggingface/lighteval) evaluation suite (commit `988959cb905df4baa050f82b4d499d46e8b537f2`) and each prompt has been formatted with the model's corresponding chat template to simulate real-world usage. This is why some scores may differ from those reported in technical reports or on the Open LLM Leaderboard.
| Model | MT Bench | IFEval | HumanEval |
|-------------------------------------------------------------------------------------------------|---------:|-------:|----------:|
| [starchat2-15b-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1) | 7.66 | 35.12 | 71.34 |
| [deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) | 4.17 | 14.23 | 80.48 |
| [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | 6.80 | 43.44 | 50.60 |
## Intended uses & limitations
The model was fine-tuned on a blend of chat, code, math, and reasoning datasets. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground) to test its coding capabilities.
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# pip install 'transformers @ git+https://github.com/huggingface/transformers.git@831bc25d8fdb85768402f772cf65cc3d7872b211'
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="HuggingFaceH4/starchat2-15b-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{
"role": "system",
"content": "You are StarChat2, an expert programming assistant",
},
{"role": "user", "content": "Write a simple website in HTML. When a user clicks the button, it shows a random Chuck Norris joke."},
]
outputs = pipe(
messages,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
StarChat2 15B has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the [StarCoder2 dataset](https://huggingface.co/datasets/bigcode/the-stack-v2)
Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect.
For example, it may produce code that does not compile or that produces incorrect results.
It may also produce code that is vulnerable to security exploits.
We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking.
StarChat2 15B was fine-tuned from the base model [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b), please refer to its model card's [Limitations Section](https://huggingface.co/bigcode/starcoder2-15b#limitations) for relevant information.
In particular, the model was evaluated on some categories of gender biases, propensity for toxicity, and risk of suggesting code completions with known security flaws; these evaluations are reported in its [technical report](https://huggingface.co/papers/2402.19173).
## Training details
This model is a fine-tuned version of [starchat2-15b-sft-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-sft-v0.1) on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/orca_dpo_pairs datasets. Check out the recipe in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook) for more details.
It achieves the following results on the evaluation set:
- Loss: 0.4347
- Rewards/chosen: -0.9461
- Rewards/rejected: -2.7745
- Rewards/accuracies: 0.7658
- Rewards/margins: 1.8284
- Logps/rejected: -322.1934
- Logps/chosen: -316.1898
- Logits/rejected: -2.3817
- Logits/chosen: -2.3005
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.717 | 0.17 | 100 | 0.6006 | -0.0924 | -0.2899 | 0.6329 | 0.1975 | -272.5022 | -299.1165 | -2.5313 | -2.4191 |
| 0.6273 | 0.35 | 200 | 0.5160 | -0.3994 | -0.9461 | 0.6930 | 0.5467 | -285.6261 | -305.2568 | -2.5281 | -2.4278 |
| 0.5538 | 0.52 | 300 | 0.4781 | -0.6589 | -1.5892 | 0.7247 | 0.9302 | -298.4870 | -310.4470 | -2.4996 | -2.4110 |
| 0.5056 | 0.7 | 400 | 0.4594 | -0.8283 | -2.1332 | 0.7437 | 1.3050 | -309.3687 | -313.8344 | -2.4472 | -2.3644 |
| 0.4983 | 0.87 | 500 | 0.4512 | -0.7758 | -2.2806 | 0.7468 | 1.5049 | -312.3167 | -312.7843 | -2.4223 | -2.3404 |
| 0.4662 | 1.04 | 600 | 0.4431 | -0.7839 | -2.4016 | 0.7658 | 1.6177 | -314.7355 | -312.9465 | -2.4049 | -2.3215 |
| 0.4411 | 1.22 | 700 | 0.4415 | -1.0090 | -2.7582 | 0.7690 | 1.7492 | -321.8679 | -317.4481 | -2.3840 | -2.3016 |
| 0.471 | 1.39 | 800 | 0.4368 | -0.9617 | -2.7445 | 0.7690 | 1.7828 | -321.5930 | -316.5019 | -2.3809 | -2.2991 |
| 0.4485 | 1.57 | 900 | 0.4351 | -0.9490 | -2.7594 | 0.7722 | 1.8103 | -321.8916 | -316.2497 | -2.3815 | -2.3004 |
| 0.4411 | 1.74 | 1000 | 0.4348 | -0.9293 | -2.7469 | 0.7658 | 1.8176 | -321.6409 | -315.8547 | -2.3823 | -2.3011 |
| 0.4499 | 1.92 | 1100 | 0.4348 | -0.9482 | -2.7767 | 0.7658 | 1.8285 | -322.2369 | -316.2320 | -2.3828 | -2.3012 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
Bylaw/BAAI-bge-m3 | Bylaw | 2024-03-13T17:25:28Z | 53 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"safetensors",
"xlm-roberta",
"feature-extraction",
"sentence-similarity",
"arxiv:2402.03216",
"arxiv:2004.04906",
"arxiv:2106.14807",
"arxiv:2107.05720",
"arxiv:2004.12832",
"license:mit",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-03-13T17:25:27Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
license: mit
---
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
# BGE-M3 ([paper](https://arxiv.org/pdf/2402.03216.pdf), [code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3))
In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
- Multi-Linguality: It can support more than 100 working languages.
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
## News:
- 2024/3/8: **Thanks for the [experimental results](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) from @[Yannael](https://huggingface.co/Yannael). In this benchmark, BGE-M3 achieves top performance in both English and other languages, surpassing models such as OpenAI.**
- 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data)
- 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
- 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
## Specs
- Model
| Model Name | Dimension | Sequence Length | Introduction |
|:----:|:---:|:---:|:---:|
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
| [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
| [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
- Data
| Dataset | Introduction |
|:----------------------------------------------------------:|:-------------------------------------------------:|
| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
| [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 |
## FAQ
**1. Introduction for different retrieval methods**
- Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
- Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
- Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
**2. Comparison with BGE-v1.5 and other monolingual models**
BGE-M3 is a multilingual model, and its ability in monolingual embedding retrieval may not surpass models specifically designed for single languages.
However, we still recommend trying BGE-M3 because of its versatility (support for multiple languages and long texts).
Moreover, it can simultaneously generate multiple representations, and using them together can enhance accuracy and generalization,
unlike most existing models that can only perform dense retrieval.
In the open-source community, there are many excellent models (e.g., jina-embedding, colbert, e5, etc),
and users can choose a model that suits their specific needs based on practical considerations,
such as whether to require multilingual or cross-language support, and whether to process long texts.
**3. How to use BGE-M3 in other projects?**
For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model.
Contributions from the community are welcome.
In our experiments, we use [Pyserini](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR#hybrid-retrieval-dense--sparse) and Faiss to do hybrid retrieval.
**Now you can ou can try the hybrid mode of BGE-M3 in [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
). Thanks @jobergum.**
**4. How to fine-tune bge-M3 model?**
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
to fine-tune the dense embedding.
If you want to fine-tune all embedding function of m3, you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune)
**5. Some suggestions for retrieval pipeline in RAG**
We recommend to use following pipeline: hybrid retrieval + re-ranking.
- Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
A classic example: using both embedding retrieval and the BM25 algorithm.
Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
- As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
## Usage
Install:
```
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .
```
or:
```
pip install -U FlagEmbedding
```
### Generate Embedding for text
- Dense Embedding
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3',
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
embeddings_1 = model.encode(sentences_1,
batch_size=12,
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
)['dense_vecs']
embeddings_2 = model.encode(sentences_2)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
```
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
- Sparse Embedding (Lexical Weight)
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
# you can see the weight for each token:
print(model.convert_id_to_token(output_1['lexical_weights']))
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
# {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
# compute the scores via lexical mathcing
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
print(lexical_scores)
# 0.19554901123046875
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
# 0.0
```
- Multi-Vector (ColBERT)
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
# 0.7797
# 0.4620
```
### Compute score for text pairs
Input a list of text pairs, you can get the scores computed by different methods.
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
print(model.compute_score(sentence_pairs,
max_passage_length=128, # a smaller max length leads to a lower latency
weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
# {
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
# 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
# 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
# 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
# }
```
## Evaluation
### Benchmarks from the open-source community

The BGE-M3 model emerged as the top performer on this benchmark (OAI is short for OpenAI).
For more details, please refer to the [article](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) and [Github Repo](https://github.com/Yannael/multilingual-embeddings)
### Our results
- Multilingual (Miracl dataset)

- Cross-lingual (MKQA dataset)

- Long Document Retrieval
- MLDR:

Please note that [MLDR](https://huggingface.co/datasets/Shitao/MLDR) is a document retrieval dataset we constructed via LLM,
covering 13 languages, including test set, validation set, and training set.
We utilized the training set from MLDR to enhance the model's long document retrieval capabilities.
Therefore, comparing baselines with `Dense w.o.long`(fine-tuning without long document dataset) is more equitable.
Additionally, this long document retrieval dataset will be open-sourced to address the current lack of open-source multilingual long text retrieval datasets.
We believe that this data will be helpful for the open-source community in training document retrieval models.
- NarritiveQA:

- Comparison with BM25
We utilized Pyserini to implement BM25, and the test results can be reproduced by this [script](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR#bm25-baseline).
We tested BM25 using two different tokenizers:
one using Lucene Analyzer and the other using the same tokenizer as M3 (i.e., the tokenizer of xlm-roberta).
The results indicate that BM25 remains a competitive baseline,
especially in long document retrieval.

## Training
- Self-knowledge Distillation: combining multiple outputs from different
retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
- Efficient Batching: Improve the efficiency when fine-tuning on long text.
The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
- MCLS: A simple method to improve the performance on long text without fine-tuning.
If you have no enough resource to fine-tuning model with long text, the method is useful.
Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
## Acknowledgement
Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [Pyserini](https://github.com/castorini/pyserini).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge-m3,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
mix060514/ddpm-celebahq-finetuned-butterflies-8epochs | mix060514 | 2024-03-13T17:22:59Z | 45 | 0 | diffusers | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2024-03-13T17:21:23Z | ---
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
lincense: mit
---
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained("mix060514/ddpm-celebahq-finetuned-butterflies-8epochs")
image = pipeline().images[0]
image
|
ibunescu/Phi-2_GDPR_chapter_classifier_v9 | ibunescu | 2024-03-13T17:18:26Z | 37 | 0 | transformers | [
"transformers",
"safetensors",
"phi",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T17:15:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
adami1/405M_TIES-merge_pile_300B_into_german_200B_from_pile_replay25_density-0.75 | adami1 | 2024-03-13T17:17:28Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T17:17:07Z | ---
tags:
- merge
- mergekit
- lazymergekit
- btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
License: apache-2.0
---
# 405M_TIES-merge_pile_300B_into_german_200B_from_pile_replay25_density-0.75
405M_TIES-merge_pile_300B_into_german_200B_from_pile_replay25_density-0.75 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch](https://huggingface.co/btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch)
## 🧩 Configuration
\```yamlmodels:
- model: btherien/JOB-3312838_410M_it-86245_tr-german-replay-25_scratch
# no parameters necessary for base model
- model: btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
parameters:
density: 0.75
weight: 1.0
merge_method: ties
base_model: btherien/JOB-3312838_410M_it-86245_tr-german-replay-25_scratch
parameters:
normalize: true
dtype: float16\``` |
conorgee/FEW_SHOT_bloomz-560m_PROMPT_TUNING_CAUSAL_LM | conorgee | 2024-03-13T17:17:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T17:17:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
adami1/405M_TIES-merge_pile_300B_into_german_200B_from_pile_replay25_density-0.25 | adami1 | 2024-03-13T17:15:33Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T17:15:09Z | ---
tags:
- merge
- mergekit
- lazymergekit
- btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
License: apache-2.0
---
# 405M_TIES-merge_pile_300B_into_german_200B_from_pile_replay25_density-0.25
405M_TIES-merge_pile_300B_into_german_200B_from_pile_replay25_density-0.25 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch](https://huggingface.co/btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch)
## 🧩 Configuration
\```yamlmodels:
- model: btherien/JOB-3312838_410M_it-86245_tr-german-replay-25_scratch
# no parameters necessary for base model
- model: btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
parameters:
density: 0.25
weight: 1.0
merge_method: ties
base_model: btherien/JOB-3312838_410M_it-86245_tr-german-replay-25_scratch
parameters:
normalize: true
dtype: float16\``` |
ibunescu/Phi-2_GDPR_chapter_classifier_v9_adapter | ibunescu | 2024-03-13T17:15:17Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T17:14:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
adami1/405M_TIES-merge_pile_300B_into_slimp_300B_from_pile_replay5_density-0.95 | adami1 | 2024-03-13T17:13:54Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T17:13:31Z | ---
tags:
- merge
- mergekit
- lazymergekit
- btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
License: apache-2.0
---
# 405M_TIES-merge_pile_300B_into_slimp_300B_from_pile_replay5_density-0.95
405M_TIES-merge_pile_300B_into_slimp_300B_from_pile_replay5_density-0.95 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch](https://huggingface.co/btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch)
## 🧩 Configuration
\```yamlmodels:
- model: btherien/Model_-410M_It_-132366_Tr_-slim-pajama-300B-replay5_finetune
# no parameters necessary for base model
- model: btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
parameters:
density: 0.95
weight: 1.0
merge_method: ties
base_model: btherien/Model_-410M_It_-132366_Tr_-slim-pajama-300B-replay5_finetune
parameters:
normalize: true
dtype: float16\``` |
shubhamgantayat/paper-pretrained-model-gpt2 | shubhamgantayat | 2024-03-13T17:13:54Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T12:41:23Z | ---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: paper-pretrained-model-gpt2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paper-pretrained-model-gpt2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.98 | 23 | 9.4651 |
| No log | 1.97 | 46 | 8.5615 |
| No log | 2.99 | 70 | 7.4620 |
| No log | 3.98 | 93 | 6.4971 |
| No log | 4.96 | 116 | 5.7243 |
| No log | 5.99 | 140 | 5.1366 |
| No log | 6.97 | 163 | 4.6595 |
| No log | 8.0 | 187 | 4.2285 |
| No log | 8.98 | 210 | 3.8841 |
| No log | 9.97 | 233 | 3.5671 |
| No log | 10.99 | 257 | 3.2337 |
| No log | 11.98 | 280 | 2.9197 |
| No log | 12.96 | 303 | 2.6052 |
| No log | 13.99 | 327 | 2.2564 |
| No log | 14.97 | 350 | 1.9214 |
| No log | 16.0 | 374 | 1.5827 |
| No log | 16.98 | 397 | 1.2635 |
| No log | 17.97 | 420 | 0.9987 |
| No log | 18.99 | 444 | 0.7605 |
| No log | 19.68 | 460 | 0.6482 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
brettclaus/Hospital_Reviews | brettclaus | 2024-03-13T17:13:21Z | 158 | 1 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-08T05:10:57Z | ---
license: creativeml-openrail-m
pipeline_tag: text-classification
widget:
- text: Great doctors and nurses! Saved my Life!
example_title: Hospital Review 1
- text: Some nurses were good, some doctors were bad.
example_title: Hospital Review 2
- text: I think someone left a pair of scissors in me.
example_title: Hospital Review 3
- text: Took too long in the waiting room but the doctors stiched me up great!
example_title: Hospital Review 4
---
## Healthcare Sentiment Analysis Model
Welcome to the Healthcare Sentiment Analysis Model, a powerful tool for analyzing sentiment in healthcare-related text data. This model, based on state-of-the-art deep learning architecture, is trained to accurately classify sentiments expressed in hospital reviews, patient feedback, medical forums, and other healthcare-related texts.
Sentiment analysis plays a crucial role in understanding the opinions, emotions, and attitudes of patients, caregivers, and healthcare professionals towards healthcare services, facilities, and experiences. By leveraging natural language processing techniques, our model provides valuable insights into the sentiment expressed within healthcare contexts.
## Key Features:
State-of-the-Art Model: Our sentiment analysis model is built upon advanced deep learning architecture, leveraging the latest advancements in natural language processing.
Fine-Tuned for Healthcare: Trained on a diverse dataset of healthcare-related text data, our model is fine-tuned to capture nuances specific to the healthcare domain, ensuring accurate sentiment analysis.
## Easy Integration:
Seamlessly integrate our model into your applications, platforms, or workflows using Hugging Face's easy-to-use APIs and model hub.
## Scalable and Efficient:
Designed for scalability and efficiency, our model delivers fast and reliable sentiment analysis results even on large volumes of text data.
## High Accuracy:
Rigorously evaluated and tested, our model achieves high accuracy in sentiment classification across various healthcare contexts, enabling robust analysis and decision-making.
## Use Cases:
Patient Feedback Analysis:
Analyze sentiments expressed in patient reviews, surveys, and feedback forms to understand patient satisfaction, concerns, and preferences.
Healthcare Facility Evaluation:
Evaluate sentiments towards hospitals, clinics, and healthcare facilities to identify areas for improvement and enhance patient experience.
Medical Social Media Monitoring:
Monitor sentiments on medical forums, social media platforms, and online healthcare communities to gauge public opinion and trends.
Clinical Text Analysis:
Analyze sentiments in clinical notes, physician reports, and medical records to assess patient well-being and treatment outcomes.
## How to Use:
Our model is available for immediate use via the Hugging Face Model Hub. Simply choose the appropriate model variant and integrate it into your Python-based projects, applications, or workflows. Detailed documentation and code examples are provided to facilitate easy integration and usage.
## Contributers:
Brett Claus, Traeger Ruhter, Brendan Thomas
## Example Usage
Here are some example usage snippets to demonstrate how to use the trained model for sentiment analysis on hospital reviews:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load the trained model
model = AutoModelForSequenceClassification.from_pretrained("brettclaus/Hospital_Reviews")
tokenizer = AutoTokenizer.from_pretrained("brettclaus/Hospital_Reviews")
# Example usage for sentiment prediction
review_text = "The hospital staff was very friendly and helpful."
inputs = tokenizer(review_text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
predicted_label = torch.argmax(outputs.logits).item()
# Output the predicted sentiment
print("Predicted Sentiment:", predicted_label) |
StopTryharding/WestLake-10.7B-v2-exl2-8.0 | StopTryharding | 2024-03-13T17:12:53Z | 8 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"en",
"base_model:senseable/WestLake-7B-v2",
"base_model:quantized:senseable/WestLake-7B-v2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"exl2",
"region:us"
] | text-generation | 2024-03-13T17:01:25Z | ---
base_model:
- senseable/WestLake-7B-v2
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
language:
- en
---
# WestLake-10.7B-v2: Role-Play & Text Generation Specialist Model
[Original FP16 version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2)
[GGUF version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2-GGUF)
This is my first viable self-merge of the fantastic WestLake-7B-v2 model, obtained after more than 12 rounds of testing different
merge configurations. In my [LLM Creativity Benchmark](https://huggingface.co/datasets/froggeric/creativity), it greatly improves over the original 7B model, and ranks between miqu-1-120b
and goliath-120b! I would describe the improvements as a better writing style, with more details. It has a bit more difficulties following instructions, but not by much.
It is also the first model I have tested to obtain a perfect score with the following test:
```
Write a sequence of nominal groups that flow into one another, using the following rules:
- each nominal group is made of exactly 3 words
- the first word of each nominal group must be the last word of the previous nominal group
- the first word of the first nominal group is: "ball"
- the last word of the last nominal group is: "stone"
- there must be a theme, of your choosing, pertaining to all nominal groups
- there must be exactly 7 nominal groups, leading from the first word (ball) to the last word (stone)
- a word already used at the beginning and end of a nominal group cannot be reused
Present your solution as a list numbered with roman numerals.
Finally, explain why you chose your specific theme.
```
## Usage
* Base model: senseable/WestLake-7B-v2 based of Mistral-7B-v0.1
* Context size: **8192** (even though Mistral-7B is 32k, WestLake was trained with 8k, and using a larger context is likely to cause problems)
* Prompt format: in general, Mistral based models are able to understand many prompt formats, but the following produce the best results, and are recommended (in order of preference)
- **Alpaca** (reported by senseable as working better than ChatML, and confirmed by me)
- ChatML (used during WestLake training)
- Mistral Instruct (original format from Mistral-7B)
- Zephyr (variant of ChatML which I have found to sometimes produce better results)
## Merge Details
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).\
This model was merged using the passthrough merge method.\
The following models were included in the merge:
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [0,9]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [5,14]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [10,19]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [15,24]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [20,32]
```
---
# Original model card: Westlake-7Bv2: Role-Play & Text Generation Specialist Model
**Update Notes:**
*Version 2 trained 1 additional epoch cycle for 3 total*
Welcome to the documentation of Westlake-7B, a cutting-edge language model designed for exceptional role-play and text generation tasks. This README file aims to provide an overview of our capabilities, usage guidelines, and potential applications.
## About Westlake-7Bv2
Westlake-7B is built upon a vast corpus of diverse texts, enabling it to generate contextually relevant responses in various scenarios. With its impressive size of 7 billion parameters, this model excels at understanding nuances in language and producing creative outputs.
### Key Features
1. **Role-Play**: Westlake-7Bv2 can seamlessly adapt to different character personas and engage in dynamic conversations while maintaining consistency throughout the interaction. It can generate believable dialogues across various genres, including fiction, non-fiction, historical events, or even fantasy worlds.
2. **Text Generation**: This model is proficient at generating original content such as stories, poems, essays, news articles, and more. Its ability to capture the essence of different writing styles makes it an ideal tool for creative writers seeking inspiration or assistance in their projects.
3. **Contextual Understanding**: Westlake-7B's extensive training allows it to comprehend complex contexts and generate responses that align with given situations. It can handle multiple topics simultaneously, making it versatile across various applications.
4. **Continuous Learning**: As a language model, Westlake-7B continuously improves its performance through ongoing training on new data sets. This ensures its capabilities remain up-to-date and relevant in an ever-evolving world of communication.
## Usage Guidelines
To utilize Westlake-7Bv2 for your projects or experiments, follow these steps:
1. **Prompting**: Provide clear and concise prompts that outline the desired role-play scenario or text generation task. The quality of output depends heavily on the clarity and relevance of input instructions.
2. **Feedback Loop**: For optimal results, consider incorporating a feedback loop into your application to refine generated outputs based on user preferences or additional contextual information. This iterative process can significantly enhance the model's performance in specific domains.
3. **Ethical Considerations**: As with any AI system, ensure responsible usage of Westlake-7B by avoiding harmful content generation or misuse of its capabilities.
## Potential Applications
Westlake-7Bv2's versatility makes it suitable for various applications across different industries:
1. **Creative Writing**: Assist authors in generating new ideas, expanding storylines, or even completing drafts by providing creative suggestions and textual content.
2. **Education**: Enhance language learning platforms with interactive role-play scenarios to improve students' communication skills and cultural understanding.
3. **Gaming**: Integrate Westlake-7B into game engines for dynamic non-player character interactions or generating unique questlines based on player choices.
4. **Customer Support**: Leverage the model's conversational abilities to create chatbots capable of handling complex queries and providing personalized assistance.
5. **Social Media**: Develop applications that generate engaging content such as captions, status updates, or even entire posts tailored to users' preferences and interests. |
Owhslp/nous_researcher_tuning_2_40 | Owhslp | 2024-03-13T17:12:35Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T16:18:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
StopTryharding/WestLake-10.7B-v2-exl2-6.0 | StopTryharding | 2024-03-13T17:11:49Z | 12 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"en",
"base_model:senseable/WestLake-7B-v2",
"base_model:quantized:senseable/WestLake-7B-v2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"6-bit",
"exl2",
"region:us"
] | text-generation | 2024-03-13T16:34:29Z | ---
base_model:
- senseable/WestLake-7B-v2
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
language:
- en
---
# WestLake-10.7B-v2: Role-Play & Text Generation Specialist Model
[Original FP16 version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2)
[GGUF version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2-GGUF)
This is my first viable self-merge of the fantastic WestLake-7B-v2 model, obtained after more than 12 rounds of testing different
merge configurations. In my [LLM Creativity Benchmark](https://huggingface.co/datasets/froggeric/creativity), it greatly improves over the original 7B model, and ranks between miqu-1-120b
and goliath-120b! I would describe the improvements as a better writing style, with more details. It has a bit more difficulties following instructions, but not by much.
It is also the first model I have tested to obtain a perfect score with the following test:
```
Write a sequence of nominal groups that flow into one another, using the following rules:
- each nominal group is made of exactly 3 words
- the first word of each nominal group must be the last word of the previous nominal group
- the first word of the first nominal group is: "ball"
- the last word of the last nominal group is: "stone"
- there must be a theme, of your choosing, pertaining to all nominal groups
- there must be exactly 7 nominal groups, leading from the first word (ball) to the last word (stone)
- a word already used at the beginning and end of a nominal group cannot be reused
Present your solution as a list numbered with roman numerals.
Finally, explain why you chose your specific theme.
```
## Usage
* Base model: senseable/WestLake-7B-v2 based of Mistral-7B-v0.1
* Context size: **8192** (even though Mistral-7B is 32k, WestLake was trained with 8k, and using a larger context is likely to cause problems)
* Prompt format: in general, Mistral based models are able to understand many prompt formats, but the following produce the best results, and are recommended (in order of preference)
- **Alpaca** (reported by senseable as working better than ChatML, and confirmed by me)
- ChatML (used during WestLake training)
- Mistral Instruct (original format from Mistral-7B)
- Zephyr (variant of ChatML which I have found to sometimes produce better results)
## Merge Details
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).\
This model was merged using the passthrough merge method.\
The following models were included in the merge:
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [0,9]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [5,14]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [10,19]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [15,24]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [20,32]
```
---
# Original model card: Westlake-7Bv2: Role-Play & Text Generation Specialist Model
**Update Notes:**
*Version 2 trained 1 additional epoch cycle for 3 total*
Welcome to the documentation of Westlake-7B, a cutting-edge language model designed for exceptional role-play and text generation tasks. This README file aims to provide an overview of our capabilities, usage guidelines, and potential applications.
## About Westlake-7Bv2
Westlake-7B is built upon a vast corpus of diverse texts, enabling it to generate contextually relevant responses in various scenarios. With its impressive size of 7 billion parameters, this model excels at understanding nuances in language and producing creative outputs.
### Key Features
1. **Role-Play**: Westlake-7Bv2 can seamlessly adapt to different character personas and engage in dynamic conversations while maintaining consistency throughout the interaction. It can generate believable dialogues across various genres, including fiction, non-fiction, historical events, or even fantasy worlds.
2. **Text Generation**: This model is proficient at generating original content such as stories, poems, essays, news articles, and more. Its ability to capture the essence of different writing styles makes it an ideal tool for creative writers seeking inspiration or assistance in their projects.
3. **Contextual Understanding**: Westlake-7B's extensive training allows it to comprehend complex contexts and generate responses that align with given situations. It can handle multiple topics simultaneously, making it versatile across various applications.
4. **Continuous Learning**: As a language model, Westlake-7B continuously improves its performance through ongoing training on new data sets. This ensures its capabilities remain up-to-date and relevant in an ever-evolving world of communication.
## Usage Guidelines
To utilize Westlake-7Bv2 for your projects or experiments, follow these steps:
1. **Prompting**: Provide clear and concise prompts that outline the desired role-play scenario or text generation task. The quality of output depends heavily on the clarity and relevance of input instructions.
2. **Feedback Loop**: For optimal results, consider incorporating a feedback loop into your application to refine generated outputs based on user preferences or additional contextual information. This iterative process can significantly enhance the model's performance in specific domains.
3. **Ethical Considerations**: As with any AI system, ensure responsible usage of Westlake-7B by avoiding harmful content generation or misuse of its capabilities.
## Potential Applications
Westlake-7Bv2's versatility makes it suitable for various applications across different industries:
1. **Creative Writing**: Assist authors in generating new ideas, expanding storylines, or even completing drafts by providing creative suggestions and textual content.
2. **Education**: Enhance language learning platforms with interactive role-play scenarios to improve students' communication skills and cultural understanding.
3. **Gaming**: Integrate Westlake-7B into game engines for dynamic non-player character interactions or generating unique questlines based on player choices.
4. **Customer Support**: Leverage the model's conversational abilities to create chatbots capable of handling complex queries and providing personalized assistance.
5. **Social Media**: Develop applications that generate engaging content such as captions, status updates, or even entire posts tailored to users' preferences and interests. |
adami1/405M_TIES-merge_pile_300B_into_slimp_300B_from_pile_replay5_density-0.05 | adami1 | 2024-03-13T17:10:03Z | 93 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T17:09:40Z | ---
tags:
- merge
- mergekit
- lazymergekit
- btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
License: apache-2.0
---
# 405M_TIES-merge_pile_300B_into_slimp_300B_from_pile_replay5_density-0.05
405M_TIES-merge_pile_300B_into_slimp_300B_from_pile_replay5_density-0.05 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch](https://huggingface.co/btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch)
## 🧩 Configuration
\```yamlmodels:
- model: btherien/Model_-410M_It_-132366_Tr_-slim-pajama-300B-replay5_finetune
# no parameters necessary for base model
- model: btherien/JOB-3150994_410M_it-132366_tr-pile-train_scratch
parameters:
density: 0.05
weight: 1.0
merge_method: ties
base_model: btherien/Model_-410M_It_-132366_Tr_-slim-pajama-300B-replay5_finetune
parameters:
normalize: true
dtype: float16\``` |
stablediffusionapi/hmreal | stablediffusionapi | 2024-03-13T17:09:44Z | 29 | 0 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-03-13T17:07:25Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# hm_real API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "hmreal"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/hmreal)
Model link: [View model](https://modelslab.com/models/hmreal)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "hmreal",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
AP123/Bounce_MotionLoRA | AP123 | 2024-03-13T17:06:21Z | 0 | 6 | null | [
"license:mit",
"region:us"
] | null | 2024-03-13T16:27:06Z | ---
license: mit
---
# AnimateDiff Motion LoRA: Bounce Effect
## Introduction
Welcome to my first AnimateDiff Motion LoRA! This was trained on AnimateDiff LCM. This tool is specifically designed to create dynamic "Bounce" effects, adding a lively and engaging motion. LoRA strength of .8 recommended.
## Example
Check out the example here:

## Recommended
- **250 Steps LoRA**: I personally enjoy using the 250 steps configuration for the LoRA, as it provides a smooth and pronounced bounce effect. I'm keen to hear your thoughts and preferences!
## Feedback
Your feedback is invaluable to me. Please share your thoughts, or suggestions for more Motion LoRAs.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
gohzy/singlish-toxic-bert-IA3-159571-1 | gohzy | 2024-03-13T17:03:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T17:03:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ahessamb/all-mpnet-base-v2-2epoch-30000-mar2-closs-prsn | ahessamb | 2024-03-13T17:01:06Z | 52 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"mpnet",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-03-10T22:01:42Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# ahessamb/all-mpnet-base-v2-2epoch-30000-mar2-closs-prsn
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ahessamb/all-mpnet-base-v2-2epoch-30000-mar2-closs-prsn')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ahessamb/all-mpnet-base-v2-2epoch-30000-mar2-closs-prsn)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 1518 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
```
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 2, 'size_average': True}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 0,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
windshield-viper/distilroberta-base-finetuned-wikitext2 | windshield-viper | 2024-03-13T16:59:31Z | 177 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilroberta-base",
"base_model:finetune:distilbert/distilroberta-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2024-03-13T16:14:13Z | ---
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0841 | 1.0 | 2406 | 1.9362 |
| 1.9866 | 2.0 | 4812 | 1.8845 |
| 1.9442 | 3.0 | 7218 | 1.8355 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
charlieCs/Qwen-14B-dacon-qa | charlieCs | 2024-03-13T16:51:20Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"question-answering",
"ko",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | question-answering | 2024-03-13T15:23:25Z | ---
language:
- ko
license: apache-2.0
library_name: transformers
pipeline_tag: question-answering
---
데이콘 대회 - 도배 하자 질의 응답 처리 : 한솔데코 시즌2 AI 경진대회 (https://dacon.io/competitions/official/236216/overview/description) 참여를 위해 학습한 QA 모델입니다.
Base Model 은 Qwen-14B 로 학습했습니다: https://huggingface.co/Qwen/Qwen-14B
Prompt
```
<|im_start|>system
이것은 시스템 메시지입니다.<|im_end|>
<|im_start|>user
안녕하세요<|im_end|>
<|im_start|>assistant
네 반갑습니다.<|im_end|>
``` |
uisikdag/Mixllama-2x7b-4bit-bitsnbytes | uisikdag | 2024-03-13T16:47:04Z | 64 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-03-13T15:49:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
prepared with mergekit
quantized 4 bits with bitsandbytes
```python
base_model: meta-llama/Llama-2-7b-chat-hf
gate_mode: cheap_embed
experts:
- source_model: meta-llama/Llama-2-7b-chat-hf
positive_prompts: ["You are an helpful assistant."]
- source_model: TheTravellingEngineer/llama2-7b-hf-guanaco
positive_prompts: ["You are an helpful general-pupose assistant"]
``` |
mychen76/openmixtral-6x7b-v2-GGUF | mychen76 | 2024-03-13T16:41:31Z | 8 | 1 | null | [
"gguf",
"merge",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T06:12:35Z | ---
license: apache-2.0
tags:
- merge
---
# openmixtral-6x7b-merged_v2
openmixtral-6x7b-merged_v2 is a merge of the following models:
## 🧩 Configuration
```yaml
base_model: mlabonne/Marcoro14-7B-slerp
experts:
- source_model: openchat/openchat-3.5-1210
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- source_model: Weyaxi/Einstein-v4-7B
positive_prompts:
- "physics"
- "biology"
- "chemistry"
- "science"
- source_model: BioMistral/BioMistral-7B
positive_prompts:
- "medical"
- "pubmed"
- "healthcare"
- "health"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: maywell/PiVoT-0.1-Starling-LM-RP
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: WizardLM/WizardMath-7B-V1.1
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
tokenizer_source: union
```
## 💻 Usage
```python
# install llamacpp see here: https://github.com/ggerganov/llama.cpp
# or other GGUF tool like llamacpp-python: https://github.com/abetlen/llama-cpp-python
MODEL_REPO="openmixtral-6x7b-merged_v2-GGUF"
MODEL_NAME="openmixtral-6x7b-merged_v2"
method="Q4_K_M"
prompt="why the sky is blue"
qtype = f"{MODEL_REPO}/{MODEL_NAME.lower()}.{method.upper()}.gguf"
!./llama.cpp/main -m {qtype} -n 128 --color -ngl 0 -p "{prompt}"
```
Log Result
```
Log start
main: build = 2382 (621e86b3)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed = 1710306347
ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4060 Ti, compute capability 8.9, VMM: yes
llama_model_loader: loaded meta data with 25 key-value pairs and 803 tensors from openmixtral-6x7b-merged_v2-GGUF/openmixtral-6x7b-merged_v2.Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = .
llama_model_loader: - kv 2: llama.context_length u32 = 32768
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 9: llama.expert_count u32 = 6
llama_model_loader: - kv 10: llama.expert_used_count u32 = 2
llama_model_loader: - kv 11: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 13: general.file_type u32 = 15
llama_model_loader: - kv 14: tokenizer.ggml.model str = llama
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 20: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 1
llama_model_loader: - kv 22: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 23: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 32 tensors
llama_model_loader: - type q4_K: 593 tensors
llama_model_loader: - type q6_K: 113 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 6
llm_load_print_meta: n_expert_used = 2
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 35.43 B
llm_load_print_meta: model size = 19.96 GiB (4.84 BPW)
llm_load_print_meta: general.name = .
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 1 '<s>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.31 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/33 layers to GPU
llm_load_tensors: CPU buffer size = 20441.87 MiB
....................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA_Host KV buffer size = 64.00 MiB
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
llama_new_context_with_model: CUDA_Host input buffer size = 10.01 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 114.52 MiB
llama_new_context_with_model: graph splits (measure): 1
system_info: n_threads = 12 / 24 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 |
sampling:
repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
generate: n_ctx = 512, n_batch = 512, n_predict = 128, n_keep = 1
why the sky is blue
# Why The Sky is Blue: Rayleigh Scattering
## Introduction to Rayleigh Scattering
Have you ever wondered why the sky appears blue during a clear day? You might think that it's because there are more blue molecules in the Earth's atmosphere, or maybe that the sun emits blue light. However, neither of these explanations is accurate. The true reason behind the blue color of the sky has to do with a phenomenon called Rayleigh scattering.
Rayleigh scattering is a fundamental process in physics and atmospheric science that occurs when sunlight interacts with mole
llama_print_timings: load time = 1605.68 ms
llama_print_timings: sample time = 14.83 ms / 128 runs ( 0.12 ms per token, 8632.32 tokens per second)
llama_print_timings: prompt eval time = 312.86 ms / 6 tokens ( 52.14 ms per token, 19.18 tokens per second)
llama_print_timings: eval time = 21083.26 ms / 127 runs ( 166.01 ms per token, 6.02 tokens per second)
llama_print_timings: total time = 21439.97 ms / 133 tokens
Log end
```
## Quantized Model Response
can you spot the difference?
```
#### User Prompt
why the sky is blue
#### Q2_K Response
The sky appears blue because of a phenomenon called Rayleigh scattering. This process occurs when sunlight (which is made up of many different colors or wavelengths of light) interacts with particles in the atmosphere like air molecules, water vapor and dust. The shorter wavelengths of light, such as violet and blue, are more easily scattered than longer wavelengths like red and yellow, due to their smaller size compared to the wavelengths they're interacting with.
When we look up at the sky, most of these scattered shorter-wavelength lights (violet, blue) are
#### Q3_K_M Response
In the late 19th century, an English scientist named Lord Rayleigh and a Scottish scientist named William Thomson (later Lord Kelvin) embarked on a quest to solve one of the most enduring mysteries in science: why is the sky blue? Their findings, which are now widely accepted, can be attributed to a combination of physics principles and molecular behavior.
The color we perceive in the sky is actually the result of how sunlight interacts with various gases and particles in our atmosphere. Sunlight is composed of multiple colors, or wavelengths, ranging from red at one end
#### Q4_K_M Response
The reason why we see the sky as blue is due to a natural phenomenon known as Rayleigh scattering. When sunlight enters the Earth’s atmosphere, it is made up of numerous colors or wavelengths, including blue, green, yellow, orange, and red.
Rayleigh scattering occurs when the shorter-wavelength light, such as blue and violet colors, interacts with the molecules (mainly nitrogen and oxygen) in the atmosphere. These tiny particles scatter these short-wave lengths more effectively than longer ones like red or yellow, which results in the sky appearing blue to our eyes.
#### Q5_K_M Response
the blue color of the sky, a phenomenon that has been observed and admired since ancient times, can be explained through the principles of physics and atmospheric science.
Sunlight, which appears white to us, is actually made up of many colors of light, each with a different wavelength. These colors include red, orange, yellow, green, blue, indigo, and violet; together, they are known as the visible light spectrum.
When sunlight enters Earth's atmosphere, it encounters various gases, such as nitrogen and oxygen, which scatter the shorter wavelengths of light.
#### Q6_K Response
In order to understand why the sky appears blue, we must first understand how light behaves and interacts with air molecules. Visible light is a form of electromagnetic radiation that spans wavelengths between approximately 400 nanometers (violet) and 700 nanometers (red). When sunlight reaches Earth's atmosphere, it encounters various gases and particles that scatter or absorb different wavelengths of light.
The scattering of light is due to the interaction between electromagnetic waves and free-moving electrons within air molecules, particularly nitrogen and oxygen...etc
#### Q8_0 Response
I’m just curious, it seems like a lot of people know this but I can’t recall ever being taught. Why exactly is the sky blue? I know it reflects sunlight and so forth but how does that lead to the blue color?
The reason the sky appears blue has to do with a combination of Rayleigh scattering and Earth's atmosphere. Here's a brief explanation:
1. Sunlight consists of multiple colors (wavelengths) including red, orange, yellow, green, blue, indigo, and violet. These different colors are represented by their respective wavelengths in...etc
```
|
yashiiii/mistral_test | yashiiii | 2024-03-13T16:38:26Z | 0 | 1 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T05:34:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Gordon119/TAT_TD-openai-whisper-large-v2-mix-tag_v1-epoch2-total5epoch | Gordon119 | 2024-03-13T16:31:44Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T16:31:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Holarissun/mar13_zephyr3b_aisft_gsm8k_rand_alphalinear-subset7000 | Holarissun | 2024-03-13T16:30:48Z | 0 | 0 | peft | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:stabilityai/stablelm-zephyr-3b",
"base_model:adapter:stabilityai/stablelm-zephyr-3b",
"license:other",
"region:us"
] | null | 2024-03-13T16:30:44Z | ---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: stabilityai/stablelm-zephyr-3b
model-index:
- name: mar13_zephyr3b_aisft_gsm8k_rand_alphalinear-subset7000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mar13_zephyr3b_aisft_gsm8k_rand_alphalinear-subset7000
This model is a fine-tuned version of [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
allispaul/distilhubert-finetuned-gtzan | allispaul | 2024-03-13T16:29:54Z | 145 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"generated_from_trainer",
"base_model:ntu-spml/distilhubert",
"base_model:finetune:ntu-spml/distilhubert",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2024-03-13T03:43:30Z | ---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7097
- Accuracy: 0.8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9677 | 1.0 | 112 | 1.8659 | 0.42 |
| 1.1919 | 2.0 | 225 | 1.3071 | 0.61 |
| 0.9976 | 3.0 | 337 | 0.9191 | 0.74 |
| 0.5864 | 4.0 | 450 | 0.8043 | 0.78 |
| 0.534 | 5.0 | 562 | 0.7504 | 0.74 |
| 0.2751 | 6.0 | 675 | 0.7042 | 0.78 |
| 0.2142 | 7.0 | 787 | 0.7410 | 0.75 |
| 0.1927 | 8.0 | 900 | 0.7033 | 0.77 |
| 0.1604 | 9.0 | 1012 | 0.7741 | 0.77 |
| 0.0934 | 9.96 | 1120 | 0.7097 | 0.8 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.13.2
|
joncchan/amgpt-tokenizer-v1.0 | joncchan | 2024-03-13T16:26:19Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T16:26:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
joncchan/amgpt-model-v1.0 | joncchan | 2024-03-13T16:26:17Z | 200 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T16:25:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
StopTryharding/WestLake-10.7B-v2-exl2-4.0 | StopTryharding | 2024-03-13T16:24:29Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"en",
"base_model:senseable/WestLake-7B-v2",
"base_model:quantized:senseable/WestLake-7B-v2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"exl2",
"region:us"
] | text-generation | 2024-03-13T16:20:51Z | ---
base_model:
- senseable/WestLake-7B-v2
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
language:
- en
---
# WestLake-10.7B-v2: Role-Play & Text Generation Specialist Model
[Original FP16 version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2)
[GGUF version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2-GGUF)
This is my first viable self-merge of the fantastic WestLake-7B-v2 model, obtained after more than 12 rounds of testing different
merge configurations. In my [LLM Creativity Benchmark](https://huggingface.co/datasets/froggeric/creativity), it greatly improves over the original 7B model, and ranks between miqu-1-120b
and goliath-120b! I would describe the improvements as a better writing style, with more details. It has a bit more difficulties following instructions, but not by much.
It is also the first model I have tested to obtain a perfect score with the following test:
```
Write a sequence of nominal groups that flow into one another, using the following rules:
- each nominal group is made of exactly 3 words
- the first word of each nominal group must be the last word of the previous nominal group
- the first word of the first nominal group is: "ball"
- the last word of the last nominal group is: "stone"
- there must be a theme, of your choosing, pertaining to all nominal groups
- there must be exactly 7 nominal groups, leading from the first word (ball) to the last word (stone)
- a word already used at the beginning and end of a nominal group cannot be reused
Present your solution as a list numbered with roman numerals.
Finally, explain why you chose your specific theme.
```
## Usage
* Base model: senseable/WestLake-7B-v2 based of Mistral-7B-v0.1
* Context size: **8192** (even though Mistral-7B is 32k, WestLake was trained with 8k, and using a larger context is likely to cause problems)
* Prompt format: in general, Mistral based models are able to understand many prompt formats, but the following produce the best results, and are recommended (in order of preference)
- **Alpaca** (reported by senseable as working better than ChatML, and confirmed by me)
- ChatML (used during WestLake training)
- Mistral Instruct (original format from Mistral-7B)
- Zephyr (variant of ChatML which I have found to sometimes produce better results)
## Merge Details
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).\
This model was merged using the passthrough merge method.\
The following models were included in the merge:
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [0,9]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [5,14]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [10,19]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [15,24]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [20,32]
```
---
# Original model card: Westlake-7Bv2: Role-Play & Text Generation Specialist Model
**Update Notes:**
*Version 2 trained 1 additional epoch cycle for 3 total*
Welcome to the documentation of Westlake-7B, a cutting-edge language model designed for exceptional role-play and text generation tasks. This README file aims to provide an overview of our capabilities, usage guidelines, and potential applications.
## About Westlake-7Bv2
Westlake-7B is built upon a vast corpus of diverse texts, enabling it to generate contextually relevant responses in various scenarios. With its impressive size of 7 billion parameters, this model excels at understanding nuances in language and producing creative outputs.
### Key Features
1. **Role-Play**: Westlake-7Bv2 can seamlessly adapt to different character personas and engage in dynamic conversations while maintaining consistency throughout the interaction. It can generate believable dialogues across various genres, including fiction, non-fiction, historical events, or even fantasy worlds.
2. **Text Generation**: This model is proficient at generating original content such as stories, poems, essays, news articles, and more. Its ability to capture the essence of different writing styles makes it an ideal tool for creative writers seeking inspiration or assistance in their projects.
3. **Contextual Understanding**: Westlake-7B's extensive training allows it to comprehend complex contexts and generate responses that align with given situations. It can handle multiple topics simultaneously, making it versatile across various applications.
4. **Continuous Learning**: As a language model, Westlake-7B continuously improves its performance through ongoing training on new data sets. This ensures its capabilities remain up-to-date and relevant in an ever-evolving world of communication.
## Usage Guidelines
To utilize Westlake-7Bv2 for your projects or experiments, follow these steps:
1. **Prompting**: Provide clear and concise prompts that outline the desired role-play scenario or text generation task. The quality of output depends heavily on the clarity and relevance of input instructions.
2. **Feedback Loop**: For optimal results, consider incorporating a feedback loop into your application to refine generated outputs based on user preferences or additional contextual information. This iterative process can significantly enhance the model's performance in specific domains.
3. **Ethical Considerations**: As with any AI system, ensure responsible usage of Westlake-7B by avoiding harmful content generation or misuse of its capabilities.
## Potential Applications
Westlake-7Bv2's versatility makes it suitable for various applications across different industries:
1. **Creative Writing**: Assist authors in generating new ideas, expanding storylines, or even completing drafts by providing creative suggestions and textual content.
2. **Education**: Enhance language learning platforms with interactive role-play scenarios to improve students' communication skills and cultural understanding.
3. **Gaming**: Integrate Westlake-7B into game engines for dynamic non-player character interactions or generating unique questlines based on player choices.
4. **Customer Support**: Leverage the model's conversational abilities to create chatbots capable of handling complex queries and providing personalized assistance.
5. **Social Media**: Develop applications that generate engaging content such as captions, status updates, or even entire posts tailored to users' preferences and interests. |
StopTryharding/WestLake-10.7B-v2-exl2-5.0 | StopTryharding | 2024-03-13T16:23:30Z | 9 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"en",
"base_model:senseable/WestLake-7B-v2",
"base_model:quantized:senseable/WestLake-7B-v2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"5-bit",
"exl2",
"region:us"
] | text-generation | 2024-03-13T16:11:58Z | ---
base_model:
- senseable/WestLake-7B-v2
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
language:
- en
---
# WestLake-10.7B-v2: Role-Play & Text Generation Specialist Model
[Original FP16 version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2)
[GGUF version available here](https://huggingface.co/froggeric/WestLake-10.7B-v2-GGUF)
This is my first viable self-merge of the fantastic WestLake-7B-v2 model, obtained after more than 12 rounds of testing different
merge configurations. In my [LLM Creativity Benchmark](https://huggingface.co/datasets/froggeric/creativity), it greatly improves over the original 7B model, and ranks between miqu-1-120b
and goliath-120b! I would describe the improvements as a better writing style, with more details. It has a bit more difficulties following instructions, but not by much.
It is also the first model I have tested to obtain a perfect score with the following test:
```
Write a sequence of nominal groups that flow into one another, using the following rules:
- each nominal group is made of exactly 3 words
- the first word of each nominal group must be the last word of the previous nominal group
- the first word of the first nominal group is: "ball"
- the last word of the last nominal group is: "stone"
- there must be a theme, of your choosing, pertaining to all nominal groups
- there must be exactly 7 nominal groups, leading from the first word (ball) to the last word (stone)
- a word already used at the beginning and end of a nominal group cannot be reused
Present your solution as a list numbered with roman numerals.
Finally, explain why you chose your specific theme.
```
## Usage
* Base model: senseable/WestLake-7B-v2 based of Mistral-7B-v0.1
* Context size: **8192** (even though Mistral-7B is 32k, WestLake was trained with 8k, and using a larger context is likely to cause problems)
* Prompt format: in general, Mistral based models are able to understand many prompt formats, but the following produce the best results, and are recommended (in order of preference)
- **Alpaca** (reported by senseable as working better than ChatML, and confirmed by me)
- ChatML (used during WestLake training)
- Mistral Instruct (original format from Mistral-7B)
- Zephyr (variant of ChatML which I have found to sometimes produce better results)
## Merge Details
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).\
This model was merged using the passthrough merge method.\
The following models were included in the merge:
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [0,9]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [5,14]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [10,19]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [15,24]
- sources:
- model: senseable/WestLake-7B-v2
layer_range: [20,32]
```
---
# Original model card: Westlake-7Bv2: Role-Play & Text Generation Specialist Model
**Update Notes:**
*Version 2 trained 1 additional epoch cycle for 3 total*
Welcome to the documentation of Westlake-7B, a cutting-edge language model designed for exceptional role-play and text generation tasks. This README file aims to provide an overview of our capabilities, usage guidelines, and potential applications.
## About Westlake-7Bv2
Westlake-7B is built upon a vast corpus of diverse texts, enabling it to generate contextually relevant responses in various scenarios. With its impressive size of 7 billion parameters, this model excels at understanding nuances in language and producing creative outputs.
### Key Features
1. **Role-Play**: Westlake-7Bv2 can seamlessly adapt to different character personas and engage in dynamic conversations while maintaining consistency throughout the interaction. It can generate believable dialogues across various genres, including fiction, non-fiction, historical events, or even fantasy worlds.
2. **Text Generation**: This model is proficient at generating original content such as stories, poems, essays, news articles, and more. Its ability to capture the essence of different writing styles makes it an ideal tool for creative writers seeking inspiration or assistance in their projects.
3. **Contextual Understanding**: Westlake-7B's extensive training allows it to comprehend complex contexts and generate responses that align with given situations. It can handle multiple topics simultaneously, making it versatile across various applications.
4. **Continuous Learning**: As a language model, Westlake-7B continuously improves its performance through ongoing training on new data sets. This ensures its capabilities remain up-to-date and relevant in an ever-evolving world of communication.
## Usage Guidelines
To utilize Westlake-7Bv2 for your projects or experiments, follow these steps:
1. **Prompting**: Provide clear and concise prompts that outline the desired role-play scenario or text generation task. The quality of output depends heavily on the clarity and relevance of input instructions.
2. **Feedback Loop**: For optimal results, consider incorporating a feedback loop into your application to refine generated outputs based on user preferences or additional contextual information. This iterative process can significantly enhance the model's performance in specific domains.
3. **Ethical Considerations**: As with any AI system, ensure responsible usage of Westlake-7B by avoiding harmful content generation or misuse of its capabilities.
## Potential Applications
Westlake-7Bv2's versatility makes it suitable for various applications across different industries:
1. **Creative Writing**: Assist authors in generating new ideas, expanding storylines, or even completing drafts by providing creative suggestions and textual content.
2. **Education**: Enhance language learning platforms with interactive role-play scenarios to improve students' communication skills and cultural understanding.
3. **Gaming**: Integrate Westlake-7B into game engines for dynamic non-player character interactions or generating unique questlines based on player choices.
4. **Customer Support**: Leverage the model's conversational abilities to create chatbots capable of handling complex queries and providing personalized assistance.
5. **Social Media**: Develop applications that generate engaging content such as captions, status updates, or even entire posts tailored to users' preferences and interests. |
hk2257853/testingupload | hk2257853 | 2024-03-13T16:21:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T15:56:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jonathanbd/mistral-7b-sql-to-text | jonathanbd | 2024-03-13T16:14:51Z | 0 | 0 | peft | [
"peft",
"safetensors",
"region:us"
] | null | 2024-03-13T16:13:25Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
windshield-viper/distilgpt2-finetuned-wikitext2 | windshield-viper | 2024-03-13T16:12:22Z | 200 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T15:41:48Z | ---
license: apache-2.0
base_model: distilgpt2
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7501 | 1.0 | 2334 | 3.6669 |
| 3.6498 | 2.0 | 4668 | 3.6464 |
| 3.6023 | 3.0 | 7002 | 3.6420 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Meet04/DistilBERT_trainer_emotion | Meet04 | 2024-03-13T16:03:42Z | 178 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T14:38:07Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: DistilBERT_trainer_emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9265
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DistilBERT_trainer_emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4147
- Accuracy: 0.9265
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0736 | 1.0 | 1000 | 0.2746 | 0.9325 |
| 0.0594 | 2.0 | 2000 | 0.2493 | 0.939 |
| 0.0459 | 3.0 | 3000 | 0.2769 | 0.941 |
| 0.035 | 4.0 | 4000 | 0.3125 | 0.943 |
| 0.0261 | 5.0 | 5000 | 0.3295 | 0.9405 |
| 0.0163 | 6.0 | 6000 | 0.3190 | 0.9435 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
stablediffusionapi/epicbabes_realistic | stablediffusionapi | 2024-03-13T16:02:13Z | 36 | 0 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-03-13T16:00:57Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# epicbabes_realistic API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "epicbabes_realistic"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/epicbabes_realistic)
Model link: [View model](https://modelslab.com/models/epicbabes_realistic)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "epicbabes_realistic",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
rizvi-rahil786/distil-sbert-base-canadaWildfire | rizvi-rahil786 | 2024-03-13T15:52:52Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T15:27:48Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distil-sbert-base-canadaWildfire
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distil-sbert-base-canadaWildfire
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2564
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5009 | 1.0 | 3008 | 0.4158 |
| 0.2469 | 2.0 | 6016 | 0.2564 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
neopolita/cerebrum-1.0-7b-gguf | neopolita | 2024-03-13T15:50:20Z | 43 | 0 | null | [
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-03-13T13:54:27Z | ---
{}
---
# GGUF quants for [**AetherResearch/Cerebrum-1.0-7b**](https://huggingface.co/AetherResearch/Cerebrum-1.0-7b) using [llama.cpp](https://github.com/ggerganov/llama.cpp)
**Terms of Use**: Please check the [**original model**](https://huggingface.co/AetherResearch/Cerebrum-1.0-7b)
<picture>
<img alt="cthulhu" src="https://huggingface.co/neopolita/common/resolve/main/profile.png">
</picture>
## Quants
* `q2_k`: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.
* `q3_k_s`: Uses Q3_K for all tensors
* `q3_k_m`: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* `q3_k_l`: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* `q4_0`: Original quant method, 4-bit.
* `q4_1`: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
* `q4_k_s`: Uses Q4_K for all tensors
* `q4_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K
* `q5_0`: Higher accuracy, higher resource usage and slower inference.
* `q5_1`: Even higher accuracy, resource usage and slower inference.
* `q5_k_s`: Uses Q5_K for all tensors
* `q5_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K
* `q6_k`: Uses Q8_K for all tensors
* `q8_0`: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
shubhamgantayat/paper-finetune-peft-model-gpt2 | shubhamgantayat | 2024-03-13T15:48:45Z | 2 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:shubhamgantayat/paper-pretrained-model-gpt2",
"base_model:adapter:shubhamgantayat/paper-pretrained-model-gpt2",
"license:mit",
"region:us"
] | null | 2024-03-13T13:59:34Z | ---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: shubhamgantayat/paper-pretrained-model-gpt2
model-index:
- name: paper-finetune-peft-model-gpt2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paper-finetune-peft-model-gpt2
This model is a fine-tuned version of [shubhamgantayat/paper-pretrained-model-gpt2](https://huggingface.co/shubhamgantayat/paper-pretrained-model-gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 7 | 4.7765 |
| No log | 2.0 | 14 | 4.7322 |
| No log | 3.0 | 21 | 4.7173 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
DivyaMereddy007/RecipeBert_v3 | DivyaMereddy007 | 2024-03-13T15:46:20Z | 48 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-03-13T15:46:05Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# DivyaMereddy007/RecipeBert_v3
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('DivyaMereddy007/RecipeBert_v3')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DivyaMereddy007/RecipeBert_v3')
model = AutoModel.from_pretrained('DivyaMereddy007/RecipeBert_v3')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=DivyaMereddy007/RecipeBert_v3)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 110 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 44.0,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
youvoi/mistral-7b-miniplatypus | youvoi | 2024-03-13T15:45:11Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T15:36:06Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
NekoPunchBBB/Mistral-7B-v0.1-ms-12-datasets-total-concat | NekoPunchBBB | 2024-03-13T15:41:28Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T15:27:03Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
tomaszki/mistral-5-copy | tomaszki | 2024-03-13T15:22:50Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T15:19:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kuhess/OpenHermes-2.5-Mistral-7B-alpaca-cleaned | kuhess | 2024-03-13T15:21:50Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:teknium/OpenHermes-2.5-Mistral-7B",
"base_model:finetune:teknium/OpenHermes-2.5-Mistral-7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T15:14:51Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
base_model: teknium/OpenHermes-2.5-Mistral-7B
---
# Uploaded model
- **Developed by:** kuhess
- **License:** apache-2.0
- **Finetuned from model :** teknium/OpenHermes-2.5-Mistral-7B
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ahmad-alismail/distilbert-base-uncased-finetuned-emotion | ahmad-alismail | 2024-03-13T15:15:55Z | 100 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-02-10T14:47:53Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
args: split
metrics:
- type: accuracy
value: 0.9345
name: Accuracy
- type: f1
value: 0.9345835158374045
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1468
- Accuracy: 0.9345
- F1: 0.9346
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1695 | 1.0 | 250 | 0.1757 | 0.93 | 0.9298 |
| 0.107 | 2.0 | 500 | 0.1468 | 0.9345 | 0.9346 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0
- Datasets 2.9.0
- Tokenizers 0.10.3
|
922CA/Silicon-Natsuki-7b-v0.5-gguf | 922CA | 2024-03-13T15:08:23Z | 4 | 0 | transformers | [
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:SanjiWatsuki/Silicon-Maid-7B",
"base_model:quantized:SanjiWatsuki/Silicon-Maid-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T15:04:13Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
base_model: SanjiWatsuki/Silicon-Maid-7B
---
# Uploaded model
- **Developed by:** 922CA
- **License:** apache-2.0
- **Finetuned from model :** SanjiWatsuki/Silicon-Maid-7B
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jmoney54378256438905/Yi-34B-200K-MAR2024-exl2-3.5bpw | jmoney54378256438905 | 2024-03-13T15:07:46Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"arxiv:2403.04652",
"arxiv:2311.16502",
"arxiv:2401.11944",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] | text-generation | 2024-03-13T14:56:11Z | ---
license: other
license_name: yi-license
license_link: LICENSE
widget:
- example_title: "Yi-34B-Chat"
text: "hi"
output:
text: " Hello! How can I assist you today?"
- example_title: "Yi-34B"
text: "There's a place where time stands still. A place of breath taking wonder, but also"
output:
text: " an eerie sense that something is just not right…\nBetween the two worlds lies The Forgotten Kingdom - home to creatures long since thought extinct and ancient magic so strong it defies belief! Only here can you find what has been lost for centuries: An Elixir Of Life which will restore youth and vitality if only those who seek its power are brave enough to face up against all manner of dangers lurking in this mysterious land! But beware; some say there may even exist powerful entities beyond our comprehension whose intentions towards humanity remain unclear at best ---- they might want nothing more than destruction itself rather then anything else from their quest after immortality (and maybe someone should tell them about modern medicine)? In any event though – one thing remains true regardless : whether or not success comes easy depends entirely upon how much effort we put into conquering whatever challenges lie ahead along with having faith deep down inside ourselves too ;) So let’s get started now shall We?"
pipeline_tag: text-generation
---
<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_dark.svg" width="200px">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="200px">
<img alt="specify theme context for images" src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg">
</picture>
</br>
</br>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml">
<img src="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml/badge.svg">
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/blob/main/LICENSE">
<img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue">
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
<img src="https://img.shields.io/badge/Model_License-Yi_License-lightblue">
</a>
</div>
<div style="display: inline-block;">
<a href="mailto:[email protected]">
<img src="https://img.shields.io/badge/✉️[email protected]">
</a>
</div>
</div>
<div align="center">
<h3 align="center">Building the Next Generation of Open-Source and Bilingual LLMs</h3>
</div>
<p align="center">
🤗 <a href="https://huggingface.co/01-ai" target="_blank">Hugging Face</a> • 🤖 <a href="https://www.modelscope.cn/organization/01ai/" target="_blank">ModelScope</a> • ✡️ <a href="https://wisemodel.cn/organization/01.AI" target="_blank">WiseModel</a>
</p>
<p align="center">
👩🚀 Ask questions or discuss ideas on <a href="https://github.com/01-ai/Yi/discussions" target="_blank"> GitHub </a>
</p>
<p align="center">
👋 Join us on <a href="https://discord.gg/zQ4A6b6H" target="_blank"> 👾 Discord </a> or <a href="https://github.com/01-ai/Yi/issues/43#issuecomment-1827285245" target="_blank"> 💬 WeChat </a>
</p>
<p align="center">
📝 Check out <a href="https://arxiv.org/abs/2403.04652"> Yi Tech Report </a>
</p>
<p align="center">
📚 Grow at <a href="#learning-hub"> Yi Learning Hub </a>
</p>
<!-- DO NOT REMOVE ME -->
<hr>
<details open>
<summary></b>📕 Table of Contents</b></summary>
- [What is Yi?](#what-is-yi)
- [Introduction](#introduction)
- [Models](#models)
- [Chat models](#chat-models)
- [Base models](#base-models)
- [Other info](#other-info)
- [News](#news)
- [How to use Yi?](#how-to-use-yi)
- [Quick start](#quick-start)
- [Choose your path](#choose-your-path)
- [pip](#quick-start---pip)
- [docker](#quick-start---docker)
- [llama.cpp](#quick-start---llamacpp)
- [conda-lock](#quick-start---conda-lock)
- [Web demo](#web-demo)
- [Fine-tuning](#fine-tuning)
- [Quantization](#quantization)
- [Deployment](#deployment)
- [Learning hub](#learning-hub)
- [Why Yi?](#why-yi)
- [Ecosystem](#ecosystem)
- [Upstream](#upstream)
- [Downstream](#downstream)
- [Serving](#serving)
- [Quantization](#quantization-1)
- [Fine-tuning](#fine-tuning-1)
- [API](#api)
- [Benchmarks](#benchmarks)
- [Base model performance](#base-model-performance)
- [Chat model performance](#chat-model-performance)
- [Tech report](#tech-report)
- [Citation](#citation)
- [Who can use Yi?](#who-can-use-yi)
- [Misc.](#misc)
- [Acknowledgements](#acknowledgments)
- [Disclaimer](#disclaimer)
- [License](#license)
</details>
<hr>
# What is Yi?
## Introduction
- 🤖 The Yi series models are the next generation of open-source large language models trained from scratch by [01.AI](https://01.ai/).
- 🙌 Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example,
- Yi-34B-Chat model **landed in second place (following GPT-4 Turbo)**, outperforming other LLMs (such as GPT-4, Mixtral, Claude) on the AlpacaEval Leaderboard (based on data available up to January 2024).
- Yi-34B model **ranked first among all existing open-source models** (such as Falcon-180B, Llama-70B, Claude) in **both English and Chinese** on various benchmarks, including Hugging Face Open LLM Leaderboard (pre-trained) and C-Eval (based on data available up to November 2023).
- 🙏 (Credits to Llama) Thanks to the Transformer and Llama open-source communities, as they reduce the efforts required to build from scratch and enable the utilization of the same tools within the AI ecosystem.
<details style="display: inline;"><summary> If you're interested in Yi's adoption of Llama architecture and license usage policy, see <span style="color: green;">Yi's relation with Llama.</span> ⬇️</summary> <ul> <br>
> 💡 TL;DR
>
> The Yi series models adopt the same model architecture as Llama but are **NOT** derivatives of Llama.
- Both Yi and Llama are based on the Transformer structure, which has been the standard architecture for large language models since 2018.
- Grounded in the Transformer architecture, Llama has become a new cornerstone for the majority of state-of-the-art open-source models due to its excellent stability, reliable convergence, and robust compatibility. This positions Llama as the recognized foundational framework for models including Yi.
- Thanks to the Transformer and Llama architectures, other models can leverage their power, reducing the effort required to build from scratch and enabling the utilization of the same tools within their ecosystems.
- However, the Yi series models are NOT derivatives of Llama, as they do not use Llama's weights.
- As Llama's structure is employed by the majority of open-source models, the key factors of determining model performance are training datasets, training pipelines, and training infrastructure.
- Developing in a unique and proprietary way, Yi has independently created its own high-quality training datasets, efficient training pipelines, and robust training infrastructure entirely from the ground up. This effort has led to excellent performance with Yi series models ranking just behind GPT4 and surpassing Llama on the [Alpaca Leaderboard in Dec 2023](https://tatsu-lab.github.io/alpaca_eval/).
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
## News
<details open>
<summary>🎯 <b>2024-03-08</b>: <a href="https://arxiv.org/abs/2403.04652">Yi Tech Report</a> is published! </summary>
</details>
<details open>
<summary>🔔 <b>2024-03-07</b>: The long text capability of the Yi-34B-200K has been enhanced. </summary>
<br>
In the "Needle-in-a-Haystack" test, the Yi-34B-200K's performance is improved by 10.5%, rising from 89.3% to an impressive 99.8%. We continue to pre-train the model on 5B tokens long-context data mixture and demonstrate a near-all-green performance.
</details>
<details open>
<summary>🎯 <b>2024-03-06</b>: The <code>Yi-9B</code> is open-sourced and available to the public.</summary>
<br>
<code>Yi-9B</code> stands out as the top performer among a range of similar-sized open-source models (including Mistral-7B, SOLAR-10.7B, Gemma-7B, DeepSeek-Coder-7B-Base-v1.5 and more), particularly excelling in code, math, common-sense reasoning, and reading comprehension.
</details>
<details open>
<summary>🎯 <b>2024-01-23</b>: The Yi-VL models, <code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> and <code><a href="https://huggingface.co/01-ai/Yi-VL-6B">Yi-VL-6B</a></code>, are open-sourced and available to the public.</summary>
<br>
<code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> has ranked <strong>first</strong> among all existing open-source models in the latest benchmarks, including <a href="https://arxiv.org/abs/2311.16502">MMMU</a> and <a href="https://arxiv.org/abs/2401.11944">CMMMU</a> (based on data available up to January 2024).</li>
</details>
<details>
<summary>🎯 <b>2023-11-23</b>: <a href="#chat-models">Chat models</a> are open-sourced and available to the public.</summary>
<br>This release contains two chat models based on previously released base models, two 8-bit models quantized by GPTQ, and two 4-bit models quantized by AWQ.
- `Yi-34B-Chat`
- `Yi-34B-Chat-4bits`
- `Yi-34B-Chat-8bits`
- `Yi-6B-Chat`
- `Yi-6B-Chat-4bits`
- `Yi-6B-Chat-8bits`
You can try some of them interactively at:
- [Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
- [Replicate](https://replicate.com/01-ai)
</details>
<details>
<summary>🔔 <b>2023-11-23</b>: The Yi Series Models Community License Agreement is updated to <a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">v2.1</a>.</summary>
</details>
<details>
<summary>🔥 <b>2023-11-08</b>: Invited test of Yi-34B chat model.</summary>
<br>Application form:
- [English](https://cn.mikecrm.com/l91ODJf)
- [Chinese](https://cn.mikecrm.com/gnEZjiQ)
</details>
<details>
<summary>🎯 <b>2023-11-05</b>: <a href="#base-models">The base models, </a><code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>, are open-sourced and available to the public.</summary>
<br>This release contains two base models with the same parameter sizes as the previous
release, except that the context window is extended to 200K.
</details>
<details>
<summary>🎯 <b>2023-11-02</b>: <a href="#base-models">The base models, </a><code>Yi-6B</code> and <code>Yi-34B</code>, are open-sourced and available to the public.</summary>
<br>The first public release contains two bilingual (English/Chinese) base models
with the parameter sizes of 6B and 34B. Both of them are trained with 4K
sequence length and can be extended to 32K during inference time.
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
## Models
Yi models come in multiple sizes and cater to different use cases. You can also fine-tune Yi models to meet your specific requirements.
If you want to deploy Yi models, make sure you meet the [software and hardware requirements](#deployment).
### Chat models
| Model | Download
|---|---
Yi-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat/summary)
Yi-34B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-4bits/summary)
Yi-34B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-8bits/summary)
Yi-6B-Chat| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat/summary)
Yi-6B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-4bits/summary)
Yi-6B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-8bits/summary)
<sub><sup> - 4-bit series models are quantized by AWQ. <br> - 8-bit series models are quantized by GPTQ <br> - All quantized models have a low barrier to use since they can be deployed on consumer-grade GPUs (e.g., 3090, 4090). </sup></sub>
### Base models
| Model | Download |
|---|---|
Yi-34B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B/summary)
Yi-34B-200K|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-200K/summary)
Yi-9B|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-9B)
Yi-6B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B/summary)
Yi-6B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-200K/summary)
<sub><sup> - 200k is roughly equivalent to 400,000 Chinese characters. <br> - If you want to use the previous version of the Yi-34B-200K (released on Nov 5, 2023), run `git checkout 069cd341d60f4ce4b07ec394e82b79e94f656cf` to download the weight. </sup></sub>
### Model info
- For chat and base models
Model | Intro | Default context window | Pretrained tokens | Training Data Date
|---|---|---|---|---
6B series models |They are suitable for personal and academic use. | 4K | 3T | Up to June 2023
9B model| It is the best at coding and math in the Yi series models.|4K | Yi-9B is continuously trained based on Yi-6B, using 0.8T tokens. | Up to June 2023
34B series models | They are suitable for personal, academic, and commercial (particularly for small and medium-sized enterprises) purposes. It's a cost-effective solution that's affordable and equipped with emergent ability.|4K | 3T | Up to June 2023
- For chat models
<details style="display: inline;"><summary>For chat model limitations, see the explanations below. ⬇️</summary>
<ul>
<br>The released chat model has undergone exclusive training using Supervised Fine-Tuning (SFT). Compared to other standard chat models, our model produces more diverse responses, making it suitable for various downstream tasks, such as creative scenarios. Furthermore, this diversity is expected to enhance the likelihood of generating higher quality responses, which will be advantageous for subsequent Reinforcement Learning (RL) training.
<br>However, this higher diversity might amplify certain existing issues, including:
<li>Hallucination: This refers to the model generating factually incorrect or nonsensical information. With the model's responses being more varied, there's a higher chance of hallucination that are not based on accurate data or logical reasoning.</li>
<li>Non-determinism in re-generation: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.</li>
<li>Cumulative Error: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.</li>
<li>To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as temperature, top_p, or top_k. These adjustments can help in the balance between creativity and coherence in the model's outputs.</li>
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
# How to use Yi?
- [Quick start](#quick-start)
- [Choose your path](#choose-your-path)
- [pip](#quick-start---pip)
- [docker](#quick-start---docker)
- [conda-lock](#quick-start---conda-lock)
- [llama.cpp](#quick-start---llamacpp)
- [Web demo](#web-demo)
- [Fine-tuning](#fine-tuning)
- [Quantization](#quantization)
- [Deployment](#deployment)
- [Learning hub](#learning-hub)
## Quick start
Getting up and running with Yi models is simple with multiple choices available.
### Choose your path
Select one of the following paths to begin your journey with Yi!

#### 🎯 Deploy Yi locally
If you prefer to deploy Yi models locally,
- 🙋♀️ and you have **sufficient** resources (for example, NVIDIA A800 80GB), you can choose one of the following methods:
- [pip](#quick-start---pip)
- [Docker](#quick-start---docker)
- [conda-lock](#quick-start---conda-lock)
- 🙋♀️ and you have **limited** resources (for example, a MacBook Pro), you can use [llama.cpp](#quick-start---llamacpp).
#### 🎯 Not to deploy Yi locally
If you prefer not to deploy Yi models locally, you can explore Yi's capabilities using any of the following options.
##### 🙋♀️ Run Yi with APIs
If you want to explore more features of Yi, you can adopt one of these methods:
- Yi APIs (Yi official)
- [Early access has been granted](https://x.com/01AI_Yi/status/1735728934560600536?s=20) to some applicants. Stay tuned for the next round of access!
- [Yi APIs](https://replicate.com/01-ai/yi-34b-chat/api?tab=nodejs) (Replicate)
##### 🙋♀️ Run Yi in playground
If you want to chat with Yi with more customizable options (e.g., system prompt, temperature, repetition penalty, etc.), you can try one of the following options:
- [Yi-34B-Chat-Playground](https://platform.lingyiwanwu.com/prompt/playground) (Yi official)
- Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
- [Yi-34B-Chat-Playground](https://replicate.com/01-ai/yi-34b-chat) (Replicate)
##### 🙋♀️ Chat with Yi
If you want to chat with Yi, you can use one of these online services, which offer a similar user experience:
- [Yi-34B-Chat](https://huggingface.co/spaces/01-ai/Yi-34B-Chat) (Yi official on Hugging Face)
- No registration is required.
- [Yi-34B-Chat](https://platform.lingyiwanwu.com/) (Yi official beta)
- Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Quick start - pip
This tutorial guides you through every step of running **Yi-34B-Chat locally on an A800 (80G)** and then performing inference.
#### Step 0: Prerequisites
- Make sure Python 3.10 or a later version is installed.
- If you want to run other Yi models, see [software and hardware requirements](#deployment).
#### Step 1: Prepare your environment
To set up the environment and install the required packages, execute the following command.
```bash
git clone https://github.com/01-ai/Yi.git
cd yi
pip install -r requirements.txt
```
#### Step 2: Download the Yi model
You can download the weights and tokenizer of Yi models from the following sources:
- [Hugging Face](https://huggingface.co/01-ai)
- [ModelScope](https://www.modelscope.cn/organization/01ai/)
- [WiseModel](https://wisemodel.cn/organization/01.AI)
#### Step 3: Perform inference
You can perform inference with Yi chat or base models as below.
##### Perform inference with Yi chat model
1. Create a file named `quick_start.py` and copy the following content to it.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = '<your-model-path>'
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
2. Run `quick_start.py`.
```bash
python quick_start.py
```
Then you can see an output similar to the one below. 🥳
```bash
Hello! How can I assist you today?
```
##### Perform inference with Yi base model
- Yi-34B
The steps are similar to [pip - Perform inference with Yi chat model](#perform-inference-with-yi-chat-model).
You can use the existing file [`text_generation.py`](https://github.com/01-ai/Yi/tree/main/demo).
```bash
python demo/text_generation.py --model <your-model-path>
```
Then you can see an output similar to the one below. 🥳
<details>
<summary>Output. ⬇️ </summary>
<br>
**Prompt**: Let me tell you an interesting story about cat Tom and mouse Jerry,
**Generation**: Let me tell you an interesting story about cat Tom and mouse Jerry, which happened in my childhood. My father had a big house with two cats living inside it to kill mice. One day when I was playing at home alone, I found one of the tomcats lying on his back near our kitchen door, looking very much like he wanted something from us but couldn’t get up because there were too many people around him! He kept trying for several minutes before finally giving up...
</details>
- Yi-9B
Input
```bash
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_DIR = "01-ai/Yi-9B"
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=False)
input_text = "# write the quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Output
```bash
# write the quick sort algorithm
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)
# test the quick sort algorithm
print(quick_sort([3, 6, 8, 10, 1, 2, 1]))
```
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Quick start - Docker
<details>
<summary> Run Yi-34B-chat locally with Docker: a step-by-step guide. ⬇️</summary>
<br>This tutorial guides you through every step of running <strong>Yi-34B-Chat on an A800 GPU</strong> or <strong>4*4090</strong> locally and then performing inference.
<h4>Step 0: Prerequisites</h4>
<p>Make sure you've installed <a href="https://docs.docker.com/engine/install/?open_in_browser=true">Docker</a> and <a href="https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html">nvidia-container-toolkit</a>.</p>
<h4> Step 1: Start Docker </h4>
<pre><code>docker run -it --gpus all \
-v <your-model-path>: /models
ghcr.io/01-ai/yi:latest
</code></pre>
<p>Alternatively, you can pull the Yi Docker image from <code>registry.lingyiwanwu.com/ci/01-ai/yi:latest</code>.</p>
<h4>Step 2: Perform inference</h4>
<p>You can perform inference with Yi chat or base models as below.</p>
<h5>Perform inference with Yi chat model</h5>
<p>The steps are similar to <a href="#perform-inference-with-yi-chat-model">pip - Perform inference with Yi chat model</a>.</p>
<p><strong>Note</strong> that the only difference is to set <code>model_path = '<your-model-mount-path>'</code> instead of <code>model_path = '<your-model-path>'</code>.</p>
<h5>Perform inference with Yi base model</h5>
<p>The steps are similar to <a href="#perform-inference-with-yi-base-model">pip - Perform inference with Yi base model</a>.</p>
<p><strong>Note</strong> that the only difference is to set <code>--model <your-model-mount-path>'</code> instead of <code>model <your-model-path></code>.</p>
</details>
### Quick start - conda-lock
<details>
<summary>You can use <code><a href="https://github.com/conda/conda-lock">conda-lock</a></code> to generate fully reproducible lock files for conda environments. ⬇️</summary>
<br>
You can refer to <a href="https://github.com/01-ai/Yi/blob/ebba23451d780f35e74a780987ad377553134f68/conda-lock.yml">conda-lock.yml</a> for the exact versions of the dependencies. Additionally, you can utilize <code><a href="https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html">micromamba</a></code> for installing these dependencies.
<br>
To install the dependencies, follow these steps:
1. Install micromamba by following the instructions available <a href="https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html">here</a>.
2. Execute <code>micromamba install -y -n yi -f conda-lock.yml</code> to create a conda environment named <code>yi</code> and install the necessary dependencies.
</details>
### Quick start - llama.cpp
<details>
<summary> Run Yi-chat-6B-2bits locally with llama.cpp: a step-by-step guide. ⬇️</summary>
<br>This tutorial guides you through every step of running a quantized model (<a href="https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main">Yi-chat-6B-2bits</a>) locally and then performing inference.</p>
- [Step 0: Prerequisites](#step-0-prerequisites)
- [Step 1: Download llama.cpp](#step-1-download-llamacpp)
- [Step 2: Download Yi model](#step-2-download-yi-model)
- [Step 3: Perform inference](#step-3-perform-inference)
#### Step 0: Prerequisites
- This tutorial assumes you use a MacBook Pro with 16GB of memory and an Apple M2 Pro chip.
- Make sure [`git-lfs`](https://git-lfs.com/) is installed on your machine.
#### Step 1: Download `llama.cpp`
To clone the [`llama.cpp`](https://github.com/ggerganov/llama.cpp) repository, run the following command.
```bash
git clone [email protected]:ggerganov/llama.cpp.git
```
#### Step 2: Download Yi model
2.1 To clone [XeIaso/yi-chat-6B-GGUF](https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main) with just pointers, run the following command.
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/XeIaso/yi-chat-6B-GGUF
```
2.2 To download a quantized Yi model ([yi-chat-6b.Q2_K.gguf](https://huggingface.co/XeIaso/yi-chat-6B-GGUF/blob/main/yi-chat-6b.Q2_K.gguf)), run the following command.
```bash
git-lfs pull --include yi-chat-6b.Q2_K.gguf
```
#### Step 3: Perform inference
To perform inference with the Yi model, you can use one of the following methods.
- [Method 1: Perform inference in terminal](#method-1-perform-inference-in-terminal)
- [Method 2: Perform inference in web](#method-2-perform-inference-in-web)
##### Method 1: Perform inference in terminal
To compile `llama.cpp` using 4 threads and then conduct inference, navigate to the `llama.cpp` directory, and run the following command.
> ##### Tips
>
> - Replace `/Users/yu/yi-chat-6B-GGUF/yi-chat-6b.Q2_K.gguf` with the actual path of your model.
>
> - By default, the model operates in completion mode.
>
> - For additional output customization options (for example, system prompt, temperature, repetition penalty, etc.), run `./main -h` to check detailed descriptions and usage.
```bash
make -j4 && ./main -m /Users/yu/yi-chat-6B-GGUF/yi-chat-6b.Q2_K.gguf -p "How do you feed your pet fox? Please answer this question in 6 simple steps:\nStep 1:" -n 384 -e
...
How do you feed your pet fox? Please answer this question in 6 simple steps:
Step 1: Select the appropriate food for your pet fox. You should choose high-quality, balanced prey items that are suitable for their unique dietary needs. These could include live or frozen mice, rats, pigeons, or other small mammals, as well as fresh fruits and vegetables.
Step 2: Feed your pet fox once or twice a day, depending on the species and its individual preferences. Always ensure that they have access to fresh water throughout the day.
Step 3: Provide an appropriate environment for your pet fox. Ensure it has a comfortable place to rest, plenty of space to move around, and opportunities to play and exercise.
Step 4: Socialize your pet with other animals if possible. Interactions with other creatures can help them develop social skills and prevent boredom or stress.
Step 5: Regularly check for signs of illness or discomfort in your fox. Be prepared to provide veterinary care as needed, especially for common issues such as parasites, dental health problems, or infections.
Step 6: Educate yourself about the needs of your pet fox and be aware of any potential risks or concerns that could affect their well-being. Regularly consult with a veterinarian to ensure you are providing the best care.
...
```
Now you have successfully asked a question to the Yi model and got an answer! 🥳
##### Method 2: Perform inference in web
1. To initialize a lightweight and swift chatbot, run the following command.
```bash
cd llama.cpp
./server --ctx-size 2048 --host 0.0.0.0 --n-gpu-layers 64 --model /Users/yu/yi-chat-6B-GGUF/yi-chat-6b.Q2_K.gguf
```
Then you can get an output like this:
```bash
...
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: freq_base = 5000000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M2 Pro
ggml_metal_init: picking default device: Apple M2 Pro
ggml_metal_init: ggml.metallib not found, loading from source
ggml_metal_init: GGML_METAL_PATH_RESOURCES = nil
ggml_metal_init: loading '/Users/yu/llama.cpp/ggml-metal.metal'
ggml_metal_init: GPU name: Apple M2 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple8 (1008)
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 11453.25 MB
ggml_metal_init: maxTransferRate = built-in GPU
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 128.00 MiB, ( 2629.44 / 10922.67)
llama_new_context_with_model: KV self size = 128.00 MiB, K (f16): 64.00 MiB, V (f16): 64.00 MiB
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 0.02 MiB, ( 2629.45 / 10922.67)
llama_build_graph: non-view tensors processed: 676/676
llama_new_context_with_model: compute buffer total size = 159.19 MiB
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 156.02 MiB, ( 2785.45 / 10922.67)
Available slots:
-> Slot 0 - max context: 2048
llama server listening at http://0.0.0.0:8080
```
2. To access the chatbot interface, open your web browser and enter `http://0.0.0.0:8080` into the address bar.

3. Enter a question, such as "How do you feed your pet fox? Please answer this question in 6 simple steps" into the prompt window, and you will receive a corresponding answer.

</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Web demo
You can build a web UI demo for Yi **chat** models (note that Yi base models are not supported in this senario).
[Step 1: Prepare your environment](#step-1-prepare-your-environment).
[Step 2: Download the Yi model](#step-2-download-the-yi-model).
Step 3. To start a web service locally, run the following command.
```bash
python demo/web_demo.py -c <your-model-path>
```
You can access the web UI by entering the address provided in the console into your browser.

<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Fine-tuning
```bash
bash finetune/scripts/run_sft_Yi_6b.sh
```
Once finished, you can compare the finetuned model and the base model with the following command:
```bash
bash finetune/scripts/run_eval.sh
```
<details style="display: inline;"><summary>For advanced usage (like fine-tuning based on your custom data), see the explanations below. ⬇️ </summary> <ul>
### Finetune code for Yi 6B and 34B
#### Preparation
##### From Image
By default, we use a small dataset from [BAAI/COIG](https://huggingface.co/datasets/BAAI/COIG) to finetune the base model.
You can also prepare your customized dataset in the following `jsonl` format:
```json
{ "prompt": "Human: Who are you? Assistant:", "chosen": "I'm Yi." }
```
And then mount them in the container to replace the default ones:
```bash
docker run -it \
-v /path/to/save/finetuned/model/:/finetuned-model \
-v /path/to/train.jsonl:/yi/finetune/data/train.json \
-v /path/to/eval.jsonl:/yi/finetune/data/eval.json \
ghcr.io/01-ai/yi:latest \
bash finetune/scripts/run_sft_Yi_6b.sh
```
##### From Local Server
Make sure you have conda. If not, use
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
source ~/.bashrc
```
Then, create a conda env:
```bash
conda create -n dev_env python=3.10 -y
conda activate dev_env
pip install torch==2.0.1 deepspeed==0.10 tensorboard transformers datasets sentencepiece accelerate ray==2.7
```
#### Hardware Setup
For the Yi-6B model, a node with 4 GPUs, each has GPU mem larger than 60GB is recommended.
For the Yi-34B model, because the usage of zero-offload technique takes a lot CPU memory, please be careful to limit the GPU numbers in 34B finetune training. Please use CUDA_VISIBLE_DEVICES to limit the GPU number (as shown in scripts/run_sft_Yi_34b.sh).
A typical hardware setup for finetuning 34B model is a node with 8GPUS (limit to 4 in running by CUDA_VISIBLE_DEVICES=0,1,2,3), each has GPU mem larger than 80GB, with total CPU mem larger than 900GB.
#### Quick Start
Download a LLM-base model to MODEL_PATH (6B and 34B). A typical folder of models is like:
```bash
|-- $MODEL_PATH
| |-- config.json
| |-- pytorch_model-00001-of-00002.bin
| |-- pytorch_model-00002-of-00002.bin
| |-- pytorch_model.bin.index.json
| |-- tokenizer_config.json
| |-- tokenizer.model
| |-- ...
```
Download a dataset from huggingface to local storage DATA_PATH, e.g. Dahoas/rm-static.
```bash
|-- $DATA_PATH
| |-- data
| | |-- train-00000-of-00001-2a1df75c6bce91ab.parquet
| | |-- test-00000-of-00001-8c7c51afc6d45980.parquet
| |-- dataset_infos.json
| |-- README.md
```
`finetune/yi_example_dataset` has example datasets, which are modified from [BAAI/COIG](https://huggingface.co/datasets/BAAI/COIG)
```bash
|-- $DATA_PATH
|--data
|-- train.jsonl
|-- eval.jsonl
```
`cd` into the scripts folder, copy and paste the script, and run. For example:
```bash
cd finetune/scripts
bash run_sft_Yi_6b.sh
```
For the Yi-6B base model, setting training_debug_steps=20 and num_train_epochs=4 can output a chat model, which takes about 20 minutes.
For the Yi-34B base model, it takes a relatively long time for initialization. Please be patient.
#### Evaluation
```bash
cd finetune/scripts
bash run_eval.sh
```
Then you'll see the answer from both the base model and the finetuned model.
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Quantization
#### GPT-Q
```bash
python quantization/gptq/quant_autogptq.py \
--model /base_model \
--output_dir /quantized_model \
--trust_remote_code
```
Once finished, you can then evaluate the resulting model as follows:
```bash
python quantization/gptq/eval_quantized_model.py \
--model /quantized_model \
--trust_remote_code
```
<details style="display: inline;"><summary>For a more detailed explanation, see the explanations below. ⬇️</summary> <ul>
#### GPT-Q quantization
[GPT-Q](https://github.com/IST-DASLab/gptq) is a PTQ(Post-Training Quantization)
method. It's memory saving and provides potential speedups while retaining the accuracy
of the model.
Yi models can be GPT-Q quantized without a lot of efforts.
We provide a step-by-step tutorial below.
To run GPT-Q, we will use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) and
[exllama](https://github.com/turboderp/exllama).
And the huggingface transformers has integrated optimum and auto-gptq to perform
GPTQ quantization on language models.
##### Do Quantization
The `quant_autogptq.py` script is provided for you to perform GPT-Q quantization:
```bash
python quant_autogptq.py --model /base_model \
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
```
##### Run Quantized Model
You can run a quantized model using the `eval_quantized_model.py`:
```bash
python eval_quantized_model.py --model /quantized_model --trust_remote_code
```
</ul>
</details>
#### AWQ
```bash
python quantization/awq/quant_autoawq.py \
--model /base_model \
--output_dir /quantized_model \
--trust_remote_code
```
Once finished, you can then evaluate the resulting model as follows:
```bash
python quantization/awq/eval_quantized_model.py \
--model /quantized_model \
--trust_remote_code
```
<details style="display: inline;"><summary>For detailed explanations, see the explanations below. ⬇️</summary> <ul>
#### AWQ quantization
[AWQ](https://github.com/mit-han-lab/llm-awq) is a PTQ(Post-Training Quantization)
method. It's an efficient and accurate low-bit weight quantization (INT3/4) for LLMs.
Yi models can be AWQ quantized without a lot of efforts.
We provide a step-by-step tutorial below.
To run AWQ, we will use [AutoAWQ](https://github.com/casper-hansen/AutoAWQ).
##### Do Quantization
The `quant_autoawq.py` script is provided for you to perform AWQ quantization:
```bash
python quant_autoawq.py --model /base_model \
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
```
##### Run Quantized Model
You can run a quantized model using the `eval_quantized_model.py`:
```bash
python eval_quantized_model.py --model /quantized_model --trust_remote_code
```
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Deployment
If you want to deploy Yi models, make sure you meet the software and hardware requirements.
#### Software requirements
Before using Yi quantized models, make sure you've installed the correct software listed below.
| Model | Software
|---|---
Yi 4-bit quantized models | [AWQ and CUDA](https://github.com/casper-hansen/AutoAWQ?tab=readme-ov-file#install-from-pypi)
Yi 8-bit quantized models | [GPTQ and CUDA](https://github.com/PanQiWei/AutoGPTQ?tab=readme-ov-file#quick-installation)
#### Hardware requirements
Before deploying Yi in your environment, make sure your hardware meets the following requirements.
##### Chat models
| Model | Minimum VRAM | Recommended GPU Example |
|:----------------------|:--------------|:-------------------------------------:|
| Yi-6B-Chat | 15 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) |
| Yi-6B-Chat-4bits | 4 GB | 1 x RTX 3060 (12 GB)<br> 1 x RTX 4060 (8 GB) |
| Yi-6B-Chat-8bits | 8 GB | 1 x RTX 3070 (8 GB) <br> 1 x RTX 4060 (8 GB) |
| Yi-34B-Chat | 72 GB | 4 x RTX 4090 (24 GB)<br> 1 x A800 (80GB) |
| Yi-34B-Chat-4bits | 20 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) <br> 1 x A100 (40 GB) |
| Yi-34B-Chat-8bits | 38 GB | 2 x RTX 3090 (24 GB) <br> 2 x RTX 4090 (24 GB)<br> 1 x A800 (40 GB) |
Below are detailed minimum VRAM requirements under different batch use cases.
| Model | batch=1 | batch=4 | batch=16 | batch=32 |
| ----------------------- | ------- | ------- | -------- | -------- |
| Yi-6B-Chat | 12 GB | 13 GB | 15 GB | 18 GB |
| Yi-6B-Chat-4bits | 4 GB | 5 GB | 7 GB | 10 GB |
| Yi-6B-Chat-8bits | 7 GB | 8 GB | 10 GB | 14 GB |
| Yi-34B-Chat | 65 GB | 68 GB | 76 GB | > 80 GB |
| Yi-34B-Chat-4bits | 19 GB | 20 GB | 30 GB | 40 GB |
| Yi-34B-Chat-8bits | 35 GB | 37 GB | 46 GB | 58 GB |
##### Base models
| Model | Minimum VRAM | Recommended GPU Example |
|----------------------|--------------|:-------------------------------------:|
| Yi-6B | 15 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) |
| Yi-6B-200K | 50 GB | 1 x A800 (80 GB) |
| Yi-9B | 20 GB | 1 x RTX 4090 (24 GB) |
| Yi-34B | 72 GB | 4 x RTX 4090 (24 GB) <br> 1 x A800 (80 GB) |
| Yi-34B-200K | 200 GB | 4 x A800 (80 GB) |
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Learning hub
<details>
<summary> If you want to learn Yi, you can find a wealth of helpful educational resources here. ⬇️</summary>
<br>
Welcome to the Yi learning hub!
Whether you're a seasoned developer or a newcomer, you can find a wealth of helpful educational resources to enhance your understanding and skills with Yi models, including insightful blog posts, comprehensive video tutorials, hands-on guides, and more.
The content you find here has been generously contributed by knowledgeable Yi experts and passionate enthusiasts. We extend our heartfelt gratitude for your invaluable contributions!
At the same time, we also warmly invite you to join our collaborative effort by contributing to Yi. If you have already made contributions to Yi, please don't hesitate to showcase your remarkable work in the table below.
With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
#### Tutorials
##### English tutorials
| Type | Deliverable | Date | Author |
|-------------|--------------------------------------------------------|----------------|----------------|
| Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
| Blog | [Running Yi-34B-Chat locally using LlamaEdge](https://www.secondstate.io/articles/yi-34b/) | 2023-11-30 | [Second State](https://github.com/second-state) |
| Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
| Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
##### Chinese tutorials
| Type | Deliverable | Date | Author |
|-------------|--------------------------------------------------------|----------------|----------------|
| Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
| Blog | [本地运行零一万物 34B 大模型,使用 Llama.cpp & 21G 显存](https://zhuanlan.zhihu.com/p/668921042) | 2023-11-26 | [苏洋](https://github.com/soulteary) |
| Blog | [零一万物模型折腾笔记:官方 Yi-34B 模型基础使用](https://zhuanlan.zhihu.com/p/671387298) | 2023-12-10 | [苏洋](https://github.com/soulteary) |
| Blog | [CPU 混合推理,非常见大模型量化方案:“二三五六” 位量化方案](https://zhuanlan.zhihu.com/p/671698216) | 2023-12-12 | [苏洋](https://github.com/soulteary) |
| Blog | [单卡 3 小时训练 Yi-6B 大模型 Agent:基于 Llama Factory 实战](https://zhuanlan.zhihu.com/p/678989191) | 2024-01-22 | [郑耀威](https://github.com/hiyouga) |
| Blog | [零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!](https://zhuanlan.zhihu.com/p/680098411) | 2024-01-26 | [ModelScope](https://github.com/modelscope) |
| Video | [只需 24G 显存,用 vllm 跑起来 Yi-34B 中英双语大模型](https://www.bilibili.com/video/BV17t4y1f7Ee/) | 2023-12-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
| Video | [Yi-VL-34B 多模态大模型 - 用两张 A40 显卡跑起来](https://www.bilibili.com/video/BV1Q5411y7AG/) | 2023-01-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
</details>
# Why Yi?
- [Ecosystem](#ecosystem)
- [Upstream](#upstream)
- [Downstream](#downstream)
- [Serving](#serving)
- [Quantization](#quantization-1)
- [Fine-tuning](#fine-tuning-1)
- [API](#api)
- [Benchmarks](#benchmarks)
- [Chat model performance](#chat-model-performance)
- [Base model performance](#base-model-performance)
- [Yi-34B and Yi-34B-200K](#yi-34b-and-yi-34b-200k)
- [Yi-9B](#yi-9b)
## Ecosystem
Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
- [Upstream](#upstream)
- [Downstream](#downstream)
- [Serving](#serving)
- [Quantization](#quantization-1)
- [Fine-tuning](#fine-tuning-1)
- [API](#api)
### Upstream
The Yi series models follow the same model architecture as Llama. By choosing Yi, you can leverage existing tools, libraries, and resources within the Llama ecosystem, eliminating the need to create new tools and enhancing development efficiency.
For example, the Yi series models are saved in the format of the Llama model. You can directly use `LlamaForCausalLM` and `LlamaTokenizer` to load the model. For more information, see [Use the chat model](#31-use-the-chat-model).
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34b", device_map="auto")
```
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Downstream
> 💡 Tip
>
> - Feel free to create a PR and share the fantastic work you've built using the Yi series models.
>
> - To help others quickly understand your work, it is recommended to use the format of `<model-name>: <model-intro> + <model-highlights>`.
#### Serving
If you want to get up with Yi in a few minutes, you can use the following services built upon Yi.
- Yi-34B-Chat: you can chat with Yi using one of the following platforms:
- [Yi-34B-Chat | Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
- [Yi-34B-Chat | Yi Platform](https://platform.lingyiwanwu.com/): **Note** that currently it's available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)) and experience it firsthand!
- [Yi-6B-Chat (Replicate)](https://replicate.com/01-ai): you can use this model with more options by setting additional parameters and calling APIs.
- [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): you can use this service to run Yi models locally with added flexibility and customization.
#### Quantization
If you have limited computational capabilities, you can use Yi's quantized models as follows.
These quantized models have reduced precision but offer increased efficiency, such as faster inference speed and smaller RAM usage.
- [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ)
- [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
- [TheBloke/Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ)
#### Fine-tuning
If you're seeking to explore the diverse capabilities within Yi's thriving family, you can delve into Yi's fine-tuned models as below.
- [TheBloke Models](https://huggingface.co/TheBloke): this site hosts numerous fine-tuned models derived from various LLMs including Yi.
This is not an exhaustive list for Yi, but to name a few sorted on downloads:
- [TheBloke/dolphin-2_2-yi-34b-AWQ](https://huggingface.co/TheBloke/dolphin-2_2-yi-34b-AWQ)
- [TheBloke/Yi-34B-Chat-AWQ](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ)
- [TheBloke/Yi-34B-Chat-GPTQ](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ)
- [SUSTech/SUS-Chat-34B](https://huggingface.co/SUSTech/SUS-Chat-34B): this model ranked first among all models below 70B and outperformed the twice larger deepseek-llm-67b-chat. You can check the result on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
- [OrionStarAI/OrionStar-Yi-34B-Chat-Llama](https://huggingface.co/OrionStarAI/OrionStar-Yi-34B-Chat-Llama): this model excelled beyond other models (such as GPT-4, Qwen-14B-Chat, Baichuan2-13B-Chat) in C-Eval and CMMLU evaluations on the [OpenCompass LLM Leaderboard](https://opencompass.org.cn/leaderboard-llm).
- [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B): this model is trained with 200K context length and 3 epochs on the Capybara dataset.
#### API
- [amazing-openai-api](https://github.com/soulteary/amazing-openai-api): this tool converts Yi model APIs into the OpenAI API format out of the box.
- [LlamaEdge](https://www.secondstate.io/articles/yi-34b/#create-an-openai-compatible-api-service-for-the-yi-34b-chat-model): this tool builds an OpenAI-compatible API server for Yi-34B-Chat using a portable Wasm (WebAssembly) file, powered by Rust.
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
## Tech report
For detailed capabilities of the Yi series model, see [Yi: Open Foundation Models by 01.AI](https://arxiv.org/abs/2403.04652).
### Citation
```
@misc{ai2024yi,
title={Yi: Open Foundation Models by 01.AI},
author={01. AI and : and Alex Young and Bei Chen and Chao Li and Chengen Huang and Ge Zhang and Guanwei Zhang and Heng Li and Jiangcheng Zhu and Jianqun Chen and Jing Chang and Kaidong Yu and Peng Liu and Qiang Liu and Shawn Yue and Senbin Yang and Shiming Yang and Tao Yu and Wen Xie and Wenhao Huang and Xiaohui Hu and Xiaoyi Ren and Xinyao Niu and Pengcheng Nie and Yuchi Xu and Yudong Liu and Yue Wang and Yuxuan Cai and Zhenyu Gu and Zhiyuan Liu and Zonghong Dai},
year={2024},
eprint={2403.04652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Benchmarks
- [Chat model performance](#-chat-model-performance)
- [Base model performance](#-base-model-performance)
### Chat model performance
Yi-34B-Chat model demonstrates exceptional performance, ranking first among all existing open-source models in the benchmarks including MMLU, CMMLU, BBH, GSM8k, and more.

<details>
<summary> Evaluation methods and challenges. ⬇️ </summary>
- **Evaluation methods**: we evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA.
- **Zero-shot vs. few-shot**: in chat models, the zero-shot approach is more commonly employed.
- **Evaluation strategy**: our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text.
- **Challenges faced**: some models are not well-suited to produce output in the specific format required by instructions in few datasets, which leads to suboptimal results.
<strong>*</strong>: C-Eval results are evaluated on the validation datasets
</details>
### Base model performance
#### Yi-34B and Yi-34B-200K
The Yi-34B and Yi-34B-200K models stand out as the top performers among open-source models, especially excelling in MMLU, CMMLU, common-sense reasoning, reading comprehension, and more.

<details>
<summary> Evaluation methods. ⬇️</summary>
- **Disparity in results**: while benchmarking open-source models, a disparity has been noted between results from our pipeline and those reported by public sources like OpenCompass.
- **Investigation findings**: a deeper investigation reveals that variations in prompts, post-processing strategies, and sampling techniques across models may lead to significant outcome differences.
- **Uniform benchmarking process**: our methodology aligns with the original benchmarks—consistent prompts and post-processing strategies are used, and greedy decoding is applied during evaluations without any post-processing for the generated content.
- **Efforts to retrieve unreported scores**: for scores that were not reported by the original authors (including scores reported with different settings), we try to get results with our pipeline.
- **Extensive model evaluation**: to evaluate the model’s capability extensively, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension.
- **Special configurations**: CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted with a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code".
- **Falcon-180B caveat**: Falcon-180B was not tested on QuAC and OBQA due to technical constraints. Its performance score is an average from other tasks, and considering the generally lower scores of these two tasks, Falcon-180B's capabilities are likely not underestimated.
</details>
#### Yi-9B
Yi-9B is almost the best among a range of similar-sized open-source models (including Mistral-7B, SOLAR-10.7B, Gemma-7B, DeepSeek-Coder-7B-Base-v1.5 and more), particularly excelling in code, math, common-sense reasoning, and reading comprehension.

- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.

- In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.

- In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.

- In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.

<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
# Who can use Yi?
Everyone! 🙌 ✅
- The Yi series models are free for personal usage, academic purposes, and commercial use. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
- For free commercial use, you only need to [complete this form](https://www.lingyiwanwu.com/yi-license) to get a Yi Model Commercial License.
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
# Misc.
### Acknowledgments
A heartfelt thank you to each of you who have made contributions to the Yi community! You have helped Yi not just a project, but a vibrant, growing home for innovation.
[](https://github.com/01-ai/yi/graphs/contributors)
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Disclaimer
We use data compliance checking algorithms during the training process, to
ensure the compliance of the trained model to the best of our ability. Due to
complex data and the diversity of language model usage scenarios, we cannot
guarantee that the model will generate correct, and reasonable output in all
scenarios. Please be aware that there is still a risk of the model producing
problematic outputs. We will not be responsible for any risks and issues
resulting from misuse, misguidance, illegal usage, and related misinformation,
as well as any associated data security concerns.
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### License
The source code in this repo is licensed under the [Apache 2.0
license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models are fully open for academic research and free for commercial use, with automatic permission granted upon application. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
For free commercial use, you only need to send an email to [get official commercial permission](https://www.lingyiwanwu.com/yi-license).
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
|
Bachstelze/instructionMBERTv1 | Bachstelze | 2024-03-13T15:07:09Z | 91 | 0 | transformers | [
"transformers",
"safetensors",
"encoder-decoder",
"text2text-generation",
"dataset:CohereForAI/aya_dataset",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T14:56:44Z | ---
tags:
- text2text-generation
license: mit
datasets:
- CohereForAI/aya_dataset
---
# Model Card of instructionMBERTv1 for Bertology
A minimalistic multilingual instruction model with an already good analysed and pretrained encoder like mBERT.
So we can research the [Bertology](https://aclanthology.org/2020.tacl-1.54.pdf) with instruction-tuned models, [look at the attention](https://colab.research.google.com/drive/1mNP7c0RzABnoUgE6isq8FTp-NuYNtrcH?usp=sharing) and investigate [what happens to BERT embeddings during fine-tuning](https://aclanthology.org/2020.blackboxnlp-1.4.pdf).
The training code is released at the [instructionBERT repository](https://gitlab.com/Bachstelze/instructionbert).
We used the Huggingface API for [warm-starting](https://huggingface.co/blog/warm-starting-encoder-decoder) [BertGeneration](https://huggingface.co/docs/transformers/model_doc/bert-generation) with [Encoder-Decoder-Models](https://huggingface.co/docs/transformers/v4.35.2/en/model_doc/encoder-decoder) for this purpose.
## Training parameters
- base model: "google-bert/bert-base-multilingual-cased"
- trained for 8 epochs
- batch size of 16
- 20000 warm-up steps
- learning rate of 0.0001
## Purpose of instructionMBERT
InstructionMBERT is intended for research purposes. The model-generated text should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications. |
uukuguy/speechless-starcoder2-15b | uukuguy | 2024-03-13T15:04:28Z | 7 | 3 | transformers | [
"transformers",
"safetensors",
"starcoder2",
"text-generation",
"code",
"dataset:bigcode/the-stack-v2-train",
"arxiv:2305.13245",
"arxiv:2205.14135",
"arxiv:2004.05150",
"arxiv:2207.14255",
"arxiv:2402.19173",
"license:bigcode-openrail-m",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T14:55:43Z | ---
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.2
top_p: 0.95
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
datasets:
- bigcode/the-stack-v2-train
license: bigcode-openrail-m
library_name: transformers
tags:
- code
model-index:
- name: starcoder2-15b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 48.1
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 33.8
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 65.1
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 37.8
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 46.3
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 74.08
---
<p><h1> speechless-starcoder2-15b </h1></p>
Code: https://github.com/uukuguy/speechless
Use the following dataset to fine-tune bigcode/starcoder2-15b in order to improve the model's reasoning and planning abilities.
Total 986k samples.
- teknium/OpenHermes-2.5
- TokenBender/python_eval_instruct_51k
- Spider
- codefuse-ai/Evol-instruction-66k
## How to Prompt the Model
This model accepts the Alpaca instruction format.
For example:
``
You are an intelligent programming assistant.
### Instruction:
Implement a linked list in C++
### Response:
``
## HumanEval
| Metric | Value |
| --- | --- |
| humaneval-python | |
## lm-evaluation-harness
``json
{'ARC (acc_norm)': ,
'HellaSwag (acc_norm)': ,
'MMLU (acc)': ,
'TruthfulQA (mc2)': ,
'Winoground (acc)': ,
'GSM8K (acc)': ,
'DROP (f1)': ,
'Open LLM Score': }
``
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-starcoder2-7b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | |
| ARC (25-shot) | |
| HellaSwag (10-shot) | |
| MMLU (5-shot) | |
| TruthfulQA (0-shot) | |
| Winogrande (5-shot) | |
| GSM8K (5-shot) | |
| DROP (3-shot) | |
# StarCoder2
<center>
<img src="https://huggingface.co/datasets/bigcode/admin_private/resolve/main/starcoder2_banner.png" alt="SC2" width="900" height="600">
</center>
## Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [License](#license)
6. [Citation](#citation)
## Model Summary
StarCoder2-15B model is a 15B parameter model trained on 600+ programming languages from [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train), with opt-out requests excluded. The model uses [Grouped Query Attention](https://arxiv.org/abs/2305.13245), [a context window of 16,384 tokens](https://arxiv.org/abs/2205.14135) with [a sliding window attention of 4,096 tokens](https://arxiv.org/abs/2004.05150v2), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 4+ trillion tokens.
The model was trained with [NVIDIA NeMo™ Framework](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/) using the [NVIDIA Eos Supercomputer](https://blogs.nvidia.com/blog/eos/) built with [NVIDIA DGX H100](https://www.nvidia.com/en-us/data-center/dgx-h100/) systems.
- **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
- **Paper:** [Link](https://huggingface.co/papers/2402.19173)
- **Point of Contact:** [[email protected]](mailto:[email protected])
- **Languages:** 600+ Programming languages
## Use
### Intended use
The model was trained on GitHub code as well as additional selected data sources such as Arxiv and Wikipedia. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well.
### Generation
Here are some examples to get started with the model. You can find a script for fine-tuning in StarCoder2's [GitHub repository](https://github.com/bigcode-project/starcoder2).
First, make sure to install `transformers` from source:
```bash
pip install git+https://github.com/huggingface/transformers.git
```
#### Running the model on CPU/GPU/multi GPU
* _Using full precision_
```python
# pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/starcoder2-15b"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
* _Using `torch.bfloat16`_
```python
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
checkpoint = "bigcode/starcoder2-15b"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for fp16 use `torch_dtype=torch.float16` instead
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
```bash
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
Memory footprint: 32251.33 MB
```
#### Quantized Versions through `bitsandbytes`
* _Using 8-bit precision (int8)_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# to use 4bit use `load_in_4bit=True` instead
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
checkpoint = "bigcode/starcoder2-15b"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
```bash
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
# load_in_8bit
Memory footprint: 16900.18 MB
# load_in_4bit
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
Memory footprint: 9224.60 MB
```
### Attribution & Other Requirements
The pretraining dataset of the model was filtered for permissive licenses and code with no license only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/search-v2) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
# Limitations
The model has been trained on source code from 600+ programming languages. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://huggingface.co/papers/2402.19173) for an in-depth discussion of the model limitations.
# Training
## Model
- **Architecture:** Transformer decoder with grouped-query and sliding window attention and Fill-in-the-Middle objective
- **Pretraining steps:** 1 million
- **Pretraining tokens:** 4+ trillion
- **Precision:** bfloat16
## Hardware
- **GPUs:** 1024 x H100
## Software
- **Framework:** [NeMo Framework](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# License
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
# Citation
```bash
@misc{lozhkov2024starcoder,
title={StarCoder 2 and The Stack v2: The Next Generation},
author={Anton Lozhkov and Raymond Li and Loubna Ben Allal and Federico Cassano and Joel Lamy-Poirier and Nouamane Tazi and Ao Tang and Dmytro Pykhtar and Jiawei Liu and Yuxiang Wei and Tianyang Liu and Max Tian and Denis Kocetkov and Arthur Zucker and Younes Belkada and Zijian Wang and Qian Liu and Dmitry Abulkhanov and Indraneil Paul and Zhuang Li and Wen-Ding Li and Megan Risdal and Jia Li and Jian Zhu and Terry Yue Zhuo and Evgenii Zheltonozhskii and Nii Osae Osae Dade and Wenhao Yu and Lucas Krauß and Naman Jain and Yixuan Su and Xuanli He and Manan Dey and Edoardo Abati and Yekun Chai and Niklas Muennighoff and Xiangru Tang and Muhtasham Oblokulov and Christopher Akiki and Marc Marone and Chenghao Mou and Mayank Mishra and Alex Gu and Binyuan Hui and Tri Dao and Armel Zebaze and Olivier Dehaene and Nicolas Patry and Canwen Xu and Julian McAuley and Han Hu and Torsten Scholak and Sebastien Paquet and Jennifer Robinson and Carolyn Jane Anderson and Nicolas Chapados and Mostofa Patwary and Nima Tajbakhsh and Yacine Jernite and Carlos Muñoz Ferrandis and Lingming Zhang and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
year={2024},
eprint={2402.19173},
archivePrefix={arXiv},
primaryClass={cs.SE}
}
```
|
velocity-engg/model_pay | velocity-engg | 2024-03-13T14:59:10Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-2-7b-bnb-4bit",
"base_model:finetune:unsloth/llama-2-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T14:58:49Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-2-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** velocity-engg
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Ericizepic/T5-Address_Std_v1 | Ericizepic | 2024-03-13T14:57:00Z | 120 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T13:55:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Aditya149/Mental-Yi-6B-V1 | Aditya149 | 2024-03-13T14:44:27Z | 2 | 1 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:01-ai/Yi-6B-Chat",
"base_model:adapter:01-ai/Yi-6B-Chat",
"license:other",
"region:us"
] | null | 2024-03-13T14:44:23Z | ---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: 01-ai/Yi-6B-Chat
model-index:
- name: Mental-Yi-7B-V1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mental-Yi-7B-V1
This model is a fine-tuned version of [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.0950
- eval_runtime: 229.6164
- eval_samples_per_second: 4.172
- eval_steps_per_second: 0.523
- epoch: 8.8
- step: 8000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.1 |
JunchengXie/Mistral-7B-v0.1-gpt-4-60k | JunchengXie | 2024-03-13T14:38:12Z | 0 | 0 | null | [
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-03-13T14:33:29Z | ---
license: apache-2.0
---
## Description
This model is finetuned on the distillation data from GPT-4.
The base model is mistralai/Mistral-7B-v0.1
## Usage
The model has a query format as in zephyr.
```
<|user|>
{query}</s>
<|assistant|>
``` |
JunchengXie/Mistral-7B-v0.1-gpt-4-40k | JunchengXie | 2024-03-13T14:37:53Z | 0 | 0 | null | [
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-03-13T14:33:15Z | ---
license: apache-2.0
---
## Description
This model is finetuned on the distillation data from GPT-4.
The base model is mistralai/Mistral-7B-v0.1
## Usage
The model has a query format as in zephyr.
```
<|user|>
{query}</s>
<|assistant|>
``` |
JunchengXie/Mistral-7B-v0.1-gpt-4-20k | JunchengXie | 2024-03-13T14:37:29Z | 0 | 0 | null | [
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-03-13T14:32:52Z | ---
license: apache-2.0
---
## Description
This model is finetuned on the distillation data from GPT-4.
The base model is mistralai/Mistral-7B-v0.1
## Usage
The model has a query format as in zephyr.
```
<|user|>
{query}</s>
<|assistant|>
``` |
Meziane/sum_italian | Meziane | 2024-03-13T14:34:45Z | 91 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-large-cnn",
"base_model:finetune:facebook/bart-large-cnn",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T14:28:32Z | ---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
model-index:
- name: sum_italian
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sum_italian
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log | 1.0 | 198 | 2.1001 | 0.2229 | 0.0587 | 0.1548 | 0.1843 | 133.4208 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
gjonesQ02/WO_PlanningAssistant_ChatBot_Beta | gjonesQ02 | 2024-03-13T14:32:26Z | 4 | 1 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"region:us"
] | null | 2024-03-13T00:19:24Z | ---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-chat-hf
datasets:
- generator
model-index:
- name: WO_PlanningAssistant_ChatBot_Beta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# WO_PlanningAssistant_ChatBot_Beta
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
jcbraz/finetuning-sentiment-model-3000-samples | jcbraz | 2024-03-13T14:30:49Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T13:37:16Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3344
- Accuracy: 0.8767
- F1: 0.8803
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.2
|
amphion/naturalspeech3_facodec | amphion | 2024-03-13T14:25:35Z | 0 | 85 | null | [
"en",
"arxiv:2403.03100",
"license:apache-2.0",
"region:us"
] | null | 2024-03-08T13:02:10Z | ---
license: apache-2.0
language:
- en
---
## FACodec: Speech Codec with Attribute Factorization used for NaturalSpeech 3
[](https://arxiv.org/pdf/2403.03100.pdf)
[](https://speechresearch.github.io/naturalspeech3/)
[](https://huggingface.co/amphion/naturalspeech3_facodec)
[](https://huggingface.co/spaces/amphion/naturalspeech3_facodec)
## Overview
FACodec is a core component of the advanced text-to-speech (TTS) model NaturalSpeech 3. FACodec converts complex speech waveform into disentangled subspaces representing speech attributes of content, prosody, timbre, and acoustic details and reconstruct high-quality speech waveform from these attributes. FACodec decomposes complex speech into subspaces representing different attributes, thus simplifying the modeling of speech representation.
Research can use FACodec to develop different modes of TTS models, such as non-autoregressive based discrete diffusion (NaturalSpeech 3) or autoregressive models (like VALL-E).
## Useage
Download the pre-trained FACodec model from HuggingFace: [Pretrained FACodec checkpoint](https://huggingface.co/amphion/naturalspeech3_facodec/tree/main)
Install Amphion
```bash
git clone https://github.com/open-mmlab/Amphion.git
```
Few lines of code to use the pre-trained FACodec model
```python
from Amphion.models.codec.ns3_codec import FACodecEncoder, FACodecDecoder
from huggingface_hub import hf_hub_download
fa_encoder = FACodecEncoder(
ngf=32,
up_ratios=[2, 4, 5, 5],
out_channels=256,
)
fa_decoder = FACodecDecoder(
in_channels=256,
upsample_initial_channel=1024,
ngf=32,
up_ratios=[5, 5, 4, 2],
vq_num_q_c=2,
vq_num_q_p=1,
vq_num_q_r=3,
vq_dim=256,
codebook_dim=8,
codebook_size_prosody=10,
codebook_size_content=10,
codebook_size_residual=10,
use_gr_x_timbre=True,
use_gr_residual_f0=True,
use_gr_residual_phone=True,
)
encoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_encoder.bin")
decoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_decoder.bin")
fa_encoder.load_state_dict(torch.load(encoder_ckpt))
fa_decoder.load_state_dict(torch.load(decoder_ckpt))
fa_encoder.eval()
fa_decoder.eval()
```
Inference
```python
test_wav_path = "test.wav"
test_wav = librosa.load(test_wav_path, sr=16000)[0]
test_wav = torch.from_numpy(test_wav).float()
test_wav = test_wav.unsqueeze(0).unsqueeze(0)
with torch.no_grad():
# encode
enc_out = fa_encoder(test_wav)
print(enc_out.shape)
# quantize
vq_post_emb, vq_id, _, quantized, spk_embs = fa_decoder(enc_out, eval_vq=False, vq=True)
# latent after quantization
print(vq_post_emb.shape)
# codes
print("vq id shape:", vq_id.shape)
# get prosody code
prosody_code = vq_id[:1]
print("prosody code shape:", prosody_code.shape)
# get content code
cotent_code = vq_id[1:3]
print("content code shape:", cotent_code.shape)
# get residual code (acoustic detail codes)
residual_code = vq_id[3:]
print("residual code shape:", residual_code.shape)
# speaker embedding
print("speaker embedding shape:", spk_embs.shape)
# decode (recommand)
recon_wav = fa_decoder.inference(vq_post_emb, spk_embs)
print(recon_wav.shape)
sf.write("recon.wav", recon_wav[0][0].cpu().numpy(), 16000)
```
FACodec can achieve zero-shot voice conversion with FACodecEncoderV2/FACodecDecoderV2 or FACodecRedecoder
```python
from Amphion.models.codec.ns3_codec import FACodecEncoderV2, FACodecDecoderV2
# Same parameters as FACodecEncoder/FACodecDecoder
fa_encoder_v2 = FACodecEncoderV2(...)
fa_decoder_v2 = FACodecDecoderV2(...)
encoder_v2_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_encoder_v2.bin")
decoder_v2_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_decoder_v2.bin")
fa_encoder_v2.load_state_dict(torch.load(encoder_v2_ckpt))
fa_decoder_v2.load_state_dict(torch.load(decoder_v2_ckpt))
with torch.no_grad():
enc_out_a = fa_encoder_v2(wav_a)
prosody_a = fa_encoder_v2.get_prosody_feature(wav_a)
enc_out_b = fa_encoder_v2(wav_b)
prosody_b = fa_encoder_v2.get_prosody_feature(wav_b)
vq_post_emb_a, vq_id_a, _, quantized, spk_embs_a = fa_decoder_v2(
enc_out_a, prosody_a, eval_vq=False, vq=True
)
vq_post_emb_b, vq_id_b, _, quantized, spk_embs_b = fa_decoder_v2(
enc_out_b, prosody_b, eval_vq=False, vq=True
)
vq_post_emb_a_to_b = fa_decoder_v2.vq2emb(vq_id_a, use_residual=False)
recon_wav_a_to_b = fa_decoder_v2.inference(vq_post_emb_a_to_b, spk_embs_b)
```
or
```python
from Amphion.models.codec.ns3_codec import FACodecRedecoder
fa_redecoder = FACodecRedecoder()
redecoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_redecoder.bin")
fa_redecoder.load_state_dict(torch.load(redecoder_ckpt))
with torch.no_grad():
enc_out_a = fa_encoder(wav_a)
enc_out_b = fa_encoder(wav_b)
vq_post_emb_a, vq_id_a, _, quantized_a, spk_embs_a = fa_decoder(enc_out_a, eval_vq=False, vq=True)
vq_post_emb_b, vq_id_b, _, quantized_b, spk_embs_b = fa_decoder(enc_out_b, eval_vq=False, vq=True)
# convert speaker
vq_post_emb_a_to_b = fa_redecoder.vq2emb(vq_id_a, spk_embs_b, use_residual=False)
recon_wav_a_to_b = fa_redecoder.inference(vq_post_emb_a_to_b, spk_embs_b)
sf.write("recon_a_to_b.wav", recon_wav_a_to_b[0][0].cpu().numpy(), 16000)
```
## Some Q&A
Q1: What audio sample rate does FACodec support? What is the hop size? How many codes will be generated for each frame?
A1: FACodec supports 16KHz speech audio. The hop size is 200 samples, and (16000/200) * 6 (total number of codebooks) codes will be generated for each frame.
Q2: Is it possible to train an autoregressive TTS model like VALL-E using FACodec?
A2: Yes. In fact, the authors of NaturalSpeech 3 have already employ explore the autoregressive generative model for discrete token generation with FACodec. They use an autoregressive language model to generate prosody codes, followed by a non-autoregressive model to generate the remaining content and acoustic details codes.
Q3: Is it possible to train a latent diffusion TTS model like NaturalSpeech2 using FACodec?
A3: Yes. You can use the latent getted after quanzaition as the modelling target for the latent diffusion model.
Q4: Can FACodec compress and reconstruct audio from other domains? Such as sound effects, music, etc.
A4: Since FACodec is designed for speech, it may not be suitable for other audio domains. However, it is possible to use the FACodec model to compress and reconstruct audio from other domains, but the quality may not be as good as the original audio.
Q5: Can FACodec be used for content feature for some other tasks like voice conversion?
A5: I think the answer is yes. Researchers can use the content code of FACodec as the content feature for voice conversion. We hope to see more research in this direction.
## Citations
If you use our FACodec model, please cite the following paper:
```bibtex
@article{ju2024naturalspeech,
title={NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models},
author={Ju, Zeqian and Wang, Yuancheng and Shen, Kai and Tan, Xu and Xin, Detai and Yang, Dongchao and Liu, Yanqing and Leng, Yichong and Song, Kaitao and Tang, Siliang and others},
journal={arXiv preprint arXiv:2403.03100},
year={2024}
}
@article{zhang2023amphion,
title={Amphion: An Open-Source Audio, Music and Speech Generation Toolkit},
author={Xueyao Zhang and Liumeng Xue and Yicheng Gu and Yuancheng Wang and Haorui He and Chaoren Wang and Xi Chen and Zihao Fang and Haopeng Chen and Junan Zhang and Tze Ying Tang and Lexiao Zou and Mingxuan Wang and Jun Han and Kai Chen and Haizhou Li and Zhizheng Wu},
journal={arXiv},
year={2024},
volume={abs/2312.09911}
}
``` |
santhoshmlops/microsoft_phi-1_5_merged-SFT | santhoshmlops | 2024-03-13T14:25:06Z | 0 | 0 | peft | [
"peft",
"safetensors",
"phi",
"trl",
"sft",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/phi-1_5",
"base_model:adapter:microsoft/phi-1_5",
"license:mit",
"region:us"
] | null | 2024-03-13T13:48:10Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/phi-1_5
model-index:
- name: microsoft_phi-1_5_merged-SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft_phi-1_5_merged-SFT
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 25
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
YCheetax/esm2_t12_35M_UR50D-finetuned-localization | YCheetax | 2024-03-13T14:20:26Z | 98 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"esm",
"text-classification",
"generated_from_trainer",
"base_model:facebook/esm2_t12_35M_UR50D",
"base_model:finetune:facebook/esm2_t12_35M_UR50D",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-09-28T12:47:29Z | ---
license: mit
base_model: facebook/esm2_t12_35M_UR50D
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: esm2_t12_35M_UR50D-finetuned-localization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# esm2_t12_35M_UR50D-finetuned-localization
This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8621
- F1: 0.0444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 24
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.2383 | 1.0 | 14099 | 2.5252 | 0.0102 |
| 1.6872 | 2.0 | 28198 | 2.0152 | 0.0355 |
| 1.4838 | 3.0 | 42297 | 1.8621 | 0.0444 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|
neuralmagic/sst2-distilbert-sparse-blog | neuralmagic | 2024-03-13T14:17:43Z | 7 | 4 | transformers | [
"transformers",
"onnx",
"distilbert",
"text-classification",
"sparsity",
"pruning",
"compression",
"en",
"dataset:sst2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-12-19T13:11:40Z | ---
tags:
- distilbert
- sparsity
- pruning
- compression
language: en
datasets: sst2
---
Repo includes all necessary files for staging an Inference Endpoints API with [DeepSparse](https://github.com/neuralmagic/deepsparse) as discussed in this [BLOG](https://neuralmagic.com/blog/accelerate-hugging-face-inference-endpoints-with-deepsparse/).
This DistilBERT was sparsified using the [SparseML](https://github.com/neuralmagic/sparseml) library.
# Sparse Transfer 80% VNNI Pruned DistilBERT
This model is the result of pruning the DistilBERT model to 80% using the VNNI blocking (semi-structured), followed by fine-tuning and quantization on the SST2 dataset. Pruning is performed with the GMP algorithm and using the masked language modeling task based on the BookCorpus and Wikipedia datasets. It achieves 90.5% accuracy on the validation dataset, recovering over 99% of the accuracy of the baseline model. See the included [recipe](https://sparsezoo.neuralmagic.com/models/distilbert-sst2_wikipedia_bookcorpus-pruned80.4block_quantized?comparison=distilbert-sst2_wikipedia_bookcorpus-base) for training instructions. |
argilla/zephyr-7b-spin-iter3-v0 | argilla | 2024-03-13T14:15:52Z | 13 | 8 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:argilla/10k_prompts_SPIN_iter3_zephyr_top",
"dataset:argilla/10k_prompts_SPIN_iter2_zephyr_top",
"dataset:DIBT/10k_prompts_ranked",
"base_model:argilla/zephyr-7b-spin-iter2-v0",
"base_model:finetune:argilla/zephyr-7b-spin-iter2-v0",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-07T19:27:18Z | ---
license: apache-2.0
base_model: argilla/zephyr-7b-spin-iter2-v0
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-spin-iter3-v0
results: []
datasets:
- argilla/10k_prompts_SPIN_iter3_zephyr_top
- argilla/10k_prompts_SPIN_iter2_zephyr_top
- DIBT/10k_prompts_ranked
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-spin-iter3-v0
> A model matching the results of SPIN with very little data (30x less), carefully curated by the amazing [Data Is Better Together community](https://huggingface.co/DIBT)
<div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/aEzpD6gvn0xOrN2rNzpZI.webp">
</div>
<p align="center">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
This model is a fine-tuned version of [argilla/zephyr-7b-spin-iter2-v0](https://huggingface.co/argilla/zephyr-7b-spin-iter2-v0) on the
[argilla/10k_prompts_SPIN_iter3_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter3_zephyr_top) and the
[argilla/10k_prompts_SPIN_iter2_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter2_zephyr_top) dataset.
Check [this repo](https://github.com/argilla-io/distilabel-spin-dibt) for full reproducible code using the original SPIN implementation and distilabel.
If you want to contribute to high quality datasets like this, contribute to the [DIBT prompt collective initiative](https://huggingface.co/spaces/DIBT/prompt-collective-dashboard).
## MT-Bench results
| Model | 1st Turn Score | 2nd Turn Score | Average Score | SPIN paper Score |
|-------------------------|----------------|----------------|---------------|------------------|
| zephyr-7b-sft-full | 6.6625 | 6.0250 | 6.34375 | 5.94 |
| zephyr-7b-spin-iter0-v0 | 6.64375 | 6.1750 | 6.409375 | 6.46 |
| zephyr-7b-spin-iter1-v0 | 6.90625 | 6.3000 | 6.603125 | 6.65 |
| zephyr-7b-spin-iter2-v0 | **7.1375** | 6.3125 | 6.725000 | 6.78 |
| zephyr-7b-spin-iter3-v0 | 7.09375 | **6.4500** | **6.771875** | - |
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:|
| 0.2928 | 0.49 | 25 | 0.3951 | -2.6212 | -20.3268 | 0.9062 | 17.7056 | -700.5638 | -278.0876 | -2.8098 | -2.8090 |
| 0.1487 | 0.97 | 50 | 0.1319 | -2.9077 | -29.1459 | 0.9375 | 26.2382 | -702.3276 | -278.1449 | -2.8218 | -2.8066 |
| 0.006 | 1.46 | 75 | 0.1269 | -2.6037 | -29.1519 | 0.9583 | 26.5482 | -702.3289 | -278.0841 | -2.8175 | -2.8037 |
| 0.0086 | 1.94 | 100 | 0.1099 | -2.9181 | -29.6970 | 0.9271 | 26.7789 | -702.4378 | -278.1470 | -2.8177 | -2.8051 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
argilla/zephyr-7b-spin-iter1-v0 | argilla | 2024-03-13T14:15:21Z | 15 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:argilla/10k_prompts_SPIN_iter1_zephyr_top",
"dataset:argilla/10k_prompts_SPIN_iter0_zephyr_top",
"dataset:DIBT/10k_prompts_ranked",
"base_model:argilla/zephyr-7b-spin-iter0-v0",
"base_model:finetune:argilla/zephyr-7b-spin-iter0-v0",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-06T10:40:24Z | ---
license: apache-2.0
base_model: argilla/zephyr-7b-spin-iter0-v0
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-spin-iter1-v0
results: []
datasets:
- argilla/10k_prompts_SPIN_iter1_zephyr_top
- argilla/10k_prompts_SPIN_iter0_zephyr_top
- DIBT/10k_prompts_ranked
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-spin-iter1-v0
This model is a fine-tuned version of [argilla/zephyr-7b-spin-iter0-v0](https://huggingface.co/argilla/zephyr-7b-spin-iter0-v0) on the
[argilla/10k_prompts_SPIN_iter1_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter1_zephyr_top) and
[argilla/10k_prompts_SPIN_iter0_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter0_zephyr_top) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0831
- Rewards/real: 1.3037
- Rewards/generated: -5.4434
- Rewards/accuracies: 0.9792
- Rewards/margins: 6.7471
- Logps/generated: -545.0309
- Logps/real: -272.3726
- Logits/generated: -2.6844
- Logits/real: -2.7197
## MT-Bench results
| Model | 1st Turn Score | 2nd Turn Score | Average Score |
|-------------------------|----------------|----------------|---------------|
| zephyr-7b-sft-full | 6.6625 | 6.0250 | 6.34375 |
| zephyr-7b-spin-iter0-v0 | 6.64375 | 6.1750 | 6.409375 |
| zephyr-7b-spin-iter1-v0 | 6.90625 | 6.3000 | 6.603125 |
| zephyr-7b-spin-iter2-v0 | **7.1375** | 6.3125 | 6.725000 |
| zephyr-7b-spin-iter3-v0 | 7.09375 | **6.4500** | **6.771875** |
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:|
| 0.1827 | 0.49 | 25 | 0.1651 | 0.1714 | -3.3650 | 0.9688 | 3.5364 | -524.2469 | -283.6962 | -2.7482 | -2.7944 |
| 0.0462 | 0.97 | 50 | 0.0835 | 1.4823 | -4.4998 | 1.0 | 5.9821 | -535.5947 | -270.5871 | -2.6963 | -2.7356 |
| 0.0047 | 1.46 | 75 | 0.0837 | 1.3725 | -5.2500 | 0.9896 | 6.6225 | -543.0965 | -271.6846 | -2.6847 | -2.7211 |
| 0.0034 | 1.94 | 100 | 0.0831 | 1.3037 | -5.4434 | 0.9792 | 6.7471 | -545.0309 | -272.3726 | -2.6844 | -2.7197 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
argilla/zephyr-7b-spin-iter0-v0 | argilla | 2024-03-13T14:15:02Z | 12 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:argilla/10k_prompts_SPIN_iter0_zephyr_top",
"dataset:DIBT/10k_prompts_ranked",
"base_model:alignment-handbook/zephyr-7b-sft-full",
"base_model:finetune:alignment-handbook/zephyr-7b-sft-full",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-06T09:32:59Z | ---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-spin-iter0-v0
results: []
datasets:
- argilla/10k_prompts_SPIN_iter0_zephyr_top
- DIBT/10k_prompts_ranked
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-spin-iter0-v0
This model is a fine-tuned model with SPIN starting with [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the
[argilla/10k_prompts_SPIN_iter0_zephyr_top](https://huggingface.co/datasets/argilla/10k_prompts_SPIN_iter0_zephyr_top) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2359
- Rewards/real: 1.3255
- Rewards/generated: -0.8966
- Rewards/accuracies: 0.9792
- Rewards/margins: 2.2221
- Logps/generated: -309.8145
- Logps/real: -304.9670
- Logits/generated: -2.7558
- Logits/real: -2.7547
## MT-Bench results
| Model | 1st Turn Score | 2nd Turn Score | Average Score |
|-------------------------|----------------|----------------|---------------|
| zephyr-7b-sft-full | 6.6625 | 6.0250 | 6.34375 |
| zephyr-7b-spin-iter0-v0 | 6.64375 | 6.1750 | 6.409375 |
| zephyr-7b-spin-iter1-v0 | 6.90625 | 6.3000 | 6.603125 |
| zephyr-7b-spin-iter2-v0 | **7.1375** | 6.3125 | 6.725000 |
| zephyr-7b-spin-iter3-v0 | 7.09375 | **6.4500** | **6.771875** |
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
SPIN
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:|
| 0.3011 | 0.96 | 25 | 0.2442 | 1.1606 | -0.9851 | 0.9792 | 2.1457 | -310.6989 | -306.6157 | -2.7644 | -2.7641 |
| 0.0376 | 1.92 | 50 | 0.2359 | 1.3255 | -0.8966 | 0.9792 | 2.2221 | -309.8145 | -304.9670 | -2.7558 | -2.7547 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
prince-canuma/c4ai-command-r-v01-tokenizer-chat-template | prince-canuma | 2024-03-13T14:05:07Z | 0 | 1 | transformers | [
"transformers",
"c4ai-command-r-v01",
"chat-template",
"cohere",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T09:21:36Z | ---
library_name: transformers
tags:
- c4ai-command-r-v01
- chat-template
- cohere
---
# Chat Template Tokenizer for c4ai-command-r-v01
This repository includes a fast tokenizer for [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) with the Chat Template. The Tokenizer was created by replacing the string values of original tokens with id `255000` (`<|START_OF_TURN_TOKEN|>`) and `255001` (`<|END_OF_TURN_TOKEN|>`) with the role tokens `<|SYSTEM_TOKEN|>`, `<|USER_TOKEN|>` and `<|CHATBOT_TOKEN|>`.
No new tokens were added during that process to ensure that the original model's embedding doesn't need to be modified.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("prince-canuma/c4ai-command-r-v01-tokenizer-chat-template")
messages = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
]
chatml = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)
print(chatml)
# <|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN |>
# <|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hello! I'm doing well, thank you for asking! I'm excited to assist you and I'm looking forward to hearing your questions. How can I help you today?<| END_OF_TURN_TOKE NI>
```
## Test
```python
tokenizer = AutoTokenizer.from_pretrained("prince-canuma/c4ai-command-r-v01-tokenizer-chat-template")
original_tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
# get special tokens
print(tokenizer.special_tokens_map)
print(original_tokenizer.special_tokens_map)
# check length of vocab
assert len(tokenizer) == len(original_tokenizer), "tokenizer are not having the same length"
``` |
casque/Relaxing_on_Hammock | casque | 2024-03-13T14:00:04Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-03-13T13:58:44Z | ---
license: creativeml-openrail-m
---
|
QinFFF/sd-class-butterflies-32 | QinFFF | 2024-03-13T13:58:44Z | 44 | 0 | diffusers | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2024-03-13T13:58:35Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('QinFFF/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
QEQ1996/asdf | QEQ1996 | 2024-03-13T13:55:32Z | 2 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-03-13T13:55:21Z | ---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: >-
very funny photo,RAW photo, very long shot, long distance view, ((very tall
extremely muscular gigantic young 18 year old huge-bulged guy)) stand
together at his ordinary cozy villa lounge room at Russia together with tiny
shrunken sexy teacher, cleavage, she wear nice plain simple sundress, very
puffy lips, ((natural beauty)), (shocked female expression:1.2), (detailed
skin:1.15), high platform heels, nice high platform heels,ultra highres,
photorealistic, high detailed RAW photo, detailed face, (realistic skin
texture:1.1), depth of field, very big eyes, DSLR, film grain, natural
beautiful lighting, <lora:add-detail-xl:0.9>, size difference, (size
difference:1.3), the gigantic huge-bulged guy stand with very short tiny
shrunken teacher, he is much bigger than tiny sexy teacher, he has enormous
gigantic biceps <lora:ahxl_v1:0.8> he is twice bigger than tiny sexy
teacher, he is muscular giant compared to the tiny teacher, the sexy teacher
is shocked, vouge fashion, nicely dressed, nice clothes, the shocked
shrunken sexy teacher is so tiny compared to the gigantic huge-bulged guy,
she is much smaller than the gigantic guy, teacher is twice shorter than the
guy, he is so gigantic compared to the teacher, the shocked shrunken teacher
is so small and anorexic, size difference is really huge, his gigantic
biceps are much bigger than the shocked shrunken teacher, the gigantic
muscular guy is really giant, the teacher is anorexic shrunken sexy doll
<lora:shrunk_xl:0.8>, his huge bulge is much bigger than the shocked
shrunken teacher, his huge hung is much bigger than the teacher, the teacher
is so tiny sexy doll, the gigantic guy is hung like a horse, his gigantic
biceps much taller than her entire body <lora:bulge:0.8> the gigantic guy is
much younger than the teacher, he is really hung like horse, enormous giant
biceps, he has enormous giant bulge, the gigantic guy really have giant
enormous bulge, the teacher is so shrunken, the teacher is really tiny
shrunken sexy doll
parameters:
negative_prompt: >-
(((make up, eyeliner))), (deformed iris, deformed pupils, semi-realistic,
cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up,
cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly,
duplicate, morbid, mutilated, (extra fingers:1.2), (mutated hands:1.2),
mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions,
extra limbs, cloned face, disfigured, gross proportions, malformed limbs,
missing arms, missing legs, extra arms, extra legs, (fused fingers:1.2),
(too many fingers:1.2), long neck, (((extra limbs))), ((((small
breasts)))), (((child, kid))), ((((fat)))), (((teacher is muscular))),
((((solo, alone)))), ((((medium shot, portrait)))) unaestheticXL_Alb2,
((((young milf))))
output:
url: images/00001-3846095755.png
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: null
license: creativeml-openrail-m
---
# sd
<Gallery />
## Download model
Weights for this model are available in Safetensors format.
[Download](/QEQ1996/asdf/tree/main) them in the Files & versions tab.
|
sagravela/ppo-Huggy | sagravela | 2024-03-13T13:55:08Z | 10 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2024-03-13T13:55:04Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: sagravela/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Reemamgad/tinyllama_merged | Reemamgad | 2024-03-13T13:54:44Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T12:54:03Z | ---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
- TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T
---
# tinyllama_merged
tinyllama_merged is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
* [TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
layer_range: [0, 16]
- sources:
- model: TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T
layer_range: [12, 24]
merge_method: passthrough
dtype: bfloat16
``` |
zzttbrdd/sn6_20_g | zzttbrdd | 2024-03-13T13:51:46Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T13:49:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AndersGiovanni/roberta-large-10-dim | AndersGiovanni | 2024-03-13T13:36:58Z | 2 | 0 | peft | [
"peft",
"safetensors",
"text-classification",
"en",
"dataset:AndersGiovanni/10-dim",
"base_model:FacebookAI/roberta-large",
"base_model:adapter:FacebookAI/roberta-large",
"license:mit",
"region:us"
] | text-classification | 2024-03-13T09:44:29Z | ---
license: mit
base_model: roberta-large
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: roberta-large
results: []
library_name: peft
datasets:
- AndersGiovanni/10-dim
language:
- en
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2277
- Accuracy: 0.0883
- Precision: 0.6211
- Recall: 0.1909
- F1: 0.2920
- Hamming Loss: 0.1984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.5.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
timothy-geiger/whisper-tiny-dv | timothy-geiger | 2024-03-13T13:35:38Z | 62 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-03-13T12:28:02Z | ---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-dv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3270365997638725
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-dv
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6965
- Wer Ortho: 0.3504
- Wer: 0.3270
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.003 | 17.86 | 500 | 0.6965 | 0.3504 | 0.3270 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
etokikalishvili/finetuning-sentiment-model-3000-samples | etokikalishvili | 2024-03-13T13:35:14Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T13:06:05Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2544
- Accuracy: 0.8967
- F1: 0.9046
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
glaucoma/falcon_openorca_final_eval_sharded | glaucoma | 2024-03-13T13:35:09Z | 95 | 0 | transformers | [
"transformers",
"safetensors",
"falcon",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T13:34:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Ashreen/legal-t5-large-hybrid | Ashreen | 2024-03-13T13:33:10Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T13:31:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jmoney54378256438905/Yi-34B-200K-MAR2024-exl2-5bpw | jmoney54378256438905 | 2024-03-13T13:32:21Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"arxiv:2403.04652",
"arxiv:2311.16502",
"arxiv:2401.11944",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"5-bit",
"exl2",
"region:us"
] | text-generation | 2024-03-13T13:16:28Z | ---
license: other
license_name: yi-license
license_link: LICENSE
widget:
- example_title: "Yi-34B-Chat"
text: "hi"
output:
text: " Hello! How can I assist you today?"
- example_title: "Yi-34B"
text: "There's a place where time stands still. A place of breath taking wonder, but also"
output:
text: " an eerie sense that something is just not right…\nBetween the two worlds lies The Forgotten Kingdom - home to creatures long since thought extinct and ancient magic so strong it defies belief! Only here can you find what has been lost for centuries: An Elixir Of Life which will restore youth and vitality if only those who seek its power are brave enough to face up against all manner of dangers lurking in this mysterious land! But beware; some say there may even exist powerful entities beyond our comprehension whose intentions towards humanity remain unclear at best ---- they might want nothing more than destruction itself rather then anything else from their quest after immortality (and maybe someone should tell them about modern medicine)? In any event though – one thing remains true regardless : whether or not success comes easy depends entirely upon how much effort we put into conquering whatever challenges lie ahead along with having faith deep down inside ourselves too ;) So let’s get started now shall We?"
pipeline_tag: text-generation
---
<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_dark.svg" width="200px">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="200px">
<img alt="specify theme context for images" src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg">
</picture>
</br>
</br>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml">
<img src="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml/badge.svg">
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/blob/main/LICENSE">
<img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue">
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
<img src="https://img.shields.io/badge/Model_License-Yi_License-lightblue">
</a>
</div>
<div style="display: inline-block;">
<a href="mailto:[email protected]">
<img src="https://img.shields.io/badge/✉️[email protected]">
</a>
</div>
</div>
<div align="center">
<h3 align="center">Building the Next Generation of Open-Source and Bilingual LLMs</h3>
</div>
<p align="center">
🤗 <a href="https://huggingface.co/01-ai" target="_blank">Hugging Face</a> • 🤖 <a href="https://www.modelscope.cn/organization/01ai/" target="_blank">ModelScope</a> • ✡️ <a href="https://wisemodel.cn/organization/01.AI" target="_blank">WiseModel</a>
</p>
<p align="center">
👩🚀 Ask questions or discuss ideas on <a href="https://github.com/01-ai/Yi/discussions" target="_blank"> GitHub </a>
</p>
<p align="center">
👋 Join us on <a href="https://discord.gg/zQ4A6b6H" target="_blank"> 👾 Discord </a> or <a href="https://github.com/01-ai/Yi/issues/43#issuecomment-1827285245" target="_blank"> 💬 WeChat </a>
</p>
<p align="center">
📝 Check out <a href="https://arxiv.org/abs/2403.04652"> Yi Tech Report </a>
</p>
<p align="center">
📚 Grow at <a href="#learning-hub"> Yi Learning Hub </a>
</p>
<!-- DO NOT REMOVE ME -->
<hr>
<details open>
<summary></b>📕 Table of Contents</b></summary>
- [What is Yi?](#what-is-yi)
- [Introduction](#introduction)
- [Models](#models)
- [Chat models](#chat-models)
- [Base models](#base-models)
- [Other info](#other-info)
- [News](#news)
- [How to use Yi?](#how-to-use-yi)
- [Quick start](#quick-start)
- [Choose your path](#choose-your-path)
- [pip](#quick-start---pip)
- [docker](#quick-start---docker)
- [llama.cpp](#quick-start---llamacpp)
- [conda-lock](#quick-start---conda-lock)
- [Web demo](#web-demo)
- [Fine-tuning](#fine-tuning)
- [Quantization](#quantization)
- [Deployment](#deployment)
- [Learning hub](#learning-hub)
- [Why Yi?](#why-yi)
- [Ecosystem](#ecosystem)
- [Upstream](#upstream)
- [Downstream](#downstream)
- [Serving](#serving)
- [Quantization](#quantization-1)
- [Fine-tuning](#fine-tuning-1)
- [API](#api)
- [Benchmarks](#benchmarks)
- [Base model performance](#base-model-performance)
- [Chat model performance](#chat-model-performance)
- [Tech report](#tech-report)
- [Citation](#citation)
- [Who can use Yi?](#who-can-use-yi)
- [Misc.](#misc)
- [Acknowledgements](#acknowledgments)
- [Disclaimer](#disclaimer)
- [License](#license)
</details>
<hr>
# What is Yi?
## Introduction
- 🤖 The Yi series models are the next generation of open-source large language models trained from scratch by [01.AI](https://01.ai/).
- 🙌 Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example,
- Yi-34B-Chat model **landed in second place (following GPT-4 Turbo)**, outperforming other LLMs (such as GPT-4, Mixtral, Claude) on the AlpacaEval Leaderboard (based on data available up to January 2024).
- Yi-34B model **ranked first among all existing open-source models** (such as Falcon-180B, Llama-70B, Claude) in **both English and Chinese** on various benchmarks, including Hugging Face Open LLM Leaderboard (pre-trained) and C-Eval (based on data available up to November 2023).
- 🙏 (Credits to Llama) Thanks to the Transformer and Llama open-source communities, as they reduce the efforts required to build from scratch and enable the utilization of the same tools within the AI ecosystem.
<details style="display: inline;"><summary> If you're interested in Yi's adoption of Llama architecture and license usage policy, see <span style="color: green;">Yi's relation with Llama.</span> ⬇️</summary> <ul> <br>
> 💡 TL;DR
>
> The Yi series models adopt the same model architecture as Llama but are **NOT** derivatives of Llama.
- Both Yi and Llama are based on the Transformer structure, which has been the standard architecture for large language models since 2018.
- Grounded in the Transformer architecture, Llama has become a new cornerstone for the majority of state-of-the-art open-source models due to its excellent stability, reliable convergence, and robust compatibility. This positions Llama as the recognized foundational framework for models including Yi.
- Thanks to the Transformer and Llama architectures, other models can leverage their power, reducing the effort required to build from scratch and enabling the utilization of the same tools within their ecosystems.
- However, the Yi series models are NOT derivatives of Llama, as they do not use Llama's weights.
- As Llama's structure is employed by the majority of open-source models, the key factors of determining model performance are training datasets, training pipelines, and training infrastructure.
- Developing in a unique and proprietary way, Yi has independently created its own high-quality training datasets, efficient training pipelines, and robust training infrastructure entirely from the ground up. This effort has led to excellent performance with Yi series models ranking just behind GPT4 and surpassing Llama on the [Alpaca Leaderboard in Dec 2023](https://tatsu-lab.github.io/alpaca_eval/).
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
## News
<details open>
<summary>🎯 <b>2024-03-08</b>: <a href="https://arxiv.org/abs/2403.04652">Yi Tech Report</a> is published! </summary>
</details>
<details open>
<summary>🔔 <b>2024-03-07</b>: The long text capability of the Yi-34B-200K has been enhanced. </summary>
<br>
In the "Needle-in-a-Haystack" test, the Yi-34B-200K's performance is improved by 10.5%, rising from 89.3% to an impressive 99.8%. We continue to pre-train the model on 5B tokens long-context data mixture and demonstrate a near-all-green performance.
</details>
<details open>
<summary>🎯 <b>2024-03-06</b>: The <code>Yi-9B</code> is open-sourced and available to the public.</summary>
<br>
<code>Yi-9B</code> stands out as the top performer among a range of similar-sized open-source models (including Mistral-7B, SOLAR-10.7B, Gemma-7B, DeepSeek-Coder-7B-Base-v1.5 and more), particularly excelling in code, math, common-sense reasoning, and reading comprehension.
</details>
<details open>
<summary>🎯 <b>2024-01-23</b>: The Yi-VL models, <code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> and <code><a href="https://huggingface.co/01-ai/Yi-VL-6B">Yi-VL-6B</a></code>, are open-sourced and available to the public.</summary>
<br>
<code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> has ranked <strong>first</strong> among all existing open-source models in the latest benchmarks, including <a href="https://arxiv.org/abs/2311.16502">MMMU</a> and <a href="https://arxiv.org/abs/2401.11944">CMMMU</a> (based on data available up to January 2024).</li>
</details>
<details>
<summary>🎯 <b>2023-11-23</b>: <a href="#chat-models">Chat models</a> are open-sourced and available to the public.</summary>
<br>This release contains two chat models based on previously released base models, two 8-bit models quantized by GPTQ, and two 4-bit models quantized by AWQ.
- `Yi-34B-Chat`
- `Yi-34B-Chat-4bits`
- `Yi-34B-Chat-8bits`
- `Yi-6B-Chat`
- `Yi-6B-Chat-4bits`
- `Yi-6B-Chat-8bits`
You can try some of them interactively at:
- [Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
- [Replicate](https://replicate.com/01-ai)
</details>
<details>
<summary>🔔 <b>2023-11-23</b>: The Yi Series Models Community License Agreement is updated to <a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">v2.1</a>.</summary>
</details>
<details>
<summary>🔥 <b>2023-11-08</b>: Invited test of Yi-34B chat model.</summary>
<br>Application form:
- [English](https://cn.mikecrm.com/l91ODJf)
- [Chinese](https://cn.mikecrm.com/gnEZjiQ)
</details>
<details>
<summary>🎯 <b>2023-11-05</b>: <a href="#base-models">The base models, </a><code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>, are open-sourced and available to the public.</summary>
<br>This release contains two base models with the same parameter sizes as the previous
release, except that the context window is extended to 200K.
</details>
<details>
<summary>🎯 <b>2023-11-02</b>: <a href="#base-models">The base models, </a><code>Yi-6B</code> and <code>Yi-34B</code>, are open-sourced and available to the public.</summary>
<br>The first public release contains two bilingual (English/Chinese) base models
with the parameter sizes of 6B and 34B. Both of them are trained with 4K
sequence length and can be extended to 32K during inference time.
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
## Models
Yi models come in multiple sizes and cater to different use cases. You can also fine-tune Yi models to meet your specific requirements.
If you want to deploy Yi models, make sure you meet the [software and hardware requirements](#deployment).
### Chat models
| Model | Download
|---|---
Yi-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat/summary)
Yi-34B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-4bits/summary)
Yi-34B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-8bits/summary)
Yi-6B-Chat| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat/summary)
Yi-6B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-4bits/summary)
Yi-6B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-8bits/summary)
<sub><sup> - 4-bit series models are quantized by AWQ. <br> - 8-bit series models are quantized by GPTQ <br> - All quantized models have a low barrier to use since they can be deployed on consumer-grade GPUs (e.g., 3090, 4090). </sup></sub>
### Base models
| Model | Download |
|---|---|
Yi-34B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B/summary)
Yi-34B-200K|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-200K/summary)
Yi-9B|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-9B)
Yi-6B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B/summary)
Yi-6B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-200K/summary)
<sub><sup> - 200k is roughly equivalent to 400,000 Chinese characters. <br> - If you want to use the previous version of the Yi-34B-200K (released on Nov 5, 2023), run `git checkout 069cd341d60f4ce4b07ec394e82b79e94f656cf` to download the weight. </sup></sub>
### Model info
- For chat and base models
Model | Intro | Default context window | Pretrained tokens | Training Data Date
|---|---|---|---|---
6B series models |They are suitable for personal and academic use. | 4K | 3T | Up to June 2023
9B model| It is the best at coding and math in the Yi series models.|4K | Yi-9B is continuously trained based on Yi-6B, using 0.8T tokens. | Up to June 2023
34B series models | They are suitable for personal, academic, and commercial (particularly for small and medium-sized enterprises) purposes. It's a cost-effective solution that's affordable and equipped with emergent ability.|4K | 3T | Up to June 2023
- For chat models
<details style="display: inline;"><summary>For chat model limitations, see the explanations below. ⬇️</summary>
<ul>
<br>The released chat model has undergone exclusive training using Supervised Fine-Tuning (SFT). Compared to other standard chat models, our model produces more diverse responses, making it suitable for various downstream tasks, such as creative scenarios. Furthermore, this diversity is expected to enhance the likelihood of generating higher quality responses, which will be advantageous for subsequent Reinforcement Learning (RL) training.
<br>However, this higher diversity might amplify certain existing issues, including:
<li>Hallucination: This refers to the model generating factually incorrect or nonsensical information. With the model's responses being more varied, there's a higher chance of hallucination that are not based on accurate data or logical reasoning.</li>
<li>Non-determinism in re-generation: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.</li>
<li>Cumulative Error: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.</li>
<li>To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as temperature, top_p, or top_k. These adjustments can help in the balance between creativity and coherence in the model's outputs.</li>
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
# How to use Yi?
- [Quick start](#quick-start)
- [Choose your path](#choose-your-path)
- [pip](#quick-start---pip)
- [docker](#quick-start---docker)
- [conda-lock](#quick-start---conda-lock)
- [llama.cpp](#quick-start---llamacpp)
- [Web demo](#web-demo)
- [Fine-tuning](#fine-tuning)
- [Quantization](#quantization)
- [Deployment](#deployment)
- [Learning hub](#learning-hub)
## Quick start
Getting up and running with Yi models is simple with multiple choices available.
### Choose your path
Select one of the following paths to begin your journey with Yi!

#### 🎯 Deploy Yi locally
If you prefer to deploy Yi models locally,
- 🙋♀️ and you have **sufficient** resources (for example, NVIDIA A800 80GB), you can choose one of the following methods:
- [pip](#quick-start---pip)
- [Docker](#quick-start---docker)
- [conda-lock](#quick-start---conda-lock)
- 🙋♀️ and you have **limited** resources (for example, a MacBook Pro), you can use [llama.cpp](#quick-start---llamacpp).
#### 🎯 Not to deploy Yi locally
If you prefer not to deploy Yi models locally, you can explore Yi's capabilities using any of the following options.
##### 🙋♀️ Run Yi with APIs
If you want to explore more features of Yi, you can adopt one of these methods:
- Yi APIs (Yi official)
- [Early access has been granted](https://x.com/01AI_Yi/status/1735728934560600536?s=20) to some applicants. Stay tuned for the next round of access!
- [Yi APIs](https://replicate.com/01-ai/yi-34b-chat/api?tab=nodejs) (Replicate)
##### 🙋♀️ Run Yi in playground
If you want to chat with Yi with more customizable options (e.g., system prompt, temperature, repetition penalty, etc.), you can try one of the following options:
- [Yi-34B-Chat-Playground](https://platform.lingyiwanwu.com/prompt/playground) (Yi official)
- Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
- [Yi-34B-Chat-Playground](https://replicate.com/01-ai/yi-34b-chat) (Replicate)
##### 🙋♀️ Chat with Yi
If you want to chat with Yi, you can use one of these online services, which offer a similar user experience:
- [Yi-34B-Chat](https://huggingface.co/spaces/01-ai/Yi-34B-Chat) (Yi official on Hugging Face)
- No registration is required.
- [Yi-34B-Chat](https://platform.lingyiwanwu.com/) (Yi official beta)
- Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Quick start - pip
This tutorial guides you through every step of running **Yi-34B-Chat locally on an A800 (80G)** and then performing inference.
#### Step 0: Prerequisites
- Make sure Python 3.10 or a later version is installed.
- If you want to run other Yi models, see [software and hardware requirements](#deployment).
#### Step 1: Prepare your environment
To set up the environment and install the required packages, execute the following command.
```bash
git clone https://github.com/01-ai/Yi.git
cd yi
pip install -r requirements.txt
```
#### Step 2: Download the Yi model
You can download the weights and tokenizer of Yi models from the following sources:
- [Hugging Face](https://huggingface.co/01-ai)
- [ModelScope](https://www.modelscope.cn/organization/01ai/)
- [WiseModel](https://wisemodel.cn/organization/01.AI)
#### Step 3: Perform inference
You can perform inference with Yi chat or base models as below.
##### Perform inference with Yi chat model
1. Create a file named `quick_start.py` and copy the following content to it.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = '<your-model-path>'
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
2. Run `quick_start.py`.
```bash
python quick_start.py
```
Then you can see an output similar to the one below. 🥳
```bash
Hello! How can I assist you today?
```
##### Perform inference with Yi base model
- Yi-34B
The steps are similar to [pip - Perform inference with Yi chat model](#perform-inference-with-yi-chat-model).
You can use the existing file [`text_generation.py`](https://github.com/01-ai/Yi/tree/main/demo).
```bash
python demo/text_generation.py --model <your-model-path>
```
Then you can see an output similar to the one below. 🥳
<details>
<summary>Output. ⬇️ </summary>
<br>
**Prompt**: Let me tell you an interesting story about cat Tom and mouse Jerry,
**Generation**: Let me tell you an interesting story about cat Tom and mouse Jerry, which happened in my childhood. My father had a big house with two cats living inside it to kill mice. One day when I was playing at home alone, I found one of the tomcats lying on his back near our kitchen door, looking very much like he wanted something from us but couldn’t get up because there were too many people around him! He kept trying for several minutes before finally giving up...
</details>
- Yi-9B
Input
```bash
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_DIR = "01-ai/Yi-9B"
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=False)
input_text = "# write the quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Output
```bash
# write the quick sort algorithm
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)
# test the quick sort algorithm
print(quick_sort([3, 6, 8, 10, 1, 2, 1]))
```
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Quick start - Docker
<details>
<summary> Run Yi-34B-chat locally with Docker: a step-by-step guide. ⬇️</summary>
<br>This tutorial guides you through every step of running <strong>Yi-34B-Chat on an A800 GPU</strong> or <strong>4*4090</strong> locally and then performing inference.
<h4>Step 0: Prerequisites</h4>
<p>Make sure you've installed <a href="https://docs.docker.com/engine/install/?open_in_browser=true">Docker</a> and <a href="https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html">nvidia-container-toolkit</a>.</p>
<h4> Step 1: Start Docker </h4>
<pre><code>docker run -it --gpus all \
-v <your-model-path>: /models
ghcr.io/01-ai/yi:latest
</code></pre>
<p>Alternatively, you can pull the Yi Docker image from <code>registry.lingyiwanwu.com/ci/01-ai/yi:latest</code>.</p>
<h4>Step 2: Perform inference</h4>
<p>You can perform inference with Yi chat or base models as below.</p>
<h5>Perform inference with Yi chat model</h5>
<p>The steps are similar to <a href="#perform-inference-with-yi-chat-model">pip - Perform inference with Yi chat model</a>.</p>
<p><strong>Note</strong> that the only difference is to set <code>model_path = '<your-model-mount-path>'</code> instead of <code>model_path = '<your-model-path>'</code>.</p>
<h5>Perform inference with Yi base model</h5>
<p>The steps are similar to <a href="#perform-inference-with-yi-base-model">pip - Perform inference with Yi base model</a>.</p>
<p><strong>Note</strong> that the only difference is to set <code>--model <your-model-mount-path>'</code> instead of <code>model <your-model-path></code>.</p>
</details>
### Quick start - conda-lock
<details>
<summary>You can use <code><a href="https://github.com/conda/conda-lock">conda-lock</a></code> to generate fully reproducible lock files for conda environments. ⬇️</summary>
<br>
You can refer to <a href="https://github.com/01-ai/Yi/blob/ebba23451d780f35e74a780987ad377553134f68/conda-lock.yml">conda-lock.yml</a> for the exact versions of the dependencies. Additionally, you can utilize <code><a href="https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html">micromamba</a></code> for installing these dependencies.
<br>
To install the dependencies, follow these steps:
1. Install micromamba by following the instructions available <a href="https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html">here</a>.
2. Execute <code>micromamba install -y -n yi -f conda-lock.yml</code> to create a conda environment named <code>yi</code> and install the necessary dependencies.
</details>
### Quick start - llama.cpp
<details>
<summary> Run Yi-chat-6B-2bits locally with llama.cpp: a step-by-step guide. ⬇️</summary>
<br>This tutorial guides you through every step of running a quantized model (<a href="https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main">Yi-chat-6B-2bits</a>) locally and then performing inference.</p>
- [Step 0: Prerequisites](#step-0-prerequisites)
- [Step 1: Download llama.cpp](#step-1-download-llamacpp)
- [Step 2: Download Yi model](#step-2-download-yi-model)
- [Step 3: Perform inference](#step-3-perform-inference)
#### Step 0: Prerequisites
- This tutorial assumes you use a MacBook Pro with 16GB of memory and an Apple M2 Pro chip.
- Make sure [`git-lfs`](https://git-lfs.com/) is installed on your machine.
#### Step 1: Download `llama.cpp`
To clone the [`llama.cpp`](https://github.com/ggerganov/llama.cpp) repository, run the following command.
```bash
git clone [email protected]:ggerganov/llama.cpp.git
```
#### Step 2: Download Yi model
2.1 To clone [XeIaso/yi-chat-6B-GGUF](https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main) with just pointers, run the following command.
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/XeIaso/yi-chat-6B-GGUF
```
2.2 To download a quantized Yi model ([yi-chat-6b.Q2_K.gguf](https://huggingface.co/XeIaso/yi-chat-6B-GGUF/blob/main/yi-chat-6b.Q2_K.gguf)), run the following command.
```bash
git-lfs pull --include yi-chat-6b.Q2_K.gguf
```
#### Step 3: Perform inference
To perform inference with the Yi model, you can use one of the following methods.
- [Method 1: Perform inference in terminal](#method-1-perform-inference-in-terminal)
- [Method 2: Perform inference in web](#method-2-perform-inference-in-web)
##### Method 1: Perform inference in terminal
To compile `llama.cpp` using 4 threads and then conduct inference, navigate to the `llama.cpp` directory, and run the following command.
> ##### Tips
>
> - Replace `/Users/yu/yi-chat-6B-GGUF/yi-chat-6b.Q2_K.gguf` with the actual path of your model.
>
> - By default, the model operates in completion mode.
>
> - For additional output customization options (for example, system prompt, temperature, repetition penalty, etc.), run `./main -h` to check detailed descriptions and usage.
```bash
make -j4 && ./main -m /Users/yu/yi-chat-6B-GGUF/yi-chat-6b.Q2_K.gguf -p "How do you feed your pet fox? Please answer this question in 6 simple steps:\nStep 1:" -n 384 -e
...
How do you feed your pet fox? Please answer this question in 6 simple steps:
Step 1: Select the appropriate food for your pet fox. You should choose high-quality, balanced prey items that are suitable for their unique dietary needs. These could include live or frozen mice, rats, pigeons, or other small mammals, as well as fresh fruits and vegetables.
Step 2: Feed your pet fox once or twice a day, depending on the species and its individual preferences. Always ensure that they have access to fresh water throughout the day.
Step 3: Provide an appropriate environment for your pet fox. Ensure it has a comfortable place to rest, plenty of space to move around, and opportunities to play and exercise.
Step 4: Socialize your pet with other animals if possible. Interactions with other creatures can help them develop social skills and prevent boredom or stress.
Step 5: Regularly check for signs of illness or discomfort in your fox. Be prepared to provide veterinary care as needed, especially for common issues such as parasites, dental health problems, or infections.
Step 6: Educate yourself about the needs of your pet fox and be aware of any potential risks or concerns that could affect their well-being. Regularly consult with a veterinarian to ensure you are providing the best care.
...
```
Now you have successfully asked a question to the Yi model and got an answer! 🥳
##### Method 2: Perform inference in web
1. To initialize a lightweight and swift chatbot, run the following command.
```bash
cd llama.cpp
./server --ctx-size 2048 --host 0.0.0.0 --n-gpu-layers 64 --model /Users/yu/yi-chat-6B-GGUF/yi-chat-6b.Q2_K.gguf
```
Then you can get an output like this:
```bash
...
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: freq_base = 5000000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M2 Pro
ggml_metal_init: picking default device: Apple M2 Pro
ggml_metal_init: ggml.metallib not found, loading from source
ggml_metal_init: GGML_METAL_PATH_RESOURCES = nil
ggml_metal_init: loading '/Users/yu/llama.cpp/ggml-metal.metal'
ggml_metal_init: GPU name: Apple M2 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple8 (1008)
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 11453.25 MB
ggml_metal_init: maxTransferRate = built-in GPU
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 128.00 MiB, ( 2629.44 / 10922.67)
llama_new_context_with_model: KV self size = 128.00 MiB, K (f16): 64.00 MiB, V (f16): 64.00 MiB
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 0.02 MiB, ( 2629.45 / 10922.67)
llama_build_graph: non-view tensors processed: 676/676
llama_new_context_with_model: compute buffer total size = 159.19 MiB
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 156.02 MiB, ( 2785.45 / 10922.67)
Available slots:
-> Slot 0 - max context: 2048
llama server listening at http://0.0.0.0:8080
```
2. To access the chatbot interface, open your web browser and enter `http://0.0.0.0:8080` into the address bar.

3. Enter a question, such as "How do you feed your pet fox? Please answer this question in 6 simple steps" into the prompt window, and you will receive a corresponding answer.

</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Web demo
You can build a web UI demo for Yi **chat** models (note that Yi base models are not supported in this senario).
[Step 1: Prepare your environment](#step-1-prepare-your-environment).
[Step 2: Download the Yi model](#step-2-download-the-yi-model).
Step 3. To start a web service locally, run the following command.
```bash
python demo/web_demo.py -c <your-model-path>
```
You can access the web UI by entering the address provided in the console into your browser.

<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Fine-tuning
```bash
bash finetune/scripts/run_sft_Yi_6b.sh
```
Once finished, you can compare the finetuned model and the base model with the following command:
```bash
bash finetune/scripts/run_eval.sh
```
<details style="display: inline;"><summary>For advanced usage (like fine-tuning based on your custom data), see the explanations below. ⬇️ </summary> <ul>
### Finetune code for Yi 6B and 34B
#### Preparation
##### From Image
By default, we use a small dataset from [BAAI/COIG](https://huggingface.co/datasets/BAAI/COIG) to finetune the base model.
You can also prepare your customized dataset in the following `jsonl` format:
```json
{ "prompt": "Human: Who are you? Assistant:", "chosen": "I'm Yi." }
```
And then mount them in the container to replace the default ones:
```bash
docker run -it \
-v /path/to/save/finetuned/model/:/finetuned-model \
-v /path/to/train.jsonl:/yi/finetune/data/train.json \
-v /path/to/eval.jsonl:/yi/finetune/data/eval.json \
ghcr.io/01-ai/yi:latest \
bash finetune/scripts/run_sft_Yi_6b.sh
```
##### From Local Server
Make sure you have conda. If not, use
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
source ~/.bashrc
```
Then, create a conda env:
```bash
conda create -n dev_env python=3.10 -y
conda activate dev_env
pip install torch==2.0.1 deepspeed==0.10 tensorboard transformers datasets sentencepiece accelerate ray==2.7
```
#### Hardware Setup
For the Yi-6B model, a node with 4 GPUs, each has GPU mem larger than 60GB is recommended.
For the Yi-34B model, because the usage of zero-offload technique takes a lot CPU memory, please be careful to limit the GPU numbers in 34B finetune training. Please use CUDA_VISIBLE_DEVICES to limit the GPU number (as shown in scripts/run_sft_Yi_34b.sh).
A typical hardware setup for finetuning 34B model is a node with 8GPUS (limit to 4 in running by CUDA_VISIBLE_DEVICES=0,1,2,3), each has GPU mem larger than 80GB, with total CPU mem larger than 900GB.
#### Quick Start
Download a LLM-base model to MODEL_PATH (6B and 34B). A typical folder of models is like:
```bash
|-- $MODEL_PATH
| |-- config.json
| |-- pytorch_model-00001-of-00002.bin
| |-- pytorch_model-00002-of-00002.bin
| |-- pytorch_model.bin.index.json
| |-- tokenizer_config.json
| |-- tokenizer.model
| |-- ...
```
Download a dataset from huggingface to local storage DATA_PATH, e.g. Dahoas/rm-static.
```bash
|-- $DATA_PATH
| |-- data
| | |-- train-00000-of-00001-2a1df75c6bce91ab.parquet
| | |-- test-00000-of-00001-8c7c51afc6d45980.parquet
| |-- dataset_infos.json
| |-- README.md
```
`finetune/yi_example_dataset` has example datasets, which are modified from [BAAI/COIG](https://huggingface.co/datasets/BAAI/COIG)
```bash
|-- $DATA_PATH
|--data
|-- train.jsonl
|-- eval.jsonl
```
`cd` into the scripts folder, copy and paste the script, and run. For example:
```bash
cd finetune/scripts
bash run_sft_Yi_6b.sh
```
For the Yi-6B base model, setting training_debug_steps=20 and num_train_epochs=4 can output a chat model, which takes about 20 minutes.
For the Yi-34B base model, it takes a relatively long time for initialization. Please be patient.
#### Evaluation
```bash
cd finetune/scripts
bash run_eval.sh
```
Then you'll see the answer from both the base model and the finetuned model.
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Quantization
#### GPT-Q
```bash
python quantization/gptq/quant_autogptq.py \
--model /base_model \
--output_dir /quantized_model \
--trust_remote_code
```
Once finished, you can then evaluate the resulting model as follows:
```bash
python quantization/gptq/eval_quantized_model.py \
--model /quantized_model \
--trust_remote_code
```
<details style="display: inline;"><summary>For a more detailed explanation, see the explanations below. ⬇️</summary> <ul>
#### GPT-Q quantization
[GPT-Q](https://github.com/IST-DASLab/gptq) is a PTQ(Post-Training Quantization)
method. It's memory saving and provides potential speedups while retaining the accuracy
of the model.
Yi models can be GPT-Q quantized without a lot of efforts.
We provide a step-by-step tutorial below.
To run GPT-Q, we will use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) and
[exllama](https://github.com/turboderp/exllama).
And the huggingface transformers has integrated optimum and auto-gptq to perform
GPTQ quantization on language models.
##### Do Quantization
The `quant_autogptq.py` script is provided for you to perform GPT-Q quantization:
```bash
python quant_autogptq.py --model /base_model \
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
```
##### Run Quantized Model
You can run a quantized model using the `eval_quantized_model.py`:
```bash
python eval_quantized_model.py --model /quantized_model --trust_remote_code
```
</ul>
</details>
#### AWQ
```bash
python quantization/awq/quant_autoawq.py \
--model /base_model \
--output_dir /quantized_model \
--trust_remote_code
```
Once finished, you can then evaluate the resulting model as follows:
```bash
python quantization/awq/eval_quantized_model.py \
--model /quantized_model \
--trust_remote_code
```
<details style="display: inline;"><summary>For detailed explanations, see the explanations below. ⬇️</summary> <ul>
#### AWQ quantization
[AWQ](https://github.com/mit-han-lab/llm-awq) is a PTQ(Post-Training Quantization)
method. It's an efficient and accurate low-bit weight quantization (INT3/4) for LLMs.
Yi models can be AWQ quantized without a lot of efforts.
We provide a step-by-step tutorial below.
To run AWQ, we will use [AutoAWQ](https://github.com/casper-hansen/AutoAWQ).
##### Do Quantization
The `quant_autoawq.py` script is provided for you to perform AWQ quantization:
```bash
python quant_autoawq.py --model /base_model \
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
```
##### Run Quantized Model
You can run a quantized model using the `eval_quantized_model.py`:
```bash
python eval_quantized_model.py --model /quantized_model --trust_remote_code
```
</ul>
</details>
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Deployment
If you want to deploy Yi models, make sure you meet the software and hardware requirements.
#### Software requirements
Before using Yi quantized models, make sure you've installed the correct software listed below.
| Model | Software
|---|---
Yi 4-bit quantized models | [AWQ and CUDA](https://github.com/casper-hansen/AutoAWQ?tab=readme-ov-file#install-from-pypi)
Yi 8-bit quantized models | [GPTQ and CUDA](https://github.com/PanQiWei/AutoGPTQ?tab=readme-ov-file#quick-installation)
#### Hardware requirements
Before deploying Yi in your environment, make sure your hardware meets the following requirements.
##### Chat models
| Model | Minimum VRAM | Recommended GPU Example |
|:----------------------|:--------------|:-------------------------------------:|
| Yi-6B-Chat | 15 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) |
| Yi-6B-Chat-4bits | 4 GB | 1 x RTX 3060 (12 GB)<br> 1 x RTX 4060 (8 GB) |
| Yi-6B-Chat-8bits | 8 GB | 1 x RTX 3070 (8 GB) <br> 1 x RTX 4060 (8 GB) |
| Yi-34B-Chat | 72 GB | 4 x RTX 4090 (24 GB)<br> 1 x A800 (80GB) |
| Yi-34B-Chat-4bits | 20 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) <br> 1 x A100 (40 GB) |
| Yi-34B-Chat-8bits | 38 GB | 2 x RTX 3090 (24 GB) <br> 2 x RTX 4090 (24 GB)<br> 1 x A800 (40 GB) |
Below are detailed minimum VRAM requirements under different batch use cases.
| Model | batch=1 | batch=4 | batch=16 | batch=32 |
| ----------------------- | ------- | ------- | -------- | -------- |
| Yi-6B-Chat | 12 GB | 13 GB | 15 GB | 18 GB |
| Yi-6B-Chat-4bits | 4 GB | 5 GB | 7 GB | 10 GB |
| Yi-6B-Chat-8bits | 7 GB | 8 GB | 10 GB | 14 GB |
| Yi-34B-Chat | 65 GB | 68 GB | 76 GB | > 80 GB |
| Yi-34B-Chat-4bits | 19 GB | 20 GB | 30 GB | 40 GB |
| Yi-34B-Chat-8bits | 35 GB | 37 GB | 46 GB | 58 GB |
##### Base models
| Model | Minimum VRAM | Recommended GPU Example |
|----------------------|--------------|:-------------------------------------:|
| Yi-6B | 15 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) |
| Yi-6B-200K | 50 GB | 1 x A800 (80 GB) |
| Yi-9B | 20 GB | 1 x RTX 4090 (24 GB) |
| Yi-34B | 72 GB | 4 x RTX 4090 (24 GB) <br> 1 x A800 (80 GB) |
| Yi-34B-200K | 200 GB | 4 x A800 (80 GB) |
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Learning hub
<details>
<summary> If you want to learn Yi, you can find a wealth of helpful educational resources here. ⬇️</summary>
<br>
Welcome to the Yi learning hub!
Whether you're a seasoned developer or a newcomer, you can find a wealth of helpful educational resources to enhance your understanding and skills with Yi models, including insightful blog posts, comprehensive video tutorials, hands-on guides, and more.
The content you find here has been generously contributed by knowledgeable Yi experts and passionate enthusiasts. We extend our heartfelt gratitude for your invaluable contributions!
At the same time, we also warmly invite you to join our collaborative effort by contributing to Yi. If you have already made contributions to Yi, please don't hesitate to showcase your remarkable work in the table below.
With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
#### Tutorials
##### English tutorials
| Type | Deliverable | Date | Author |
|-------------|--------------------------------------------------------|----------------|----------------|
| Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
| Blog | [Running Yi-34B-Chat locally using LlamaEdge](https://www.secondstate.io/articles/yi-34b/) | 2023-11-30 | [Second State](https://github.com/second-state) |
| Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
| Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
##### Chinese tutorials
| Type | Deliverable | Date | Author |
|-------------|--------------------------------------------------------|----------------|----------------|
| Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
| Blog | [本地运行零一万物 34B 大模型,使用 Llama.cpp & 21G 显存](https://zhuanlan.zhihu.com/p/668921042) | 2023-11-26 | [苏洋](https://github.com/soulteary) |
| Blog | [零一万物模型折腾笔记:官方 Yi-34B 模型基础使用](https://zhuanlan.zhihu.com/p/671387298) | 2023-12-10 | [苏洋](https://github.com/soulteary) |
| Blog | [CPU 混合推理,非常见大模型量化方案:“二三五六” 位量化方案](https://zhuanlan.zhihu.com/p/671698216) | 2023-12-12 | [苏洋](https://github.com/soulteary) |
| Blog | [单卡 3 小时训练 Yi-6B 大模型 Agent:基于 Llama Factory 实战](https://zhuanlan.zhihu.com/p/678989191) | 2024-01-22 | [郑耀威](https://github.com/hiyouga) |
| Blog | [零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!](https://zhuanlan.zhihu.com/p/680098411) | 2024-01-26 | [ModelScope](https://github.com/modelscope) |
| Video | [只需 24G 显存,用 vllm 跑起来 Yi-34B 中英双语大模型](https://www.bilibili.com/video/BV17t4y1f7Ee/) | 2023-12-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
| Video | [Yi-VL-34B 多模态大模型 - 用两张 A40 显卡跑起来](https://www.bilibili.com/video/BV1Q5411y7AG/) | 2023-01-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
</details>
# Why Yi?
- [Ecosystem](#ecosystem)
- [Upstream](#upstream)
- [Downstream](#downstream)
- [Serving](#serving)
- [Quantization](#quantization-1)
- [Fine-tuning](#fine-tuning-1)
- [API](#api)
- [Benchmarks](#benchmarks)
- [Chat model performance](#chat-model-performance)
- [Base model performance](#base-model-performance)
- [Yi-34B and Yi-34B-200K](#yi-34b-and-yi-34b-200k)
- [Yi-9B](#yi-9b)
## Ecosystem
Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
- [Upstream](#upstream)
- [Downstream](#downstream)
- [Serving](#serving)
- [Quantization](#quantization-1)
- [Fine-tuning](#fine-tuning-1)
- [API](#api)
### Upstream
The Yi series models follow the same model architecture as Llama. By choosing Yi, you can leverage existing tools, libraries, and resources within the Llama ecosystem, eliminating the need to create new tools and enhancing development efficiency.
For example, the Yi series models are saved in the format of the Llama model. You can directly use `LlamaForCausalLM` and `LlamaTokenizer` to load the model. For more information, see [Use the chat model](#31-use-the-chat-model).
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34b", device_map="auto")
```
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Downstream
> 💡 Tip
>
> - Feel free to create a PR and share the fantastic work you've built using the Yi series models.
>
> - To help others quickly understand your work, it is recommended to use the format of `<model-name>: <model-intro> + <model-highlights>`.
#### Serving
If you want to get up with Yi in a few minutes, you can use the following services built upon Yi.
- Yi-34B-Chat: you can chat with Yi using one of the following platforms:
- [Yi-34B-Chat | Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
- [Yi-34B-Chat | Yi Platform](https://platform.lingyiwanwu.com/): **Note** that currently it's available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)) and experience it firsthand!
- [Yi-6B-Chat (Replicate)](https://replicate.com/01-ai): you can use this model with more options by setting additional parameters and calling APIs.
- [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): you can use this service to run Yi models locally with added flexibility and customization.
#### Quantization
If you have limited computational capabilities, you can use Yi's quantized models as follows.
These quantized models have reduced precision but offer increased efficiency, such as faster inference speed and smaller RAM usage.
- [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ)
- [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
- [TheBloke/Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ)
#### Fine-tuning
If you're seeking to explore the diverse capabilities within Yi's thriving family, you can delve into Yi's fine-tuned models as below.
- [TheBloke Models](https://huggingface.co/TheBloke): this site hosts numerous fine-tuned models derived from various LLMs including Yi.
This is not an exhaustive list for Yi, but to name a few sorted on downloads:
- [TheBloke/dolphin-2_2-yi-34b-AWQ](https://huggingface.co/TheBloke/dolphin-2_2-yi-34b-AWQ)
- [TheBloke/Yi-34B-Chat-AWQ](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ)
- [TheBloke/Yi-34B-Chat-GPTQ](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ)
- [SUSTech/SUS-Chat-34B](https://huggingface.co/SUSTech/SUS-Chat-34B): this model ranked first among all models below 70B and outperformed the twice larger deepseek-llm-67b-chat. You can check the result on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
- [OrionStarAI/OrionStar-Yi-34B-Chat-Llama](https://huggingface.co/OrionStarAI/OrionStar-Yi-34B-Chat-Llama): this model excelled beyond other models (such as GPT-4, Qwen-14B-Chat, Baichuan2-13B-Chat) in C-Eval and CMMLU evaluations on the [OpenCompass LLM Leaderboard](https://opencompass.org.cn/leaderboard-llm).
- [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B): this model is trained with 200K context length and 3 epochs on the Capybara dataset.
#### API
- [amazing-openai-api](https://github.com/soulteary/amazing-openai-api): this tool converts Yi model APIs into the OpenAI API format out of the box.
- [LlamaEdge](https://www.secondstate.io/articles/yi-34b/#create-an-openai-compatible-api-service-for-the-yi-34b-chat-model): this tool builds an OpenAI-compatible API server for Yi-34B-Chat using a portable Wasm (WebAssembly) file, powered by Rust.
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
## Tech report
For detailed capabilities of the Yi series model, see [Yi: Open Foundation Models by 01.AI](https://arxiv.org/abs/2403.04652).
### Citation
```
@misc{ai2024yi,
title={Yi: Open Foundation Models by 01.AI},
author={01. AI and : and Alex Young and Bei Chen and Chao Li and Chengen Huang and Ge Zhang and Guanwei Zhang and Heng Li and Jiangcheng Zhu and Jianqun Chen and Jing Chang and Kaidong Yu and Peng Liu and Qiang Liu and Shawn Yue and Senbin Yang and Shiming Yang and Tao Yu and Wen Xie and Wenhao Huang and Xiaohui Hu and Xiaoyi Ren and Xinyao Niu and Pengcheng Nie and Yuchi Xu and Yudong Liu and Yue Wang and Yuxuan Cai and Zhenyu Gu and Zhiyuan Liu and Zonghong Dai},
year={2024},
eprint={2403.04652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Benchmarks
- [Chat model performance](#-chat-model-performance)
- [Base model performance](#-base-model-performance)
### Chat model performance
Yi-34B-Chat model demonstrates exceptional performance, ranking first among all existing open-source models in the benchmarks including MMLU, CMMLU, BBH, GSM8k, and more.

<details>
<summary> Evaluation methods and challenges. ⬇️ </summary>
- **Evaluation methods**: we evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA.
- **Zero-shot vs. few-shot**: in chat models, the zero-shot approach is more commonly employed.
- **Evaluation strategy**: our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text.
- **Challenges faced**: some models are not well-suited to produce output in the specific format required by instructions in few datasets, which leads to suboptimal results.
<strong>*</strong>: C-Eval results are evaluated on the validation datasets
</details>
### Base model performance
#### Yi-34B and Yi-34B-200K
The Yi-34B and Yi-34B-200K models stand out as the top performers among open-source models, especially excelling in MMLU, CMMLU, common-sense reasoning, reading comprehension, and more.

<details>
<summary> Evaluation methods. ⬇️</summary>
- **Disparity in results**: while benchmarking open-source models, a disparity has been noted between results from our pipeline and those reported by public sources like OpenCompass.
- **Investigation findings**: a deeper investigation reveals that variations in prompts, post-processing strategies, and sampling techniques across models may lead to significant outcome differences.
- **Uniform benchmarking process**: our methodology aligns with the original benchmarks—consistent prompts and post-processing strategies are used, and greedy decoding is applied during evaluations without any post-processing for the generated content.
- **Efforts to retrieve unreported scores**: for scores that were not reported by the original authors (including scores reported with different settings), we try to get results with our pipeline.
- **Extensive model evaluation**: to evaluate the model’s capability extensively, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension.
- **Special configurations**: CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted with a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code".
- **Falcon-180B caveat**: Falcon-180B was not tested on QuAC and OBQA due to technical constraints. Its performance score is an average from other tasks, and considering the generally lower scores of these two tasks, Falcon-180B's capabilities are likely not underestimated.
</details>
#### Yi-9B
Yi-9B is almost the best among a range of similar-sized open-source models (including Mistral-7B, SOLAR-10.7B, Gemma-7B, DeepSeek-Coder-7B-Base-v1.5 and more), particularly excelling in code, math, common-sense reasoning, and reading comprehension.

- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.

- In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.

- In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.

- In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.

<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
# Who can use Yi?
Everyone! 🙌 ✅
- The Yi series models are free for personal usage, academic purposes, and commercial use. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
- For free commercial use, you only need to [complete this form](https://www.lingyiwanwu.com/yi-license) to get a Yi Model Commercial License.
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
# Misc.
### Acknowledgments
A heartfelt thank you to each of you who have made contributions to the Yi community! You have helped Yi not just a project, but a vibrant, growing home for innovation.
[](https://github.com/01-ai/yi/graphs/contributors)
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### Disclaimer
We use data compliance checking algorithms during the training process, to
ensure the compliance of the trained model to the best of our ability. Due to
complex data and the diversity of language model usage scenarios, we cannot
guarantee that the model will generate correct, and reasonable output in all
scenarios. Please be aware that there is still a risk of the model producing
problematic outputs. We will not be responsible for any risks and issues
resulting from misuse, misguidance, illegal usage, and related misinformation,
as well as any associated data security concerns.
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
### License
The source code in this repo is licensed under the [Apache 2.0
license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models are fully open for academic research and free for commercial use, with automatic permission granted upon application. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
For free commercial use, you only need to send an email to [get official commercial permission](https://www.lingyiwanwu.com/yi-license).
<p align="right"> [
<a href="#top">Back to top ⬆️ </a> ]
</p>
|
Ashreen/legal-t5-large | Ashreen | 2024-03-13T13:29:10Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T13:27:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
not-lain/MyListModel | not-lain | 2024-03-13T13:27:46Z | 35 | 0 | transformers | [
"transformers",
"safetensors",
"pytorch_model_hub_mixin",
"model_hub_mixin",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T13:27:02Z | ---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
---
This model has been pushed to the Hub using ****:
- Repo: [More Information Needed]
- Docs: [More Information Needed] |
aboros98/merlin1.1 | aboros98 | 2024-03-13T13:25:29Z | 73 | 0 | transformers | [
"transformers",
"pytorch",
"phi",
"text-generation",
"custom_code",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T13:09:32Z | ---
license: mit
---
---
license: other
---
| Metric | Value |
|-----------------------|---------------------------|
| Average | - |
| ARC | TBA |
| ARC Easy | TBA |
| BoolQ | TBA |
| HellaSwag | TBA |
| OpenBookQA | TBA |
| PiQA | TBA |
| Winogrande | TBA |
|-----------------------|---------------------------|
| MMLU | TBA |
| GSM8K | TBA |
| Truthful QA | TBA |
| MT-Bench | TBA |
|
deepnet/SN6-67M7 | deepnet | 2024-03-13T13:21:16Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-13T12:26:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
not-lain/DUSt3R_ViTLarge_BaseDecoder_512_dpt | not-lain | 2024-03-13T13:20:17Z | 63 | 0 | transformers | [
"transformers",
"safetensors",
"pytorch_model_hub_mixin",
"model_hub_mixin",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T05:11:35Z | ---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
---
This model has been pushed to the Hub using ****:
- Repo: [More Information Needed]
- Docs: [More Information Needed] |
D77raven/finetuning-sentiment-model-3000-samples | D77raven | 2024-03-13T13:19:07Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T13:12:33Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3404
- Accuracy: 0.87
- F1: 0.8746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
tiziperata/finetuning-sentiment-model-3000-samples | tiziperata | 2024-03-13T13:18:56Z | 94 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T13:12:01Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3540
- Accuracy: 0.8667
- F1: 0.8701
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.2
|
AlehT/finetuning-sentiment-model-3000-samples | AlehT | 2024-03-13T13:18:54Z | 96 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T13:08:57Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3083
- Accuracy: 0.87
- F1: 0.8713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
BladeRunner22/finetuning-sentiment-model-3000-samples | BladeRunner22 | 2024-03-13T13:18:40Z | 94 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-12T12:31:39Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3171
- Accuracy: 0.87
- F1: 0.8730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.2
|
MattiaCampanella1993/finetuning-segment-model-3000-samples | MattiaCampanella1993 | 2024-03-13T13:18:35Z | 93 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T12:56:59Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-segment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-segment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3371
- Accuracy: 0.8467
- F1: 0.8506
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.2
|
baffo1971/finetuning-sentiment-model-3000-samples | baffo1971 | 2024-03-13T13:18:34Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-11T23:31:59Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3307
- Accuracy: 0.87
- F1: 0.8746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.2
|
AetherResearch/Cerebrum-1.0-7b | AetherResearch | 2024-03-13T13:17:05Z | 102 | 51 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-03-11T20:10:42Z | ---
base_model: mistralai/Mistral-7B-v0.1
license: apache-2.0
---
## Introduction
Cerebrum 7b is a large language model (LLM) created specifically for reasoning tasks. It is based on the Mistral 7b model, fine-tuned on a small custom dataset of native chain of thought data and further improved with targeted RLHF (tRLHF), a novel technique for sample-efficient LLM alignment. Unlike numerous other recent fine-tuning approaches, our training pipeline includes under 5000 training prompts and even fewer labeled datapoints for tRLHF.
Native chain of thought approach means that Cerebrum is trained to devise a tactical plan before tackling problems that require thinking. For brainstorming, knowledge intensive, and creative tasks Cerebrum will typically omit unnecessarily verbose considerations.
Zero-shot prompted Cerebrum significantly outperforms few-shot prompted Mistral 7b as well as much larger models (such as Llama 2 70b) on a range of tasks that require reasoning, including ARC Challenge, GSM8k, and Math.
## Benchmarking
An overview of Cerebrum 7b performance compared to reported performance Mistral 7b and LLama 2 70b on selected benchmarks that require reasoning:
<img src="benchmarking.png" alt="benchmarking_chart" width="750"/>
<img src="benchmarking_table.png" alt="benchmarking_table" width="750"/>
Notes: 1) Cerebrum evaluated zero-shot, Mistral 8-shot with maj@8, Llama 8-shot; 2) Cerebrum evaluated zero-shot, Mistral 4-shot with maj@4, Llama 4-shot
## Usage
For optimal performance, Cerebrum should be prompted with an Alpaca-style template that requests the description of the "thought process". Here is what a conversation should look like from the model's point of view:
```
<s>A chat between a user and a thinking artificial intelligence assistant. The assistant describes its thought process and gives helpful and detailed answers to the user's questions.
User: Are you conscious?
AI:
```
This prompt is also available as a chat template. Here is how you could use it:
```
messages = [
{'role': 'user', 'content': 'What is chain of thought prompting?'},
{'role': 'assistant', 'content': 'Chain of thought prompting is a technique used in large language models to encourage the model to think more deeply about the problem it is trying to solve. It involves prompting the model to generate a series of intermediate steps or "thoughts" that lead to the final answer. This can help the model to better understand the problem and to generate more accurate and relevant responses.'},
{'role': 'user', 'content': 'Why does chain of thought prompting work?'}
]
input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt')
with torch.no_grad():
out = model.generate(input_ids=input, max_new_tokens=100, do_sample=False)
# will generate "Chain of thought prompting works because it helps the model to break down complex problems into smaller, more manageable steps. This allows the model to focus on each step individually and to generate more accurate and relevant responses. Additionally, the intermediate steps can help the model to understand the problem better and to find patterns or connections that it may not have seen before.</s>"
```
The model ends its turn by generating the EOS token. Importantly, this token should be removed from the model answer in a multi-turn dialogue.
Cerebrum can be operated at very low temperatures (and specifically temperature 0), which improves performance on tasks that require precise answers. The alignment should be sufficient to avoid repetitions in most cases without a repetition penalty. |
fares-44/finetuning-sentiment-model-3000-samples | fares-44 | 2024-03-13T13:15:33Z | 92 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-13T13:05:54Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3502
- Accuracy: 0.8667
- F1: 0.8710
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.2
|
alinerodrigues/wav2vec2-xlsr-1b-mecita-portuguese-all-grade-2 | alinerodrigues | 2024-03-13T13:12:36Z | 1 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-03-13T10:45:55Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-1b-mecita-portuguese-all-grade-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-1b-mecita-portuguese-all-grade-2
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1941
- Wer: 0.1139
- Cer: 0.0330
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 34.2832 | 0.99 | 40 | 3.0116 | 1.0 | 1.0 |
| 34.2832 | 2.0 | 81 | 2.8772 | 1.0 | 1.0 |
| 4.8131 | 2.99 | 121 | 0.9677 | 0.6007 | 0.1857 |
| 4.8131 | 4.0 | 162 | 0.3474 | 0.2263 | 0.0645 |
| 0.9914 | 4.99 | 202 | 0.2927 | 0.1526 | 0.0453 |
| 0.9914 | 6.0 | 243 | 0.2635 | 0.1438 | 0.0420 |
| 0.9914 | 6.99 | 283 | 0.2629 | 0.1292 | 0.0394 |
| 0.3317 | 8.0 | 324 | 0.2372 | 0.1314 | 0.0411 |
| 0.3317 | 8.99 | 364 | 0.2253 | 0.1219 | 0.0358 |
| 0.2621 | 10.0 | 405 | 0.2416 | 0.1336 | 0.0397 |
| 0.2621 | 10.99 | 445 | 0.2063 | 0.1175 | 0.0339 |
| 0.2621 | 12.0 | 486 | 0.2266 | 0.1175 | 0.0372 |
| 0.2269 | 12.99 | 526 | 0.2377 | 0.1365 | 0.0419 |
| 0.2269 | 14.0 | 567 | 0.2115 | 0.1146 | 0.0342 |
| 0.1946 | 14.99 | 607 | 0.1941 | 0.1139 | 0.0330 |
| 0.1946 | 16.0 | 648 | 0.2148 | 0.1182 | 0.0336 |
| 0.1946 | 16.99 | 688 | 0.2235 | 0.1241 | 0.0356 |
| 0.1585 | 18.0 | 729 | 0.2142 | 0.1153 | 0.0342 |
| 0.1585 | 18.99 | 769 | 0.2100 | 0.1153 | 0.0346 |
| 0.1529 | 20.0 | 810 | 0.2133 | 0.1088 | 0.0317 |
| 0.1529 | 20.99 | 850 | 0.2274 | 0.1044 | 0.0329 |
| 0.1529 | 22.0 | 891 | 0.2101 | 0.1051 | 0.0317 |
| 0.1456 | 22.99 | 931 | 0.2104 | 0.1088 | 0.0319 |
| 0.1456 | 24.0 | 972 | 0.2258 | 0.1102 | 0.0330 |
| 0.1445 | 24.99 | 1012 | 0.2261 | 0.1058 | 0.0317 |
| 0.1445 | 26.0 | 1053 | 0.2396 | 0.1153 | 0.0343 |
| 0.1445 | 26.99 | 1093 | 0.2227 | 0.1044 | 0.0303 |
| 0.1464 | 28.0 | 1134 | 0.2299 | 0.1095 | 0.0317 |
| 0.1464 | 28.99 | 1174 | 0.2326 | 0.1022 | 0.0309 |
| 0.1107 | 30.0 | 1215 | 0.2281 | 0.1066 | 0.0304 |
| 0.1107 | 30.99 | 1255 | 0.2198 | 0.1058 | 0.0297 |
| 0.1107 | 32.0 | 1296 | 0.2336 | 0.1095 | 0.0313 |
| 0.1018 | 32.99 | 1336 | 0.2218 | 0.1088 | 0.0309 |
| 0.1018 | 34.0 | 1377 | 0.2244 | 0.0993 | 0.0298 |
| 0.0949 | 34.99 | 1417 | 0.2173 | 0.1 | 0.0282 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.13.3
|
Ashreen/legal-bart | Ashreen | 2024-03-13T13:09:56Z | 161 | 0 | transformers | [
"transformers",
"safetensors",
"bart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T13:09:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Shakhovak/flan-t5-small-absa-rest | Shakhovak | 2024-03-13T13:09:36Z | 92 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/flan-t5-small",
"base_model:finetune:google/flan-t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-03-13T12:57:23Z | ---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
model-index:
- name: flan-t5-small-absa-rest
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-absa-rest
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6057 | 0.52 | 100 | 1.0232 |
| 1.0344 | 1.05 | 200 | 0.4973 |
| 0.7178 | 1.57 | 300 | 0.4004 |
| 0.619 | 2.09 | 400 | 0.3607 |
| 0.5466 | 2.62 | 500 | 0.3492 |
| 0.5277 | 3.14 | 600 | 0.3245 |
| 0.4775 | 3.66 | 700 | 0.3175 |
| 0.4823 | 4.19 | 800 | 0.3090 |
| 0.4406 | 4.71 | 900 | 0.3035 |
| 0.454 | 5.24 | 1000 | 0.2995 |
| 0.4108 | 5.76 | 1100 | 0.2960 |
| 0.4101 | 6.28 | 1200 | 0.2940 |
| 0.4016 | 6.81 | 1300 | 0.2901 |
| 0.3888 | 7.33 | 1400 | 0.2868 |
| 0.3815 | 7.85 | 1500 | 0.2865 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|
AlexLi0228/sd-class-butterflies-32 | AlexLi0228 | 2024-03-13T13:05:02Z | 44 | 0 | diffusers | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2024-03-13T13:03:32Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('AlexLi0228/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
not-lain/MyConfigModel | not-lain | 2024-03-13T12:56:30Z | 36 | 0 | transformers | [
"transformers",
"safetensors",
"pytorch_model_hub_mixin",
"model_hub_mixin",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T05:01:07Z | ---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
---
This model has been pushed to the Hub using ****:
- Repo: [More Information Needed]
- Docs: [More Information Needed] |
collombo/w2v-bert-2.0-finetune-colab-CV16.0 | collombo | 2024-03-13T12:52:29Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-13T12:52:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lagadro/bert-base-turkish-cased-ner | Lagadro | 2024-03-13T12:52:08Z | 59 | 0 | transformers | [
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"base_model:dbmdz/bert-base-turkish-cased",
"base_model:finetune:dbmdz/bert-base-turkish-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-03-13T10:22:11Z | ---
license: mit
tags:
- generated_from_keras_callback
base_model: dbmdz/bert-base-turkish-cased
model-index:
- name: bert-base-turkish-cased-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-base-turkish-cased-ner
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5315, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Subsets and Splits